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Although face recognition has been actively studied over the past decade, the

state-of-the-art recognition systems yield satisfactory performance only under con-

trolled scenarios and recognition accuracy degrades significantly when confronted

with unconstrained situations due to variations such as illumintion, pose, etc. In

this dissertation, we propose novel approaches that are able to recognize human

faces under unconstrained situations.

Part I presents algorithms for face recognition under illumination/pose varia-

tions. For face recognition across illuminations, we present a generalized photomet-

ric stereo approach by modeling all face appearances belonging to all humans under

all lighting conditions. Using a linear generalization, we achieve a factorization of

the observation matrix consisting of face appearances of different individuals, each

under a different illumination. We resolve ambiguities in factorization using sur-

face integrability and symmetry constraints. In addition, an illumination-invariant

identity descriptor is provided to perform face recognition across illuminations. We

further extend the generalized photometric stereo approach to an illuminating light

field approach, which is able to recognize faces under pose and illumination varia-

tions.



Face appearance lies in a high-dimensional nonlinear manifold. In Part II,

we introduce machine learning approaches based on reproducing kernel Hilbert

space (RKHS) to capture higher-order statistical characteristics of the nonlinear

appearance manifold. In particular, we analyze principal components of the RKHS

in a probabilistic manner and compute distances such as the Chernoff distance,

the Kullback-Leibler divergence between two Gaussian densities in RKHS.

Part III is on face tracking and recognition from video. We first present an

enhanced tracking algorithm that models online appearance changes in a video se-

quence using a mixture model and produces good tracking results in various chal-

lenging scenarios. For video-based face recognition, while conventional approaches

treat tracking and recognition separately, we present a simultaneous tracking-and-

recognition approach. This simultaneous approach solved using the sequential

importance sampling algorithm improves accuracy in both tracking and recogni-

tion. Finally, we propose a unifying framework called probabilistic identity char-

acterization able to perform face recognition under registration/illumination/pose

variation and from a still image, a group of still images, or a video sequence.
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Chapter 1

Introduction

1.1 Overview

Identifying people from faces is an effortless task for humans. Is it the same

for computers? This defines the very question for the field of automatic face

recognition [20, 21, 22, 23, 24, 25, 26, 27, 191] (also referred to as face recognition

in the present dissertation), one of the most active research areas in computer

vision, pattern recognition, and image understanding.

Over the past decade, face recognition has attracted substantial attention from

various disciplines and contributed to a skyrocketing growth in the literature. Be-

low, we mainly emphasize the biometric, experimental, and theoretic perspectives

of face recognition.

1.1.1 Biometric perspective

Face is a biometric [31]. As a consequence, face recognition finds wide applications

related to authentication, security, and so on. One striking example is recent

deployment of the US-VISIT system [30] by the Department of Homeland Security
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(DHS), collecting foreign passengers’ fingerprints and face images.

Biometrics enable automatic identification of a person based on physiological or

behavioral characteristics [29, 28]. Physiological biometrics are biological/chemical

traits that are innate or naturally grown, while behavioral biometrics are manner-

isms or traits that are learned or acquired. Table 1.1 lists commonly used biomet-

rics. Some introductory discussions on biometrics may be found in [28, 29, 31, 32].

Type Examples

Physiological biometrics Body odor, DNA, face, fingerprint,

hand geometry, iris, pulse, retinal

Behavioral biometrics Face, gait, handwriting, signature, voice

Table 1.1: A list of biometrics.

Biometrics technologies are becoming the foundations of an extensive array of

highly secure identification and personal verification solutions. Compared with

conventional identification and verification methods based on personal identifica-

tion numbers (PINs) or passwords, biometrics technologies offer some unique ad-

vantages. First, biometrics are individualized traits while passwords may be used

or stolen by someone other than the authorized user. Also, a biometric is very

convenient since there is nothing to carry or remember. In addition, biometric

technology is becoming more accurate and inexpensive.

Among all biometrics listed in Table 1.1, face biometric is a very unique one

because face is the only biometric belonging to both physiological and behavioral

categories. While the physiological part of the face biometric is widely researched

in the literature, the behavioral part is not yet fully investigated. In addition,

as reported in [33, 34], face has advantage over other biometrics because it is a

natural, non-intrusive, and easy-to-use biometric. For example [33], among the
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six biometrics of face, finger, hand, voice, eye, and signature in Figure 1.1, face

biometric ranks the first in the compatibility evaluation of a machine readable

travel document (MRTD) system in terms of six criteria: enrollment, renewal,

machine-assisted identity verification requirements, redundancy, public perception,

and storage requirements and performance. Probably the most important feature

of a biometric is its ability to collect the signature from non-cooperating subjects.
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Figure 1.1: Comparison of various biometric features based on MRTD compatibil-

ity (from [33]).

Besides applications related to identification and verification such as access

control, law enforcement, ID and licensing, surveillance, etc., face recognition is

also useful in human-computer interaction, virtual reality, database retrieval, mul-

timedia, computer entertainment, etc. See [27, 45] for a review of face recognition

applications.
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1.1.2 Experimental perspective

Face recognition mainly involves the following three tasks [59]:

• Verification. The recognition system determines if the query face image and

the claimed identity match.

• Identification. The recognition system determines the identity of the query

face image by matching it with a database of images with known identities,

assuming that the identity is inside the database.

• Watch list. The recognition system first determines if the identity of the

query face image is on the stored watch list and, if yes, then identifies the

individual.

Figure 1.2 illustrates the above three tasks and corresponding statistics used for

evaluation. Among three tasks, the watch list task is the most difficult one.

The present thesis focuses only on the identification task. We introduce a

face recognition test protocol FERET [58] widely observed in the face recognition

literature. FERET stands for ‘facial recognition technology’. In most experiments

conducted in the thesis, we follow the FERET protocol.

FERET assumes availability of the following three sets, namely one training set,

one gallery set, and one probe set. The training set is provided for the recognition

algorithm to learn the characteristic features. The gallery and probe sets are used

in the testing stage. The gallery set contains images with known identities and the

probe set with unknown identities. The algorithm associates descriptive features

with images in the gallery and probe sets and determines the identities of the probe

images by comparing their associated features with those features associated with

gallery images.
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Figure 1.2: Three face recognition tasks: verification, identification, watch list

(courtesy of P.J.Phillips [59]).

1.1.3 Theoretic perspective

Face recognition is by nature an interdisciplinary research area, tied to an array

of research fields, ranging from pattern recognition, computer vision and graph-

ics, and image processing/understanding to statistical computing and machine

learning. In addition, automatic face recognition designs are often guided by the

psychophysical and neural studies. A good summary of research on face perception

is presented in [27, 35, 38]. We now focus on the theoretical implications of pattern

recognition for the special task of face recognition.

We present a three-level structure for understanding the face recognition prob-

lem. The three levels forming the pyramid are: pattern, visual pattern, and face

pattern, each associated with a corresponding theory of recognition. Accordingly,

face recognition approaches can be grouped into three categories.
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Figure 1.3: A hierarchy of face pattern and face recognition.

Pattern and recognition

On the base of the pyramid lies a general pattern. Because face is first a pattern,

any pattern recognition theory [7] can be directly applied to a face recognition

problem. In general, a vector representation is used in pattern recognition. A

common way of deriving a vector representation from a 2D face image, say of size

M ×N , is through a ‘vectorization’ operator that stacks the pixels in a particular

order, say a raster-scanning order, to an MN × 1 vector. Obviously, given an

arbitrary MN × 1 vector, it can be decoded into an M × N image by reversing

the above ‘vectorization’ operator. Such a vector representation corresponds to a

holistic-based viewpoint in the psychophysics literature [36, 37].

Subspace methods are pattern recognition techniques widely invoked in vari-

ous face recognition approaches. Two well-known appearance-based recognition

schemes utilize principal component analysis (PCA) [12] and linear discriminant

analysis (LDA) [7]. PCA performs an eigen-decomposition of the covariance ma-

trix and consequently minimizes the reconstruction error in the mean square sense.
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LDA minimizes the within-class scatter while maximizing the between-class scat-

ter. The PCA approach used in face recognition is called the ‘Eigenface’ approach

[62]. Another work using PCA earlier than ‘Eigenface’ is [47]. The LDA approach

used in face recognition is called the ‘Fisherface’ approach [41] since LDA is also

commonly referred to as Fisher discriminant analysis. LDA for face recognition

was also independently proposed in [44]. Further PCA and LDA are combined

(LDA after PCA) as in [64] to yield a better recognition scheme. Other subspace

methods such as independent component analysis (ICA) [20, 40, 155], local feature

analysis (LFA) [164], probabilistic subspace [54, 55, 56], multi-exemplar discrim-

inant analysis [211] have been used in face recognition. A comparison of these

subspace methods is reported in [56, 200]. Other than the subspace methods, clas-

sical pattern recognition tools such as neural networks [51], learning methods [57],

and evolutionary pursuit/genetic algorithms [52] have also been applied to face

recognition.

One concern in a general pattern recognition problem is the ‘curse of dimen-

sionality’ since usually M and N themselves are quite large. In face recognition,

because of limitations of image acquisition, practical face recognition systems store

only a small number of samples per subject. This further worsens the ‘curse of

dimensionality’ problem.

Face recognition also differs from general pattern recognition problem in various

aspects. Some of the differences are illustrated below.

Visual pattern and visual recognition

In the middle of the pyramid in Figure 1.3 sits the visual pattern layer. A face is a

visual pattern in the sense that it is a 2D appearance of a 3D object captured by
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an imaging system. Certainly, visual appearance is affected by the configuration

of an imaging system. An illustration of the imaging system is presented in Figure

1.4.

Figure 1.4: An illustration of the imaging system.

There are two distinct characteristics of the imaging system: photometric and

geometric.

• Photometric characteristics are related to the light sources distributed in the

scene. Figure 1.5 shows the face images of one object captured under varying

illumination conditions. Numerous models have been proposed to describe

the illuminating phenomenon, i.e., how the light travels when it hits the

object. In addition to its relationship with the light distribution such as the

light direction and intensity, an illumination model is in general also related

to the object surface material properties.

• Geometric characteristic is about the camera properties and the relative po-
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sitioning of the camera and the object. Camera properties include cam-

era intrinsic paramters and camera imaging models. The imaging models

widely studied in the computer vision literature are orthographic, scaled

orthographic, and perspective models. Because the perspective model is dif-

ficult to deal with as it requires the depth information, the orthographic or

scaled orthograhic model is more used in the face recognition community.

The relative positioning of the camera and the object results in pose varia-

tion, a key factor determining how the 2D appearances are produced. Figure

1.5 shows the face images of one object captured at different poses.

c22

c02

c37

c05

c27

f02 f08 f11 f13 f16

Figure 1.5: One PIE [75] individual under different illumination and poses.

Studying photometric and geometric characteristics is the key problem in the
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computer vision literature and consequently visual recognition under illumination

and pose variations is the main challenge in the recognition community. A full re-

view of the visual recognition literature is beyond the scope of the thesis. However,

face recognition methods that address the photometric and geometric characteris-

tics are still in a nascent stage and needs to be fully explored.

Approaches to face recognition under illumination variation are usually treated

as extensions of research efforts on illumination models. For example, if a simpli-

fied Lambertian reflectance model ignoring shadow pixels [96, 101, 103] is used,

a rank-3 subspace can be constructed to cover the appearances arbitrarily illumi-

nated by a distant point source. Similarly low-dimensional subspaces [94, 95] can

be found using a Lambertian model with attached shadows. Face recognition can

be performed by checking if a query face image lies in the object-specific illumi-

nation subspace. To generalize from the object-specific illumination subspace to

a class-specific illumination subspace, bilinear models are used in [74, 138, 204].

Most face recognition approaches across pose variation use view-based appear-

ance representation [67, 69, 72]. Face recognition across illumination and poses

is more difficult compared with recognition across one single modality. Proposed

approaches in the literature include [66, 70, 208], among which the 3D morphable

model [66] yields the best recognition performance. The feature-based approach

[48] is reported to be partially robust to illumination and pose variations.

An important feature of a visual pattern is its presence in video. The ubiq-

uitousness of video sequences calls upon recognition algorithms based on videos.

Because a video sequence is a collection of still images, face recognition from still

images certainly applies. However, an important property of a video sequence is

its temporal dimension. Recent psychophysical and neural studies [37, 39] demon-
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strate the role of movement in face recognition: Famous faces are easier to recog-

nize when presented in moving sequences than in still photographs, even under a

range of different types of degradations. Computational approaches utilizing such

temporal information include [86, 193, 194, 185, 186, 190]. Figure 1.7 shows the

tracked face appearance in a video sequence captures in an office environment [84].

Clearly, due to free movement of the human face and an uncontrolled environment,

issues like illumination and pose variations still exist. Besides these issues, local-

izing faces or face segmentation in a cluttered environment in video sequences is

very challenging.

In surveillance scenarios, further challenges include poor video quality and lower

resolution. For example, the face region can be as small as 15 × 15, while most

feature-based approaches [48, 66] need big face images of size as large as 128×128.

However, video provides multiple observations linked by their temporal continuity.

Face pattern and face recognition

At the top of the pyramid lies the face pattern. The face pattern specializes the

visual pattern by letting the object be a human face. Therefore, face-specific

properties or characteristics should be taken into account when performing face

recognition.

• Deformation. Humans express emotions through facial expressions, yielding

patterns under nonrigid deformations. The non-rigidity is of very high de-

gree of freedom and perplexes the recognition task. Figure 1.6(a) shows the

face images of a person exhibiting different expressions. While face expres-

sion analysis attracts a lot of attention [42, 60, 61], recognition under facial

expression variation has not been fully explored.
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(a)

(b)

Figure 1.6: (a) Appearances of one individual with different facial expression (from

[53]). (b) Appearances of one individual at different ages (from [50]).

• Aging. Face appearances vary significantly with aging and such variations

are specific to an individual. As a result, theoretical modeling of aging [50]

is very difficult due to the individualized variation. Figure 1.6(b) shows the

face images of a person at different ages.

• Face surface. One speciality of face surface is its bilateral symmetry. Sym-

metry constraint has been widely exploited in [102, 104, 204]. In addition,

surface integrability is an inherent property of any surface, which has also

been used in [99, 103, 137, 204].

• Self-similarity. There is a strong visual similarity among face images of differ-

ent individuals. Geometric positioning of facial features such as eyes, noses,

mouths, etc. are alike across individuals. Early face recognition approaches

in the 70’s [24, 46] used the distances between feature points to describe

the face and achieved some success. Also, face surface materials properties

are similar within the same race. As a consequence of visual similarity, the

‘shapes’ of the face appearance manifolds belonging to different subjects are

similar. This is the foundation of approaches [55, 56, 211] that attempt to

capture the ‘shape’ characteristics by constructing the so-called intra-person
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space.

• Makeup, cosmetic, etc. There factors are specific to an individual and so

are unpredictable. Except that the effect of glasses has been studied in [41],

effects induced by other factors have not been widely investigated.

Face appearances of the same individual under variations in illumination, pose,

deformation, aging, etc. lie in a nonlinear manifold. Figure 1.7 visualizes such

a manifold by projecting the appearances of the top row into top three principal

components. Manifold characterization can be done in various ways. One way is

to embed a manifold in a low-dimensional space [162, 166]. The other way is to

learn the nonlinearity using machine learning techniques [9, 19, 63, 172, 177, 179,

181, 189, 198].

1.2 Unconstrained Face Recognition

State-of-the-art face recognition systems yield satisfactory performance under con-

trolled conditions. To be specific, the face images are typically acquired in frontal

views and are often illuminated by a frontal light source. These conditions pose

strong restrictions on patterns possibly acquired. In other words, the clustering

nature of the produced patterns (usually tightly clustered) is amenable for classical

pattern analysis. Therefore, most face recognition approaches lie in the first level

of the hierarchy. Unfortunately, recognition performance degrades significantly

when face recognition systems are presented with patterns that go beyond these

controlled conditions.

Recently, researchers have begun to investigate face recognition under uncon-

strained conditions. Examples of unconstrained conditions include illumination
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Figure 1.7: Face appearances in a video sequences, forming a nonlinear manifold.

and pose variations, video sequences, expression, aging, and so on. In general,

recognition approaches addressing the second and third levels of the hierarchy can

be considered in the category of unconstrained face recognition.

The present thesis presents several unconstrained face recognition approaches.

It consists of three parts: Part I is on Face Recognition under Variations, Part
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II on Face Recognition via Kernel Learning, and Part III on Face Tracking and

Recognition from Videos.

1.2.1 Face recognition under variations

Part I of the thesis studies face recognition under illumination and pose variations.

Pose and illumination are related to the second level of Figure 1.3. In Chapter 2,

we present a generalized photometric stereo algorithm for recognizing faces under

illumination variation and then in Chapter 3 an illuminating light field algorithm

for recognizing faces under illumination and pose variations.

Most photometric stereo algorithms employ a Lambertian reflectance model

with a varying albedo field and involve the appearances of only one object. The

recovered albedos and surface normals are object-specific and appearances not be-

longing to the object cannot be easily handled. In Chapter 2, we generalize pho-

tometric stereo algorithms to handle all appearances of all objects in a class, in

particular the human face class, by assuming that albedos and surface normals

of all objects in the class be rank-constrained, i.e. lie in a subspace. Rank con-

straints lead us to a factorization of an observation matrix that consists of exemplar

images of different objects under different illuminations. To fully recover the sub-

space bases or class-specific albedos and surface normals, we employ integrability

and face symmetry constraints and propose a linearized algorithm. This algorithm

takes into account the effects of varying albedo field by approximating the inte-

grability terms using only the surface normals. We then apply our generalized

photometric stereo algorithm for recognizing faces under illumination variations.

As far as recognition is concerned, we can utilize a bootstrap set which is just a

collection of 2D image observations to avoid an explicit requirement that 3D infor-
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mation be available. We obtain good recognition results using the PIE database

[187, 202, 204].

The illuminating light field algorithm presented in Chapter 3 is an image-based

method for face recognition across different illumination and different poses, where

the term image-based means that no explicit prior 3D models are needed. As face

recognition under illumination and pose variations involves three factors, namely

identity, illumination, and pose, generalizations in all these three factors are de-

sired. The illuminating light field approach is able to generalize in identity and

illumination and handle a given set of poses. The proposed approach derives an

identity signature that is illumination- and pose-invariant, where the identity is

tackled using subspace encoding, the illumination is characterized using a Lam-

bertian reflectance model, and the given set of poses is treated as a whole. Ex-

perimental results using the PIE database demonstrate the effectiveness of the

proposed approach [188, 208].

1.2.2 Face recognition via kernel learning

As mentioned earlier, the visual pattern lies in a nonlinear manifold, which is

further complicated by face-specific characteristics. Nonlinear data modeling is an

important research topic in machine learning. While linear data modeling such

as PCA and LDA utilizes first- and second-order statistics, higher-order statistics

play essential roles in nonlinear data modeling. Kernel learning methods (or kernel

methods) are able to capture the higher-order statistical information.

In the core of kernel learning methods lie two important components: a learning

algorithm using linear geometry and a nonlinear feature space induced by a kernel

function. Such a space is referred as reproducing kernel Hilbert space (RKHS)
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in the literature. Kernel methods are linear learning algorithms operating on the

nonlinear feature space. In Part II, we introduce two kernel learning methods.

Chapter 4 presents a probabilistic approach to analyze kernel principal compo-

nents by naturally combining in one treatment the theory of probabilistic principal

component analysis and that of kernel principal component analysis. In this for-

mulation, the kernel component enhances the nonlinear modeling power, while the

probabilistic structure offers (i) a mixture model for nonlinear data structure con-

taining nonlinear sub-structures, and (ii) an effective classification scheme. It also

turns out that the original loading matrix [15] is replaced by the newly defined

empirical loading matrix. The expectation/maximization algorithm for learning

parameters of interest is then developed. Computation of reconstruction error and

Mahalanobis distance is also discussed. Finally, we apply this approach to face

recognition [198, 209].

Probabilistic distance measures are important quantities in many research ar-

eas. For example, the Chernoff distance (or the Bhattarchayya distance as its

special example) is often used to bound the Bayes error in a pattern classifica-

tion task and the Kullback-Leibler (KL) distance is a key quantity in information

theory literature. However, computing these distances is a difficult task and ana-

lytic solutions are not available except under some special conditions. One popular

example is the Gaussian density. The Gaussian density employs only up to second-

order statistics and its modeling capacity is linear and hence rather limited. In

Chapter 5, we enhance this capacity through a nonlinear mapping from original

data space to RKHS, which is implemented using kernel embedding. Since this

mapping is nonlinear, we achieve a new paradigm to study these distances whose

feasibility and efficiency are demonstrated using experiments on synthetic and face
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recognition examples [189].

1.2.3 Face tracking and recognition from videos

Video sequences are becoming ubiquitous due to the advances in digital imaging

devices and the advent of internet era. A face in video sequences presents further

challenges to recognition algorithms besides those common to face recognition from

still images.

In Chapter 6, we present an approach called adaptive visual tracking that in-

corporates appearance-adaptive models in a particle filter to realize robust visual

tracking. Tracking needs modeling of inter-frame motion and appearance changes

whereas recognition needs modeling of appearance changes between frames and

gallery images. In conventional tracking algorithms, the appearance model is ei-

ther fixed or rapidly changing, and the motion model is simply a random walk

with fixed noise variance. Also, the number of particles is typically fixed. All these

factors make the visual tracker unstable. To stabilize the tracker, we propose

the following features: an observation model arising from an adaptive appearance

model, an adaptive velocity motion model with adaptive noise variance, and an

adaptive number of particles. The adaptive-velocity model is derived using a first-

order linear predictor based on the appearance difference between the incoming

observation and the existing particle configuration. Occlusion analysis is imple-

mented using robust statistics. Experimental results [186, 201, 203] on tracking

visual objects in long outdoor and indoor video sequences demonstrate the effec-

tiveness and robustness of our tracking algorithm.

In Chapter 7, recognition of human faces using a gallery of still images and a

probe set of videos is systematically investigated using a probabilistic framework
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called simultaneous tracking and recognition. In still-to-video recognition, where

the gallery consists of still images, a time series state space model is proposed

to fuse temporal information in a probe video, which simultaneously character-

izes the kinematics and identity using a motion vector and an identity variable,

respectively. The joint posterior distribution of the motion vector and the iden-

tity variable is estimated at each time instant and then propagated to the next

time instant. Marginalization over the motion vector yields a robust estimate

of the posterior distribution of the identity variable. A computationally efficient

sequential importance sampling (SIS) algorithm is developed to estimate the pos-

terior distribution. Empirical results demonstrate that, due to the propagation of

the identity variable over time, a degeneracy in posterior probability of the iden-

tity variable is achieved to give improved recognition. We perform experiments

[192, 193, 194, 195, 196, 197, 199] using images/videos with pose/illumination vari-

ations to illustrate the effectiveness of this approach for the still-to-video scenario

with appropriate model choices.

In Chapter 8, we present the most general framework for characterizing the face

identity in a single image or a group of images with each image containing a trans-

formed version of the object. In terms of the transformation, the group is made

of either still images or frames of a video sequence. The face identity signature

is either discrete- or continuous-valued. This framework referred as probabilistic

identity characterization integrates all the evidence of the set and handles the

localization problem, illumination and pose variations through subspace identity

encoding. Issues and challenges arising in this framework are addressed and effi-

cient computational schemes are given. All instances of face recognition algorithms

are be interpreted in the most general framework [210].
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Chapter 2

Generalized Photometric Stereo

In this chapter, we present a theory of generalized photometric stereo and its ap-

plication to face recognition across illumination. We first present the generalized

photometric stereo algorithm which is able to handle all appearances under dif-

ferent illumination of all objects in a class, in particular the human face class.

In contrast, the ordinary photometric stereo algorithm handles the appearances

belonging to one object under different illumination. We then evaluate this algo-

rithm in its application to face recognition under illumination variation. Since this

generalization is linear, the blending linear coefficients offer an illuminant-invariant

identity signature.

Figure 2.1 motivates the proposed approach. The first row of Figure 2.1 dis-

plays one Yale object [68] under eight different illumination. Photometric stereo

algorithms can recover the varying albedos and surface normals for the object, even

assuming no knowledge of the illumination conditions. Here, by photometric stereo

algorithm we mean any algorithm that utilizes a Lambertian reflectance model to

describe the visual appearance and has the capability to recover the albedos and

surface normals involved in the reflectance model. However, ordinary photomet-
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Figure 2.1: Top row: One object under eight different light sources. This can

be handled by the ordinary photometric stereo algorithm. Bottom row: Eight

different objects illuminated by eight different lighting sources. This cannot be

handled by the ordinary photometric stereo algorithm but can be handled by the

proposed generalized photometric stereo algorithm.

ric stereo algorithm cannot handle the images in the second row of Figure 2.1,

where each image represents a different object under a different illumination. This

motivates us to propose a generalized photometric stereo approach.

As in ordinary photometric stereo algorithm, the generalized photometric stereo

algorithm utilizes a Lambertain reflectance model to depict the visual appearance.

The significant difference between the ordinary and generalized photometric stereo

algorithms lies in the image ensemble they analyze. The image ensemble that the

ordinary photometric stereo algorithm analyzes consists of the appearances of one

object under different illumination while, in general, the image ensemble that the

generalized photometric stereo algorithm analyzes consists of the appearances of

different objects, with each object under a different illumination. Analysis of the

latter image ensemble is very difficult. To this end, we introduce a key assumption:

These different objects belong to one class (for example, the human face class) so

that they are linearly spanned by a fixed number of basis objects. Generalized pho-

tometric stereo does not assume any knowledge of the lighting sources as well as

the blending coefficients. Rather, the generalized photometric stereo approach ac-

tually recovers such information. To further complicate the matter, the knowledge
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of the basis objects is also unknown and needs to be recovered.

We evaluate the generalized photometric stereo algorithm for a face recognition

application. The key assumption has two important implications. Firstly, it fits

with the requirement of a recognition task that needs a generalization capability

built on a training set. The idea is to learn the basis objects from the training

set. Once learned, we use them to cope with arbitrary images belonging to objects

other than those in the training set. Secondly, because the bases are for the

object class only, the blending coefficients provide an identity encoding which is

invariant to illumination. We use the blending coefficients for face recognition

under illumination variation, which results in good recognition performance.

Chapter organization

Section 2.1 elaborates the generalized photometric stereo algorithm and addresses

its issues and challenges. Section 2.2 details the face recognition setting and

presents the experimental results using the PIE database. Appendices 2.I and

2.II give supplementary details of the algorithms proposed in the chapter.

A glossary of notations

In general, we denote a scalar by a, a vector by a, and a matrix with r rows and

c columns by Ar×c. The matrix transpose is donate by AT, the pseudo-inverse by

A†. The matrix L2-norm is denoted by ||.||2.

The following notations are introduced for the sake of notational conciseness

and emphasis of special structure.

• Concatenation notations: ⇒ and ⇓.

⇒ and ⇓ mean horizontal and vertical concatenations, respectively. For
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example, we can represent a n × 1 vector an×1 by a = [a1, a2, ..., an]T =

[⇓n
i=1 ai] and its transpose by aT = [a1, a2, ..., an] = [⇒n

i=1 ai]. We can

use ⇒ and ⇓ to concatenate matrices to form a new matrix. For instance,

given a collection of matrices {A1, A2, . . . , An} of size r × c, we construct a

r × cn matrix1 [⇒n
i=1 Ai] = [A1, A2, . . . , An] and a rn × c matrix [⇓n

i=1 Ai] =

[AT1 , AT2 , . . . , ATn ]T. In addition, we can combine ⇒ and ⇓ to achieve a concise

notation. Rather than representing a matrix Ar×c as [aij ], we represent it as

Ar×c = [⇓r
i=1 [⇒c

j=1 aij ] ] = [⇒c
j=1 [⇓r

i=1 aij ] ]. Also we can easily construct

‘big’ matrices using ‘small’ matrices {A11, A12, . . . , A1n, . . . , Amn} of size r×c.

The matrix [⇓m
i=1 [⇒n

j=1 Aij] ] is of size rm×cn, the matrix [⇒m
i=1 [⇒n

j=1 Aij ] ]

of size r × cmn.

• Kronecker (tensor) product: ⊗.

It is defined as Am×n ⊗ Br×c = [⇓m
i=1 [⇒n

j=1 aijB] ]mr×nc.

• Hadamard (element-wise) product: ◦.

It is defined as Am×n ◦ Bm×n = [⇓m
i=1 [⇒n

j=1 aijbij ] ]m×n.

• Special notation: �.

This is used for the special structure of the object-specific albedo-shape ma-

trix T (The definitions of T, p, and N are listed below), i.e., Td×3 = [⇓d
i=1

(pin
T
i )] = p � NT = (pd×1 ⊗ 11×3) ◦ NT3×d

Some special scalars, vectors, and matrices are defined as follows:

• d: number of pixels;

1We do not need the size of {A1, A2, . . . , An} to be exactly same. We use the same matrix size

for simplicity. For example, for [⇒n
i=1 Ai], we only need the number of rows of these matrices to

be same.
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• m: the rank used in the first rank constraint.

• i, j, i′, j′, l, and k: loop indices.

• 1r×c: a r × c matrix of ones.

• In: an identity matrix of size n × n.

• h: a pixel; hd×1: an image.

• p: albedo at a pixel. pd×1: albedo vector

• n3×1 = [â, b̂, ĉ]T: unit surface normal vector; â, b̂, and ĉ: elements of n.

• N3×d = [⇒d
i=1 ni]: the surface normal matrix.

• t3×1 = [a, b, c]T: product of albedo and surface normal; a, b, and c: elements

of t.

• Td×3 = [⇓d
i=1 (pin

T
i )]: the object-specific albedo-shape matrix. Also, Td×3 =

[a, b, c] where a, b, and c are d × 1 vectors.

• s3×1: illumination vector. S3×n: the matrix consisting of a collection of

different illumination vectors.

• fm×1: the vector of blending linear coefficients under the first rank constraint.

Fm×n: the matrix consisting of a collection of different f’s.

• Wd×3m = [⇒m
i=1 Ti]: the class-specific albedo-shape matrix. Also, Wd×3m =

[⇒m
i=1 [ai, bi, ci]].

• A, B, C: A = [⇒m
i=1 ai], B = [⇒m

i=1 bi], and C = [⇒m
i=1 ci].

• Wf: Wf = [⇒m
i=1 (Tis)]d×m.
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• Ws: Ws = [Af, Bf, Cf].

• Hd×n = [⇒n
i=1 hi]: the observation matrix consisting of a collection of images.

• Ŵd×3m: the U matrix after a rank-3m SVD factorization of H.

• ŵ(x): a 3m × 1 vector same as the row in Ŵ associated with the pixel x

• R3m×3m: the ambiguity matrix in the factorization.

• raj , rbj , and rcj: the (3j − 2)th, (3j − 1)th, and (3j)th columns of the matrix

R.

• τ : an indicator function.

• x = (x, y): pixel coordinate; x̄ = (−x, y): the symmetric point of x.

• α: the integrability constraint term.

• β: the face symmetry constraint term.

2.1 Principle of Generalized Photometric Stereo

This section describes the generalized photometric stereo algorithm. We start in

Section 2.1.1 by a brief review of related literature and highlight the advantages of

the proposed approach. We list in Section 2.1.2 the setting and constraints. Then

we present a method to recover the albedos and surface normal for a class of objects

in Sections 2.1.3 and 2.1.4. Section 2.1.3 handles the isolated task of separating

the illumination (v.i.z. finding the illuminant vector and the blending coefficients)

from an arbitrary image, which is used in the recovery algorithm presented in

Section 2.1.4.
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2.1.1 Literature review and proposed approach

Recovery of albedos and surface normals has been studied in the computer vision

research for a long time. Usually a Lambertian reflectance model, ignoring both

attached and cast shadows, is employed. Early works from the shape from shading

(SFS) literature have typically assumed a constant albedo field: this assumption

is not valid for many real objects and thus limits the practical applicability of

the SFS algorithms. Early photometric stereo approaches require the knowledge

of lighting conditions, but such knowledge is hard to gather under uncontrolled

scenarios. Recent research efforts [74, 68, 94, 95, 96, 101, 103, 104] attempt to go

beyond these restrictions by (i) using a varying albedo field, a more accurate model

of the real world, and (ii) assuming no prior knowledge or requiring no control of

the lighting sources. As a consequence, the complexity of the problem has also

significantly increased.

If we fix the imaging geometry and only move the lighting source to illumi-

nate one object, the observed images (ignoring the cast and attached shadows)

lie in a subspace completely determined by three images illuminated by three in-

dependent lighting sources [101]. If an ambient component is added [103], this

subspace becomes 4-D. If attached shadows are considered, the subspace dimen-

sion grows to infinity [97] but most of its energy is packed in a limited number

of harmonic components, thereby leading to a low-dimensional subspace approx-

imations in [94, 95, 100]. However, all the photometric-stereo-type approaches

(except [74]) commonly restrict themselves to using object-specific samples and

cannot perform reconstruction combining images produced by different objects.

In this chapter, we present a generalized photometric stereo algorithm that is

able to handle all appearances of all objects in a class, in particular the human face
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class. To this end, we impose a rank constraint (i.e. a linear generalization) on the

albedos and surface normals of all human faces. We choose the human face as a

working example because it naturally fits in our framework and is widely studied

in the photometric stereo literature; however this does not pose any limitations in

applying our algorithm to other object classes such as vehicles.

We propose a rank constraint on the product of albedo and surface normal.

The rank constraint enables us to accomplish a factorization of the observation

matrix that decomposes a class-specific ensemble into a product of two matrices:

one encoding the albedos and surfaces normals for a class of objects and the other

encoding blending linear coefficients and lighting conditions. A class-specific en-

semble consists of exemplar images of different objects with each under a different

illumination, which is beyond what can be analyzed using the bilinear analysis of

[138]. Bilinear analysis requires exemplar images of different objects under the

same set of illumination conditions. Because a factorization is always up to an in-

vertible matrix, unique recovery of the albedos and surface normals is not possible

and requires additional constraints. We use two constraints: surface integrability

and face symmetry.

The surface integrability constraint [99, 137] has been used in several ap-

proaches [68, 103] to successfully recover albedo and shape. The symmetry con-

straint has also been employed in [102, 104] for face images. We present an ap-

proach to fusing these constraints to recover the class-specific albedos and surface

normals, even in the presence of shadows. More importantly, this approach takes

into account the effects of a varying albedo field by approximating the integra-

bility terms using only the surface normals instead of the product of the albedos

and the surface normals. Due to the nonlinearity embedded in the integrability
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terms, regular algorithms such as the steepest descent are inefficient. We derive a

linearized algorithm to find the solution.

2.1.2 Setting and constraints

Photometric stereo

We assume a Lambertian imaging model with a varying albedo field. A pixel h is

represented as

h = p nTs = tTs, (2.1)

where [.]T denotes the transpose, p is the albedo at the pixel, n ≡ [â, b̂, ĉ]T is the

unit surface normal vector at the pixel, t3×1 ≡ [a ≡ pâ, b ≡ pb̂, c ≡ pĉ]T is the

product of albedo and surface normal, and s (a 3 × 1 unit vector multiplied by

its intensity) specifies a distant illuminant. For time being, we consider the case

without the shadow pixels and will deal with the shadow pixels later on.

An image h is a collection of d pixels {hi, i = 1, ..., d} 2. By stacking all the

pixels into a column vector, we have

hd×1 ≡ [⇓d
i=1 hi] = [⇓d

i=1 (pi nTi )]s = [⇓d
i=1 tTi ]s = [⇓d

i=1 [ai, bi, ci]]s

= (pd×1 � NT3×d)s3×1 = [ad×1, bd×1, cd×1]s3×1 (2.2)

= Td×3 s3×1, (2.3)

where p ≡ [⇓d
i=1 pi] is the albedo vector, N ≡ [⇒d

i=1 ni] is the surface normal

matrix, a ≡ [⇒d
i=1 ai] = [⇒d

i=1 piâi], b ≡ [⇒d
i=1 bi] = [⇒d

i=1 pib̂i], and c ≡ [⇒d
i=1

ci] = [⇒d
i=1 piĉi]. To emphasize the structure of the T matrix which is a ‘product’

2The index i corresponds to a spatial position x = (x, y). We will interchange both notations.

For instance, we might also use x = 1, ..., d.
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of the albedo vector p and the surface normal N, we introduce a special notation

� to denote T by

T ≡ p � NT ≡ [⇓d
i=1 tTi ] ≡ [a, b, c]. (2.4)

We call the T matrix as the object-specific albedo-shape matrix.

In the case of photometric stereo, we have n images of the same object, say

{h1, h2, . . . , hn}, observed at a fixed pose illuminated by n different lighting sources,

forming an object-specific ensemble. Simple algebraic manipulation gives:

Hd×n ≡ [⇒n
i=1 hi] = T[⇒n

i=1 si] = Td×3 S3×n, (2.5)

where H is the observation matrix and S ≡ [⇒n
i=1 si] encodes the information on

the illuminants. Hence photometric stereo is rank-3 constrained. Therefore, given

at least three exemplar images for one object under three different independent

illumination, we can determine the identity of a new probe image by checking if

it lies in the linear span of the three exemplar images. This requires capturing at

least three images for one object in the gallery set, which can be prohibitive in

practical scenarios. Note that in this recognition setting, there is no need for the

training set; in other words, the training set is equivalent to the gallery set.

A typical recognition setting [58], however, assumes no identity overlap between

the gallery set and the training set and often stores only one exemplar image for

each object in the gallery set. However, the training set can have multiple images

for one object. In order to generalize from the training set to the gallery and probe

sets, we note that all images in the training, gallery, and probe sets belong to the

same face class, which naturally leads to the rank constraint.
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The rank constraint

We impose the rank constraint on the T matrix by assuming that any T matrix

is a linear combination of some basis matrices {T1, T2, . . . , Tm} coming from some

m basis objects. Rank constraints are often found in the literature [110, 111, 129,

116, 117, 122]. Mathematically, there exist coefficients {fj; j = 1, . . . , m} such

that

Td×3 =
m

∑

j=1

fjTj = [⇒m
j=1 Tj ](f ⊗ I3) = Wd×3m(fm×1 ⊗ I3), (2.6)

where f ≡ [⇓m
j=1 fj], W ≡ [⇒m

j=1 Tj ], In denotes an identity matrix of dimension

n×n, and ⊗ denotes the Kronecker (tensor) product. Since the W matrix encodes

all albedos and surface normals for a class of objects, we call it a class-specific

albedo-shape matrix. Substitution of (2.6) into (2.3) yields

hd×1 = Ts = W(f ⊗ I3)s = W(f ⊗ s) = Wd×3m k3m×1, (2.7)

where k ≡ f ⊗ s. This leads to a two-factor bilinear analysis [138].

