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CHAPTER 1: INFORMATION CONTAGION

In social media, information spreads like a contagion from person to

person. When many pieces of information are spreading and competing in the

space of social media messages, their propagation rates become very unequal.

This is because contagion creates a positive feedback which amplifies small,

random differences in prevalence. A framework for modeling social media is

developed that suggests how to infer the communication choices of social media

participants from the observed heavy-tailed count distribution of messages

containing different pieces of information. In a Monte Carlo simulation where

agents with rational expectations make individually optimal communication

choices, the feedback effect is only partially mitigated. Even with fully rational

behavior, information that no-one has an especially high propensity to pass

along can “go viral”.



CHAPTER 2: SEARCH AND BARGAINING WITH PLASTIC:

MONEY AND CHARGE CARDS AS COMPETING MEDIA OF EXCHANGE

Charge cards are introduced into the Lagos-Wright money search model

as an alternative medium of exchange competing with money. I explore why

cards and money may coexist, and examine the implications of intermediated

exchange for monetary policy. Charge cards lower the social cost of inflation

because they overcome the hold up problem with money that otherwise results

in too little exchange. Some inflation can even be beneficial if a higher cost

of holding money pushes agents to become cardholders. Moreover, higher

nominal interest rates help card companies set higher spending limits, which

can also increase the level of exchange and improve welfare.
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1. INFORMATION CONTAGION



“If the news is that important, it will find me.”

– unidentified college student in a focus group

quoted in Stelter (2008)

1.1 Introduction

In social media, what is the relationship between individual participants’

decisions to pass along a piece of information and the total number of copies of

that information that are produced? A common metaphor for the communica-

tion of information from person to person is that of a virus spreading through

a population. Indeed there is a longstanding literature in mathematics that

uses stochastic models of epidemics to describe the spread of “rumors”. The

classic model is that of Daley and Kendall (1965)1. There are two problems

with using these models to analyze social media. First, there is no place for

media in epidemic rumor models. Rumors pass directly from person to per-

son whenever an “infective” meets a “susceptible”. In contrast, most social

media consist of messages – tweets, posts, blog entries. The message is both

the mechanism by which information is transmitted and the record which re-

searchers are able to observe. Second, there is no decision in epidemic rumor

1 The feature that distinguishes epidemic rumor models from the classic SIR (Susceptible,
Infective, Removed) models of epidemiology is that infectives become removed upon meeting
another individual who is either infective or removed (i.e. when attempting to pass the rumor
to someone who has already heard it). In rumor models, removed individuals are sometimes
called “stiflers” because they actively affect the progress of the epidemic. In a sense it is
not only the “disease” that is contagious, but also the “cure”.
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models. Rather, transmission of information is involuntary. So, in order to

connect communication choices with observable outcomes in terms of messages

produced, I put forth a new framework for modeling information contagion:

agents who know a piece of information choose to post messages in a medium

that is consumed by other agents.

Explicitly including the medium in the framework allows models to natu-

rally capture a striking empirical feature of social media: the number of copies

of a given piece of information, unconditional on the information’s age, has a

heavy-tailed probability distribution. Section 1.2 presents data collected by

Spinn3r, a search engine focusing on social media web sites. The Spinn3r data

was previously analyzed by Leskovec et al. (2009) who identified phrases of

words that recur on multiple pages, and made the resulting dataset available

on memetracker.org. The number of pages containing a given phrase is roughly

Pareto distributed (for a phrase chosen at random regardless of age, the prob-

ability of observing k or more occurrences is proportional to k−ρ above some

minimum value of k). My proposition is that these phrases serve as markers

for distinct pieces of information which are spreading through social media.

However, such a count distribution does not arise in models that consider a

single contagion in isolation. Instead the heavy-tailed distribution suggests

an interaction between many contagions competing for the chance to spread

(see section 1.3). This competition is captured naturally by models in which
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information spreads through messages and agents read messages at random.

The heavy-tailed distribution of messages arises because of a feedback effect

whereby the more messages there are containing a piece of information, the

more likely that information is to be learned by a new agent who will go on

to re-post it in additional messages.

1.1.1 Inference

The implication of the feedback effect is that some pieces of information

spread much faster than others, purely by chance. Suppose it was observed

that phrase A appears in ten times as many posts as phrase B. One could not

infer that social media participants are ten times as likely to re-post A as they

are to re-post B. Moreover, given the value of ρ = 1.24 estimated from the

overall memetracker dataset, one could not even reject the hypothesis that A

and B are equally likely to be re-posted2. The outcome of information being

reproduced many times may be due to agents having a higher propensity to re-

post it, but could just as well be because the information happened to spread

quickly and this early advantage has snowballed.

That the feedback effect can dominate and obscure individual choices

is illustrated by a simple agent-based simulation (see section 1.3.1): agents

2 In a two-tailed statistical test of the null hypothesis that the number of posts containing
A and the number containing B come from the same Pareto distribution with parameter
ρ = 1.24, observing a test statistic max(xA, xB)/min(xA, xB) of 10 has a p-value of 0.0515.
One could not reject the null at a 5% confidence level.
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communicate via an idealized message board where each message contains a

single piece of information and agents read messages at random. Different

pieces of information have different values, and each one is initially known by

a single agent. Every period each agent posts the most valuable information

she knows, up to the point where the marginal cost of posting an additional

message exceeds the value of the marginal information. Figure 1.8 shows

a typical run of this simulation. The information which spread fastest was

only of medium value, but it reached half the population before a majority of

information spread to more than a handful of agents. The correlation between

value and prevalence is quite poor.

Little can be inferred from the prevalence of an individual piece of in-

formation. However, given a collection of different pieces of information, their

occurrence counts can be fit to a Pareto distribution and some inference might

be made from the fitted value of ρ. A basic analytical model is laid out in

section 1.3.3 which is equivalent to a Yule process (also known as preferential

attachment in the literature on network formation). If agents find messages

and re-post the information they contain at a fixed rate λ and new pieces of

information arrive at rate µ, the steady state distribution of the number of

occurrences will be Pareto with parameter ρ = (µ + λ)/λ. If the birth rate µ

is observed, the rate of re-posting by individual agents can be deduced from ρ.

This brings us a step closer to being able to observe agents’ choices from
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outcomes. By fitting separate Pareto distributions to different sets of informa-

tion, it may be possible to infer a common factor in the propensity to re-post

across members of one set relative to members of another set. For example,

figure 1.2 in section 1.2.1 shows two sets of phrases: those containing the word

“Lehman” which mainly refer to the financial crisis, and phrases containing

the sequence of words “broke up with” which seem to be predominantly about

celebrities. Each set of phrases has it’s own count distribution of the number

of messages containing a random phrase from the set. For both “Lehman”

phrases and “broke up with” phrases, the most frequent outcome is the search

engine finding only a single message containing the phrase. The second most

common outcome is two occurrences, and so on. The typical phrase from ei-

ther set has hardly spread at all. Yet for both types, there are some phrases

that have been reproduced many times. About one in 70 “Lehman” phrases

are found in ten or more messages. For “broke up with” phrases the fraction

is about one in 90. For both types, a tiny fraction of phrases have made it

onto hundreds of web pages.

More succinctly, both count distributions seem to be moderately good

fits to Pareto distributions. We would like to be able to use their respective

Pareto coefficient estimates ρ̂Lehman ≈ 1.35 and ρ̂brokeupwith ≈ 1.95 and their re-

spective arrival rates of new phrases µLehman = 1427/month and µbrokeupwith =

147/month to determine the relative propensity of social media participants to
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pass along each type of information. Here we find λLehman = 26.6×λbrokeupwith.

One might conclude that people will re-post news about the crisis at a rate

26.6 times higher than the rate they pass along celebrity gossip! Unfortunately

there are both practical and theoretical issues with this result.

1.1.2 Empirical challenges

First there is the issue of data sampling. Social media participants have

many channels for communication and it is unlikely that a single dataset will

capture all of the messages containing a given piece of information. Cer-

tainly the memetracker data does not contain every post on every platform.

This matters because the measurements of interest are the counts of occur-

rences, and the relative counts in a sample are not the same as the relative

counts in the population. Section 1.2.3 on binomial sub-sampling demon-

strates how observing a message with with probability p distorts the count

distribution. The sample distribution will have relatively fewer large counts

than the population distribution. Fortunately, if the population is Pareto dis-

tributed the sample distribution will be asymptotically Pareto (see Stumpf et

al., 2005, for a treatment of Pareto count distributions and sampling). This

means for a sufficiently large value of kmin, the sample distribution will follow

Prob(x ≥ k |x ≥ kmin) =
(

k
kmin

)−ρ
and it may still be possible to estimate ρ.

However, this requires sufficiently large samples that the Pareto can be fit us-
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ing only the small portion of information that attains large counts. Moreover,

sampling complicates estimating the birth rate µ of new information. Many

pieces of information in the population will have zero counts in the sample.

Inferring the number of missing pieces of information requires knowing the full

count distribution that was thinned by the binomial sub-sampling, not just the

upper tail.

Inference from a sample also depends on the sample being representative

of the population, i.e. the probability p of inclusion in the sample should be

independent of the message’s content or other characteristics. This may not

be the case for real world datasets. For example, there is evidence that the

memetracker data is not representative of the whole population of social media

messages. Figure 1.3 shows a quantile-quantile plot comparing two empirical

distributions: the count distribution of phrases containing “inflation” and the

count distribution of phrases containing “playoff”. If these counts came from

different Pareto distributions with different values for ρ, then the QQ plot

would show an exponential relationship between the two. The quantile pairs

would fall on a straight line only if the QQ plot had a logarithmic scale (the

slope would be 1 + (ρinflation− ρplayoff )). Instead the relationship between the

quantiles is roughly linear, but with a slope around 1.5 rather than one. This

means the two sample distributions have the same shape, but differ by a scale

factor: the probability of a “playoff” phrase occurring in k messages is the
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same as the probability of an “inflation” phrase occurring in 1.5k messages

(perhaps only for k > 6). One explanation of this is that the population

distributions are actually the same – both Pareto with ρ values too similar

to distinguish – but the probability of a “playoff” message being sampled is

higher, with pplayoff/pinflation ≈ 1.5.

1.1.3 Theoretical refinements

The theoretical issues revolve around the questions of whether we really

expect to find a fixed re-posting rate λ and why we should not expect to find

ideal Pareto distributions. First, the Yule process itself produces a distribu-

tion that is only asymptotically Pareto. Section 1.3.3 gives the exact count

distribution which is named Yule-Simon and has somewhat fewer low count

occurrences than Pareto (see figure 1.9 for a comparison). In itself this is not

much of as issue since the two distributional forms converge quickly and are

practically indistinguishable for counts above 10. If complete datasets (con-

taining the entire population of messages through which information spreads)

were available, one might use the goodness of fit of the Yule-Simon on low

counts as a test of the basic mechanism. But when working with a sample, the

binomial sub-sampling effect distorts the low counts and the Pareto coefficient

can only estimated from the higher counts anyway.

More problematic is that the basic social media model built on the Yule
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process assumes that the total number of messages can grow without bounds.

Even though each piece of information continues moving up in message count,

the distribution converges to a steady state when the proportion of information

at each size is such that the growth balances the constant addition of new

information which each start out with a single message. The far upper tail

of the Yule-Simon/Pareto distribution contains the pieces of information that

have been spreading for a very long time yet continue to find new agents who

will start re-posting them.

But in a finite population of agents there must be an upper-bound to the

distribution, even if all agents re-post old information forever. On the other

hand, with an upper bound and continuous birth of new information there

cannot be a steady state distribution unless there is also death of information.

At some point agents must stop re-posting information, otherwise an ever

growing proportion of information would be at that upper bound. Section

1.3.4 introduces a social media model consistent with a finite population, in

which agents stop re-posting information when it exceeds an age limit. The

resulting count distribution is a generalized version of the Yule-Simon that is

Pareto-like for counts above the single digits but has a truncated upper tail.
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1.1.4 Structural models

The generalized Yule-Simon may be a useful reduced form. But under-

standing how the structure of social media and changes in communication

technology will affect the availability of information to consumers requires a

structural model of agents’ communication decisions. Solving such a model ne-

cessitates specifying the costs and benefits faced by social media participants.

Section 1.4 presents a micro-founded dynamic programming model of social

media in which posting messages is costly, each piece of information yields a

value to each agent who learns it, and agents who know information can choose

to post it in a message because they can capture some of the value from the

agent who reads their messages. Agents in this model do not know how many

other agents have already learned each piece of information. But agents do

know the age of information and have rational expectations about the proba-

bility distribution of how many agents know information as a function of its

age.

Two examples of this structural model are presented that differ in the

communication technology assumed. In the first, the social media platform

permits agents to choose only whether or not to post messages for each piece

of information they know. If they post, they do so at a fixed rate. Agents

will choose to keep posting messages until the information reaches a threshold

age. After this threshold the value of communicating has dropped to the point
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that the share accruing to the message poster, times the probability a given

message will be read, is below the cost of posting. The benefit of communi-

cating decreases with information’s age because of the increasing probability

that an agent reading a message has already learned the information and gets

no additional value. In addition to the direct value, an agent who learns infor-

mation can begin re-posting it and capture some value from additional agents.

This “resale” value of information depends on the entire future path of all the

agents who will be infected indirectly. Each agent can extract a share of all the

value from the agents downstream. But each additional agent who knows a

piece of information also increases the competition. This example rationalizes

the reduced form Yule process with birth and death, and therefore yields the

same generalized Yule-Simon distribution. But here the age limit, and thus

the distribution’s truncation, are derived from model primitives (value of in-

formation, size of population and cost of posting). This dynamic programming

example is solved numerically in section 1.4.1 using a Monte Carlo nested fixed

point algorithm.

A fixed message posting rate, per piece of information, may or may not

not be a good description of the communication behavior of social media par-

ticipants today. But it seems unrealistic to impose it as a restriction of the

message posting technology. A second example of the micro-founded struc-

tural model allows agents to choose the rate at which they post, facing a cost
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function that is increasing and convex in the number of messages per period.

Agents with rational expectations will post more messages containing new in-

formation and taper off posting as the information ages. This allows us to

address the important question of whether the contagion effect is only transi-

tory or is fundamental to social media. Might not fully optimizing agents who

anticipate the feedback effect arrive at a more equal distribution of informa-

tion?

Section 1.4.2 presents a numerical solution of this example. The equilib-

rium of this system is an aggressive policy function that posts many messages

for young information and reduces the rate quickly as information ages (see

figure 1.13). This does produce a more equal distribution than the generalized

Yule-Simon. But the distribution still has a (truncated) heavy tail. There are

10,000 agents in this example model. The equilibrium policy transmits half

of all pieces of information to over 100 agents (one percent of the population)

where a much smaller fraction of information reaches that many agents under

the model with fixed re-posting rates. On the other hand, the equilibrium

distribution is a good match to the generalized Yule-Simon conditional on

having reached about 98 people (see figure 1.16). This is the expected number

of agents who know the information when the equilibrium policy transitions

from being very age sensitive to less sensitive. The total number of messages

posted for a piece of information (# posts/agent × # agents infected) has a
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sharp peak at this age.

The conclusion is that optimizing social media participants with ratio-

nal expectations, who take into account the feedback mechanism, will only

partially mitigate that feedback. The resulting spread of information will still

result in some “lucky” information spreading a lot. Researchers observing the

messages from such an equilibrium system will still find a count distribution

that has a Pareto-like range over orders of magnitude of counts.

1.1.5 Related literature

As mentioned above, the classic model epidemiological model of rumors

is Daley and Kendall (1965). For a modern extension that accounts for the

structure of the social network through which rumors can spread see Nekovee

et al. (2007).

It has long been known that the number of citations to academic journal

articles and the number of hyperlinks to documents on the World Wide Web

both have highly skewed distributions. Since at least the late 1990’s it’s been

widely accepted that these follow Pareto distributions (see Redner 1998 on

citations and Barabasi and Albert 1999 on hyperlinks), though some argue

that these distributions are in fact log-normal (see Mitzenmacher 2004 for a

good overview of this debate.) The burgeoning literature on topic detection

and tracking has occasionally noted a similar highly skewed distribution in the
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number of documents containing a given phrase or set of words (Gruhl et al.,

2004; Leskovec et al., 2009).

A recurring explanation is that the generative processes creating new

hyperlinks, references to past research, and articulations of phrases all exhibit

preferential attachment (a.k.a. “cumulative advantage”). New instances occur

in proportion to the number of existing instances, presumably via some form

of copying what has come before. The first treatment of such a process dates

back to Yule (1925). The Yule process was most famously revived by Simon

(1955), but similar mechanisms for generating asymptotically Pareto distribu-

tions have been reinvented many times. See Simkin and Roychowdhury (2006)

for a comparison of the numerous derivations of this result.

Information contagion bears a superficial resemblance to information

cascades. Contagion describes how information passes from person to per-

son, whereas information cascades describes the situation where agents infer

others’ information by observing their actions. The resulting herd behavior,

where all agents copy the action of the first few actors in disregard of their own

private information, is wholly unrelated to the situation where some pieces of

information quickly spread to a large portion of the population because of the

feedback effect of contagion.
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1.1.6 Organization

The remainder of this paper is organized as follows: Section 1.2 presents

the Memetracker data and shows (a) that the count distribution is heavy tailed

and the same for subsets of phrases on completely different topics, and (b) that

conditional on already having n mentions, the arrival of the n + 1th mention

looks the same regardless of n, except that its overall magnitude increases in

n. Section 1.3.1 shows the simple agent-based model where each agent only

passes along the most valuable information she knows, but the outcome shows

little correlation between value and prevalence. Section 1.3 develops a branch-

ing process model of information contagion. A simple one-shot version of the

model where agents follow basic rules is introduced and solved analytically

using a combinatorial urn model is described in section 1.3.2. A birth pro-

cess for information is introduced in section 1.3.3 which makes the urn model

equivalent to a Yule-Simon process. This would have an ergodic distribution

as its solution, but perpetual growth is not compatible with contagion with

a finite number of susceptible agents. Section 1.3.4 adds a maximum age for

information to be communicated, which means that contagion can continue

without saturating the population. Section 1.4 replaces the basic rules-based

behavior of agents with a full microeconomics-founded model of communi-

cation choice. Agents are fully rationally utility maximizers with rational

expectation. Sections 1.4.1 and 1.4.2 describe the computational solution to

16



this problem under two different assumptions for the communication technol-

ogy. In both solutions, the resulting count distribution is heavy tailed despite

agents making individually optimal choices. Section 1.5 concludes.

1.2 Empirical evidence

Spinn3r is a company that provides a back-end web crawler service which

indexes social media, blogs, and mainstream news web sites. Their customers

are companies that analyze trends, track the impact of news stories, or provide

front-end search engines for the “blogosphere”. Leskovec et al. (2009) analyzed

nine months of Spinn3r data, and have made their sample publicly available

at memetracker.org. The Memetracker data contains records of 97 million

documents that were indexed between August 1, 2008 and April 30, 2009.

The data contains the URL of each document and the time stamp from when

the search engine visited it. In addition, from each document, every phrase of

three or more words appearing inside quotation marks is identified. Most of

these are actual quotations where the document’s author is quoting the words

of another person. Titles of books, films and television shows also appear

within quotation marks. These are rare overall, but make up a sizable number

of the most common quoted phrases. See appendix 1.A for a list of the top

phrases and their counts.

