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The U.S. Military Services employ thousands of servicemen and women in language-

related positions that are critical to the nation’s national security. These positions 

require personnel with high-level capability in various languages and dialects (Asch 

& Winkler, 2013). A complex accession and training system that begins at local 

recruiting stations across the nation leads to worldwide placement of language 

professionals who serve multiyear tours in the U.S. Air Force, Army, Navy and 

Marine Corps. High levels of cognitive ability, as measured by two cognitive aptitude 

batteries, one general (ASVAB) and one language (DLAB), are required for selection 

into these positions. Following significant investments in basic levels of training, the 

jobs themselves demand high level skills, and the service members find themselves 

constantly challenged to grow their skills. Traditional research on the effectiveness of 

the accession and training processes focuses on learning outcomes, rather than 

growth. This research used a longitudinal design to investigate how general aptitude, 



 

 
 

language aptitude, non-cognitive and language distance measures impact language 

proficiency growth. Hierarchical linear models and hierarchical generalized linear 

models were used and the significant findings were similar. The study found that 

overall, while language test scores followed a drop-and-recover pattern, there was 

very little growth overall. Three aptitude subtests, one from ASVAB (Mechanical 

Comprehension) and two DLAB subtests (Part 3 and Part 4) were found to constrain 

initial growth in the listening modality. Language distance was found to constrain 

initial and subsequent growth in listening and reading.  
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Chapter 1: The Problem 
 

The US Department of Defense (DoD) considers foreign language skills to 

comprise an “enduring critical competency” (DoDD 5160.41E, p. 2). The acquisition 

of these foreign language skills is the responsibility of Defense Language Institute 

Foreign Language Center (DLIFLC) in Monterey, California (Army Regulation 350-

20/OPNAVINST 1550.13/AFI 35-4004/MCO 1550.4E). After completing their 

language training, DLIFLC graduates serve in variety of key positions in the United 

States and around the world as language professionals, defined by policy as:  

“a person who is certified in a foreign language proficiency of at least skill 
level 2 (as identified in the Federal Government Interagency Language Roundtable 
(ILR) Skill Level Descriptions (ILR, 1985) in two of the three modalities (listening, 
reading, and speaking) in one or more foreign languages, and who requires that 
foreign language to perform his or her primary function” (DoDD 5160.41E, p. 17).  
 

A subset of these professionals, those assigned to the intelligence community, are by 

policy required to be at least ILR skill level 3 in listening and reading (DoDI 

5160.70). ILR level 3 is considered to be the “general professional” level, as skills at 

this level include “reading at a normal range of speed with almost complete 

comprehension a variety of authentic prose material on unfamiliar subjects” as well as 

“…[a]lmost always able to interpret material correctly, relate ideas and ‘read between 

the lines’…” (ILR, 1985).  

 Reaching even ILR Level 2 is not easy, and the military has developed a 

stringent process through which it recruits and selects individuals to join the language 

program. Since the 1970’s, recruits seeking to join the language profession have been 

required to meet high standards on two cognitive aptitude batteries, one a general 
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aptitude measure (the Armed Services Vocational Aptitude Battery) and the other a 

language aptitude measure (the Defense Language Aptitude Battery). Language 

training is intense, and a typical student graduates from DLIFLC at ILR Level 2 in 

reading and listening. Success as a language professional on the job, however, 

especially in the Intelligence Community, and as noted above requires even higher 

levels of language ability. According to a study conducted by Rand Corporation 

(Asch & Winkler, 2013) and sponsored by the Office of the Director of National 

Intelligence: 

Language professionals play a pivotal role in U.S. national security. The 
adversaries of the United States communicate their plans and actions in many 
different languages and dialects. Consequently, U.S. intelligence operations 
require personnel with high-level capability in these languages and dialects (p. 
xi). 
 

In order to perform at these higher levels, language professionals must at the very 

least maintain the levels they reach at DLIFLC and/or grow their language skills after 

they graduate.  

The DoD monitors the language program’s accession, training and attrition of 

the language workforce. Most research has focused on predicting successful 

graduation from DLIFLC. This is understandable, given the high cost of language 

training. As Welsh & Kucinkas (1990) explained in their report, estimated annual cost 

savings of $80m ($181m in today’s dollars) could be attributed to even small 

improvements (validity of .02 (r2)) in the selection of recruits into training programs. 

However, it is short-sighted to only consider recruiting and selection costs, as how 

trainees continue to grow and improve in their skills on the job is also important for 
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government planners. This study investigated how the selection measures are related 

to both graduation outcomes and growth.  

This chapter briefly describes the military language professional pipeline to 

provide context and reviews the literature related to the aptitude and foreign language 

measures used by the US Government for selection and training.  

Military pipeline 
 

Entry into the language profession in the US military services begins through 

successful performance on a measure of general aptitude, the Armed Services 

Vocational Aptitude Battery (ASVAB), usually summarized by one of several 

composite scores that draw from ten subtests. Recruits who earn high scores on the 

ASVAB are offered positions in more demanding skill fields in the military services, 

such as those in the nuclear and intelligence areas. The ASVAB has served as the 

entrance exam for enlistment since 1976 (Segall & Moreno, 1999). The original 

purpose of the test was to predict occupational success in the military, and its purpose 

was later extended to offer career exploration services to high school students 

(ASVAB Program, n.d.). Today’s ASVAB is computer-adaptive and takes, on 

average, approximately one and half hours to complete. The ASVAB is designed to 

measure aptitude in four domains: Verbal, Math, Science and Technical, and Spatial. 

Recruits interested in a language career in the military must qualify not only on the 

ASVAB, but also on a language aptitude test, the Defense Language Aptitude Battery 

(DLAB). DLAB was developed in the 1970’s to predict language training outcome 

measures, specifically for the DLIFLC academic context (Peterson & Al-Haik, 1976). 
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Today DLAB scores are still used to place students into language training, and higher 

language aptitude scores are required for the “difficult” languages.  

Language Training 
 

Once accepted in the military language job family, recruits attend basic 

military training. Upon successful completion of boot camp, they begin language 

training at DLIFLC in Monterey, California. These full-time intensive programs now 

run between 36 and 64 weeks, depending on how difficult the language is to learn for 

a native speaker of English. The U.S. national security interests drive the selection of 

languages taught at DLIFLC in any given year; training is currently offered in 

fourteen languages (Defense Language Institute, n.d.). The academic program is 

intensive, comprising seven hours of classroom time each day plus homework. Class 

size is small, usually between six and eight students per section. In addition to 

keeping up with their coursework, students also continue to receive military training 

to maintain their physical fitness and meet other basic expectations of the services. 

While course grades are important, the goal of training is to reach high levels of 

overall language proficiency in listening, reading, and speaking, as measured by the 

Defense Language Proficiency Testing system. Once on-the-job, these professionals 

continue to be assessed annually in listening and reading. Speaking proficiency is not 

routinely assessed post-DLI and therefore was not included in this research. 

Across the US Department of Defense, language proficiency in listening and 

reading is measured by Defense Language Proficiency Tests (DLPT), now in their 

fifth generation (tests are known as the DLPT5). DLPT scores are mapped onto the 

Interagency Language Roundtable (ILR) Skill Level Descriptions (1985), a functional 
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scale ranging from Level 0 to Level 5, with sublevels known as “plus levels” from 

Levels 0 to 4. Graduates of the DLIFLC programs are expected to reach a minimum 

of ILR level 2 in listening, level 2 in reading and level 1+ in speaking (commonly 

abbreviated 2/2/1+). Listening and reading scores are measured by the DLPT; 

speaking scores are measured by the Oral Proficiency Interview (DoD Instruction 

5160.71, 2019).  

To put these expectations in context, these levels exceed the language 

proficiency levels typically found among university graduates. Tschirner (2016) 

reported that French and Spanish undergraduate students’ reading and listening fourth 

year scores ranged between ACTFL Intermediate High (IH) and Advanced Low (AL) 

(approximately ILR Level 1+/2); only Spanish university reading scores reached the 

threshold of ILR 2. Russian and Japanese scores after four years were even lower, 

ranging from Novice High in Reading to Novice Low for Russian Listening 

(Tschirner, 2016). The comparison with university graduates applies to speaking as 

well, where university graduates appear to have difficulty reaching ILR Level 2. 

Glisan et al. (2013) reported that only 58% of the teacher candidates met the 

minimum oral proficiency levels (IH or AL, depending on the language) established 

by the ACTFL/NCATE Program Standards for the Preparation of Foreign Language 

Teachers. These statistics show that the DLI intensive language program results in 

proficiency levels that meet or exceed those of four-year college programs.   

Working in the language  
 

Following graduation from DLIFLC and advanced technical training, military 

language professionals enter the government workforce, where even higher levels of 
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language and cultural proficiency are needed to be successful. As Coakley (2016) 

explained in a chapter about language training at DLI, graduates who were ‘2/2 

linguists’ (as they are known) have been successful on their jobs in the past, but more 

recently the military services have sought both higher proficiency and more critically 

thinking service members. “Skilled language professionals bring enormous value to 

the defense enterprise; when it comes to nuanced understanding of intent, the skills of 

a single linguist testing at 3/3/2 … can surpass the work performance of any number 

of 2/2/1+ linguists.” (Coakley, pp. 201-2).  

Summary 
 

The recruitment and training required to become a military linguist is time-

consuming and expensive. It is no wonder, therefore, that the DoD is interested in 

ensuring that only the most qualified candidates are selected to attend language 

training. At the time of its original publication in 1976, DLAB was found to be a 

reliable and valid predictor of academic success in terms of grade point average, as 

well as a predictor of academic attrition, at the intensive language program at 

DLIFLC (Petersen & Al-Haik, 1976), even after accounting for general aptitude as 

measured by ASVAB. These two outcome criteria, graduation and attrition, are 

important to the US military. Selecting service members who are likely to be 

successful in military language training is key to maintaining the staffing of critical 

language positions across the DoD.  

DoD continues to employ the DLAB to screen and assign, and DLIFLC has 

tracked and reported statistics for decades to internal government stakeholders 

regarding student graduation rates. Languages studied at DLIFLC are grouped into 
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four categories according to language difficulty, with the easiest languages assigned 

to Category (Cat) I and the hardest into Cat IV. Language difficulty will be addressed 

in more detail below. Little information is available to the public regarding the 

success of the DLAB in predicting graduation, but one early published example 

perhaps illustrates why DLI has continued to rely on language aptitude scores for 

selection. Lett et al., (2003) reported the following statistics regarding DLI graduation 

success at ILR 2/2/1+: a student who placed into a Cat I language with a DLAB score 

up to 94 was 76% likely to meet the DLI graduation standard; a student in a Cat I 

language with a score of 115 or higher was 96% likely to graduate. Similar 

comparisons were reported for Cat III languages, and for the most difficult languages, 

Cat IV, students who met the minimum DLAB requirement for this category were 

only 68% likely to meet the graduation standard but were 87% likely to graduate if 

their DLAB scores were 30 points higher than the minimum. Similar specific 

breakouts by language category for subsequent years have not been published. 

In summary, the U.S. military services each recruit and train new enlistees 

each year to fill critical positions in military intelligence as the process is illustrated 

below:  



 

 8 

 

Figure 1 
 
Military accession and training process 

  

As the Defense Language Transformation Roadmap explained in 2005,   

Establishing a new “global footprint” for DoD, and transitioning to a more 
expeditionary force, will bring increased requirements for language and 
regional knowledge to work with new coalition partners… This new approach 
to warfighting in the 21st century will require forces that have foreign 
language capabilities beyond those generally available in today’s force. P. 10  

As explained above, selection and training are not the end of the pipeline – they are 

just the beginning. Understanding how to select recruits who will not only be 

successful in language training, but who continue to grow their language skills 

beyond the classroom, is also key to the nation’s defense. This research considered 

how current selection batteries could be leveraged to best select those individuals who 

would be successful in the long term.  
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Chapter 2: Literature Review  
 

This chapter will discuss the literature on two components of cognitive ability, 

general aptitude and language aptitude. It will then review the literature on language 

growth and the impact of language distance on learning difficulty. The chapter begins 

with a summary of the research on ASVAB and DLAB and discusses the relationship 

between the two. It then moves on to review the current literature on proficiency 

growth and concludes with a section discussing language difficulty.  

The Armed Services Vocational Aptitude Battery 
 

Since 1976 the Armed Services Vocational Aptitude Battery has been used by 

the Department of Defense for both screening and classification (ASVAB history of 

military testing, n.d.). Recruits must meet minimum score qualifications to enter an 

individual service (Air Force, Army, Marines, Navy), and higher scores qualify 

recruits for a variety of different career fields. The full battery has historically 

contained ten subtests which cover four domains: Science/Technical, Math, Verbal 

and Spatial (see Table 1).  



 

 10 

Table 1 
Armed Services Vocational Aptitude Battery subtests (Culver, n.d) 
 

Test Description Domain 
General Science (GS) Knowledge of physical and 

biological 
sciences 

Science/Technical 

Arithmetic Reasoning 
(AR) 

Ability to solve arithmetic word 
problems 

Math 

Word Knowledge 
(WK) 

Ability to select the correct meaning 
of words presented in context and to 
identify the best synonym for a given 
word 

Verbal 

Paragraph 
Comprehension (PC) 

Ability to obtain information from 
written passages 

Verbal 

Mathematics 
Knowledge (MK) 

Knowledge of high school 
mathematics principles 

Math 

Electronics 
Information (EI) 

Knowledge of electricity and 
electronics 

Science/Technical 

Auto Information 
(AI)* 

Knowledge of automobile 
technology 

Science/Technical 

Shop Information 
(SI)* 

Knowledge of tools and shop 
terminology and practices 

Science/Technical 

Mechanical 
Comprehension (MC) 

Knowledge of mechanical and 
physical principles  

Science/Technical 

Assembling Objects 
(AO) 

Ability to determine how an object 
will look when its parts are put 
together 

Spatial  

*AI and SI are combined into AS in the computer adaptive test, so there are nine 
subtest scores in the studies below.  
 