With the availability of n images {h1, h2, . . . , hn} for different objects, observed

at a fixed pose illuminated by n different lighting sources, forming a class-specific

ensemble, we have

Hd×n = [⇒n
i=1 hi] = W[⇒n

i=1 (fi ⊗ si)] = W[⇒n
i=1 ki] = Wd×3m K3m×n, (2.8)

where K ≡ [⇒n
i=1 (fi ⊗ si)] = [⇒n

i=1 ki]. It is a rank-3m problem, which combines

the rank of 3 for the illumination and the rank of m for the identity.

The rank constraint generalizes many approaches in the literature other than

the photometric stereo. If the surface normal is fixed and the albedo field lies in

a rank-m linear subspace, we have (2.6) satisfied. Interestingly, the ‘Eigenface’

approach [62] is just a special case of this approach for a fixed illumination source.
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Suppose that the fixed illuminant vector is s̃. (2.7) and (2.8) reduce to

hd×1 = W(f ⊗ s̃) = W̃d×mfm×1;

Hd×n = [⇒n
i=1 hi] = W̃[⇒n

i=1 fi] = W̃d×mFm×n, (2.9)

where W̃ ≡ [⇒m
i=1 Tis̃]. Therefore, our approach can also be regarded as a gener-

alized ‘Eigenface’ analysis able to handle illumination variation.

Our immediate goal is to estimate W and K from the observation matrix H.

The first step is to invoke an SVD factorization, H = UΛVT, and retain the top 3m

components as H = U3mΛ3mVT3m=Ŵ K̂, where Ŵ = U3m and K̂ = Λ3mVT3m. Thus,

we can recover W and K up to an 3m × 3m invertible matrix R with W = ŴR,

K = R−1K̂. Additional constraints are required to determine the R matrix. We will

use the integrability and face symmetry constraints, both related to W. Moreover,

K must take the special structure K = [⇒i (fi ⊗ si)].

Incidentally, by noting that T = p � NT, we can introduce a second rank

constraint which assumes that (i) any p vector is a linear combination of some basis

vectors {p1, p2, . . . , pm1
} with m1 < d and (ii) any N matrix is a linear combination

of some basis matrices {N1, N2, . . . , Nm2} with m2 < d. This is a common constraint

used in the face recognition literature. For example, in [43, 66, 76], they all assume

that shape and texture have separate bases. However, it turns out that the second

rank constraint is not systematically superior to the first rank constraint in terms

of recognition performance. Also, it is computationally inconvenient to use the

second rank constraint.

Hence, there exist two vectors fm1×1 ≡ [⇓i fi] and gm2×1 ≡ [⇓i gi] such that

p = [⇒m1
i=1 pi]f; N

T = [⇒m2
j=1 NTj ](g ⊗ I3), (2.10)
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and similarly the image h can be expressed as

hd×1 = [⇒m1
i=1 [⇒m2

j=1 (pi � NTj )] ](f ⊗ g ⊗ s)

= Yd×3m1m2(fm1×1 ⊗ gm2×1 ⊗ s3×1), (2.11)

where Y ≡ [⇒m1
i=1 [⇒m2

j=1 (pi � NTj )] ].

The integrability constraint

One common constraint used in SFS research is the integrability of the surface

[68, 99, 103, 137]. Suppose that the surface function is z = z(x) with x ≡ (x, y),

we must have ∂
∂x

∂z
∂y

= ∂
∂y

∂z
∂x

. For the given unit surface normal vector n(x) ≡

[â(x), b̂(x), ĉ(x)]
T at pixel x, the integrability constraint requires that

∂

∂x

b̂(x)

ĉ(x)

=
∂

∂y

â(x)

ĉ(x)

. (2.12)

In other words, with α(x) defined as an integrability constraint term,

α(x) ≡ ĉ(x)

∂b̂(x)

∂x
− b̂(x)

∂ĉ(x)

∂x
+ â(x)

∂ĉ(x)

∂y
− ĉ(x)

∂â(x)

∂y
= 0. (2.13)

If given the product of the albedo and the surface normal t(x) ≡ [a(x), b(x), c(x)]
T

with a(x) ≡ p(x)â(x), b(x) ≡ p(x)b̂(x), and c(x) ≡ p(x)ĉ(x), Eq. (2.13) still holds with

â, b̂, and ĉ replaced by a, b, and c, respectively. Practical algorithms approximate

the partial derivatives by forward or backward differences or other differences with

the inherent smoothness assumption. Hence, the approximations based on t(x)

are very rough especially at places where abrupt albedo variations exist (e.g. the

boundaries of eyes, iris, eyebrow, etc.) since the smoothness assumption is seriously

violated. We should by all means use n(x) in order to remove this effect.
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The face symmetry constraint

For a face image in a frontal view, one natural constraint is its symmetry about

the central y-axis [102, 104]:

p(x,y) = p(−x,y); â(x,y) = −â(−x,y); b̂(x,y) = b̂(−x,y); ĉ(x,y) = ĉ(−x,y), (2.14)

which is equivalent to, using x ≡ (x, y) and its symmetric point x̄ ≡ (−x, y),

a(x) = −a(x̄); b(x) = b(x̄); c(x) = c(x̄). (2.15)

If a face image in a non-frontal view, such a symmetry still exists but the

coordinate system should be modified to take into account the view change.

2.1.3 Separating illumination

In this section, we temporarily assume that the class-specific albedo-shape matrix

W is available and solve the problem of separating illumation, v.i.z., for an arbitrary

image h, find the illuminant vector s and the coefficient f under the first constraint

(or f and g under the second constraint). For convenience in performing tasks such

as recognition, we also normalize the solution f to the same range.

The first rank constraint gives rise to the basic equation h = W (f⊗ s). So, we

convert the separation task to a minimization task of finding f and s to minimize

the least square (LS) cost, i.e.,

min
f,s

E(f, s) ≡ ‖h − W (f ⊗ s)‖2, (2.16)

Note that f and s can be recovered only up to a non-zero scalar; one can always

multiply f by a non-zero scalar and divide s by the same scalar. Therefore, without

loss of generality, we can simply pose an additional constraint: 1Tf = 1, where 1m×1

is a vector of 1’s.
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One way to solve this is indicated in [74]. It is a two-step algorithm. First, k

is approximated by k = W†h. Then k = f ⊗ s is used to solve for f and s, again

using the LS approximation, i.e. finding f and s such that the cost ‖k − f ⊗ s‖2

is minimized. However, as pointed out in [74], the above algorithm is not robust

since two approximations are involved.

Before we proceed to the actual separation algorithm, note that shadows in

principle increase the rank (for the illumination only) to infinity. However, if those

pixels are successfully excluded in our calculations, the rank for the illumination

is still maintained to be 3 and the overall rank is 3m.

In view of the above and considering the normalization requirement, we modify

the cost function as

E(f, s) ≡ ‖τ ◦ (h − W (f ⊗ s))‖2 + (1Tf − 1)2, (2.17)

where τd×1 indicates the inclusion or exclusion of the pixels of the image h and

◦ denotes the Hadamard (or element-wise) product. Notice that (2.17) can be

easily generalized to a cost function used in robust estimation if the vector norm

is replaced by a robust function, and τ by an appropriate weight function.

Using the fact that Eq. (2.7) provides a series of sub-equations, which is linear

in f if s is fixed and in s if f is fixed, we can design a simple iterative algorithm.

Each iteration of the algorithm has three steps. In the first step, we solve for the

LS estimate of f, given s and τ .

f =









Wf

1T









† 







τ ◦ h

1









; Wf ≡ [⇒m
i=1 (Tis)]d×m. (2.18)

In the second step, we solve for the LS estimate of s, given f and τ :

s = W
†
s(τ ◦ h); Ws ≡ [ [⇒m

i=1 ai]f, [⇒m
i=1 bi]f, [⇒m

i=1 ci]f ]d×3 ≡ [Af, Bf, Cf], (2.19)
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where Ad×m ≡ [⇒m
i=1 ai], Bd×m ≡ [⇒m

i=1 bi], and Cd×m ≡ [⇒m
i=1 ci], respectively. In

the third step, given f and s we update τ as follows3:

τ = [ |h − W (f ⊗ s)| < η ], (2.20)

where η is a pre-defined threshold.

Note that in (2.18) and (2.19), additional saving in computation is possible.

We can form dimension-reduced matrices W
′

f and W
′

s and vector h′ and apply the

primed version in (2.18) and (2.19) The matrices W
′

f and W
′

s and vector h′ are

formed from Wf, Ws, and h, respectively, by discarding those rows corresponding

to the excluded pixels.

The initial conditions can be arbitrary. But, for fast convergence, we need good

initial values. In our implementation, we estimate s using the algorithm presented

in [105]. To initialize τ , we employ heuristics to distinguish pixels in shadows: their

intensities are close to zero. In practice, we set those pixels whose intensities are

smaller than a certain threshold as missing values. In addition, we also set those

pixels whose intensities are above a certain threshold as missing values to remove

pixels possibly in a specular region. This is only for initialization, we update τ

during iterations.

To test the stability of our algorithm, we perturb the initial conditions and

find that our algorithm is very stable in the sense that it always reaches the same

solution (up to the convergence error) regardless of initial conditions and generates

a smaller residual than the algorithm reported in [74].

Learning f, g, and s from h using the second constraint is a straightforward

generalization of the above algorithm. Appendix 2.I presents such a recovery al-

gorithm in an even more general setting, i.e. a multilinear setting.

3This is a Matlab operation which performs an element-wise comparison.
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2.1.4 Recovering class-specific albedos and surface normals

The recovery task is to find from the observation matrix H the class-specific

albedo-shape matrix W (or equivalently R), which satisfies both the integrabil-

ity and symmetry constraints, as well as the matrices F and S. We decompose

R as R3m×3m ≡ [⇒m
j=1 [raj , rbj , rcj]] and treat the column vectors {raj , rbj , rcj; j =

1, ..., m} as our computational ‘units’. We also decompose Ŵ as Ŵ ≡ [⇓d
x=1 ŵT(x)]

where ŵ(x) is a 3m × 1 vector same as the row in Ŵ corresponding to the pixel x.

As W ≡ [⇓d
x=1 [⇒m

j=1 [aj(x), bj(x), cj(x)]]] = ŴR, we have

aj(x) = ŵT(x)raj , bj(x) = ŵT(x)rbj , cj(x) = ŵT(x)rcj; j = 1, . . . , m. (2.21)

As mentioned in Section 2.1.3, we must take into account attached and cast

shadows. After setting them as missing values, we perform SVD with missing val-

ues [149] to find Ŵ. Other approaches for dealing with missing value are available

in [141, 165, 169].

In view of the above, we formulate the following optimization problem: mini-

mize over R, F, and S the cost function E defined as

E(R, F, S) =
1

2

n
∑

i=1

d
∑

x=1

τi(x){hi(x) − ŵ(x)TR(fi ⊗ si)}2

+
λ1

2

m
∑

j=1

d
∑

x=1

{αj(x)}2 +
λ2

2

m
∑

j=1

d
∑

x=1

{βj(x)}2,

= E0(R, F, S) + λ1E1(R) + λ2E2(R), (2.22)

where τi(x) is an indicator function which takes the value one if the pixel x of the

image hi is not in shadow and zero otherwise, αj(x) is the integrability constraint

term based only on surface normals as defined in (2.13), and βj(x) is the symmetry

constraint term given as

β2
j(x) = {aj(x) + aj(x̄)}2 + {bj(x) − bj(x̄)}2 + {cj(x) − cj(x̄)}2; j = 1, . . . , m. (2.23)
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One approach could be to directly minimize the cost function over W, F, and S.

This is in principle possible but numerically difficult as the number of unknowns

depends on the image size, which can be quite large in practice.

As shown in [98], the recovered surface normal is up to a generalized bas-relief

(GBR) ambiguity. To avoid trivial solutions such as a planar object4, we normalize

the matrix R by setting ||R||2 = 1 where ||.||2 is a matrix norm. Another ambiguity

between fj and sj is a nonzero scale, which can be removing by normalizing f to

same range: fTj 1 = 1, where 1m×1 is a vector of 1’s.

To summarize, we perform the following task:

minR,F,S E(R, F, S) subject to ||R||2 = 1, FT1 = 1. (2.24)

An iterative algorithm can be designed to solve (2.24). While solving for F and S

with R fixed is quite easy, solving for R with F and S is very difficult because the

integrability constraint terms involve partial derivatives of the surface normals that

are nonlinear in R. Regular algorithms such as the steepest descent are inefficient.

One main contribution of this chapter is that we propose a linearized algorithm to

solve for R, which is detailed in Appendix 2.II.

We now illustrate how to update F = [⇒i fi], S = [⇒i si], and τ = [⇒i τi]

with R fixed (or W fixed). First notice that F, S, and τ are only involved in the

term E0. Moreover, fi, si and τi are related to only the image hi. This becomes

the same as the illumination separation problem defined in Section 2.1.3. The

proposed algorithm is also iterative in nature. After running one iterative step to

obtain the updated F, S, and τ , we proceed to update R again and this process

4In this way, the surface normals we are recovering are versions up to a GBR ambiguity with

respect to the true physical surface normals [68]. However, they are enough for tasks such as face

recognition under illumination variation.
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carries on until convergence.

To demonstrate how the algorithm works, we design the following scenario

with m = 2 so that the rank of interest is 2x3=6. To defeat the photometric

stereo algorithm, which requires one object illuminated by at least three sources,

and the bilinear analysis, which requires two fixed objects illuminated by at least

three same lighting sources, we construct eight images by taking random linear

combinations of two basis objects illuminated by eight different lighting sources.

Figure 2.2 displays the two basis objects under the same set of eight illumination

and the synthesized images. The recovered class-specific albedo-shape matrix is

also presented in Figure 2.2, which clearly shows the two basis objects. The quality

of reconstruction is quite good except the nose part. The reason might be that

the two basis objects have quite distinct noses so that the nose part of their linear

combinations is not visually good (see the image in the last column of the third

row), which propagates to the recovery results of albedos and surface normals from

these combination images. Our algorithm usually converges within 100 iterations.

One notes that the special case m = 1 of our algorithm can be readily applied

to photometric stereo (with the symmetry constraint removed) to robustly recover

the albedos and surface normals for one object.

2.2 Face Recognition across Illumination

This section deals with the face recognition part, which serves as a main evaluation

tool for the generalized photometric stereo algorithm. Section 2.2.1 briefly reviews

the literature on face recognition across illumination. In Section 2.2.2, we relax

the requirement of recovering the albedos and surface normals by utilizing sample

imagery as a bootstrap set for the recognition task. We then report in Section
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Figure 2.2: The first row: The first basis object under eight different illumination.

The second row: The second basis object under the same set of eight different

illumination. The third row: Eight images (constructed by random linear combi-

nations of two basis objects) illuminated by eight different lighting sources. The

fourth row: Recovered class-specific albedo-shape matrix W showing the product

of varying albedos and surface normals of two basis objects (i.e. the three columns

of T1 and T2) using the generalized photometric stereo algorithm.

2.2.3 face recognition results using the PIE database.

2.2.1 Literature review and proposed approach

Face recognition under illumination variation is a very challenging problem. The

key is to successfully separate the illumination source from the observed appear-

ance. Once separated, what remains is illuminant-invariant and appropriate for

recognition. In addition to illumination variation, various issues embedded in the

recognition setting make recognition even more difficult. We follow the recogni-

tion protocol introduced in [58]. Assuming the availability of the following three

sets, namely one training set, one gallery set, and one probe set, the recognition

algorithm learns from the training set the characteristic features, associates de-
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scriptive features with the objects in the gallery set, and determines the identity

for the objects in the probe set. Different recognition settings can be formed in

terms of identity and illumination overlaps among the training, gallery, and probe

sets. The most difficult setting, which is the focus of this chapter, is obviously the

one in which there is no overlap at all among the three sets in terms of both identity

and illumination, except the identity overlap between the gallery and probe sets.

In this setting, generalizations from known illumination to unknown illumination

and from known identities to unknown identities are particularly desired.

State-of-the-art research efforts can be grouped into three streams: subspace

methods, reflectance-model methods, and 3D-model-based methods. (i) The first

approach is very popular for the recognition problem. After removing the first

three eigenvectors, principal component analysis (PCA) was reported to be more

robust to illumination variation than the ordinary PCA or the ‘Eigenface’ approach

[62]. Fisher discriminant analysis (FDA) [41, 70] has also been modified to handle

illumination variations. In general, subspace learning methods are able to cap-

ture the generic face space and thus to recognize new objects not present in the

training set. The disadvantage is that subspace learning is actually tuned to the

lighting conditions of the training set; therefore if the illumination conditions are

not similar among the training, gallery, and probe sets, recognition performance

may not be acceptable. (ii) The second approach [68, 74, 101, 104] employs a

Lambertian reflectance model with a varying albedo field ignoring both attached

and cast shadows. The main disadvantage of this approach is the lack of general-

ization from known objects to unknown objects. (iii) The third approach employs

3D models. The ‘Eigenhead’ approach [65] assumes that the 3D geometry (or 3D

depth information) of any face lies in a linear space spanned by the 3D geometry
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of the training ensemble and uses a constant albedo field. The morphable model

approach [66] is based on a synthesis-and-analysis strategy. Both geometry and

texture are linearly spanned by those of the training ensemble. It is able to han-

dle both illumination and pose variations with illumination directions specified.

The weakness of the 3D model approaches is that they require 3D models and

complicated fitting algorithms.

Compared to the above, the proposed recognition scheme possesses the follow-

ing properties: (i) It is able to recognize new objects not present in the training

set; (ii) It is able to handle new lighting conditions not present in the training set;

and (iii) No explicit 3D model and no prior knowledge about illumination condi-

tions are needed. In other words, we combine the advantages of subspace learning

and reflectance model-based methods. Further, we can avoid the recovery burden

as far as recognition is concerned by using a proper bootstrap set under the first

constraint.

2.2.2 Bootstrap set

A procedure for learning the W matrix was presented in Section 2.1.4. Even though

the learning algorithm is quite robust, it is possible that it gets trapped in local

minima, which might subsequently yield inferior recognition results. Thus, an

alternative approach without explicitly learning the W matrix is very beneficial.

We now show that, as far as recognition is concerned, the W matrix under the

first constraint can be replaced by a bootstrap set W̃ consisting of sample imagery

only. The bootstrap set can take various forms. In this chapter, we focus on such

a bootstrap set that contains m exemplar objects captured at a fixed pose, each

with three images illuminated by three independent but fixed lighting sources.
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We denote h̃ij as the image for the ith exemplar object illuminated by the jth

exemplar lighting source. As an image can be expressed in a two-factor form using

(2.7), we can write h̃ij as

h̃ij = W(̃fi ⊗ s̃j); i = 1, ..., m; j = 1, 2, 3. (2.25)

where f̃i is the blending coefficient vector for the ith exemplar object and s̃j describes

the jth exemplar lighting source.

The bootstrap set W̃ is then expressed as

W̃d×3m = [⇒m
i=1 [⇒3

j=1 h̃ij ] ] = W[⇒m
i=1 [⇒3

j=1 (̃fi ⊗ s̃j)] ]

= Wd×3m(F̃m×m ⊗ S̃3×3), (2.26)

where F̃ ≡ [⇒m
i=1 f̃i] and S̃ ≡ [⇒3

j=1 s̃j] define the (not necessarily orthogonal) bases

for the identity coefficients and the light sources, respectively. Thus, any vector

f lies in the linear span of F̃, i.e., there exists a coefficient vector µ = [⇓m
i=1 µi]

relating f with F̃ in the following way:

f =
m

∑

i=1

µi f̃i = F̃µ; (2.27)

Similarly, for any vector s, there exists ν = [⇓3
j=1 νj ] such that

s =
3

∑

j=1

νj s̃j = S̃ν. (2.28)

Substituting (2.27) and (2.28) into (2.7), we have

hd×1 = W(f ⊗ s) = W((F̃ µ) ⊗ (S̃ ν))

= W(F̃ ⊗ S̃)(µ ⊗ ν)

= W̃d×3m(µm×1 ⊗ ν3×1) (2.29)

Therefore, if the bootstrap set W̃ is given, finding f and s for image h is equivalent

to finding µ and ν. Since (2.29) is in a bilinear form, we can compute µ and ν
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via the same algorithm described in Section 2.1.3 and employ µ for subsequent

recognition task.

The use of the bootstrap set yields an additional benefit. As indicated before,

the rank for covering illumination variations in practice exceeds 3. Suppose that

this rank is r > 3, we can use a bootstrap set of dimension d by rm, i.e. using

images for m exemplar objects taken under r exemplar lighting conditions, to

improve the recognition performance. Obviously, our separation algorithm can be

generalized to handle s with dimension r × 1. Unfortunately, no bootstrap set can

be easily constructed for the second constraint using exemplar images.
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Figure 2.3: Right: Flash distribution in the PIE database. For illustrative pur-

poses, we move their positions on a unit sphere as only the illuminant directions

matter. ‘o’ means the ground truth and ‘x’ the estimated values.
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2.2.3 Recognition experiments

We study an extreme recognition setting with the following features: there is no

identity overlap between the training set and the gallery and probe sets; only one

image per object is stored in the gallery set; the lighting conditions for the training,

gallery and probe sets are completely unknown.

Our strategy is to: (i) Learn W, if needed, from the training set using the

recovery algorithm described in Section 2.1.4 or construct a bootstrap set W̃ for

simplicity; (ii) With W (or W̃) given, learn the identity signature f’s (or µ’s) for

both the gallery and probe sets using the recovery algorithm described in Section

2.1.3, assuming no knowledge of illumination directions; and (iii) Perform recogni-

tion using the nearest correlation coefficient. Suppose that a gallery image g has

its signature5 fg (or µg) and a probe image p has its signature fp (or µg), their

correlation coefficient is

k(p, g) = (fp, fg)/
√

(fp, fp)(fg, fg), (2.30)

where (x, y) is an inner-product such as (x, y) = xTΣy with Σ learned or given. We

use Σ as an identity matrix.

PIE database

We use the Pose and Illumination and Expression (PIE) database [75] in our ex-

periment6. Figure 2.3 shows the distribution of all 21 flashes used in PIE and their

estimated positions using our algorithm. Since the flashes are almost symmetri-

cally distributed about the head position, we only use 12 of them distributed on

5In the sequel, we simply refer as f = [fT, gT]T for the second rank constraint

6We use the ‘illum’ part of the PIE database that is close to obeying the Lambertian model

as in [70] while the ‘light’ part that includes an ambient light is used in [66].
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the right half of the unit sphere in Figure 2.3. More specifically, the flashes we

used are f08, f09, f11-f17, and f20-f22. In total, we used 68x12=816 images in a

fixed view as there are 68 subjects in the PIE database. Figure 2.4 displays one

PIE object under the selected 12 illuminants.

Registration is performed by aligning the eyes and mouth to desired posi-

tions. No flow computation [66] is carried on for further alignment. After the

pre-processing step, the cropped out face image is of size 50 by 50, i.e. d = 2500.

Also, we only study gray images by taking the average of the red, green, and blue

channels of their color versions. We use all 68 images under one illumination to

form a gallery set and under another illumination to form a probe set. The training

set is taken from sources other than the PIE dataset. Thus, we have 12x11=132

tests, with each test giving rise to a recognition score.

Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Probe

f08 - 96 96 87 66 60 46 29 22 85 78 53 65

f09 94 - 96 96 90 87 56 40 24 84 96 68 75

f11 94 91 - 97 72 72 38 28 16 100 94 51 69

f12 88 94 97 - 88 93 57 41 28 94 100 76 78

f13 56 87 59 85 - 100 90 71 50 54 87 100 76

f14 51 85 63 93 100 - 90 66 49 59 91 99 77

f15 33 40 37 49 85 88 - 93 78 32 49 97 62

f16 19 26 26 32 59 44 84 - 93 26 31 63 46

f17 14 28 19 26 50 41 68 94 - 19 26 44 39

f20 90 85 99 97 65 69 38 26 21 - 93 53 67

f21 79 94 93 100 88 94 62 49 28 91 - 76 78

f22 43 65 46 75 99 99 97 76 59 43 74 - 70

Average 60 72 66 76 78 77 66 56 42 63 74 71 67

Table 2.1: Recognition rate obtained by our approach using the first rank con-

straint and the Yale’s database as the training set.
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Figure 2.4: The first and second rows display one PIE object under the selected

12 illuminants (from left to right, row 1 to row 2: f08, f09, f11-f17, and f20-f22)

and the third and fourth rows one Yale object under 9 lights (most frontal lights)

used in the training set.

Recognition across illumination

We first assume that all the images have been captured in a frontal view, but we

do not assume that the directions and intensities of the illuminants are known.

[Yale training set] The training (or bootstrap) set is first taken as the Yale’s

illumination database [68]. There are only 10 subjects (i.e. m = 10) in this

database and each subject has 64 images in frontal view illuminated by 64 different

lights. We pick out images under 9 lights (mostly frontal) in order to cover up to

second-order harmonic components [95]. Figure 2.3 shows one Yale object under

r = 9 lights.

Table 2.1 lists the recognition rate for the PIE database using the first rank
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Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Probe

f08 - 100 90 66 21 9 1 9 4 60 60 1 38

f09 100 - 72 94 59 31 10 24 13 51 84 13 50

f11 97 91 - 100 29 24 13 15 10 100 94 19 54

f12 93 97 100 - 93 90 56 59 35 96 100 69 81

f13 19 62 22 68 - 97 82 100 68 13 84 81 63

f14 9 15 12 62 100 - 100 84 82 12 72 100 59

f15 0 3 1 4 76 100 - 74 76 1 18 100 41

f16 6 25 3 31 82 65 71 - 100 3 41 57 44

f17 4 12 3 31 51 56 81 100 - 3 28 59 39

f20 88 76 100 99 28 28 15 12 16 - 99 19 53

f21 84 97 97 100 96 88 57 74 46 96 - 71 82

f22 3 4 3 13 72 100 100 50 57 3 24 - 39

Average 46 53 46 61 64 62 53 54 46 40 64 54 54

Table 2.2: Recognition rate obtained by the ‘Eigenface’approach (discarding the

first 3 components) using the Yale’s database as the training set.

Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Probe

f08 - 97 97 93 63 56 29 16 9 94 85 29 61

f09 99 - 97 99 96 88 38 21 12 91 96 57 72

f11 99 96 - 99 62 63 29 16 12 100 94 41 65

f12 96 99 100 - 93 91 40 22 13 99 100 69 75

f13 74 93 69 84 - 100 71 37 16 62 87 97 72

f14 66 88 74 93 100 - 76 34 19 71 93 100 74

f15 22 34 24 35 71 66 - 82 46 28 44 99 50

f16 12 21 13 18 28 26 74 - 85 18 22 47 33

f17 6 7 9 13 15 18 40 81 - 13 16 24 22

f20 93 88 100 96 63 68 32 19 13 - 96 43 65

f21 87 94 100 100 93 99 51 22 15 99 - 84 77

f22 41 65 43 62 96 100 100 56 29 46 71 - 64

Average 63 71 66 72 71 70 53 37 24 65 73 63 61

Table 2.3: Recognition rate obtained by the ‘Fisherface’ approach using the Yale’s

database as the training set.
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Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Probe

f08 - 100 99 99 97 97 79 72 43 99 97 93 88

f09 100 - 99 99 99 99 97 91 60 97 97 97 94

f11 99 99 - 100 100 100 90 76 65 100 100 99 93

f12 99 99 100 - 100 100 100 93 76 100 100 100 97

f13 99 99 100 100 - 100 100 100 88 99 100 100 99

f14 99 99 100 100 100 - 100 100 96 99 100 100 99

f15 84 94 93 100 100 100 - 100 100 88 100 100 96

f16 69 87 78 90 100 100 100 - 100 69 90 100 89

f17 44 60 51 71 84 91 99 100 - 56 75 94 75

f20 97 97 100 100 100 100 90 74 68 - 100 99 93

f21 97 97 100 100 100 100 100 97 82 100 - 100 98

f22 90 97 96 100 100 100 100 100 99 97 100 - 98

Average 89 93 92 96 98 99 96 91 80 91 96 98 93

Table 2.4: Recognition rate obtained by our approach with the first rank constraint

and Vetter’s database as the training set.

Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Probe

f08 - 100 99 99 97 93 82 59 35 99 97 88 86

f09 100 - 99 99 99 99 91 84 53 99 99 96 92

f11 99 99 - 100 100 100 91 71 44 100 100 94 90

f12 99 99 100 - 100 100 99 90 72 100 100 99 96

f13 99 99 100 100 - 100 99 99 79 99 100 99 97

f14 99 99 100 100 100 - 99 97 87 99 100 99 98

f15 93 96 93 97 99 99 - 100 99 96 99 100 97

f16 75 90 69 93 97 99 100 - 99 69 94 100 89

f17 47 68 51 78 84 90 100 100 - 57 82 94 77

f20 99 99 100 100 99 100 91 76 51 - 100 94 92

f21 99 99 100 100 100 100 99 94 78 100 - 99 97

f22 97 96 96 99 99 99 100 100 90 96 99 - 97

Average 91 94 91 97 97 98 95 88 71 92 97 96 92

Table 2.5: Recognition rate obtained by our approach with the second rank con-

straint and Vetter’s database as the training set.
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f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Gly: Front f12, Prb: Front 99 99 100 - 100 100 97 93 78 100 100 99 96

Gly: Front f12, Prb: Side 85 89 88 94 96 96 88 81 68 86 95 91 88

Gly: Side f12, Prb: Front 92 91 99 97 85 87 72 53 33 94 96 87 82

Gly: Side f12, Prb: Side 100 100 100 - 100 100 99 85 63 100 100 100 95

Gly: Side f08, Prb: Side - 100 100 100 99 97 72 59 35 100 100 90 86

Gly: Side f17, Prb: Side 26 41 37 57 76 84 100 100 - 43 65 91 66

Gly: Side f22, Prb: Side 75 97 88 99 100 100 100 100 100 91 100 - 95

Table 2.6: Recognition rate across poses and illumination. The front view is from

camera 27, and the side view from camera 05.

constraint and the Yale’s database as the training set. Even with m = 10, we

obtain quite good results, especially when the gallery and probe sets are close

in terms of their flash positions. When the flashes of the gallery and probe sets

become separated, the recognition rate decreases. The worst performance is with

the gallery set at f08 and the probe set at f17, two most separated flashes. In

general, using images under frontal or near-frontal illuminants (e.g. f09, f12, and

f21) as gallery sets produces good results.

For comparison, we also implemented the ‘Eigenface’ approach (discarding the

first 3 components) and the ‘Fisherface’ approach by training the subspace pro-

jection vectors from the same training set. The recognition rates are presented

in Tables 2.2 and 2.3. The ‘Fisherface’ approach outperforms the ‘Eigenface’ ap-

proach, but their performances are worse than our approach. This highlights the

virtue of decoupling the illumination variations.

[Vetter training set] Generalization capacity with m = 10 is rather restrictive.

We now increase m from 10 to 100 by using Vetter’s 3D face database [66]. As this

is a 3D database, we actually have W (even p and N) available. However, we believe

that using a training set of m = 100 from other sources, which to the best of our
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knowledge is not available in the literature, can yield similar performances. Table

2.4 tabulates the recognition rates obtained by imposing the first rank constraint.

Significant improvements have been achieved by increasing m. This seems to

suggest that a moderate sample size of 100 is enough to span the entire face space

under a fixed view.

As an interesting comparison, Blanz and Vetter [66] also reported the recog-

nition rates across the illumination variation (with only ‘f12’ being the gallery

set and using the ‘light’ part of the PIE database) and their average is 98% for

color images while ours is 96% for gray images under the first rank constraint.

We believe that our performances can be boosted using the color images and finer

alignment. Note that our approaches look similar to [66], but there are significant

differences. In [66] depths and texture maps of explicit 3D face models are used,

while our image-based approach uses the concepts of albedo and surface normal

and can recover the 3D models under the first constraint. Also, [66] needs a very

good initialization for the lighting source.

We then experiment with the second rank constraint. Note that here we need

explicit knowledge of p and N, while under the first constraint we can use a boot-

strap set instead. Table 2.5 tabulates the recognition rate obtained. It seems that

the use of the second rank constraint does not help much. In fact, it is slightly

worse due to possible over-parameterization. In addition, it is difficult to estimate

p and N using the second rank constraint. Thus, it seems beneficial to use the first

rank constraint in practice.
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Recognition across views and illumination

We now present our preliminary results on recognition across poses and illumina-

tion. Our approach in principle can also handle pose variation since the W matrix

contains all the needed 3D information, i.e., we can recover the 3D model from it.

Also as mentioned earlier, learning the W matrix can be avoided by using a boot-

strap set. Here, we simply use Vetter’s database to handle pose variation. Pose is

roughly estimated from the geometric calibration information provided in the PIE

database. We then warp the 3D model to the desired pose. The motivation is the

following: suppose the pose parameter is θ, then the image hθ at pose θ can be

expressed as

hθ = Wθ(f ⊗ s). (2.31)

In other words, the illumination-invariant signature f for image hθ is kept the same

if we have the class-specific albedo and shape matrix at pose θ. The rest just

follows using the first constraint approach. Table 2.6 lists the recognition results

obtained. In general, using the side view still yields quite good recognition result.

Illuminant estimation

In the above process, we achieve illuminant estimation. Figure 2.3 also shows the

estimated illuminant directions. It is quite accurate for estimation of directions

of flashes near frontal pose. But when the flashes are significantly off-frontal,

accuracy slightly goes down.
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2.3 Appendix

Appendix 2.I: Recovering multilinear coefficients from h

The algorithm presented in Sec. 2.1.4 can be generalized to recover {f1, ..., fn} from

h if the following multilinear form is satisfied:

hd×1 = Wd×
∏n

i=1
mi

(f1m1×1 ⊗ . . . ⊗ fnmn×1), (2.32)

where W ≡ [⇒j1,...,jn
wj1,...,jn

]. Again, we impose the addition constraints: 1Tfi =

1; i = 1, . . . , n − 1.

In the iteration for computing fi given all other fj ’s (j 6= i) fixed, we have,

h = Aifi, (2.33)

where Ai ≡ [⇒mi

ji=1 ai
ji
] and

ai
ji

=
m1
∑

j1=1

. . .
mn
∑

jn=1

c1
j1

. . . ci−1
ji−1

ci+1
ji+1

. . . cn
jn

wj1,...,jn
. (2.34)

If 1Tfi = 1 is imposed for i = 1, . . . , n − 1, the LS solution to fi is

fi =


























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




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

Ai

1T









† 







h

1









, i = 1, . . . , n − 1;

[An]† h, i = n.

(2.35)

Appendix 2.II: Computing R from H

This appendix concentrates on the most difficult part of recovering the albedos

and surface normals from H: updating R with F, S, and τ fixed. We will take

vector derivatives of E with respective to {rij ; i = a, b, c; j = 1, . . . , m} and treat

the three terms in E separately.

53



[About E0.] With fj′ ≡ [⇓m
j=1 fj′j] and sj′ ≡ [sj′a, sj′b, sj′c]

T,

∂E0

∂rij
=

n
∑

j′=1

d
∑

x=1

τj′(x){ŵ(x)TR(fj′ ⊗ sj′) − hj′(x)}ŵ(x)fj′jsj′i

=
n

∑

j′=1

d
∑

x=1

τj′(x){
∑

l=a,b,c

m
∑

k=1

ŵ(x)Trlkfj′ksj′l − hj′(x)}ŵ(x)fj′jsj′i

=
∑

l=a,b,c

m
∑

k=1

{
n

∑

j′=1

d
∑

x=1

τj′(x)fj′ksj′lfj′jsj′iŵ(x)ŵ(x)T}rlk

−
n

∑

j′=1

d
∑

x=1

τj′(x)hj′(x)fj′jsj′iŵ(x)

=
∑

l=a,b,c

m
∑

k=1

Olk
ij rlk − γij, (2.36)

where {Olk
ij ; l = a, b, c; k = 1, . . . , m} are properly defined 3m × 3m matrices, and

γij is a properly defined 3m × 1 vector.

[About E1.] Using forward differences to approximate the partial derivatives7,

∂âj(x,y)

∂y
' âj(x,y+1) − âj(x,y);

∂b̂j(x,y)

∂x
' b̂j(x+1,y) − b̂j(x,y);

∂ĉj(x,y)

∂x
' ĉj(x+1,y) − ĉj(x,y);

∂ĉj(x,y)

∂y
' ĉj(x,y+1) − ĉj(x,y),

(2.37)

we have

αj(x,y) ≈ b̂j(x+1,y)ĉj(x,y) − b̂j(x,y)ĉj(x+1,y) + âj(x,y)ĉj(x,y+1) − âj(x,y+1)ĉj(x,y). (2.38)

Suppose we are given the product of albedo and surface normal [aj(x), bj(x), cj(x)]

as in (2.21), we can derive the albedo pj(x) and surface normals âj(x), b̂j(x), and

ĉj(x) as follows:

pj(x) =

√

(ŵT(x)raj)2 + (ŵT(x)rbj)
2 + (ŵT(x)rcj)

2, (2.39)

âj(x) =
ŵT(x)raj

pj(x)
, b̂j(x) =

ŵT(x)rbj

pj(x)
, ĉj(x) =

ŵT(x)rcj

pj(x)
. (2.40)

7Partial derivatives of boundary pixels require different approximations. But, similar deriva-

tions can be derived.
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So, their partial derivatives with respect to raj are

∂âj(x)

∂raj

=
ŵ(x)

pj(x)

− ŵT(x)raj

ŵ(x)ŵ
T
(x)raj

p3
j(x)

=
1 − â2

j(x)

pj(x)

ŵ(x), (2.41)

∂âj(x)

∂rbj
= −ŵT(x)raj

ŵ(x)ŵ
T
(x)rbj

p3
j(x)

=
−âj(x)b̂j(x)

pj(x)

ŵ(x),
∂âj(x)

∂rcj
=

−âj(x)ĉj(x)

pj(x)

ŵ(x). (2.42)

Similarly, we can derive their partial derivatives with respect to rbj and rcj, which

are summarized as follows:

∂k̂j(x)

∂rlj
=

−k̂j(x)l̂j(x)

pj(x)
ŵ(x),

∂k̂j(x)

∂rkj
=

1 − k̂2
j(x)

pj(x)
ŵ(x), k, l ∈ {a, b, c}, k 6= l. (2.43)

Notice that
∂âj(x)

∂rbj
=

∂b̂j(x)

∂raj
,

∂âj(x)

∂rcj
=

∂ĉj(x)

∂raj
, and

∂b̂j(x)

∂rcj
=

∂ĉj(x)

∂rbj
, which imply saving

in computations.