I interpret each phrase as a marker for a narrow topic, and assume all

17



documents that include a given phrase contain one or more pieces of informa-

tion – fact or opinion – about that topic. Sometimes, the phrase itself conveys

a specific piece of information, such as “Palm Beach County residents, claim

your economic stimulus payment” which is from a press release put out by

Florida senator Mel F. Martinez inviting the public to a workshop to help

them fill out paperwork. The phrase went on to appear in 28,374 documents

indexed by Spinn3r. If you lived in Palm Beach County, learning this fact

before October 15, 2008 may have been quite valuable. Sometimes the phrase

expresses an opinion, such as “Phil Gramm is the single most important rea-

son for the current financial crisis” which was said by a former S.E.C. lawyer

and first published in an article in the New York Times on Nov 16, 2008.

This quotation appeared in 35,617 documents, many of them blog postings or

message boards. The set of documents tagged by this phrase probably con-

tain multiple, perhaps divergent, opinions and facts about the extent to which

deregulation was to blame for the crisis.

The most repeated quoted phrase was the epithet “gang of ten” which

referred to a group of US Senators who negotiated a compromise on the New

Energy Reform Act of 2008. This phrase appeared in numerous news stories

throughout August and September 2008, and went on to appear in 154,715

documents in the Spinn3r dataset. On the one hand the phrase is associated

with many distinct pieces of information about the political process and the
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numerous components of this bill. On the other hand, all of these distinct facts

or opinions are closely related under the umbrella of ’bipartisan agreement

passes energy bill’ and it can be argued that “gang of ten” is a good marker

for this nexus of topics. Through the data mining techniques of topic detection

and sentiment analysis it should be possible to obtain a more fine grained list

of topics, and ultimately attempt to identify the specific information content

of each document. This is beyond the scope of this paper, and is not possible

using the public Memetracker data, which contains only the quoted phrases

from each document and not the complete text.

1.2.1 Distribution of counts

Leskovec et al. (2009) identified 75 million distinct quoted phrases in

the spinn3r data. These phrases appeared a total of 201 million times, disre-

garding multiple instances of the same quotation in the same document. The

average number of documents mentioning a quote is 2.69 and the modal num-

ber is 1. The phrase with the most mentions appeared in 154,715 documents.

Figure 1.1 shows the distribution of the number of documents containing a

given phrase. The graph in panel 1.1b is the counter-cumulative distribution

function Pr(X ≥ x) = 1 − CDF(X). This is shown rather than the more

familiar CDF so that exponentially small probabilities can be represented on

a log scale. On the bottom axis is the count x, also in log scale. Since these
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(a) Histogram of phrases by
number documents in which
they appear. The heavy tail
is hard to capture on a linear
scale.
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Fig. 1.1: Number of copies of quoted phrases appearing on 97M web pages from
blogs, social media and news websites indexed by spinn3r.com. 75M dis-
tinct phrases appeared a total 201M times. The distribution is heavy-tailed
with the top 0.01% of phrases appearing on thousands of documents while
the average phrase appears on 2.69. 70.7M phrases appeared five times
or fewer while one phrase appeared 154,715 times. The distribution is ap-
proximately power law over a wide range, falling a little below is the upper
tail.

data appear to fall very nearly on a straight line on a log-log plot, we may sus-

pect their distribution is approximately Pareto (also known as a power-law or

scale-free distribution) Pr(x ≥ k) = Ck−ρ where C = xρmin. It seems unlikely

that the distribution of the “values” of the information associated with these

phrases would have such a shape. On the other hand, branching processes can

readily give rise to Pareto distributions.

A Pareto distribution was fit to the data using the technique of Clauset

et al. (2009) which finds the best fit exponent ρ for each subset of data points

20



excluding more or fewer points from the left, to find the pair of ρ and cut-off

xmin that maximizes likelihood. The best fitting parameters are ρ = 1.24 and

xmin = 6 and this distribution is shown as a dashed line on figure 1.1b. A

chi-squared test for goodness of fit cannot reject that the distribution of the

data for counts 6 and above is Pareto(ρ = 1.24,xmin = 6) with p-value=1.

It is common for heavy-tailed distributions to be well described by a Pareto

distribution only in their upper tails. Here the Pareto is a very good fit

from x = 6 up to around x = 1000. A candidate distribution that may fit

the smallest counts better while matching the shape of the Pareto for larger

counts is the Yule-Simon distribution Pr(x = k) = ρB(k, ρ+ 1) (described in

section 1.3.3 below). The number of phrases with counts above 1000 falls off

somewhat faster than the Pareto distribution. These represent only a small

portion of the data: the top 0.01% of all phrases. Nevertheless, an ideal model

would reproduce this distribution at all scales. A generalized version of the

Yule-Simon distribution may also capture the fall-off from Pareto at the very

highest counts.

Figure 1.2 shows evidence that subsets of phrases pertaining to very

different topics have similar count distributions. On the left is the distribu-

tion of the number of documents mentioning a phrase that contains the word

’Lehman’ (which are almost all about the bankruptcy of Lehman Brothers).

On the right is the distribution of the number of documents mentioning a

21



10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

 

 

12845 phrases containing
"lehman"

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

1323 phrases containing
"broke up with"

Fig. 1.2: The number documents containing a phrase has similar distribution for
different subsets of phrases, an indication that the distribution is unrelated
to information content.
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Fig. 1.3: Two-sample QQ plot comparing distributions for subsets of quoted phrases
about different topics “playoffs” and “inflation”. The quantiles of the two
distributions are proportional (they fall on a straight line) and close to the
45 degree line meaning they are close to identical
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phrase that contains ’broke up with’, which are mainly celebrity gossip. An-

other two subsets, phrases containing ’inflation’ and phrases containing ’play-

off’ are compared on a quantile-quantile plot in figure 1.3. The quantiles from

the two distributions fall on a straight line, implying that the two distributions

differ only in scale (if they fell along the 45 degree line the two distributions

would be identical). Why would the distribution of importance of the informa-

tion associated with sports topics be the same as the distribution of importance

for information associated with macroeconomics topics? In fact, all subsets of

phrases have the same basic power law shape. One either has to accept that

all information has the same distribution of importance regardless of topic, or

conclude that the counts of these phrases is not determined by importance.

1.2.2 Arrival analysis

The daily volume of phrases identified by Leskovec et al. (2009) is shown

in figure 1.4. There appears to be two regimes, with a break point sometime

around the beginning of February 2009. Before this point the volume exhibits

a weekly cycle but is otherwise very sable, hovering around 500K mentions per

day. After February 2009 the volume more than doubles, but also becomes

much more volatile. This latter period is excluded from the analysis of arrivals

that follows but is included in the analysis of overall count distribution above.

Aside from the change between regimes, there does not appear to be much
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growth in the overall rate of mentions. The arrival rate of new phrases is also

fairly stable at around 280K per day.
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Fig. 1.4: Memetracker data: daily volume of phrases identified by Leskovec et al.
(2009) in documents indexed by spinn3r search engine. The first six months
of the dataset, up until early February 2009, the volume exhibits a weekly
cycle but hovers around 500K per day. In the last three months the vol-
ume more than doubles, but also becomes much more volatile. Data after
February 1, 2009 are excluded in the following arrival analysis.

The full dataset is too large for convenient computation, so a sample

from the dataset was produced by selecting the first 335K phrases whose first

mention occurred after October 1, 2008. A date well into the dataset was se-

lected so as to exclude “evergreen” phrases that occur at a certain background

level all of the time. The phrases in the sample were not seen in the first two

months, and then seen for the first time during the first 29 hours of October.

The sample consists of all mentions for this set of phrases up until the end of
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January 31, 2009, for a total of 487K mentions. The majority of these phrases,

248K or 74%, were not observed again in the sample. Figure 1.7 shows the

number of phrases that receive at least n mentions for n up to 10.
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Fig. 1.5: Memetracker data: normalized arrival intensity of additional documents
mentioning a phrase after the 1st mention. Phrases are put into five differ-
ent groups depending on the total number of mentions the phrase receives.
Data is from a sub-sample of 335K phrases whose first mention was on Oc-
tober 1, 2008. The window of time is four months. Most mentions occur
within a few days of the initial mention. The intensity function is similar
for phrases of very different mention counts, indicating it is not longevity
that produces high counts.

Figure 1.5 shows the arrival of additional mentions after the initial one.

The intensity falls off quickly, with most mentions arriving within a few days

of the first. This is true for the phrases that only ever receive a few mentions,

but also for phrases that receive hundreds. In the figure, phrases are grouped

by the total number of mentions they receive. For example, the 2-mention
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group contains only phrases that had exactly 2 mentions in the sample. The

21-100 mention group had between 20 and 100 mentions. The groups were

chosen to have roughly the same number of mentions in each group. There

are about as many phrases (43K) in the 2-mention group as in all the other

groups combined. The time profiles of all these groups is very similar. The

magnitudes are roughly similar as well, although that cannot be seen from this

graph since these intensity functions have been normalized (the area under

each curve is 1, so they are in fact density functions rather than intensity

functions). This figure dismisses the idea that the high count phrases are the

ones that continued to spread for a long time.

The distribution of inter-arrival times is shown in figure 1.6. Only the

times between the (n − 1)th and nth mention is shown, for select values of

n (e.g. the “1000” curve shows the wait time between the 999th mention

and 1000th mention, for all those phrases in the sample that had at least

1000 mentions). The variability of wait times is about the same, regardless of

how many mentions have already occurred, although there is some tightening

of the distribution for higher order mentions. This graph dismisses the idea

that the high count phrases are ones for which new mentions intrinsically

arrive more quickly. The first 99 mentions may happen to have come quickly,

but conditional on already having 99, the arrival of the 100th doesn’t look

much different from the arrival of the 3rd conditional on the 2nd – except
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Fig. 1.6: Memetracker data: normalized arrival intensity of nth mention, conditional
on phrase already having n−1 mentions (sub-sample of 335K phrases). The
window of time is one day. The intensity function for the 100th mention
is not substantially different from that of the 2nd. Most mentions arrive
within 2000 seconds of the previous mention, regardless of how many men-
tions have come before.

that the overall magnitudes are different. These curves are again normalized

densities rather than intensities. There are many more 2nd mentions than

100th mentions. However, conditional on having n − 1 mentions, the arrival

intensity actually increases in n.

The contagion hypothesis is that the very fact of having more mentions in

social media increases a phrase’s likelihood of getting yet another. Additional

mentions occur when an individual finds an existing mention and then creates

a new document containing the same phrase. Perhaps the rate of new mentions

depends only on the number of existing mentions. If contagion explained all
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of the difference in final mention counts, the fraction of phrases appearing two

times that go on to appear a third would be twice as great as the fraction of

those appearing once that go on to appear a second time. This is in fact the

case (see table 1.1). However, the rate to go from three mentions to four is

2.37 times the rate from one to two, less than the predicted 3. The arrival

rate of higher order mentions falls increasingly short of the rate predicted by

contagion. This seems like evidence of contagion, but contagion may not be

the whole story.

Tab. 1.1: K(n) is the number of phrases that have at least n mentions. The conta-
gion model predicts that the rate is proportional to the number of previous
mentions.

n K(n) λ(n) = K(n+ 1)/K(n) λ(n)/λ(1) predicted λ(n)/λ(1)

1 334592 0.260 1 -
2 87065 0.508 1.95 2
3 44204 0.617 2.37 3
4 27292 0.718 2.76 4
5 19602 0.772 2.97 5
6 15140 0.808 3.11 6
7 12237 0.823 3.16 7
8 10073 0.858 3.30 8
9 8641 0.860 3.30 9

10 7431 . . . . . . . . .

1.2.3 Binomial sub-sampling

These relative rates of observed mentions probably do not reflect the

true relative rates of mentions in all media. This is because the Memetracker

dataset, large though it is, is surely only a small sample of all media. And
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with count data, the counts in the sample are not proportional to the counts

in the population. The spinn3r search engine likely visits only a subset of the

web pages where one individual can place information to be found by others.

Moreover, a lot of news is passed from person to person online via email, which

spinn3r does not collect. And, of course, information can pass from person to

person via offline media as well. Suppose our dataset only contains a fraction

p of all media mentions. If k is the true number of documents containing

a phrase then x, the number we observe, will be a random variable with a

binomial distribution. P (x|k) =
(
k
x

)
px(1− p)k−x. This is called binomial sub-

sampling, or “p-thinning”. It completely changes the absolute counts, and

heavily skews relative counts. If the population of media contains 10 mentions

of A and 100 mentions of B, we are much more likely to observe 5 of the 10

A mentions than we are to observe 50 of the 100 B mentions. Our observed

ratio of B/A will very likely be less than 10 to 1. Furthermore, some phrases

may not be observed at all.

In figure 1.7 I show a simple numerical example of contagion where the

number of mentions is thinned by binomial sub-sampling. Parameter values

have been chosen so the resulting numbers are close to the data in table 1.1.

A reasonably good fit comes from a latent population of 2.5 million phrases

of which we only observe mentions for 335 thousand, because the sample only

contains 4.5% of all mentions. In the population all 2.5 million are mentioned
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Fig. 1.7: Data vs. simulation: number of phrases observed to have at least n men-
tions. Data is from a 335K phrase sub-sample of Memetracker dataset.
Simulation is a simple branching model thinned by binomial sub-sampling:
starting with k(1) distinct phrases initially mentioned once, each mention
induces additional mentions at a rate λ, but mentions are only observed
with probability p. Fitted values are I=2.5M, λ=0.196, p=0.045.

at least once, and of the phrases mentioned at least n times, λn of them are

mentioned at least n+ 1 times. The fitted value of λ = 0.196. Contagion and

binomial sub-sampling alone can do a fair job of explaining the observed data.

1.3 Model

Let’s go beyond the numerical example in section 1.2.3, and build some

models of the spread of information. Imagine the Internet is one giant idealized
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bulletin board. Agents browse the bulletin board and find messages to read

in a random process. Each message contains one “fact”, meaning one unit

of information.3 When an agent reads a message she immediately learns the

fact it contains. She then decides whether or not to re-post the fact in a

new message. All agents are identical except for their information sets. In

particular, their rates of finding messages are identical. This means each

agent is equally likely to be the next to read a message. Also assume that

all messages are identical except for what fact they contain. Moreover, agents

cannot tell what fact a message contains without reading the message. This

means each message is equally likely to be the next one read.

The number of messages that will come to contain each fact depends on

(a) whether and how new facts are added, and (b) when the system is observed.

We’ll start with a stripped down version of the model in which the number

of facts is fixed and the population is finite and small. We allow each fact to

have a different value which is exogenously given. The agents in this model are

not forward looking, and they do not have rational expectations. But they do

preferentially post the higher value facts over lower ones, which lets us see how

the feedback effect from contagion can outweigh individual choices. In section

1.4 I will add rational expectations, but at the cost of needing to solve self-

consistent dynamic paths for the evolution of the entire probability distribution

3 I do not mean to imply that information needs to be objective or true, simply that it
comes in indivisible units.
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Fig. 1.8: Agent-based simulation of 50 facts spreading through a population of 200
agents.

of counts. That solution would be computationally infeasible with separate

distributions for different valued facts. By replacing rational expectations

with a moderately sophisticated heuristic we can explore here the relationship

between value and prevalence using agent-based modeling.

1.3.1 Agent based simulation

Agents communicate facts to each other by posting them on a bulletin

board at some cost. Each period, every agent decides which facts to post from

the set of facts she knows. Then agents read posts at random, with every

agent equally likely to read each post. The probability a given agent will learn

a given fact is proportional to the fraction of posts which contain that fact.
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In the following period, old posts are replaced by new ones. Each fact has a

different intrinsic value, and agents choose what to post using a rule of thumb:

each agent posts the most valuable fact she knows, then second most valuable,

and so on, up to the point where the value of the marginal fact is less than

the cost of making one more posting. The bulletin board was simulated with

two hundred agents and fifty facts, each initially known by one agent.4 A very

unequal distribution of awareness emerges (figure 1.8): after three hundred

periods a single fact has been learned by ninety-six agents, while half of the

facts has been learned by less that ten agents. There is only a weak correlation

between value of a fact and number of agents who came to learn it: the most

well-known fact is only the sixteenth most valuable and the most valuable is

forty-third out of fifty, learned by only three agents.5

1.3.2 Pólya urn process

Keeping the number of facts fixed, now let the population be unbounded.

If we eliminate the value and costs, then the sophisticated communication

choice becomes a basic rule: for every fact the agent learns, she posts one mes-

4 Each fact has a value drawn from normal distribution with mean one and standard
deviation 0.25 (but constrained to be positive). Every agent faces a cost of posting facts,
c = βm2 where m is the number of facts posted in a period. The value of β = 0.16 was
chosen so that each agent would rarely post more than four facts at once.

5 The Pearson correlation coefficient is ρ = 0.2928, but since we would not necessarily
expect a linear relationship the plot shows the rank of the value versus the rank of popularity.
The Spearman rank correlation coefficient is ρ = 0.3512. This is significantly different from
zero (p-value = 0.0124) according to a permutation test on the simulated data, but the
correlation is quite weak.
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sage containing that fact as soon as she learns it. Then the number of messages

containing each fact can be described as a multivariate Pólya-Eggenberger urn

process. The sequence of transmissions and re-postings of facts is equivalent

to the sequence of colored balls drawn from an urn when after each draw the

ball is replaced along with an additional ball of the same color. Let there be I

different colors. Initially the urn contains ai balls of color i for i = {1, . . . I}.

A ball is drawn at random from the urn and it’s color is observed. The ball is

then replaced and a new ball of the same color is added to the urn.

For the first draw there are a =
∑
ai balls to choose from. For the

second draw there are a + 1 balls, and so on until the last draw where there

are a+ t−1 balls to choose from. So the total number of ways to make t draws

is a(a+ 1) · · · (a+ t−1) = (a+ t−1)!/(a−1)!. Now consider a given sequence

of colors ιτ={1,...,t} where ιτ is the color of the τth ball drawn. Let di(t) be

the total number of balls of color i drawn: di(t) =
∑t

τ=1 1(ιτ = i) where 1(·)

is the indicator function. How many ways can a particular sequence of colors

be produced? For each color i, the first time that color is observed there are

ai balls of that color, and so ai ways that color could have been chosen. For

the second time color i is observed there are ai + 1 ways, and so on, up to

the ai + di(t)− 1 ways to make the di(t)th observation of color i. So the total

number of ways to draw di(t) balls of color i is ai(ai + 1) · · · (ai + di(t)− 1) =

(ai + di(t) − 1)!/(ai − 1)!. The total number of ways to draw the particular
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sequence of colors ιτ={1,...,t} is:
∏

(ai + di(t)− 1)!/
∏

(ai− 1)!. The probability

of drawing a particular sequence of colors is

Pr(ιτ={1,...,t} = jτ={1,...,t}) =
(a− 1)!

(a+ t− 1)!

∏
(ai + di − 1)!∏

(ai − 1)!
(1.1)

where as above di =
∑t

τ=1 1(jτ = i).