Each of the military services has a different set of minimum requirements to 

be considered eligible for a language career field, but a qualifying score on one or 

more ASVAB subtests (as well as minimum DLAB scores) are required by all four 

services. All four services rely on different combinations of ASVAB subtests to make 

these decisions, but the specific measures used do overlap: the services share an 

interest in a Verbal score (based on WK and PC) and one or both math subtests (AR 

and/or MK) (Schmitz et al., 2009).  
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Several different composite scores have been developed over the decades, and 

the two most commonly reported in language related studies are the Armed Forces 

Qualifying Test (AFQT) and the General Technical (GT) scores. AFQT is a 

composite drawn from arithmetic reasoning (AR), math knowledge (MK), word 

knowledge (WK) and paragraph comprehension (PC). A Verbal Score (VE) is formed 

from an optimally weighted composite of unrounded WK and PC standard scores. 

This Verbal Score, in turn, is double weighted in the computation of AFQT scores: 

AFQT = AR + MK + 2(VE) (Ostrow, 2002). The GT composite is formed by equally 

weighted VE and AR scores (Culver, n.d.). Over the decades since the introduction of 

ASVAB, subscores and composite scores have been used for selection and research. 

The cognitive skills measured by instruments such as ASVAB are usually 

described as a hierarchy of abilities. Carroll (1993, as cited in Roberts et al., 2000) 

modeled intelligence in a three-level, hierarchical structure of human cognitive 

abilities, positing eight abilities at the second strata which enable the top level, 

psychometric g (see Figure 2 below). A crystallized general intelligence factor at the 

second level influences verbal abilities, including many specific foreign language 

abilities, while fluid intelligence drives abilities in quantitative reasoning and speed of 

reasoning.  
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Figure 1 
 
Carroll's three-stratum model of the structure of human cognitive abilities (picture from Roberts et al., 2000, p. 86) 
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Factor analyses of ASVAB results typically find four factors (Verbal, Clerical, 

Mathematical, Technical) that are correlated, and researchers agree that the battery 

measures a significant amount of general cognitive ability (Ree & Earles, 1990; 

Welsh et al., 1990). Roberts et al. (2000) examined ASVAB in the context of fluid 

intelligence (Gf) and crystallized intelligence (Gc) theory, finding that ASVAB is 

biased towards Gc (p. 87). More recently, Martin et al. (2020) focused their attention 

on adding additional measures of fluid intelligence to the ASVAB to improve 

selection by broadening the underlying construct of intelligence currently measured 

by the battery.  

Numerous studies over the years in the literature have shown ASVAB to be 

predictive of training outcomes, first term attrition, and job performance in the 

military. Welsh et al. (1990) investigated three types of training outcomes, final 

grades, training attrition, and time to completion. They summarized analyses from six 

previous studies, finding that aptitude indices (a variety of subtest and composite 

scores) seemed to make the largest unique contribution to prediction of success in 

training, but other variables made more of a contribution to other criteria, such as job 

performance or first-term attrition (p. 39). Ree & Earles (1990, 1991) found that 

general ability was effective in predicting technical training (1990, p. 10 and 1991, p. 

330). Hunter (1986) reported the “massive evidence” that general cognitive ability 

predicted training success and job performance across a range of manual and mental 

jobs (p. 340) and he dismissed other findings that supported differential aptitude. His 

meta-analysis drew upon civilian and military validation studies. Cognitive ability 

was defined as “usually measured by summing across tests of several specific 
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aptitudes, usually verbal aptitude, quantitative aptitude, and sometimes technical 

aptitude” (p. 341). Hunter found that for military job families, the average validity of 

general cognitive ability predicting training success were high, ranging from r = .58 

for clerical jobs to r = .67 for those in the electronic field. His findings showed that 

the more complex the job, the better cognitive ability is in predicting performance 

ratings. For example, a meta-analysis of the U.S. Employment Services data showed 

that for general job families, general cognitive ability predicted a high complexity job 

with a correlation of  r = .58 as compared to a low complexity job where the average 

correlation is r = .40. The lowest category in industry families had a validity of r = 

.23. (p. 344).  

Other large scale studies have found that both general cognitive ability and 

specific cognitive ability measures predict training success and job performance, both 

in the United States and in Great Britain. Lang et al. (2010) found that general mental 

ability predicted job performance, though narrower cognitive measures also played an 

important role. In a UK meta-analysis, Bertua et al. (2005) found that more complex 

jobs demonstrated higher operational validities between cognitive measures and both 

outcome measures (training and job performance). These general studies, though 

large in scale and across many military occupations, did not include language 

professionals in their sample focal populations. 

 In smaller, more focused studies, ASVAB has been shown to predict training 

outcomes and attrition for language training programs (Peterson & Al Haik, 1976; 

Silva & White, 1993; Wagener, 2016; Watson et al., 2012), but very few studies have 

investigated job success, or even how long during a career ASVAB remains a valid 
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predictor of language performance. There is a need to look beyond training success to 

determine how well cognitive ability predicts language growth. As Schmidt (2012) 

noted, “the more different lines of validity evidence supporting test use and 

interpretation, the stronger is the foundation for an inference of validity” (p. 7).  

Defense Language Aptitude Battery  
 

The idea that there is something we can specifically call language aptitude, 

that is, a set of cognitive abilities that are different from general cognitive abilities, is 

generally accepted (Doughty, 2019; Li, 2015, 2016; Skehan, 2019; Smith and 

Stansfield, 2016). Much of the research in the field of second language acquisition 

has been focused on how language aptitude predicts foreign language learning, and 

the primary measurement instrument in the general literature has been the Modern 

Language Aptitude Test (Carroll & Sapon,1959).  

The Modern Language Aptitude Test (MLAT) assesses phonetic coding 

ability, grammatical sensitivity, rote learning ability and inductive language learning 

ability (Doughty, 2019). In two large meta-analyses drawing primarily from MLAT-

based studies (14 out of 17 primary studies in 2015, 57 out of 66 studies in 2016), Li 

(2015, 2016) analyzed the construct validity of language aptitude and found that 

general aptitude and language aptitude are different constructs, though they are 

correlated. Li (2016) concluded, “given the overlap between the two constructs, it 

might be necessary to consider both aptitude and intelligence when making 

pedagogical decisions related to selection, guidance, and placement” (p. 827). He 

reported a strong association of aptitude and L2 proficiency, with 25% of the variance 

in learning outcomes accounted for by language aptitude (p. 829). As expected, given 
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MLAT’s origins, aptitude was more strongly correlated with proficiency in studies of 

instructed SLA with high school learners rather than with university learners (Li, 

2015).  

It may well be that language aptitude predicts differentially at different stages 

of learning. The High-Level Language Aptitude Battery, Hi-LAB, was designed with 

this in mind to complement, rather than replace MLAT. It was also designed to look 

not just at prediction, but also to accommodate aptitude-by-treatment interaction. 

Findings from early Hi-LAB studies (Linck et al., 2013; Doughty, 2019) showed that 

composite scores predicted outcomes for a population of high level adult learners 

across a variety of languages. With results suggesting that composites’ predictive 

validity varied by outcome (listening, reading, or speaking) and language difficulty, 

further research was warranted on how aptitude measures could be used to predict 

success across the lifecycle of a language professional and not just during training, or 

as a predictor of training outcomes.  

Abilities that predict learning success may well vary from those that predict 

growth or ultimate attainment. Welsh & Kucinkas (1990) found that as compared to 

specific aptitude area composites, the more general AFQT composite had lower 

validity coefficients for job performance than for training school grades, concluding 

that “it may be that general trainability becomes a less important factor later in time, 

and specific abilities and/or experience assume greater importance the longer a recruit 

stays in a particular job. That the more specific aptitude area composites predict such 

criteria better than the AFQT does is interesting and needs to be explored in future 
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validity research.” (pp. 42-43) This research included the ASVAB and DLAB subtest 

scores, rather than overall composite scores, to explore growth.  

Within the military, the more specific cognitive aptitude of interest, language 

aptitude, is measured by the Defense Language Aptitude Battery (DLAB), which was 

developed to maximize predictive validity as a selection device and to differentially 

predict training outcomes by language (Peterson & Al-Haik, 1976). Pulling together 

research on language aptitude conducted in the 1950’s and 1960’s, the test was 

designed specifically for DLIFLC with practicality and validity concerns in mind. 

Given the military testing system and goals, the test had to be practical and efficient, 

while maintaining the ability to predict learning outcomes for all languages taught at 

the Institute. The test takes approximately an hour and a half to administer. It includes 

four parts: biographical data, spoken stress, deductive rule application and inductive 

pattern application (Lett et al., 2003).  

The original DLAB design drew upon Carroll’s research on language aptitude, 

and it has not changed its composition since its original publication in 1976. The first 

part includes several biographical questions designed to elicit information about 

previous language learning and academic background. The three remaining parts 

were developed from exploratory factor analysis of items from two experimental 

batteries, the Al-Haik Foreign Language Auditory Aptitude Test (AFLAAT) and 

Horne’s Assessment of Basic Linguistic abilities (HABLA). AFLAAT assessed the 

ability to distinguish foreign language sounds, associate sounds with symbols, and 

apply ever-complex grammar rules to new utterances. HABLA required the examinee 
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to generalize new linguistic forms in an artificial language from pictures (Peterson & 

Al Haik, 1976).  

The developers’ goals were to improve upon the predictive power of the 

MLAT, provide for differential prediction of success by language, and examine other 

predictor variables (Peterson & Al-Haik, 1976). Drawing on research available at the 

time, Peterson and Al-Haik developed a final battery that was heavily influenced by 

the practical needs of the military, yet achieved “maximum predictive validity”. Their 

analysis resulted in three factors that then drove item selection and resulted in a four-

part test. After an introductory part on language biography, DLAB Part 2 involves 

recognizing stress patterns. Part 3 requires test takers to translate a printed phrase 

according to a set of rules from an artificial language and match it to a spoken 

utterance. The items assess grammatical rules such as noun and adjective agreement, 

formation of possessive phrases, and sentence structure. The fourth and final part of 

the DLAB combines the rules provided in the earlier parts and asks the examinee to 

apply them at the same time (Bunting et al., 2011). 

The zero order correlation of the resulting battery with the final Grade Point 

Average (GPA) of 879 students was found to be .43. DLAB reliability (KR-21) was 

reported as .89 (Peterson & Al-Haik, 1976, p. 378), and no reliability estimates were 

provided for GPA. There was no correction for range restriction, which means that 

the correlation may well have been higher, if data from a full range of scores had 

been considered. The reliability of the DLIFLC GPA is unknown, but the reliability 

of grades is likely to be less than that of a high-stakes, standardized test (Westrick, 

2017). Rather than GPA, subsequent researchers (Bush, 1987; Jackson et al., 2011; 
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Silva & White, 1993) used standardized language proficiency tests as the outcome 

measure (the DLPT), although at least one (Wagener, 2016) also used GPA. The 

current study used proficiency scores as the outcome measure, not only due to its 

reliability, but also because they had the advantage of being available over time.  

The DLAB has been in constant use since its publication, and it serves as an 

effective screen for entry into the military language field. The success rate has varied 

over time, but those scoring over 85, historically the minimum score to attend 

language training, was reported as approximately 50% (Schmitz et al., 2009, p. 11). 

The minimum DLAB score has changed over the years as the services balanced the 

need to fill language positions with the evidence that higher DLAB scores increase 

success. Despite the efforts to increase the likelihood of success at DLIFLC (by 

requiring higher DLAB scores, adding time to training courses), descriptive analyses 

show that graduation rates still vary based upon language difficulty, with 80% 

reaching minimum DLPT goals in Cat I languages, yet only 60% in Cat IV languages 

(Schmitz et al., 2009). Findings such as these suggested the need for further analysis 

of how aptitude measures are used, not only for selection into the career field itself, 

but also for language assignment.  

There has been interest in updating the DLAB to bring the test into the 21st 

century. In the 2010’s, the Center for the Advanced Study of Language (CASL) 

developed an updated DLAB, the DLAB2 (Bunting et al., 2011). DLAB2 was 

administered to more than 1300 service members, and the data were analyzed in a 

series of logistic regression models. The dependent variables in the final analyses 

were course completion and attrition, rather than ILR levels. In their final analyses, 
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the authors recommended keeping either DLAB Part 3 or DLAB Part 2 and 4, four 

ASVAB subtests (ASVAB-AR, ASVAB-MK, ASVAB-PC and ASVAB-WK that 

contribute to the AFQT composite), a new working memory measure, an explicit 

induction measure and a number of non-cognitive measures (especially prior 

language experience) (Bunting et al., 2011). We return to these analyses in a later 

discussion on the relationship between general aptitude and language aptitude.  

Aptitude research studies in the literature generally fall into one of two 

categories, predictive or interactional, and the predictive research is focused on 

understanding the influence of aptitude on learning. Interactional studies involve 

relationships between individual differences and aptitude, often using an aptitude-by-

treatment approach to determine how aptitude mediates learning in different contexts. 

(Li, 2019) The focus of the current research is on aptitude’s role in predicting 

outcomes, specifically addressing the role aptitude plays in predicting language 

growth beyond graduation. 