We now compute the partial derivative of αj(x,y) with respect to raj :

∂αj(x,y)

∂raj
=

∂

∂raj
{b̂j(x+1,y)ĉj(x,y) − b̂j(x,y)ĉj(x+1,y) + âj(x,y)ĉj(x,y+1) − âj(x,y+1)ĉj(x,y)}

= { âj(x,y)ĉj(x,y)

pj(x,y)pj(x,y+1)

ŵ(x,y)ŵ
T
(x,y+1) −

âj(x,y+1)ĉj(x,y+1)

pj(x,y)pj(x,y+1)

ŵ(x,y+1)ŵ
T
(x,y)}raj +

{ âj(x+1,y)ĉj(x+1,y)

pj(x,y)pj(x+1,y)
ŵ(x+1,y)ŵ

T
(x,y) −

âj(x,y)ĉj(x,y)

pj(x,y)pj(x+1,y)
ŵ(x,y)ŵ

T
(x+1,y)}rbj +

{ âj(x,y)b̂j(x,y)

pj(x,y)pj(x+1,y)

ŵ(x,y)ŵ
T
(x+1,y) −

âj(x+1,y)b̂j(x+1,y)

pj(x,y)pj(x+1,y)

ŵ(x+1,y)ŵ
T
(x,y) +

1 − â2
j(x,y)

pj(x,y)pj(x,y+1)

ŵ(x,y)ŵ
T
(x,y+1) −

1 − â2
j(x,y+1)

pj(x,y)pj(x+1,y)

ŵ(x,y+1)ŵ
T
(x,y)}rcj

= Pa
aj(x,y)raj + Pb

aj(x,y)rbj + Pc
aj(x,y)rcj =

∑

l=a,b,c

Pl
aj(x,y)rlj, (2.44)

where Pa
aj(x,y), Pb

aj(x,y), and Pc
aj(x,y) are properly defined matrices of dimension 3m×

3m. By the same token, using properly defined Pa
bj(x,y), Pb

bj(x,y), Pc
bj(x,y), Pa

cj(x,y),

Pb
cj(x,y), and Pc

cj(x,y), we can calculate

∂αj(x,y)

∂rij
=

∑

l=a,b,c

Pl
ij(x,y)rlj; i = a, b, c, (2.45)
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and, finally,

∂E1

∂rij
=

d
∑

x=1

αj(x)

∑

l=a,b,c

Pl
ij(x)rlj =

∑

l=a,b,c

Pl
ijrlj; Pl

ij ≡
d

∑

x=1

αj(x)P
l
ij(x). (2.46)

[About E2.] The symmetry constraint term βj(x) defined as in (2.23) can be

expressed as

β2
j(x) = rTajQ

a
(x)raj + rTbjQ

b
(x)rbj + rTcjQ

c
(x)rcj, (2.47)

where Qa
(x), Qb

(x), and Qc
(x) are symmetric matrices with size 3m × 3m:

Qa
(x) = (ŵ(x) + ŵ(x̄))(ŵ(x) + ŵ(x))

T, Qb
(x) = (ŵ(x) − ŵ(x̄))(ŵ(x) − ŵ(x))

T, Qc
(x) = Qb

(x).

(2.48)

The derivatives of β2
j(x)/2 and E2 with respective to raj , rbj , and rcj are

∂{β2
j(x)/2}
∂rij

= Qi
(x)rij ;

∂E2

∂rij
=

d
∑

x=1

Qi
(x)rij = Qirij; Qi =

d
∑

x=1

Qi
(x). (2.49)

Combining the above derivations and using ∂E
∂rij

= 0, we have

∑

l=a,b,c

m
∑

k=1

Olk
ij rlk + λ1

∑

l=a,b,c

Pl
ijrlj + λ2Q

irij = γij; i = a, b, c; j = 1, . . . , m. (2.50)

We therefore arrive at a set of equations linear in {rij ; i = a, b, c; j = 1, ..., m} that

can be solved easily. After finding the new R, we normalize it using R=R/||R||2.
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Chapter 3

Illuminating Light Field

State-of-the-art algorithms are not able to produce satisfactory recognition per-

formance when confronted by pose and illumination variations. In general, pose

variation is slightly more difficult to handle than illumination variation. The pres-

ence of both variations further challenges the recognition algorithms.

This chapter extends the generalized photometric stereo algorithm presented in

Chapter 2 to handle pose variation. The way we handle pose variation is through

the ‘Eigen’ light approach [69]. This unified approach is image-based, in the sense

that, in the training set, only 2D images are used and no explicit 3D models are

needed. The unification is achieved by exploiting the fact that both approaches use

a subspace model for identity. The ‘Eigen’ light field approach combines subspace

modeling with light field and offers a pose-invariant encoding of identity. The

generalized photometric stereo algorithm combines the identity subspace with the

illumination model and provides an illumination-invariant description. However,

the ‘Eigen’ light field approach assumes a fixed illumination and cannot handle

illumination variations, i.e., its pose-invariant identity encoding is not invariant to

variations in illumination. The generalized photometric stereo algorithm assumes a
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fixed pose and cannot easily handle pose variations, i.e., its illumination-invariant

identity description is not invariant to variations in pose. This motivates our

integrated approach for handling both pose and illumination variations using an

illumination- and pose-invariant identity signature.

Chapter organization

Section 3.1 presents the principle of the illuminating light field approach. It starts

by reviewing in Section 3.1.1 the related literature, then describes Section 3.1.2

the ‘Eigen’ light field approach [69] that performs FR under pose variations, and

finally introduces in Section 3.1.3 our integrated approach. Section 3.1.4 presents

algorithms for recovering the identity signature that is invariant to illumination

and pose. Section 3.2 gives our experimental results on the PIE database [75] and

comparisons with other approaches.

3.1 Principle of Illuminating Light Field

3.1.1 Literature review

Identity, illumination, and pose

Three factors are involved in face recognition, namely illumination, pose, and iden-

tity. Using the human face images as examples, we now address issues involved in

each of the three factors by fixing the other two.

• Illumination. Various illumination models are available in the literature,

ranging from models for highly specular objects such as mirrors to models

for matte objects. Mostly objects belong to the latter category, which is

described by a Lambertian reflectance model for its simplicity. Early shape
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from shading approaches [10] assumed a constant albedo field. However,

this assumption is violated at locations such as eyes and mouth edges. For

the human face, the Lambertian reflectance model with a varying albedo

field provides a reasonable approximation [68, 74, 95, 103, 204]. The Phong

illumination model also has found application [66]. This proposed method

adopts the Lambertian reflectance model with a varying albedo field to model

the effect of illumination.

• Pose. The issue of pose essentially amounts to a correspondence problem.

If dense correspondences across poses are available and if a Lambertian re-

flectance model is further assumed, a rank-1 constraint is implied because

theoretically, a 3D model can be recovered and used to render novel poses.

However, recovering a 3D model from 2D images is a difficult task. There

are two types of approaches: model-based and image-based. Model-based

approaches [66, 139, 145, 146] require explicit knowledge of prior 3D mod-

els, while image-based approaches [125, 129, 142, 143, 144] do not use prior

3D models. In general, model-based approaches [66, 139, 145, 146] register

the 2D face image to 3D models that are given beforehand. In [139, 146],

a generative face model is deformed through bundle adjustment to fit 2D

images. In [145], a generative face model is used to regularize the 3D model

recovered using the SfM algorithm. In [66], 3D morphable models are con-

structed based on many prior 3D models. There are mainly three types of

image-based approaches: Structure from motion (SfM) [125, 129], visual hull

[142, 144], and light field rendering [143, 140] methods. The SfM approach

[125] works with sparse correspondence and does not reliably recover the 3D

model amenable for practical use. The visual hull methods [142, 144] assume
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that the shape of the object is convex, which is not always satisfied by the

human face, and also require accurate calibration information. The light

field rendering methods [143, 140] relax the requirement of calibration by a

fine quantization of the pose space and recover a novel view by sampling the

captured data that form the so-called light field. The proposed method is

image-based, so no prior 3D models are used. It handles a given set of views

through an analysis analogous to the light field concept. However, no novel

poses are rendered.

• Identity. One straightforward method to describe the identity is through

discrete labels. However, using this discrete description it is impossible to

establish a link between objects used in the training and testing stages in

terms of the identity. An alternative way is to associate a discrete label with

a continuous-valued variable, which is regarded as an identity signature. One

good example is to use subspace encoding [47, 62], where linear generalization

is assumed to incorporate the fact that all human faces are similar. Once the

subspace basis are learned from the training set, they are used to characterize

the gallery/probe set, thus enabling the required generalization capability. In

this chapter, we also use the subspace method to describe the identity.

Face recognition under illumination variation

FR under illumination variation must take into account the two factors of identity

and illumination. Refer to Section 2.2.1 in Chapter 2 for a review of related work.
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Face recognition under pose variation

As mentioned earlier, pose variation essentially amounts to a correspondence prob-

lem. If dense correspondences across poses are available and a Lambertian re-

flectance is assumed, then a rank-1 constraint is implied. Unfortunately, finding

correspondences is a very difficult task and, therefore there exist no subspace based

on an appearance representation when confronted with pose variation. Approaches

to face recognition under pose variation [68, 69, 72] avoid the correspondence prob-

lem by sampling the continuous pose space into a set of poses, v.i.z. storing mul-

tiple images at different poses for each person at least in the training set. In [72],

view-based ‘Eigenfaces’ are learned from the training set and used for recognition.

In [68], a denser sampling is used to cover the pose space. However, as [68] uses

object-specific images, appearances belonging to a novel object (i.e. not in the

training set) cannot be handled. In [69], the concept of light field [143] is used

to characterize the continuous pose space. ‘Eigen’ light fields are learnt from the

training set. However, the implementation of [69] still discretizes the pose space

and recognition can be based on probe images at poses in the discretized set. One

should note that the light field is not related to variation in illumination.

Face recognition under illumination and pose variations

Approaches to handling both illumination and pose variations include [66, 70, 77,

78, 202]. The approach [66] uses morphable 3D models to characterize the human

faces. Both geometry and texture are linearly spanned by those of the training

ensemble consisting of 3D prior models. It is able to handle both illumination and

pose variations. Its only weakness is a complicated fitting algorithm. Recently, a

fitting algorithm more efficient than suggested in [66] is proposed in [73]. In [70],
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the Fisher light field is proposed to handle both illumination and pose variations,

where the light field is used to cover the pose variation and the Fisher discriminant

analysis to cover the illumination variation. Since discriminant analysis is just a

statistical analysis tool which minimizes the within-class scatter while maximizing

the between-class clatter and has no relationship with any physical illumination

model, it is questionable that discriminant analysis is able to generalize to new

lighting conditions. Instead, this generalization may be inferior because discrim-

inant analysis tends to overly tune to the lighting conditions in the training set.

The ‘Tensorface’ approach [77, 78] uses a multilinear analysis to handle various

factors such as identity, illumination, pose, and expression. The factors of identity

and illumination are suitable for linear analysis, as evidenced by the ‘Eigenface’

approach (assuming a fixed illumination and a fixed pose) and the subspace in-

duced by the Lambertian model, respectively. However, the factor of expression is

arguably amenable for linear analysis and the factor of pose is not amenable for lin-

ear analysis. In [202], preliminary results are reported by first warping the albedo

and surface normal fields at the desired pose and then carrying on recognition as

usual.

3.1.2 Pose-invariant identity signature

The light field measures the radiance in free space (free of occluders) as a 4D

function of position and direction. An image is a 2D slice of the 4D light field.

If the space is only 2D, the light field is then a 2D function. This is illustrated

in Figure 3.1 (also see [69] for another illustration), where a camera conceptually

moves along a circle, within which a square object with four differently colored

sides resides. The 2D light field L is a function of θ and φ as properly defined
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in Figure 3.1. The image of the 2D object is just a vertical line. If the camera

is allowed to leave the circle, then a curve is traced out in the light field to form

the image, i.e. the light field is accordingly sampled. Even though the light field

for a 3D object is a 4D function, we still use the notation L(θ, φ) for the sake of

simplification.

Figure 3.1: This figure illustrates the 2D light-field of a 2D object (a square with

four differently colored sides), which is placed within an circle. The angles θ and

φ are used to relate the viewpoint with the radiance from the object. The right

image shows the actual light field for the square object.

Starting from the light fields {Ln(θ, φ); n = 1, ..., N} of the training sam-

ples, the ‘Eigen’ light field approach conducts a PCA to find the eigenvectors

{ei(θ, φ); i = 1, ..., m} which span a rank-m subspace. The ‘Eigen’ light field

[69] is again motivated by the similarity among the human faces. Using the fact

[47, 62] that: If YTY has an eigenpair (λ, v), then YYT has a corresponding eigen-

pair (λ, Yv), we know that ei(θ, φ) is just a linear combination of the Ln(θ, φ)’s,

i.e., there exist ain’s such that

ei(θ, φ) =
∑

n

ainLn(θ, φ). (3.1)

For an arbitrary subject, its light field L(θ, φ) lies in this rank-m subspace. In
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other words, there exists coefficients fi’s such that, ∀(θ, φ),

L(θ, φ) =
m

∑

i=1

fiei(θ, φ) = e(θ, φ)Tf, (3.2)

where e(θ, φ) ≡ [⇓m
i=1 ei(θ, φ)]m×1 and f = [⇓m

i=1 fi]m×1.

As mentioned earlier, to obtain an image hv at a particular pose v (a collection

of d pixels) one should sample the light field. Suppose that one pixel hv is the

point sample of the light field associated with the coordinate (θv, φv), i.e.,

hv = L(θv, φv). (3.3)

The image hv can be expressed as

hv ≡ [⇓d
i=1 hv

i ] = [⇓d
i=1 L(θv

i , φ
v
i )], (3.4)

where (θv
i , φ

v
i ) is the corresponding coordinate in the light field for the pixel hv

i .

Substituting (3.2) into (3.4) yields

hv = [⇓d
i=1 e(θv

i , φ
v
i )
T]f = Evf, (3.5)

where Ev ≡ [⇓d
i=1 e(θv

i , φ
v
i )
T]d×m.

Eq. (3.5) has an important implication: f is a pose-invariant identity signature

because the pose information is encoded in Ev. This is summarized in Proposition

3.1.

Proposition 3.1: The identity signature f as derived in (3.5) is pose-invariant.

Constructing a light field is a practically difficult task. However, if only some

specific poses are of interest with each pose sampling a subset of the light field,

we can only focus on the portion of the light field that is equivalent to the union

of these subsets. Suppose that the K poses are of interest are {v1, ..., vK} and the

corresponding images at these poses are {hv1 , . . . , hvK} with hvk expressed as in
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(3.4), the portion of the light field of focus is nothing but [⇓K
k=1 [⇓d

i=1 L(θvk
i , φvk

i )] ],

which is a ‘long’ Kd × 1 vector obtained by stacking all the images at all these

poses. The introduction of such a ‘long’ vector eases our computation: (i) If we are

interested in a particular view v, we just simply take out those rows corresponding

to this view. (ii) In this context, computing the ‘Eigen’ light field is equivalent to

performing PCA on the ensemble consisting of a collection of such ‘long’ vectors.

The concept of light field was introduced in the computer graphics literature

[143]. A strict assumption is that the scene be static. While characterizing the ap-

pearances of one object at given views using the concept of light field is legitimate,

generalizing this to many objects is questionable since the lights fields belonging

to different objects are not in correspondence, i.e. they are not shape-free in the

terminology of [49, 76]. The mismatch in correspondence arises from differences in

head sizes and locations in world coordinator system of different objects, and so

on. Typically, correspondences between different objects are established using face

normalization or registration is performed. Unfortunately, the normalization step

ruins the static scene requirement in the light field theory. On the other hand, as

argued in [49, 76], since the shape-free appearance is amenable for linear analysis,

we can pursue PCA on the shape-free vector L, similar to the ‘Eigen’ light field

approach [69]. This point is illustrated in [71]. Following [71], we also use the term

light field in a loose sense.

3.1.3 Illumination- and pose-invariant identity signature

As mentioned earlier and in [143], the underlying assumption about the concept

of light is one of fixed illumination. We now consider the light fields formed under

varying illumination, i.e., illuminating the light field.
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Clearly, the light field under a fixed illumination s, Ls(θ, φ), follows the Lam-

bertian reflectance model:

Ls(θ, φ) = t(θ, φ)Ts, (3.6)

where t(θ, φ) is the product of the albedo and the surface normal at a proper pixel

and does not depend on s. Combining (3.1) and (3.6) yields the ‘Eigen’ light field

es
i (θ, φ) under the illumination s as,

es
i (θ, φ) =

∑

n

aintn(θ, φ)Ts = tei(θ, φ)Ts, (3.7)

where tei(θ, φ) ≡ ∑

n aintn(θ, φ). Eq. (3.2) then becomes

Ls(θ, φ) = [⇓m
i=1 tei(θ, φ)Ts]Tf = W(θ, φ)(f ⊗ s), (3.8)

where W(θ, φ) ≡ [⇒m
i=1 tei(θ, φ)]1×3m does not depend on s. This successfully leads

to a two-factor analysis [138, 187].

A pixel hvs under a pose v and an illumination s is a point sample of the light

field Ls(θ, φ) at coordinate (θv, φv), i.e.,

hvs = Ls(θv, φv) = W(θv, φv)(f ⊗ s), (3.9)

and an image hvs under the pose v and illumination s, which traces a set of d

samples of the light field under illumination s, is

hvs = [⇓d
i=1 hvs

i ] = [⇓d
i=1 W(θv

i , φ
v
i )](f ⊗ s) = Wv(θ, φ)(f ⊗ s), (3.10)

where Wv(θ, φ) ≡ [⇓d
i=1 W(θv

i , φ
v
i )]d×3m. Eq. (3.10) has an important implica-

tion: The coefficient vector f provides an identity signature invariant to both pose

and illumination because the pose is absorbed in Wv(θ, φ) and the illumination is

absorbed in s.
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Proposition 3.2: The identity signature f as derived in (3.10) is illumination

and pose-invariant.

The remaining questions are how to learn the basis matrix W(θ, φ) from a given

training ensemble and how to compute the blending coefficient vector f as well as

s for an arbitrary image hvs. The next section presents the algorithms in detail.

3.1.4 Learning algorithms

Learning the basis matrix W(θ, φ)

Suppose that the training ensemble is given as {Ls
n(θ, φ); n = 1, ...N, s = 1, ..., S},

where Ls
n(θ, φ) is the light field of the nth training object under illumination s (a

Kd×1 vector as explained in Section 3.1.2). Learning W(θ, φ) (a Kd×mr matrix

where m is the rank for the identity and r is the rank for the illumination) from the

training ensemble is detailed in [138] and is further extended in [187] by imposing

the integrability constraint. The main difference between [138] and [187] is the

following: In [138], the recovered W(θ, φ) minimizes the approximation error in

the mean square sense and not necessarily satisfies the integrability constraint. In

other words, the hypothetical base objects in W(θ, φ) is not integrable. In [187],

the recovered W(θ, φ) minimizes the above approximation error as well as a cost

function invoked by violating the integrability constraint. As a consequence, [138]

can only process the image ensemble consisting of different objects under the same

set of illumination (e.g. the case considered here) while [187] can process the image

ensemble consisting of different objects under completely different illumination.

Here, we follow the approach in [138] to derive W(θ, φ) for simplicity. The basic

underlying principle is to use a two-fold SVD algorithm that is reviewed below.

The following two matrices (A-type and B-type) are first constructed by group-
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ing the ‘long’ vectors {Ls
n(θ, φ); n = 1, ...N, s = 1, ..., S} in two ways:

A = [⇓N
n=1 [⇒S

s=1 Ls
n(θ, φ)] ], B = [⇓S

s=1 [⇒N
n=1 Ls

n(θ, φ)] ], (3.11)

where A is a KNd×S matrix whose rows stack together the light fields of different

identities under the same illumination and whose columns correspond to different

illumination and B is a KSd×N matrix whose rows stack together the light fields

under different illumination for the same identity and whose columns correspond

to different identities. It is obvious that we can convert from an A-type matrix to

B-type and vice versa.

We perform the SVD for the A matrix as A = UADAVTA and keep the top r rows

of the column basis VTA for the illumination, denoted by S. We do a similar thing

to the B matrix and keep the top m rows of the column basis VTB for the identities,

denoted by F. Direct SVD of the A and B matrices are numerically inefficient or

even prohibitive since they are extremely ‘tall’. Also it is unnecessary to compute U

and D as we are interested only in the V part of the SVD result. For computational

savings, we observe that VA encodes the eigenvectors of ATA = VAD2
AVTA. Since

the size of ATA is only S × S, computing its eigenvalues is numerically stable.

Therefore, we simply first compute ATA and then perform its ‘Eigen’ decomposition

to find VA. Similarly, we can compute VB.

We now have the matrices S and F at our disposal. To find W(θ, φ), we first

compute A′ = AST, where A′ is a KNd×r matrix. Notice that A′ is still an A-type

matrix, so we can convert A′ to a B-type matrix B′ following the strategy described

in (3.11), where B′ is a Krd × N matrix. Thirdly, we compute W′ = B′FT, where

W′ is a Krd × m matrix. The rest is to group W′ to form a Kd × mr matrix W.
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Recovering the blending coefficient vector f from an image

Given W(θ, φ) = [⇒m
i=1 [⇒r

j=1 Wij(θ, φ)] ]Kd×mr, where Wij(θ, φ) denotes the ((i−

1)∗r+j)th column of the W(θ, φ) matrix, computing f and s for an arbitrary image

hvs utilizes (3.10) iteratively [187]. Notice that we need only the portion of W(θ, φ)

corresponding to the pose v, denoted by Wv(θ, φ) = [⇒m
i=1 [⇒r

j=1 Wv
ij(θ, φ)] ]d×mr.

If f is fixed, (3.10) is linear in s and its least square (LS) solution is

s = [⇒r
j=1 ([⇒m

i=1 Wv
ij(θ, φ)]f) ]†hvs, (3.12)

where [.]† is a matrix psuedo-inverse; if s is fixed, (3.10) is linear in f and its LS

solution is

f =









[⇒m
i=1 ([⇒r

j=1 Wv
ij(θ, φ)]s) ]

1T









† 







hvs

1









, (3.13)

where 1 is a vector of 1’s. To obtain (3.13), we also impose fT1 = 1 to normalize

the solution to the same range, which facilitates the recognition task. We iterate

this process until convergence. Meanwhile, we can also take into account the pixels

in shadows as in [187].

Recovering the blending coefficient vector f from a group of images

This iterative algorithm can be easily modified to handle a group of Q images

{hv1s1, . . . , hvQsQ} having the same f but different s’s since multiple equations like

(3.10) can be formulated. To be specific, we have the following iterative equations:

sq = [⇒r
j=1 ([⇒m

i=1 W
vq

ij (θ, φ)]f) ]†hvqsq ; q = 1, 2, . . . , Q, (3.14)

f =









[⇓Q
q=1 [⇒m

i=1 ([⇒r
j=1 W

vq

ij (θ, φ)]sq) ] ]

1T









† 







[⇓Q
q=1 hvqsq ]

1









. (3.15)

In practice, using a group of images yields a robust estimate for f.
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The present of shadow pixels affects the learning algorithm. Handling shadows

can be performed in the same fashion as in Chapter 2.

3.2 Face Recognition across Illumination and Poses

3.2.1 PIE database and recognition setting

We use the ‘illum’ subset of the PIE database [75] in our experiments. This subset

has 68 subjects under 21 illumination and 13 poses. Out of 21 illumination configu-

ration, we select 12 denoted by F = {f16, f15, f13, f21, f12, f11, f08, f06, f10, f18, f04, f02}

as in [70], which typically span the set of variations. Out of the 13 poses, we select

9 denoted by C = {c22, c02, c37, c05, c27, c29, c11, c14, c34}, which cover from the left

profile to the right profile. In total, we have 68*12*9=7344 images. Figure 3.2

displays one PIE object under illumination and pose variations.

Registration is performed by aligning the eyes and mouth to desired positions.

No flow computation is carried on for further alignment. After the pre-processing

step, the used face image is of size 48 by 40, i.e. d = 1920. Also, we only use gray

scale images by taking the average of the red, green, and blue channels of their

color versions. We believe that our recognition rates can be boosted by using color

images and finer registrations. Figure 3.2 shows some examples of the face images

actually used in recognition.

We randomly divide the 68 subjects into two parts. The first 34 subjects are

used in the training set and the remaining 34 subjects are used in the gallery and

probe sets. It is guaranteed that there is no identity overlap between the training

set and the gallery and probe sets. To form the light field, we use images at all

available poses. Since the illumination model has generalization capability, we
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c22

c02

c37

c05

c27

c29

c11

c14

c34

f16 f15 f13 f21 f12 f11 f08 f06 f10 f18 f04 f02

Figure 3.2: Examples of the face images of one PIE object (used in the testing

stage) under selected illumination and poses .

can select a minimum of 3 illumination in the training set. In our experiments,

the training set includes only 9 selected illumination to cover the second-order

harmonic components [95]. Notice that this is not possible in the Fisher light field

approach [70] that exhausts all illumination configurations.

The images belonging to the remaining 34 subjects are used in the gallery and

probe sets. The construction of the gallery and probe sets conforms to the following

two scenarios: (A) We use all the 34 images under one illumination sp and one pose

vp to form a gallery set and under the other illumination sg and the other pose
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vg to form a probe set. There are three cases of interest: same pose but different

illumination, different pose but same illumination, and different pose and different

illumination. We mainly concentrate on the third case with sp 6= sg and vp 6= vg.

Also our approach reduces to the ‘Eigen’ light field approach [69] if sp = sg and

to the generalized photometric stereo approach [187] if vp = vg. Thus, we have

(9 ∗ 12)2 − (9 ∗ 12) = 11, 556 tests, with each test giving rise to a recognition

score. (B) We divide C into three sets: C1 = {c22, c02, c37} (left-profile views),

C2 = {c05, c27, c29} (frontal views), and C3 = {c11, c14, c34} (right-profile views)

and F into 3 sets: F1 = {f16, f15, f13, f21} (left lights), F2 = {f12, f11, f08, f06}

(frontal lights), and F3 = {f10, f18, f04, f02} (right lights). For each of the thirty

four subjects, the gallery set contains all twelve images under the illumination in

Fg and the poses in Cg and the probe set all twelve images under the illumination

in Fp and the poses in Cg. We make sure that (Cp, FP ) 6= (Cg, Fg). Thus, we have

(3 ∗ 3)2 − (3 ∗ 3) = 72 tests in this scenario that has no counterpart in the Fisher

light field [70]. To make the recognition more difficult, we assume that the lighting

conditions for the training, gallery and probe sets are completely unknown when

recovering the identity signatures.

The testing strategy is similar to that described in Chapter 2.

1. Learn W from the training set using the bilinear learning algorithm [138, 204].

Figure 3.3 shows the W matrix obtained using the training set.

2. With W given, learn the identity signature f’s (as well as s’s) for all gallery and

probe elements (an element is an image in Scenario A and a group of images

in Scenario B) using the iterative algorithms in Section 3.1.4. Learning f and

s from one single image takes about 1-2 seconds in a Matlab implementation.

Figure 3.4 shows the reconstructed images using the learned f and s.
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3. Perform recognition using the nearest correlation coefficient.

Gallery f16 f15 f13 f21 f12 f11 f08 f06 f10 f18 f04 f02 Average

Probe

c22 56 41 62 68 71 71 53 65 41 44 38 21 52

c02 71 76 76 91 88 94 94 94 85 71 50 32 77

c37 79 82 82 94 94 97 94 94 76 65 65 50 81

c05 68 85 97 100 100 97 97 97 91 82 71 44 86

c27 94 100 100 100 100 – 100 100 100 97 94 76 97

c29 74 82 91 100 100 100 97 97 94 91 88 65 90

c11 50 53 68 79 85 97 97 88 79 82 71 62 76

c14 15 24 44 71 76 82 74 82 82 74 79 56 63

c34 18 18 47 50 56 65 62 56 44 44 41 38 45

Average 58 62 74 84 86 88 85 86 77 72 66 49 74

Table 3.1: Recognition rates for all the probe sets with a fixed gallery set (c27,f11).

3.2.2 Recognition performance

Scenario A

Table 3.1 shows the recognition results for all probe sets with a fixed gallery set

(c27,f11), whose gallery images are in a frontal pose and under a frontal illumi-

nation. Using this table we compare the three cases. The case of same pose but

different illumination has an average rate 97% (i.e. the average of all 11 cells on

the row c27), the case of different pose but same illumination has an average rate

88% (i.e. the average of all 8 cells on the column f11), the case of different pose

and different illumination has an average rate 70% (i.e. the average of all 88 cells

excluding the row c27 and the column f11). This shows that illumination varia-

tion is easier to handle than pose illumination and variations in both pose and

illumination are the most difficult to deal with.
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Gallery f16 f15 f13 f21 f12 f11 f08 f06 f10 f18 f04 f02 Average

Probe

c22 44 44 46 45 46 49 46 49 44 32 30 14 41

c02 55 58 59 62 63 62 60 60 54 48 40 22 54

c37 56 59 61 64 65 62 60 58 51 47 45 34 55

c05 56 63 66 67 68 65 59 58 54 51 45 36 57

c27 62 66 69 70 70 70 65 69 68 67 65 54 66

c29 46 53 53 61 60 63 59 62 66 68 62 60 60

c11 41 43 50 53 55 61 57 58 56 61 58 51 54

c14 19 24 39 49 53 58 58 61 60 61 57 48 49

c34 16 21 38 44 46 51 48 51 46 45 45 42 41

Average 44 48 53 57 59 60 57 59 56 53 50 40 53

Table 3.2: Average recognition rates for all the gallery sets. For each cell, say

the gallery set at (vg = c27,sg = f12), the average rate is taken over all probe sets

(vp,sp) where vp 6= vg and sp 6= sg. For example, the average rate for (c27,f11) is

the average of the rates in Table 3.1 excluding the row c27 and the column f11.

We now focus on the case of different pose and different illumination. For

each gallery set, we average the recognition scores of all the probe sets with both

pose and illumination different from the gallery set. Table 3.2 shows the average

recognition rates for all the gallery sets. As an interesting comparison, the ‘grand’

average is 53% (the last cell in Table 3.2) while that of the Fisher light field

approach [70] is 36%. In general, when the poses and illumination of the gallery

and probe sets become far apart, the recognition rates decrease. The best gallery

sets for recognition are those in frontal poses and under frontal illumination and the

worst gallery sets are those in profile views and off-frontal illumination. As shown

in Figures 1.5 and 3.2, the worst gallery sets consist of face images almost invisible

(See for example the images (c22, f02), (c34, f16), etc.), on which recognition can be

hardly performed.

Figure 3.5 presents the curves of the average recognition rates (i.e. the last
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columns and last rows of Tables 3.1 and 3.2) across poses and illumination. Clearly

the effect of illumination variations is not as strong as due to pose variations in the

sense that the curves of average recognition rates across illumination are flatter

than those across poses. Figure 3.5 also shows the curves of the average recogni-

tion rates obtained based on the top 3 and top 5 matches. Using more matches

increases the recognition rates significantly, which demonstrates the efficiency of

our recognition scheme. For comparison, Figure 3.5 also plots the average rates

obtained using the baseline PCA. These rates are well below ours. The ‘grand’

average is below 10% if the top 1 match is used.

Figure 3.3: The first nine columns of the learned W matrix.
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c22

c02

c37

c05

c27

c29

c11

c14

c34

f16 f15 f13 f21 f12 f11 f08 f06 f10 f18 f04 f02

Figure 3.4: The reconstruction results of the object in Figure 3.2. Notice that only

the f’s and s’s for the row c27 are used for reconstructing all the images.

Scenario B

This test scenario is designed for face recognition based on a group of images,

which can be under different poses and different illumination. Table 3.3 lists the

recognition rates, which are much higher than those in Tables 3.1 and 3.2. Also,

similar observations can be made regarding the effects of illumination and pose

variations.
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Figure 3.5: The average recognition rates across illumination (the top row) and

across poses (the bottom row) for three cases. Case (a) shows the average recog-

nition rate (averaging over all illumination/poses and all gallery sets) obtained

by the proposed algorithm using the top n matches. Case (b) shows the average

recognition rate (averaging over all illumination/poses for the gallery set (c27, f11)

only) obtained by the proposed algorithm using the top n matches. Case(c) shows

the average recognition rate (averaging over all illumination/poses and all gallery

sets) obtained by the ‘Eigenface’ algorithm using the top n matches.

3.2.3 Comparisons

Comparison with the Fisher light field

It is interesting to compare the proposed approach with the Fisher light field [70]

since both of them handle pose variation in a similar fashion. The main difference

lies in handling the illumination variation. Our approach uses the Lambertian

model while [70] uses Fisher discriminant analysis. Therefore, our approach can
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Gallery C1F1 C1F2 C1F3 C2F1 C2F2 C2F3 C3F1 C3F2 C3F3 Average

Probe

C1F1 – 100 85 100 94 82 62 85 94 88

C1F2 100 – 100 100 100 85 71 82 94 92

C1F3 85 97 – 88 88 91 76 62 65 82

C2F1 97 94 71 – 100 85 71 85 76 85

C2F2 97 100 85 100 – 100 76 91 85 92

C2F3 79 82 76 97 100 – 74 88 91 86

C3F2 59 59 68 85 76 71 – 100 82 75

C3F2 74 85 62 91 94 82 100 – 100 86

C3F3 88 82 62 79 79 94 85 100 – 84

Average 85 88 76 93 92 86 77 87 86 85

Table 3.3: The recognition rates for test scenario B.

generalize to novel illumination and [70] does not have such a generalization. Also,

in Section 3.2 the proposed approach leads to a new recognition scenario which is

not available in [70].

Comparison with the 3D morphable model

The 3D morphable model (3DMM) [66] is the state-of-the-art approach to identify

faces across illumination and poses. The proposed approach differs from the 3DMM

approach mainly as follows:

• Model-based v.s. image-based. The 3DMM approach is requires prior 3D

models while the proposed approach that is image-based needs only 2D im-

ages.

Linear assumptions are used in both approaches. The operating units in the

3DMM approach are 3D depth and texture, respectively, and two indepen-

dent linear models are assumed in both units. The operating unit in the

proposed approach is the product of the albedo and surface normal and a
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single linear model is assumed. As in the 3DMM approach, it seems that the

dimensionality of the proposed model can be ‘decomposed’ as the product

(or the addition) of the dimensionality of the surface normals and that of the

albedo field. However, empirically analysis shows [202] that such a decom-

position is not necessary and might overfit the problem, thereby indicating

that a subspace of rather low dimensionality can be used.

• Handling illumination. The Lambertian model is used in the proposed algo-

rithm and pixels in shadows and specular reflection regions are inferred and

excluded for consideration. The 3DMM approach uses the standard Phong

model to directly model diffuse and specular reflection on the face surface.

The 3DMM also takes into account inputs illuminated by colored lights us-

ing color transformation while the proposed approach only processes inputs

illuminated by white lights.

• Handling pose. The 3DMM approach can handle images at any pose, while

the current implementation of the proposed approach can handle images

sampled from a given set of poses. In order to handle arbitrary pose other

than those listed in the given set, the system should incorporate a tool to

render novel poses using given poses, which is left for future.

In the proposed approach, pixels at different poses might correspond to the

same point in the physical 3D model. In the 3DMM approach, one point is

only represented once for all the poses since the 3D model is used.

• Experiments Both the 3DMM and the proposed approaches conducted ex-

periments using the PIE database. However, different portions of the PIE

database are used. The 3DMM approach worked on the ‘lights’ part, where
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an ambient light source is always present. The proposed approach worked

on the ‘illum’ part with no ambient light source. As a consequence, some

images appear almost dark (refer to Figure 3) and there is little hope to

perform correct recognition based on these extreme images, explaining the

relatively low recognition rates compared with those produced by the 3DMM

approach.

In terms of computational complexity, the proposed algorithm is more com-

putationally efficient than the 3DMM approach. The proposed fitting al-

gorithm, taking 1-2 seconds to process one input image using Matlab im-

plementation, is simply linear (rather bilinear) and has a unique minimum;

while the 3DMM approach, taking 4.5 minutes to process one input image,

invokes a gradient descent algorithm that does not guarantee a global min-

imum. Also, the proposed algorithm is able to handle face images of very

small size. In the reported experiments, gray-level images are normalized

to size of 48 × 40. The size of color images used in the 3DMM approach is

unclear, but typically much larger.
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Part II: Face Recognition via

Kernel Learning
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Chapter 4

Probabilistic Kernel Principal

Component Analysis

Principal component analysis [12] is one of the most popular statistical data analy-

sis techniques with applications in numerous areas such as data compression, image

processing, computer vision, and pattern recognition, to name a few. However, the

PCA has two disadvantages: (i) it lacks a probabilistic model structure which is

important in many contexts such as mixture modeling and Bayesian decision (also

see [167]); and (ii) it restricts itself to a linear setting, where high-order statistical

information is discarded [181].

Probabilistic principal component analysis (PPCA) proposed by Tipping and

Bishop [167, 168] overcomes the first disadvantage. By letting the noise com-

ponent possess an isotropic structure, the PCA is implicitly embedded in a pa-

rameter learning stage for this model using the maximum likelihood estimation

(MLE) method. An efficient expectation/maximization (EM) algorithm [152] is

also developed to iteratively learn the parameters.

Kernel principal component analysis (KPCA) proposed by Schölkopf, Smola
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and Müller [181] overcomes the second disadvantage by using the so-called ‘kernel

trick’. The essential idea of the KPCA is to avoid the direct evaluation of the

required dot product in a high-dimensional feature space using the kernel function.

The feature space is called reproducing kernel Hilbert space (RKHS). Hence, no

explicit nonlinear mapping function projecting the data from the original space to

the feature space is needed. Since a nonlinear function is used, albeit in an implicit

fashion, high-order statistical information is captured. See [179] for a recent survey

on the kernel space and application on discovering pre-image and denoised pattern

in the original space.