We would like to know the probability distribution of x(t) = (x1(t), ..., xI(t))

where xi(t) is the number of balls of color i in the urn after t draws. Note

that xi(t) = ai + di(t). There are t!/
∏
di! different particular sequences of

colors ιτ={1,...,t} that produce a given list of counts di(t), and the probability

of drawing a particular sequence is given in (1.1). Putting these together, and

using the gamma function Γ(n) = (n− 1)! for integer values n, yields

Pr(x(t) = k|a) =
t!∏

(ki − ai)
Γ(
∑
ai)

Γ(
∑
ki)

∏
i

Γ(ki)

Γ(ai)
. (1.2)

This is a Dirichlet compound multinomial distribution, also known as a multi-

variate Pólya distribution. A draw from (1.2) is equivalent to first drawing

a probability vector p from a Dirichlet distribution with parameter a and then

making t draws from a categorical distribution with parameter p and counting

the results for each type. An asymptotic result described in Johnson and Kotz

(1977, p378) gives probability distribution of ratios of different colored balls
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in the urn after many draws:

lim
t→∞

f(x(t)/t) = Dirichlet(a). (1.3)

This limit result also applies to ratios of pairs of colors:

lim
t→∞

f

(
xi(t)

xi(t) + xj(t)

)
= Beta(ai, aj). (1.4)

The numbers of balls of other colors do not affect the horse race between

color i and color j, since we can simply ignore draws that affect neither of

them. Moreover, we can always lump together sets of colors by relabeling

(the distribution of white balls in an urn with red and green balls remains

the same if the experimenter is color blind and does not distinguish green and

red.) The marginal distribution for the number of balls of a single color j,

which is beta-binomial:

Pr(xj = k) =

(
t

k − aj

)
Γ(aj + b)

Γ(aj)Γ(b)

Γ(k)Γ(b+ t− k)

Γ(aj + b+ t)
=

(
t

k − aj

)
B(k, t− k + b)

B(aj, b)

(1.5)

where b =
∑

i 6=j ai is the initial number of balls of all other colors. A draw

from (1.5) is equivalent to first drawing a probability p from a beta distribution

with parameters (ai, b) and then making t draws from a Bernoulli distribution

with parameter p and counting the successes.
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If each fact starts out being known by only a single agent, the initial

number of messages is always one ai = 1 ∀ i ∈ {1, . . . , I}. Given the interpre-

tation of (1.2) as a multinomial distribution with a probability vector drawn

from a Dirichlet, we can see that for a = (1, 1, 1, . . . , 1) all probability vec-

tors are equally likely. We are just as likely to choose a point near one of

the vertices of the I − 1 dimensional simplex of probability space as we are

to choose a point near the center. This means it is not uncommon to make

draws from (1.2) where one color appears much more often than others. A

generalization of the Pólya process allows for more than one new ball to be

added each draw. If after drawing and replacing a ball, s new balls of the

same color are added, then the distribution is the same as (1.2) if the pa-

rameter a is replaced with α = s−1a. The effect of fractional parameters in

the multivariate Pólya distribution is to make unequal outcomes more likely.

With α = (1/s, 1/s, . . . , 1/s) the points near the center of the simplex become

less likely as s increases. Thus, modifying the bulletin board model to have

agents post multiple messages when they learn a fact is one way to generate

highly unequal distributions of counts like those observed in the web spider

data. However, as shown below a different modification – introducing a birth

process for facts – matches the distribution even better.

The multivariate Pólya distribution is a classic result for “infectious”

processes. Yet it holds only approximately for populations with a finite number
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of susceptible individuals. In situations where the approximation is good, the

Pólya result shows us that the distribution after many draws is sensitive to

initial conditions. But the urn mechanism is also memory-less in the sense

that the probability of each draw depends only on the current number of

balls of each type. This suggests it may be fruitful when fitting a Pólya

process to time series data to fit a piecewise Pólya process allowing occasional

corrections to prevent the error in the approximation from growing large. As

a model for contagion, the Pólya distribution overstates the probability of

large infections since it ignores the possibility that transmissions could fail

because the recipient is already infected. Asymptotic results such as (1.3)

should especially be used with caution. In the exact model, it can be seen

(in the definition of Ω(k)) that with a finite number of facts I, as t → ∞,

xi(t) → N ∀i ∈ {1, . . . , I}. Eventually all agents will learn all facts and the

process stops because no more transmissions can occur.

1.3.3 Birth of facts – Yule-Simon process

The urn mechanism above describes a fixed set of facts. This can be

useful as a one-shot model to compare the number of copies of facts that

propagate together for a set length of time (measured in transmissions). But

we would like a model of ongoing communication. We need to introduce a

birth process for facts into the bulletin board model. Suppose that each agent
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discovers new facts in a Poisson process with rate µ independently of learning

facts by reading messages. Upon discovering a fact, an agent again follows the

basic rule and posts one message containing the new fact. Meanwhile agents

read messages and re-post facts at rate λ. The overall arrival of new facts is a

Poisson process with rate Nµ, and the total rate for new messages is the sum

of the discovery rate and the re-posting rate: N(µ + λ). A new message will

contain a new fact with probability δ = µ/(µ + λ). The urn scheme can be

modified to accommodate new facts: with probability 1 − δ a ball is drawn

and replaced with addition just as before, but with probability δ a ball of a

new color is added instead. Chung et al. (2003) point out that a Pólya urn

model generalized in this way is equivalent to another common model: the

Yule-Simon process, also called preferential attachment in the literature on

networks.

The Yule-Simon process gives an ergodic probability distribution for the

number of messages containing a fact chosen at random. New facts always

appear in only one message. Maintaining for the moment an assumption of an

infinite population of susceptibles, the number of messages containing an older

fact grows without bound. The portion of all facts that appear in exactly x

messages decreases when one of them is transmitted, so that it now appears in

x+ 1 messages, and increases when a fact that previously appeared in exactly

x− 1 messages is transmitted. Suppose that the portions of facts in different
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numbers of messages are in a stationary state. It can be shown in numerous

ways that these portions follow a Yule-Simon distribution:

Pr(x = k) = ρ
Γ(k)Γ(ρ+ 1)

Γ(k + ρ+ 1)
= ρB(k, ρ+ 1) (1.6)

where ρ = 1/(1− δ) and B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the beta function. See

Simkin and Roychowdhury (2006) for a comparison of the numerous deriva-

tions of this result that have been given over the past hundred years as this

mechanism for producing this distribution has been repeatedly rediscovered.

Many authors are interested only in the upper tail of the Yule-Simon distri-

bution which is approximately Pareto (power-law) distributed:

Pr(x = k) = ρ
Γ(k)Γ(ρ+ 1)

Γ(k + ρ+ 1)
∝ Γ(k)

Γ(k + ρ+ 1)
≈ k−(ρ+1) (1.7)

for large k, where the final term is due to Stirling’s approximation.

The Yule-Simon process has been used to explain many different heavy-

tailed distributions from the distribution of incomes observed by Pareto to

the distribution of the number of species belonging to different biological gen-

era. Barabasi and Albert (1999) have popularized the equivalent “preferential

attachment” model as the explanation for the apparent Pareto distribution

of hyperlinks between documents on the World Wide Web. The Yule-Simon

distribution is a good fit for the distribution of counts observed in web spider
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data. But without some modification, the model is fundamentally at odds

with a contagion process in a population with a finite number of susceptibles.

The setup of the Yule-Simon process supposes that facts continue to propagate

forever. In the stationary solution, a fact chosen at random can be arbitrarily

old and be known by arbitrarily many agents. To be compatible with a finite

population a fact must eventually stop spreading.

1.3.4 Birth and death – generalized Yule-Simon

Perhaps the most natural modification of the Yule-Simon process to ac-

commodate a bounded population would be to allow facts to spread as in the

exact bulletin board model above, keeping track of the remaining suscepti-

ble portion of the population and having the rate of growth slow until finally

stopping when the last agent learns the fact. This variation is unsatisfactory

because it predicts that the stationary count distribution for the number of

messages containing a fact will have a large mass at N . This is contrary to

the observed distribution which is smooth over its entire domain, has most of

its mass at the low end around one or two counts, and is well approximated

by a Pareto distribution for most of it’s domain, perhaps falling a little short

of Pareto in the very upper tail. A more realistic modification is to suppose

that facts stop spreading when they reach a maximum age. Spierdijk and

Voorneveld (2009) in an appendix sketch a variation on the Yule-Simon pro-
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cess modified with a cut-off age T0. For the stationary distribution of observed

counts they derive the generalized Yule-Simon distribution:

Pr(x = k) =
ρ

1− αρ

∫ 1−α

0

zk−1(1− z)ρdz =
ρ

1− αρ
B1−α(k, ρ+ 1) (1.8)

where α is the inverse of the expected number balls of a color that has been

in the urn for T0 draws, and Bx(·, ·) is the (non-regularized) incomplete beta

function Bx(a, b) =
∫ x
0
za−1(1− z)b−1dz.
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Fig. 1.9: Comparison of generalized Yule-Simon to regular Yule-Simon and Pareto
distributions

Figure 1.9 compares the counter-cumulative distribution functions Pr(X ≥

x) for the generalized Yule-Simon and unmodified Yule-Simon distribution
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along with a Pareto distribution all with the same value for ρ = 1.45. Since

the graph is on a log-log scale the Pareto follows a straight line over it’s entire

domain [xmin,∞) (in this case xmin = 1). The Yule-Simon has a somewhat

lower probability of single digit counts, though as with the Pareto these ac-

count for 90% of the events. For counts above the mid-teens (perhaps 5%

of all events) the Yule-Simon exhibits a Pareto tail. The generalized Yule-

Simon is practically identical to the unmodified Yule-Simon for the first few

decades, but has much fewer counts in the upper tail. With a cut-off param-

eter α = 0.001 the generalized Yule-Simon matches the unmodified for 99.9%

of all realizations, but starts to deviate substantially for counts above 500.

The generalized Yule-Simon has a truncated “heavy-tail”: like the Yule-Simon

(and Pareto), most realizations are small while realizations thousands of times

larger than the mean still occur regularly. But unlike the Yule-Simon, exceed-

ingly large events do not occur. A Yule-Simon process with a cut-off time can

capture the salient features of the data and be consistent with contagion in a

finite population.

For the bulletin board model to have a cut-off, we not only need agents

to stop posting messages containing facts older than T , we also need agents

to stop reading them. Otherwise messages from old facts will build up, and in

the long run the chance of finding a message with a new fact would go to zero.

One way to achieve this is for messages to be removed from the bulletin board
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over time. Suppose that messages depreciate rapidly – they are covered up or

torn down – and agents must continually re-post them if they want them to

be found and read. Extending the basic rule for agents: when an agent learns

a fact, she posts a message containing that fact, and then maintains it until

the fact is age T , after which the message is removed. Some messages only

remain on the board for a short time if the fact they contain is already old

when the message is posted. No message remains on the board longer than

time T . On average the rate of new messages N(λ+µ) must equal the rate of

messages being removed NµE[x(T )]. The expected number of agents to learn

a fact before it stops spreading is E[x(T )] = (λ+ µ)/µ = 1/δ.

1.4 Microeconomic model

Now suppose that instead of following a rule, agents are fully rational.

Posting and maintaining a message has some cost. A fact has value for the

agent who learns it. To induce an agent who knows a fact to communicate it,

there must be some mechanism for transferring value from the agent who learns

it to the agent who communicated it. On the Internet this is often achieved

by selling advertising. On the other hand, many authors of blogs and users

of social media simply value getting the attention of their readers. Somehow

the sender and recipient of information split the benefit of communicating.

For exposition we will suppose that an agent who posts a message can charge
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a price p to the agent who finds it. An agent who knows a fact can sell it

repeatedly. An agent who buys a fact derives a direct value v from knowing

the fact, and she is also able to earn a profit from re-posting it. This “resale

value” V of a fact is high when few other people know it. But each new agent

who learns a the fact becomes an additional seller. As the number of agents

x who know the fact increases, the price that can be charged drops, so V and

therefore p are decreasing functions of x. Eventually the expected profit of

posting a message falls to zero and the message stops spreading.

If agents had full information about how many other agents knew each

fact, then they could keep their messages on the bulletin board until the cost

of reaching an additional person outweighed the benefit. With population

sized N , this would happen when x/N is such that p times the probability

that a given message is the next to be read falls below the cost of keeping a

message posted for the expected time until the next transmission. All facts

would come to be known by this same portion x/N of the population. But

suppose agents do not know what other agents know. Agents know only the

age of a fact t. Agents have rational expectations: they know the probability

distribution over the number of agents who know a fact of age t. The price

of a fact can depend only on t, not the actual realization of x which agents

cannot observe. Agents will continue to keep messages on the bulletin board

until the fact reaches age T such that p(T ) is less than the cost.
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I consider two different production technologies for posting messages:

• With the “binary” technology each agent can have zero or one messages

on the bulletin board for each fact she knows. The cost of keeping each

message on the board is c per unit of time (one unit is the expected time

until the next message is read).

• With the “intensity” technology each agent can post any non-negative

integer number of messages. Maintaining m messages costs c(m) per

unit time.

Under either technology, the probability that a given message is the next

message read is 1/M where M is the total number of messages on the bulletin

board. Let ti be the age of fact i and xi(ti) be the number of agents who know

fact i when it is age ti. Let m(t) be the number of messages posted by each

agent who knows a fact aged t (zero or one in the binary version, non-negative

integers in the intensity version). Then the total number of messages is M =∑
i xi(ti)m(ti). When a message containing fact i is read, the probability that

the agent reading does not already know the fact is (N − xi(ti))/N .

If agents were to keep communicating a fact long enough, eventually

there would be an age t = t̄ such that Pr(xi(t̄) < N) < ε for ε = c(1)/(Nv).

That is the age at which the expected profit from communicating is negative

even if there are no other messages and the price is the highest conceivable

price for a fact (the entire benefit of the fact to society). After this point there
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is no benefit to keeping a message on the bulletin board. Therefore we can be

sure there exists a maximum age T ≤ t̄ after which posting will stop.

Let v be the direct value of knowing a fact, which an agent enjoys once,

immediately upon learning it. Let V (t) be the indirect value of knowing a fact

aged t net of v due to the possibility of reselling it one or more times between

t and T . Let W (t) be the reservation value of the recipient. This is the

value from the opportunity of learning the fact later. The price p(t) splits the

expected surplus from reading a message aged t. By the time an agent finds a

message, the cost of posting the message has already been sunk, so this cost

is not included in the price. The price cannot be contingent on whether the

reader already knows the fact, since the poster has no way to verify this after

communication has taken place6. There is also no way to ascertain whether

the reader knows the fact before communication occurs. This is because there

is no way to label a fact: identifying a fact fully divulges it. However, the age

of a fact is verifiable so the price can be conditional on t. Suppose that the

price splits the expected value from reading equally:

p(t) =
1

2

(
1− E[x(t)]

N

)
[v + V (t+ 1)−W (t+ 1)] . (1.9)

The value of knowing a fact due to the possibility of selling it depends on the

6 We might imagine that the reader could write down every fact she knows and seal this
list before reading. She could then refuse to pay if the fact she reads is already on her list.
We rule this out by assuming the number of facts an agent knows is too many to list.
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number of messages the agents will choose to make (zero or one in the binary

version):

V (t) =
m(t)

M
p(t)− c(m(t)) + V (t+ 1). (1.10)

If an agent did not realize the direct value v today, she might realize it later.

With probability 1/N the agent will be the next to read a message, and with

probability m(t)x(t)/M the message she reads will again contain this same

fact.

W (t) =
1

N

m(t)x(t)

M

(
v + V (t+ 1)

)
+

(
1− 1

N

m(t)x(t)

M

)
W (t+ 1) (1.11)

Both v(t) and W (t) are decreasing functions since x(t) is monotonically in-

creasing.

1.4.1 Solution for binary model

In the model version with a binary technology for posting messages, each

agent chooses for each fact she knows whether or not to keep a message on the

bulletin board. The decision is contingent only on the age of the fact. Agents

take the total number of messages as given. They make the binary choice for

each fact independently since they do not internalize the effect posting one

message will have on their chances of transmitting another. For each fact aged
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t each agent solves

argmax
m∈{0,1}

{m
M
p(t)−mc

}
(1.12)

and the choice is equivalent to choosing a threshold age T such that m(t ≤

T ) = 1 and m(t > T ) = 0. T must solve p(t ≤ T ) > c(1)M and p(t >

T ) < c(1)M . Note that p(t) depends on the entire future path of the expected

number of agents who know a fact E[x(s)] ∀s ∈ {t, . . . , T}. The evolution of

E[x(t)] depends on M because the probability a given fact will spread depends

on the number of messages being posted about other facts. Furthermore,

M =
∑

i 1(0 ≤ ti ≤ T )xi(ti) where 1(·) is the indicator function, and therefore

M depends on the choice of T . This means {T,M, p(t), x(t)} need to be solved

together.

The key object in the solution to (1.12) is f(x|t) x ∈ {1, . . . N} t ∈ {0, t̄}

the probability mass function for the distribution of x(t). Agents have beliefs

about f(x|t) which must be consistent with their choice of T . A nested fixed-

point algorithm is used to find f(x|t). Given an initial guess for f(x|t):

1. Solve nested fixed-point algorithm for T .

Given a guess for T :

(a) M =
∑T

t=1 δ E[x(t)]

(b) Solve W (t) by backwards induction from W (T + 1) = 0

(c) Solve V (t) and p(t) together from V (T + 1) = 0
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(d) Solve for optimal T ′

(e) If T ′ = T proceed; otherwise repeat with new guess T ′

2. Find f ′(x|t) determined by M

3. If maxt |E′[x(t)]− E[x(t)]| < ε stop; otherwise repeat with new guess

f ′(x|t).

The stopping condition 3 for the outer loop depends only on the expected

value E[x(t)] since it is only the expected value that enters into the agent’s

decision7.

In the binary choice model, f(x|t) is completely determined by M and

parameters N and δ. Let Ptk = Pr(x(t) = k). The model assumes initial

conditions for each fact P11 = 1 and P1(k>1) = 0. The contagion process then

determines the evolution of the distribution:

P(t+1)k = Ψ(Pt(k−1))Pt(k−1) −Ψ(Ptk)Ptk (1.13)

where Ψ(P ) is the probability that a given fact that is known by a portion P

of the population and age t ≤ T will be the next fact successfully transmitted.

Ψ(P ) =
PN

M
(1− P )

1

1− Φ
(1.14)

7 If the updated guess f ′(x|t) has the same time path for E[x(t)] as the previous guess
f(x|t) but differs on other moments, iteration should stop anyway. Otherwise the algorithm
enters an endless loop since agents will make the same choices as under the previous iteration.
An extra check that higher moments of f and f ′ are close enough can be performed after
the stopping condition has been met.

50



where Φ is the probability the next transmission fails because the reader al-

ready knows it. However, Φ itself depends on the entire distribution f(x|t)

for every t, and so solution requires another fixed-point algorithm. It can be

more straightforward to generate f(x|t) by Monte Carlo simulation.

Figure 1.10 shows the solution of the binary technology version of the

model where the distribution f(x|t) was found by simulation. The distribution

was generated for each age t, but is only displayed at times {50, 150, . . . , 1950}.