For the U.S. military, how aptitude, both general and language, predicts 

training outcomes is useful information, but it should also be of interest to look 

beyond the classroom. Sustainment, or better still, improvement, of language skill 

acquired at DLI is key to job success in a language profession, yet very few studies 

have taken a longitudinal approach. One early study was the Language Skill Change 

Project (Bush, 1987), though it was limited in scope to four languages and a three-

year period. The project was sponsored by the US Army and was designed to follow 

DLI graduates from graduation through their first enlistment to better understand the 

rate and nature of post-DLIFLC skill change, which factors influenced skill change, 
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and how language proficiency and job performance were related. The Language Skill 

Change Project (LSCP) collected data on 1900 Army soldiers who studied German, 

Korean, Russian, and Spanish at DLIFLC in 1986 and 1987 and followed them for an 

additional three years. Research variables were collected for the study, including 

demographic, affective, and cognitive measures. The outcome measures were 

language proficiency (as measured by the DLPT of the day, the third generation or 

DLPT III), academic data from both language training and advanced intelligence 

training, and supervisor performance ratings. In contrast to the original DLAB study, 

the LSCP included both GPA as well as language proficiency test scores as training 

outcome measures.  

Due to the large number of data points, the demographic and affective 

predictor variables were condensed; 13 of the measures were consolidated following 

principal component analysis into three: total years of education in another foreign 

language, motivation at the start of training and motivation during training at 

DLIFLC. Multiple regression was then used to analyze which measures predicted two 

outcomes: training attrition and proficiency. Variables were entered in blocks based 

upon practical considerations, such as which variables were already available, and 

which could be obtained for low cost. For example, ASVAB and DLAB were entered 

first, because they were collected by the services at the recruiting stage. The squared 

multiple correlations ranged from .15 to .48 (O’Mara et al., 1994, Vol II, p. 13), 

confirming that the measures analyzed predicted initial proficiency outcomes, though 

at quite varying rates. Attrition was less predictable than proficiency. 
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Predictability varied considerably by language and criterion, but ability – 

defined as the ASVAB-GT composite, DLAB, and other abilities - consistently and 

significantly predicted outcomes at DLIFLC, although the change in the prediction 

model was quite small and varied by language. ASVAB-GT was stronger for the 

easier languages (German and Spanish) and DLAB for the harder (Korean and 

Russian). Non-cognitive and affective measures collected specifically for this study 

also showed additional incremental validity, with increases (also small) once again 

varying by predictor and criterion. Despite these significant findings, even the final 

models accounted for only an average of 27.1% of the variance in attrition and 

proficiency, meaning that a significant amount of variance in graduation outcomes 

remained unaccounted for (p. 16).  

General aptitude (as measured by the ASVAB-GT composite) predicted 

training outcomes and attrition in all languages, and language aptitude contributed to 

the prediction equations for listening, reading, speaking proficiencies as well as 

attrition, above and beyond what was predicted by general aptitude alone, in all but 

two cases (Listening-Spanish and Speaking-Korean). The study’s scope was limited, 

though, as data was drawn only from one military service (Army) and for only four 

languages (German, Korean, Russian, Spanish). To improve upon these earlier 

studies, data for the current study was collected from all four military services and for 

languages taught over the last decade at DLIFLC.  

After three subsequent years of data collection, the Language Skill Change 

Project modeled language growth post-graduation using MANOVA. It was expected 

that if foreign language skills were to deteriorate, the largest loss would occur in the 
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first year, and that speaking proficiency, a productive skill, would suffer more than 

listening or reading, the receptive skills. The data confirmed a sharp drop at end of 

advanced intelligence training and a gradual increase thereafter (except for Spanish 

that showed a general upward trend), although many service members failed to ever 

regain the level of proficiency they had upon graduation. The greatest skill loss was 

found in the more difficult languages (Russian and Korean) (O’Mara et al., Vol IV, 

1994). The generalization of the findings is limited, however, due to the small sample 

size in each language in each subsequent year due to attrition, which dropped from 

almost 2,000 at the start of the project to 441 soldiers who tested four years later. 

Another shortcoming of the LSCP is that the relationship of the predictor variables to 

outcomes was only analyzed for training outcomes, not for subsequent growth.  

Almost two decades after the initial publication of the DLAB, Silva and White 

(1993) visited the question of incremental validity, looking at the additional 

improvement in prediction afforded by DLAB over ASVAB. Silva and White’s study 

followed a decade of large studies of differential aptitude that were published in the 

1980’s and 1990’s (Schmidt, et al., 1988; Ree & Earles, 1991). These studies, based 

on ASVAB subtests and composites, found that tests of specific cognitive ability 

made only marginal improvements in the prediction of training outcomes and job 

performance. The language career field was not considered in these studies.  

With all military service members taking the ASVAB by the early 1990’s, 

Silva and White were able to examine whether a specific cognitive aptitude, in this 

case language aptitude, as measured by the DLAB, contributed over and above the 

ASVAB subtests, or by a general cognitive ability factor drawn from the ASVAB. 
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They investigated the following predictors: the ten ASVAB subtests, a g factor score 

based on ASVAB subtests, and the DLAB. Unlike the Peterson and Al-Haik (1976) 

study which used GPA, their criteria were academic attrition and a standardized 

proficiency test, the DLPT. Silva and White (1993) found that DLAB did provide 

incremental validity in the prediction of both proficiency and attrition for each 

language difficulty category, though the gains were small: depending on skill 

modality, correlation coefficient gains ranged from .01 to .13 (Silva & White 1993, p. 

89). The strongest predictions were found when general cognitive aptitude was 

modeled as a general intelligence factor, rather than with the ten individual ASVAB 

subtests. The authors concluded that language ability is distinct from general 

intelligence and suggested that DLAB taps into abilities not measured by tests of 

general ability. Unlike the LSCP findings, (which were not published until 1994), 

Silva and White (1993) found that the incremental gains in listening and reading were 

much lower than those for speaking.  

The implication drawn by the authors was that the differential aptitude 

measured by DLAB tapped strategies “to extract and organize the semantic, syntactic 

and phonemic structure of language, constituting a specific kind of crystallized ability 

with predictive power beyond that of g” (Silva & White 1993, p. 91). Though 

significant for the services, their study was also limited to training outcomes, and they 

did not extend the research timeline to look at growth.  

Beginning in the mid-2000’s, a team of researchers sponsored by the U.S. 

Special Forces published studies on predictors of language proficiency with the goal 

of improving selection and training assignments. The student pipeline for Special 
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Operations Forces (SOF) is similar to the one described above, but rather than 

attending the DLIFLC, these military language students receive their training at the 

United States Army John F. Kennedy Special Warfare Center and School in North 

Carolina. Program emphasis is slightly different, with graduation outcomes expected 

to be ILR Level 1/1+ or 1+/1 or higher on the two-skill Oral Proficiency Interview, 

which assesses listening and speaking. Once in the field, SOF linguists continue to 

take the two-skill OPI, and the DLPT in listening and reading. The researchers’ 

findings, summarized below, consistently support the use of DLAB to predict 

language outcomes (Surface et al., 2005; SWA 2009; Watson et al., 2012). 

 In an early example of multilevel modeling in the foreign language field, 

Surface et al. (2005) found that ASVAB (as measured by the AFQT composite) and 

DLAB (as measured by the standardized overall score) had a significant, positive 

relationship with SOF learning outcomes. Language students were nested by class 

and by instructor in a three-level model. The results showed that individual 

differences, specifically ASVAB-AFQT and DLAB, were significant predictors of 

learning outcomes, accounting for 13-24% of the variance in scores. At the next 

levels of nesting, proficiency scores did vary by class (level-2) and by instructor 

(level-3), and language difficulty was the only significant predictor of between-class 

variance.  

Research on SOF linguist outcomes continued in the late 2000’s, with studies 

continuing to refine analysis of predictors to improve selection. SWA (2009) found 

that of four predictors available to the study, DLAB, ASVAB-AFQT, Army General 

Technical (GT) and Wonderlic Personnel Testä, DLAB was the best predictor of the 
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two-skill, Oral Proficiency Test outcomes in speaking and listening. This study’s 

conclusions, while confirmatory of earlier language aptitude research, were limited by 

a small and narrow sample size and number of languages.  

A more comprehensive multilevel analysis a few years later. Watson et al. 

(2012) found the DLAB overall score was predictive of which SOF trainees were 

most likely to attain ILR 2 speaking proficiency following initial training, as well as 

the maximum proficiency level linguists attained over the duration of their career (p. 

4). Of interest to the present study, the likelihood of reaching ILR Level 2 was related 

to language difficulty. Accounting for language, the DLAB score explained 4.3% of 

the differences in listening, 7.3% of reading, and 8.3% in maximum speaking 

outcomes. The conclusions are somewhat limited in their generalizability to the 

overall military linguist population, however, since on average, the highest levels 

obtained were in the range of ILR Level 2. The current study drew from a broader 

population, although the range was also limited, given that with the exception of 

Spanish tests in this dataset, the DLPT only measures up through ILR Level 3.   

There have been several other studies that took a longitudinal approach. 

Wagener (2016) extended existing research on DLIFLC graduates to examine the 

effects of context on outcomes over time. He found that DLAB predicted grade point 

averages for the foreign language classroom context, even after including other 

general cognitive measures into a model. Looking at proficiency score outcomes over 

four years, rather than GPA, DLAB continued to be a predictor of listening and 

reading, along with two quantitative measures (ASVAB-AR and ASVAB-MK), but 

the magnitude of their coefficients decreased over the four cycles as test scores rose. 
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Findings such as these support efforts such as the Hi-LAB (Jackson et al., 2011; 

Doughty, 2019), which posits that different aptitudes are needed to predict ultimate 

attainment, rather than learning outcomes.  

Confirming earlier studies, Wagener (2016) found that DLAB remained a 

significant predictor of GPA after accounting for ASVAB for any language taught at 

DLIFLC, replicating earlier studies (Peterson & Al Haik, 1976; Silva & White, 1993). 

He also found differences by difficulty category in the relationships among individual 

difference measures and GPA, this despite efforts by DLIFLC to lengthen courses in 

the “harder” languages and restrict these languages to only those with the highest 

language aptitude scores. Unlike other studies, Wagener (2016) used four of the 

ASVAB subtests, rather than composite scores, for his measurement of general 

cognitive aptitudes. He concluded that his findings supported differential aptitude 

theory. 

Language Growth 
 

While the question about how foreign language learning develops over time 

should be of interest to the government, few published studies exist. This is 

surprising, given that DLIFLC graduates serve at least for three or more years 

following graduation, and the language demands on the job are many. This section 

reviews the literature on how language proficiency changes over time, and what 

variables predict change. As mentioned above, prediction models have been primarily 

focused on initial learning outcomes, rather than on development. This is not just a 

pattern in the military community. Ortega and Iberri-Shea (2005) point out the need 

to broaden the timeline: “Indeed, it can be argued that many, if not all, fundamental 
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problems about L2 learning that SLA researchers investigate are in part problems 

about “time,” and that any claims about “learning” (or development, progress, 

improvement, change, gains, and so on) can be most meaningfully interpreted only 

within a full longitudinal perspective.” (p. 26) Despite intensive efforts to improve 

learning outcomes at DLIFLC, graduates still fall short of the proficiency levels 

demanded on the job, and they need further opportunities to improve their language 

skills.  

While there is a need for such sustained and even improved language 

proficiency, the results show that in fact, gains are not common. The earliest 

longitudinal results of military language students appear to be from the Language 

Skill Change Project (O’Mara et al., 1994) mentioned above, which reported findings 

that after graduation, patterns varied by language, but mostly showed a drop in 

proficiency, followed by a slow increase. Not all graduates were able to recover their 

graduation levels, and soldiers in the more difficult languages had a higher incidence 

of skill loss (p. 2).  

More recent studies, some of which were mentioned above, found similar 

drop-and-recover patterns. Surface et al. (2004) found that for SOF members, 

listening proficiency dipped and recovered. Their analysis considered several 

predictor variables, including language difficulty, education level and general 

cognitive ability. Initial proficiency outcomes were negatively impacted by language 

difficulty, and growth was constrained in the more difficult languages. While 

education level and general cognitive ability were predictive of initial proficiency 

outcomes, they did not predict growth, which was an unexpected finding. Their 
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analysis also found that language difficulty negatively impacted initial proficiency 

and constrained growth. Subsequent research below suggested that general cognitive 

measures do, at least to some extent, predict growth in other studies and therefore 

remained of interest in the current study.  

To examine the language proficiency change of DLI graduates, Shearer 

(2013) used survival analysis. He found a probability of 25% that those graduating at 

ILR Level 2 in listening would drop at least a sublevel to Level 1+, with reading 

trajectories slower to attrite. Graduates with higher exiting ILR proficiencies were 

less likely to attrite, suggesting that DLIFLC’s goal to increase proficiency levels for 

graduates in their basic program would have a positive impact. Updating this research 

with current data to model growth and investigate the relationship of aptitude 

measures to graduation outcomes and growth following graduation motivated this 

research. Data for this research included graduates up through 2018, so the likelihood 

of higher test scores at graduation was greater, given the increased emphasis on 

higher standards since 9/11.  

Other studies have shown that patterns of growth differ by skill modality 

(listening and reading). Bloomfield et al. (2014) found different patterns of growth 

over four test sessions in both listening and reading. While models showed a 

correlation between the graduation outcome (intercept) and pattern of change (slope), 

the direction of the correlation was opposite: in listening, those with lower initial 

scores had a faster rate of improvement; in reading, those with higher initial scores 

improved more quickly. Separate analyses by language or by language category were 
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not conducted in this study, nor were predictor variables related to aptitude or 

language difficulty included in the analysis.  