We propose an approach to analyze kernel principal components in a probabilis-

tic manner. It naturally unifies PPCA and KPCA in one treatment to overcome

the both disadvantages of PCA. We call it the probabilistic kernel principal com-

ponent analysis (PKPCA). In this chapter, we present our development of the

PKPCA approach by treating the KPCA as a special case of PCA where the num-

ber of samples is smaller than the data dimension. One speciality of KPCA is the

data centering issue, which is also taken into account in Section 4.2.

While the kernel part retains the nonlinear modeling power, resulting in a

smaller reconstruction error, the additional probabilistic structure offers us (i) a

mixture modeling capacity of PKPCA, and (ii) an efficient classification scheme.

Mixture of PKPCA is derived to model the nonlinear structure containing non-

linear substructures in a systematic way. Mixture of PKPCA nontrivially extends

to the feature space induced by the kernel function, the theory of mixture of PPCA

proposed by Tipping and Bishop [167, 168]. An EM algorithm [152] is also devel-

oped to iteratively but efficiently learn the parameters of interest. We also show

how to compute two important quantities, namely the reconstruction error and
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the Mahalanobis distance.

Our analysis can be easily incorporated for a classification task. Our per-

formances are competitive to those produced by the mainstream kernel classifiers,

such as the support vector machine (SVM) and kernel Fisher discrimination (KFD)

classifier, but our analysis provides more regularized approximation to the data

structure.

Chapter organization

Section 4.1 briefly reviews the essentials of RKHS. Section 4.2 presents how to

compute the kernel principal components and to analyze these components in a

probabilistic manner. Section 4.3 presents the mixture of PKPCA and Section

4.4 presents the classification results on synthetic data and in a face recognition

application.

Two examples

Figure 4.1 shows two examples of nonlinear data structures 1 to be modeled. Figure

4.1(a) presents the first example: a C-shaped structure in the foreground. In the

context of data modeling, we consider only the foreground and assume a uniform

distribution within the C-shaped region and zeros outside. Figure 4.1(b) displays

200 sample points drawn from this density. In the context of pattern classification,

we consider both the foreground and the background and further assume that the

background class possess a uniform distribution outside the C-shaped region and

zeros inside. Figure 4.1(c) shows the samples for the background class.

1This means that, if conventional linear modeling techniques such as linear PCA are used,

the responses are badly approximated.
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Figure 4.1(d) shows the second example where the foreground nonlinear data

structure consists of two C-shaped substructures. Figures 4.1(e) and 4.1(f) present

the drawn samples for the foreground and background classes, respectively. We

mainly use this example for mixture modeling.

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(a) (b) (c)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(d) (e) (f)

Figure 4.1: Two nonlinear data structures (a)(d) and their drawn samples (of size

200) for the foreground class (b)(e) and the background (c)(f).

4.1 Reproducing Kernel Hilbert Space (RKHS)

We illustrate the principle of the RKHS by drawing an analogy of the RKHS, a

functional space, to a regular vector space Rd. We start by a d×d positive definite

matrix T = [ti(j)], where ti(j) is its (i, j)th element. By denoting the ith column

by ti = [ti(1), . . . , ti(d)]T, we have T = [t1, t2, . . . , td]. The eigen-decomposition of
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T is given as

T =
d

∑

n=1

νnξnξ
T
n ; νn > 0,

where (νn, ξn)’s are eigenpairs.

We define an inner product between two elements a and b in Rd as

< a, b > ≡ aTT−1b =
d

∑

n=1

ν−1
n aTξnξ

T
n b

=
d

∑

n=1

ν−1
n (a, ξn)(b, ξn),

where (u, v) ≡ uTv.

Suppose that g = [g(1), g(2), . . . , g(d)]T ∈ Rd and the identity matrix Id is

written as Id = [e1, e2, . . . , ed] where ei is the ith column of the Id matrix. The

inner product < ., . > possesses two important properties:

P1 : < ti, tj >= tTi T−1tj = tTi ej = ti(j)

P2 : < ti, g >= tTi T−1g = eTi g = g(i)

The RKHS, denoted by H, can be heuristically thought of as an f -dimensional

‘vector space’ Rf (f might be finite or infinite) associated with a positive kernel

function kx(y) = k(x, y). The existence of such kernel functions is guaranteed by

the Mercer’s Theorem [176] and the eigensystem of k(x, y) is given as

k(x, y) =
f

∑

n=1

νnξn(x)ξn(y); νn > 0;
f

∑

n=1

ν2
n < ∞. (4.1)

Similarly, the inner product is defined as, with a(x), b(x), and g(x) in H,

< a, b >H≡
f

∑

n=1

ν−1
n (a, ξn)(b, ξn),

where (u, v) ≡ ∫

x u(x)v(x)dx. Furthermore, the two properties known as reproduc-

ing properties hold too.

P1 : < kx, ky >H= kx(y),

P2 : < kx, g >H= g(x).
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An alternative perspective to view Eq. (4.1) is to consider a hypothetical

nonlinear mapping φ : Rd → Rf defined as

φ(x) = [ν
1/2
1 (x, ξ1), . . . , ν

1/2
f (x, ξf)]

T.

It is easy to verify that

φ(x)Tφ(y) = k(x, y) =< kx, ky >H .

Thus evaluating the dot product can be easily done by computing k(x, y) which

usually takes a parametric form. This is so-called ‘kernel trick’, which plays an

essential role in many kernel methods, such as SVM [19] and KPCA [181], kernel

Fisher discriminant analysis [177, 172], and kernel independent component analysis

[170]. In this chapter, we also adopt this viewpoint.

There are a lot of ways to construct a kernel function: see [17] for a list. One

example of k(x, y) is the radial basis function (RBF) kernel which is widely studied

in the literature and the focus of this chapter. It is defined as

k(x, y) = exp(− 1

2σ2
‖x − y‖2) ∀x, y ∈ Rd,

where σ controls the kernel width. This is an infinite-dimensional RKHS, i.e.,

f = ∞.

The RBF kernel is a special example of translation-invariant kernels of the

form k(x, y) = k(x− y) whose characteristics can be easily described using Fourier

theory [173]. In particular, the functions in the RKHS exhibit smoothness since

their Fourier transforms decay rapidly.
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4.2 Probabilistic Analysis of Kernel Principal Com-

ponents

4.2.1 Kernel principal component analysis

Suppose that {x1, x2, . . . , xN} are the given training samples in the original data

space Rd. KPCA operates in a feature space that is in fact a RKHS Hk induced

by a kernel function k. There exists a hypothetical nonlinear mapping function

φ : Rd → Rf , where f > d and f could even be infinite. The training samples in

Rf are denoted by Φf×N = [φ1, φ2, ..., φN ], where φn ≡ φ(xn) ∈ Rf . Denote the

sample mean in the feature space as

φ̄0 ≡
1

N

N
∑

n=1

φ(xn) = Φe, (4.2)

where eN×1 = N−11.

The f × f covariance matrix in the feature space denoted by Σ is given as

Σ ≡ 1

N

N
∑

n=1

(φn − φ̄0)(φn − φ̄0)
T = ΦJJTΦT = ΨΨT, (4.3)

where

J ≡ N−1/2(IN − e1T), Ψ ≡ ΦJ.

KPCA performs eigen-decomposition of the covariance matrix Σ in the feature

space. Due to the high dimensionality of the feature space, we often have insuffi-

cient number of samples, i.e., the rank of the Σ matrix is maximally N instead of f .

However, computing the eigensystem is still possible using the method presented

in [47, 62].

The explicit knowledge of the nonlinear feature mapping can be avoided using

the ‘kernel trick’ as in Section 4.1. Define

K̄ ≡ ΨTΨ = JTΦTΦJ = JTKJ, (4.4)
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where

K ≡ ΦTΦ

is the Gram matrix or the dot product matrix. The (i, j)th entry of the Gram

matrix K can be calculated as follows:

Kij = φ(xi)
Tφ(xj) = k(xi, xj).

As in Appendix 4.I and [47, 62], the eigensystem for Σ can be derived from K̃.

Suppose that the top r eigenpairs for K̄ are {(λn, vn)}q
n=1, where λn’s are sorted in

a non-increasing order, and the r top eigenpairs for Σ are {(λn, un)}q
n=1, then we

can compute un as

un = (λn)
−1/2Ψvn.

In a matrix form (if only the top q eigenvectors are retained),

Uq ≡ [u1, u2, ..., uq] = ΨVqΛ
−1/2
q = ΦJVqΛ

−1/2
q , (4.5)

where Vq ≡ [v1, v2, ..., vq] and Λq ≡ D[λ1, λ2, ..., λ1], a diagonal matrix whose diag-

onal elements are {λ1, λ2, ..., λq}.

It is clear that we are not operating in the full feature space, but in a low-

dimensional subspace of it, which is spanned by the training samples. It seems that

the modeling capacity is limited by subspace dimensionality, or by the number of

the samples. In reality, it however turns out that even in this subspace, the smallest

eigenvalues are very close to zero, which means that the full feature space can be

further captured by a subspace with an even-lower dimensionality. This motivates

us to use a latent model.
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4.2.2 Theory of PKPCA

Probabilistic analysis assumes that the data in the feature space follows a special

factor analysis model [15] which relates an f -dimensional data φ(x) to a latent

q-dimensional variable z as

φ(x) = µ + Wz + ε,

where z ∼ N(0, Iq), ε ∼ N(0, ρIf ), and W is a f × q loading matrix. Therefore,

φ(x) ∼ N(µ, S), where

S = WWT + ρIf .

Typically, we have q << N << f .

As shown in [167, 168], the MLE’s for µ and W, denoted by µ̂ and Ŵ, respec-

tively, are given by

µ̂ = φ̄0 =
1

N

N
∑

n=1

φ(xn) = Φe, (4.6)

Ŵ = Uq(Λq − ρIq)
1/2R, (4.7)

where R is any q × q orthogonal matrix, i.e., RTR = RRT = Iq, and Uq and Λq

contain the top q eigenvectors and eigenvalues of the Σ matrix. It is in this sense

that our probabilistic analysis coincides with the plain KPCA.

Substituting (4.5) into (4.7), we obtain the following:

Ŵ = ΨVqΛ
−1/2
q (Λq − ρIq)

1/2R = ΨQ = ΦJQ, (4.8)

where the N × q matrix Q is defined as

Q ≡ Vq(Iq − ρΛ−1
q )1/2R. (4.9)

Equation (4.8) has a very important implication: Ŵ lies in a linear subspace of Φ.

We name the Q matrix as empirical loading matrix since this relates the loading
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matrix to the empirical data. Also since the matrix (Iq−ρΛ−1
q ) in (4.9) is diagonal,

additional savings in computing its square root are realized.

The MLE for ρ, ρ̂, is given [167, 168] as

ρ̂ =
1

f − q
{tr(S) − tr(Λq)}. (4.10)

Assuming that the remaining eigenvalues are zero, (this is a reasonable assumption

supported by empirical evidences when f is finite), it is approximated as

ρ̂ ' 1

f − q
{tr(K) − tr(Λq)}. (4.11)

But when f is infinite, this is doubtful since this always gives ρ̂ = 0. In such a case,

there is no automatic way of learning this. We temporarily set a manual choice

for ρ̂. as in [182]. However, as shown later on, we can in fact study the limiting

case by letting ρ̂ approach zero in various cases. Even when a fixed ρ̂ is used, the

optimal estimate for W (or Ŵ) is still the same as in (4.8). It is interesting to

note that Moghaddam and Pentland [54] derived (4.10) in a different context by

minimizing the Kullback-Leibler divergence distance [4, 13].

Now, the covariance matrix is estimated by

Ŝ = ΦJQQTJTΦT + ρ̂If = ΦAΦT + ρ̂If ,

where

A ≡ JQQTJT.

This offers a regularized approximation to Σ = ΦJJTΦT. In ridge regression [9],

the form of S1 = ΦJJTΦT+ρIf (with rho a pre-specified small positive number) is

used to provide a regularized approximation. This has a smoothness interpretation

of the regression parameters. However, the eigenvalues of S1 always increase those

of Σ by an amount of ρ but the eigenvectors of the S1 are the same as those of Σ.
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Although S is in a compact form and also regularized, inversion of the S1 matrix

involves inverting an N × N matrix, which is still prohibitive in real applications

with a large N , whereas Ŝ
−1

involves inverting only a r×r M matrix (defined later).

This form of S1 is also used in [170, 171] for estimating the canonical correlation

and [175] for constructing the Bhattacharyya kernel.

In [182] the covariance matrix Σ is approximated as S2 = ΦJDJTΦT + ρIf ,

where D is a diagonal matrix whose many diagonal entries empirically shown to

be zero. This is not surprising as in our computation D = QQT is rank deficient.

However, we do not enforce D to be diagonal.

Inverting Ŝ is also easy by invoking the Woodbury formula [8],

Ŝ
−1

= (ρ̂If + ŴŴ
T
)−1 = ρ̂−1(If − ŴM−1Ŵ

T
) = ρ̂−1(If − ΦBΦT),

where

B ≡ JQM−1QTJT,

and the matrix Mr×r can be thought of as a ‘reciprocal’ matrix for Ŝ,

M ≡ ρ̂Iq + Ŵ
T
Ŵ = ρ̂Iq + L, (4.12)

with

L ≡ QTK̄Q.

Using the Q matrix in 4.9, Appendix 4.II calculates various quantities in a

closed form. For example,

M = RTΛqR, |S| = ρ̂(f−q)|M|.

Refer to Appendix 4.II for details.

From now on, we will drop the (̂.) notation that denotes the MLE estimate.

Whenever we mention some parameters requiring estimates, we mean the MLE

values.
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Parameter learning using EM

The key for the approach developed in Section 4.2.2 is (4.8) which relates W to Φ

using a linear equation and the empirical loading matrix Q. This motivates us to

use the EM learning algorithm to learn the Q matrix instead of the W matrix.

We now present the EM algorithm for learning the parameters Q and ρ in

PKPCA. Assume that Q(j) and ρ(j) are the estimates obtained after the jth itera-

tion. The iteration proceeds as follows:

Q(j+1) = K̄Q(j)(ρ(j)Iq + M−1Q(j)TK̄
2
Q(j))−1, (4.13)

ρ(j+1) =
1

f
tr(K̄ − K̄Q(j)M(j)−1

Q(j+1)TK̄), (4.14)

where M(j), defined in (4.9), is evaluated using Q(j).

As mentioned earlier, when f is infinite, using (4.14) is not appropriate and

hence a manual choice of ρ is used instead. With ρ fixed, Q is nothing but the

solution to (4.13) and one can check that Q given in (4.9) is the solution.

Computational efficiency

The above EM algorithm involves only inversions of q × q matrices and arrives at

the same results (up to an orthogonal matrix R) as direct computation. However,

in practice one may still use direct computation of complexity O(N3) since the

complexity of computing K̄
2

is O(N3). If we pre-compute K̄
2
, the complexity for

each iteration reduces to O(qN2). Clearly, the overall computation complexity

depends on the number of iterations needed for desired accuracy and the ratio of

N to q. In our experiment, the EM algorithm converges to reasonable accuracy

very fast, usually in less than 20 iterations.
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Reconstruction error and Mahalanobis distance

Given a vector y ∈ Rd, we are often interested in computing the following two

quantities:

1. the reconstruction error εφ(y) ≡ (φ(y)− φ̂(y))T(φ(y)− φ̂(y)) where φ̂(y) is the

reconstructed version of φ(y);

2. the Mahalanobis distance δφ(y) ≡ (φ(y) − φ̄0)
TS−1(φ(y) − φ̄0).

As shown in [167], the best predictor for φ(y) is φ̂(y) given by

φ̂(y) = W(WTW)−1WT(φ(y) − φ̄0) + φ̄0,

and φ(y) − φ̂(y) is given by

φ(y) − φ̂(y) = (If − W(WTW)−1WT)(φ(y) − φ̄0) = Π(φ(y) − φ0),

where the f × f matrix

Π ≡ If − W(WTW)−1WT

is symmetric and idempotent as

Π2 = Π.

So, εφ(y) is computed as follows:

εφ(y) = (φ(y) − φ̄0)
TΠ(φ(y) − φ̄0) = a(y) − b(y)TCb(y),

where C, ay, and by are defined by:

CN×N ≡ JQ(QTK̄Q)−1QTJT,

a(y) ≡ (φ(y) − φ̄0)
T(φ(y) − φ̄0) = k(y, y) − 2c(y)Te + eTKe,

b(y)N×1 ≡ ΦT(φ(y) − φ̄0) = c(y) − Ke,
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with

c(y)N×1 ≡ ΦTφ(y) = [k(x1, y), ..., k(xN , y)]T.

The Mahalanobis distance is calculated as follows:

δφ(y) = (φ(y) − φ̄0)
TS−1(φ(y) − φ̄0) = ρ−1{a(y) − b(y)TBb(y)}. (4.15)

Finally, an important observation is that as long as we can express φ̄0 and S as

in (4.2) and (4.3), i.e. there exist e and J that relate φ̄0 and S to Φ, we can safely

use the derivations presented in this section. This lays a solid foundation for the

development of the mixture of PKPCA theory.

We can study a limiting behavior of δφ(y) by defining

δ̂φ(y) ≡ lim
ρ→0

ρδφ(y) = a(y) − b(y)TB̂b(y), (4.16)

where B̂ ≡ limρ→0 B.

Experiments on kernel modeling

This part addresses the power of kernel modeling part in PKPCA in terms of the

reconstruction error. The probabilistic nature of PKPCA will be illustrated in the

next sections.

We compare PPCA and PKPCA since the only difference between them is the

kernel modeling part. We define the reconstruction error percentage η as follows:

η(y) =
ε(y)

yTy
, ηφ(y) =

εφ(y)

k(y, y)
,

where η(y) is for PPCA and ηφ(y) for PKPCA.

Figure 4.2 shows the histogram of η for the famous iris data2. This dataset

consists of 150 samples and is used in pattern classification tasks. We, however,

2This is available at the UCI Machine Learning Repository. The URL is

http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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Algorithm PPCA PPCA PKPCA PKPCA

q = 2 q = 3 q = 9 q = 15

Mean 8.23% 1.42% 3.88% 1.39%

Std. dev. 13.12% 4.52% 3.86% 1.39%

Table 4.1: PPCA and PKPCA reconstruction error percentage.

just treat it as a whole regardless of its class labels. Since it is just 4-d data, PPCA

keeps at most 3 principal component, i.e. q ≤ 3, while PKPCA has no such limit

and can have q ≤ 149. Figure 4.2 and Table 4.1 show that PKPCA with q = 9,

i.e. using 6% percent principal components produces a small η than PPCA with

q = 2 that uses 50% components. In addition, PKPCA with q = 15 that uses 10%

percent principal components produces a small η than PPCA with q = 3, using

75% components. A larger q produces even smaller η. This improvement benefits

from kernel modeling, which is able to capture the nonlinear structure of the data.

However, PKPCA involves much more computation than PPCA.

4.3 Mixture Modeling of Probabilistic Kernel Prin-

cipal Components

4.3.1 Theory of mixture of PKPCA

Mixture of PKPCA models the data in a high-dimensional feature space using

a mixture of I densities with each mixture component p(.|i) being a PKPCA

density associated with an empirical loading matrix Qi that can be derived from

corresponding ei and Ji (as shown below). For ρi’s, we assume ρi ≡ ρ with ρ fixed.
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Figure 4.2: Histogram of η for iris data obtained by (a) PPCA with q = 2, (b)

PPCA with q = 3, (c) PKPCA with Gaussian kernel with q = 9, σ = 2 and

ρ = 0.001, and (d) PKPCA with Gaussian kernel with q = 15, σ = 2 and ρ = 0.001.

Mathematically,

p(φ(x)) =
I

∑

i=1

mip(φ(x)|i) =
I

∑

i=1

miN(φ̄i, Si),

where mi’s are mixing probabilities summing up to 1, and p(φ(x)|i) = N(φ̄i, Si) is

the PKPCA density for the ith component defined as

N(φ̄i, Si) =
(2π)−f/2

|Si|1/2
exp{−1

2
δφ,i(x)} =

(2π)−f/2

ρ(f−qi)/2|Mi|1/2
exp{−1

2
δφ,i(x)}

= (2πρ)−f/2 exp{−1

2
δ̃φ,i(x)}

where δφ,i(x) is the Mahalanobis distance as in (4.15) with all parameters involved

coming from the ith component, and

δ̃φ,i(x) ≡ δφ,i(x) + log(|Mi|) + qi log(ρ−1).
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We call δ̃φ(x) as the ‘generalized’ Mahalanobis distance.

Parameter learning using EM

We invoke the ML principle to estimate the parameters of interest, i.e., {mi, Qi}’s

from the training data. It turns out that direct maximization is cumbersome

since the log-likelihood involves summations within logarithms. The iterative EM

algorithm [152, 167] is used instead.

Assume that {m(j)
i , Q

(j)
i } are the values obtained in the jth iteration. We begin

by computing the posterior responsibility rni.

r
(j)
ni ≡ p(j)(i|φn) =

mip
(j)(φn|i)

p(j)(φn)
=

m
(j)
i exp{−1

2
δ̃
(j)
φ,i(x)}

∑I
l=1 m

(j)
l exp{−1

2
δ̃
(j)
φ,l (x)}

. (4.17)

There is no need to calculate rni by exactly following (4.17). One only needs to

evaluate the numerator mi exp{−1
2
δ̃φ,i(x)} and perform normalization to guarantee

that
∑I

i=1 rni = 1.

The EM iterations compute the following quantities:

m
(j+1)
i =

1

N

N
∑

n=1

r
(j)
ni , (4.18)

φ̄
(j+1)
i =

∑N
n=1 r

(j)
ni φn

∑N
n=1 r

(j)
ni

=
N

∑

n=1

e
(j)
ni φn = Φe

(j)
i ,

where e
(j)
i = [e

(j)
1i , e

(j)
2i , . . . , e

(j)
Ni]

T with

e
(j)
ni ≡ r

(j)
ni

∑N
n=1 r

(j)
ni

.

It is easy to show that the local responsibility-weighted covariance matrix for

component i, Si, is obtained as

S
(j+1)
i ≡

N
∑

n=1

e
(j)
ni (φn − φ̄

(j+1)
i )(φn − φ̄

(j+1)
i )T = ΦJ

(j+1)
i J

(j+1)
i

T
ΦT,
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where

J
(j+1)
i ≡ (IN − e

(j)
i 1T) D1/2[e

(j)
1i , e

(j)
2i , . . . , e

(j)
Ni].

Using

K̄
(j+1)
i = J

(j+1)
i

T
KJ

(j+1)
i ,

the updated Q
(j+1)
i can obtained as

Q
(j+1)
i = V

(j+1)
qi,i (Iqi

− ρΛ
(j+1)
qi,i

−1
)1/2, (4.19)

where Λ
(j+1)
qi,i and V

(j+1)
qi,i are the top qi eigenvalues and eigenvectors of K̄

(j+1)
i . Also,

an EM algorithm for learning the Qi matrix as shown in Section 4.2.2 can be used

instead of direct computation.

The above derivations indicate that it is not necessary to start the EM itera-

tions from initializing the parameters e.g. {mi, Qi}’s. Instead, we can start from

assigning the posterior responsibility {rni}’s. Once assigned, we follow equations

(4.18) to (4.19) to compute the updated {mi, Qi}’s. The iterations then move

on. This way we can easily incorporate any prior knowledge gained from cluster-

ing techniques such as the ‘kernelized’ version of the K-means algorithm [181], or

other algorithms [180].

Parameter learning experiments

We now demonstrate how mixture of PKPCA performs by fitting it to the two

C-shapes shown in Figure 4.4(d). We set the following parameters: I = 2, q = 2,

ρ = 1e − 2, and σ = 8. The algorithm iterations are terminated if the changes in

the {rni}’s are small enough.

Figure 4.3(a) presents the initial configuration for the two C-shapes. We just

generate random numbers for {rni}’s followed by a normalization step to guarantee
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∑I
i=1 rni = 1. Figure 4.3(b) shows the mixture assignment after the first iteration

and Figure 4.3(c) the final configuration (only after 3 iterations). A final note is

that the EM algorithm can still converge to a local minimum. In this case, the

clustering method [180] is very helpful for initialization.
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Figure 4.3: (a) Initial configuration. (b) After first iteration. (c) Final configura-

tion. ‘+’ and ‘x’ denote two different mixture components.

4.3.2 Why mixture of PKPCA?

It is well known [180, 181] that kernel embedding results in clustering capability.

This raises the doubt whether PKPCA is sufficient to model a nonlinear struc-

ture with nonlinear substructures. We demonstrate the effectiveness of mixture of

PKPCA with the following examples.

Figure 4.4(a) shows a nonlinear structure containing a single C-shape and Fig-

ures 4.4(b) and 4.4(c) the contour plots, for the 1st and 2nd kernel principal com-

ponents, i.e. all points in the contour share the same principal component values.

These plots capture the nonlinear shape very precisely. Now in Figure 4.4(d), a

nonlinear structure containing two C-shapes is presented. Figures 4.4(e) and 4.4(f)

display the contour plots corresponding to 4.4(d). Clearly, they attempt to cap-

ture both C-shapes at the same time. This is not desirable. Ideally, we want to
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have two KPCAs, each modeling a different C-shape more precisely. However, the

ordinary KPCA has no such capability but PKPCA does. This naturally leads

us to considering a mixture of PKPCA. Section 4.4 also demonstrates this using

classification results.

The successful kernel clustering algorithm [180] shows that after kernel em-

bedding, the clusters become more separable. This further sheds light on the

effectiveness of mixture of PKPCA.

One may also ask: why not use the mixture of PPCA directly? Although a

mixture of PPCA is legitimate, its use is not elegant in this scenario since one

may need more than 2 components for Figure 4.4(d) to capture the data structure

due to the limitation of the linear setting in PCA. But mixture of PKPCA can

elegantly model it using two components.

4.4 Classification

4.4.1 PKPCA or mixture of PKPCA classifier

We now demonstrate the probabilistic interpretation embedded in PKPCA using a

pattern classification problem. Suppose we have N classes. For class n, a PKPCA

or mixture of PKPCA density p(φn(x)|n) is trained; then, the class label for a

point x is determined using the Bayesian decision principle by

n̂ = arg max
n=1,...,N

p(n)p(x|n) = arg max
n=1,...,N

p(n)p(φn(x)|n)|Jn(x)|, (4.20)

where p(n) is the prior distribution, p(x|n) is the conditional density for class n in

the original space, and Jn(x) is the Jacobi matrix for class n.

To use (4.20), we are confronted by two dilemmas: (i) the Jacobi matrices,

Jn(x)’s, are unknown since we have no knowledge of φn(x); and (ii) the densities,
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Figure 4.4: (a) One C-shape and contour plots of its (b) 1st and (c) 2nd KPCA

features. (d) Two C-shapes and its contour plots of its (e) 1st and (f) 2nd KPCA

features.

p(φn(x)|n)’s, involves infinite f . The latter is easily fixed by assuming ρc ≡ ρ for

all classes, where ρn is the parameter in the density p(φn(x)|n) for class n.

One trick to attack the first dilemma is to use the same kernel function for all

the classes with the same kernel width σ, i.e. σn = σ. However, it might not be

appropriate since different classes possess different data structures. An alternative

approach is that we still use different kernel functions for different classes but we

approximate the Jacobi matrices. We use the following approximation:

|Jn(x)| ' const, ∀x.

Figure 4.5 demonstrates our rationale. Figure 4.5(a) presents the contour plots
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for the true density to be modeled, which is uniform inside the black C-shaped

region (Figure 4.1(a)). All contour plots are located on the boundary. We fit a

PKPCA density (σ = 15, q = 20, and ρ = 1e − 6) based on the samples shown

in Figure 4.1(b) and visualize the density using Figure 4.5(b), which displays the

map of log(δφ(x)). To verify that the values in the C-shaped region are uniform,

we show in Figure 4.5(c) the contour plots for δ̃φ(x) inside the C-shaped region.

Most contours are close to the boundary, which indicates the uniformity of the

density p(φ(x)) inside the C-shaped region and thus the Jacobi approximation

which relates p(φ(x)) and p(x) is reasonable.

The above approximation leads to a linear decision rule. For example, in a

two-class problem, the decision rule is, for some α > 0,

If p(φ1(x)|1) ≥ α p(φ2(x)|2) then class 1; Else class 2

In the sequel, we simply take α = 1.
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Figure 4.5: The approximation of the Jacobi matrix. (a) The contour plots of the

true density: uniform inside the C-shaped region. (b) The map of log(δφ). (c) The

contour plots of δ̃φ inside the C-shaped region.

Putting the above discussions together, we have the following decision rules:

• If PKPCA densities are learned for all classes, i.e., for class n, we learn
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{ρn = ρ, Qn}, it is easy to check that the classifier performs the following:

arg min
n=1,...,N

δ̃n
φ(x),

where δ̃n is the ‘generalized’ Mahalanobis distance.

• If mixture of PKPCA densities are learned for all classes, i.e., for the class

c, we learn {ρn = ρ, mn,1, Qn,1, ..., mn,Ic
, Qn,In

} with In being the number of

mixture components, then the classifier decides as follows:

arg max
n=1,...,N

In
∑

j=1

mn,j exp{−1

2
δ̃n
φ,j(x)}.

4.4.2 Experiments

Synthetic Data

We consider a 2-class problem with foreground (class 1) and background (class 2)

classes given in Figure 4.1(a), where the letter ‘C’ or ‘O’ means the foreground

class. We then draw 200 samples for both classes as shown in Figures 4.1 and 4.8.

Figure 4.6 presents the classification results obtained by the PKPCA classifier

with different kernel widths for different classes (PKPCA-d), the PKPCA classifier

with same kernel widths for different classes (PKPCA-s), the support vector ma-

chine (SVM) [19], and the kernel Fisher discriminant analysis (KFDA) [177]. In

PKPCA-s, SVM and KFD, the kernel width σ is tuned (via exhaustive search from

1 to 100) to yield the best empirical classification results and reported in Table

4.2. The PKPCA-d parameters actually used are also reported in Table 4.2, where

the kernel widths for the background and foreground classes are found via the

procedures described in Appendix 4.III. As shown in Figure 4.6, the classification

boundary obtained by PKPCA-d is very smooth and very similar to the original
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Algorithm Single C-shape Single O-shape Double C-shapes

PKPCA-d 1.57% 3.80% 7.49%

q = 30, ρ = 10−8 q = 20, ρ = 10−6 q = 20, ρ = 10−6

σ1 = 15,σ2 = 35 σ1 = 15, σ2 = 35 σ1 = 15, σ2 = 35

PKPCA-s 1.95% 5.50% 1.85%

q = 30, ρ = 10−8 q = 30, ρ = 10−8 q = 20, ρ = 10−6

σ = 1 σ = 1 σ = 1

SVM 1.80% 5.45% 1.69%

σ = 1 σ = 1 σ = 1

KFDA 1.84% 5.47% 1.82%

σ = 1, 30 components σ = 1, 20 components σ = 1, 20 components

mix. PKPCA NA NA 0.70%

q = 20, ρ = 10−6, I1 = 2,

σ1 = 8, I2 = 1, σ2 = 35

Table 4.2: Classification error on the single C-shaped, the single O-shape, and the

double C-shapes.

boundary, while those of PKPCA-s, SVM and KFDA seem to only replicate the

training samples, with holes and gaps. Table 4.2 indicates that our PKPCA-d

classifier outperforms the SVM and KFDA classifiers by some margin. Similar

observations can be made based on the experimental results on a single O-shape

as shown in Figure 4.8.

The superior performance of PKPCA-d classifer mainly arises from its ability

to model different classes with different kernel functions, while the PKPCA-s, SVM

and KFDA employ only one kernel. This is a big advantage since as seen in our

synthetic examples we clearly need different kernel widths for the foreground and
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Figure 4.6: The classification results on the single C-shape obtained by (a)

PKPCA-d, (b) PKPCA-s, (c) SVM, and (d) KFDA.
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Figure 4.7: The classification results on the double C-shape obtained by (a)

PKPCA-d classfier, (b) SVM, and (c) mixture of PKPCA classfier with different

kernel widths.
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Figure 4.8: The classification results on the single O-shape.

background classes. More importantly, PKPCA provides a regularized approxima-

tion to the data structure; thus its decision boundary is very smooth. Also, the

probabilistic interpretation of PKPCA enables the PKPCA classifier to deal with

an N -class problem as easily as KFDA, while the SVM is basically designed for a

two-class problem and extending it to an M-class is not very straightforward.

We now illustrate the mixture of PKPCA classifier by applying it to the double

C-shapes shown in Figure 4.1(d). We fit the mixture of PKPCA density for the

foreground class based on the samples shown in Figure 4.1(e) and the PKPCA

density for the background class based on the samples shown in Figure 4.1(f).

Figure 4.7 and Table 4.2 present the classification results. Clearly the mixture

of PKPCA classifier produces the best performance in terms of the classification

error. Also the decision boundary is very smooth.
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One important observation is that the PKPCA classifier with different kernel

widths performs poorly. This is because the selected kernel width attempts to

cover both nonlinear substructures simultaneously, which actually over-smoothes

each substructure (see Figure 4.7(a)). Hence, caution should be exercised when

modeling a mixture data via PKPCA densities of different kernel widths.

IDA Benchmark

We also test our classifier on the IDA benchmark3 repository [179]. To make our

results comparable, we use the cross-validation (the same procedure as in [179])

to choose our parameters; also we invoke the PKPCA density without mixture

modeling and the same kernel parameter for different classes. As tabulated in

Table. 4.3, our PKPCA classifier compared favorably to those of kernel classifiers

such as SVM and KFD. We believe that the classification results can be improved

by using PKPCA-d or even mixture of PKPCA classifier.

A real application: face recognition

We report face recognition results using a subset of the FERET database [58]

with 200 subjects only. Each subject has 3 images: (i) one taken under controlled

lighting condition with a neutral expression; (ii) one taken under the same lighting

condition as (i) but with different facial expressions (mostly smiling); and (iii)

one taken under different lighting condition and mostly with a neutral expression.

Figure 4.9 shows some face examples in this database.

Our experiment focuses on testing the generalization capability of our algo-

rithm. It is our hope that the training stage can learn the intrinsic characteristics

3This is available at http://ida.first.gmd.de/∼raetsch/data/benchmarks.htm.
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PKPCA-s SVM KFD

Banana 10.5 ± 0.4 11.5 ± 0.7 10.8 ± 0.5

B. Cancer 28.0 ± 4.7 26.0 ± 4.7 25.8 ± 4.6

Diabetes 24.8 ± 1.9 23.5 ± 1.7 23.2 ± 1.6

German 24.9 ± 2.2 23.6 ± 2.1 23.7 ± 2.2

Heart 16.8 ± 3.4 16.0 ± 3.3 16.1 ± 3.4

Image 2.8 ± 0.6 3.0 ± 0.6 3.3 ± 0.6

Ringnorm 1.6 ± 0.1 1.7 ± 0.1 1.5 ± 0.1

F. Solar 34.8 ± 1.9 32.4 ± 1.8 33.2 ± 1.7

Splice 12.2± 0.8 10.9 ± 0.7 10.5 ± 0.6

Thyroid 4.0 ± 2.0 4.8 ± 2.2 4.2 ± 2.1

Titanic 22.6 ± 1.3 22.4 ± 1.0 23.2 ± 2.0

Twonorm 2.6 ± 0.2 3.0 ± 0.2 2.6 ± 0.2

Waveform 11.4± 0.5 9.9 ± 0.4 9.9 ± 0.4

Table 4.3: The classification error on IDA benchmark repository. The SVM and

KFD results are reported in [179].

Figure 4.9: Top row: neutral faces. Middle row: faces with facial expression.

Bottom row: faces under different illumination. Image size is 24 by 21 in pixels.

of the space we are interested in. Therefore, we always keep the gallery and probe

sets separate. We randomly select 300 images belonging to 100 subjects as the
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gallery set for learning and the remaining 300 images as the probe set for testing.

This random division is repeated 20 times and we take their averages as the final

result.

General component analysis is not geared towards discrimination, thus yielding

inferior recognition results in practice. To this end, Moghaddam et al. [55, 56]

introduced the concept of intra-personal space (IPS). The IPS is constructed by

collecting all the difference images between any two image pairs belonging to the

same individual. The construction of the IPS is meant to capture all the possible

intra-personal variations introduced during image acquisition.

Suppose that we have learned some density pIPS on top of the IPS space and

we are given the gallery set consisting of images {x1, x2, . . . , xN} for N different

individuals. Given a probe image y, its identity n̂ is determined by

n̂ = arg max
c=1,...,N

pIPS(y − xn) = arg min
c=1,...,N

δ̂IPS,φ(y − xn).

Here we use the limiting Mahalanobis distance δ̂.

For comparison, we have implemented the following four methods. In PKPCA/IPS

and PPCA/IPS, the IPS is constructed based on the gallery set and the PKPCA/PPCA

density is fitted on top of that. In KPCA and PCA, all 300 training images are re-

garded lying in one face space and KPCA/PCA is then learned on that space. The

classifier sets the identity of a probe image as the identity of its nearest neighbor

in the gallery set.

Table 4.4 lists the recognition rate, averaging those of 20 simulations, using

the top 1 match. The PKPCA/IPS algorithm attains the best performance since

it combines the discriminative power of the IPS model and the merit of PKPCA.

However, compared to PPCA/IPS, the improvement is not significant, indicating

that second-order statistics might be enough after IPS modeling for the face recog-
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nition problem. However, PKPCA may be more effective since it also takes into

account high-order statistics. Another observation is that variations in illumina-

tion are easier to model than facial expression using subspace methods.

PKPCA/IPS PPCA/IPS KPCA PCA

Expression 78.55% 78.35% 63.85% 67.65%

Illumination 83.9% 81.85% 51.9% 73.1%

Average 81.23% 80.1% 57.88% 70.38%

Table 4.4: Recognition rate of various kernel and non-kernel subspace methods.

4.5 Appendix

Appendix 4.I: Two Lemmas on Matrix Computation

We introduce some related results on matrix computation using the following two

lemmas. The proofs are pretty straightforward and hence skipped here.

Lemma 4.1. Suppose that A is of size d × q with q < d and the matrix ATA

is of full rank, the matrices ATA and AAT have the same nonzero eigenvalues.

Lemma 4.2. Suppose that B = ρId + AAT+ and {τi; i = 1, 2, . . . , q} are

eigenvalues of the ATA matrix, the determinant |B| is given by

|B| =
q

∏

i=1

(ρ + τi)ρ
d−q, (4.21)

and the inverse matrix B−1 is given by

B−1 = ρ−1{If − A(ρIq + ATA)−1AT}.
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Appendix 4.II: A List of Important Quantities

Important quantities

RKHS: H = Rf .