The solid line shows the (smoothed) mean of the distribution at every t. The

cost of posting was tuned such that agents choose T = 2000 at which point

E[x] = 56. The distribution of the number of agents who know a given fact

becomes increasingly skewed as the fact becomes older. At age 1950 when the

mean is E[x] = 49, the median is 26 and the mode is 1 while the maximum

observed over 50,000 draws was 717.

Figure 1.11 shows the overall count distribution from a snapshot of the

bulletin board including facts of all ages 0 ≤ t ≤ 2000. The counter-cumulative

distribution function Pr(X ≥ x) over 50,000 observations is shown on a log-log

scale. Visual inspection suggests that a generalized Yule-Simon might describe

this simulated data. Using method of moments estimators for parameters ρ

and α, figure 1.12 shows a QQ plot comparing the quantiles of simulated

distribution against the quantiles of the fitted theoretical distribution. The fit

is very good. Only the largest seven observations out of 50,000 lie very far
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Fig. 1.11: Simulated distribution of number of messages containing a fact under
binary choice model

from the 45 degree line. The median of this distribution is two, so the smallest

25,000 observations lie on top of each other on the bottom two points. The

two distributions were compared using a Kolmogorov-Smirnov goodness of fit

test with bootstrapped quantiles for the test statistic. With a p-value of 0.30,

the test did not reject the null that the distributions are the same.

1.4.2 Solution for intensity model

In the model version with an intensity technology for posting messages,

each agent chooses for each fact she knows how many messages to maintain

on the bulletin board. As above, agents take the total number of messages
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Fig. 1.12: QQ plot comparing binary choice simulated data with generalized Yule-
Simon distribution

as given. They face a cost function c(m) for m = (m1, . . . ,mI) where mi

is the number of messages the agent posts containing fact i. For simplicity,

suppose that the cost is additively separable in mi so that c(m) =
∑

i c(mi)

and agents can solve the problem of how many messages to post for each fact

independently. Suppose that c(·) is non-negative, increasing and convex. For

each fact aged t each agent solves

argmax
m∈N

{m
M
p(t)− c(m)

}
. (1.15)
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As in the binary model, the choice depends on p(t) which is a function of the

entire future path of E[x(s)] ∀s ∈ {t, . . . , T}. The evolution of E[x(t)] depends

on both m(t) and on M , where M itself is a function of m(t) ∀t ∈ {0, 1, 2, . . .}.

This means {m(t),M, p(t), x(t)} need to be solved together.

The solution follows a fixed-point procedure similar to that for the binary

model. Given an initial guess for f(x|t):

1. Solve nested fixed-point algorithm for m(t).

Given a guess for m(t):

(a) M =
∑∞

t=1 δ E[x(t)]m(t)

(b) Define T = maxt : m(t) > 0

(c) Solve W (t) by backwards induction from W (T + 1) = 0

(d) Solve V (t) and p(t) together from V (T + 1) = 0

(e) Solve for optimal m′(t)

(f) If m′(t) = m(t) ∀t proceed; otherwise repeat with new guess m′(t)

2. Find f ′(x|t) determined by m(t) and M

3. If maxt |E′[x(t)]− E[x(t)]| < ε stop; otherwise repeat with new guess

f ′(x|t).

The inner loop finds the policy that is consistent with the resulting paths for

prices, given beliefs about the proportion of the population of agents that will
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Fig. 1.13: Solution to intensity choice problem: decision rule used by each agent for
the number of messages to post for fact aged t

know information of a given age. The outer loop finds the beliefs that are

consistent with the resulting policy and price paths.

Assume a logarithmic cost function

c(m) =


−ln(1− βm) + c0, if m > 0

0, if m = 0

(1.16)

such that an agent will post at most 1/β messages and c0 is a fixed cost that can

be avoided if the agent posts no messages. A motivation for this cost function

might be that posting messages takes time and agents have logarithmic utility
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from leisure. The parameters were tuned so that agents would choose T ≈

15000, that is agents choose m(t) = 0 ∀t > 15000. Figure 1.13 shows the

policy function that solves this example. With these parameters, agents will

post about 300 messages containing a fact that was just discovered. As the

fact becomes older the expected number of other agents who already know

it steadily increases. Not only does the chance of a successful transmission

decrease (because a reader is more likely to already know the fact), but the

value of a successful transmission decreases too, because the resale value of

the fact decreases.

The fixed-point solution to this system involves an aggressive policy func-

tion that dictates posting many messages for young information and reduces

the rate quickly as information ages. For the system to be in equilibrium, the

policy function must fall off faster than the growth in the expected number

of agents who learn the fact. Without this, the probability that a given agent

will learn a given piece of information stays too high over time. This makes

the reservation value high because the readers know they can walk away and

still learn the same information later from another poster. The price, nego-

tiated between message poster and message reader, collapses and agents end

up posting no messages. To support an equilibrium in which messages do get

posted, readers must know that they are not very likely to learn the informa-

tion later. Figure 1.14 shows the resale value, reservation value, price, policy
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Fig. 1.14: Solution to intensity choice problem: the resale value V , reservation value
W , price p, policy function m and resulting mean number of agents who
lean the information xmean all as a function of age. Note that the resale
value must remain above the reservation value for the system to be in
equilibrium.

and resulting mean number of agents who lean the information all as a func-

tion of age. Note the essential ingredient for convergence: the resale value is

above the reservation value for all ages of fact.

The resulting count distribution of messages per fact is shown in figure

1.15. With optimizing agents incentivized to preferentially transmit the least

well known facts but who only observe the age of a fact, the simulation does

produce a more equal distribution then the generalized Yule-Simon. But the

simulated distribution still has a (truncated) heavy tail. There are 10,000
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Fig. 1.15: Simulated distribution of number of messages containing a fact under
intensity model

agents in this example model. The equilibrium intensity policy transmits half

of all pieces of information to over 100 agents – one percent of the population

– whereas a much smaller fraction of information reaches that many agents

under the model with fixed re-posting rates (the model which generates the

generalized Yule-Simon). On the other hand, the equilibrium distribution is

a good match to the generalized Yule-Simon conditional on having reached a

threshold of about 98 people. The upper tails of the two distributions above

this threshold are compared in a quantile-quantile plot in figure 1.16. The

threshold value of 98 is the expected number of agents who know the informa-

tion when the equilibrium policy transitions from being very sensitive to age to
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Fig. 1.16: QQ plot comparing the upper tails of simulated vs. generalized Yule-
Simon distributions of the number of agents learning a fact. The gener-
alized Yule-Simon is a good fit, but only here in the upper tail.

less sensitive. The total number of messages posted for a piece of information

(# posts/agent × # agents infected) has a sharp peak at this age, as shown

in figure 1.17.

The interpretation is that when the equilibrium optimal policy is strongly

sensitive to age, agents strongly promote facts that are less likely to be well

known. The intermediate outcome for young facts is less unequal. During

this phase a significant portion of facts are spread to a significant (though

still relatively small) portion of the population. While a few facts still spread

very rapidly, it is no longer the case that the large majority get left behind.
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Fig. 1.17: Total number of messages per period containing a fact posted by all agents
as a function of the fact’s age in the solution to the intensity model. Each
agent follows the decision rule shown in figure 1.13. As a fact gets older,
more agents learn it but each agent posts fewer messages about it. The
peak corresponds to an inflection point in the policy function. After
t = 15000 the fact stops spreading.

Then, as the policy function becomes less steep and more closely resembles a

constant rate, the feedback effect from contagion dominates once again. The

further spread of facts is highly unequal.

1.5 Conclusion

Information spreading from person to person rather than from a cen-

tralized source, is increasingly common today. According to a recent survey

(Pew Research Center, 2011) 41% of Americans now get most of their news
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on the Internet. Purcell et al. (2010) report that, among Americans who get

their news online, 75% get news forwarded through email or posts on social

networking sites and 52% share news with others via those means. Consumers

are in the midst of a rapid shift to a distributed information environment. A

majority say it is easier to keep up with the news as a result. On the other

hand, 70% of respondents feel “the amount of news and information available

from different sources is overwhelming”. Information is now abundant but

attention is a limited resource. Baresch et al. (2011) argue that, until recently,

the allocation of attention was tightly coupled to the allocation of scarce dis-

tribution capacity, which was the responsibility of professional editors. As

social networks replace broadcast media, this allocation decision has become

decentralized and spread across millions of news consumers who are also “news

participators” contributing to the creation, commentary and dissemination of

news. Half of the respondents in Purcell et al. (2010) say they rely on the

people around them to tell them when there is news they need to know.

Like the focus group member quoted at the outset, social media con-

sumers might presume that more important news is more likely to be repeated

by their peers and therefore conclude that more important news is more likely

to reach them. I argue this is not the case, presenting evidence from social me-

dia data as well analytical results from a reduced-form epidemiological model

of social media and simulated results from a structural model. The reason

62



that information’s importance and prevalence may not be well correlated is

not that social media users are biased or that they show a predilection for

novelties (though both of these may well be true). Instead I assume that peo-

ple’s communication choices reveal their preferences, so that the “value” of

a piece of information can be defined as its propensity for being communi-

cated. The problem is this: a greater propensity for re-transmission by each

individual does not guarantee a higher prevalence in media. This is because

viral communication, which is intrinsically uncoordinated and stochastic, also

causes a snowball effect: the more people “infected” with a piece of informa-

tion, the more chances that information has to spread again. This positive

feedback amplifies small differences in prevalence which can arise simply from

the random order of transmissions. News that is less valuable but that hap-

pens to spread early can become much more well known than more valuable

news.

The contagion effect has implications for all kinds of aggregate decision

making, to the extent that decision makers receive information that has been

passed from person to person. Some potential applications in economics in-

clude: a voting model where many positive and negative facts spread through

a population and voters make up their minds based on the subset of facts they

learn from their peers; an asset pricing model where in lieu of noise traders,

news about fundamentals is randomly but unevenly distributed across a pop-
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ulation of rational traders; a sticky price model with information diffusion in

the spirit of Mankiw and Reis (2002) where managers hear different reports

about demand via their professional networks. In each case the effect of infor-

mation spreading by contagion will tend to cause over-reaction to a few pieces

of information that happen to become very well known.

As the structural model shows, this probablem is fundamental to social

media. Even participants with rational expectations, who take into account the

feedback mechanism, will only partially mitigate that feedback. The resulting

spread of information will still result in some “lucky” information spreading

a lot. Researchers observing the messages from such an equilibrium system

will still find a count distribution that has a Pareto-like range over orders

of magnitude of counts. Even with fully rational behavior, information that

no-one has an especially high propensity to pass along can “go viral”.
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Appendix 1.A Top quoted phrases

Tab. 1.2: Top 30 quoted phrases from spinn3r data

Rank # mentions Text of quoted phrase

1. 154715 gang of ten
2. 64660 c tait m gara faubourg de carthage
3. 46510 i love you
4. 42606 dancing with the stars
5. 38973 war on terror
6. 38042 saturday night live
7. 37166 needs to be defeated
8. 36810 the dark knight
9. 35637 the high priest of deregulation

10. 35617 phil gramm is the single most important reason for the cur-
rent financial crisis

11. 34233 that is equal to the task ahead
12. 34106 abandon all hope
13. 32519 federalist wrote your kidding
14. 31836 die rolle der religion in der modernen gesellschaft
15. 29222 von der welt lernen erfolg durch menschlichkeit und freiheit
16. 28374 palm beach county residents claim your economic stimulus

payment
17. 28051 yes we can
18. 25880 meet the press
19. 24278 good morning america
20. 24013 i don’t know
21. 22929 daytona beach residents claim your economic stimulus pay-

ment
22. 22144 il bloggatore cucina
23. 19983 conditioned on an auto industry emerging at the end of the

process that actually works
24. 19388 an inconvenient truth
25. 19344 the curious case of benjamin button
26. 18369 alle kids sind vips
27. 17801 joe the plumber
28. 17405 its like youtube of images
29. 17206 bridge to nowhere
30. 17120 sex and the city
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Tab. 1.3: Top 20 phrases containing the word “inflation”

Rank # mentions Text of quoted phrase

1. 1988 if the american people ever allow private banks to control the issuance of their
currency first by inflation and then by deflation the banks and corporations
that will grow up around them will deprive the people of all their property until
their children will wake up homeless on the continent their fathers conquered
the issuing power of money should be taken from banks and restored to congress
and the people to whom it belongs i sincerely believe the banking institutions
having the issuing power of money are more dangerous to liberty than standing
armies

2. 647 iwpr contends that zimbabwe’s currency which has been undermined due to
astronomical inflation now faces extinction as citizens abandon it in favor of
foreign currencies

3. 468 in the 1980s it was clear to people that the inflation rate was going to come
way down and it did

4. 466 there was a sense that we were going through a tough time for a while as a
price of getting inflation down and that things would come back up today they
can’t see any gain from what’s going on

5. 448 i believe that banking institutions are more dangerous to our liberties than
standing armies if the american people ever allow private banks to control the
issue of their currency first by inflation . . . [variation of phrase #1 ]

6. 353 i believe that banking institutions are more dangerous to our liberties than
standing armies if the american people ever allow private banks to control the
issue of their currency first by inflation . . . [slight variation of phrase #5 ]

7. 323 doesn’t account for inflation
8. 295 is bea measuring growth or inflation
9. 279 in the course of six to nine months many investors and many businesspeople

have gone from one extreme fearing rip-roaring inflation to the other extreme
fearing the extraordinarily negative consequences of deflation

10. 259 its core business of responsibly managing our money supply and inflation
11. 218 some risk of a protracted period of excessively low inflation
12. 185 most investors are unable to profitably time the market and are left with equity

fund returns lower than inflation
13. 144 onslaught of inflation
14. 142 inflation is like little rats under your mattress gnawing away at the corners of

your cash
15. 135 indeed we expect inflation to be quite low for some time
16. 132 because the number of dollars andrew and jessica pay each year stays fixed

while the rise in prices inflation makes those dollars worth less and less each
year in terms of the real goods and services they can buy

17. 118 observed that the market is well-supplied with current commercial oil stocks
standing above their five-year average the conference further noted with concern
that the current price environment does not reflect market fundamentals as
crude oil prices are being strongly influenced by the weakness in the us dollar
rising inflation and significant flow of funds into the commodities market

18. 103 la prime la casse les soldes et la d sinflation devraient soutenir la consommation
19. 100 whip inflation now
20. 98 although downside risks to growth remain the upside risks to inflation are also

of significant concern
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2. SEARCH AND BARGAINING WITH PLASTIC:

MONEY AND CHARGE CARDS AS COMPETING MEDIA

OF EXCHANGE



2.1 Introduction

A high and increasing level of intermediated exchange is a fact of life in

modern economies. In the U.S., credit and charge cards are the most frequently

used payment instrument, representing 30% of all retail transactions by dollar

value. Personal checks and debit cards are second and third, whereas cash

transactions make up less than 20%.1 What does this mean for monetary

theory that emphasizes distortions arising from the cost of holding money?

Some observers speculate that physical currency will disappear entirely. This

may not bother theorists who take a reduced-form approach to money and

have all along included demand deposits and other highly liquid assets in their

definition. However, a micro-founded theory that seeks to explain exactly why

money is needed ought to have something to say about the rise of intermediated

exchange.

The money search literature has aimed to build a theory of money from

the primitives of the economy by explicitly modeling the role of money as

medium of exchange. The benefit of this approach is that such a structural

model should be more reliable in predicting behavior when policies or the

environment changes. The invention of alternative media of exchange is just

such a change. This paper introduces a charge card technology into a search-

and-matching model of money. I model charge cards, as distinct from credit

1 Reported in Levitin (2007) p5, but original source is the industry newsletter Nilson
Report.
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cards, to focus on their use as an alternative medium of exchange rather than

the role of credit. I address the following basic questions:

1. If charge cards are costly to process, why do merchants accept them as

means of payment? One answer is that consumers will purchase more

if they aren’t limited by the cash they carry with them. This model

formalizes that insight and compares the terms of exchange with and

without charge cards.

2. How do charge cards affect welfare? In money-search models the cost

of holding money results in an inefficiently low level of consumption.

Charge cards can improve welfare by overcoming this problem.

3. Can charge cards and money coexist in equilibrium? Spending limits

on cards imply that agents may carry some money too. Also, mixed

equilibria are possible in which some agents use cards and others don’t.

4. How does inflation affect usage of charge cards? A higher cost of holding

money can push buyers to use cards. Since this can improve welfare, the

Friedman rule may not be optimal.

I take as my starting point the idea that charge cards enable larger pur-

chases than a consumer’s typical money holdings would allow. This addresses

a distortion in the real economy caused by the cost of holding money: because

of specialization there are large potential gains from trade; but the “double co-
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incidence of wants” problem means that money is often essential for trade, so

some gains from trade are never realized if consumers economize on how much

money they carry. There are numerous costs to holding money, including the

possibility of loss or theft, and the foregone return from other assets. Mone-

tary theory is particularly concerned with the effective tax on money holdings

due to inflation. Charge cards avoid these holding costs since consumers do

not need to allocate resources in advance of engaging in trade.

To properly analyze the macroeconomic impact of alternative media of

exchange, it is necessary to model the microeconomic forces that make a

medium of exchange essential. The search-theoretic literature on money does

exactly this by explicitly modeling the specialization, decentralization, and

double-coincidence problem inherent in exchange. The money search litera-

ture finds a relatively high welfare cost of inflation. The inefficiently low level

of money holdings is exacerbated for two reasons: first, consumers recognize

that money only benefits them if they happen to meet someone selling a good

they want, so they carry less money than they would if they were certain to

make a purchase; second, when buyers and sellers do meet, the terms of trade

are determined by bargaining which takes place after the buyer has sunk the

investment in money. This produces a holdup problem which further reduces

prospective buyer’s willingness to hold money. Charge cards avoid both of

these problems, and so can dramatically reduce the cost of inflation.
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My model is an extension of the Lagos-Wright framework, which is the

current state of the art search theoretic model of money. The Lagos-Wright

model alternates between decentralized markets (DM) in which participants

are anonymous so that some medium of exchange is required, and perfect Wal-

rasian centralized markets (CM) in which agents can re-balance their money

holdings. I introduce an intermediary into the decentralized market (DM):

the charge card company. The company can circumvent the DM’s problem of

anonymity because it has ongoing relationships with its customers. Using a

charge card, agents can make purchases in the DM without money and pay the

card company in the following centralized market (CM). The CM can be inter-

preted as the portion of economic activity that is mediated by some institution

(e.g. a physical market or an employment contract with a firm), where agents

are not anonymous and reputation effects or “memory” can function. Charge

cards extend this sphere by connecting relationships in the CM to interactions

in the DM.

This paper is similar in spirit to Camera (2000) in that we both explore

the choice between money and a costly technology that can intermediate ex-

change. In Camera (2000), the technology matches agents to eliminate search

frictions. Agents choose whether to participate in the search sector or to pay a

cost (in terms of goods) and participate in a mediated sector. In my version the

intermediation is weaker. The market remains decentralized and agents still
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engage in search, but agents can pay to eliminate the problem of anonymity

once random matching occurs.