To investigate how aptitude relates to language proficiency outcomes over 

time, B. Mackey (2014) used latent growth curve modeling (LGM), which considers 

group level information (as expressed by factor means) as well as individual 

differences (the variances). LGM can be used to describe growth at the group and 

individual level, as well as to see which variables influence growth. As Duncan and 

Duncan (2004) explain, the strengths of LGM include: “an ability to test the adequacy 

of the hypothesized growth form… to correct for measurement error in observed 

indicators… and to develop from the data a common developmental trajectory, thus 

ruling out cohort effects” (p. 8). LGM allows for change to be linear or curvilinear 

and B. Mackey (2014) confirmed findings from earlier studies that a non-linear 

growth model best fit the data. The estimated proficiency level at the time of 

graduation from DLIFLC, the mean intercept, was just over ILR Level 2 for listening 

and close to ILR Level 2+ for reading. The mean growth (slope) in both listening and 

reading was positive, though not significant, indicating very little change over time. 

Significant variances indicated meaningful inter-individual differences in graduation 

levels, growth and the effect of predictor variables. Language difficulty category had 

a significant, negative impact on graduation and no significant relationship to growth, 

but her model did not account for clustering by language. Regarding the predictive 

power of aptitude scores, she found that ASVAB-AFQT had a significant positive 

relationship on graduation outcomes, but contrary to expectation, no significant 

relationship to growth for both listening and reading. The DLAB, in contrast, was 
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unexpectedly not a significant predictor of listening score upon graduation, but it did 

explain a small amount of between-person variation in change for those who did 

show growth. Unlike the listening data, however, for reading proficiency, DLAB was 

a significant predictor of graduation outcomes, and it had a positive significant 

relationship to growth. The findings related to aptitude were not all as predicted and 

were possibly due to the pooling of the languages in this study. A multilevel approach 

would be a more appropriate method to analyze data in which test scores are nested 

by individual and by language. Given more recent research, such as the role ASVAB-

MK appears to play in predicting growth (Wagener, 2016), it would also be more 

useful to break out the ASVAB-AFQT score to its component parts to further 

investigate the role of specific cognitive aptitudes, rather than a composite, especially 

in a framework that accounts for differences that might be attributed to language 

difficulty.  

Language Difficulty 
 

There is no doubt in the literature that some languages are more difficult to 

learn than others. As Cysouw (2013) explains, “larger differences between languages 

are correlated with larger difficulty, though not all differences are equally important.” 

(p. 52) What is equally true is that there are a variety of approaches to operationalize 

the construct of language difficulty. As mentioned previously, DLIFLC uses a four-

category scale of language difficulty, with languages easiest for a native speaker of 

English coded as Cat I, and the hardest languages as Cat IV. According to Clark et al. 

(2016a), the DLI categories were based upon experiences at the Foreign Service 

Institute (FSI), the U.S. State Department’s language school. While not a perfect 



 

 32 

overlap of language-by-category, for the most part the two lists are similar. DLI has 

adopted two policies to mitigate the impact of language difficulty and improve the 

likelihood of on-time, on-standard graduation rates: first, only those with the highest 

scores on the DLAB are enrolled into Cat IV languages; second, training time now 

varies from 36 weeks for the easiest languages and up to 64 weeks for the hardest. 

Despite these policies, language difficulty continues to depress graduation rates 

(Bermudez-Mendez, 2020; Schmitz, 2009; Wagener, 2016; Wang, 2004) and increase 

the likelihood of being recycled or re-languaged (Schmitz, 2009).  

There are indications that even within a DLI language difficulty category 

there is a range of difficulty. While Masters (2018) found “coherence” within one 

category (Arabic, Chinese and Korean, all Cat IV languages), Wagener (2016) found 

that the strength of the individual differences measures in predicting outcomes varied 

not only overall, but also within each language difficulty category. This finding was 

interpreted as support for claims regarding language learning difficulty (Child, 1998; 

Lowe, 1998) that individual difference measures related to general aptitude and 

language aptitude differentially predict outcomes, even within the same language 

difficulty category.  

Other studies have looked beyond graduation and continued to find that 

language difficulty depresses outcomes. While B. Mackey (2014) did not find a 

significant relationship of language difficulty to slope in a latent growth curve 

analysis of language proficiency, Clark et al. (2016) used event history analysis and 

found that the odds of reaching ILR level 3 over time were higher for some languages 

than for others within the same category. Other longitudinal analyses showed that 
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within each of the three largest categories (I, III and IV), there were languages that 

were either easier or harder than the average. And when they compared all the 

languages in one analysis, they found the estimated difficulties of languages in 

different categories were virtually completely overlapping (p. 7). These are 

interesting findings, as they suggest that the current language difficulty categories 

impact not only language learning outcomes at DLIFLC, but that they also impact 

language growth. The findings also point to a need to better define language 

difficulty. 

Outside of the government context, language difficulty has also been found to 

moderate learning outcomes in academic settings (Elder & Davies, 1998; Lee & Kim, 

2010; Snow, 1998; Verhoeven et al., 2019; Zhang, 2019). In the literature, differences 

in L1-L2 are more often described descriptively in terms of distance between two 

languages, rather than as related to learning difficulty, and researchers have suggested 

a variety of methods for categorization of the differences. The approaches range from 

the philosophical (Mackey, W.F., 1971) to the statistical (Gamalloa,	et al., 2017). 

Neither extreme is helpful for the present research, though they raise interesting 

questions that could drive a potential new categorization system: what is the context 

[second language learning or foreign language learning]? How does the learning 

occur [direct or indirect]? What outcomes are measured [listening, reading, speaking, 

or writing]? What is the approach [synchronic or diachronic]? Are the measures 

linguistic or behavioral? Who are the learners?   

There are few other categorization schemes of distance in the literature. Child 

(1998) described a multidimensional matrix, with a three-scale distance measure 
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(1, 2 or 3) in each of three categories: orthography as a representation of the 

spoken language; grammatical system as framework for communication; and 

semantic system as cultural outlook. His matrix has not been used in research. In a 

similar approach, Ross (2000) operationalized a scale of language distance based 

upon orthography (alphabetic, syllabic, ideograph), canonical word order (SVO, 

SOV, OSV, etc.) and typological grouping (e.g., Germanic, Slavic, Altaic, Sino-

Tibetan, etc.). Both Child and Ross assigned their ratings with languages closest 

to English (e.g., German) given the highest proximity value and the most distant 

languages (e.g., Cantonese) the lowest. Ross (2000) found little to no effect of 

language distance on speaking and writing outcomes.  

Other researchers have reduced language distance to only one or two 

categories, which then restricts the type of analyses that can be used to a 

categorical, rather than continuous measure. In their meta-analysis of cross-

linguistic transfer of oral language (decoding, phonological awareness and 

listening comprehension), Melby-Lervåg and Lervåg (2011) used a measure of 

distance based on writing system (alphabetic or idiographic) and found that 

whether both L1 and L2 were alphabetic script did moderate the magnitude of the 

L1-L2 correlation in decoding skills, but not listening comprehension. Jeon and 

Yamashita (2014) used two measures of distance, the alphabetic/non-alphabetic 

distinction, as well as Indo-European or not, as moderator variables in their meta-

analysis of L2 reading comprehension and ten correlates. Contrary to their 

hypotheses, neither measure had a significant moderating effect on correlations, 

though a deeper study of age and specific L1 features did suggest an influence on 
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decoding skills. They did, however, find a stronger correlation for L1 reading on 

L1-L2 language distance for those languages in the Indo-European family than for 

those which were in a different language family. Jeon and Yamashita (2014) 

suggested that morphosyntactic knowledge varies even within a language family, 

so this could explain why they did not find a moderator effect in the subskill 

analysis but did in the higher level process of reading. 

Rather than a typological approach, Chiswick and Miller (2004) used FSI 

outcome data to develop a continuous language distance measure based upon 

language test scores that they then applied to their analysis of English proficiency 

among immigrants in Canada. Their “linguistic distance” measure ranged from .33 

(Afrikaans, Swedish) to 1.0 (Japanese, Korean). Holding other variables constant 

(level of education, age, duration in country) they found that the larger the distance 

between the immigrant’s L1 and English, the lower their English proficiency.  

There are other possible ways to describe language difficulty. Cysouw (2013) 

used two measures of language learning difficulty, the Chiswick and Miller (2004) 

measure (hereafter CM), as well as a revised FSI measure (one with seven, rather than 

three categories), to compare other possible measures of language distance: 

geographic, genealogical classification, typological similarity, orthographic 

similarity, and size of the orthographic system. Geographical distance was 

significantly correlated with both FSI-levels and CM (p. 40); genealogical 

differences, operationalized with only two levels, showed that closely related 

languages were, as expected, easier to learn. Cysouw (2013) assessed the relative 

contributions of three factors (geographical distance, non-Germanic, non-Indo-
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European) and found that while both genealogical levels were significant, 

geographical distance was already accounted for to a large extent by genealogy (p. 

41). Next, he considered orthography. Two measures were developed, a similarity 

between English and the target language, and the size of the orthographic system. As 

expected, he found that the more different a script is from English, the more difficult 

the language is to learn. The size of the orthographic inventory was more challenging 

to model: Korean and Arabic were outliers in the initial correlation, where no trend 

was found, but removing these languages resulted in a highly significant correlation 

with both outcome measures (FSI-levels and CM) (p. 44). Finally, Cysouw developed 

an overall, measure of structural differences based on a set of complex descriptive 

linguistics. Once again, the correlation was found to be as predicted, with a strong 

negative correlation between English and languages with very different structures.  

After building and analyzing several prediction models, Cysouw (2013) 

concluded that the categories for typological and orthographic similarity resulted in a 

reasonably good prediction. The problem he found with the typological category is 

how difficult it is to develop, as not all languages are well documented, but he did 

share his ratings in an appendix, and they are available for researchers. A second 

approach was determined to be a more practical model to predict learning difficulty, 

relying on a combination of four binary factors (Latin script or not; Germanic or not; 

Indo-European or not; and same structure as English based only on 11 features).  

Additional typological categories not mentioned above warrant mention here: 

phonological, morphological and lexical. Schepens et al. (2013) investigated the 

degree to which morphological difference affected L2 Dutch learning. Using data 
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from the World Atlas of Language Structures (Dryer & Haspelmath, 2013) , the 

authors developed quantitative measures of morphological similarity and complexity 

(based upon 29 features). They showed that morphological similarity and increasing 

complexity are closely related, and that the relationship with speaking proficiency is 

significant and negative. While their study included a large variety of languages (49 

different L2), the quantitative measures cannot be used as is for the current study 

because Dutch, rather than English, was the reference language for their distance 

measures. Recreating the morphological measures for the languages in the current 

study is beyond the scope of this research.  

One existing categorization system that takes these types of features into 

account is the language similarity measure available through CASL’s Gateway 

Language Database. This measure was used in two of the studies mentioned above, 

Clark et al. (2016) language difficulty research and Doughty’s (2019) article on 

cognitive language aptitude. The Gateway language similarity number is based on a 

comparison of features such as script, sound, word formation, word types, word order 

and sociolinguistic factors (Gnanadeskikan & van Rossum, 2016). Rather than taking 

the perspective of difficulty, the Gateway number is a measure indicating likelihood 

of successful cross training based upon language similarity.  

For the current study, the typological measure developed by Cysouw (2013) 

and the Gateway Languages Database (2016) were used to provide more detailed, 

continuous measures, along with the four-level DLI categories, the FSI categorical 

system as modified into seven categories by Cysouw (2013), as well as two binary 
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measures, whether the languages tested use a Latin script and whether they are in the 

Indo-European language family.  

Summary 
 

The literature points to the need for longitudinal research to better understand 

proficiency growth, and there is some mixed support suggesting that general aptitude 

and language aptitude are predictive not only of training outcomes, but also of 

language growth. Given the military’s investment in language and the critical role 

linguists play in our national security, it is important to extend the earlier research to 

further investigate the relationship of aptitude to growth, especially using 

methodologies that account for the variety of languages taught at DLIFLC.  
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Chapter 3: Purpose of the study 
 

With an investment of more than $350 million dollars per year (DLIFLC 

Annual Program Review, 2012) in DLIFLC’s language program, the DoD is 

motivated to ensure that only those students likely to succeed are, in fact, enrolled. 

Even small changes in the number of students who drop out of the program will 

generate savings (Bunting et al. 2011). ASVAB researchers have commented that 

even small improvements in predictive validity, i.e., as low as .02, have the potential 

to produce substantial cost savings (Held et al., 2014, p. 214) in selection of 

individuals for training programs.  

However, with ever-increasing demands on DLI’s graduates to improve their 

language skills beyond the levels reached upon graduation, the DoD should also be 

concerned with language proficiency growth post-DLI during a service member’s full 

enlistment, not just at graduation. It may be that what predicts initial training success 

is different than what predicts growth over time. For training outcomes, DLAB 

contributed significant incremental validity beyond ASVAB in older studies (Silva & 

White, 1993), but does this continue to over time? Furthermore, which subtests best 

contribute to prediction models in longitudinal studies?  

Research methodology also provides a warrant for the current study. As 

previously mentioned, few studies have taken a multilevel approach to the modeling 

of change data. However, repeated test scores are strong hierarchies, as there is 

potentially more variation between individuals than within individuals (Barkaoui, 

2013). Assignment to a specific foreign language is yet another potential level of 

nesting. The advantages of multilevel modeling over more traditional analysis 
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(MANOVA or multiple regression) include the simultaneous modeling of both 

intraindividual change (how an individual changes over time) as well as 

interindividual change (differences in change across individuals) (Finch et al., 2019). 