Original observations: Xd×N = [x1, x2, ..., xN ]

Nonlinear mapping: φ(x) : Rd → Rf

Observations in RKHS: Φf×N = [φ1, φ2, ..., φN ].

Weight vector: eN×1 = N−11 (for example).

Mean: µf×1 = Φe

Centering matrix: JN×N = N−1/2(IN − e1T).

Covariance matrix (c.m.): Σf×f = ΦJJTΦT.

Gram matrix (g.m.): KN×N = ΦTΦ.

Centered g.m.: K̄N×N = JTKJ.

Eigenvalues of K̄: Λq = D[λ1, λ2, . . . , λq]q×q.

Eigenvectors of K̄: Vq = [v1, v2, . . . , vq]N×q.

Approximate c.m.: Sf×f = ΦAΦT + ρIf .

A matrix: AN×N = JVq(Iq − ρΛ−1
q )VTq JT.

Inverse of S: S−1
N×N = ρ−1(If − ΦBΦT).

B matrix: BN×N = JVq(Λ
−1
q − ρΛ−2

q )VTq JT.

C matrix: CN×N = JQ(QTK̄Q)−1QTJT.

Q matrix: QN×q = Vq(Iq − ρΛ−1
q )1/2R

M matrix: Mq×q = ρIq + QTK̄Q.

Computation related to L and M

We first compute L = QTK̄Q and then M.

L = RTQTK̄QR = RT(Iq − ρΛ−1
q )1/2VTq K̄Vq(Iq − ρΛ−1

q )1/2R
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= RT(Iq − ρΛ−1
q )1/2Λq(Iq − ρΛ−1

q )1/2R = RT(Λq − ρIq)R,

where the fact that VTq K̄Vq = VTq JTKJVq = Λq is used. Therefore,

M = ρIq + L = ρIq + RT(Λq − ρIq)R = RTΛqR.

|M| = |Λq| =
q

∏

i=1

λi, M−1 = RTΛ−1
q R.

Computation related to A, B, and C

A = JQQTJT = JVq(Iq − ρΛ−1
q )1/2RRT(Iq − ρΛ−1

q )1/2VTq JT

= JVq(Iq − ρΛ−1
q )VTq JT

B = JQM−1QTJT = JVq(Iq − ρΛ−1
q )1/2RRTΛ−1

q RRT(Iq − ρΛ−1
q )1/2VTq JT

= JVq(Λ
−1
q − ρΛ−2

q )VTq JT

C = JQ(QTK̄Q)−1QTJT

= JVq(Iq − ρΛ−1
q )1/2RRT(Λq − ρIq)

−1RRT(Iq − ρΛ−1
q )1/2VTq JT

= JVqΛ
−1
1 VTq JT

tr[AK] = tr[JVq(Iq − ρΛ−1
q )VTq JTK] = tr[(Iq − ρΛ−1

q )VTq JTKJVq]

= tr[(Iq − ρΛ−1
q )Λq] = tr[Λq] − ρq =

∑q
i=1 λi − ρq.

tr[BK] = tr[JVq(Λ
−1
q − ρΛ−2

q )VTq JTK] = tr[(Λ−1
q − ρΛ−2

q )VTq JTKJVq]

= tr[(Λ−1
q − ρΛ−2

q )Λq] = q − ρtr[Λ−1
q ] = q − ρ

∑q
i=1 λ−1

i .

113



Computation related to S

We have shown that

S−1 = ρ−1(If − ΦBΦT),

Also, we are often interested in computing tr(S−1Σ).

tr(S−1Σ) = tr(S−1ΨΨT) = tr(ΨTS−1Ψ) = ρ−1(tr(K̄) − tr(JTΦTΦBΦTΦJ))

= ρ−1(tr(K̄) − tr(K̄Vq(Λ
−1
q − ρΛ−2

q )VTq K̄)

= ρ−1(tr(bK) − tr(VqΛqΛ
−1
q (Iq − ρΛ−1

q )VTq ΛqV
T
q ))

= ρ−1(tr(K̄) − tr(Vq(Λq − ρIq)V
T
q )) = ρ−1(tr(K̄) − tr(Λq − ρIq))

= ρ−1(tr(K̄) − ∑q
i=1 λi) + q.

Also, using Lemma 4.2 in Appendix 4.I, the determinant of S is given by

|S| = ρf−q|M| = ρf−q|Λq| = ρf−q
q

∏

i=1

λi.

Appendix 4.III: Kernel selection

Only those functions satisfying the Mercer’s Theorem [176] can be used as ker-

nel functions. In general, the kernel function lies in some parameterized function

family. Denote the parameter of interest by θ. For example, θ can be the polyno-

mial degree in the polynomial kernel, or the kernel width in the Gaussian kernel.

The choice of θ remains an open question with the reason being that there is no

systematic criteria to judge the goodness. Again, we only focus on the Gaussian

kernel case; so θ = σ and f = ∞.

It seems that PKPCA offers a systematic ML principle to follow, i.e., picking

the σ which maximizes the likelihood or log-likelihood. However, it turns out that

the ML principle fails as it has an inherent bias towards a large σ value. The

log-likelihood L is given by:
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L = −Nf
2

log(2π) − N
2

log(|S|) − 1
2

∑N
n=1(φ(xn) − φ̄0)

TS−1(φ(x) − φ̄0)

∝ −N
2

∑q
i=1 log(λi) − N

2
tr(S−1Σ)

∝ −N
2

∑q
i=1 log(λi) − N

2
ρ−1(tr(K̄) − ∑q

i=1 λi)

By defining the following quantity:

E(σ) = − 2

N
L ∝

q
∑

i=1

log(λi) + ρ−1(tr(K̄) − tr(Λq)), (4.22)

the goal is to

min
σ

E(σ) subject to λq(σ) > ρ.
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Figure 4.10: (a) The curve of E(σ). (b) The curve of λ1(σ). We have set q = 30

and ρ = 1e−6.

We now show how it works. Figure 4.10(a) presents the curve of E(σ) obtained

using (4.22) for the C-shaped data (Figure 4.1(a)), which always has a bias toward

favoring a large σ. This is not surprising since a large σ makes the matrix K0 close

to a matrix of ones; hence the matrix K becomes close to a matrix of zeros, the

data variation is reduced, and therefore the likelihood is increased. If σ goes to ∞,

all data essentially reduces to one point in the feature space. This is also explained
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by Williams in [183]. Williams [183] has also studied the ratio of the sum of the

top q eigenvalues to that of all eigenvalues, and discovered the same bias.

We propose an alternative approach by examining the first eigenvalue, which

equals to the maximum variance of the projected data where the projection occurs

in the feature space induced by the kernel function. Figure 4.10(b) shows the plot

of the first eigenvalue λ1(σ) against σ. There is a unique maximum. We pick

this as our kernel width. This choice of the kernel width seems to have a close

relationship with the assumption on the Jacobi matrix in (4.4.1). Figure 4.11(a)

present the map of log(δφ(x)) for the single C-shape (with σ = 3) and Figure

4.11(b) the contour plots of δ̃φ(x). The map is very granular and the uniformity

inside the C-shaped region disappears. Figure 4.11(c) shows the map of log(δφ(x))

with σ = 36 and Figure 4.11(d) the contour plots of δ̃φ(x). Now, the map is over-

smoothed (compare the intensity change inside and outside the C-shaped region

with that of Figure 4.5(b)).
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Figure 4.11: (a) The map of log(δφ) and (b) the contour plots of δ̃φ inside the

C-shaped region, when σ = 3. (c) The map of log(δφ) and (d) the contour plots of

δ̃φ inside the C-shaped region, when σ = 36.
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Chapter 5

Probability Distances in

Reproducing Kernel Hilbert

Space

Probabilistic distance measures, defined as the distances between two probability

distributions, are important quantities and find their uses in many research areas

such as probability and statistics, pattern recognition, information theory, com-

munication and so on. In statistics, the probabilistic distances are often used in

asymptotic analysis. In pattern recognition, pattern separability is usually cali-

brated using probabilistic distance measures [5] like Chernoff distance and Bhattar-

chayya distance because they provide bounds for probability of error in a pattern

classification problem. In information theory, mutual information, a special exam-

ple of Kullback-Leibler divergence or relative entropy [4] is a fundamental quantity

related to the channel capacity. In communication, divergence and Bhattarchayya

distance measures are used for signal selection [156].

Direct evaluation of probabilistic distances is nontrivial since they involve inte-
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grals. Only within certain parametric families, say the widely-used Gaussian den-

sity, we have analytic expressions for probability distances. However, the Gaussian

density employs only up to second-order statistics and its modeling capacity is lin-

ear and hence rather limited when confronted with a nonlinear data structure. By

nonlinear data structure, we mean that if conventional linear modeling techniques

such as fitting the Gaussian density are used, the responses are badly approxi-

mated. To absorb the nonlinearity, mixture models or non-parametric densities

are used in practice. For such cases, one has to resort to numerical methods for

computing the probabilistic distances. Such computation is not robust in nature

since two approximations are invoked: one in estimating the density and the other

in evaluating the numerical integral.

In this chapter, we model the nonlinearity through a different approach: kernel

methods. The essence of kernel methods is to combine a linear algorithm with a

nonlinear embedding, which maps the data from the original vector space to the

reproducing kernel Hilbert space (RKHS). But, we need not require any explicit

knowledge of the nonlinear mapping function as long as we can cast our compu-

tations into dot product evaluations. Since a nonlinear function is used, albeit

in an implicit fashion, we achieve a new paradigm to study these distances and

investigate their uses in a different space.

Clearly, our computation depends on the assumption that the data is Gaussian

in RKHS. This assumption has been implicitly used in many kernel methods such

as [172, 181]. In [181], PCA operates on the RKHS. Even though it seems that

PCA needs only the covariance matrix without the Gaussianity assumption, it is

the deviation of the data from Gaussianity in the original space that drives us

to search for the principal components in the nonlinear feature space. In [172],
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discriminant analysis is performed on the feature space. It is well known that

discriminant analysis originated as a two-class problem by assuming that each

class is distributed as Gaussian with a common covariance matrix. Recently, the

Gaussianity is directly adopted in the literature [170, 171, 175]. In [170, 171], it is

used to compute the mutual information between two Gaussian random vectors in

RKHS. In [175], it is used to construct the so-called Bhattacharyya kernel. In fact,

the validity of this assumption boils down to a Gaussian process argument [175].

However, since the induced RKHS is certainly limited by the number of available

samples, a regularized covariance matrix is needed in [170, 171]. We also propose

a way to regularize the covariance matrix in this chapter.

Chapter organization

This chapter is organized as follows. Section 5.1 introduces several probabilistic

distances often used in the literature and Section 5.2 presents a method for es-

timating the first- and second-order statistics for the data in RKHS. Section 5.3

elaborates the derivations of the probabilistic distances in the RKHS and their

limiting behavior. Section 5.4 demonstrates the feasibility and efficiency of the

proposed measures using experiments on synthetic and real examples.

5.1 Probabilistic Distances in Rd

Consider a two-class problem and suppose that class 1 has prior probability π1

and class-dependent density p1(x) and class 2 has prior probability π2 and class-

dependent density p2(x), both defined on Rd. The following defines a list of prob-

abilistic distance measures often found in the literature [5]:
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• Chernoff distance [151]

JC(p1, p2) = − log{
∫

x
pα

1 (x)p1−α
2 (x)dx}; (5.1)

• Bhattacharyya distance [150]

JB(p1, p2) = − log{
∫

x
[p1(x)p2(x)]

1/2dx}; (5.2)

• Hellinger or Matusita distance [161]

JT (p1, p2) = {
∫

x
[
√

p1(x) −
√

p2(x)]
2dx}1/2; (5.3)

• The symmetric divergence [13]

JD(p1, p2) =
∫

x
[p1(x) − p2(x)] log

p1(x)

p2(x)
dx; (5.4)

• Patrick-Fisher distance [163]

JP (p1, p2) = {
∫

x
[p1(x)π1 − p2(x)π2]

2dx}1/2; (5.5)

• Lissack-Fu distance [158]

JL(p1, p2) =
∫

x
|p1(x)π1 − p2(x)π2|αp1−α(x)dx; (5.6)

• Kolmogorov distance [147]

JK(p1, p2) =
∫

x
|p1(x)π1 − p2(x)π2|dx; (5.7)

where 0 < α < 1 and p(x) = p1(x)π1 + p2(x)π2.

It is obvious that (i) the Bhattacharyya distance is a special case of the Chernoff

distance with α = 1/2; (ii) the Hellinger distance is related to the Bhattacharyya

distance as follows:

JT = {2[1 − exp(−JB)]}1/2; (5.8)
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and (iii) the Kolmogorov distance is a special case of the Lissack-Fu distance with

α = 1. Some interesting properties of these distances can be found in [5, 156]

In particular, the symmetric divergence is of great interest in the information

theory literature [4] and has a close connection with the famous Kullback-Leibler

(KL) divergence [13]. The KL divergence or relative entropy between two densities

p1(x) and p2(x) is given by

JR(p1||p2) =
∫

x
p1(x) log{p1(x)

p2(x)
}dx. (5.9)

However, the KL divergence is not a true metric because neither the symmetry

constraint nor the triangle inequality is satisfied. The symmetric divergence, which

is symmetric, is equal to

JD(p1, p2) = JR(p1||p2) + JR(p2||p1). (5.10)

As mentioned earlier, computing the above probabilistic distance measures is

nontrivial. Only within certain parametric families, say the Gaussian density, we

know how to analytically compute some of the above defined distance measures.

Suppose that N(x; µ, Σ) is a multivariate Gaussian density defined as

N(x; µ, Σ) =
1

√

(2π)d|Σ|
exp{−1

2
(x − µ)TΣ−1(x − µ)}, (5.11)

where x ∈ Rd and |.| is the matrix determinant. With p1(x) = N(x; µ1, Σ1) and

p2(x) = N(x; µ2, Σ2), we evaluate some of the above probabilistic distance measures

as follows:

• Chernoff distance

JC(p1, p2) =
1

2
α(1−α)(µ1−µ2)

T[(1−α)Σ1+αΣ2]
−1(µ1−µ2)+

1

2
log

|(1 − α)Σ1 + αΣ2|
|Σ1|1−α|Σ2|α

;

(5.12)
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• Bhattacharyya distance

JB(p1, p2) =
1

8
(µ1 − µ2)

T[
Σ1 + Σ2

2
]−1(µ1 − µ2) +

1

2
log

|1
2
(Σ1 + Σ2)|

|Σ1|1/2|Σ2|1/2
; (5.13)

• Kullback-Leibler divergence or relative entropy

JR(p1||p2) =
1

2
(µ1−µ2)

TΣ−1
2 (µ1−µ2)+

1

2
log

|Σ2|
|Σ1|

+
1

2
tr[Σ1Σ

−1
2 −Id]; (5.14)

• The symmetric divergence

JD(p1, p2) =
1

2
(µ1−µ2)

T(Σ1
−1+Σ2

−1)(µ1−µ2)+
1

2
tr[Σ1

−1Σ2+Σ2
−1Σ1−2Id];

(5.15)

• Patrick-Fisher distance

JP (p1, p2) = [(2π)d|2Σ1|]−1/2 + [(2π)d|2Σ2|]−1/2 (5.16)

− 2[(2π)d|Σ1 + Σ2|]−1/2 exp{−1

2
(µ1 − µ2)

T(Σ1 + Σ2)
−1(µ1 − µ2)};

where d is the dimensionality of the random vector x and tr[.] is the matrix trace.

In particular, when the covariance matrices for the two densities are same, i.e.,

Σ1 = Σ2 = Σ, the Bhattacharyya distance and the symmetric divergence reduce

to the Mahalanobis distance [160]:

JM = JD = 8JB = (µ1 − µ2)
TΣ−1(µ1 − µ2). (5.17)

In this chapter, we only focus on the distances defined in (5.12)-(5.15).

5.2 Mean and Covariance Marix in RKHS

5.2.1 First- and second-order statistics

Computing the probabilistic distance measures requires first- and second-order

statistics in the RKHS, as shown in Section 5.1. In practice, we have to estimate

123



these statistics from a set of training samples. Chapter 4 presented a detailed

treatment of this topic and here we recapitulate some important points.

Suppose that {x1, x2, . . . , xN} are given observations in the original data space

Rd. We operate in the RKHS Rf induced by a nonlinear mapping function φ :

Rd → Rf , where f > d and f could even be infinite. The training samples in Rf

are denoted by Φf×N = [φ1, φ2, ..., φN ], where φn ≡ φ(xn) ∈ Rf .

Using the maximum likelihood estimate (MLE) principle, the mean µ and the

covariance matrix Σ are estimated as

µ =
1

N

N
∑

n=1

φ(xn) = Φe; Σ =
1

N

N
∑

n=1

(φn − µ)(φn − µ)T = ΦJJTΦT = ΨΨT, (5.18)

where the weight vector eN×1 ≡ N−11 with 1 being a vector of 1’s, Ψ ≡ ΦJ, and J

is an N × N centering matrix given as

J ≡ N−1/2(IN − e1T). (5.19)

5.2.2 Covariance matrix approximation

The covariance matrix Σ in (5.18) is rank-deficient since f > N . Thus, inverting

such a matrix is impossible and an approximation to the covariance matrix is

necessary. Later in Section 5.3 we show that this approximation can be exact by

studying the limiting behavior.

Such an approximation S should possess the following features:

• It keeps the principal structure of the covariance matrix Σ. In other words,

the dominant eigenvalues and eigenvectors of Σ and S should be the same.

• It is compact and regularized. The compactness is inspired by the fact that

the smallest eigenvalues of the covariance matrix are very close to zero. The

regularity is always desirable in the approximation theory.
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• It is easy to invert.

As shown in Chapter 4, we suggested the following approximation form:

S = ρIf + ΦJQQTJTΦT = ρIf + ΦAΦT, (5.20)

where Q is an N × r matrix, A ≡ JQQTJT, and ρ > 0 is a pre-specified constant.

Typically, q << N << f . Firstly, when

Q = Vq(Iq − ρΛ−1
q )1/2R,

where Vq and Λq encode the top q eigenvectors and eigenvalues of the K̄ matrix,

the top q eigenpairs of Σ are maintained. Hence, if ρ = 0, we exactly maintain

the subspace containing the top q eigenpairs. Secondly, S is regularized and its

compactness is achieved through the Q matrix. Finally, inverting S is also easy by

using the Woodbury formula [8],

S−1 = (ρIf + WWT)−1 = ρ−1(If − WM−1WT) = ρ−1(If − ΦBΦT), (5.21)

where B ≡ JQM−1QTJT and the matrix Mq×q is

M ≡ ρIq + WTW = ρIq + QTK̄Q. (5.22)

After obtaining Q, it is easy to check that the following equations hold:

M = Λq, |M| = |Λq| =
q

∏

i=1

λi, M−1 = Λ−1
q , |S| = ρf−q|Λq|. (5.23)

A = JVq(Iq − ρΛ−1
q )VTq JT, B = JVq(Λ

−1
q − ρΛ−2

q )VTq JT. (5.24)

tr[AK] = tr[Λq] − ρq, tr[BK] = q − ρtr[Λ−1
q ]. (5.25)
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5.3 The Probabilistic Distances in RKHS

Since the probabilistic distances involve two densities p1 and p2, we need two sets

of training samples: Φ1 for p1 and Φ2 for p2. For each density pi, we can find its

corresponding ei, Ji, µi, Σi, Ki, Si, Vqi,i, Λqi,i = D[λ1,i, λ2,i, . . . , λqi,i], Ai, Bi, etc.,

by keeping the top qi principal components. In general, we can have q1 6= q2 and

N1 6= N2 with Ni being the number of samples for the ith density. In addition, we

define the following dot product matrix:









ΦT1

ΦT2









[Φ1 Φ2] =









ΦT1 Φ1 ΦT1 Φ2

ΦT2 Φ1 ΦT2 Φ2









≡









K11 K12

K21 K22









, (5.26)

where Kij ≡ ΦTi Φj and K21 = KT12.

5.3.1 The Chernoff distance and the Bhattarchayya dis-

tance

As mentioned before, the Bhattarchayya distance is a special case of Chernoff

distance with α = 1/2. Hence, we focus only on the Chernoff distance.

The key quantity in computing the Chernoff distance is α1S1 + α2S2 with α1 +

α2 = 1. We now analyze this quantity in detail.

α1S1 + α2S2 = α1{ρIf + Φ1A1Φ
T
1 } + α2{ρIf + Φ2A2Φ

T
2 }

= ρIf + α1Φ1A1Φ
T
1 + α2Φ2A2Φ

T
2

= ρIf + [Φ1 Φ2]









α1A1 0

0 α2A2

















ΦT1

ΦT2









= ρIf + [Φ1 Φ2]









α1J1Q1Q
T
1 JT1 0

0 α2J2Q2Q
T
2 JT2

















ΦT1

ΦT2








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= ρIf + [Φ1 Φ2]Ach









ΦT1

ΦT2









, (5.27)

where the matrix Ach is rank-deficient since Ach = PPT with

P(N1+N2)×(q1+q2) ≡









√
α1J1Q1 0

0
√

α2J2Q2









. (5.28)

Therefore, the matrix α1S1 + α2S2 is of such a form that we can easily find its

determinant and inverse.

The determinant |α1S1 + α2S2| is given by

|α1S1 + α2S2| = ρf−(q1+q2)|ρIq1+q2 + L| = ρf−(q1+q2)
q1+q2
∏

i=1

(τi + ρ), (5.29)

where {τi; i = 1, . . . , q1 + q2} are eigenvalues of the L matrix. The L matrix is

given by

L(q1+q2)×(q1+q2) = PT









ΦT1

ΦT2









[Φ1 Φ2]P = PT









K11 K12

K21 K22









P

=









α1Q
T
1 JT1 K11J1Q1

√
α1α2Q

T
1 JT1 K12J2Q2

√
α1α2Q

T
2 JT2 K21J1Q1 α2Q

T
2 JT2 K22J2Q2









=









α1{Λq1,1 − ρIq1}
√

α1α2L12

√
α1α2L

T
12 α2{Λq2,2 − ρIq2}









, (5.30)

with L12 ≡ QT1 JT1 K12J2Q2.

The inverse {α1S1 + α2S2}−1 is given by

{α1S1 + α2S2}−1 = ρ−1{If − [Φ1 Φ2]Bch









ΦT1

ΦT2









}, Bch = P(ρIq1+q2 + L)−1PT.

(5.31)
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We now show how to compute the following two quantities in (5.12):

µTi {α1S1 + α2S2}−1µj = eTi ΦTi ρ−1{If − [Φ1 Φ2]Bch









ΦT1

ΦT2









}Φjej (5.32)

= ρ−1{eTi Kijej − eTi [Ki1 Ki2]Bch









K1j

K2j









ej} ≡ ρ−1ξij,

log
|α1S1 + α2S2|
|S1|α1 |S2|α2

=
q1+q2
∑

i=1

log(ρ + τi) + (f − q1 − q2) log(ρ)

− α1{
q1
∑

i=1

log(λi,1) + (f − q1) log(ρ)}

− α2{
q2
∑

i=1

log(λi,2) + (f − q2) log(ρ)}

= α1

q1+q2
∑

i=1

log
ρ + τi

λi,1
+ α2

q1+q2
∑

i=1

log
ρ + τi

λi,2
, (5.33)

where {λi,1; i = 1, 2, ..., q1} and {λi,2; i = 1, 2, ..., q2} are eigenvalues for S1 and

S2, respectively. Notice that (i) {λi,1; i = q1 + 1, ..., q1 + q2} and {λi,2; i = q2 +

1, ..., q1 + q2}, all equal to ρ’s, are introduced only for notational convenience; (ii)

the infinite dimensionality f in (5.32) and (5.33) disappeared as needed; and (iii)

all calculations are based on the Gram matrix defined in (5.26).

Finally, we compute the Chernoff distance as follows (with α1 = 1 − α and

α2 = α):

2JC(p1, p2) = ρ−1α1α2{ξ11 + ξ22 − 2ξ12} + α1

q1+q2
∑

i=1

log
ρ + τi

λi,1

+ α2

q1+q2
∑

i=1

log
ρ + τi

λi,2

.

(5.34)
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5.3.2 The KL divergence and the symmetric divergence

Computing the KL divergence in the RKHS is just done by collecting terms like

µTi S−1
j µk and tr{SiS

−1
j }.

µTi S−1
j µk = eTi ΦTi ρ−1(If − ΦjBjΦ

T
j )Φkek

= ρ−1(eTi Kikek − eTi KijBjKjkek) ≡ ρ−1θijk. (5.35)

tr[SiS
−1
j ] = tr[(ΦiAiΦ

T
i + ρIf)ρ

−1(If − ΦjBjΦ
T
j )] (5.36)

= ρ−1tr[ΦiAiΦ
T
i ] − ρ−1tr[ΦiAiΦ

T
i ΦjBjΦ

T
j ] + f − tr[ΦjBjΦ

T
j ]

= ρ−1tr[AiKii] − ρ−1tr[AiKijBjKji] + f − tr[BjKjj]

= ρ−1tr[Λqi,i] − qi − ρ−1tr[AiKijBjKji] + f + ρtr[Λ−1
qj ,j] − qj

= ρ−1{tr[Λqi,i] − ηij} + ρtr[Λ−1
qj ,j] + f − (qi + qj),

where

ηij ≡ tr[AiKijBjKji].

Finally, we obtain the KL divergence and the symmetric divergence in the

RKHS by substituting (5.35) and (5.36) into (5.14) and (5.15) with d replaced by

f ,

2JR(p1||p2) = ρ−1{θ121 + θ222 − θ122 − θ221} + {log |Λq2,2| − log |Λq1,1|} (5.37)

+ (q1 − q2) log ρ + ρ−1{tr[Λq1,1] − η12} + ρ{tr[Λ−1
q2,2]} − (q1 + q2).

2JD(p1, p2) = ρ−1{θ111 + θ121 + θ212 + θ222 − θ112 − θ122 − θ211 − θ221}

+ ρ−1{tr[Λq1,1] + tr[Λq2,2] − η12 − η21}

+ ρ{tr[Λ−1
q1,1] + tr[Λ−1

q2,2]} − 2(q1 + q2). (5.38)
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5.3.3 The Patrick-Fisher distance

Given the above derivations in Sections 5.3.1 and 5.3.2, computing the Patrick-

Fisher distance JP (p1, p2) can be easily done by putting together related terms.

JP (p1, p2) = [2(2π)fρf−q1

q1
∏

i=1

λi,1]
−1/2 + [2(2π)fρf−q2

q2
∏

i=1

λi,2]
−1/2

− 2[2(2π)fρf−q1−q2

q1+q2
∏

i=1

(ρ + τi)]
−1/2 exp{−ρ−1(ξ11 + ξ22 − 2ξ12)}.

where {τi; i = 1, 2, . . . , q1 + q2} are eigenvalues of the L matrix defined in (5.30)

with α = 1/2.

5.3.4 Limiting behavior

It is interesting to study the behavior of the distances when ρ approaches to zero.

First,

lim
ρ→0

A = Â ≡ JVqV
T
q JT, lim

ρ→0
B = B̂ ≡ JVqΛ

−1
q VTq JT, (5.39)

Then,

lim
ρ→0

θijk = θ̂ijk ≡ eTi Kikek − eTi KijB̂jKjkek, lim
ρ→0

ηij = η̂ij ≡ tr[B̂iKijÂjKji]. (5.40)

Similarly,

lim
ρ→0

ξij = ξ̂ij ≡= eTi Kijej − eTi [Ki1 Ki2]B̂ch









K1j

K2j









ej, (5.41)

where B̂ch = limρ→0 Bch.

Finally,

lim
ρ→0

ρJC(p1, p2) = ĴC(p1, p2), (5.42)

lim
ρ→0

ρJR(p1||p2) = ĴR(p1||p2), (5.43)

lim
ρ→0

ρJD(p1, p2) = ĴD(p1, p2), (5.44)
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where

2ĴC(p1, p2) = α(1 − α){ξ̂11 + ξ̂22 − 2ξ̂12}, (5.45)

2ĴR(p1||p2) = θ̂121 + θ̂222 − θ̂122 − θ̂221 + tr[Λq1,1] − η̂12, (5.46)

2ĴD(p1, p2) = θ̂111 + θ̂121 + θ̂212 + θ̂222 − θ̂112 − θ̂122 − θ̂211 − θ̂221

+tr[Λq1,1] + tr[Λq2,1] − η̂12 − η̂21. (5.47)

When α = 1/2, we obtain the limiting distance for the Bhattacharyya distance

2ĴB(p1, p2) =
1

4
{ξ̂11 + ξ̂22 − 2ξ̂12}. (5.48)

The limiting behavior of the Patrick-Fisher distance JP (p1, p2) is not interesting

since it involves f , thus we omit its discussion.

As mentioned earlier, when ρ = 0 and q1 = q2 = q, we actually use the subspace

of the RKHS containing the top q eigenpairs. Therefore, the derived limiting

distances calibrate the pattern separability on this subspace of the RKHS and

carry many optimal features their original counterparts possess, yet additionally

equipped with a nonlinear embedding.

5.3.5 Kernel for set

A set here is a collection of observations. A kernel for set is a two-input kernel

function that takes the two sets as inputs and satisfies the requirement of positive

definiteness.

Several kernels for set have emerged in the literature. In [184], Wolf and

Shashua proposed the kernel principal angle. The principal angle is defined as

the angle between the principal subspaces of the two input sets and then ‘kernel-

ized’. In [174], Jebara and Kondor showed that the Bhattacharyya coefficient [156]
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that operates the probability distribution defined on the original data space is a

kernel. In [175], they extended the Bhattacharyya kernel to operate the probabil-

ity distribution defined on the RKHS. In [178], Moreno et. al. proposed a kernel

function based on the Kullback-Leibler divergence in the original data space.

It is obvious that our probabilistic distance measures can be adapted as kernel

functions for set. First, the Bhattacharyya kernel defined in [174] differs from

the Bhattacharyya distance by − log(.). Secondly, the adaptation can be in the

sense of [178]. Other ways are possible by utilizing the construction rule of kernel

functions.

5.4 Experimental Results

In the following experiments with both synthetic examples and a real face recog-

nition application, we will use only the limiting distances, namely ĴC(p1, p2) (or

ĴB(p1, p2)), ĴR(p1||p2), and ĴD(p1, p2), since they do not depend on the choice ρ,

which frees us from the burden of choosing ρ. Also, we set q1 = q2 = q.

5.4.1 Synthetic examples

To fail the KL distance between two Gaussian densities in the original space, we

designed four different 2-D densities sharing the same mean (zero mean) and co-

variance matrix (identity matrix). As shown in Figure 5.1, the four densities are

2-D Gaussian, and ‘O’-, ‘D’-, and ‘X’-shaped uniform densities, where say the ‘O’-

shaped uniform density means that it is uniform in the ‘O’-shaped region and zero

outside the region. Figure 5.1 actually shows 300 i.i.d. realizations sampled from

these four densities. Due to the same first- and second-order statistics, the proba-
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Figure 5.1: 300 i.i.d. realizations of four different densities with the same mean

(zero mean) and covariance matrix (identity matrix). (a) 2-D Gaussian. (b) ‘O’-

shaped uniform.(c) ‘D’-shaped uniform. (d) ‘X’-shaped uniform.

bilistic distance between any of two densities in the original space is simply zero.

This highlights the virtue of a nonlinear mapping that provides us information

embedded in higher-order statistics.

Obviously, the probabilistic distances depend on q, the number of eigenpairs,

and σ, the RBF kernel width. Figure 5.2 displays ĴD and ĴB as a function of

q and σ. The effect of σ is biased: It always disfavors a large σ since a large σ

tends to pool the data together. For example, when σ is infinite, all data points

collapse to one single point in the RKHS and become inseparable. Generally, it
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Figure 5.2: (a) The symmetric divergence ĴD(σ, q) and (b) the Bhatacharyya dis-

tance ĴB(σ, q) between the 2-D Gaussian and the ‘O’-shaped uniform as a function

of σ and q.

is not necessary that a large q (or equivalently using a nonlinear subspace with a

large dimension) yields a large distance. A typical subspace yielding the maximum

distances is of low-dimensional.

Table 5.1 lists some computed values of the probabilistic distances. It is inter-

esting to observe that when the shapes of two densities are close, their distance

is small. For example, ‘O’ is closest to ‘D’ among all possible pairs. The closest

density to the 2-D Gaussian is the ‘O’-shaped uniform.

5.4.2 Face recognition from a group of images

The gallery set consists of 15 sets (one per person) while the probe set consists of

15 new sets of the same people (one per person). In these sets, the people can move

their heads freely so that pose and illumination variations abound. The existence

of these variations violates the Gaussianity assumption of the original data space

used in [91]. Figure 5.3 shows some example faces of the in the 4th gallery person,

the 9th gallery person, and the 4th probe person (whose identity is same as the 4th
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ĴR(p1||p2) Gau ‘O’ ‘D’ ‘X’

Gau - .0740 .0782 .0808

‘O’ .0584 - .0281 .0523

‘D’ .0670 .0295 - .0436

‘X’ .0944 .0505 .0417 -

(a)

ĴB(p1, p2) Gau ‘O’ ‘D’ ‘X’

Gau - .0033 .0037 .0048

‘O’ .0033 - .0021 .0099

‘D’ .0037 .0021 - .0086

‘X’ .0048 .0099 .0086 -

(b)

Table 5.1: (a) The KL distances in the RKHS with σ = 1 and q = 3. (b) The

Bhatacharyya distances in the RKHS with σ = 0.5 and q = 1. p1 is listed in the

first column and p2 in the first row.

gallery person). The shown face images of size 32 by 32 are automatically cropped

from video sequences (courtesy of [84]) using a flow tracking algorithm.

Symmetric divergence Bhatacharyya distance

Ĵ(p1, p2) in the RKHS 13/15 13/15

J(p1, p2) in the original space Rd 11/15 11/15

Table 5.2: The recognition score obtaining using the symmetric divergence and

Bhatacharyya distance.

A generic principal component analysis is performed to reduce the dimension-

ality to 300. Figure 5.3 also plots the first three PCA coefficient of the 4th gallery

person, the 9th gallery person, and the 4th probe person. Clearly, the manifolds
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are highly nonlinear, which indicates a need for nonlinear modeling.

Table 5.2 reports the recognition rates. The top match with the smallest dis-

tance is claimed to be the winner. For comparison, we also implemented the

approaches using the symmetric divergence [91] and the Bhatacharyya distance

in the original space is used for face recognition. Clearly, using the distances in

RKHS yields better result. Out of 15 probe sets, we successfully classified 13 of

them. In fact, Figure 5.3 shows a misclassification example in [91], where the 4th

probe person is misclassified as the 9th gallery person, while our approach corrects

this error.

(a)

(b)

(c)

gly9
gly4
prb4

(d)

Figure 5.3: Examples of face images in the gallery and probe set. (a) The 4th

gallery person in 10 frames (every 8 frames) of a 80-frame sequence. (b) The 9th

gallery person in 10 frames (every 10 frames) of a 105-frame sequence.(a) The 4th

probe person in 10 frames (every 6 frames) of a 60-frame sequence. (d) The plot

of first three PCA coefficients of the above three sets.
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Part III: Face Tracking and

Recognition from Videos
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Chapter 6

Adaptive Visual Tracking

Particle filtering [114, 157, 159, 153, 6] is an inference technique [3, 18] for es-

timating the unknown motion state, θt, from a noisy collection of observations,

y1:t = {y1, ..., yt} arriving in a sequential fashion. A state space model is often

employed to accommodate such a time series. Two important components of this

approach are state transition and observation models whose most general forms

can be defined as follows:

State transition model: θt = ft(θt−1, ut), (6.1)

Observation model: yt = gt(θt, vt), (6.2)

where ut is the system noise, ft(., .) characterizes the kinematics, vt is the obser-

vation noise, and gt(., .) models the observer. The particle filter approximates the

posterior distribution p(θt|y1:t) by a set of weighted particles {θ(j)
t , w

(j)
t }J

j=1. Then,

the state estimate θ̂t can either be the minimum mean square error (MMSE) esti-

mate,

θ̂t = θmmse
t = E[θt|y1:t] ≈ J−1

J
∑

j=1

w
(j)
t θ

(j)
t , (6.3)
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where E the expectation operator, the maximum a posteriori (MAP) estimate,

θ̂t = θmap
t = arg max

θt

p(θt|y1:t) ≈ arg max
θt

w
(j)
t , (6.4)

or other forms based on p(θt|y1:t).

The state transition model characterizes the motion change between frames.

In a visual tracking problem, it is ideal to have an exact motion model governing

the kinematics of the object. In practice, however, approximate models are used.

There are two types of approximations commonly found in the literature. (i) One

is to learn a motion model directly from a training video [118, 124]. However

such a model may overfit the training data and may not necessarily succeed when

presented with testing videos containing objects arbitrarily moving at different

times and places. Also one cannot always rely on the availability of training data.

(ii) Secondly, a fixed constant-velocity model with fixed noise variance is fitted as

in [109, 133, 135, 185].

θt = θt−1 + νt + ut, (6.5)

where νt is a constant velocity, i.e. νt = ν0, and ut has a fixed noise variance of

the form ut = r0 ∗ u0 with r0 a fixed constant measuring the extent of noise and

u0 a ‘standardized’ random variable/vector 1. Since a constant ν0 has difficulty in

handling arbitrary movement, ν0 is typically set to be ν0 = 0. If r0 is small, it is

very hard to model rapid movements; if r0 is large, it is computationally inefficient

since many more particles are needed to accommodate the large noise variance.

All these factors make such a model ineffective. In this chapter, we overcome this

by introducing an adaptive-velocity model.

1Consider the scalar case for example. If ut is distributed as N(0, σ2), we can write ut = σu0

where u0 is standard normal N(0, 1). This also applies to multivariate cases.
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While contour is the visual cue used in many tracking algorithms [118], another

class of tracking approaches [115, 127, 185] exploits an appearance model At. In

its simplest form, we have the following observation equation2,

zt = T {yt; θt} = At + vt, (6.6)

where zt is the image patch of interest in the video frame yt, parameterized by

θt. In [115], a fixed template, At = A0, is matched with observations to minimize

a cost function in the form of sum of squared distance (SSD). This is equivalent

to assuming that the noise vt is a normal random vector with zero mean and a

diagonal (isotropic) covariance matrix. At the other extreme, one could use a

rapidly changing model [127], say, At = ẑt−1, i.e., the ‘best’ patch of interest in

the previous frame. However, a fixed template cannot handle appearance changes

in the video, while a rapidly changing model is susceptible to drift. Thus, it is

necessary to have a model which is a compromise between these two cases. In

[120], Jepson et. al. proposed an online appearance model (OAM) for a robust

visual tracker, which is a mixture of three components. Two EM algorithms are

used, one for updating the appearance model and the other for deriving the tracking

parameters.