Several papers have extended the basic model of bilateral exchange with

random matching by relaxing the assumption of anonymity to allow some form

of credit. Townsend (1983) describes a version of the turnpike model with the

innovation of a centralized credit-debit system. Shi (1996) invents an agent-

specific asset that can serve as collateral to allow for IOUs in a version of the

Kiyotaki-Wright model with divisible goods. Berentsen et al. (2007) starts

with a Lagos-Wright framework and introduces banks, which can keep records

of agent’s financial histories. Telyukova and Wright (2008) extend Lagos-

Wright by introducing a third sub-period in which agents are not anonymous,

so credit can function, but markets are imperfect so credit is useful. Their aim

is to show that agents would rationally save cash for the DM rather than pay

off debts.

Most recently, Dong (2007) builds a model of credit cards where agents

can choose to use a costly record-keeping technology that allows sellers to

extend credit to buyers. Agents’ choice between media of exchange in the DM

is similar in my model and Dong’s. However, our setups differ considerably.

Dong seeks to replicate an observed inverse-U shaped relationship between the

use of credit and inflation when credit also functions as a medium of exchange.

Repayment of credit requires money, and the use of credit in the DM effectively
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shifts the holding cost of money from buyer to seller. In contrast, I introduce

an intermediary which can bypass the cost of money and could potentially

replace money, but introduces its own costs. I find that inflation always makes

intermediation more attractive.

My paper is complimentary to Berentsen et al. (2007), which is also

concerned with the effect of monetary policy on the ability of a financial inter-

mediary to function. Their intermediary is a bank which gives agents a chance

to adjust their money holdings after learning whether they will be buyers or

sellers. Money remains the only medium of exchange, but by paying interest

to depositors in the DM, the bank reduces the cost of carrying money. Even

though our intermediaries play different roles, we reach the same conclusion:

expansionary monetary policy relaxes the constraints that the intermediary

needs to impose on its customers. For charge cards to exist, money growth

above the Friedman rule is also required for a more basic reason. Charge cards

are costly, so agents will only carry them if holding money is more costly.

The rest of this paper is organized as follows. Some facts about charge

cards are presented in section 2. Section 3 develops the money-search model

with charge cards, and derives agents’ money holdings and card-holding/card-

accepting decision. Section 4 describes the possible equilibria of the model.

Section 5 presents a numerical simulation of the model and measures the wel-

fare gain from charge cards and the cost of inflation when charge cards are
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in use. Section 6 describes some potential extensions to the model. Finally,

section 7 reviews the conclusions for optimal monetary policy.

2.2 Facts about charge cards

The idea of charge cards as a general purpose means of payment arose in

the U.S. in the 1950’s with the Diners Club card, followed shortly by American

Express and Carte Blanche. These predated credit cards by about a decade

and continue to operate in competition with credit cards today. While charge

cards do allow buyers to defer payment for a short period of time, they are

first and foremost intended as a medium of exchange. No interest is charged.

The entire balance must be paid every billing cycle. I focus on charge cards

because I am interested in the role of payment intermediation as distinct from

the role of credit. Over time, charge cards have been giving way to credit

cards. However, 30% to 40% of credit card customers are “convenience” users

who pay off their entire balance every billing cycle, avoiding finance charges,

and so treat their credit cards are though they were charge cards.2

Credit cards generally have explicit credit limits. In contrast, the spend-

ing limits on charge cards are not stated in advance. Many consumers incor-

rectly believe that there is no spending limit on charge cards. A more accurate

description is that the spending limit is determined and revised at the com-

2 Chakravorti (2003), p52.
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plete discretion of the card company, and is not known to cardholders until

a transaction is declined. Here is a description of the spending limit from

American Express:

“The American Express® Preferred Rewards Green Card has no

pre-set spending limit which gives you purchasing power that ad-

justs with your use of the Card. No pre-set spending limit does

not mean unlimited spending. Your purchases are approved based

on a variety of factors, including current spending patterns, your

payment history, credit record, and financial resources known to

us.”3

Since these spending limits are never published, information about them is

hard to come by.

Of course, there is a cost to charge cards. In fact, cards are among the

most expensive forms of payment.4 Merchants pay over $36Billion per year

in fees to accept credit and charge cards in the U.S. alone.5 Such fees, called

“merchant discounts” because they appear as the difference between the sales

3 American Express website http://www.americanexpress.com/getthecard/

learn-about/Preferred-Rewards-Green [Accessed 7 Dec 2008]
4 The average cost of a charge card transaction is 72¢, twice as expensive as clearing

checks or PIN debit cards. Although we typically model accepting cash as costless, this is
not really the case: on average the cost of handling cash is 12¢ per transaction. Levitin
(2007), p1.

5 Levitin (2007), p2. If we add in debit cards the fees paid by sellers to use pay-
ment cards approach $50Billion. According to Aneace Haddad, the interchange indus-
try is bigger than the biotech industry, the music industry, the microchip industry, the
electronic game industry, Hollywood box office sales, or worldwide venture capital invest-
ments (“The Interchange Industry Is Bigger than . . . ”, Aneace’s BLOG, May 12, 2006, at
http://aneace.blogspot.com/).
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price and the amount the acquiring bank pays the retailer, have both a fixed

component, typically 5¢ - 25¢ per transaction, and a proportional component,

between 1% and 3% of the sale.6

Merchants are prohibited from passing these costs directly on to the

customers who pay with cards. Card company merchant agreements include

no-surcharge rules which stipulate that cardholders cannot be charged higher

than the posted price. Until 1984 this restriction was also enshrined in fed-

eral law, the 1968 Truth in Lending Act. In addition, twelve states have laws

prohibiting payment card surcharges. The no-surcharge rule, along with other

merchant restraints, have been the basis of numerous lawsuits and have par-

tially motivated anti-trust investigations, but remain in effect in some form

for all the major card companies.7

Historically, card companies have also imposed an annual fee on card-

holders. Most credit cards no longer charge this fee, but it is still common for

charge cards. Currently, the annual fees on American Express charge cards

range from $95 to $450.8 However, the merchant discount is a more important

source of revenue for charge card companies than cardholder fees. American

Express, which now also issues credit cards but is still a major issuer of charge

cards, makes 72% of its revenue from merchant discount fees and less than 12%

6 Levitin (2007), p9
7 For a detailed history of merchant restrictions see Levitin (2007) p21-32.
8 American Express website http://www.americanexpress.com/getthecard/

compare-cards/no-limit-cards [accessed 7 Dec 2008]
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from annual fees.9 Nevertheless, annual fees remain important in consumers’

choice over whether to become a cardholder.

The use of all forms of payment cards has been on the rise since 1993, but

the strong gains for credit and charge cards, debit cards, and other electronic

payment systems have come mainly at the expense of personal checks, which

have seen a long decline from a high of nearly 60% of transactions by dollar

value in the mid-1990’s to about 20% today.10 It is interesting to note that

cash usage has been fairly stable for a decade or more. Perhaps predictions of a

cashless economy are premature. This motivates the search for a microfounded

model where money and intermediated exchange can coexist.

2.3 Model

2.3.1 Lagos and Wright environment

As in Lagos-Wright, each period is divided into two sub-periods: the DM

and the CM. Agents do not discount between the DM and subsequent CM.

In the DM each agent produces a special good, while in the CM every agent

produces the same general good. Every agent consumes the general good, but

each agent only consumes a subset of the range of special goods, and doesn’t

9 Levitin (2007), p17. By contrast, Discover, a firm that like American Express faces both
merchants and consumers (unlike card networks such as Visa and Mastercard) but whose
portfolio is purely credit cards, earns 3/4 of its revenue from interest and only 1/4 from
merchant discount fees.

10 Levitin (2007) chart 1.

81



consume the good she herself can produce. Goods are not storable. In the

CM there is a perfect Walrasian market where agents are price takers. In

the DM agents meet randomly and anonymously and they bargain over the

terms of exchange. With probably σ an agent will encounter another agent

who produces a special good she likes and she becomes a buyer. Also with

probably σ she will encounter an agent who likes the special good that she

can produce and she becomes a seller. Assume for simplicity that there are no

double-coincidence meetings.

The production technologies for both special goods and the general good

are linear in labor, but agents have different disutilities from labor in the

two sub-periods. Let x and X be consumption of special and general goods

respectively, and h and H be labor supplied in the DM and CM. Utility is

then

U(x,X, h,H) = u(x)− c(h) + U(X)−H (2.1)

where u(0) = c(0) = 0, u ≥ 0, u′ ≥ 0, u′′ ≤ 0, U ≥ 0, U ′ ≥ 0, U ′′ ≤ 0,

c ≥ 0, c′ ≥ 0 and c′′ ≥ 0. Assume there exists a quantity q∗ > 0 such that

q∗ = argmaxu′(q)− c′(q).

Fiat money exists in the CM and any amount can be bought or sold at

the going price of φ units of general good. The amount of money per-capita is

Mt at the start of each period. During the CM, a monetary authority injects

a lump-sum transfer of new money such that Mt+1 = γMt. Take γ to be
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constant and consider only steady-state equilibria where γ = φt/φt+1. Let T

be the per-capita transfer in terms of the general good.

2.3.2 Charge cards

In each CM agents can make agreements with the charge card company

to use charge cards to intermediate exchange in the following DM. There are

two kinds of agreements: agents can become cardholders, and agents can make

arrangements to accept charge cards. When two agents meet in the DM, if

the buyer is a cardholder and the seller accepts cards, then the bargaining

between them can include a payment dc made using the card. Let Πb be the

probability that a randomly chosen agent will be carrying a charge card in the

DM, and Πs be the probability that she accepts cards in exchange. The card

company will establish a spending limit l on cardholders, so that dc cannot be

greater than l.

To acquire a charge card an agent pays the card company an “annual”

fee (paid each period) of ηb units of general good. Also, if the agent made a

purchase with a card in the previous DM, she must pay the full balance on

her account (also in terms of general goods). I assume the card company does

not charge any usage fee to the cardholder, so the company’s claim on the

cardholder is just dc.
11 The card company will not issue a card to an agent

11 To my knowledge, no card company has ever charged its cardholders a transaction fee
on purchases. However, it is very common for cards to pay cardholders cash-back rewards
or other benefits (e.g. frequent flier miles) in proportion to their purchases. In 2005, 80% of
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who has ever failed to pay a claim or broken a merchant agreement (see below)

in the past.

In order to be able to accept cards in payment in the following DM,

the agent makes an agreement with the card company and pays ηs in fees

and other set-up costs.12 The merchant agreement stipulates rules the agent

must follow should she become a seller in the DM. For now this includes only

the fairly innocuous rule that after bargaining with the buyer the seller must

indeed accept the card in payment. The card company will refuse to allow

the agent to accept cards if the agent has ever broken a merchant agreement

or failed to pay a cardholder claim in the past. If the agent was a seller and

accepted a card in the previous DM, the card company pays the agent (1−τ)dc

units of general good, whether or not the buyer pays her claim, where dc is the

amount she agreed upon in bargaining with the buyer and τ is the merchant

discount fee.13 This fee causes a wedge between buyer’s marginal utility and

sellers marginal cost when charge cards are used. The second-best quantity

is q̃ which solves c′(q̃) = (1 − τ)u′(q̃). We shall see that if the spending limit

credit card transactions in the U.S. were made with rewards cards (Levitin, 2007, chart 4).
A very interesting exercise would be to allow a negative proportional fee for the cardholder.

12 Setup fees paid to the card company do not seem to be significant in reality, but sellers
may face some other setup costs (e.g time costs). The only role for ηs in the model is to give
agents a reason they might not accept cards, so ηs can be viewed as a stand-in for other
reasons merchants might decide not to accept cards. This is really only interesting when it
makes sellers indifferent between accepting cards and not, leading to a mixed equilibrium.

13 To be fully realistic, the merchant fee should have both a fixed and proportional com-
ponent. In this model a fixed, per-transaction fee for sellers would have the same function
as τ in that both reduce the surplus from exchange, but their cost is divided between the
buyer and seller in bargaining over payment method. In an extension where sellers have
heterogeneous costs a fixed fee would have different effect on different sellers.
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is high enough, agents will always transact q̃ if a card is used. Let l∗ be the

minimum spending limit under which q̃ is always attainable (i.e. the limit is

high enough that it never binds.)

In exchanges where a card cannot be used, payment can be made using

only money. The agent’s gain from trade would be Bo(s, s̆) if she is the buyer

or So(s̆, s) if she is the seller. Here s represents the set of relevant variables

describing the agent and s̆ is the set of variables describing her trading partner.

Let W (z, y) represent the value of entering the CM with real money balances

z and a claim on the card company of y general goods (where y is negative if

the card company has a claim on the individual.) Then the gain from trading

in the DM is the value from trading minus the value of not trading. If only

money is used then

Bo(s, s̆) ≡ u
(
qo(s, s̆)

)
+W

(
z − do(s, s̆), 0

)
−W

(
z, 0

)
(2.2)

So(s̆, s) ≡ −c
(
qo(s̆, s)

)
+W

(
z + do(s̆, s), 0

)
−W

(
z, 0

)
(2.3)

where qo is the quantity of good exchanged and do is the real value of money

the buyer gives the seller. Note that the cost of holding money is a sunk cost

in the DM and does not enter the gain.

When a card can be used, then in principle payment might be made with

a combination of both money and card. Write the gains from trade in the DM
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as Bb(s, s̆) and Sb(s̆, s).

Bb(s, s̆) ≡ u
(
qb(s, s̆)

)
+W

(
z − dm(s, s̆), −dc(s, s̆)

)
−W

(
z, 0

)
(2.4)

Sb(s̆, s) ≡ −c
(
qb(s̆, s)

)
+W

(
z + dm(s̆, s), (1− τ)dc(s̆, s)

)
−W

(
z, 0

)
(2.5)

where qb is the quantity exchanged, dm is the real money paid to the seller

and dc is the promise the buyer makes to the card company. The seller gets a

claim on the company of (1− τ)dc.

During the CM, the agent must decide how much cash to take into the

DM. She must also decide whether to be a cardholder in the following period

and whether to accept cards in the following period. If she chooses to do

neither her expected value from entering the DM holding real balances z is

V neither(z) = W (z, 0) + σ

∫
Bo(s, s̆)dF (z̆) + σ

∫
So(s̆, s)dF (z̆) (2.6)

where F (z̆) is the distribution of real balances of other agents in the population.

If she chooses to hold a card, but not to accept cards then her expected
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value is

V hold(z) = W (z, 0)+σ

{
Πs

∫
Bb(s, s̆) dF (z̆|π̆s = 1)

+ (1− Πs)

∫
Bo(s, s̆) dF (z̆|π̆s = 0)

}

+σ

∫
Sb(s̆, s) dF (z̆)

(2.7)

where π̆s ∈ {1, 0} represents the card-accepting choice of the particular trading

partner the agent happens to meet in the DM (1 if the partner accepts cards).

If the agent chooses to accept cards but not carry one then

V accept(z) =W (z, 0) + σ

∫
Bo(s, s̆) dF (z̆)

+σ

{
Πb

∫
Sb(s̆, s) dF (z̆|π̆b = 1)

+ (1− Πb)

∫
So(s̆, s) dF (z̆|π̆b = 0)

} (2.8)

where π̆b ∈ {1, 0} represents the cardholding choice of her trading partner (1

if the partner is a cardholder).
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If the agent chooses to both hold and accept

V both(z) = W (z, 0)+σ

{
Πs

∫
Bb(s, s̆) dF (z̆|π̆s = 1)

+ (1− Πs)

∫
Bo(s, s̆) dF (z̆|π̆s = 0)

}

+σ

{
Πb

∫
Sb(s̆, s) dF (z̆|π̆b = 1)

+ (1− Πb)

∫
So(s̆, s) dF (z̆|π̆b = 0)

}
(2.9)

Each possibility could result in a different choice of X, H, and next period’s

real balances ẑ. The agent solves all four problems and chooses the option

with the highest expected payoff.

W (z, y) = max

{
max
X,ẑ

[
U(X)−X + T + z + y − γẑ + βV neither(ẑ)

]
,

max
X,ẑ

[
U(X)−X + T + z + y − γẑ − ηb + βV hold(ẑ)

]
,

max
X,ẑ

[
U(X)−X + T + z + y − γẑ − ηs + βV accept(ẑ)

]
,

max
X,ẑ

[
U(X)−X + T + z + y − γẑ − ηb − ηs + βV both(ẑ)

]}

(2.10)

In each part of (2.10) I have substituted the appropriate budget constraint

for H. Three conclusions follow immediately from this setup of the agent’s

decision:

Lemma 1. In the CM, consumption is constant X = X∗. The agent’s card-
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holding and card-accepting decisions and choice of ẑ are independent of the

state. W (z, y) can be written as

W (z, y) = z + y +W0 + βW1 (2.11)

where

W0 = U(X∗)−X∗ + T

W1 = max

{
max
ẑ

[
−(1 + i)ẑ + V neither(ẑ)

]
,

max
ẑ

[
−(1 + i)ẑ − ηb/β + V hold(ẑ)

]
,

max
ẑ

[
−(1 + i)ẑ − ηs/β + V accept(ẑ)

]
,

max
ẑ

[
−(1 + i)ẑ − ηb/β − ηs/β + V both(ẑ)

]}

Proof. From the first order conditions, 1 = U ′(X) and γ = βV ′(ẑ) for whichever

V corresponds to the agent’s card choices. The state variables z and y affect

the agent’s payoff in the same way regardless of the cardholding and card-

accepting decisions, so they do not influence those decisions. Then simply

rearrange (2.10) and note that γ/β = γ(1 + r) = 1 + i to arrive at (2.11).

89



Using Lemma 1 the gains from trade can be simplified:

Bo(s, s̆) = u
(
qo(s, s̆)

)
− do(s, s̆) (2.12)

So(s̆, s) = −c
(
qo(s̆, s)

)
+ do(s̆, s) (2.13)

Bb(s, s̆) = u
(
qb(s, s̆)

)
− dm(s, s̆)− dc(s, s̆) (2.14)

Sb(s̆, s) = −c
(
qb(s̆, s)

)
+ dm(s̆, s) + (1− τ)dc(s̆, s) (2.15)

To go further, we need to describe how the quantities and payments

exchanged are determined. In most of the money search literature, the terms

of exchange are determined by Nash bargaining. This feature has important

ramifications for predictions of money search models generally.

2.3.3 Bargaining

Lagos and Wright find a high welfare cost of inflation when the mechanics

of money as a medium of exchange are taken into account. This result is due

to the bargaining that buyers and sellers engage in when an exchanging goods

for money. If there is a positive nominal interest rate, then carrying money

into the DM imposes a sunk cost on buyers. But, by allowing exchange to

occur, carrying money benefits both buyers and sellers. This leads to a hold-

up problem. Since the cost is sunk, it is not shared between the seller and

buyer in bargaining. But the surplus from trade is shared, and the size of that
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surplus depends on z, the money holdings of the buyer. Therefore instead of

the socially optimal amount z∗, the buyer only brings the amount that sets her

cost of holding money equal to her share of the surplus. This hold-up problem

is eliminated only if buyers have all of the bargaining power.