Repeated measures are, by their very nature, nested by individual. Ordinary 

Least Squares regression analysis assumes that measures are not correlated, so it is 

not appropriate to use this method when the data are repeated measures unless robust 

standard errors that allow for clustering are used (Cheslock & Rios-Aguilar, 2011).  

Language professionals are inherently also nested by language in and beyond 

the DLI classroom, as they continue to train and work in that language. Rather than 

combining data into one pool, or analyzing data separately by language, multilevel 

modeling allows for the simultaneous analysis of test scores over time, nested by 

individual and again by language. One could model DLI graduates’ repeated 

measures as scores nested within an individual, then nested by classroom and then by 

language to avoid adding bias to the estimates of standard error. While the classroom 

at DLI could serve as to nest the data in this way as a layer between the individual 

and the language, there are many confounding variables associated with the 

classroom. For example, teaching teams are not consistent and course material varies. 

According to DLIFLC, who has tried to measure the impact of classroom, there is too 

much noise in the classroom data (Dr. Seumas Rogan, Chief of Testing Design and 

Analysis, DLIFLC, personal communication, September 13, 2021). The relevance of 

classroom data beyond DLI is also questionable. It is less intuitive to consider how 

language would serve as a nesting variable, but DLI graduates in the field use the 
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language on the job and continue their language learning. This might lead to between-

language differences that impact outcomes.  

This dissertation investigated the role that general aptitude as measured by 

ASVAB and language aptitude as measured by DLAB played in predicting language 

proficiency growth using a multilevel approach. The following research questions 

were addressed:  

RQ 1: To what extent is there variance in language proficiency growth over time, 
across individuals and languages? 
 
RQ 2: What is the shape of language proficiency growth and how does it vary by 
language?   
 
RQ 3: To what extent does language aptitude predict language proficiency growth 
outcomes across languages, beyond what is predicted by general aptitude?   

 
RQ 4: To what extent does language difficulty categorization impact language 
proficiency growth across languages?  
 
RQ 5: To what extent does aptitude interact with language difficulty? 

Expected findings  

 Based upon the literature review, the following hypotheses were made relative 

to the research questions above:  

Hypothesis 1: There is significant variance in language proficiency at time of 

graduation from DLIFLC and over time, both within individuals and languages.  

There is ample support in the current literature for a finding of significant 

variance in language proficiency both at the time of graduation, as well as over time 

(Bloomfield et al., 2014; Masters, 2018; Wagener, 2016). This research aimed to 

clarify this variance by partitioning it at the levels nested within the data: by 

individual and by language. It was expected that the inter- and intra-individual 



 

 42 

variance would remain, even after accounting for language studied. Studies using 

latent growth modeling or multilevel modeling have shown that there can be 

significant variance around growth, meaning that even though the overall mean 

growth may not be significant, there could be significant variation among individuals 

in their growth. It was expected that this variation would not be due to language 

difficulty over time, given how languages are assigned to individuals, and that this 

variance would remain significant.  

Hypothesis 2: Language proficiency growth is non-linear. 

  Several studies (Bloomfield et al., 2014; Shearer, 2013; Mackey, B., 2014) 

have shown that the pattern of language proficiency scores for military personnel 

following graduation is generally flat over time, with a slight U-shaped downward 

curve between the first and third scores. Proficiency scores are generally lower at the 

time of the second test, but then often recover by the third test, though not all 

individuals regain their graduation level. It was therefore expected that Hypothesis 2, 

that language proficiency growth is not linear, would remain to be true when the 

multilevel structure of the data is accounted for.  

Hypothesis 3: There is a significant positive relationship between cognitive ability 

and language proficiency over time. 

Existing research on the relationship between cognitive ability and language 

proficiency over time is less clear, and most studies have ignored the nested nature of 

the data. Due to findings from studies in other fields (Carretta, 2014; Ree & Earles, 

1992), it was expected that general aptitude and language aptitude would predict not 

only graduation outcomes, but also growth. Previous studies (Bush, 1997; Surface et 
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al, 2005; Silva & White, 1993; Watson et al., 2012; Wagener, 2016) have repeatedly 

shown that general aptitude and language aptitude incrementally predict graduation 

outcomes at the Defense Language Institute Foreign Language Center (DLIFLC), as 

well as at the United States Army John F. Kennedy Special Warfare Center and 

School. It was expected that this research would confirm earlier findings regarding 

graduation outcomes.  

Hypothesis 4: There is a significant negative relationship between language 

difficulty and language proficiency growth over time. 

Studies have demonstrated that there is a significant, negative relationship 

between language difficulty and language outcomes (Surface et al., 2005; Masters, 

2018; Wagener, 2016). What is interesting about these findings, especially in terms of 

graduation from basic training, is that the schools do take steps to reduce the impact 

of language difficulty, such as minimum DLAB scores and adjustments in course 

length. However, despite these steps, language difficulty remains a significant 

moderator of language outcomes, and in this research, it was expected that it would 

continue to constrain graduation outcomes, as well as growth.  

Hypothesis 5: Language difficulty will interact with general aptitude and language 
aptitude. 
 
 Few studies have considered interactions of predictor variables, and even 

fewer have used an analytic approach that would even allow for the interaction of 

cross-level predictors. The current study was designed to examine the impact of 

predictor variables on growth, including cross-level effects, such as the interaction of 

language difficulty and general or language aptitude. Wagener’s (2016) analysis 
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suggested that there would be significant interactions. It was expected that language 

difficulty would interact with both general aptitude and language aptitude. 

 This research filled a gap in the scientific literature by addressing the 

longitudinal nature of proficiency, as well as the nesting created by each language. 

Over the decades, there has been a wealth of studies to support selection criteria in the 

context of graduation from language training. However, selection should be 

concerned not only with graduation from the basic course at DLIFLC, but also with 

continued growth over time. Language professionals in the military must continue to 

improve their language skills to be successful on the job. The nation’s security 

depends upon it.  
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Chapter 4: The data  
 

The dataset was delivered by DLI to the researcher in November 2021 in 

occasion-level form (i.e., long format) and divided into separate files for listening and 

reading test scores. Personnel were identified by DLI with random identification 

numbers in accordance with the approved IRB protocols from the University of 

Maryland as well as the DLI.  

The test scores were from the individuals who graduated from a DLI basic 

language course between May 2010 and September 2019 and who took a DLPT 

between October 2010 and September 2020. The original dataset comprised over 

65,00 test scores for listening and over 45,000 in reading. The availability of more 

listening tests in general, Arabic dialects in particular, drove the increased number of 

listening tests. Many individuals tested in more than one language, likely due to 

testing in any prior language or testing in a related language, such as Persian-Farsi 

and Persian-Dari. The multilingual nature of individuals in this dataset meant that 

scores were nested under an individual who was, in turn, nested under more than one 

higher-level group.  

There are several ways to handle such cross-classification: delete the cases 

completely, attribute the data to one group only, or apply a cross-classified model 

(Anderson, 2012). Given the size of the dataset and the nature of the research 

questions, the decision was made to delete the language test scores that were not 

related to the language of the first basic course in the dataset. This allowed for each 

individual to be nested under only one language. Only those who successfully 

graduated were retained for this study, as those who did not graduate did not continue 
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to work in the field and test in a language. These two steps, to focus on the basic 

course and to only include graduates, reduced the original dataset provided by DLI by 

24%.  

These decisions had the additional benefit of focusing the analysis on the 

question of how the aptitude measures used for selection into basic training were 

related to language proficiency growth in the language of initial study. In the reading 

dataset, an exception was made for individuals who attended a basic course in an 

Arabic dialect such as Arabic-Gulf, as such individuals all tested in Modern Standard 

Arabic (MSA) in reading because the dialects are not assessed separately in reading. 

Listening was more complicated, as many individuals tested in the dialect they 

studied, and/or in MSA listening, and/or in a related dialect. To reduce complexity in 

design, the study retained only the listening test scores for the version of Arabic that 

was the focus of the basic course. For example, if a student was enrolled in Arabic-

Gulf, but tested in both Arabic-Gulf and Arabic-Iraqi, only the Arabic-Gulf scores 

were included.  

Very little data cleaning was necessary after the data were reduced to focus on 

basic course graduates. DLAB scores from four individuals were suspect and the data 

on the individuals with these scores were removed from both listening and reading 

files. To reduce imbalance in the data, languages with fewer than seven test scores 

were removed (German and Portuguese in the reading data and German in the 

listening). Test occasions greater than six were also removed. The final dataset 

included 34,742 test scores in listening for 9,552 individuals and 34,935 test scores in 
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reading for 9,564 individuals, with the bulk of the drop attributed to focusing on the 

language of the basic course.  

There were three categories of information in the dataset: scores related to 

aptitude (ASVAB and DLAB), information collected at DLI via surveys, and data 

related to language test scores. The individuals in the listening and reading datasets 

almost completely overlap; therefore, only the reading data is reported below for the 

aptitude and survey variables. The ASVAB and DLAB data were complete; there 

were no missing data. Individual response data on these batteries was not provided, 

however, so factor analyses could not be conducted to explore this data more fully. 

The survey responses collected at DLI were missing data, and how this was handled 

is described below. The language test data was also complete although not every 

individual tested the same number of times.  

The following sections describe the aptitude, classroom and testing data. IBM 

SPSS Statistics (Version 28) was used to organize the data, conduct multiple 

imputation and report foundational statistics (descriptives, correlations).  

Aptitude-related data 
 

The first category of information in the dataset was related to cognitive 

aptitude, both general aptitude (as measured by ASVAB) and language aptitude (as 

measured by DLAB). Scores were provided for nine ASVAB subtests and two 

composite scores (ASVAB-AFQT and ASVAB-VE), and the four DLAB parts with 

an overall DLAB score. The original dataset included DLAB scores from two 

sources: a self-reported score collected on the student survey and the official score. 

The official DLAB scores were retained and used for analysis based on the 
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recommendation of DLIFLC (Dr. Seumas Rogan, personal communication, 

December 14, 2021). Score reliability was not provided with the data for either 

ASVAB or DLAB, but a previously published study that included ASVAB as a 

predictor of language outcomes reported empirical reliability scores ranging from .70 

to .92 for the subtests (Bunting et al., 2011, p. 6). The same study calculated and 

reported DLAB alpha reliabilities for the three forms used in their study ranging from 

.79 to .88 (pp. 15-26).  

ASVAB Subtests  
 

Nine ASVAB subtests were provided to the researcher and descriptive 

statistics from the cleaned dataset are presented below. ASVAB scores are 

standardized scores, with a score of 50 representing the mean for the general 

population of examinees, with plus or minus 10 points per standard deviation (Culver, 

n.d.). The mean scores in the current dataset were all approximately one standard 

deviation higher than for the general ASVAB test-taking population, with the 

exception of the AS subtest, which was on the mean (Auto and Shop).  

Table 2 

ASVAB subtests 

ASVAB subtest N Mean Median Mode Std 
Deviation 

AO (Assembling Objects) 9564 62.07 63.00 68 5.523 
AR (Arithmetic Reasoning) 9564 62.61 63.00 61 5.190 
AS (Auto/Shop) 9564 50.64 50.00 51 7.210 
EI (Electronic Information) 9564  58.63 58.00 57 7.637 
GS (General Science) 9564 61.85 62.00 62 6.217 
MC (Mechanical Comprehension) 9564 60.81 61.00 59 6.912 
MK (Math Knowledge) 9564 63.02 63.00 64 4.935 
PC (Paragraph Comprehension) 9564 61.87 62.00 62 4.683 
WK (Word Knowledge) 9564 62.02 62.00 62 6.020 
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Two composite scores were also provided (see Table 3): the Verbal 

Expression score and the Armed Forces Qualifying Test score. As explained above, a 

Verbal Score (VE) score is formed from an optimally weighted composite of 

unrounded WK and PC standard scores. This Verbal Score, in turn, is double 

weighted in the computation of AFQT scores: AFQT = AR + MK + 2(VE) (Ostrow, 

2002).   

Table 3 
 
ASVAB composite scores 

 

DLAB Subtests 
 

Scores on the four DLAB subtests, as well as an overall DLAB score are 

shown below (Table 4). The minimum overall score in this sample was 71, while the 

mean was 117. Only 0.2% of the individuals were admitted into DLI with scores 

below the lowest minimum DLAB score in this time period (85), while 70% of the 

incoming students had DLAB scores higher than the required minimum score for 

even the most difficult languages (110).  
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Table 4 
 
DLAB Statistics 

 

ASVAB-DLAB Correlations 
 

As anticipated from findings in earlier studies, there were a number of 

significant correlations among pairs of aptitude variables (see the full correlation 

table in Appendix A. The strongest correlations were within the ASVAB itself, both 

within domains as well as across domains: within the Science/Technical domain (AS 

and MC, AS and EI, EI and MC, GS and MC); within the Math domain (AR and 

MK), and across the Verbal and Science/Technical domains (WK and GS). DLAB 

Part I, the Biographical section, was the only subtest that did not show a significant 

correlation with all the other aptitude-related subtests. Table 5 below shows the pairs 

of variables with significant correlations greater than 0.5.  

Table 5 
 
ASVAB correlations greater than 0.5 
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Aptitude pair Correlation  

AS-MC .567**  

AS-EI .594**  

EI-GS .555**  

EI-MC .588**  

MC-GS .522**  

AR-MK .557**  

GS-WK  .517**  

** p < .01 

Survey data 
 

The second category of variables in the dataset was related to enrollment in 

the basic course. The dataset provided by DLI included four variables from a survey 

administered to students beginning their basic class. Approximately 20% of the 

values for these measures were missing data. While additional variables could have 

been included in this study, the following four variables were retained based upon 

previous research attesting to their influence on language proficiency.  