Our approach to visual tracking is to make both observation and state transition

models adaptive in the framework of a particle filter, with provisions for handling

occlusion. The main features of our tracking approach are as follows:

• Appearance-based. The only visual cue used in our tracker is the 2-D ap-

pearance; i.e., we employ only image intensities, though in general features

2For the sake of simplicity, we denote: zt ≡ T {yt; θt}, z
(j)
t ≡ T {yt; θ

(j)
t }, ẑt ≡ T {yt; θ̂t}. Also,

we can always vectorize the 2-D image by a lexicographical scanning of all pixels and denote the

number of pixels by d.
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derived from image intensities, such as the phase information of the filter

responses [120] or the Gabor feature graph presentation [85], are also appli-

cable. No prior object models are invoked. In addition, we only use gray

scale images.

• Adaptive observation model. We adopt an appearance-based approach. The

original OAM is modified and then embedded in our particle filter. Therefore,

the observation model is adaptive as the appearance At involved in (6.6) is

adaptive.

• Adaptive state transition model. Instead of using a fixed model, we use an

adaptive-velocity model, where the adaptive motion velocity νt is predicted

using a first-order linear approximation based on the appearance difference

between the incoming observation and the previous particle configuration.

We also use an adaptive noise component, i.e, ut = rt ∗ u0, whose magnitude

rt is a function of the prediction error. It is natural to vary the number of

particles based on the degree of uncertainty rt in the noise component.

• Handling occlusion. Occlusion is handled using robust statistics [11, 115,

108]. We robustify the likelihood measurement and the adaptive velocity

estimate by downweighting the ‘outlier’ pixels. If occlusion is declared, we

stop updating the appearance model and estimating the motion velocity.

Chapter organization

This chapter is organized as follows. We briefly review the related literature on

visual tracking and particle filters in Section 6.1. We examine the details of an

adaptive observation model in Section 6.2.1, with a special focus on the adaptive
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appearance model, and of an adaptive state transition model in Section 6.2.2 with

a special focus on how to calculate the motion velocity. Handling occlusion is

discussed in Section 6.2.3, and experimental results on tracking vehicles and human

faces in Section 6.3.

6.1 Related Literature

6.1.1 Visual tracking

Roughly speaking, previous work on visual tracking can be divided into two groups:

deterministic tracking and stochastic tracking. Our approach combines the merits

of both stochastic and deterministic tracking approaches in a unified framework

using a particle filter. We give below a brief review of both approaches.

Deterministic approaches usually reduce to an optimization problem, e.g., min-

imizing an appropriate cost function. The definition of the cost function is a key

issue. A common choice in the literature is the SSD used in many optical flow

approaches [115].3 A gradient descent algorithm is most commonly used to find

the minimum. Very often, only a local minimum can be reached. In [115], the cost

function is defined as the SSD between the observation and a fixed template, and

the motion is parameterized as affine. Hence the task is to find the affine param-

eter minimizing the cost function. Using a Taylor series expansion and keeping

only the first-order terms, a linear prediction equation is obtained. It has been

shown that for the affine case, the system matrix can be computed efficiently since

a fixed template is used. Mean shift [113] is an alternative deterministic approach

3We note that using SSD is equivalent to using a model where the noise obeys an iid Gaussian

distribution; therefore this case can also be viewed as stochastic tracking.
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to visual tracking, where the cost function is derived from the color histogram.

Stochastic tracking approaches often reduce to an estimation problem, e.g., es-

timating the state for a time series state space model. Early works [106, 112] used

the Kalman filter or its variants [1] to provide solutions. However, this restricts

the type of model that can be used. Recently sequential Monte Carlo (SMC) al-

gorithms [6, 114, 157, 159], which can model nonlinear/non-Gaussian cases, have

gained prevalence in the tracking literature due in part to the CONDENSATION

algorithm [118]. Stochastic tracking improves robustness over its deterministic

counterpart by its capability for escaping the local minimum since the searching

directions are for the most part random even though they are governed by a deter-

ministic state transition model. Toyama and Blake [130] proposed a probabilistic

paradigm for tracking with the following properties: Exemplars are learned from

the raw training data and embedded in a mixture density; The kinematics is also

learned; The likelihood measurement is constructed on a metric space. Other ap-

proaches are also discussed in Section 6.1.2. However, as far as computational

load is concerned, stochastic algorithms in general are more intense. Note that the

stochastic approaches can often be formulated as optimization problems.

6.1.2 Particle filter

General particle filter algorithm

Given the state transition model in (6.1) characterized by the state transition prob-

ability p(θt|θt−1) and the observation model in (6.2) characterized by the likelihood

function p(yt|θt), the problem is reduced to computing the posterior probability

p(θt|y1:t). The nonlinearity/nonnormality in (6.1) and (6.2) result in Kalman filter

[1] being ineffective. The particle filter is a means to approximate the poste-
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rior distribution p(θt|y1:t) by a set of weighted particles St = {θ(j)
t , w

(j)
t }J

j=1 with

∑J
j=1 w

(j)
t = 1. It can be shown [159] that St is properly weighted with respect to

p(θt|y1:t) in the sense that, for every bounded function h(.),

lim
J→∞

J
∑

j=1

w
(j)
t h(θ

(j)
t ) = Ep[h(θt)]. (6.7)

Given St−1 = {θ(j)
t−1, w

(j)
t−1}J

j=1 which is properly weighted with respect to p(θt−1|y1:t−1),

we first resample St−1 to reach a new set of samples with equal weights {θ′(j)
t−1, 1}J

j=1.

We then draw samples {u(j)
t }J

j=1 for ut and propagate θ
′(j)
t−1 to θ

′(j)
t by (6.1). The

new weight is updated as

wt ∝ p(yt|θt) (6.8)

The complete algorithm is summarized in Figure 6.1.

Initialize a sample set S0 = {θ(j)
0 , 1)}J

j=1 according to prior distribution p(θ0).

For t = 1, 2, . . .

For j = 1, 2, . . . , J

Resample St−1 = {θ(j)
t−1, w

(j)
t−1} to obtain a new sample (θ

′(j)
t−1, 1).

Predict the sample by drawing u
(j)
t for ut and computing θ

(j)
t = ft(θ

′(j)
t−1, u

(j)
t ).

Compute the transformed image z
(j)
t = T {yt; θt}.

Update the weight using w
(j)
t = p(yt|θ(j)

t ) = p(z
(j)
t |θ(j)

t ).

End

Normalize the weight using w
(j)
t = w

(j)
t /

∑J
j=1 w

(j)
t .

End

Figure 6.1: The general particle filter algorithm.

Variations of Particle Filters

Sequential Importance Sampling (SIS) [153, 159] draws particles from a proposal

distribution q(θt|θt−1, y1:t) and then for each particle a proper weight is assigned as
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follows:

wt ∝ p(yt|θt)p(θt|θt−1)/q(θt|θt−1, y1:t). (6.9)

Selection of the proposal distribution q(θt|θt−1, y1:t) is usually dependent on the

application. For example, in the ICONDENSATION algorithm [119] which fuses

low-level and high-level visual cues in the conventional CONDENSATION algorithm

[118], the proposal distribution, a fixed Gaussian distribution for low-level color

cue, is used to predict the particle configurations, then the posterior distribution

of the high-level shape cue is approximated using SIS. It is interesting to note that

two different cues can be even combined together into one state vector to yield a

robust tracker, using the co-inference algorithm [133] and the approach proposed

in [131]. We also use a prediction scheme but our prediction is based on the same

visual cue i.e. the appearance in the image, and it is directly used in the state

transition model rather than used as a proposal distribution. Additional visual

cues are not used.

6.2 Appearance-Adaptive Models

6.2.1 Adaptive observation model

The adaptive observation model arises from the adaptive appearance model At.

We use a modified version of OAM as developed in [120]. The differences between

our appearance model and the original OAM are highlighted below.

Mixture appearance model

The original OAM assumes that the observations are explained by different causes,

thereby indicating the use of a mixture density of components. In the original OAM
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presented in [120], three components are used, namely the W -component charac-

terizing the two-frame variations, the S-component depicting the stable structure

within all past observations (though it is slowly-varying), and the L-component

accounting for outliers such as occluded pixels.

We modify the OAM to accommodate our appearance analysis in the following

aspects. (i) We directly use the image intensities while they use phase information

derived from image intensities. Direct use of image intensities is computationally

more efficient than using the phase information that requires filtering and visually

more interpretable. (ii) As an option, in order to further stabilize the tracker

one could use an F -component which is a fixed template that one is expecting

to observe most often. For example, in face tracking this could be just the facial

image as seen from a frontal view. In the sequel, we derive the equations as if

there is an F -component. However, the effect of this component can be ignored by

setting its initial mixing probability to zero. (iii) We embed the appearance model

in a particle filter to perform tracking while they use the EM algorithm. (iv) In

our implementation, we do not incorporate the L-component because we model

the occlusion in a different manner (using robust statistics) as discussed in Section

6.2.3.

We now describe the mixture appearance model. The appearance model at

time t,

At = {Wt, St, Ft},

is a time-varying one that models the appearances present in all observations up

to time t − 1. It obeys a mixture of Gaussians, with Wt, St, Ft as mixture centers

{µi,t; i = w, s, f} and their corresponding variances {σ2
i,t; i = w, s, f} and mixing
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probabilities {mi,t; i = w, s, f}. Notice that

{mi,t, µi,t, σ
2
i,t; i = w, s, f}

are ‘images’ consisting of d pixels that are assumed to be independent of each

other.

In summary, the observation likelihood is written as

p(yt|θt) = p(zt|θt) =
d

∏

j=1

{
∑

i=w,s,f

mi,t(j)N(zt(j); µi,t(j), σ
2
i,t(j))}, (6.10)

where N(x; µ, σ2) is a normal density

N(x; µ, σ2) = (2πσ2)−1/2 exp{−ρ(
x − µ

σ
)}, ρ(x) =

1

2
x2. (6.11)

Model update

To keep the chapter self-contained, we show how to update the current appearance

model At to At+1 after ẑt becomes available, i.e., we want to compute the new

mixing probabilities, mixture centers, and variances for time t + 1,

{mi,t+1, µi,t+1, σ
2
i,t+1; i = w, s, f}.

It is assumed that the past observations are exponentially ‘forgotten’ with re-

spect to their contributions to the current appearance model. Denote the expo-

nential envelop by α exp(−τ−1(t − k)) for k ≤ t, where τ = nh/ log 2, nh is the

half-life of the envelope in frames, and α = 1 − exp(−τ−1) to guarantee that the

area under the envelope is 1. We just sketch the updating equations as follows and

refer the interested readers to [120] for technical details and justifications.

The EM algorithm [152] is invoked. Since we assume that the pixels are in-

dependent of each other, we can deal with each pixel separately. The following
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computation is valid for j = 1, 2, . . . , d where d is the number of pixels in the

appearance model.

First, the posterior responsibility probabilities are computed as

oi,t(j) ∝ mi,t(j)N(ẑt(j); µi,t(j), σ
2
i,t(j)); i = w, s, f, &

∑

i=w,s,f

oi,t(j) = 1. (6.12)

Then, the mixing probabilities are updated as

mi,t+1(j) = α oi,t(j) + (1 − α) mi,t(j); i = w, s, f, (6.13)

and the first- and second-moment images {Mp,t+1; p = 1, 2} are evaluated as

Mp,t+1(j) = α ẑp
t (j)os,t(j) + (1 − α) Mp,t(j); p = 1, 2. (6.14)

Finally, the mixture centers and the variances are updated as:

St+1(j) = µs,t+1(j) =
M1,t+1(j)

ms,t+1(j)
, σ2

s,t+1(j) =
M2,t+1(j)

ms,t+1(j)
− µ2

s,t+1(j). (6.15)

Wt+1(j) = µw,t+1(j) = ẑt(j), σ2
w,t+1(j) = σ2

w,1(j), (6.16)

Ft+1(j) = µf,t+1(j) = F1(j), σ2
f,t+1(j) = σ2

f,1(j). (6.17)

Model initialization

To initialize A1, we set W1 = S1 = F1 = T0 (with T0 supplied by a detection

algorithm or manually), {mi,1, σ
2
i,1; i = w, s, f}, and M1,1 = ms,1z0 and M2,1 =

ms,1σ
2
s,1 + T2

0.

6.2.2 Adaptive state transition model

The state transition model we use incorporates a term for modeling adaptive veloc-

ity. The adaptive velocity is calculated using a first-order linear prediction method
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based on the appearance differences between two successive frames. The previous

particle configuration is incorporated in the prediction scheme.

Construction of the particle configuration involves the costly computation of

image warping (in the experiments reported here, it usually accounts for about half

of the computations). In a conventional particle filtering algorithm, the particle

configuration is used only to update the weight, i.e., computing weight for each

particle by comparing the warped image with the online appearance model using

the observation equation. But, our approach in addition uses the particle config-

uration in the state transition equation. In some sense, we ‘maximally’ utilize the

information contained in the particles (without wasting the costly computation of

image warping) since we use it in both state and observation models.

In [128], random samples are guided by deterministic search. Momentum for

each particle is computed as the sum of absolute difference between two frames. If

the momentum is below a threshold, a deterministic search is first performed using

a gradient descent method and a small number of offsprings is then generated using

stochastic diffusion; otherwise, stochastic diffusion is performed to generate a large

number of offsprings. The stochastic diffusion is based on a second-order autore-

gressive process. But, the gradient descent method does not utilize the previous

particle configuration in its entirety. Also, the generated particle configuration

could severely deviate from the second-order autoregressive model, which clearly

implies the need for an adaptive model.

Adaptive velocity

With the availability of the sample set Θt−1 = {θ(j)
t−1}J

j=1 and the image patches

of interest Zt−1 = {z(j)
t−1}J

j=1, for a new observation yt, we can predict the shift in
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the motion vector (or adaptive velocity) νt = θt − θ̂t−1 using a first-order linear

approximation [107, 115, 121, 123], which essentially comes from the constant

brightness constraint, i.e., there exists a θt such that

T {yt; θt} ' ẑt−1. (6.18)

Approximating T {yt; θt} using a first-order Taylor series expansion around θ̃t

(we set θ̃t = θ̂t−1) yields

T {yt; θt} ' T {yt; θ̃t} + Ct(θt − θ̃t) = T {yt; θ̃t} + Ctνt, (6.19)

where Ct is the Jacobian matrix.

Combining (6.18) and (6.19) gives

ẑt−1 ' T {yt; θ̃t} + Ctνt, (6.20)

i.e.,

νt = θt − θ̃t ' −Bt(T {yt; θ̃t} − ẑt−1), (6.21)

where Bt is the pseudo-inverse of the Ct matrix, which can be efficiently estimated

from the available data Θt−1 and Zt−1.

Specifically, to estimate Bt we stack into matrices the differences in motion

vectors and image patches, using θ̂t−1 and ẑt−1 as pivotal points:

δΘt−1 = [θ
(1)
t−1 − θ̂t−1, . . . , θ

(J)
t−1 − θ̂t−1], (6.22)

δZ t−1 = [z
(1)
t−1 − ẑt−1, . . . , z

(J)
t−1 − ẑt−1]. (6.23)

The least square (LS) solution for Bt is

Bt = (δΘt−1δZT
t−1)(δZt−1δZT

t−1)
−1. (6.24)
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However, it turns out that the matrix δZt−1δZT
t−1 is very often rank-deficient due

to the high dimensionality of the data (unless the number of the particles at least

exceeds the data dimension). To overcome this, we use the SVD as

δZt−1 = USVT (6.25)

It can be easily shown that

Bt = δΘt−1VS−1UT. (6.26)

To gain some computational efficiency, we can further approximate

Bt = δΘt−1VqS
−1
q UTq , (6.27)

by retaining the top q components. Notice that if only a fixed template is used

[121], the B matrix is fixed and pre-computable. But, in our case, the appearance

is changing so that we have to compute the Bt matrix in each time step.

In practice, one may run several iterations till z̃t = T {yt; θ̃t + νt} stabilizes, i.e.,

the error εt defined below is small enough.

εt = φ(z̃t, At) =
2

d

d
∑

j=1

{
∑

i=w,s,f

mi,t(j)ρ(
z̃t(j) − µi,t(j)

σi,t(j)
)}. (6.28)

In (6.28), εt measures the distance between T {yt; θ̃t + νt} and the updated ap-

pearance model At. The iterations proceed as follows: We initially set θ̃1
t = θ̂t−1.

For the first iteration, we compute ν1
t as usual. For the kth iteration, we use the

predicted θ̃k
t = θ̃k−1

t + νk−1
t as a pivotal point for the Taylor expansion in (6.19)

and the rest of the calculation then follows. It is rather beneficial to run sev-

eral iterations especially when the object moves very fast in two successive frames

since θ̂t−1 might cover the target in yt in a small portion. After one iteration, the

computed νt might be not accurate, but indicates a good minimization direction.

Using several iterations helps to find νt (compared to θ̂t−1) more accurately.
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We use the following adaptive state transition model

θt = θ̂t−1 + νt + ut, (6.29)

where νt is the predicted shift in the motion vector. The choice of ut is discussed

below. One should note that we are not using (6.29) as a proposal function to

draw particles, which requires using (6.9) to compute the particle weight. Instead

we directly use it as the state transition model and hence use (6.8) to compute

the particle weight. Our model can be easily interpreted as a time-varying state

model.

It is interesting to note that the approach proposed in [131] also uses motion

cues as well as color parameter adaptation. Our approach is different from [131]

in that: (i) We use the motion cue in the state transition model while they use it

as part of observations; (ii) We only use the gray images without using the color

cue which is used in [131]; and (iii) We use an adaptive appearance model which

is updated by the EM algorithm while they use an adaptive color model which is

updated by a stochastic version of the EM algorithm.

Adaptive noise

The value of εt determines the quality of prediction. Therefore, if εt is small, which

implies a good prediction, we only need noise with small variance to absorb the

residual motion; if εt is large, which implies a poor prediction, we then need noise

with large variance to model the potentially large jumps in the motion state.

To this end, we use ut of the form ut = rt ∗u0, where rt is a function of εt. Since

εt defined in (6.28) is a ‘variance’-type measure, we use

rt = max(min(r0

√
εt, rmax), rmin), (6.30)
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where rmin is the lower bound to maintain a reasonable sample coverage and rmax

is the upper bound to constrain the computational load.

Adaptive number of particles

If the noise variance rt is large, we need more particles, while conversely, fewer

particles are needed for noise with small variance rt. Based on the principle of

asymptotic relative efficiency (ARE) [3], we should adjust the particle number Jt

in a similar fashion, i.e.,

Jt = J0rt/r0. (6.31)

Fox [154] also presents an approach to improve the efficiency of particle filters by

adapting the particle numbers on-the-fly. His approach is to divide the state space

into bins and approximate the posterior distribution by a multinomial distribution.

A small number of particles is used if the density is focused on a small part of

the state space and a large number of particles if the uncertainty in the state

space is high. In this way, the error between the empirical distribution and the

true distribution (approximated as a multinomial in his analysis) measured by

Kullback-Leilber distance is bounded. However, in his approach, since the state

space (only 2D) is exhaustively divided, the number of particles is at least several

thousand, while our approach uses at most a few hundred. Our attempt is not to

explore the state space (6-D affine space) exhaustively, but only regions that have

high potential for the object to be present.
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Comparison between the adaptive velocity model and the zero velocity

model

We demonstrate the necessity of the adaptive velocity model by comparing it

with the zero velocity model. Figure 6.2 shows the particle configurations created

from the adaptive velocity model (with Jt < J0 and rt < r0 computed as above)

and the zero velocity model (with Jt = J0 and rt = r0). Clearly, the adaptive-

velocity model generates particles very efficiently, i.e, they are tightly centered

around the object of interest so that we can easily track the object at time t; while

the zero-velocity model generates more particles widely spread to explore larger

regions, leading to unsuccessful tracking as widespread particles often lead to a

local minimum.

Tracking result at t − 1 Particle configuration at t Tracking result at t

Figure 6.2: Particle configurations from (top row) the adaptive velocity model and

(bottom row) the zero-velocity model.

6.2.3 Handling occlusion

Occlusion is usually handled in two ways. One way is to use joint probabilistic data

associative filter (JPDAF) [2, 126]; and the other one is to use robust statistics
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[11]. We use robust statistics here.

Robust statistics

We assume that occlusion produces large image differences which can be treated as

‘outliers’. Outlier pixels cannot be explained by the underlying process and their

influences on the estimation process should be reduced. Robust statistics provide

such mechanisms.

We use the ρ̂ function defined as follows:

ρ̂(x) =















1
2
x2 if |x| ≤ c

cx − 1
2
c2 if |x| > c

, (6.32)

where x is normalized to have unit variance and the constant c controls the outlier

rate. In our experiment, we take c = 1.435 based on experimental experience. If

|x| > c is satisfied, we declare the corresponding pixel as an outlier.

Robust likelihood measure and adaptive velocity estimate

The likelihood measure defined in Eq. (6.10) involves a multi-dimensional normal

density. Since we assume that each pixel is independent, we consider the one-

dimensional normal density. To make the likelihood measure robust, we replace

the one-dimensional normal density N(x; µ, σ2) by

N̂(x; µ, σ2) = (2πσ2)−1/2 exp(−ρ̂(
x − µ

σ
)). (6.33)

Note that this is not a density function any more, but since we are dealing with

discrete approximation in the particle filter, normalization makes it a probability

mass function.

Existence of outlier pixels severely violates the constant brightness constraint

and hence affects our estimate of the adaptive velocity. To downweight the influ-
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ence of the outlier pixels in estimating the adaptive velocity, we introduce a d× d

diagonal matrix Lt with its ith diagonal element being Lt(i) = η(xi) where xi is the

pixel intensity of the difference image (T {yt; θ̃t}− ẑt−1) normalized by the variance

of the OAM stable component and

η(x) =
1

x

dρ̂(x)

dx
=















1 if |x| ≤ c

c/|x| if |x| > c
, (6.34)

Eq. (6.21) becomes

νt ' −BtLt(T {yt; θ̂t−1} − ẑt−1). (6.35)

This is similar in principle to the weighted least square algorithm.

Occlusion declaration

If the number of the outlier pixels in ẑt (compared with the OAM), say dout, exceeds

a certain threshold, i.e., dout > λd where 0 < λ < 1 (we take λ = 0.15), we declare

occlusion. Since the OAM has more than one component, we count the number of

outlier pixels with respect to every component and take the maximum.

If occlusion is declared, we stop updating the appearance model and estimating

the motion velocity. Instead, we (i) keep the current appearance model, i.e., At+1 =

At and (ii) set the motion velocity to zero, i.e., νt = 0 and use the maximum number

of particles sampled from the diffusion process with largest variance, i.e., rt = rmax,

and Jt = Jmax.

The adaptive particle filtering algorithm with occlusion analysis is summarized

in Figure 6.3.
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Initialize a sample set S0 = {θ(j)
0 , 1/J0)}J0

j=1 according to prior distribution p(θ0).

Initialize the appearance model A1.

Set OCCFLAG = 0 to indicate no occlusion.

For t = 1, 2, . . .

If (OCCFLAG == 0)

Calculate the state estimate θ̂t−1 by Eq. (6.3) or (6.4), the adaptive velocity νt

by Eq. (6.21), the noise variance rt by Eq. (6.30), and the particle number Jt by Eq.

(6.31).

Else

rt = rmax, Jt = Jmax, νt = 0.

End

For j = 1, 2, . . . , Jt

Draw the sample u
(j)
t for ut with variance rt.

Construct the sample θ
(j)
t = θ̂t−1 + νt + u

(j)
t by Eq. (6.29).

Compute the transformed image z
(j)
t .

Update the weight using w
(j)
t = p(yt|θ(j)

t ) = p(z
(j)
t |θ(j)

t ).

End

Normalize the weight using w
(j)
t = w

(j)
t /

∑J
j=1 w

(j)
t .

Set OCCFLAG according to the number of the outlier pixels in ẑt.

If (OCCFLAG == 0)

Update the appearance model At+1 using ẑt.

End

End

Figure 6.3: The proposed visual tracking algorithm with occlusion handling.

6.3 Experimental results on visual tracking

In our implementation, we used the following choices. We consider affine transfor-

mation only. Specifically, the motion is characterized by θ = (a1, a2, a3, a4, tx, ty)

where {a1, a2, a3, a4} are deformation parameters and {tx, ty} denote the 2-D trans-
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lation parameters. Even though significant pose/illumincation changes are present

in the video, we believe that our adaptive appearance model can easily absorb them

and therefore for our purposes the affine transformation is a reasonable approxi-

mation. Regarding photometric transformations, only a zero-mean-unit-variance

normalization is used to partially compensate for contrast variations. The com-

plete image transformation T {y; θ} is implemented as follows: affine transform y

using {a1, a2, a3, a4}, crop out the region of interest at position {tx, ty} with the

same size as the still template in the appearance model, and perform zero-mean-

unit-variance normalization.

We demonstrate our algorithm by tracking a disappearing car, a moving tank

acquired by a camera mounted on a micro air vehicle, and a moving face under

occlusion. Table 6.1 summarizes some statistics about the video sequences and the

appearance model size used.

We initialize the particle filter and the appearance model with a detector algo-

rithm (we actually used the face detector described in [132] for the face sequence)

or a manually specified image patch in the first frame. r0 and J0 are also manually

set, depending on the sequence.

6.3.1 Car tracking

We first test our algorithm to track a vehicle with the F -component but without

occlusion analysis. The result of tracking a fast moving car is shown in Figure

6.4 (column 1)4. The tracking result is shown with a bounding box. We also

show the stable and wandering components separately (in a double-zoomed size)

at the corner of each frame. The video is captured by a camera mounted on the

4Accompanying videos are available at http://www.cfar.umd.edu/∼shaohua/research/.
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Video Car Tank Face

# of frames 500 300 800

Frame size 576x768 240x360 240x360

At size 24x30 24x30 30x26

Occlusion No No Yes (twice)

‘adp’ o o x

‘fa’ o o x

‘fm’ x x x

‘fb’ x x x

‘adp & occ’ o o o

Table 6.1: Comparison of tracking results obtained by particle filters with different

configurations. ‘At size’ means pixel size in the component(s) of the appearance

model. ‘o’ means success in tracking. ‘x’ means failure in tracking.

car. In this footage the relative velocity of the car with respect to the camera

platform is very large, and the target rapidly decreases in size. Our algorithm’s

adaptive particle filter successfully tracks this rapid change in scale. Figure 6.5(a)

plots the scale estimate (calculated as
√

(a2
1 + a2

2 + a2
3 + a2

4)/2 ) recovered by our

algorithm. It is clear that the scale follows a decreasing trend as time proceeds.

The pixels located on the car in the final frame are about 12 by 15 in size, which

makes the vehicle almost invisible. In this sequence we set J0 = 50 and r0 = 0.25.

The algorithm implemented in a standard Matlab environment processes about

1.2 frames per second (with J0 = 50) running on a PC with a PIII 650 CPU and

512M memory.
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Frame 1

Frame 100

Frame 300

Frame 500

Figure 6.4: The car sequence. Notice the fast scale change present in the video.

Column 1: the tracking results obtained with an adaptive motion model and an

adaptive appearance model (‘adp’). Column 2: the tracking results obtained with

an adaptive motion model but a fixed appearance model (‘fa’). In this case, the

corner shows the tracked region. Column 3: the tracking results obtained with an

adaptive appearance model but a fixed motion model (‘fm’).

6.3.2 Tank tracking in an aerial video

Figure 6.6 shows our results on tracking a tank in an aerial video with degraded

image quality due to motion blur. Also, the movement of the tank is very jerky

and arbitrary because of platform motion, as seen in Figure 6.5(b) which plots the
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Figure 6.5: (a) The scale estimate for the car. (b) The 2-D trajectory of the

centroid of the tracked tank. ‘*’ means the starting and ending points and ‘.’

points are marked along the trajectory every 10 frames. (c) The particle number

Jt vs. t obtained when tracking the tank. (d) The MSE invoked by the ‘adp’ and

‘fa’ algorithms. (e) The scale estimate for the face sequence.

2-D trajectory of the centroid of the tracked tank every 10 frames, covering from

the left to the right in 300 frames. Although the tank moved about 100 pixels in

column index in a certain period of 10 frames, the tracking is still successful.

Figure 6.5(c) displays the plot of actual number of particles Jt as a function

of time t. The average number of particle is about 83, where we set J0 to be 100,

which means that in this case we actually saved about 20% in computation by

using an adaptive Jt instead of a fixed number of particles.

To further illustrate the importance of the adaptive appearance model, we
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Frame 1 Frame 31 Frame 49

Frame 116 Frame 228 Frame 300

Figure 6.6: Tracking a moving tank in a video acquired by an airborne camera.

computed the mean square error (MSE) invoked by two particle filter algorithms,

one (referred as ‘adp’ in Section 6.3.4) using the adaptive appearance model and the

other (referred as ‘fa’ in Section 6.3.4) using a fixed appearance model. Computing

the MSE for the ‘fa’ algorithm is straightforward, with T0 denoting the fixed

template,

MSEfa(t) = d−1
d

∑

j=1

(ẑt(j) − T0(j))
2. (6.36)

Computing the MSE for the ‘adp’ algorithm is as follows:

MSEadp(t) = d−1
d

∑

j=1

{
∑

i=w,s,f

mi,t(ẑt(j) − µi,t(j))
2}. (6.37)

Figure 6.5(d) plots the functions of MSEfa(t) and MSEadp(t). Clearly, using the

adaptive appearance model invokes smaller MSE for almost all 300 frames. The

average MSE for the ‘adp’ algorithm is 0.1394 5 while that for the ‘fa’ algorithm

is 0.3169!

5The range of MSE is very reasonable since we are using image patches after the zero-mean-

unit-variance normalization not the raw image intensities.
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6.3.3 Face tracking

We present one example of successful tracking of a human face using a hand-held

video camera in an office environment, where both camera and object motion are

present.

Figure 6.7 presents the tracking results on the video sequence featuring the

following variations: moderate lighting variations, quick scale changes (back and

forth) in the middle of the sequence, and occlusion (twice). The results are obtained

by incorporating the occlusion analysis in the particle filter, but we did not use the

F -component. Notice that the adaptive appearance model remains fixed during

occlusion.

Figure 6.8 presents the tracking results obtained using the particle filter without

occlusion analysis. We have found that the predicted velocity actually accounts

for the motion of the occluding hand since the outlier pixels (mainly on the hand)

dominate the image difference (T {yt; θ̃t} − ẑt−1). Updating the appearance model

deteriorates the situation.

Figure 6.5(e) plots the scale estimate against time t. We clearly observe a rapid

scale change (a sudden increase followed by a decrease within about 50 frames) in

the middle of the sequence (though hard to display the recovered scale estimates

are in perfect synchrony with the video data).

6.3.4 Comparison

We illustrate the effectiveness of our adaptive approach (‘adp’) by comparing the

particle filter either with (a) an adaptive motion model but a fixed appearance

model (‘fa’), or with (b) a fixed motion model but an adaptive appearance model

(‘fm’); or with (c) a fixed motion model and a fixed appearance model (‘fb’). Table
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Frame 1 Frame 145 Frame 148

Frame 155 Frame 470 Frame 517

Frame 685 Frame 695 Frame 800

Figure 6.7: The face sequence. Frames 145, 148, and 155 show the first occlusion.

Frames 470 and 517 show the smallest and largest face observed. Frames 685, 690,

and 710 show the second occlusion.

6.1 lists the tracking results obtained using particle filters under the above situa-

tions, where ‘adp & occ’ refers to the adaptive approach with occlusion handling.

Figure 6.4 also shows the tracking results on the car sequence when the ‘fa’ and

‘fm’ options are used.

Table 6.1 seems to suggest that the adaptive motion model plays a more im-

portant role than the adaptive appearance model since ‘fa’ always yields successful

tracking while ‘fm’ fails, the reasons being that (i) the fixed motion model is unable

to adapt to quick motion present in the video sequences, and (ii) the appearance
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Frame 1 Frame 145 Frame 148

Frame 155 Frame 170 Frame 200

Figure 6.8: Tracking results on the face sequence using the adaptive particle filter

without occlusion analysis.

changes in the video sequences, though significant in some cases, are still within

the range of the fixed appearance model. However, as seen in the videos, ‘adp’

produces much smoother tracking results than ‘fa’, demonstrating the power of

the adaptive appearance model.
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Chapter 7

Simultaneous Tracking and

Recognition

Following [58], we define a still-to-video scenario: the gallery consists of still facial

templates and the probe set consists of video sequences containing the facial re-

gion. Denote the gallery as I = {I1, I2, . . . , IN}, indexed by the identity variable n,

which lies in a finite sample space N = {1, 2, . . . , N}. Though significant research

has been conducted on the still-to-still face recognition problem, research efforts

on still-to-video recognition, are relatively fewer due to the following challenges

[27] in typical surveillance applications: poor video quality, significant illumina-

tion and pose variations, and low image resolution. Most existing video-based

recognition systems [79] attempt the following: the face is first detected and then

tracked over time. Only when a frame satisfying certain criteria (size, pose) is

acquired, recognition is performed using still-to-still recognition technique. For

this, the face part is cropped from the frame and transformed or registered using

appropriate transformations. This tracking-then-recognition approach attempts to

resolve uncertainties in tracking and recognition sequentially and separately.

166



There are several unresolved issues in the tracking-then-recognition approach:

criteria for selecting good frames and estimation of parameters for registration.

Also, still-to-still recognition does not effectively exploit temporal information. A

common strategy that selects several good frames, performs recognition on each

frame and then votes on these recognition results for a final solution is rather ad

hoc.

To overcome these difficulties, we propose a tracking-and-recognition approach,

which attempts to resolve uncertainties in tracking and recognition simultaneously

in a unified probabilistic framework. To fuse temporal information, the time series

state space model is adopted to characterize the evolving kinematics and identity

in the probe video. Three basic components of the model are:

• a motion equation governing the kinematic behavior of the tracking motion

vector,

• an identity equation governing the temporal evolution of the identity variable,

• an observation equation establishing a link between the motion vector and

the identity variable.

Using the SIS [114, 118, 153, 157, 159] technique, the joint posterior distribution

of the motion vector and the identity variable, i.e., p(nt, θt|y0:t)
1 is estimated at

each time instant and then propagated to the next time instant governed by mo-

tion and identity equations. The marginal distribution of the identity variable,

i.e., p(nt|y0:t), is estimated to provide a recognition result. An SIS algorithm is

developed to approximate the distribution p(nt|y0:t) in the still-to-video scenario.

1For notational convenience, e.g. in (7.5) and (7.6), we introduce in this chapter a dummy

variable y0.
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It achieves computational efficiency over its CONDENSATION counterpart by con-

sidering the discrete nature of the identity variable.

It is worth emphasizing that (i) our model can take advantage of any still-to-

still recognition algorithm [41, 44, 48, 62] by embedding distance measures used

therein in our likelihood measurement; and (ii) it allows a variety of image repre-

sentations and transformations. Section 7.3.4 presents an enhancement technique

by incorporating the sophisticated appearance-based models in Chapter 6. The ap-

pearance models are used for tracking (modeling inter-frame appearance changes)

and recognition (modeling appearance changes between video frames and gallery

images), respectively. Table 7.1 summarizes the proposed approach and others, in

term of using temporal information.

Process Operation Temporal information

Visual tracking Modeling the inter-frame Used in tracking

differences

Visual recognition Modeling the difference between Not applicable

probe and gallery images

Tracking-then-recognition Combining tracking and Used only in tracking

recognition sequentially

Tracking-and-recognition Unifying tracking and Used in both tracking

recognition and recognition

Table 7.1: Use of temporal information in various tracking/recognition processes.

Chapter organization

The organization of the chapter is as follows: Section 7.1 reviews some related stud-

ies on (i) face modeling and recognition and (ii) video-based tracking and recog-
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nition in the literature. Section 7.2 introduces the time series state space model

for recognition and establishes the time-evolving behavior of p(nt|y0:t). Section

7.2.3 briefly reviews the SIS principles from the viewpoint of a general state space

model and develops a SIS algorithm to solve the still-to-video recognition prob-

lem, with special emphasis on its computational efficiency. Section 7.3 describes

the experimental scenarios for still-to-video recognition and presents results using

data collected at UMD, NIST/USF, and CMU (MoBo database) as part of the

DARPA HumanID effort.

7.1 Related Literature

7.1.1 Face modeling and recognition

Statistical approaches to face modeling have been very popular since Turk and

Pentland’s work on eigenface [62]. In the statistical approach, the two-dimensional

appearance of face image is treated as a vector by scanning the image in lexico-

graphical order, with the vector dimension being the number of pixels in the image.

In the eigenface approach [62], all face images consists of a distinctive face sub-

space. This subspace is linear and spanned by the eigenvectors of the covariance

matrix found using PCA. Typically we keep the number of eigenvectors much less

than the true dimension of the vector space. The task of face recognition is then

to find the closest matches in this face subspace. However, PCA might not be ef-

ficient in terms of recognition accuracy since the construction of the face subspace

does not capture discrimination between humans. This motivates the use of LDA

[41, 44] and its variants. In LDA, the linear subspace is constructed [7] in such a

manner that the within-class scatter is minimized and the between-class scatter is
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maximized. This idea is further generalized in the approach called Bayesian face

recognition [55], where intra-personal space (IPS) and extra-personal space (EPS)

are used in lieu of within-class scatter and between-class scatter measures. The

IPS models the variations in the appearance of the same individual and the EPS

models the variations in appearances due to differences in the identity. Probabilis-

tic subspace density is then fitted on each space. A Bayesian decision is taken

using a maximum a posteriori (MAP) rule to determine the identity.

In the famous EGM [48] algorithm, the face is represented as a labeled graph.

The nodes of the graph are located at facial landmarks, e.g., the pupils, the tip

of nose, etc. Also, each node is labeled with jets derived from responses obtained

by convolving the image with a family of Gabor functions. The edge characterizes

the geometric distance between two nodes. Face recognition is then formalized as

a graph matching problem.