However, Lagos and Wright find that even at the Friedman rule buyers

carry too little money. This cannot be the result of a hold-up problem, since

with a zero nominal interest rate there is no sunk cost to carrying money.

Aruoba et al. (2007) explain that this is due to the use of the Nash bargaining

solution. When agents choose z, they are effectively choosing the size of the

surplus over which they will bargain should they become buyers in a random

match. The Nash solution is non-monotonic in the sense that the outcome for

a given party does not increase monotonically with the size of the bargaining

set, and may actually decrease. Buyers can improve their bargaining outcome

by bringing less cash to the table, even though this is socially inefficient. By

contrast, when a charge card is used, the bargaining set is determined by the

merchant discount and spending limit which the buyer takes as given. Money

has a strategic value to buyers that charge cards lack.

I develop my model using either the Nash bargaining solution or the

proportional bargaining solution where there is no strategic incentive for agents

to limit their money balances.
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Nash bargaining with money only

In a single-coincidence meeting where charge cards cannot be used, either

because the buyer is not a cardholder and/or the seller does not accept cards,

bargaining over the quantities of special good and money exchanged takes

place exactly as in the Lagos-Wright model: qo(s, s̆) and do(s, s̆) solve

maxBθ
oS

1−θ
o = max

qo,do
{u(qo)− do}θ {−c(qo) + do}1−θ

subject to do ≤ z

(2.16)

where z is the real money balance the buyer is carrying, and θ is the relative

bargaining power of the buyer. Lagos and Wright show that the solution is

qo =


q̂(z) if z < z∗

q∗ if z ≥ z∗

do =


z if z < z∗

z∗ if z ≥ z∗

(2.17)

where q∗ is the optimal quantity that solves c′(q) = u′(q) and z∗ is the amount

of real money that makes exchange of q∗ possible.14 If the buyer brings z < z∗,

14 To see this, first consider the case where the constraint does not bind. Then necessary
and sufficient conditions for the solution are

(1− θ)[u(qo)− do]c′(qo) = θ[−c(qo) + do]u′(qo) (2.18)

and
(1− θ)[u(qo)− do] = θ[−c(qo) + do] (2.19)
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the outcome is the buyer gives the seller all of her money, and qo = q̂(z) where

q̂ is the quantity that solves g(q̂) = z where g is defined as

g(q) ≡ θc(q)u′(q) + (1− θ)u(q)c′(q)

θu′(q) + (1− θ)c′(q)
(2.20)

Bo(z)

z† z∗

real money balance

u
ti

li
ty

ga
in

Fig. 2.1: Buyer’s gain from trade under Nash bargaining without charge cards.

Notice that the solution depends only on the buyer’s real money holdings,

so qo(s, s̆) can be written qo(z) and do(s, s̆) can be written do(z).

Figure 2.1 shows the buyer’s gain from trade Bo(z) when she brings

money z into the DM. Without assuming more structure on u(q) and c(q) we

cannot say much about the shape of Bo. We know Bo(0) = 0 and Bo(z
∗) =

u(q∗) − z∗, but at any given point between these two we cannot pin down a

implying u′(qo) = c′(qo) and qo = q∗ and do = z∗ = θc(q∗) + (1− θ)u(q∗). If the constraint
does bind, then do = z. Equation (2.19) no longer holds with equality but equation (2.18)
still does. Solving (2.18) for do gives the real money needed to pay for qo, which defines
g(q).
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first or second derivative. We can show that Bo(z
∗) is not a maximum. Total

surplus is maximized at z∗, but buyers improve their bargaining position by

carrying less money. This result is presented in Aruoba et al. (2007), but not

explicitly proved for general u(q) and c(q). I state it here and provide the

proof in the appendix.

Lemma 2. Under Nash bargaining with money only, z ≥ z∗ does not maximize

the buyer’s surplus. The maximum is at some smaller z = z† at which the

quantity exchanged is less than the social optimum, that is q† ≡ q̂(z†) < q∗.

Proof. See appendix.

Nash bargaining with both charge cards and money

When both cards and money can be used the Nash bargaining solution

is the triple (qb, dm, dc) that solves

maxBθ
bS

1−θ
b = max

qb,dm,dc
{u(qb)− dm − dc}θ {−c(qb) + dm + (1− τ)dc}1−θ

subject to dm ≤ z

and dc ≤ l

(2.21)
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Using Lagrange multiplier µ for the first constraint and λ for the second, the

Kuhn-Tucker conditions are

θu′(q)Bθ−1S1−θ − (1− θ)c′(q)BθS−θ ≤ 0 = 0 if q > 0 (2.22)

−θBθ−1S1−θ + (1− θ)BθS−θ − µ ≤ 0 = 0 if dm > 0 (2.23)

−θBθ−1S1−θ + (1− θ)(1− τ)BθS−θ − λ ≤ 0 = 0 if dc > 0 (2.24)

µ(z − dm) = 0 λ(l − dc) = 0 q ≥ 0 0 ≤ dm ≤ z 0 ≤ dc ≤ l

The amount of the money payment can either be an interior solution, 0 <

dm < z, or a corner solution with either dm = 0 or dm = z. It is also possible

for the buyer to carry no money at all, in which case dm = z = 0, which I

consider as a fourth distinct alternative. Similarly, the card payment can be

interior, 0 < dc < l, or a corner solution, dc = 0 or dc = l.15 I consider each of

these 4× 3 potential solutions in turn (see appendix) to fully characterize the

solution.

First we see what happens if the buyer brings no money into the DM.

Lemma 3. In Nash bargaining, if the buyer has a card and is carrying no

money, then

15 I disregard the possibility that the card company sets the spending limit at zero, since
this is tantamount to having no cards at all.
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1. The quantity exchanged will be less than the first-best q∗.

2. The highest quantity is exchanged when the card’s spending limit does

not bind. This quantity is q̃ which solves c′(q̃) = (1− τ)u′(q̃).

3. The card will always be used as long as q̃ > 0.

Thus the solution when the buyer carries no money is

qb =


Q̂(0, l) if l < l∗

q̃ if l ≥ l∗

dc =


l if l < l∗

l∗ if l ≥ l∗

(2.25)

where l∗ = gc(q̃). Q̂(z, l) is the quantity of good that will be exchanged as part

of the bargaining outcome when the buyer has z money and a charge card with

spending limit l. For the special case where z = 0 this is the q that solves

l = gc(q), where

gc(q) ≡
θc(q)u′(q) + (1− θ)u(q)c′(q)

θ(1− τ)u′(q) + (1− θ)c′(q)
(2.26)

(See lemma 6 below for the general solution.)

Proof. See appendix.

Next I show that if the buyer has some money then she will spend at

least part of it.
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Lemma 4. In Nash bargaining, if the buyer is carrying money z > 0, then

some payment will be made with money; that is dm > 0.

Proof. See appendix.

The buyer will spend all the money she is carrying before using the card.

If she does not spend all her money, it is because she buys the optimal quantity

and pays the same amount of money as she would if she couldn’t use a charge

card, which is less than her money holdings.

Lemma 5. In Nash bargaining, if the payment made with money is less than

the amount of money the buyer is carrying (dm < z) then

1. No payment is made with a charge card; that is dc = 0.

2. The optimal quantity is exchanged; q = q∗.

3. Money payment is the same as without cards; dm = z∗ = g(q∗).

Proof. See appendix.

Finally we see how much payment the buyer makes with her charge card

after she has spent all her money.

Lemma 6. In Nash bargaining, if the payment made with money equals the

buyer’s money holdings (dm = z), then

1. If the card is used and the spending limit does not bind (0 < dc < l), the

quantity exchanged will be q = q̃.
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2. dc = 0 if q > q̃. The card is not used if the quantity the buyer gets when

she spends all her money is already more than the optimal quantity that

can be achieved with the card.

The solution when both money and card are used is

qb =



Q̂(z, l) if z < j−1(l)

q̃ if j−1(l) ≤ z < z̃

q̂(z) if z̃ ≤ z < z∗

q∗ if z > z∗

dm =


z if z < z∗

z∗ if z ≥ z∗

dc =



l if z < j−1(l)

j(z) if j−1(l) ≤ z < z̃

0 if z ≥ z̃

(2.27)

Here j(dm) ≡ l∗−dm(1−τ +θτ)/(1−τ) is the size of the card payment needed

to purchase q̃ given that there is also a payment of dm made with cash. This

takes into account the fact that the merchant fee applies only to the part of

the payment made by card. Hence j(0) = l∗, because this is the card payment

needed to buy q̃ when no money is used. dmθτ/(1−τ) can be seen as the buyer’s
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share of the savings from paying dm of the total amount in money rather than

with a card. Now we can see that j−1(l) is the value for z below which the card

spending limit will bind. Define z̃ ≡ g(q̃), which is the amount of cash needed

to buy q̃ when no payment is made using a charge card. It should be clear that

j−1(0) = z̃ (when the card cannot be used at all, the card’s second best is only

achieved if z ≥ g(q̃).)

As described above, Q̂(z, l) is the quantity exchanged when the buyer

brings z money and a card with spending limit l. The general definition (for

z ≥ 0) is this is the q that solves z = G(q, l) where

G(q, dc) ≡
θc(q)u′(q) + (1− θ)u(q)c′(q)− dc[θ(1− τ)u′(q̃) + (1− θ)c′(q̃)]

θu′(q) + (1− θ)c′(q)

(2.28)

Proof. See appendix.

Figure 2.2 shows the buyer’s surplus Bb(z, l) when she is carrying real

money z and a charge card with spending limit l and she meets a seller who

can accept cards. Note that for money holdings above z̃ = g(q̃) the curve

coincides with that of the money-only surplus Bo(z) (the dashed line). This is

because when the buyer has this much money, the card is not used: because

of the merchant fee τ , it’s not worth using the card at all on quantities above

q̃. The linear section on the left part of the curve represents the region where

q̃ is being traded, but the buyer’s money is not enough to pay for it and the
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Fig. 2.2: Buyer’s gain from trade under Nash bargaining with charge cards.

card is used to make up the difference. Bb is upward sloping in this region

because for every additional unit of real money the buyer brings, she avoids

paying 1 + θτ/(1− θτ) with the card.

In figure 2.2, τ is such that z̃ > z† which means that q̃ > q†. The wedge

due to the card’s merchant fee is not as bad as the inefficiency due to buyers

strategically choosing to carry too little money. In this case, charge cards are

welfare improving. A larger τ would move z̃ to the left, and also make the

slope of the linear section steeper . Also in figure 2.2, the card spending limit

never binds. Buyer’s can carry z = 0 and still exchange q̃. If instead l < l∗,

then the linear region would not extend all the way down to z = 0 (see figure

2.7).
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Proportional bargaining with money only

If the money payment and quantity of special good traded is determined

by proportional bargaining, the buyer’s surplus is always a fixed proportion

θ/(1− θ) of the total surplus. qo(s, s̆) and do(s, s̆) solve

max
qo,do

u(qo)− do

subject to (1− θ)[u(qo)− do] = θ[−c(qo) + do]

and do ≤ z

(2.29)

The solution is

qo =


q̂(z) if z < z∗

q∗ if z ≥ z∗

do =


z if z < z∗

z∗ if z ≥ z∗

(2.30)

where as before z∗ = g(q∗) and q̂(z) solves z = g(q̂(z)) but now g(q) =

(1− θ)u(q) + θc(q).

Figure 2.3 shows the buyer’s gain under proportional bargaining when

only money is used. Unlike the surplus from Nash bargaining, here Bo(z) is

well behaved.
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Fig. 2.3: Buyer’s gain from trade under proportional bargaining without charge
cards.

Lemma 7. Under proportional bargaining when charge cards are not used,

1. The global maximum is attained at z ≥ z∗.

2. There are no local maxima.

3. There is no at kink at z∗.

Proof. B′o(z) = q̂′(z)B̂′o(q̂
′(z)) where B̂o(q) = θ[u(q)− c(q)] is the buyer’s gain

as a function of the quantity of goods she receives.

q̂′(z) = 1/g′(q) =
1

(1− θ)u′(q̂(z)) + θc′(q̂(z))
(2.31)

B′o(z) =
θ[u′(q̂(z))− c′(q̂(z))]

(1− θ)u′(q̂(z)) + θc′(q̂(z))
(2.32)

both of which are positive for all z < z∗. Moreover, evaluated at z∗ where
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u′(q) = c′(q), B′o(z
∗) = 0, which matches the slope to the right of z∗ where

Bo(z) = u(q∗)− z∗.

Proportional bargaining with both charge cards and money

Proportional bargaining when both charge cards and money can be used

solves

max
qb,dm,dc

u(qb)− dm − dc

subject to (1− θ)[u(qb)− dm − dc] = θ[−c(qb) + dm + (1− τ)dc]

and do ≤ z

and dc ≤ l

(2.33)

The solution to this problem is

Lemma 8. Under proportional bargaining when charge cards are used, the
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outcome is

qb =



Q̂(z, l) if z < j−1(l)

q̃ if j−1(l) ≤ z < z̃

q̂(z) if z̃ ≤ z < z∗

q∗ if z > z∗

dm =


z if z < z∗

z∗ if z ≥ z∗

dc =



l if z < j−1(l)

j(z) if j−1(l) ≤ z < z̃

0 if z ≥ z̃

(2.34)

where all values are as defined in the Nash bargaining case, except that now

G(q, l) = (1− θ)u(q) + θc(q)− (1− τθ)l (2.35)

Just as with Nash bargaining,

1. If the buyer is carrying money she will spend all of it up to z∗, enough

to buy q∗.

2. She will not make any payment by card unless her money is not enough
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to buy q̃, in which case she will spend all her money first and pay the

remainder with the card.

3. As long as the card’s spending limit doesn’t bind, the quantity exchanged

will be q̃ if the card is used at all.

Proof. See appendix.

Figure 2.4 shows two versions of Bb(z, l), the buyer’s gain from propor-

tional bargaining using card and money. The top solid line represents the case

where the card’s spending limit never binds (l ≥ l∗) – the linear part of the

curve curve extends all the way down to z = 0. The lower solid line shows

what happens when l < l∗. When she brings z < j−1(l), the buyer spends

all her money and maxes-out her charge card too, but together these are not

enough to pay for q̃ so a smaller quantity is exchanged. Both curves coincide

with the money only curve B0(z) (the dashed line) above z̃.

As with the money-only curve, there is no kink in Bb(z) at z∗. Moreover,

there are no kinks at the other breakpoints either. The right-sided derivative

of Bb(z̃) and the left-sided derivative at Bb(j
−1(l)) are both the same as the

slope of the linear section in between them: θτ/(1− θτ).

2.3.4 Distribution of money holdings

Now that we have established the results of bargaining in the DM, both

when charge cards are used and when only money is used, let us return to the
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Fig. 2.4: Buyer’s gain from trade under proportional bargaining with charge cards.

agent’s decision in the CM. As we have seen, the outcome of qo and do or qb,

dm and dc depend only on the buyer’s money holdings and the charge card

spending limit if a card can be used. Thus the gains from trade can be written

as

Bo(z) = u
(
qo(z)

)
− do(z) (2.36)

So(z̆) = −c
(
qo(z̆)

)
+ do(z̆) (2.37)

Bb(z, l) = u
(
qb(z, l)

)
− dm(z, l)− dc(z, l) (2.38)

Sb(z̆, l) = −c
(
qb(z̆, l)

)
+ dm(z̆, l) + (1− τ)dc(z̆, l) (2.39)

Only Bo and Bb depend on the agent’s own choice of real money holdings.

Using this and (2.11) the value of entering the DM for each combination of
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the cardholding and card-accepting decision can be simplified as

V neither(z) = z +W0 + βW1 + σBo(z) + σA0(Πb) (2.40)

V hold(z) = z +W0 + βW1 + σΠsBb(z) + σ(1− Πs)Bo(z) + σA0(Πb) (2.41)

V accept(z) = z +W0 + βW1 + σBo(z) + σA1(Πb) (2.42)

V both(z) = z +W0 + βW1 + σΠsBb(z) + σ(1− Πs)Bo(z) + σA1(Πb) (2.43)

where A0(Πb) is the agent’s expected surplus from being a seller in the DM

if she decides not to accept cards, and A1(Πb) is the her expected surplus if

decides to accept cards and the probability of meeting a cardholder is Πb.

A0(Πb) ≡
∫
So(z̆)dF (z̆) (2.44)

A1(Πb) ≡Πb

∫
Sb(z̆, l) dF (z̆|π̆b = 1) + (1− Πb)

∫
So(z̆) dF (z̆|π̆b = 0) (2.45)

Note that neither A0(Πb) nor A1(Πb) depend on the agent’s own choice of

money holdings.

Plugging these expressions into (2.11) and dropping terms that do not

depend on ẑ we see that an agent’s choice of real balances to take into the

next period takes one of two forms. If she chooses to carry only money, her

choice of ẑ solves

max
ẑ

{
−iẑ + σBo(ẑ)

}
(2.46)
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If she decides to become a cardholder, her choice of ẑ solves ẑ that solves

max
ẑ

{
−iẑ + σΠsBb(ẑ, l) + σ(1− Πs)Bo(ẑ)

}
(2.47)

The solutions to these problems can be seen visually from graphs like figure 2.1.

The agent chooses the money holding that maximizes the distance between the

curve B and a line through the origin with slope i/σ. Alternatively, find the

most northwestern point on B that is tangent to a line with slope i/σ.

These maximization problems have no solution if i < 0, which would

imply that inflation is below the Friedman rule, so I will restrict attention to

situations where i ≥ 0. We know that at nominal interest rate i = 0 the buyer

will choose z ≥ z∗ under proportional bargaining, but she will choose z† < z∗

under Nash bargaining.

With either bargaining solution we cannot ensure that Bo(z) or Bb(z) are

concave for all z. They would be if the buyer has all of the bargaining power

(θ = 1), or if we impose more structure on c(q) and u(q). In an unpublished

version of their 2005 paper, Lagos and Wright show that it is sufficient for

log u(q) to be concave. Without concavity of the buyer’s surplus, there is

a danger that the solution for the money balance will not be unique. At a

given nominal interest rate i, a line with slope i might happen to be tangent

to B(z) at more than point. Moreover, with charge cards Bb(q) has a linear

section. If the interest rate is exactly i = θτ/(1 − τ) (under Nash bargaining
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or i = θτ/(1 − θτ) under proportional bargaining) then any j−1(l) < z < z̃

will be a solution.

Assuming that (2.46) and (2.47) have unique solutions, then for a given

interest rate all agents making the same cardholding choice will carry the same

real balances. The choice of money balance also depends on the probability

Πs of meeting someone who accepts cards. Note that the two maximization

problems are the same if Πs = 0. Agents choosing to carry a card will also

carry ẑ(i,Πs) money. Agents choosing to carry only money will carry ẑ(i, 0).

The distributions of money holdings conditional on cardholding decision are

thus degenerate: F (z|πb = 0) = ẑ(i, 0) and F (z|πb = 1) = ẑ(i,Πs). This

simplifies A0 and A1.