The first variable in this category was a measure of language choice, which 

was used as a proxy for motivation (Table 6) to learn the language. This measure had 

limited utility, as individuals responded to the question at only one point in time, prior 

to the start of their basic course, but no better measure was available. Students at DLI 

considered themselves motivated to study their language, even if it was not their first 

choice. Only 3% of the respondents reported being unmotivated, while a quarter of 

the respondents reported that they were training in their first choice language and 



 

 52 

were therefore presumably highly motivated. This variable was coded such that a 

higher number indicated more motivation (1=Not my choice and 5=Based on my first 

choice.) 

Table 6 
 
Descriptives for language learning motivation prior to training 

 
 Frequency Percent 

Not my choice. I would prefer 
to do something else rather 
than study a foreign language 

202 2.1 

Not my choice. I am not 
motivated to study the 
assigned language.  

78 0.8 

Not my choice, but I am still 
motivated to study the 
assigned language.  

2953 30.9 

Based on my second or third 
choice.  

1854 19.4 

Based on my first choice  2559 26.8 

System missing 1906 20.0 

 

The second variable retained from the survey was a measure of self-assessed 

prior language proficiency (Table 7). Thirty percent of the respondents reported no 

prior proficiency, while 14% reported having proficiency in a foreign language that 

they self-rated as “good” or “excellent”. This variable was coded as 0=None through 

4=Excellent. Other variables related to prior proficiency, such as which prior 

language and where that language was acquired, were omitted from the current 

research. 
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Table 7 
 
Descriptives for prior language proficiency 

 Frequency Percent 

None 2276 23.8  

Poor  2045 21.4  

Fair  1798 18.8  

Good 917 9.6  

Excellent 411 4.3  

System missing 2105 22.0  

 

The third variable was an indication as to whether English was the 

individual’s first language (Table 8). Almost all the sample of those who responded to 

the survey (97.2%) reported being first language English speakers.  In the analyses, 

this variable coded as 0=English not as a first language and 1=English as first 

language.  

Table 8 
 
Descriptives for first language English  

 
 Frequency Percent 

English as first language 7424 77.6 

Other first language  196 2.0 

System missing  1944 20.3 
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The final variable retained from the survey for the study was the level of prior 

education (Table 9). Two-thirds of the individuals who responded to the survey had at 

least some college experience. This variable was coded from 1=No high school 

through 9=Doctorate.  

Table 9 
 
Descriptives for level of education  

 
 Frequency Percent 

No high school  13 0.1 

High school/GED 2530 26.5 

One year of college  1152 12.0 

Two years of college 1302 13.6 

Three years of college   484 5.1 

Four years of college  294 3.1 

Bachelor’s Degree 1702 17.8 

Master’s Degree 
 

126 1.3 

Doctorate   16 0.2 

System missing 1945 20.3 

 

Language testing data  

 
The third and final category of information in the dataset was records of 

language testing. For each test score, the dataset included the test information 

(language, series, form, range, test date) and test score information (ILR Level and 

raw score). After data cleaning, the reading dataset contained test scores across 17 
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languages, with the majority of tests in Arabic (AD), Chinese (CM), Persian (PF), 

Spanish (QB) and Russian (RU) as shown in Table 10. The listening dataset 

contained 21 languages due to the availability of dialect tests such as Arabic-Gulf 

(see  

Table 11).  

Table 10 
 
Distribution of reading test scores 

Language N Percent 
Arabic 9048 26% 
Chinese 5163 15% 
Dari 180 1% 
French 601 2% 
Hebrew 770 2% 
Indonesian 124 0% 
Japanese 35 0% 
Korean 3603 10% 
Persian 5304 15% 
Punjabi 12 0% 
Pushtu  2731 8% 
Russian 3400 10% 
Serbian-Croatian 58 0% 
Spanish 3023 9% 
Tagalog 110 0% 
Turkish 42 0% 
Urdu  728 2% 

 

Table 11 
 
Distribution of listening test scores  

Language N Percent 
Arabic-MSA 4287 12% 
Arabic-Egyptian 400 1% 
Arabic-Gulf 1438 4% 
Arabic-Sudanese 65 0% 
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Arabic-Syrian 2660 8% 
Chinese 5162 15% 
French 603 2% 
Hebrew 770 2% 
Indonesian 135 0% 
Japanese 34 0% 
Korean 3612 10% 
Persian-Dari 180 1% 
Persian-Farsi 5307 15% 
Punjabi 12 0% 
Pushtu 2729 8% 
Russian 3404 10% 
Serbian-Croatian 58 0% 
Spanish 3015 9% 
Tagalog 111 0% 
Turkish 42 0% 
Urdu  730 2% 
   

Languages were unevenly distributed in the listening and reading datasets as 

they reflect the different requirements for military language positions during this time 

period. Over half of the languages tested were in the most difficult language category 

(DLI Category IV), while 30% were in Category III and only 10% in Category I. 

Real-world needs were reflected in the distribution of languages studied at DLIFLC. 

Potential impacts of this distribution will be addressed below in the discussion of 

language distance measures and in the results chapter.  

Test scores were provided as ILR levels and raw scores. The raw score was 

not used in the analysis because of the inability to equate raw scores across languages 

(Dr. Seumas Rogan, personal communication, March 17, 2022). ILR test scores in the 

original dataset ranged from ILR Level 0 to ILR Level 4, but the only scores above 

ILR Level 3 are from the Spanish DLPT, which had been converted to a computer-

adaptive format, allowing for a range of scores from ILR 0 to ILR 4. Because scores 
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above ILR Level 3 were limited to Spanish, scores in this research were capped at 

ILR Level 3. This step, in addition the steps outlined avove to retain only DLI 

graduates, truncated the ILR levels even further.   

Table 12 

Listening language test scores 

  

Table 13 

Reading language test scores 

 

In the foreign language arena, many researchers have treated proficiency 

scores as if they were interval-level outcomes, assuming a normal distribution on a 

continuous scale. Winke et al. (2022) discretized an underlying continuous self-

assessed proficiency measure based on the ACTFL (2012) scale (collapsed into five 

levels) by using an ordinal measure (Winke et al., 2022). An ordinal measure, rather 
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than a continuous measure, was likely used for the self-assessment because of the 

small number of levels (5). The research reviewed above clearly favored the 

treatment of the ILR scale as a continuous measure, as suggested by the ILR Skill 

Level Descriptions themselves (ILR, 1985), while the research questions in this study 

may best be understood using ordinal models, given the interest in stages of growth 

(O’Connell, 2000), as well as in the unequal distribution of test scores. As Tigchelaar 

(2019) observed, the type of scale and statistical analysis used do matter. This 

motivated additional analyses to model the data with both continuous and ordinal 

approaches. The ILR test score variable was converted to a decimal version, with 

“plus” levels coded as .6 (ILR, 1985), creating a continuous variable with scores from 

0.0 through 3.0.  

Unlike earlier studies analyzing DLPT data (Bloomfield et al., 2014; Mackey, 

B., 2014), the present dataset did not include any languages that changed test 

generations from DLPT IV to DLPT 5, so coding for a generational version change 

was not needed.  

A test sequence counter of the number of times an examinee took a test in a 

language, was created for the longitudinal analysis. A counter “Time” was created 

from the test sequence variable, starting with the first test as zero (0) to facilitate 

interpretation of the results. Rescaling time in this way meant the intercept could be 

interpreted as the predicted outcome at Time = 0, the first test occasion, which in this 

case was the ILR score upon graduation from DLIFLC. Language professionals are 

required to test each year while they are in the service and individuals had a varying 

number of test occasions in the dataset, depending on when they graduated and their 
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length of service. The distribution of test scores is reported below in Table 14 for 

listening and Table 15 for reading. There are two explanations for the differing 

number of tests in the dataset: first, some individuals in this dataset completed their 

basic training at the end of the data collection time period and therefore have had less 

time to continue testing; second, some individuals would have completed their tour of 

service during this period and therefore stopped testing. Those that have a higher 

number of test occasions (> 5) started their basic training at the beginning of the data 

collection period, reenlisted, and therefore continued to test annually. The majority of 

individuals in the dataset tested at least three times, and a more thorough exploration 

of time and its relationship with individual differences is considered in these studies 

is in the Results chapter below. 

Table 14 
 
Listening test occasions  

Time N Percent 

(attrition) 

0 9552 100 

1 8256 86 

2 6549 69 

3 5038 53 

4 3385 35 

5 1974 21 
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Table 15 
 
Reading test occasions  

Time N Percent 

(attrition) 

0 9564 100 

1 8286 87 

2 6581 69 

3 5077 53 

4 3420 36 

5 2017 21 

 

Languages were each coded with six measures of language difficulty to be 

used in the analyses: the FSI categories as modified in Cysouw (2013) (variable name 

FSILangCat with levels 1 to 7), a typological similarity number (Cysouw, 2013) 

(variable reversed and labeled TypeRev), the Gateway (Gnanadeskikan & van 

Rossum, 2016) index number (variable reversed and labeled GateRev), whether or not 

the language uses a Latin Script (variable labeled NotLatin, where 0=Latin), whether 

or not the language is in the Indo-European language family (variable labeled 

NotIndo, where 0=Indo), and the original DLI language difficulty categories (variable 

labeled LangCat). To facilitate interpretation, the Gateway and Typology measures 

were reversed so that all of the language measures reflected distance from English, or 

learning difficulty for an L1 speaker of English, given the overwhelming percentage 

of L1 speakers of English in the dataset. Thus, for all six language measures, a higher 

number indicated a more difficult language for a typical DLI student.  

A note of caution is warranted here regarding the reliability of these measures, 

especially regarding the categorical and continuous measures, given the imprecision 

of the decisions behind the categories. By their very nature, language categories are 
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reductionist, and when many of the languages are not well documented, the categories 

or similarity indices were based upon expert judgement. Where categorization was 

not specified for a language in the dataset, a measure based on a similar language was 

used. For example, Arabic (MSA) was not available in the Gateway database, so it 

was coded in the same manner as Arabic-Egyptian, even though other Arabic 

languages were coded with a slightly lower number (43 versus 38). Arabic (MSA) 

and Egyptian are both well documented, somewhat standardized languages and 

therefore the expectation was that they would be slightly “easier” for L1 English 

speakers than the lesser-taught Arabic dialects. The complete list of languages in the 

dataset and their associated language distance measures is displayed below in Table 

16.  
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Table 16 
 
Original Language distance measures 

Language 
FSI 
LangCat GateRev TypeRev NotLatin NotIndo 

DLI 
LangCat 

Arabic Egyptian 6 43 0.50 0 0 4 
Arabic Gulf 6 38 0.50 0 0 4 
Arabic MSA 6 43 0.50 0 0 4 
Arabic Sudanese 6 38 0.50 0 0 4 
Arabic Syrian  6 38 0.50 0 0 4 
Chinese 6 38 0.46 0 0 4 
Dari 4 48 0.43 0 1 3 
French 1 86 0.66 1 1 1 
Hebrew 4 48 0.56 0 0 3 
Indonesian 3 38 0.48 1 0 3 
Japanese 7 33 0.39 0 0 4 
Korean 6 33 0.45 0 0 4 
Persian-Farsi 4 48 0.43 0 1 3 
Punjabi 4 43 0.40 0 1 3 
Pushtu-Afghan 4 48 0.43 0 1 4 
Russian 4 67 0.65 0 1 3 
Serbo-Croatian 4 67 0.61 0 1 3 
Spanish 1 71 0.62 1 1 1 
Tagalog 4 57 0.39 1 0 3 
Turkish 4 48 0.44 1 0 3 
Urdu 4 38 0.50 0 1 3 

 
 

The associations across the language distance measures in the dataset were 

calculated using the appropriate statistics (Pearson’s r, chi-square tests of 

independence, and point-biserial correlation), and significant relations were found 

across the measures. The two continuous measures, GateRev and TypeRev, were 

strongly related (Pearson’s r = 0.795, p < .01), which is not surprising given their 

origins. Given their different relationships with the other distance measures, both 

variables were retained. The seven-level FSI measure was also strongly related to 
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GateRev (0.853, p < .01), but less so to TypeRev (0.507, p < .01). There was a 

significant association between NotLatin and NotIndo (χ2(1)> =3828.87, p < .001). 

Point biserial correlations were conducted to test the association of the categorical 

and continuous variables, and all were significant (TypeRev-NotLatin 0.508, p < .001; 

TypeRev-NotIndo 0.275, p < .001; GateRev-NotIndo 0.710, p < .001; GateRev-

NotLatin 0.673, p < .001). Given the strong, significant associations across the 

measures and their unknown reliability, rather than enter the measures together, the 

effects of each language distance measure were tested independently in the analyses 

below.  
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Chapter 5: Methodology  
  

Previous research on language growth has shown different patterns of 

individual and group change, but with few exceptions, language proficiency research 

has not taken a longitudinal approach, nor has it employed multilevel modeling. 

Multilevel models are particularly useful to answer questions such as how growth is 

shaped and how variables might impact that growth. These models can leverage data 

from incomplete observations (Finch et al., 2019; Hox, 2000; Raudenbush & Bryk, 

2002), so sample sizes are not reduced as dramatically as with other methods such as 

linear regression. (See Lett (1994) and Wagener (2016) for examples of how attrition 

constricts sample size). In a multilevel analysis, measurements can also be spaced 

irregularly. This negates the need to artificially reformat the data to accommodate 

evenly spaced test occasions as was seen in other studies using other analytic 

approaches (Bloomfield et al., 2014; Mackey, B., 2014). Group sizes are not required 

to be equal (Linck and Cunnings, 2012; Steele, 2007), which is another advantage. 