All the above approaches are based on 2-D appearance and perform poorly

when significant pose and illumination variations are present [58]. To completely

resolve such challenges, 3-D face modeling [66, 83] is necessary. However, building

a 3-D face model is a very difficult and complicated task in the literature even

though structure from motion has been studied for several decades.

7.1.2 Video-based tracking and recognition

Nearly all video-based recognition systems apply still-image-based recognition to

selected good frames. The face images are warped into frontal views whenever

pose and depth information about the faces is available [79].

In [82, 90, 93], RBF (Radial Basis Function) networks are used for tracking and

recognition purposes. In [82], the system uses an RBF (Radial Basis Function)
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network for recognition. Since no warping is done, the RBF network has to learn

the individual variations as well as possible transformations. The performance

appears to vary widely, depending on the size of the training data. [93] presents a

fully automatic person authentication system. The system uses video break, face

detection, and authentication modules and cycles over successive video images

until a high recognition confidence is reached. This system was tested on three

image sequences; the first was taken indoors with one subject present, the second

was taken outdoors with two subjects, and the third was taken outdoors with one

subject in stormy conditions. Perfect results were reported on all three sequences,

when verified against a database of 20 still face images.

In [92], a system called PersonSpotter is described. This system is able to

capture, track and recognize a person walking toward or passing a stereo CCD

camera. It has several modules, including a head tracker, and a landmark finder.

The landmark finder uses a dense graph consisting of 48 nodes learned from 25

example images to find landmarks such as eyes and nose tip. An elastic graph

matching scheme is employed to identify the face.

A multimodal based person recognition system is described in [79]. This system

consists of a face recognition module, a speaker identification module, and a classi-

fier fusion module. The most reliable video frames and audio clips are selected for

recognition. The 3D head information is used to detect the presence of an actual

person as opposed to an image of that person. Recognition and verification rates

of 100% were achieved for 26 registered clients.

In [87, 88], recognition of face over time is implemented by constructing a

face identity surface. The face is first warped to a frontal view, and its Kernel

Discriminant Analysis (KDA) features over time form a trajectory. It is shown
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that the trajectory distances accumulate recognition evidence over time.

In [86], a generic approach to simultaneous object tracking and verification is

proposed. The approach is based on posterior probability density estimation using

sequential Monte Carlo methods [118, 153, 157, 159]. Tracking is formulated as

a probability density propagation problem and the algorithm also provides verifi-

cation results. However, no systematic evaluation of recognition was done. Our

approach looks similar to this algorithm; however, there are significant differences

from the algorithm described in [86]. (i) In [86], basically only the tracking motion

vector is parameterized in the state-space model. The identity is involved only in

the initialization step to rectify the template onto the first frame of the sequence.

However, in our approach both tracking motion vector and identity variables are

parameterized in the state-space model, which offers us one more degree of freedom

and leads to a different approach for deriving the solution. (ii) The SIS technique

is used in both approaches to numerically approximate the posterior probability

given the observation. Again in [86], it is the posterior probability of motion vector

and the verification probability is estimated by marginalizing over a proper region

of state space redefined at each time instant. However, we always compute the

joint density, i.e., the posterior probability of motion vector and identity variable

and the posterior probability of identity variable is just a free estimate obtained

by marginalizing over the motion vector. Note that there is no time propagation

of verification probability in [86] while we always propagate the joint density. One

consequence is that we guarantee that
∑

nt∈N p(nt|y0:t) = 1, but there is no such

guarantee in [86].
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7.2 Stochastic Models and Algorithms for Recog-

nition from Video

In this section, we present the details on the propagation model for recognition

and discuss its impact on the posterior distribution of identity variable.

7.2.1 Time series state space model

Motion equation

In its most general form, the motion model can be written as

θt = g(θt−1, ut); t ≥ 1, (7.1)

where ut is noise in the motion model, whose distribution determines the motion

state transition probability p(θt|θt−1). The function g(., .) characterizes the evolv-

ing motion and it could be a function learned offline or given a priori. One of

the simplest choice is an additive function, i.e., θt = θt−1 + ut, which leads to a

first-order Markov chain.

Choice of θt is application dependent. Affine motion parameters are often

used when there is no significant pose variation available in the video sequence.

However, if a 3-D face model is used, then the 3-D motion parameters should be

used accordingly.

Identity equation

nt = nt−1; t ≥ 1, (7.2)

assuming that the identity does not change as time proceeds.
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Observation equation

By assuming that the transformed observation is a noise-corrupted version of some

still template in the gallery, the observation equation can be written as

T {yt; θt} = Int
+ vt; t ≥ 1, (7.3)

where vt is observation noise at time t, whose distribution determines the observa-

tion likelihood p(yt|nt, θt), and T {yt; θt} is a transformed version of the observation

yt. This transformation could be either geometric or photometric or both. How-

ever, when confronting sophisticated scenarios, this model is far from sufficient.

One should use the complicated likelihood measurement as shown in Section 7.3.2.

We assume statistical independence between all noise variables and prior knowl-

edge on the distributions p(θ0|y0) and p(n0|y0). Using the overall state vector

xt = (nt, θt), Eq. (7.1) and (7.2) can be combined into one state equation (in a

normal sense) which is completely described by the overall state transition proba-

bility

p(xt|xt−1) = p(nt|nt−1)p(θt|θt−1) . (7.4)

Given this model, our goal is to compute the posterior probability p(nt|y0:t). It

is in fact a probability mass function (PMF) since nt only takes values from N =

{1, 2, ..., N}, as well as a marginal probability of p(nt, θt|y0:t), which is a mixed-

type distribution. Therefore, the problem is reduced to computing the posterior

probability.

7.2.2 Posterior probability of identity variable

The evolution of the posterior probability p(nt|y0:t) as time proceeds is very in-

teresting to study as the identity variable does not change by assumption, i.e.,
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p(nt|nt−1) = δ(nt − nt−1), where δ(.) is a discrete impulse function at zero.

Using time recursion, Markov properties, and statistical independence embed-

ded in the model, we can easily derive:

p(n0:t, θ0:t|y0:t) = p(n0:t−1, θ0:t−1|y0:t−1)
p(yt|nt, θt)p(nt|nt−1)p(θt|θt−1)

p(yt|y0:t−1)

= p(n0, θ0|y0)
t

∏

s=1

p(ys|ns, θs)p(ns|ns−1)p(θs|θs−1)

p(ys|y0:s−1)

= p(n0|y0)p(θ0|y0)
t

∏

s=1

p(ys|ns, θs)δ(ns − ns−1)p(θs|θs−1)

p(ys|y0:s−1)
.(7.5)

Therefore, by marginalizing over θ0:t and n0:t−1, we obtain

p(nt = l|y0:t) = p(l|y0)
∫

θ0

. . .
∫

θt

p(θ0|y0)
t

∏

s=1

p(ys|l, θs)p(θs|θs−1)

p(ys|y0:s−1)
dθt . . . dθ0. (7.6)

Thus p(nt = l|y0:t) is determined by the prior distribution p(n0 = l|y0) and the

product of the likelihood functions,
∏t

s=1 p(ys|l, θs). If a uniform prior is assumed,

then
∏t

s=1 p(ys|l, θs) is the only determining factor.

In the appendix, we show that, under some minor assumptions, the poste-

rior probability for the correct identity l, p(nt = l|y0:t), is lower-bounded by an

increasing curve which converges to 1.

To measure the evolving uncertainty remaining in the identity variable as ob-

servations accumulate, we use the notion of entropy [4]. In the context of this

problem, conditional entropy H(nt|y0:t) is used. However, the knowledge of p(y0:t)

is needed to compute H(nt|y0:t). We assume that it degenerates to an impulse

at the actual observations ỹ0:t since we observe only this particular sequence, i.e.,

p(y0:t) = δ(y0:t − ỹ0:t). Thus,

H(nt|y0:t) = −
N

∑

nt=1

p(nt|ỹ0:t) log2 p(nt|ỹ0:t). (7.7)

Under the assumptions listed in the appendix, we expect that H(nt|y0:t) decreases
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as time proceeds since we start from an equi-probable distribution to a degenerate

one.

7.2.3 SIS algorithms and computational efficiency

Consider a general time series state space model fully determined by (i) the over-

all state transition probability p(xt|xt−1), (ii) the observation likelihood p(yt|xt),

and (iii) prior probability p(x0) and statistical independence among all the noise

variables. We wish to compute the posterior probability p(xt|y0:t).

If the model is linear with Gaussian noise, it is analytically solvable by a Kalman

filter which essentially propagates the mean and variance of a Gaussian distribution

over time. For nonlinear and non-Gaussian cases, an extended Kalman filter (EKF)

and its variants have been used to arrive at an approximate analytic solution [1].

Recently, the SIS technique or particle filter algorithm, a special case of Monte

Carlo method, [118, 153, 157, 159] has been used to provide a numerical solution

and propagate an arbitrary distribution over time. However, since we are dealing

with a mixed-type distribution, additional properties are available to be exploited

when developing the SIS algorithms.

First, two following two propositions are useful.

Proposition 7.1 When π(x) is a PMF defined on a finite sample space, the

proper sample set should exactly include all samples in the sample space.

Proposition 7.2 If a set of weighted random samples {(x(m), y(m), w(m))}M
m=1

is proper with respect to π(x, y), then a new set of weighted random samples

{(y′(k), w
′(k))}K

k=1, which is proper with respect to π(y), the marginal of π(x, y), can

be constructed as follows:

1) Remove the repetitive samples from {y(m)}M
m=1 to obtain {y′(k)}K

k=1, where all
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y
′(k)’s are distinct;

2) Sum the weight w(m) belonging to the same sample y
′(k) to obtain the weight

w
′(k), i.e.,

w
′(k) =

M
∑

m=1

w(m)δ(y(m) − y
′(k)) (7.8)

In the context of this framework, the posterior probability p(nt, θt|y0:t) is rep-

resented by a set of indexed and weighted samples

St = {(n(m)
t , θ

(m)
t , w

(m)
t )}M

m=1 (7.9)

with nt as the above index. By Proposition 7.2, we can sum the weights of the

samples belonging to the same index nt to obtain a proper sample set {nt, βnt
}N

nt=1

with respect to the posterior PMF p(nt|y0:t).

A straightforward implementation of the particle filter algorithm (Figure 7.1)

for simultaneous tracking and recognition is not efficient in terms of its compu-

tational load. Since N = {1, 2, . . . , N} is a countable sample space, we need N

samples for the identity variable nt according to Proposition 7.1. Assume that,

for each identity variable nt, J samples are needed to represent θt. Hence, we

need M = J ∗ N samples in total. Further assume that one resampling step takes

Tr seconds (s), one predicting step Tp s, computing one transformed image Tt

s, evaluating likelihood once Tl s, one updating step Tu s. Obviously, the bulk of

computation is J ∗N ∗(Tr +Tp +Tt +Tl) s to deal with one video frame as the com-

putational time for the normalizing step and the marginalizing step is negligible.

It is well known that computing the transformed image is much more expensive

than other operations, i.e., Tt >> max(Tr, Tp, Tl). Therefore, as the number of

templates N grows, the computational load increases dramatically.

There are various approaches in the literature to reduce the computational cost

of the conventional particle filter algorithm. In [128], random particles are guided
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Initialize a sample set S0 = {(n(m)
0 , θ

(m)
0 , 1)}M

m=1 according to prior distribu-

tions p(n0|y0) and p(θ0|y0).

For t = 1, 2, . . .

For m = 1, 2, . . . ,M

Resample St−1 = {(n(m)
t−1, θ

(m)
t−1 , w

(m)
t−1)}M

m=1 to obtain a new sample

(n
′(m)
t−1 , θ

′(m)
t−1 , 1).

Predict a sample by drawing (n
(m)
t , θ

(m)
t ) from p(nt|n

′(m)
t−1 ) and p(θt|θ

′(m)
t−1 ).

Compute the transformed image z
(m)
t = T {yt; θ

(m)
t }.

Update the weight using α
(m)
t = p(yt|n(m)

t , θ
(m)
t ).

End

Normalize each weight using w
(m)
t = α

(m)
t /

∑M
m=1 α

(m)
t .

Marginalize over θt to obtain the weight βnt for nt.

End

Figure 7.1: The conventional particle filter algorithm for simultaneous tracking

and recognition.

by deterministic search. Assumed density filtering approach [148], different from

particle filter, is even more efficient. Those approaches are general and do not

explicitly exploit the special structure of the distribution in this setting: a mixed

distribution of continuous and discrete variables. To this end, we propose the

following algorithm.

As the sample space N is countably finite, an exhaustive search of sample space

N is possible. Mathematically, we release the random sampling in the identity

variable nt by constructing samples as follows: for each θ
(j)
t ,

(1, θ
(j)
t , w

(j)
t,1 ), (2, θ

(j)
t , w

(j)
t,2 ), . . . , (N, θ

(j)
t , w

(j)
t,N).
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We in fact use the following notation for the sample set,

St = {(θ(j)
t , w

(j)
t , w

(j)
t,1 , w

(j)
t,2 , . . . , w

(j)
t,N)}J

j=1, (7.10)

with w
(j)
t =

∑N
n=1 w

(j)
t,n. The proposed algorithm is summarized in Figure 7.2.

Initialize a sample set S0 = {(θ(j)
0 , N, 1, ..., 1)}J

j=1 according to prior distribu-

tion p(θ0|z0).

For t = 1, 2, . . .

For j = 1, 2, . . . , J

Resample St−1 = {(θ(j)
t−1, w

(j)
t−1)}J

j=1 to obtain a new sample

(θ
′(j)
t−1, 1, w

′(j)
t−1,1, . . . , w

′(j)
t−1,N ), where w

′(j)
t−1,n = w

(j)
t−1,n/w

(j)
t−1 for n = 1, 2, . . . , N .

Predict a sample by drawing (θ
(j)
t ) from p(θt|θ

′(j)
t−1).

Compute the transformed image z
(m)
t = T {yt; θ

(m)
t }.

For n = 1, . . . , N

Update the weight using α
(j)
t,n = w

′(j)
t−1,n ∗ p(yt|n, θ

(j)
t ).

End

End

Normalize each weight using w
(j)
t,n = α

(j)
t,n/

∑N
n=1

∑J
j=1 α

(j)
t,n and

w
(j)
t =

∑N
n=1 w

(j)
t,n.

Marginalize over θt to obtain the weight βnt for nt.

End

Figure 7.2: The computationally efficient particle filter algorithm for simultaneous

tracking and recognition.

The crux of this algorithm lies in the fact that, instead of propagating random

samples on both motion vector and identity variable, we can keep the samples on

the identity variable fixed and let those on the motion vector be random. Although
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we propagate only the marginal distribution for motion tracking, we still propagate

the joint distribution for recognition purposes.

The bulk of computation of the proposed algorithm is J∗(Tr+Tp+Tt)+J∗N∗Tl

s, a tremendous improvement over the conventional particle filter when dealing

with a large database since the majority computational time J ∗Tt does not depend

on N .

7.3 Still-to-Video Face Recognition Experiments

In this section we describe the still-to-video scenarios used in our experiments

and their practical model choices, followed by a discussion of experiments. Three

databases are used in the still-to-video experiments.

Database-0 was collected outside a building. Subjects walked straight towards a

video camera in order to simulate typical scenarios in visual surveillance. Database-

0 includes one face gallery, and one probe set. The images in the gallery are listed

in Figure 7.3. The probe contains 12 videos, one for each individual. Figure 7.3

gives some frames in a probe video.

In Database-1, we have video sequences with subjects walking in a slant path

towards the camera. There are 30 subjects, each having one face template. There

are one face gallery and one probe set. The face gallery is shown in Figure 7.4.

The probe contains 30 video sequences, one for each subject. Figure 7.4 gives some

example frames extracted from one probe video. As far as imaging conditions are

concerned, the gallery is very different from the probe, especially in lighting. This

is similar to the ’FC’ test protocol of the FERET test [58]. These images/videos

were collected, as part of the HumanID project, by National Institute of Standards

and Technology and University of South Florida researchers.
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Database-2, Motion of Body (MoBo) database, was collected at the Carnegie

Mellon University [81] under the HumanID project. There are 25 different indi-

viduals in total. The video sequences show the individuals walking on a tread-mill

so that they move their heads naturally. Different walking styles have been simu-

lated to assure a variety of conditions that are likely to appear in real life: walking

slowly, walking fast, inclining and carrying an object. Therefore, four videos per

person and 99 videos in total ( with one carrying video missing ) are available.

However, the probe set we use in this section includes only 25 slowWalk videos.

Some example images of the videos (slowWalk) are shown in Figure 7.5. Figure

7.5 also shows the face gallery in Database-2 with face images in almost frontal

view cropped from probe videos and then normalized using their eye positions.

Table 7.2 summaries the features of the three databases.

Database Database-0 Database-1 Database-2

No. of subjects 12 30 25

Gallery Frontal face Frontal face Frontal face

Motion in probe Walking straight Walking in an angle Walking

towards the camera towards the camera on tread-mill

Illumination variation No Large No

Pose variation No Slight Large

Table 7.2: Summary of three databases experimented.

7.3.1 Results for Database-0

We consider an affine transformation. Specifically, the motion is characterized

by θ = (a1, a2, a3, a4, tx, ty) where {a1, a2, a3, a4} are deformation parameters and

{tx, ty} are 2-D translation parameters. It is a reasonable approximation since there
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Figure 7.3: Database-0. The 1st row: the face gallery with image size being 30×26.

The 2nd and 3rd rows: 4 example frames in one probe video with image size being

320× 240 while the actual face size ranges approximately from 30× 30 in the first

frame to 50× 50 in the last frame. Notice that the sequence is taken under a well-

controlled condition so that there are no illumination or pose variations between

the gallery and the probe.

is no significant out-of-plane motion as the subjects walk towards the camera. Re-

garding the photometric transformation, only zero-mean-unit-variance operator is

performed to partially compensate for contrast variations. The complete trans-

formation T {y; θ} is processed as follows: affine transform y using {a1, a2, a3, a4},
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Figure 7.4: Database-1. The 1st row: the face gallery with image size being 30×26.

The 2nd and 3rd rows: 4 example frames in one probe video with image size being

720× 480 while the actual face size ranges approximately from 20× 20 in the first

frame to 60 × 60 in the last frame. Notice the significant illumination variations

between the probe and the gallery.

crop out the interested region at position {tx, ty} with the same size as the still

template in the gallery, and perform zero-mean-unit-variance operation.

Prior distribution p(θ0|y0) is assumed to be Gaussian, whose mean comes from

183



Figure 7.5: Database-2. The 1st row: the face gallery with image size being 30×26.

The 2nd and 3rd rows: some example frames in one probe video (slowWalk). Each

video consists of 300 frames (480 × 640 pixels per frame) captured at 30 Hz. The

inner face regions in these videos contain between 30×30 and 40×40 pixels. Notice

the significant pose variation available in the video.

the initial detector and whose covariance matrix is manually specified.

A time-invariant first-order Markov Gaussian model with constant velocity is

used for modeling motion transition. Given the scenario that the subject is walking
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towards the camera, the scale increases with time. However, under perspective

projection, this increase is no longer linear, causing the constant-velocity model to

be not optimal. However, experimental results show that as long as the samples

of θ can cover the motion, this model is sufficient.

The likelihood measurement is simply set as a ‘truncated’ Laplacian:

p1(yt|nt, θt) = LAP(‖T {yt; θt} − Int
‖; σ1, τ1) (7.11)

where, ‖.‖ is sum of absolute distance, σ1 and λ1 are manually specified, and

LAP(x; σ, τ) =















σ−1 exp(−x/σ) if x ≤ τσ

σ−1 exp(−τ) otherwise
(7.12)

Gaussian distribution is widely used as a noise model, accounting for sensor noise,

digitization noise, etc. However, given the observation equation: vt = T {yt; θt} −

Int
, the dominant part of vt becomes the high-frequency residual if θt is not proper,

and it is well known that the high-frequency residual of natural images is more

Laplacian-like. The ’truncated’ Laplacian is used to give a ’surviving’ chance for

samples to accommodate abrupt motion changes.

Figure 7.6 presents the plot of the posterior probability p(nt|y0:t), the condi-

tional entropy H(nt|y0:t) and the minimum mean square error (MMSE) estimate of

the scale parameter sc =
√

(a2
1 + a2

2 + a2
3 + a2

4)/2, all against t. In Figure 7.3, the

tracked face is superimposed on the image using a bounding box.

Suppose the correct identity for Figure 7.3 is l. From Figure 7.6, we can easily

observe that the posterior probability p(nt = l|y0:t) increases as time proceeds and

eventually approaches 1, and all others p(nt = j|y0:t) for j 6= l go to 0. Figure

7.6 also plots the decrease in conditional entropy H(nt|y0:t) and the increase in

scale parameter, which matches with the scenario of a subject walking towards a

camera.
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Table 7.3 summarizes the average recognition performance and computational

time of the conventional and the proposed particle filter algorithm when applied

to Database-0. Both algorithms achieved 100% recognition rate with top match.

The proposed algorithm is much more efficient than the conventional one. It is

more than 10 times faster as shown in Table I. This experiment was implemented

in C++ on a PC with P-III 1G CPU and 512M RAM with the number of motion

samples J chosen to be 200, the number of templates in the gallery N to be 12.
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Figure 7.6: Posterior probability p(nt|y0:t) against time t, obtained by the

CONDENSATION algorithm (top left) and the proposed algorithm (top right). Con-

ditional entropy H(nt|y0:t) (bottom left) and MMSE estimate of scale parameter sc

(bottom right) against time t. The conditional entropy and the MMSE estimate

are obtained using the proposed algorithm.
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Algorithm Conventional algorithm Efficient algorithm

Recognition rate within top 1 match 100% 100%

Time per frame 7s 0.5s

Table 7.3: Recognition performance of algorithms when applied to Database-0.

7.3.2 Results for Database-1

Case 1: Tracking and Recognition using Laplacian Density

We first investigate the performance using the same setting as described in Section

7.3.1. In other words, we still use the affine transformation, first-order Markov

Gaussian state transition model, ‘truncated’ Laplacian observation likelihood, etc.

Table 7.4 shows that the recognition rate is very poor, only 13% are correctly

identified using top match. The main reason is that the ’truncated’ Laplacian

density is far from sufficient to capture the appearance difference between the probe

and the gallery, thereby indicating a need for a different appearance modeling.

Nevertheless, the tracking accuracy 2 is reasonable with 83% successfully tracked

because we are using multiple face templates in the gallery to track the specific

face in the probe video. After all, faces in both the gallery and the probe belong

to the same class of human face and it seems that the appearance change is within

the class range.

2We manually inspect the tracking results by imposing the MMSE motion estimate on the

final frame as shown in Figs. 7.3 and 7.4 and determine if tracking is successful or not for this

sequence. This is done for all sequences and tracking accuracy is defined as the ratio of the

number of sequences successfully tracked to the total number of all sequences.
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Case 2: Pure Tracking using Laplacian Density

In Case 2, we measure the appearance change within the probe video as well as

the noise in the background. To this end, we introduce a dummy template T0, a

cut version in the first frame of the video. Define the observation likelihood for

tracking as

p2(yt|θt) = LAP (‖T {yt; θt} − T0‖; σ2, τ2), (7.13)

where σ2 and τ2 are set manually. The other setting, such as motion parameter and

model, is the same as in Case 1. We still can run the CONDENSATION algorithm

to perform pure tracking.

Table 7.4 shows that 87% are successfully tracked by this simple tracking model,

which implies that the appearance within the video remains similar.

Case Case 1 Case 2 Case 3 Case 4 Case 5

Tracking accuracy 83% 87% 93% 100% NA

Recognition w/in top 1 match 13% NA 83% 93% 57%

Recognition w/in top 3 matches 43% NA 97% 100% 83%

Table 7.4: Performances of algorithms when applied to Database-1.

Case 3: Tracking and Recognition using Probabilistic Subspace Density

As mentioned in Case 1, we need a new appearance model to improve the recog-

nition accuracy. As reviewed in Section 7.1.1, there are various approaches in

the literature. We decided to use the approach suggested by Moghaddam et al.

[55] due to its computational efficiency and high recognition accuracy. However,

in our implementation, we model only intra-personal variations instead of both

intra/extra-personal variations for simplicity.
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We need at least two facial images for one identity to construct the intra-

personal space (IPS). Apart from the available gallery, we crop out the second

image from the video ensuring no overlap with the frames actually used in probe

videos. Figure 7.7 (top row) shows a list of such images. Compare with Figure 7.4

to see how the illumination varies between the gallery and the probe.

We then fit a probabilistic subspace density [56] on top of the IPS. It proceeds

as follows: a regular PCA is performed for the IPS. Suppose the eigensystem for

the IPS is {(λi, ei)}d
i=1, where d is the number of pixels and λ1 ≥ ... ≥ λd. Only top

s principal components corresponding to top s eigenvalues are then kept while the

residual components are considered as isotropic. We refer the reader to the original

paper [56] for the full details. Figure 7.7 (middle row) shows the eigenvectors for

the IPS. The density is written as follows:

QIPS(x) = {
exp(−1

2

∑s
i=1

y2
i

λi
)

(2π)s/2
∏s

i=1 λ
1/2
i

}{
exp(− ε2

2ρ
)

(2πρ)(d−s)/2
}, (7.14)

where yi = eT
i x for i = 1, ..., s is the ith principal component of x, ε2 = ‖x‖2−∑s

i=1 y2
i

is the reconstruction error, and ρ = (
∑d

i=s+1 λi)/(d − q). It is easy to write the

likelihood as follows:

p3(yt|nt, θt) = QIPS(T {yt; θt} − Int
). (7.15)

Table 7.4 lists the performance by using this new likelihood measurement. It

turns out that the performance is significantly better that in Case 1, with 93%

tracked successfully and 83% recognized within top 1 match. If we consider the

top 3 matches, 97% are correctly identified.

Case 4: Tracking and Recognition using Combined Density

In Case 2, we have studied appearance changes within a video sequence. In Case

3, we have studied the appearance change between the gallery and the probe. In
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Figure 7.7: Database-1. Top row: the second facial images for estimating prob-

abilistic density. Middle row: top 10 eigenvectors for the IPS. Bottom row: the

facial images cropped out from the largest frontal view.

Case 4, we attempt to take advantage of both cases by introducing a combined

likelihood defined as follows:

p4(yt|nt, θt) = p3(yt|nt, θt)p2(yt|θt) (7.16)

Again, all other setting is the same as in Case 1. We now obtain the best perfor-

mance so far: no tracking error, 93% are correctly recognized as the first match,

and no error in recognition when top 3 matches are considered.
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Case 5: Still-to-still Face Recognition

To make a comparison, we also performed an experiment on still-to-still face recog-

nition. We selected the probe video frames with the best frontal face view (i.e.

biggest frontal view) and cropped out the facial region by normalizing with respect

to the eye coordinates manually specified. This collection of images is shown in

Figure 7.7 (bottom row) and it is fed as probes into a still-to-still face recognition

system with the learned probabilistic subspace as in Case 3. It turns out that the

recognition result is 57% correct for the top one match, and 83% for the top 3

matches. The cumulative match curves for Case 1 and Cases 3-5 are presented in

Figure 7.8. Clearly, Case 4 is the best among all. We also implemented the original

algorithm by Moghaddam et al. [56], i.e., both intra/extra-personal variations are

considered, the recognition rate is similar to that obtained in Case 5.

7.3.3 Results for Database-2

The recognition result for Database-2 is presented in Figure 7.8, using the cumu-

lative match curve. We still use the same setting as in Case 1 of section 7.3.2.

However, due to the pose variations present in the database, using one frontal

view is not sufficient to represent all the appearances under different poses and the

recognition rate is hence not so high, 56% when only the top match is considered

and 88% when top 3 matches are considered. We do not use probabilistic subspace

modeling for this database because such modeling requires manually cropping out

multiple templates for each individual. Also, pre-selecting video frames from the

same probe video and ensuring that they do not overlap with the probe frames

is time-consuming. What is desirable is to automatically select such templates

from different sources other than the probe video. Since we have multiple videos
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available for one individual in Database-2, this motivates us to obtain more repre-

sentative views for one face class, leading to the discussions in [194].
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Figure 7.8: Cumulative match curves for Database-1 (left) and Database-2 (right).

7.3.4 Enhanced results

Visual tracking models the inter-frame appearance differences and visual recogni-

tion models the appearance differences between video frames and gallery images.

Simultaneous tracking and recognition provides a mechanism of jointly modeling

inter-frame appearance differences and the appearance differences between video

frames and gallery images. As in Section 7.3.2, this joint modeling of appearance

differences in both tracking and recognition in one framework actually improves

both tracking and recognition accuracies over approaches that separate tracking

and recognition as two tasks. The more effective the model choices are, improved

performance in tracking and recognition is expected. We explore this avenue by

incorporating the models used in Chapter 6.

We use the same adaptive-velocity motion model (6.29) and the same identity

equation (7.2). The observation likelihood is modified to combine contributions

(or scores) from both tracking and recognition in the likelihood yields the best

performance in both tracking and recognition.
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To compute the tracking score pa(yt|θt) which measures the inter-frame appear-

ance changes, we use the appearance model introduced in Section 6.2.1 and the

quantity defined in (6.10) as pa(yt|θt).

To compute the recognition score which measures the appearance changes be-

tween probe videos and gallery images, we assume the same model as in (7.3), i.e.,

the transformed observation is a noise-corrupted version of some still template in

the gallery, and the noise distribution determines the recognition score pn(yt|nt, θt).

We will physically define this quantity below.

To fully exploit the fact that all gallery images are in frontal view, we also

compute below how likely the patch zt is in frontal view and denote this score by

pf (yt|θt). If the patch is in frontal view, we accept a recognition score; otherwise,

we simply set the recognition score as equiprobable among all identities, i.e., 1/N .

The complete likelihood p(yt|nt, θt) is now defined as

p(yt|nt, θt) ∝ pa {pf pn + (1 − pf) N−1}. (7.17)

Model components in detail

• A. Modeling inter-frame appearance changes

Inter-frame appearance changes are related to the motion transition model

and the appearance model for tracking, which were explained in Sections

6.2.1 and 6.2.2.

• B. Being in frontal view

Since all gallery images are in frontal view, we simply measure the extent of

being frontal by fitting a probabilistic subspace (PS) density on the top of

the gallery images [54, 56], assuming that they are i.i.d. samples from the
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frontal face space (FFS). pf(yt|θt) is written as follows:

pf(yt|θt) = QFFS(zt), (7.18)

where the density Q(.) is defined same as that in (7.14).

• C. Modeling appearance changes between probe video frames and gallery im-

ages

We adopt the MAP rule developed in [56] for the recognition score pn(yt|nt, θt).

Two subspaces are constructed to model appearance variations. The IPS is

meant to cover all the variations in appearances belonging to the same person

while the EPS is used to cover all the variations in appearances belonging

to different people. More than one facial image per person is needed to con-

struct the IPS. Apart from the available gallery, we crop out four images

from the video ensuring no overlap with frames used in probe videos. The

above PS density estimation method is applied separately to the IPS and the

EPS, yielding two different eigensystems. The recognition score pn(yt|nt, θt)

is finally computed as, assuming equal priors on the IPS and the EPS,

pn(yt|nt, θt) =
QIPS(zt − Int

)

QIPS(zt − Int
) + QEPS(zt − Int

)
. (7.19)

D. Proposed algorithm

We adjust the particle number Jt based on the following considerations. (i) The

first issue is same as (6.31) based on the prediction error. (ii) As shown above,

the uncertainty in the identity variable nt is characterized by an entropy measure

Ht for p(nt|y1:t) and Ht is a non-increasing function (under one weak assumption).

Accordingly, we increase the number of particles by a fixed amount Jfix if Ht
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Initialize a sample set S0 = {θ(j)
0 , w

(j)
0 = 1/J0)}J0

j=1 according to prior distribution

p(θ0). Set β0,l = 1/N . Initialize the appearance mode A1.

For t = 1, 2, . . .

Calculate the MAP estimate θ̂t−1, the adaptive motion shift νt by Eq. (6.21), the

noise variance rt by Eq. (6.30), and particle number Jt by Eq. (7.20).

For j = 1, 2, . . . , Jt

Draw the sample u
(j)
t for ut with variance Rt.

Construct the sample θ
(j)
t by Eq. (6.29).

Compute the transformed image z
(j)
t .

For l = 1, 2, ..., N

Update the weight using α
(j)
t,l = βt−1,lp(yt|l, θ(j)

t ) = βt−1,lp(z
(j)
t |l, θ(j)

t ) by

Eq. (7.17).

End

End

Normalize the weight using w
(j)
t,l = α

(j)
t,l /

∑

j,l α
(j)
t,l and compute w

(j)
t =

∑

j w
(j)
t,l

and βt,l =
∑

j w
(j)
t,l .

Update the appearance model At+1 using ẑt.

End

Figure 7.9: The visual tracking and recognition algorithm.

increases; otherwise we deduct Jfix from Jt. Combining these two, we have

Jt = J0
rt

r0
+ Jfix ∗ (−1)i[Ht−1<Ht−2]}, (7.20)

where i[.] is an indication function.

The proposed particle filtering algorithm for simultaneous tracking and recog-

nition is summarized in Figure 7.9, where w
(j)
t,l is the weight of the particle (nt =

l, θt = θ
(j)
t ) for the posterior density p(nt, θt|y1:t); w

(j)
t is the weight of the particle

θt = θ
(j)
t for the posterior density p(θt|y1:t); and βt,l is the weight of the particle

nt = l for the posterior density p(nt|y1:t). Occlusion analysis can also be included
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in Figure 7.9.

Figure 7.10: Row 1-3: the gallery set with 29 subjects in frontal view. Rows 4, 5,

and 6: the top 10 eigenvectors for FFS, IPS, and EPS, respectively.

Experimental results on visual tracking and recognition

We have applied our algorithm for tracking and recognition of human faces cap-

tured by a hand-held video camera in office environments. There are 29 subjects

in the database. Figure 7.10 lists all the images in the galley set and the top 10

eigenvectors for FFS, IPS, and EPS, respectively. Figure 7.11 presents some frames

(with tracking results) in the video sequence for ‘Subject-2’ featuring quite large

pose variations, moderate illumination variations, and quick scale changes ( back

and forth toward the end of the sequence).

Tracking is successful for all video sequences and 100% recognition rate is

achieved, while early approaches fail to track in several video sequences due to

its inability to handle significant appearance changes caused by pose and illumina-

tion variations. The posterior probabilities p(nt|y1:t) with nt = 1, 2, ...N obtained
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Frame 1 Frame 160 Frame 290

Frame 690 Frame 750 Frame 800

Figure 7.11: Example images in ‘Subject-2’ probe video sequence and the tracking

results.

for the ‘Subject-2’ sequence are plotted in Figure 7.12(a). We start from a uni-

form prior for the identity variable, i.e., p(n0) = N−1 for n0 = 1, 2, ...N . It is

very fast, taking about less than 10 frames, to reach above 0.9 level for the poste-

rior probability corresponding to ‘Subject-2’, while all other posterior probabilities

corresponding to other identities approach zero. This is mainly attributed to the

discriminative power of the MAP recognition score induced by IPS and EPS mod-

eling. The previous approach [185] usually takes about 30 frames to reach 0.9 level

since only intra-personal modeling is adopted. Figure 7.12(b) captures the scale

change in the ‘Subject-2’ sequence.
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Figure 7.12: Results on the ‘Subject-2’ sequence. (a) Posterior probabilities against

time t for all identities p(nt|y1:t), nt = 1, 2, ..., N . The line close to 1 is for the true

identity. (b) Scale estimate against time t.

7.4 Appendix

Appendix 7.I: Derivation of the lower bound for the poste-

rior probability of identity

Suppose that the following two assumptions hold:

• (A) The prior probability for each identity is same,

p(n0 = j|y0) = 1/N ; j ∈ N , (7.21)

• (B) for the correct identity l ∈ N , there exists a constant η > 1 such that,

p(yt|nt = l, θt) ≥ ηp(yt|nt = j, θt); t ≥ 1, j ∈ N , j 6= l. (7.22)

Substitution of Eq. (7.21) and (7.22) into Eq. (7.6) gives rise to

p(nt = l|y0:t) =
1

N

∫

θ0

. . .
∫

θt

p(θ0|y0)
t

∏

s=1

p(ys|ns = l, θs)p(θs|θs−1)

p(ys|y0:s−1)
dθt . . . dθ0

≥ 1

N

∫

θ0

. . .
∫

θt

p(θ0|y0)
t

∏

s=1

ηp(ys|ns = j, θs)p(θs|θs−1)

p(ys|y0:s−1)
dθt . . . dθ0
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=
ηt

N

∫

θ0

. . .
∫

θt

p(θ0|z0)
t

∏

s=1

p(ys|ns = j, θs)p(θs|θs−1)

p(ys|y0:s−1)
dθt . . . dθ0

= ηtp(nt = j|y0:t); j ∈ N , j 6= l, (7.23)

where ηt =
∏t

s=1 η.

More interestingly, from Eq. (7.23), we have

(N − 1)p(nt = l|y0:t) ≥ ηt
N

∑

j=1,j 6=l

p(nt = j|y0:t) = ηt(1 − p(nt = l|y0:t)), (7.24)

i.e.,

p(nt = l|y0:t) ≥ h(η, t), (7.25)

where

h(η, t) =
ηt

ηt + N − 1
. (7.26)

Eq. (7.25) has two implications.

1. Since the function h(η, t) which provides a lower bound for p(nt = l|y0:t) is

monotonically increasing against time t, p(nt = l|y0:t) has a probable trend

of increase over t, even though not in a monotonic manner.

2. Since η > 1 and p(nt = l|y0:t) ≤ 1,

lim
t→∞

p(nt = l|y0:t) = 1, (7.27)

implying that p(nt = l|y0:t) degenerates in the identity l for some sufficiently

large t.