A0(Πb) =ΠbSo
(
ẑ(i,Πs)

)
+ (1− Πb)So

(
ẑ(i, 0)

)
(2.48)

A1(Πb) =ΠbSb
(
ẑ(i,Πs), l

)
+ (1− Πb)So

(
ẑ(i, 0)

)
(2.49)

2.3.5 Card-accepting and cardholding decisions

The choice of whether or not to accept cards is made by comparing the

expected benefits given the interest rate and the cardholding choices of other

agents in the economy. Each agent chooses to pay fixed costs ηs to be able to
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accept cards next period when

σA1(Πb)− ηs ≥ σA0(Πb) (2.50)

Similarly, the choice of whether or not to become a cardholder is made by

comparing the expected benefits given the interest rate and the card-accepting

choices of other agents in the economy. Each agent chooses to pay the annual

fee ηb to become a cardholder in the next period when

ΠsBb

(
ẑ(i,Πs)

)
+ (1− Πs)Bo

(
ẑ(i,Πs)

)
− i

σ
ẑ(i,Πs)−

ηb

βσ

≥ Bo

(
ẑ(i, 0)

)
− i

σ
ẑ(i, 0) (2.51)
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Fig. 2.5: Cardholding decision under Nash bargaining.

Figure 2.5 depicts this choice in a pure charge card equilibrium, meaning
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all agents accept cards (Πs = 1). For a given interest rate i, agents will choose

the point on the graph with highest tangent line of slope i/σ. The curve for Bb

(the gain from using a card) is shifted down by ηb/βσ. In a mixed equilibrium

where Πs < 1 the curve for card acceptance would be a convex combination

of Bb and Bo shifted down by ηb/βσ.

At the interest rate drawn in figure 2.5 the agent is just indifferent about

becoming a cardholder. Call this rate i∗.

i∗ solves
i∗

σ
[ẑ(i∗, 0)− ẑ(i∗, 1)] = Bo

(
ẑ(i∗, 0)

)
−Bb

(
ẑ(i∗, 1)

)
+
ηb

βσ
(2.52)

For i > i∗ the buyer would prefer to be a cardholder. In the figure, the card

spending limit doesn’t bind, so if the agent chooses to hold a card, she will

choose to carry zero money and q̃ goods will be exchanged. If she decides

not to be a cardholder she’ll carry ẑ(i, 0) money and q̂(ẑ(i, 0)) goods will be

exchanged.

At a given interest rate, charge cards are welfare improving if Q̂(ẑ(i, 1), l) >

q̂(ẑ(i, 0)), which translates into q̃ > q̂(ẑ(i, 0)) if the spending limit doesn’t

bind. By setting i ≥ i∗ a monetary authority can make charge cards viable.

To find whether this is optimal, compare q̂(ẑ(i, 1)) to q̂(ẑ(0, 0)) = q†. Under

proportional bargaining q† = q∗ and it is socially optimal to set i = 0 (the

Friedman rule). Figure 2.6 depicts this choice for proportional bargaining. In

the figure l < l∗ so at i∗ the spending limit is binding and the agent carries
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Fig. 2.6: Cardholding decision under proportional bargaining.

some money ẑ(i, 1) > 0 even when she is a cardholder. But the money-only

solution at i = 0 attains the first best, while the card solution only attains

Q̂(ẑ(i, 1), l) < q̃ < q∗.

In contrast, under Nash bargaining q† < q∗. If q† is also less than q̃

as shown in figure 2.5,16 then a charge card equilibrium welfare-dominates a

monetary equilibrium even at the Friedman rule and i = i∗ is the optimal rate

– provided the economy can find the charge card equilibrium! The same could

be true under any other mechanism for determining the terms of exchange

that gives buyers a strategic incentive to limit their money holding.

For a given i, comparing Bb and Bo shows which cardholding choice

a buyer prefers, and comparing Q̂ and q̂ shows us which yields more total

16 Figure 2.5 shows z† < z̃. For the sake of argument assume that also q† < q̃, although
this cannot be read from the graph. We have to be careful to compare qs rather than zs
since q̂′(z) and Q̂z(z, l) are not guaranteed to be positive.
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surplus. However, there is another channel by which interest rates can affect

welfare and the cardholding decision. Up to now we have treated the charge

card spending limit as exogenous. It is likely, however, that the spending limit

will be a function of interest rates. In the next section we endogenize the

spending limit.

2.3.6 Spending limits

The size of the spending limit imposed by the card company on buyers

will depend on the legal institutions enforcing payment. The higher the cost

of defaulting, the higher the card company can set the limit and still expect

to be paid. One can imagine a severe punishment (e.g. debtor’s prison) which

would make the spending limit arbitrarily high. Within the confines of the

model, a fairly severe punishment might be exclusion from all future CM sub-

periods. This could represent something between a bad credit rating and a

criminal record which prevents the agent from engaging in any exchange where

reputation matters. The agent would reduced to only anonymous interactions

in the DM.

Here I establish a lower bound on the spending limit corresponding to the

minimum punishment that should always be available to the card company:

revoking the charge card. Cardholders weigh the immediate benefit of not

paying their claim to the card company against the present discounted cost
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of only being able to use money in all future periods. The spending limit will

be the threshold amount that leaves the cardholder indifferent between paying

and not paying the claim. Under this minimal enforcement mechanism, the

limit is l = l̂(i) which solves

l̂ =
net gain with card− net gain w/o card

1− β
(2.53)

=
σ
[
Bb

(
ẑ(i, 1), l̂

)
−Bo

(
ẑ(i, 0)

)]
+ i[ẑ(i, 0)− ẑ(i, 1)]− ηb/β

1− β
(2.54)

This implies that i∗ does not exist! Recall that i∗ is the interest rate

that makes agents indifferent between holding a card and not. If agents are

just indifferent, then by equation (2.53) l = 0. But this is equivalent to having

no card at all. The card-and-money curve Bb and the money-only curve Bo

are identical. If there is any positive annual fee ηb > 0 then choosing not to

be a cardholder will be strictly preferred which contradicts that agents are

indifferent.

This is not to say that the charge card is never preferred, just that agents

are never indifferent. For extremely high interest rates limi→∞Bo = 0. Then

a positive spending limit that allows Bc > 0 can be supported if agents are

patient enough, since by (2.53), l can be arbitrarily large if β is close enough to

one. This leads to the definition of another threshold interest rate i∗∗ which is

the minimum i such that (2.51) is satisfied when l is defined by (2.53). At i∗∗
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using a card is significantly preferred to using only money. If the interest rate

falls below i∗∗ the cost of losing the card falls slightly but then the spending

limit collapses. Figure 2.7 shows a cardholding choice where there is a binding

spending limit that is supported by a positive difference ∆B in buyer’s gains

at i∗∗. When there are no institutions to promote payment of claims i∗∗ is the

minimum interest rate at which charge cards are viable. If Q̂
(
ẑ(i,Πs), l

)
> q†

then the optimal interest rate is i ≥ i∗∗. As depicted in figure 2.7 the optimal

rate is i = 0 because Q̂
(
ẑ(i,Πs), l

)
< q†.
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Fig. 2.7: Card spending limit derived from difference in buyer’s gains.

Notice that it is possible for higher interest rates to be welfare improving

even if charge cards are already being used. If the spending limit is binding,

agents’ choice of money holdings is to the left of j−1(l) on a curved section

section of Bb(z) where q̂(z, l) < q̃. If l were fixed, this would mean increasing
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i would decrease z and therefore decrease q. But the effect is ambiguous if

the spending limit is set by (2.53). If Bb(z) at this point is less curved than

Bo(ẑ(i, 0)) at the point where it would be tangent to i/σ – that is if

Q̂zz

(
ẑ(i, 1), l

)
> q̂′′

(
ẑ(i, 0)

)
(2.55)

then increasing i also increases
[
Bb

(
ẑ(i, 1), l

)
− Bo

(
ẑ(i, 0)

)]
, which raises the

spending limit and pushes j−1(l) to the left. Depending on parameters (espe-

cially β) this effect could dominate and actually raise Q̂
(
ẑ(i, 1), l

)
, increasing

total surplus.

2.4 Equilibrium

There are four possible equilibria: monetary, charge card, mixed, and

no-trade. In the monetary equilibrium cards are not used and all agents carry

money. Depending on the interest rate, all agents might be better off if they

could collectively switch to using cards. The no-trade equilibrium is the ex-

treme case of this coordination failure, where agents carry neither money nor

cards. In the charge-card equilibrium all agents hold charge cards, and all

agents accept cards in exchange. If the spending limit does not bind, then

payment will be made entirely by charge card and money will not be used. In

a mixed equilibrium, charge cards are used for some transactions.
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2.4.1 Monetary equilibrium

The monetary equilibrium here is identical to that in Lagos and Wright

(2005). Although charge cards are available, no agents choose to accept them

as payment and no agents carry a card. This is the only possible equilibrium

if i < i∗ (or i∗∗ in case the spending limit must be supported by the threat of

revoking the card). Buyers will not deviate because they prefer using money

to cards. Sellers will not deviate because choosing to accept cards costs ηs but

provides no benefit since cards will never be used. If ηs = 0 then a variation

of this equilibrium is possible in which agents do accept cards, but there are

still no cardholders.

If i ≥ i∗ then buyers would prefer to pay the annual fee and use a card

instead of money, but cards are not accepted. It may be that the merchant

setup fee is so high that sellers do not accept cards. If ηs > η̄s(i) where

η̄s(i) ≡ σ[A1(1)− A0] = σ
[
Sb
(
ẑ(i, 0), l

)
− So

(
ẑ(i, 0)

)]
(2.56)

then agents would not pay to accept cards even if all other agents are card-

holders. This threshold depends on i because the amount of money that other

agents in the economy are carrying depends on i. Presumably, the charge card

company would never set a fee so high as to have no customers.

If i ≥ i∗ and ηs ≤ η̄s(i) then agents may be stuck in a bad equilibrium.
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Collective action would be required to switch to the charge card equilibrium.

As i increases and ẑ(i, 0) falls, the benefits to both parties from switching

to cards becomes greater. Higher nominal interest rates make the monetary

equilibrium less stable, in the sense that fewer deviations are required to switch

into either a mixed or charge-card equilibrium.

2.4.2 No-trade equilibrium

If u′(0) = ū is finite, then there will be an interest rate ī above which

agents without charge cards will carry no money. It’s possible that agents

will still not be able to coordinate on using cards. With no medium of ex-

change available, trade cannot occur in the DM at all (since we have assumed

away double-coincidence meetings, barter is not an option). This is the lowest

welfare equilibrium.

A higher interest rate no longer has any effect on the number of deviations

required to switch to an equilibrium where cards are used. Since the gains from

trade are bounded by u(q̃), this equilibrium is only unstable (in the sense that

a small number of simultaneous deviations can switch the economy out of it)

if either ηs or ηb are very small. Of course, the charge card company has an

incentive to set its fees in just such a way in order to encourage usage.
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2.4.3 Charge card equilibrium

In the cards-only equilibrium, all agents carry and accept charge cards.

Cards are used in exchange. If the card’s spending limit is not binding, then

money is not used in exchange. If the spending limit does bind, then agents

also carry some money and pay with a combination of card and money. A

buyer who deviates and does not carry a card (perhaps because she is being

punished for not paying a claim) can still make exchanges using money, but

she will purchase a smaller quantity than she would with a card. This and

her holding cost of of money reduces her overall utility. A seller who deviates

and does not accept cards will either not be able to trade at all if buyers are

carrying no money, or only be able to trade a smaller amount if the card’s

spending limit binds and agents are carrying some money.

Nominal interest rates must be i ≥ i∗ for a charge card equilibrium to

be possible, and i ≥ i∗∗ if there are no institutions to enforce the payment of

claims. The merchant set-up fee must also be ηs < η̄s(i). If Q̂
(
ẑ(i, 1), l

)
> q†,

then this is the highest welfare equilibrium.

2.4.4 Mixed equilibrium

All agents are identical in this economy, so for cards to be used only some

of the time it must be that agents are indifferent and randomizing on one or

both of the ex-ante decisions about charge cards. If agents are indifferent
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between accepting and not accepting cards, they randomly choose to accept

Πs of the time. Then in any period Πs is the fraction of sellers who accept

cards. Similarly if agents are indifferent between carrying and not carrying a

card, then Πb is the fraction of buyers who are cardholders.

Buyers who do not carry cards do carry money, unless i > ī. The

amount of money they hold is the same amount buyers hold in the monetary

equilibrium ẑ(i, 0). If Πs = 1, then buyers who do carry cards hold the same

amount of money as buyers in the charge card equilibrium. If πs < 1 then they

carry ẑ(i,Πs) money. Sellers’ payoffs when money is used will depend on the

amount of money agents carry, which in turn depends on the fraction of other

sellers that choose to accept cards. However, agents do not take into account

the effect of their own card-acceptance decision on other’s money holdings.

Any pair of Πs and Πb such that both conditions (2.50) and (2.51) hold

with equality, is a possible equilibrium in which cards are used. However, such

equilibria are unstable. A slight increase or decrease in Πb makes sellers no

longer indifferent, and a slight increase or decrease in Πs makes buyers no

longer indifferent.

2.5 Simulation

Following the numerical analysis in Aruoba et al. (2007), I assume the

following functional forms: U(X) = Ω lnX, u(q) = q1−ζ/(1− ζ), and c(q) = q.
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Tab. 2.1: Parameters for Simulated Model

Parameter Symbol Value
Discount factor β (1.03)−1

CM consumption Ω 1.65
DM utility parameter ζ 0.36
Buyer’s bargaining power θ 0.32
Merchant discount τ 0.015
Meeting probability σ 0.5
Annual fee ηb 0.0059
Merchant’s set-up fee ηs 0
Spending limit σ 0.59

I assume the Nash bargaining solution in the DM. The period is a year. See

table 2.1 for the parameter values used. I assume a β that corresponds to a 3%

real interest rate. I use the values for Ω, ζ, θ and σ that Aruoba et al. calibrate

from U.S. money demand 1900-2000. I have no evidence that merchant set-up

fees are important in reality so I assume ηs = 0.

I assume an annual fee of $100, and charge card spending limit of $10,000.

In order to translate this into the model I need to convert dollar values into

units of general good consumption. With the assumed specification, agents

will consume X∗ = Ω general good in the CM. Consumption of special goods

in the DM depends on the interest rate and card usage. The first-best would

be q∗ = 1, but this level is never achieved under Nash bargaining. The second-

best consumption that can be attained when cards are used is q̃. The price

of q∗ in terms of general goods depends on how much payment is made with

card and how much is made with money. As a quick estimate I use z̃. The
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U.S. per capita GDP is a little less than $50,000.17 So my rough translation

for choosing parameters is Ω + z̃ ≈ $50, 000.

Tab. 2.2: Simulation Results

Description Symbol Value
Optimal DM consumption q∗ 1
Second best consumption with card q̃ 0.9589
Consumption at Friedman rule w/o card q† 0.6024
Consumption at i∗ with card qcard 0.6597
Real balance needed to buy q∗ z∗ 1.3825
Real balance needed to buy q̃ w/o card z̃ 1.3393
Money holdings under Friedman rule w/o card z† 0.9393
Spending limit that would never bind l∗ 1.3458
Min interest rate for card equilibrium i∗ 0.0078
Min rate for endogenous spending limit i∗∗ 0.0440
Rate the achieves endogenous limit of l∗ i∗∗∗ 0.0921

Simulation results are listed in table 2.2. Given this exogenous spending

limit, the charge card equilibrium is viable when the nominal interest rate is

above i∗ = 0.78%.

2.5.1 Endogenous spending limit

If the threat of losing the charge card is the only way the card company

can induce cardholders to pay claims, then there must be a strictly positive

benefit to having a charge card. At a given interest rate, there is a range

of spending limits that can be supported. Figure 2.9 shows the region of

feasible interest rate / spending limit combinations in the simulated model.

17 In 2008 per-capita GDP in the United States was $47,025 according to the International
Monetary Fund’s World Economic Outlook Database-October 2008. The World Bank’s
World Development Indicators database puts the figure for 2007 at $45,790.
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Fig. 2.8: Buyer’s gain from trade and quantity exchanged.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

fea
sib

lenot
fea

sib
le

i∗∗

l∗

nominal interest rate

sp
en

d
in

g
li
m

it

Fig. 2.9: Endogenous spending limits.

Below i∗∗ no positive spending limit can be supported, and charge cards are

not viable without some other mechanism to induce payment of claims. With
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the parameters in table 2.1 i∗∗ = 0.0440. I can also find the interest rate

i∗∗∗ = 0.0921 that would support l∗ the spending limit that allows the second

best quantity q̃ to be exchanged even when buyers carry no money.

2.5.2 Welfare benefit of charge cards

Assuming exogenous spending limit l = 0.59, at i∗ = 0.0078 buyers prefer

to become cardholders and the quantity traded becomes qcard ≡ Q̂(ẑ(i∗, 1), l) =

0.6597. This quantity is still far from the first best, but it is greater than the

quantity that is exchanged under the Friedman rule, since under the Friedman

rule buyers prefer not to be cardholders, so only q† = 0.6024 is exchanged.

This makes i∗ the optimal nominal interest rate, or γ∗ ≡ β(1 + i∗) = 0.9784

the optimal money growth rate, which is higher than the Friedman rule γFR =

β = 0.9709.

One measure of the welfare benefit of charge cards is the equivalent

variation in terms of consumption. This is the fraction (1 −∆) of their total

consumption that agents would be willing to give up instead of giving up the

ability to use charge cards. ∆ solves

U(∆Ω)− Ω + σ[u(∆qcard)− qcard] = U(Ω)− Ω + σ[u(q†)− q†] (2.57)

For agents in this simulation comparing optimal monetary policy with and

without cards, charge cards are worth just 0.25% of consumption.
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Fig. 2.10: Welfare cost/gain from inflation (exogenous spending limit).

If instead the card spending limit is endogenously determined, then the

optimal interest rate is i∗∗∗ = 0.0921 which allows q̃ = 0.9589 to be exchanged.

This corresponds to money growth of γ∗∗∗ = 1.0603 – too high for most central

bankers’ tastes, but in the realm of the plausible. In this situation, agents

would give up 0.81% of consumption to keep their cards. That this equivalent

variation is still so small, even though the quantity of special good is falling by

37% when cards are lost, tells us that the buyer’s marginal utility is already

close to the seller’s marginal cost over this range of quantities.

125



2.5.3 Cost of inflation

Now consider the welfare cost of inflation in the economy with charge

cards. Figure 2.10 shows the equivalent variation for a fixed, exogenous spend-

ing limit. This is the fraction of total consumption that agents living under

inflation that implies nominal interest rate i would exchange for switching to

the Friedman rule (i = 0). Figure 2.11 shows the same calculation when the

spending limit is a function of inflation. Both graphs start out with welfare

costs increasing in interest rates, but then these costs switch to gains as the

rate moves above a threshold that permits a charge card equilibrium. At this

point agents are using both money and cards. With a fixed spending limit,

further increasing i still reduces the money agents carry and reduces welfare

until agents stop holding money altogether. After this, only the card is used,

and consumption is no longer sensitive to inflation.

When the spending limit is endogenous, it takes a higher interest rate to

make card usage viable. Increasing the rate further allows the card company

to increase the spending limit and allows a higher quantity to be exchanged

until l∗ is reached and the quantity becomes the optimal (second-best) q̃.
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Fig. 2.11: Welfare cost/gain from inflation (endogenous spending limit).