“Multi-level modeling provides an attractive alternative analysis (to ANOVA), 

because it allows statistical evaluation of incomplete data, without any additional 

complication” (Snijders & Bosker, 1999, p. 170).  

While multilevel modeling can handle unbalanced measurement data, missing 

time-invariant predictor variables, such as the survey variables collected by DLI, 

cannot be. Data in a multilevel model is in “long” form, with a row holding 

information about the individual and one test occasion. Even if an individual missed 

test occasions, the cases for the other occasions are included in the model. This is the 

advantage of a multilevel model mentioned above. However, each case must be 
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complete; it must include all of the predictors and outcomes in the model (Hoffman, 

2015, p. 283). In the present dataset, there is a significant amount of missing survey 

data, and rather than delete these cases, other options were explored. Given that DLI 

considered this data to be missing at random (Dr. Seumas Rogan, personal 

communication, September 27, 2021) and the four variables were not the key 

variables in the study, the decision was made to continue with multiple imputation 

rather than deleting the cases. Imputation was conducted using IBM SPSS Statistics 

(Version 28) to create ten multiply imputed datasets. The default method was used 

(fully conditional specification using an iterative Markov-chain Monte Carlo) 

method. Methodologists currently regard multiple imputation as a state-of-the-art 

technique because it improves accuracy and statistical power relative to other 

techniques of handling missing data (Buuren, 2018).  

The original proposal for this research envisioned a multilevel longitudinal 

framework that was characterized by a data structure in the following form: repeated 

measures (level-1) nested within an individual (level-2) nested within a higher-level 

structure (level-3). Figure 3 below illustrates how the data was to be modeled:  

language test scores at time t could serve as the repeated measure at level-1; these 

scores would be nested by individual j at level-2; and the grouping category, k, which 

would be the foreign language tested, would be at level-3. The advantage of a three-

level model is that it would separate the variance associated with the language (level-

3) from the variance associated with the individual (level-2). This would have made it 

possible to describe not only which individual difference measures were associated 
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with growth, but also to test the unique contribution of language distance as a 

predictor of growth, above and beyond those individual differences.  

Figure 2 
 
A sample three-level repeated measures model  

 

A series of models for listening and reading were originally run as planned 

with a three-level model, as described above, with repeated measures at level-1, 

individuals at level-2 and language at level-3. While even the more complex models 

converged, the data failed to support estimation of fixed effects with robust standard 

errors, likely due to the small number of languages at level-3 (17 in reading and 21 in 

listening). Though the datasets have a relatively large number of languages as 

compared to other studies in the SLA field, they proved not to be adequate for three-

level modeling. After consultation with an expert in the field, it was determined that 

the best approach would be to use a two-level model instead (Professor L. Stapleton, 

personal communication, 17 November 2022). It was recommended that rather than 

model language at level-3, that language distance measures be considered as a 

variable at level-2, since each person in the dataset was associated with only one 

language. The structure of the data did meet minimum requirements for using a two-

level model and modeling therefore proceeded in a forward fashion with two-levels, 

as displayed below in Figure 4. 
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Individual 1

(level-1) 
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(level-1) 
Score 2

(level-2) 
Individual 2

(level-1) 
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(level-1) 
Score 2

(level-1) 
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(level-3) Language B

(level-2) 
Individual 3

(level-1) 
Score 1

(level-1_ 
Score 2

(level-1) 
Score 3

(level-2) 
Individual 4

(level-1) 
Score 1

(level-1) 
Score 2
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Figure 4  

A sample two-level repeated measures model  

 

The warrant for using the multilevel model as opposed to a repeated measures 

ANOVA was determined by calculating the Intraclass Correlation Coefficient (ICC). 

The ICC was calculated by determining the proportion of variance attributed to level-

2. An ICC of zero would indicate no mean ILR level score variation across 

individuals, and multilevel modeling would not be needed. If the ICC is greater than 

zero, variation across individuals is present in the data, providing the warrant for the 

multilevel approach. This is one of the advantages of multilevel modeling, that it can 

take into account that residuals from the same person are more likely to be related 

than residuals from different persons (Hoffman & Stawski, 2009). Multilevel models 

separate the variation, in this case into two levels, within-person (level-1) and 

between-person (level-2).  

For the level-1 models, 95% random effects confidence intervals were 

calculated by using the formula Random Effect 95% CI = fixed effect ± (1.96* 

Örandom variance). If the interval does not overlap zero, it also means that the effect 

is significantly different from zero (Hoffman, 2015, p. 166). Assumptions of the final 

models at level-1 and level-2 were checked, as misspecification at one level can bias 

the estimates in another (Bryk & Raudenbush, 2010; Hoffman, 2015; Peugh & Heck, 

(Level 2) Individual 1

(Level 1) 
Score 1

(Level 1) Test 
Score 2

(Level 1) Test 
Score 3

(Level 2) Individual 2 

(Level 1) Test 
Score 1

(Level 1) Test 
Score 2

(Level 1) Test 
Score 3
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2017). Alternate covariance structures for the final models were considered and the 

residuals were checked for normality. 

Given the number of comparisons made in the later models, corrections were 

made using the Benjamini-Hochberg (B-H) approach to limit the familywise Type I 

error rate (Thissen et al., 2002). Table 23 

 

HLM listening FSI0*[aptitude] interactionsTable 31, Table 38, andTable 45 include a 

column indicating the estimates in which the observed p value is less than the B-H 

critical value, giving more confidence in the relationships. According to Thissen et al. 

(2002) the B-H approach “…is a more powerful generalization to the context of 

multiplicity of the conventional test of significance” (p. 78). 

For each model, a standardized effect size was calculated. This measure, a 

proportional reduction in variance (PRV), was calculated from a comparison of the 

variance in the model with fewer parameters (Varfewer) relative to a model with more 

parameters (Varmore). This measure is also called Pseudo-R2. The PRV was 

determined by level (i.e., level-1 or level-2) and its purpose was to describe the 

proportion of the outcome variance accounted for by the fixed effects of predictors 

(Hoffman, 2015). PRV values are always interpreted in the context of the earlier 

models.  

As explained earlier, the outcome measure, the language proficiency test 

scores, were reported as ILR levels. In Study 1 and Study 2, the outcome variable was 

treated as a continuous measure (ILRNum). However, the ILR scale fails to meet the 

requirement for a linear scale with levels that are evenly spaced, as is seen in the 
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ILR’s depiction of the scale as a pyramid, with each level on the scale as deeper and 

broader than the previous level (see website 

https://www.govtilr.org/Skills/IRL%20Scale%20History.htm accessed 10 October 

2022). Treating the ILR scale as an ordinal measure would account for this non-linear 

description of the scale, as well as taking into account the ceiling and floor effects in 

skewed variables (Hedeker, 2015). There is justification in the literature for treating 

the ILR scale in this study as a continuous variable, given that it has at least seven 

levels (Bauer & Sterba, 2011), but there is limited research on the ILR scale. One 

contribution of this research to the literature, therefore, was to run the models with the 

ILR treated as a continuous measure and as an ordinal measure.   

 To accommodate the ordinal outcome variable, the analysis was conducted 

using hierarchical generalized linear modeling in Study 3 (Listening) and Study 4 

(Reading). A comparison of results between Study 1 and Study 3 and Study 2 and 

Study 4 follows in the discussion chapter. For these analyses, the ILR scale was first 

converted from the decimal version to a range of 1 (ILR Level 0) through 7 (ILR 

Level 3) but given the low number of scores (0.2 percent) at ILR Level 0, the two 

lowest categories were combined into one level, resulting in a score range from 1 

through 6. 

  In a hierarchical linear model (HLM) of longitudinal data, a linear model with 

a random intercept and random slope would be represented at level-1 by the equation: 

ILRNUMti = π0i + π1i*(Timeti) + eti   (A) 
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where ILRNUM is the outcome at time t for individual i, and π  are the level-1 

regression coefficients, and e is the level-1 error term. The level-2 model is 

represented by the following equations for the intercept and slope: 

π0i = β00 + r0i      (B) 

π1i = β10 + r1i      (C)  

where the β’s are the level-2 regression coefficients and r’s are the level-2 random 

effects. For the sake of space, equations in this research are presented in their mixed 

form as below in Equation D.  

ILRNUMti = β00 + β10*Timeti + r0i +r1i + eti   (D)  

In a hierarchical generalized linear model (HGLM), the level-1 model consists 

of a sampling model, a link function and a structural model (HLM8 manual (2021), p. 

108). For ordinal models, the probability that an individual falls into category m is 

cumulative, with m-1 dummy variables. The model is based on a cumulative logit, in 

which “success” represents the probability of being at or below a threshold, a 

somewhat counterintuitive position when interpreting the estimates. In terms of 

language proficiency, our interest is in individuals who score beyond that threshold, 

so in HGLM analysis, negative logits are more desirable. In the models that follow, a 

negative estimate was interpreted to mean that those with higher scores on a 

particular variable had a positive effect on the graduation outcome or on growth.  

 The equations in the ordinal model become complicated quickly, but the logic 

is similar to that of the linear models described above. A random slope model with 

linear time is written out as follows.  

Level-1 Model 
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    Prob[Rti <= 1|πi] = ϕ*1ti = ϕ1ti  
    Prob[Rti <= 2|πi] = ϕ*2ti = ϕ1ti + ϕ2ti 
    Prob[Rti <= 3|πi] = ϕ*3ti = ϕ1ti + ϕ2ti + ϕ3ti 
    Prob[Rti <= 4|πi] = ϕ*4ti = ϕ1ti + ϕ2ti + ϕ3ti + ϕ4ti 
    Prob[Rti <= 5|πi] = ϕ*5ti = ϕ1ti + ϕ2ti + ϕ3ti + ϕ4ti + ϕ5ti 
    Prob[Rti <= 6|πi] = 1.0 
 
    ϕ1ti = Prob[ILRORD(1) = 1|πi] 
    ϕ2ti = Prob[ILRORD(2) = 1|πi] 
    ϕ3ti = Prob[ILRORD(3) = 1|πi] 
    ϕ4ti = Prob[ILRORD(4) = 1|πi] 
    ϕ5ti = Prob[ILRORD(5) = 1|πi] 
 
    log[ϕ*1ti/(1 - ϕ*1ti)] = π0i + π1i*(TIMEti) 
    log[ϕ*2ti/(1 - ϕ*2ti)] = π0i + π1i*(TIMEti) + δ2  
    log[ϕ*3ti/(1 - ϕ*3ti)] = π0i + π1i*(TIMEti) + δ3  
    log[ϕ*4ti/(1 - ϕ*4ti)] = π0i + π1i*(TIMEti) + δ4  
    log[ϕ*5ti/(1 - ϕ*5ti)] = π0i + π1i*(TIMEti) + δ5  
 
Level-2 Model 
 
    π0i = β00 + r0i 

       π1i = β10+ r1i 

 
    δ2    δ3    δ4    δ5 

 

The first section of the level-1 model presents the probabilities for the seven 

categories. The second section describes the cumulative predicted probabilities. Since 

there are six ILR levels, 1 through 6, and the data is cumulatively partitioned into five 

“splits” as follows: Y ≤  1, Y ≤ 2, Y ≤ 3, Y ≤ 4, Y ≤ 5 (where Y represents each of the 

ILR level possibilities). Since all responses are included in Y ≤ 6, it is redundant 

(O’Connell et al., 2022, p. 220). The third section associates the five cumulative 

logits with their probabilities. The level-2 model is as described above in the HLM 

approach. HLM8 (Raudenbush & Congdon, 2021) parameters are estimated using 

“penalized quasi-likelihood” or PQL and there is an assumption of proportionality, 

which means that the effect of any predictor variable remains constant regardless of 

the response level. This assumption will be addressed again in the limitation chapter. 
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Methods for estimating non-proportional random-effects models are not available in 

HLM8 (Raudenbush & Congdon, 2021). Deviances are not produced with the PQL 

method, so model fit was determined by considering the reduction in unexplained 

variance. Additionally, the software also reports only unit-specific results where “the 

goal is to provide inferences for covariates that can change within cluster[s] (i.e., 

individuals)” (Bell et al., 2022, p. 226). 

In all four studies, the first series of models in the research focused on level-1 

and allowed for the exploration of the extent to which individuals vary, and the shape 

of variation around their mean scores at the time of graduation (the intercept) and 

their growth (the slope). After each step, only significant relationships were retained 

(p < .05). The analysis approach followed Hoffman (2015), Hox (2000), and Peugh & 

Heck (2017), building forward, rather than backwards. For both listening and reading 

datasets, the first model tested was the intercept-only model, also called a null model, 

where the variance within- and between-individual and language was partitioned. 

Time was then explored, and model fit was determined based upon a comparison of 

deviance statistics (where available), any reduction in unexplained variance, and 

theoretical concerns. A best-fitting level-1 model to capture the longitudinal nature of 

the data was established to answer research questions 1 and 2.  

RQ 1: To what extent is there variance in language proficiency growth over time, 

across individuals and languages? 

RQ 2: What is the shape of language proficiency growth and how does it vary by 

language?   
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Once this level-1 model was determined, predictor variables were entered into 

the model. Explanatory variables were entered at level-2 (best general aptitude, 

language aptitude, survey responses, language distance) to see if they explained any 

variation across individuals or languages. The aptitude variables (ASVAB and DLAB 

subtests) were standardized to reduce the impact of skewness. All predictor variables 

were entered into the models centered on the grand mean. This allowed the estimates 

to be interpreted in the context of mean scores. These analyses were conducted to 

answer research questions 3 and 4 regarding language aptitude and language 

difficulty.  