However, all these derivations are based on assumptions (A) and (B). Though

it is easy to satisfy (A), difficulty arises in practice in order to satisfy (B) for all

the frames in the sequence. Fortunately, as we have seen in the experiment in

Section 7.3, numerically this degeneracy is still reached even if (B) is satisfied only

for most but not all frames in the sequence.
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Appendix 7.II: More on assumption (B)

A trivial choice for η is the lower bound on the likelihood ratio, i.e.,

η = inf
t≥1,j 6=l,θt∈Θ

p(yt|nt = l, θt)

p(yt|nt = j, θt)
. (7.28)

This choice is of theoretical interest. In practice, how good is the assumption

(B) satisfied? Figure 7.13 plots against the logarithm of the scale parameter, the

’average’ likelihood of the correct identity,

1

N

∑

n∈N

p(In|n, θ),

and that of the incorrect identities,

1

N(N − 1)

∑

m∈N ,n∈N ,m6=n

p(Im|n, θ),

of the face gallery as well as the ’average’ likelihood ratio, i.e., the ratio between

the above two quantities. The observation is that only within a narrow ’band’ the

condition (B) is well satisfied. Therefore, the success of SIS algorithm depends on

how good the samples lie in a similar ’band’ in the high-dimensional affine space.

Also, the lower bound η in assumption (B) is too strict. If we take the mean of

the ’average’ likelihood ratio shown in Figure 7.13 as an estimate of η ( roughly

1.5 ), Eq. (7.25) tells that, after 20 frames, the probability p(l|y0:t) reaches 0.99!

However, this is not reached in the experiments due to noise in the observations

and incomplete parameterization of transformations.
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Figure 7.13: Left: The ’average’ likelihood of the correct hypothesis and incorrect

hypotheses against the log of scale parameter. Right: The ’average’ likelihood

ratio against the log of scale parameter.
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Chapter 8

Probabilistic Identity

Characterization

Visual face recognition is an important task. Even though a lot of research has been

carried out, state-of-the-art recognizers still yield unsatisfactory results especially

when confronted with pose and illumination variations. In addition, the recognizers

are further complicated by the registration requirement as the images that the

recognizers process contain transformed appearances of the object. Below, we

simply use the term ‘transformation’ to model all the variations involved, be it

registration, or pose and illumination variations.

While most recognizers process a single image, there is a growing interest in us-

ing a group of images [80, 84, 88, 89, 91, 184, 185]. In terms of the transformations

embedded in the group or the temporal continuity between the transformations,

the group can be either independent or not. Examples of the independent group

(I-group) are face databases that store multiple appearances for one object. Ex-

amples of the dependent group are video sequences. If the temporal information is

stripped, video sequences reduce to I-groups. In this chapter, whenever we mention

202



video sequences, we mean dependent groups of images.

Approaches that use the I-groups can be roughly divided into two categories.

The first category is based on manifold matching. In [88], hypothetical identity

surfaces are constructed by computing the linear coefficients of view space. Illumi-

nation variations are not accounted for. Discriminant features are then extracted

to overcome other variations. In [80], manifolds are formed for every I-group.

Recognition is performed by computing the shortest distance between two man-

ifolds. The manifold takes a certain parameterized form and the parameters are

directly learned from the visual appearances. Robustness to pose and illumination

variations are not reported. The second category is based on statistical learning.

In [91], a multi-variate Gaussian density is fitted for every I-group. Recognition

is achieved by computing the Kullback-Leibler distance [4] between two Gaussian

densities. However, the Gaussian assumption is easily violated if pose and illumi-

nation variations exist. In [184], principal subspaces are learned for each I-group

and principal angle between the two principal subspace are used for recognition.

The computation of principal angle is also carried on the feature space embed-

ded by kernel functions. One common disadvantage of the above approaches is

that they also assume that the face regions have already been cropped beforehand,

using either a detector or a tracker.

Approaches using video sequences utilize temporal information for recognition

as well. In [185], simultaneous tracking and recognition is implemented in a prob-

abilistic framework. The joint posterior probability of the tracking parameter and

the identity variable is approximated using the SIS algorithm and the marginal

posterior probability of the identity variable is used for recognition. However, only

an affine localization parameter is used for tracking and pose and illumination
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variations are not considered. In addition, exemplars are learned from the gallery

videos to cover pose and illumination variations. In [89], hidden Markov models

are used to learn the dynamics before successive appearances. In [84], pose varia-

tions are handled by learning the view-discretized appearance manifolds from the

training ensemble. Transition probabilities from one view to another view are used

to regularize the search space. However, in [84, 89], the cropped images are used

for testing.

In this chapter, we propose a general framework which possesses the following

features:

• It processes either a single image or a group of images (including the I-group

and video sequence).

• It handles the localization problem, illumination and pose variations.

• The identity description could be either discrete or continuous. The contin-

uous identity encoding typically arises from subspace modeling.

• It is probabilistic and integrates all the available evidence.

Chapter organization

In Section 8.1 we introduce the generic framework which provides a probabilis-

tic characterization of the object identity. In Section 8.2 we address issues and

challenges arising in this framework. In Section 8.3 we focus on how to achieve

an identity encoding which is invariant to localization, illumination and pose vari-

ations. In Section 8.3.2, we present some efficient computational methods. In

Section 8.3.3, we present experimental results.
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8.1 Principle of Probabilistic Identity Charac-

terization

Suppose α is the identity signature, which represents the identity in an abstract

manner. It can be either discrete- or continuous- valued. If we have an N -class

problem, α is discrete taking value in {1, 2, ..., N}. If we associate the identity

with image intensity or feature vectors derived from say subspace projections, α is

continuous-valued. Given a group of images y1:T
.
= {y1, y2, ..., yT} containing the

appearances of the same but unknown identity, probabilistic identity characteriza-

tion is equivalent to finding the posterior probability p(α|y1:T ).

As the image only contains a transformed version of the object, we also need

to associate it a transformation parameter θ, which lies in a transformation space

Θ. The transformation space Θ is usually application dependent. Affine trans-

formation is often used to compensate for the localization problem. To handle

illumination variation, the lighting direction is used. If pose variation is involved,

3D transformation is needed or a discrete set is used if we quantize the continuous

view space.

We assume that the prior probability of α is π(α), which is assumed to be,

in practice, a non-informative prior. A non-informative prior is uniform in the

discrete case and treated as a constant, say 1, in the continuous case.

The key to our probabilistic identity characterization is as follows:

p(α|y1:T ) ∝ π(α)p(y1:T |α)

= π(α)
∫

θ1:T

p(y1:T |θ1:T , α)p(θ1:T )dθ1:T

= π(α)
∫

θ1:T

T
∏

t=1

p(yt|θt, α)p(θt|θ1:t−1)dθ1:T , (8.1)
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where the following rules, namely (a) observational conditional independence and

(b) chain rule, are applied:

(a) p(y1:T |θ1:T , α) =
T
∏

t=1

p(yt|θt, α); (8.2)

(b) p(θ1:T ) =
T
∏

t=1

p(θt|θ1:t−1); p(θ1|θ0)
.
= p(θ1). (8.3)

Equation (8.1) involves two key quantities: the observation likelihood p(yt|θt, α)

and the state transition probability p(θt|θ1:t−1). The former is essential to a recog-

nition task, the ideal case being that it possesses a discriminative power in the

sense that it always favors the correct identity and disfavors the others; the latter

is also very helpful especially when processing video sequences, which constrains

the search space.

We now study two special cases of p(θt|θ1:t−1).

8.1.1 Independent group (I-group)

In this case, the transformations {θt; t = 1, . . . , T} are independent of each other,

i.e.

p(θt|θ1:t−1) = p(θt). (8.4)

Eq. (8.1) becomes

p(α|y1:T ) ∝ π(α)
T

∏

t=1

∫

θt

p(yt|θt, α)p(θt)dθt. (8.5)

In this context, the probability p(θt) can be regarded as a prior for θt, which is

often assumed to be Gaussian with mean θ̂ or non-informative.

The most widely studied case in the literature is T = 1, i.e. there is only a

single image in the group. Due to its importance, sometimes we will distinguish
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it from the I-group (with T > 1) depending on the context. We will present in

Section 8.2 the shortcomings of many contemporary approaches.

It all boils down to how to compute the integral in (8.5) in real applications.

In the sequel, we show how to efficiently approximate it.

8.1.2 Video sequence

In the case of video sequence, temporal continuity between successive video frames

implies that the transformations {θt; t = 1, . . . , T} follow a Markov chain. Without

loss of generality, we assume a first-order Markov chain, i.e.

p(θt|θ1:t−1) = p(θt|θt−1). (8.6)

Eq. (8.1) becomes

p(α|y1:T ) ∝ π(α)
∫

θ1:T

T
∏

t=1

p(yt|θt, α)p(θt|θt−1)dθ1:T . (8.7)

The difference between (8.5) and (8.7) is whether the product lies inside or

outside the integral. In (8.5), the product lies outside the integral, which divides

the quantity of interest into ‘small’ integrals that can be computed efficiently; while

(8.7) does not have such a decomposition, causing computational difficulty.

8.1.3 Difference from Bayesian estimation

Our framework is very different from the traditional Bayesian parameter estimation

setting, where a certain parameter β should be estimated from the i.i.d. observa-

tions {x1, x2, ..., xT} generated from a parametric density p(x|β). If we assume that

β has a prior probability π(β), then the posterior probability p(β|x1:T ) is computed

as

p(β|x1:T ) ∝ π(β)p(x1:T |β) = π(β)
T

∏

t=1

p(xt|β) (8.8)
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and used to derive the parameter estimate β̂. One should not confuse our trans-

formation parameter θ with the parameter β. Notice that β is fixed in p(xt|β) for

different t’s. However, each yt is associates with a θt. Also, α is different from β

in the sense that α describes the identity and β helps to describe the parametric

density.

To make our framework more general, we can also incorporate the β parameter

by letting the observation likelihood be p(y|θ, α, β). Equation (8.1) then becomes

p(α|y1:T ) ∝ π(α)p(y1:T |α) (8.9)

= π(α)
∫

β,θ1:T

p(y1:T |θ1:T , α, β)p(θ1:T )π(β)dθ1:Tdβ

= π(α)
∫ T

∏

t=1

p(yt|θt, α, β)p(θt|θ1:t−1)π(β)dθ1:Tdβ,

where θ1:T and β are assumed to be statistically independent. In this chapter, we

will focus only on (8.1) as if we already know the true parameter β in (8.9). This

greatly simplifies our computation.

8.2 Recognition Setting and Issues

Equation (8.1) lays a theoretical foundation, which is universal for all recognition

settings: (i) recognition is based on a single image (an I-group with T = 1), an I-

group with T ≥ 2, or a video sequence; (ii) the identity signature is either discrete-

or continuous-valued; and (iii) the transformation space takes into account all

available variations, such as localization and variations in illumination and pose.
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8.2.1 Discrete identity signature

In a typical pattern recognition scenario, say an N -class problem, the identity

signature for y1:T , α̂, is determined by the Bayesian decision rule:

α̂ = arg max
{1,2,...,N}

p(α|y1:T ). (8.10)

Usually p(y|θ, α) is a class-dependent density, either pre-specified or learned. This

is a well studied problem and we will not focus on this.

8.2.2 Continuous identity signature

If the identity signature is continuous-valued, two recognition schemes are possible.

The first is to derive a point estimate α̂ (e.g. conditional mean, mode) from

p(α|y1:T ) to represent the identity of image group y1:T . Recognition is performed

by matching α̂’s belonging to different groups of images using a metric k(., .). Say,

α̂1 is for group 1 and α̂2 for group 2, the point distance

k̂1,2
.
= k(α̂1, α̂2)

is computed to characterize the difference between groups 1 and 2.

Instead of comparing the point estimates, the second scheme directly compares

different distributions that characterize the identities for different groups of images.

Therefore, for two groups 1 and 2 with the corresponding posterior probabilities

p(α1) and p(α2), we use the following expected distance [134]

k̄1,2
.
=

∫

α1

∫

α2

k(α1, α2)p(α1)p(α2)dα1dα2.

Ideally, we wish to compare the two probability distributions using quantities such

as the Kullback-Leibler distance [4]. However, computing such quantities is nu-

merically prohibitive when α is of high dimensionality.

209



The second scheme is preferred as it utilizes the complete statistical informa-

tion, while in the first one, point estimates use partial information. For examples,

if only the conditional mean is used, the covariance structure or higher-order statis-

tics is thrown away. However, there are circumstances when the first scheme makes

sense: the posterior distribution p(α|y1:T ) is highly peaked or even degenerate at

α̂. This might occur when (i) the variance parameters are taken to be very small;

or (ii) we let T go to ∞, i.e. keep observing the same object for a long time.

8.2.3 The effects of the transformation

Even though recognition based on single images has been studied for a long time,

most efforts assume only one alignment parameter θ̂ and compute the probabil-

ity p(y|θ̂, α). Any recognition algorithm computing some distance measures can

be thought of as using a properly defined Gibbs distribution. The underlying

assumption is that

p(θ) = δ(θ − θ̂), (8.11)

where δ(.) is an impulse function. Using (8.11), (8.5) becomes

p(α|y) ∝ π(α)
∫

θ
p(y|θ, α)δ(θ − θ̂)dθ = π(α)p(y|θ̂, α). (8.12)

Incidentally, if the Laplace’s method is used to approximate the integral (refer

to the Appendix 8.I for details) and the maximizer θ̂α = arg maxθ p(y|θ, α)p(θ)

does not depend on α, say θ̂α = θ̂, then

p(α|y) ∝ π(α)
∫

θ
p(y|θ, α)p(θ)dθ

' π(α)p(y|θ̂, α)p(θ̂)
√

(2π)r/|I(θ̂)|. (8.13)

This gives rise to the same decision rule as implied by (8.12) and also partly

explains why the simple assumption (8.11) can work in practice.

210



The alignment parameter is therefore very crucial for a good recognition perfor-

mance. Even a slightly erroneous θ̂ may affect the recognition system significantly.

It is very beneficial to have a continuous density p(θ) such as a Gaussian or even a

non-informative since marginalization of p(θ, α|y) over θ yields a robust estimate

of p(α|y).

In addition, our Bayesian framework also provides a way to estimate the best

alignment parameter through the posterior probability:

p(θ|y) ∝
∫

α
p(y|θ, α)π(α)dα. (8.14)

8.2.4 Asymptotic behaviors

When we have an I-group or a video sequence, we are often interested in dis-

covering the asymptotic (or large-sample) behaviors of the posterior distribution

p(α|y1:T ) when T is large. In [185], the discrete case of α in a video sequence is

studied. However it is very challenging to extend this study to a continuous case.

Experimentally (refer to Section 8.3.3), we find that p(α|y1:T ) becomes more and

more peaked as N increase, which seems to suggest a degenerancy in the true value

αtrue.

8.3 Subspace Identity Encoding

The main challenge is to specify the likelihood p(y|θ, α). Practical considerations

require that (i) the identity encoding coefficient α is compact so that our target

space where α resides is of low dimensional; and (ii) α should be invariant to

transformations and tightly clustered so that we can safely focus on a small portion

of the spaces.
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Inspired by the popularity of subspace analysis, we assume that the observation

y can be well explained by a subspace, whose basis vectors are encoded in a matrix

denoted by B, i.e. there exists linear coefficients α such that y ≈ Bα. Clearly, α

naturally encodes the identity. However, the observation under the transformation

condition (parameterized by θ) deviates from the canonical condition (parameter-

ized by say θ̄) under which the B matrix is defined. To achieve an identity encoding

that is invariant to the transformation, there are two possible ways. One way is to

inverse-warp the observation y from the transformation condition θ to the canoni-

cal condition θ̄ and the other way is to warp the basis matrix B from the canonical

condition θ̄ to the transformation condition θ. In practice, inverse-warping is typ-

ically difficult. For example, we cannot easily warp an off-frontal view to a frontal

view without explicit 3D depth information that is unavailable. Hence, we follow

the second approach, which is also known as analysis-by-synthesis approach. We

denote the basis matrix under the transformation condition θ by Bθ.

8.3.1 Invariant to localization, illumination, and pose

Localization parameter, denoted by ε, includes the face location, scale and in-plane

rotation. Typically, an affine transformation is used. We absorb the localization

parameter ε in the observation using T {y; ε}, where the T {.; ε} is a localization

operator, extracting the region of interest and normalizing it to match with the

size of the basis.

The illumination parameter, denoted by λ, is a vector specifying the illumi-

nant direction (and intensity if required). The pose parameter, denoted by υ, is

a continuous-valued random variable. However, practical systems [67, 69] often

discretize this due to the difficulty in handling 3D to 2D projection. Suppose the
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quantized pose set is {1, . . . , V }. To achieve pose invariance, we concatenate all

the images [69] {y1, . . . , yV } under all the views and a fixed illumination λ to form

a high-dimensional vector Yλ = [y1,λ, ..., yV,λ]T. To further achieve invariance to

illuminations, we invoke the Lambertian reflectance model, ignoring shadow pixels.

Now, λ is actually a 3-D vector describing the illuminant. We now follow Chapter

3 to derive a bilinear analysis summarized below.

Since all yv’s are illuminated by the same λ, the Lambertian model gives,

Yλ = Wλ. (8.15)

Following [204], we assume that

W =
m

∑

i=1

αiWi, (8.16)

and we have

Yλ =
m

∑

i=1

αiWiλ, (8.17)

where Wi’s are illumination-invariant bilinear basis and α = [α1, . . . , αm]T pro-

vides an illuminant-invariant identity signature. Those bilinear basis can be easily

learned as shown in [138, 202]. Thus α is also pose-invariant because, for a given

view υ, we take the part in Y corresponding to this view and still have

yλ,υ =
m

∑

i=1

αiW
υ
i λ. (8.18)

In summary, the basis matrix Bθ for θ = (ε, λ, υ) with ε absorbed in y is

expressed as Bλ,υ = [Wυ
1λ, . . . , Wυ

mλ].

We focus on the following likelihood:

p(y|θ) = p(y|ε, λ, υ, α)

= Z−1
λ,υ,α exp{−D(T {y; ε}, Bλ,υα)}, (8.19)
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where D(y, Bθα) is some distance measure and Zλ,υ,α is the so-called partition func-

tion which plays a normalization role. In particular, if we take D as

D(T {y; ε}, Bλ,υα) = (T {y; ε} − Bλ,υα)TΣ−1(T {y; ε} − Bλ,υα)/2, (8.20)

with a given Σ (say Σ = σ2I where I is an identity matrix), then (8.19) becomes

a multivariate Gaussian and the partition function Zλ,υ,α does not depend on the

parameters any more. However, even though (8.19) is a multivariate Gaussian, the

posterior distribution p(α|y1:T ) is no longer Gaussian.

8.3.2 Computational issues

The integral

If the transformation space Θ is discrete, it is easy to evaluate the integral1

∫

θ p(y|θ, α)p(θ)dθ, which becomes a sum. If Θ is continuous, in general, com-

puting integral
∫

θ p(y|θ, α)p(θ)dθ is a difficult task. Many techniques are available

in the literature. Here we mainly focus on two techniques: Monte Carlo simulation

[14, 16] and Laplace’s method [16, 136].

Monte Carlo simulation. The underlying principle is the law of large number

(LLN). If {x(1), x(2), . . . , x(K)} are K i.i.d. samples of the density p(x), for any

bounded function h(x),

lim
K→∞

1

K

K
∑

k=1

h(x(k)) =
∫

x
h(x)p(x)dx = Ep[h]. (8.21)

Alternatively, when drawing i.i.d. samples from p(x) is difficult, we can use

importance sampling [14, 16]. Suppose that the importance function q(x) has i.i.d.

realizations {x(1), x(2), . . . , x(K)}. The pdf p(x) can be represented by a weighted

1We drop the subscript [.]t notation as this is a general treatment.
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sample set {(x(k), w
(k)
p )}K

k=1, where the weight for the sample x(k) is

w
(k)
p = p(x(k))/q(x(k)), (8.22)

in the sense that for any bounded function h(x),

lim
K→∞

K
∑

k=1

w
(k)
p h(x(k)) =

K
∑

k=1

p(x(k))

q(x(k))
h(x(k)) = Ep[h]. (8.23)

Laplace’s method [16, 136]. The general approach of this method is presented

in Appendix 8.I. This is a good approximation to the integral only if the integrand

is uniquely peaked and reasonably mimics the Gaussian function.

In our context, we use importance sampling (or i.i.d sampling if possible) for

ε and the Laplace’s method for λ and enumerate υ. We draw i.i.d. samples

{ε(1), ε(2), . . . , ε(K)} from q(ε) and, for each sample ε(k), compute the weight wε(k) =

p(ε(k))/q(ε(k)). If the i.i.d. sampling is used, the weights are always ones. Putting

things together, we have (assuming π(α) is a non-informative prior)

p(α|y) ∝
∫

ε,λ,υ
p(y|ε, λ, υ, α)p(ε)p(λ)p(υ)dεdλdυ

' 1

K

K
∑

k=1

wε(k)

1

V

V
∑

υ=1

p(y|ε(k), λ̂ε(k),υ,α, υ, α)×

p(λ̂ε(k),υ,α)
√

(2π)r/|I(λ̂ε(k),υ,α)|, (8.24)

where λ̂εk,υ,α is the maximizer

λ̂ε(k),υ,α = arg min
λ

p(y|ε(k), λ, υ, α)p(λ), (8.25)

r is the dimensionality of λ, and I(λ̂ε,υ,α) is a properly defined matrix. Refer to

Appendix 8.II for computing λ̂ε,υ,α and I(λ̂ε,υ,α) if the likelihood is given as (8.19)

and (8.20) and a non-informative prior p(λ) is assumed. Similar derivations can

be conducted for an I-group of observations y1:T .

215



The distances k̄ and k̂

To evaluate the expected distance k̄, we use the Monte Carlo method. In our

context, the target distribution is p(α|y1:T ). Based on the above derivations, we

know how to evaluate the target distribution, but not to draw sample from it.

Therefore, we use importance sampling. Other sampling techniques such as Monte

Carlo Markov chain [14, 16] can also be applied.

Suppose that, say for group 1, the importance function is q1(α1), and weighted

sample set is {α(i)
1 , w

(i)
1 }I

i=1, the expected distance is approximated as

k̄1,2 '
∑I

i=1

∑J
j=1 w

(i)
1 w

(j)
2 k(α

(i)
1 , α

(j)
2 )

∑I
i=1 w

(i)
1

∑J
j=1 w

(j)
2

. (8.26)

The point distance is approximated as

k̂1,2 ' k(

∑I
i=1 w

(i)
1 α

(i)
1

∑I
i=1 w

(i)
1

,

∑J
j=1 w

(j)
2 α

(j)
2

∑J
j=1 w

(j)
2

). (8.27)

8.3.3 Experimental results

We use the ‘illum’ subset of the PIE database [75] in our experiments. This subset

has 68 subjects under 21 illumination configurations and 13 poses. Out of the 21

illumination configurations, we select 12 of them denoted by F ,

F = {f16, f15, f13, f21, f12, f11, f08, f06, f10, f18, f04, f02},

which typically span the set of variations. Out of the 13 poses, we select 9 of them

denoted by C,

C = {c22, c02, c37, c05, c27, c29, c11, c14, c34},

which cover from the left profile to the frontal to the right profile. In total, we have

68 ∗ 12 ∗ 9 = 7344 images. Fig 3.2 displays one PIE object under the illumination

and pose variations.
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We randomly divide the 68 subjects into two parts. The first 34 subjects are

used in the training set and the remaining 34 subjects are used in the gallery and

probe sets. It is guaranteed that there is no identity overlap between the training

set and the gallery set.

During training, the images are pre-preprocessed by aligning the eyes and

mouth to desired positions. No flow computation is carried on for further align-

ment. After the pre-processing step, the used face image is of size 48 by 40, i.e.

d = 48 ∗ 40 = 1920. Also, we only study gray images by taking the average of the

red, green, and blue channels of their color versions.

The training set is used to learn the basis matrix Bθ or the bilinear basis Wi’s.

As mentioned before, θ includes the illumination direction λ and the view pose υ,

where λ is a continuous-valued random vector and υ is a discrete random variable

taking values in {1, . . . , V } with p = 9 (corresponding to C).

The images belonging to the remaining 34 subjects are used in the gallery and

probe sets. The construction of the gallery and probe sets conforms the following:

To form a gallery set of the 34 subjects, for each subject, we use an I-group of

12 images under all the illuminations under one pose υp; to form a probe set, we

use I-groups under the other pose υg. We mainly concentrate on the case with

υp 6= υg. Thus, we have 9 ∗ 8 = 72 tests, with each test giving rise to a recognition

score. The 1-NN (nearest neighbor) rule is applied to find the identity for a probe

I-group.

During testing, we no longer use the pre-processed images and therefore the

unknown transformation parameter includes the affine localization parameter, the

light direction, and the discrete view pose. The prior distribution p(εt) is assumed

to be a Gaussian, whose mean is found by a background subtraction algorithm
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and whose covariance matrix is manually specified. We use i.i.d. sampling from

p(εt) since it is Gaussian. The metric k(., .) actually used in our experiments is

the correlation coefficient:

k(x, y) = {(xTy)2}/{(xTx)(yTy)}.

Figure 8.1 shows the marginal posterior distribution of the first element α1 of

the identity variable α, i.e., p(α1|y1:T ), with different N ’s. From Figure 8.1, we

notice that (i) the posterior probability p(α1|y1:T ) has two modes, which might

fail those algorithms using the point estimate, and (ii) it becomes more peaked

and tightly-supported as T increases, which empirically supports the asymptotic

behavior mentioned in Section 8.2.

Figure 8.2 shows the recognition rates for all the 72 tests. In general, when the

poses of the gallery and probe sets are far apart, the recognition rates decrease. The

best gallery sets for recognition are those in frontal poses and the worst gallery sets

are those in profile views. These observation are similar to those made in Chapter

3.

For comparison, Table 8.1 shows the average recognition rates for four different

methods: our two probabilistic approaches using k̄ and k̂, respectively, the PCA

approach [62], and the statistical approach [91] using the KL distance. When

implementing the PCA approach, we learned a generic face subspace from all the

training images, stripping their illumination and pose conditions; while implement-

ing the KL approach, we fit a Gaussian density on every I-group and the learning

set is not used. Our approaches outperform the other two approaches significantly

due to the transformation-invariant subspace modeling. The KL approach [91]

performs even worse than the PCA approach simply because no illumination and

pose learning is used in the KL approach while the PCA approach has a learning
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Figure 8.1: The posterior distributions p(α1|y1:T ) with different T ’s: (a) p(α1|y1);

(b) p(α1|y1:6); and (c) p(α1|y1:12), and (d) the posterior distribution p(υ|y1:12).

Notice that p(α1|y1:T ) has two modes and becomes more peaked as T increases.

algorithm based on image ensembles taken under different illuminations and poses

(though this specific information is stripped).

Method k̄ k̂ PCA KL [91]

Rec. Rate (top 1) 82% 76% 36% 6%

Rec. Rate (top 3) 94% 91% 56% 15%

Table 8.1: Recognition rates of different methods.

As earlier mentioned in Section 8.2.3, we can infer the transformation param-

eters using the posterior probability p(θ|y1:T ). Figure 8.1 also shows the obtained

p(υ|y1:12) for one probe I-group. In this case, the actual pose is υ = 5 (i.e. cam-
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Figure 8.2: The recognition rates of all tests. (a) Our method based on k̄. (b) Our

method based on k̂. (c) The PCA approach [62]. (d) The KL approach. Notice

the different ranges of values for different methods and the diagonal entries should

be ignored.

era c27), which has the maximum probability in Figure 8.1(d). Similarly, we can

find an estimation for ε, which is quite accurate as the back ground subtraction

algorithm already provides a clean position.

8.4 Appendix

Appendix 8.I – Laplace’s method

We are interested in computing the following quantity, for θ = [θ1, θ2, . . . , θr]
T ∈

Rr, J =
∫

p(θ)dθ. Suppose that θ̂ is the maximizer of p(θ) or equivalently log p(θ)
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which satisfies

∂p(θ)

∂θ
|θ̂ = 0 or

∂ log p(θ)

∂θ
|θ̂ = 0. (8.28)

We expand log p(θ) around θ̂ using a Taylor series:

log p(θ) ' log p(θ̂) − 1

2
(θ − θ∗)TI(θ̂)(θ − θ̂), (8.29)

where I(θ) is an r × r matrix whose ijth element is

Iij(θ) = −∂2 log p(θ)

∂θi∂θj
. (8.30)

Note that the first-order term in (8.29) is zero by virtue of (8.28). If p(θ) is a pdf

function with parameter θ, then I(θ) is the famous Fisher information matrix [16].

Substituting (8.29) into J gives

J ' p(θ̂)
∫

exp{−1

2
(θ − θ̂)TI(θ̂)(θ − θ̂)}dθ

= p(θ̂)
√

(2π)r/|I(θ̂)|. (8.31)

Appendix 8.II – About λ̂ε,υ,α

If a non-information prior p(λ) is assumed2, the maximizer λ̂ε,υ,α satisfies

λ̂ε,υ,α = arg max
λ

p(y|ε, λ, υ, α) (8.32)

= arg min
λ

(T {y; ε} − Bλ,υα)T(T {y; ε} − Bλ,υα)

= arg min
λ

L(ε, υ, λ, α)

where L(ε, υ, λ, α)
.
= (T {y; ε} − Bλ,υα)T(T {y; ε} − Bλ,υα).

Using the fact that

Bλ,υα = [Wυ
1λ, . . . , Wυ

mλ]α = Bα,υλ; Bα,υ
.
=

m
∑

i=1

αiW
υ
i , (8.33)

2If a Gaussian prior is assumed, a similar derivation can be carried.
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The term L(ε, υ, λ, α) becomes

L(ε, υ, λ, α) = (T {y; ε} − Bα,υλ)T(T {y; ε} − Bα,υλ), (8.34)

which is quadratic in λ. The optimum λ̂ε,υ,α is unique and its value is

λ̂ε,υ,α = (Bα,υ
TBα,υ)

−1Bα,υ
Ty = Bα,υ

†T {y; ε}. (8.35)

where [.]† is the pseudo-inverse. Substituting (8.35) into L(ε, υ, λ, α) yields

L(ε, υ, λ̂ε,υ,α, α) = T {y; ε}T(Id − Bα,υBα,υ
†)Tε{y}. (8.36)

It is easy to show that I(λ) is no longer a function of λ and equals to

I = σ−2Bα,υ
TBα,υ. (8.37)
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Chapter 9

Conclusions

9.1 Summary

This doctoral dissertation addressed several approaches for unconstrained face

recognition from three aspects. The first aspect is to directly model illumination

and pose variations. The second aspect is to use nonlinear kernel learning to char-

acterize the face appearance manifold. The third aspect is to perform recognition

using video sequences.

Here are some of the key contributions made in the thesis:

• In the generalized photometric stereo approach in Chapter 2, we proposed a

rank constraint on the product of albedo and surface normal that provides a

very compact yet efficient encoding of the identity. In the literature, usually

two separate linear subspaces [43, 66] are constructed for shape and texture,

respectively, assuming the independence between them. This assumption

might result in an overfit for the problem [202].

By using the integrability and symmetry constraints, we then achieve a lin-
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earized algorithm that recovers the class-specific albedos and surface normals

under the most general and hence most difficult setting, i.e., the observation

matrix consists of different objects under different illuminations. In particu-

lar, this algorithm takes into account the effect of varying albedo field in the

integrability term.

• The proposed illuminating light field approach in Chapter 3 is image-based

and requires no explicit 3D model. It is computationally efficient and able

to deal with images of small size. In contrast, the 3D model-based approach

[66] is computationally intense and needs image of large size.

• Probabilistic analysis of kernel principal components in Chapter 4 provides

a tool for modeling nonlinear manifold in an interpretable manner. This also

implicitly characterizes the high order statistical information. The prob-

abilistic nature enables a mixture modeling of kernel principal component

analysis and an effective classification scheme.

• Computing the probabilistic distance measures (e.g. the Chernoff distance,

the Bhatacharyya distance, the KL distance, and the divergence distance)

between two Gaussian densities in the RKHS is presented in Chapter 5. Since

the RKHS might be infinite-dimensional, we derive a limiting distance which

can be easily computed. This leads to a novel paradigm for studying pattern

separability, especially for visual pattern lying in a nonlinear manifold.

• Presented in Chapter 6 is an adaptive method for visual tracking which stabi-

lizes the tracker by embedding deterministic linear prediction into stochastic

diffusion. Numerical solutions have been provided using particle filters with

the adaptive observation model arising from the adaptive appearance model,
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adaptive state transition model, and adaptive number of particles. Occlusion

analysis is also embedded in the particle filter.

• A systematic method for face recognition from a probe video, compared with

a gallery of still templates is introduced in Chapter 7. A time series state

space model is used to accommodate the video and SIS algorithms provide

the numerical solutions to the model. This probabilistic framework, which

overcomes many difficulties arising in conventional recognition approaches

using video, is registration-free and poses no need for selecting good frames.

It turns out that an immediate recognition decision can be made in our

framework due to the degeneracy of the posterior probability of the identity

variable. The conditional entropy can also serve as a good indication for the

convergence.

• We present in Chapter 8 a generic framework of modeling human identity

for a single image, a group of images, or a video sequence . This framework

provides a complete statistic description of the identity. Various current

recognition schemes are just instances of this generic framework.

9.2 Future works

Unconstrained face recognition can be expanded in a multitude of ways. The

following just lists some potential avenues to explore in the context of the proposed

approaches:

• In Chapters 2 and 3, we utilize a Lambertian reflectance model to describe

illumination phenomenon. However, the Lambertian reflectance model is a

rather simple model and unable to handle cast shadows and specular regions.
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Although we employ a simple technique to exclude pixels in cast shadow and

specular regions, it turns out when the light comes from extreme directions

(e.g. highly off-frontal ones), the recognition performance drops quickly.

We need to investigate these lighting conditions. Alternatively, a complex

illumination model providing a better illumination description can be used.

• In the illuminating light field approach of Chapter 3, we need an image-based

rendering technique to handle novel poses. Some promising works along this

line are [67, 110, 111].

• On probabilistic analysis of kernel principal components and probability dis-

tances on RKHS, possible future works include (i) how to design or select the

kernel function for a given task, be it classification or modeling; (ii) evaluat-

ing the kernels for set based on the derived probabilistic distances (as argued

in Section 5.3.5) in a classification device such as Support Vector Machine for

various applications; (iii) utilizing probabilistic distances for an independent

component analysis (ICA) as in [170].

• The visual tracking algorithm of Chapter 6 can be extended in many ways

[206, 212]. (i) Combining shape information into appearance. Appearance

and shape are two very important visual cues arguably presented in a comple-

mentary fashion [133]. (ii) Utilizing appearance from multiple views. Using

multiple views can overcome some difficulty in a single view. For example, an

object might be occluded in one view but not the other one. Using the multi-

view geometry, we can infer the movement of the object in the occluded view

[207]. (iii) Here we mostly model the movement of the foreground object.

Joint modeling of foreground and background movements is very promising
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[212, 213] since the stabilization obtained by background modeling signifi-

cantly reduces the clutter in the background that confuses the foreground

tracking algorithm.

• In simultaneous tracking and recognition of Chapter 7, various issues ex-

ist. (i) Robustness. Generally speaking, our approach is more robust than

still-image-based approach since we essentially compute the recognition score

based on all video frames and, in each frame, all kinds of transformed ver-

sions of the face part corresponding to the sample configurations that are

considered. However, since we take no explicit measure when handling

frames with outlier or other unexpected factors, recognition scores based

on those frames might be low. But, this is a problem for other approaches

too. The assumption that the identity does not change as time proceeds,

i.e., p(nt|nt−1) = δ(nt − nt−1), could be relaxed by having nonzero transition

probabilities between different identity variables. Using nonzero transition

probabilities will enable us an easier transition to the correct choice in case

that the initial choice is incorrectly chosen, making the algorithm more ro-

bust.

(ii) Resampling. In the recognition algorithm, the marginal distribution

{(θ(j)
t−1, w

′(j)
t−1)}J

j=1 is sampled to obtain the sample set {(θ(j)
t , 1)}J

j=1. This

may cause problems in principle since there is no conditional independence

between θt and nt given y0:t. However, in a practical sense, this is not a

big disadvantage because the purpose of resampling is to ’provide chances

for the good streams (samples) to amplify themselves and hence rejuvenate

the sampler to produce better results for future states as the system evolves’

[159]. The resampling scheme can either be simple random sampling with
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weights (like in CONDENSATION), residual sampling, or local Monte Carlo

methods.

• Further, in the experimental part of Chapter 8, we can extend our approach

to perform recognition from video sequences with localization, illumination,

and pose variations. Again, Sequential Monte Carlo methods can be used

to accommodate temporal continuity. This leads to a very high-dimensional

state space to explore. Efficient simulation techniques are desired. In fact,

the issue of computation load also exist for the efficient algorithm in Chapter

7. There, two important numbers affecting the computation are J , the num-

ber of motion samples, and N , the size of the database. (i) The choice of J

is an open question in the statistics literature. In general, larger J produces

more accurate results. (ii) The choice of N depends on application. Since a

small database is used in this experiment, it is not a big issue here. However,

the computational burden may be excessive if N is large. One possibility

is to use a continuous parameterized representation, say α as in Chapter 8,

instead of discrete identity variable n. Now the task reduces to computing

p(αt, θt|y0:t).

The approaches taken in this thesis by no means cover the whole spectrum of

the unconstrained face recognition problem and address only a small portion of all

available issues. Some possible important issues, other than those addressed in the

thesis, include the following:

• Aging. Aging is a very important topic in unconstrained face recognition.

Often the stored gallery images are taken well before the probe images. For

example, passengers hold passports with photos taken when the passport

was issued years ago. While one solution is to maintain the gallery images
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up-to-date, a systematic solution is theoretical modeling of the generic affect

of aging. This modeling is very difficult due to the individualized variation.

Presented in [50] is just one attempt with limited success. More research

efforts are certainly worthwhile.

• Expression. Facial expression analysis and modeling attracts a lot of atten-

tion [42, 60, 61] and some approaches [60] focus on expression recognition,

i.e., identifying different modalities of facial expression such as happy, angry,

disgust, etc. Face recognition under expression variation has not been fully

explored. Clearly expression recognition and face recognition under expres-

sion variation are two different topics. However, expression recognition and

modeling is a crucial component for accurate face recognition under expres-

sion variation.

Further, facial expressions manifest themselves in a temporal dimension. The

manner that an individual poses expressions (in natural contexts) presents

certain behavioral aspect of the face biometric. Utilizing temporal infor-

mation embedded in facial expression for face recognition under expression

variation is an interesting research topic.

• Distorted imagery.

Images as one main digital media are to be compressed, stored, transmitted

and so on. Compression schemes sacrifice image quality for fewer bits to

encode the image, storage devices are susceptible to various damages, trans-

mission channels are often noisy. All these results in distorted images. How

to perform face recognition accounting for sources of distortions [199] is a

very practical research topic that needs to be explored.
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