2.6 Extensions

2.6.1 Endogenize card company fees

The most obvious missing piece in this model is a description of how the

card company’s fees are determined. Fees ought to maximize card company

profit. Clearly the company will not set fees that lead to a monetary equilib-

rium. The structure of the charge card industry matters. Is the card company

a monopolist? If there is competition, will companies stake out different posi-

tions in the two-sided market for charge cards? Endogenizing card companies’

decisions may have serious ramifications for monetary policy.
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2.6.2 Heterogeneous sellers

In the real world charge cards and money have coexisted for over 50

years; though great fluctuations in macroeconomic variables and shifting lev-

els of usage for numerous different media of exchange. There remain merchants

who do not accept payment by card, but this cannot be viewed as indifferent

agents randomizing over a mixed strategy, because with the slightest shift in

parameters or even a tiny fluctuation in the fraction of other agents partici-

pating, agents are no longer indifferent. In short, the mixed equilibrium is too

fragile.

A large dose of realism might be attained while keeping the model

tractable by keeping money holdings degenerate but allowing some variation

between sellers. In particular, if the cost of production had a fixed compo-

nent that was heterogeneous across agents, then the merchant discount would

matter more in some DM meetings than others. Sellers with high margins

would embrace the card and those with low margins would stick to money.

Different interest rates and card company fees would move the threshold for

seller participation. With a distribution of fixed costs, a mixed equilibrium

would become far more tenable.
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2.6.3 “No surcharge rules” and bargaining over price

A major modeling decision is how buyers and sellers negotiate the method

of payment to use. In this paper I stay as close as possible to the original Lagos-

Wright model and look for a Nash bargaining solution that specifies quantity

and payment amount with each medium of exchange. In reality however, card

company “no-surcharge” rules, and sometimes legal restrictions, prohibit sell-

ers from charging more to people who are paying with plastic. It is not clear

how to impose this restriction when the bargaining takes place over quantity

and total payment. An alternative would be to allow agents to instead bargain

over price. The buyer knows the quantity and payment method she will choose

for any given price. The seller knows neither of these, and so bargains over

expected payout. The Nash solution would be

max
p

{
max

[
b
(
qm(p), p

)
, b
(
qc(p), p

)] }θ{
E(s|p)

}1−θ
(2.58)
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b(q, p) = u(q)− φqp

qm(p) =


q(p) if z ≥ q(p) p

z/p if z < q(p) p

qc(p) =


q(p) if l ≥ q(p) p

l/p if l < q(p) p

s =


−c
(
qm(p)

)
+ qm(p)p if buyer pays with money

−c
(
qc(p)

)
+ (1− τ)qc(p)p if buyer pays with card

(2.59)

2.7 Conclusions for monetary policy

Optimal monetary policy differs depending on the institution of payment

enforcement. If there are strong institutions, then the charge card spending

limit might be independent of the interest rate. Then the rate i∗ that makes

agents indifferent about becoming cardholders is the threshold rate that makes

a charge card equilibrium possible. A rate above i∗ will decrease quantity and

therefore welfare relative to i∗ as long as money continues to be used along side

cards. If cards completely replace money then welfare becomes independent

of inflation.

If the charge card spending limit is derived from the card company’s

threat of revoking the card, then to make a charge card equilibrium viable the
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interest rate must be above i∗∗. A monetary authority may be able to further

increase l by raising i, but only up to the point ī where punished agents would

cease to carry money altogether. If l∗ can be achieved then consumption will

be the second-best level q̃. Let l̄ be the highest achievable spending limit, and

let l̃ = min(l∗, l̄). Let ĩ be the interest rate that induces l̃.

Policy makers should compare welfare under the best possible charge

card equilibrium, u(Q̂(i∗, l)) − c(Q̂(i∗, l)) or u(Q̂(̃i, l̃)) − c(Q̂(̃i, l̃)), with that

under the best possible monetary equilibrium u(q†)− c(q†).

If the monetary equilibrium is better, then the optimal policy is the

Friedman rule. If the economy has been in a equilibrium using cards, it will

switch to the monetary equilibrium when the rate of money growth is dropped.

If bargaining is proportional (or some other mechanism where buyers have no

strategic incentive to limit their money balance) then this should achieve the

first best. If the Nash bargaining solution is the outcome, then this will only

achieve the first-best if buyers have all the bargaining power.

If instead the charge card equilibrium is better, then the question be-

comes can the agents in this economy coordinate on the charge card equi-

librium? If so, for example if charge cards are already being used, then the

optimal monetary policy is to preserve this equilibrium by keeping the nomi-

nal rate above i∗. If spending limits are binding and limits are still sensitive

to interest rates, then the optimal policy is to increase money growth until
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the rate is ĩ. Such a policy is optimal but will never achieve the first best

allocation as long as there is a proportional merchant fee τ > 0.

If the charge card equilibrium is better but the economy is stuck in the

monetary equilibrium, a monetary authority might promote a switch between

equilibria by raising the interest rate to ī and reducing the fraction of agents

who must simultaneously deviate. This will be very painful, however, if the

economy does not move to the charge card equilibrium.

Viewed another way, this model can be used to make positive statements

about monetary policy in the real world. Intermediated exchange is a fact of

life. Money is a solution to the problem of anonymity, but it is not the only

solution. This can provide part of the explanation for why we almost never see

the Friedman rule actually used. Positive inflation may not be as costly as we

think if consumers have access to a variety of media of exchange. Moreover,

some inflation may actually allow intermediaries to flourish and help overcome

intrinsic frictions in the economy.

Appendix 2.A Proofs

Lemma 2 Under Nash bargaining with money only, z ≥ z∗ does not maximize

the buyer’s surplus. The maximum is at some smaller z = z† at which the

quantity exchanged is less than the social optimum q† ≡ q̂(z†) < q∗.
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Proof. The left-sided derivative B′o(z
∗) < 1. To see this, first define

B̂o(q) ≡ u(q)− g(q) = [u(q)− c(q)] θu′(q)

θu′(q) + (1− θ)c′(q)
(2.60)

which is the buyer’s surplus as a function of quantity. Note that Bo(z) =

B̂o(q̂(z)) and note that q̂′(z) = 1/g′(q).

B̂′o(q) = [u′(q)− c′(q)] θu′(q)

θu′(q) + (1− θ)c′(q)

+ [u(q)− c(q)]θu
′′(q)[θu′(q) + (1− θ)c′(q)]− θu′(q)[θu′′(q) + (1− θ)c′′(q)]

[θu′(q) + (1− θ)c′(q)]2

(2.61)

which, evaluated at q∗ simplifies to

B̂′o(q
∗) = [u(q∗)− c(q∗)]θ(1− θ) [u′′(q∗)− c′′(q∗)]

u′(q∗)
(2.62)

which is negative. It remains to show that q̂′(z∗) > 0. Notice that

B′o(z
∗) = u′(q̂(z∗))q̂′(z∗)− 1 = q̂′(z∗)B̂′o(q

∗) (2.63)

If q̂′(z∗) < 0 then the left hand side is negative and the right hand side is

positive. Therefore q̂′(z∗) must be positive and B′o(z
∗) is negative. This tells

us that as the buyer reduces her money balances going into the DM from z∗

to a lower value, the quantity of goods will decrease, but the buyer’s surplus
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will increase.

Lemma 3 In Nash bargaining, if the buyer has a card and is carrying no

money, then

1. The quantity exchanged will be less than the first-best q∗.

2. The highest quantity is exchanged when the card’s spending limit does

not bind. This quantity is q̃ which solves c′(q̃) = (1− τ)u′(q̃).

3. The card will always be used as long as q̃ > 0.

Thus the solution when the buyer carries no money is

qb =


Q̂(0, l) if l < l∗

q̃ if l ≥ l∗

dc =


l if l < l∗

l∗ if l ≥ l∗

(2.64)

where l∗ and Q̂(0, l) are defined in the proof below.

Proof. Consider the potential solutions to the Nash bargaining solution when

z = 0
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Case dm = z = 0, 0 < dc < l ⇒ solution implies q = q̃

q F.O.C. (1− θ)c′(q)[u(q)− dc] = θu′(q)[−c(q) + (1− τ)dc] (2.65)

dc F.O.C. (1− θ)(1− τ)[u(q)− dc] = θ[−c(q) + (1− τ)dc] (2.66)

This immediately implies c′(q)/u′(q) = 1− τ . Call this quantity q̃. Since c(·)

is convex and u(·) is concave, the ratio c′(q)/u′(q) is non-decreasing in q. Since

c′(q∗)/u′(q∗) = 1 > 1− τ = c′(q̃)/u′(q̃) I conclude that q̃ < q∗.

Solving (2.65) for dc determines the Nash solution card payment as a

function of q. dc = gc(q) where

gc(q) ≡
θc(q)u′(q) + (1− θ)u(q)c′(q)

θ(1− τ)u′(q) + (1− θ)c′(q)
(2.67)

Define l∗ = gc(q̃) to be the card payment that allows this second best q̃ to be

exchanged.

Case dm = z = 0, dc = l ⇒ solution implies q = Q̂(0, l)

If the spending limit constraint binds, then dc = l and the quantity

exchanged will be q = Q̂(0, l) which is defined as the q that solves l = gc(q).

Case dm = z = 0, dc = 0 ⇒ solution implies c′(0)/u′(0) ≥ 1− τ

First, note that either q = 0 or q > 0. With no payment dm = dc = 0 the

seller would have negative gain from trade for any q > 0. Even if the buyer
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has all the bargaining power, I assume that the seller can always walk away

from the meeting and attain S = 0. Thus (q,dm = 0,dc = 0) where q > 0 is

never a solution.

For (0,0,0) to be the Nash bargaining solution it must be the case that

c′(0)/u′(0) ≥ 1− τ . If this were not the case, if c′(0) < (1− τ)u′(0), then q = ε

and dc = u(ε) would be a Pareto improvement over (0,0,0). Some additional

structure on u(q) and c(q), such as limq→0 u
′(q) = ∞ and limq→0 c

′(q) = 0,

would ensure that dc = 0 is never a solution and that if the buyer has no

money but does have a card, then the card is used.

Lemma 4 In Nash bargaining, if the buyer is carrying money z > 0 then

some payment will be made with money dm > 0.

Proof. Consider the potential solutions to the Nash bargaining solution when

dm = 0 but z > 0.

Case dm = 0 (z > 0), 0 < dc < l ⇒ not a solution

dm F.O.C. (1− θ)B ≤ θS (2.68)

dc F.O.C. (1− θ)(1− τ)B = θS (2.69)

which is a contradiction since 1− τ < 1.
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Case dm = 0 (z > 0), dc = l ⇒ not a solution

dm F.O.C. (1− θ)B ≤ θS (2.70)

dc F.O.C. (1− θ)(1− τ)B = θS + λB−θSθ (2.71)

But B, S and λ are all non-negative so

(1− θ)(1− τ)B ≥ θS (2.72)

(1− θ)B > θS (2.73)

which is a contradiction.

Case dm = z = 0, dc = 0 ⇒ not a solution

Either q = 0 or q > 0. Once again note that with no payment the

seller will walk away rather than trade q > 0. So for dm = dc = 0 to be

a solution we must have q = 0. But we have assumed that there exists a

q∗ > 0 such that c′(q∗) = u′(q∗). Since c(q) is convex and u(q) is concave, this

means that c′(0) < u′(0). Exchanging q = ε and dm = u(ε) would be a Pareto

improvement over q = 0, dm = 0, so (0,0,0) is not a solution.

None of the potential exchanges with dm = 0 are in fact solutions to the

Nash bargaining problem, so it must be that dm > 0 when z > 0.
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Lemma 5 In Nash bargaining, if the payment made with money is less than

the amount of money the buyer is carrying dm < z then

1. No payment is made with a charge card dc = 0.

2. The optimal quantity is exchanged q = q∗.

3. Money payment is the same as without cards dm = z∗ = g(q∗).

Proof. Consider the potential solutions with 0 < dm < z.

Case 0 < dm < z, 0 < dc < l ⇒ not a solution

dm F.O.C. (1− θ)B = θS (2.74)

dc F.O.C. (1− θ)(1− τ)B = θS (2.75)

which is a contradiction since 1− τ 6= 1.

Case 0 < dm < z, dc = l ⇒ not a solution

dm F.O.C. (1− θ)B = θS (2.76)

dc F.O.C. (1− θ)(1− τ)B = θS + λB−θSθ (2.77)

Combine to produce −τ = λB−1−θS−θ which is a contradiction since B, S and

λ are all non-negative.
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Case 0 < dm < z, dc = 0 ⇒ solution implies q = q∗

q F.O.C. (1− θ)c′(q)[u(q)− dm] = θu′(q)[−c(q) + dm] (2.78)

dm F.O.C. (1− θ)[u(q)− dm] = θ[−c(q) + dm] (2.79)

The conditions are identical to those in the Nash bargaining problem with

only money when the constraint doesn’t bind, and the solution is the same:

c′(q) = u′(q) and dm = g(q∗).

Lemma 6 In Nash bargaining, if the payment made with money equals the

buyer’s money holdings dm = z, then

1. If the card is used and the spending limit does not bind 0 < dc < l, the

quantity exchanged will be q = q̃.

2. dc = 0 if q > q̃. The card is not used if the quantity the buyer gets when

she spends all her money is already more than the optimal quantity that

can be achieved with the card.
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The solution when both money and card are used is

qb =



Q̂(z, l) if z < j−1(l)

q̃ if j−1(l) ≤ z < z̃

q̂(z) if z̃ ≤ z < z∗

q∗ if z > z∗

dm =


z if z < z∗

z∗ if z ≥ z∗

dc =



l if z < j−1(l)

j(z) if j−1(l) ≤ z < z̃

0 if z ≥ z̃

(2.80)

where j−1(l) is the z that solves j(z) = l, z̃ = g(q̃), and Q̂(z, l) and j(z) are

defined in the proof below.

Proof. Consider the potential solutions with dm = z and z > 0.

Case dm = z, 0 < dc < l ⇒ solution implies q = q̃

q F.O.C. (1− θ)c′(q)[u(q)− z − dc] = θu′(q)[−c(q) + z + (1− τ)dc] (2.81)

140



dc F.O.C. (1− θ)(1− τ)[u(q)− z − dc] = θ[−c(q) + z + (1− τ)dc] (2.82)

It follows immediately that c′(q)/u′(q) = 1− τ and q = q̃. Solve (2.81) for dc

to find

dc =
θ[c(q̃)− z]u′(q̃) + (1− θ)[u(q̃)− z]c′(q̃)

θ(1− τ)u′(q̃) + (1− θ)c′(q̃)
(2.83)

=
θc(q̃)u′(q̃) + (1− θ)u(q̃)c′(q̃)

θ(1− τ)u′(q̃) + (1− θ)c′(q̃)
− z θτu

′(q̃) + θ(1− τ)u′(q̃) + (1− θ)c′(q̃)
θ(1− τ)u′(q̃) + (1− θ)c′(q̃)

(2.84)

= l∗ − z − z θτu′(q̃)

θ(1− τ)u′(q̃) + (1− θ)c′(q̃)
= l∗ − z − z θτ

1− τ
(2.85)

Thus when the spending limit does not bind dc = j(z) where

j(z) ≡ l∗ − z1− τ + θτ

1− τ
(2.86)

Here j(dm) is the size of the card payment needed to purchase q̃ given that

there is also a payment of dm made with cash. This takes into account the fact

that the merchant fee applies only to the part of the payment made by card.

Hence j(0) = l∗, because this is the card payment needed to buy q̃ when no

money is used. dmθτ/(1 − τ) can be seen as the buyer’s share of the savings

from paying dm of the total amount in money rather than with a card. Now

we can see that j−1(l) is the value for z below which the card spending limit
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will bind. Define z̃ ≡ g(q̃), which is the amount of cash needed to buy q̃ when

no payment is made using a charge card. It should be clear that j−1(0) = z̃

(when the card cannot be used at all, the card’s second best is only achieved

if z ≥ g(q̃).)

Alternatively, (2.81) can also be solved for z to write dm = z = G(q, dc)

where

G(q, dc) ≡
θc(q)u′(q) + (1− θ)u(q)c′(q)− dc[θ(1− τ)u′(q̃) + (1− θ)c′(q̃)]

θu′(q) + (1− θ)c′(q)

(2.87)

Case dm = z, dc = l ⇒ solution implies q = Q̂(z, l)

When both the spending limit and the money holding constraint bind

the quantity exchanged is q = Q̂(z, l) which is defined as the q that solves

z = G(q, l). Note that this is consistent with the definition of Q̂(0, l) above.

Case dm = z > 0, dc = 0 ⇒ solution implies q > q̃

q F.O.C. (1− θ)c′(q)[u(q)− dm] = θu′(q)[−c(q) + dm] (2.88)

dc F.O.C. (1− θ)(1− τ)[u(q)− dm] ≤ θ[−c(q) + dm] (2.89)

from which it immediately follows that c′(q)/u′(q) ≥ 1 − τ . Since c(q) is

convex and u(q) is concave, this implies q > q̃. If the card is not used, then

the quantity is already above the second best using the card.
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Lemma 8 Under proportional bargaining when charge cards are used, the

outcome is

qb =



Q̂(z, l) if z < j−1(l)

q̃ if j−1(l) ≤ z < z̃

q̂(z) if z̃ ≤ z < z∗

q∗ if z > z∗

dm =


z if z < z∗

z∗ if z ≥ z∗

dc =



l if z < j−1(l)

j(z) if j−1(l) ≤ z < z̃

0 if z ≥ z̃

(2.90)

where all values are as defined in the Nash bargaining case, except that now

G(q, l) = (1− θ)u(q) + θc(q)− (1− τθ)l (2.91)

Proof. Using α as the Lagrange multiplier for the proportional utility con-

straint, µ for the money constraint and λ for the spending limit, the Kuhn-
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Tucker conditions are

u′(q)− α θ

θ − 1
c′(q)− αu′(q) ≤ 0 = 0 if q > 0 (2.92)

−1− µ+ α
θ

θ − 1
+ α ≤ 0 = 0 if dm > 0 (2.93)

−1− λ+ α
θ(1− τ)

θ − 1
+ α ≤ 0 = 0 if dc > 0 (2.94)

µ(z − dm) = 0 λ(l − dc) = 0 q ≥ 0 0 ≤ dm ≤ z 0 ≤ dc ≤ l

(1− θ)[u(qb)− dm − dc] = θ[−c(qb) + dm + (1− τ)dc] (2.95)

Both dm and dc could potentially be an interior solution or one of two corner

solutions. In addition, consider the case where dm = z = 0. Following the

steps in the proofs for lemmas 2 through 6, try each of these 4×3 combinations

in turn. The same cases lead to contradictions as under Nash bargaining, and

the same conditions on q apply leading to the same breakpoints for z. The only

difference between this solution and the Nash solution is thatG(q, l) now comes

from rearranging the constraint that the buyer’s gain must be proportional to

the seller’s. This difference carries through to z∗ = G(q∗, 0), Q̂(z, l) which

solves z = G(q, l), and l∗ which solves 0 = G(q̃, l) (and thus, by extension j(z)

and j−1(l)).
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