RQ 3: To what extent does language aptitude predict language proficiency growth 

outcomes across languages, beyond what is predicted by general  ability?   

RQ 4: To what extent does language difficulty categorization impact language 

proficiency growth across languages?  

A final stage of model building then explored whether aptitude and language 

distance interacted with growth. Interaction terms were first created in IBM SPSS 

Statistics (Version 28) since HLM8 (Raudenbush & Congdon, 2021) does not allow 

for the direct testing of same-level interactions. To ease interpretation in an already 

complex model, a dichotomous FSI measure FSI0 was created from the seven-level 

categorical FSI variable in the models above. FSI0 was dummy coded such that the 

most difficult languages, those in difficulty categories 6 and 7, were coded as 1, and 

all other languages were coded as 0. This new dichotomous variable was then crossed 

with the ASVAB and DLAB standardized subtest scores as a product term and added 

to the model as predictors of the intercept and slopes. The ASVAB variable names as 
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interactions with FSI0 were represented in the software with their subtest digraph, an 

underscore and FSI0; for example, AR_FSI0. The DLAB subtest variable names as 

interactions were in the software as D1_ FSI0, D2_ FSI0, D3_ FSI0 or D4_FSI0. All 

of the main effects for the ASVAB and DLAB subtests were included along with 

their interaction terms and the variables were centered on the grand mean. This model 

was used to answer the last research question.  

RQ 5: To what extent does aptitude interact with language difficulty 

categorization? 
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Chapter 6: Results 
 
 To examine the influence of general aptitude, language aptitude, motivation, 

prior proficiency, English as a first language and level of education on proficiency 

outcomes at DLI graduation, growth, and subsequent growth, four modeling studies 

were conducted. These studies investigated listening and reading data and considered 

test scores separately as continuous or ordinal variables. The five research questions 

guided the modeling.  

Study 1 Hierarchical Linear Modeling (Listening)  
 

The first step in the analysis was to build a two-level model (Equation 1) in 

which the ILR outcome (ILRNUMti) was modeled at level-1 as a function of each 

individual’s mean proficiency level (π0i) at time t plus a residual that reflected the 

differences between each individual’s observed and predicted proficiency level at a 

specific time (eti). At level-2, each individual’s mean proficiency level was modeled 

as a function of the grand-mean level for all individuals (β00) plus a term that 

reflected deviations in an individual’s proficiency mean around the grand mean (r01). 

There are different notation systems in the literature, and this research follows 

Raudenbush & Bryk’s (2002) approach for modeling longitudinal data.  

ILRNUMti = β00 + r0i+ eti     (1) 

There was a maximum of 34,742 level-1 units (test scores) and 9,552 level-2 

units (individuals). The average random level-1 coefficient for the intercept had a 

reliability estimate of over .70, indicating a moderate level of reliability (Nezlek, 

2017). The mean estimate for the intercept (reported throughout the chapter with 

robust standard errors) for listening was 2.28 (p < .001), i.e., an ILR score between 
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ILR Levels 2 and 2+. Random effects estimates showed the ILR score variance 

estimates at level-1, within-person, as σ2 = 0.132 and τ00 (level-2, between-person) as 

0.168 with both estimates significant (p < .001). This means that there was significant 

variation around the grand mean (within-individual) as well as significant differences 

between each individual’s observed and predicted proficiency level over time. 

Following Peugh (2010), the level-2 variance estimate was converted to a standard 

deviation to facilitate interpretation (i.e. Ö0.168 = 0.41). Assuming normal 

distribution of the residuals, 95% of the individuals had mean ILR scores between 

1.87 and 2.69 (i.e., 2.28 ± 1.96 [0.41]), i.e., an ILR score between 1+ and 2+. The 

intraclass correlation (ICC), which describes the proportion of variance that lies 

between individuals, was determined by dividing the variance at level-2 by the 

model’s total variance. The level-2 ICC showed that 56% of the language proficiency 

variation occurred across individuals, which was interpreted as a warrant to continue 

with a multilevel model.  

The next step in modeling was to examine variation and the rate and shape of 

growth. Several options were explored to describe the longitudinal nature of the data. 

First, time was considered as a linear function with a random intercept as in Equation 

2 below. Recall that the TIME variable was coded such that the first test occasion in 

the dataset was “0” to ease interpretation of the intercept.  

ILRNUMti = β00 + β10*TIMEti + r0i + eti     (2) 

The fixed effect estimate for the intercept dropped slightly from the baseline model to 

2.23 and the estimate for the slope was 0.03 (p < .001), which was interpreted to 

mean that the ILR level rose only slightly between test occasions. The models cannot 
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be compared with a chi-squared test of differences because there are not enough 

degrees of freedom, but the average deviance statistic across the ten datasets for 

Equation 2 was only slightly lower, and the random effect estimates were unchanged, 

which indicated that linear time did not explain any additional variance in the fixed 

effects. 

Because there were up to six test occasions in the data, the quadratic 

(Equation 3) and cubic (Equation 4) forms of time were modeled: 

ILRNUMti = β00 + β10*TIMEti + β20*TIME2ti  + r0i+ eti   (3) 

  ILRNUMti = β00 + β10*TIMEti + β20*TIME2ti  + β30*TIME3ti + r0i+ eti   (4) 

The output from these models is shown below in Table 17. These models from 

Equations 3 and 4 did not explain any additional variance, but they did reflect the 

longitudinal nature of the data in different ways. In the quadratic model of change, the 

quadratic effect indicated a significant, but quite small acceleration in the linear rate 

of change on average, over time (0.01 of an ILR level). The non-significance of Time 

may be attributed to the average of rise and fall of scores over time resulting in flat 

growth. In the cubic polynomial model, where the effects of Time, Time2 and Time3 

were modeled, the results meant that a negative cubic effect dampened the positive 

quadratic effect on a downward mean trajectory. Negative effects indicate that growth 

was constrained.   

The next set of models allowed the time functions to vary (i.e., with random 

slopes). These models failed to converge, or had reliability estimates for the random 

coefficients that were below 0.10. According to the HLM manual (2021), when the 

reliability is very low, defined as below 0.10, it “often indicate(s) that a random 
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coefficient might be considered fixed in subsequent analyses” (p. 80). The random 

intercept model estimates with fixed forms of time (linear, quadratic and cubic) are 

reported below in Table 17. The deviance statistics fell slightly as the quadratic and 

cubic terms were added, but the addition of these terms did not affect the level-1 

variance. This means that polynomial time did not explain any variance within-

individuals.  

Table 17 
 
HLM listening level-1 random intercept time model parameters  

  Null Model RI Time RI Quad RI Cube 
Fixed Effects 

Effect     
Intercept (β00)  2.28*** (0.00) 2.23*** (0.01) 2.24*** (0.01) 2.25*** (0.01) 
Time (β10)  0.03*** (0.00) 0.00 (0.00) -0.07*** (0.01) 
Time Quad (β20)    0.01*** (0.00) 0.05*** (0.01) 
Time Cube (β30)     -0.01*** (0.01) 

      
Random Effects 

Variance components    
level-1, e  0.13 (0.36) 0.13 (0.36) 0.13 (0.36) 0.13 (0.36) 
level-2 intercept, 
r0  0.16 (0.41) 0.17 (0.41) 0.17 (0.41) 

Goodness of fit 

Deviance  44023.60359 43469.7031 43406.8211 43324.7234 
Number of 
Parameters 2 2 2 2 

 
Note: Standard error in parentheses for estimated coefficients. 

 *** p < .001 

As mentioned above, multilevel models allow for unbalanced data. This is 

because change is represented with two levels: each individual’s  
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 “…[level-1] growth trajectory that depends upon unique set of parameters. 
These individual growth parameters become the outcome variables in a level-2 
model, where they may depend upon some person-level characteristics… This 
treatment of multiple observations as nested allows the investigator to proceed 
without difficulty when the number and spacing of time points vary across cases” 
(Raudenbush & Bryk, 2002, p. 161).  

 
Earlier studies in language assessment literature examined time as a 

polynomial function, testing quadratic and cubic forms of time and found that ILR 

levels dropped after graduation, and then recovered back to their graduation level, or 

increased beyond that level (Bloomfield et al, 2012; Mackey, 2014). In the present 

research, a similar pattern of drop and recover was seen in the mean ILR score across 

all languages, although both the dip and the subsequent growth was very shallow for 

the listening scores in this dataset. Figure 4 below displays the mean ILR score across 

test occasions, represented by the Time variable on the y-axis. The x-axis range, 2.20 

to 2.45, is within the range of ILR Level 2, whose decimal form ranges from 2.0 to 

2.6.  
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Figure 3 

Mean ILR Scores over time (listening) 

 

To better model this observed dip in growth post-DLI, rather than considering only 

polynomial functions, time was modeled piecewise with two slopes (Hoffman, 2015), 

one to represent initial growth (Slope12) and a second (Slope26) to represent 

subsequent growth. The new slope variables recoded the number of test occasions 

similarly to the Time variable, in that the first test occasion, graduation from DLI, was 

set as zero (0) to ease interpretation of the intercept. The first slope, in effect, 

described what happens to language growth in the first year after leaving DLI; the 

second slope described subsequent growth, or what happened after the first full year 

on the job. The coding scheme for all of the various representations of time up to this 

point in the study is shown below. 
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Table 18 
 
Coding schemes for time 

 
Test 

Occasion 

Time Time2 Time3 Slope12 Slope26 

1 0 0 0 0 0 

2 1 1 1 1 0 

3 2 4 6 1 1 

4 3 9 27 1 2 

5 4 16 64 1 3 

6 5 25 125 1 4 

 

The resulting mixed model equation for listening with piecewise fixed slopes and a 

random intercept using Slope12 and Slope26 is shown in Equation 5. This model, the 

random intercept piecewise slopes model (RISlopes), answered the question “is there 

linear change during each time period on average?” (Hoffman, 2015, p. 232)  

ILRNUMti = β00 + β10*SLOPE12ti + β20*SLOPE26ti + r0i+ eti .  (5) 

The output for this model is shown in Table 19. The fixed effect for the intercept 

dropped very slightly as compared to the Null model to 2.24, meaning that the mean 

scores at the time of graduation from DLI were ILR Level 2, but of more interest 

were the estimates for the two piecewise slopes. The mean of the change of ILR level 

between the first two test occasions (Slope12) was negative (-0.04), while the mean 

change after the second test occasion (Slope26) was positive (0.05) and both 

estimates were significant (p < .001). This was interpreted to mean that there was 

significant linear change during each time period, on average. The initial growth was 
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a decrease in ILR level (-0.04 of an ILR level between the first two tests), while 

subsequent growth was an increase (0.05 of an ILR level per test occasion). The 

significant random intercept indicated that there was also variation in the average 

mean score at the time of graduation. While significant, however, the estimates 

themselves were quite small, and showed that after leaving DLI, on average, listening 

scores dropped very slightly and then subsequently rose very slightly. There was very 

little meaningful growth in ILR level, on average, in this sample.  

Random slopes were tested next to allow the growth rate to vary across 

individuals, first allowing each slope to vary randomly (first Slope12, then Slope26) 

and then testing a model with both slopes varying. For the two models with a random 

second slope, the random level-1 coefficient reliability estimate for subsequent 

growth (Slope26) was only 0.04, suggesting that it be fixed. Therefore, the best fitting 

piecewise model appeared to be a model in which only initial growth (Slope12) was 

allowed to vary randomly to answer the question whether there were individual 

differences in linear change between the first two test occasions. The reliability 

estimate for the random level-1 coefficient was marginal at 0.20, but sufficient for 

modeling. This model’s full equation is below in Equation 6, and the output reported 

in Table 19. 

ILRNUMti = β00 + β10*SLOPE12ti + β20*SLOPE26ti 

+ r0i + r1i*SLOPE12ti + eti      (6) 

The average ILR score across individuals was 2.26, i.e., within the range of ILR 

Level 2, and mean initial growth in ILR level (Slope12) was negative (-0.03 of an 

ILR level), while mean subsequent growth (Slope26) was positive (0.05 of an ILR 
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level). Significant variation in the first slope was present, indicating that individuals’ 

initial growth varied.  

Table 19 
 
HLM listening level-1 model parameters with piecewise slopes  

  RI Slopes Slope12R 

   
Fixed Effects 

Intercept (β00) 2.26*** (0.01) 2.26*** (0.01) 
Slope12 (β10) -0.04*** (0.01) -0.03*** (0.01) 
Slope26 (β20) 0.05*** (0.00) 0.05*** (0.00) 
   

Random Effects 
level-1, e 0.13 (0.36) 0.12 (0.35)  
level-2 intercept, r0 0.17*** (0.41)  0.19*** (0.44)  
level-2 Slope12, r1   0.04*** (0.21) 

Goodness of fit 
Deviance 43276.91 43124.07 
Number of Parameters 2 4 
Δχ2  152.84*** 

 
Note: Standard error in parentheses for estimated coefficients 

 *** p < .001 

Given that the piecewise model estimates appeared to capture the observed 

growth pattern in the dataset and the piecewise model with a varying first slope was 

also an improvement over the model with fixed slopes ( χ2= 152.84,, df =2, p <.001) 

as well as the null model (χ2= 899.53, df =2, p <.001), the decision was made to 

continue with the piecewise slope model, allowing for random initial growth 

(Slope12) and fixed subsequent growth (Slope26) to describe the shape of time. 

Further evidence supporting the decision to proceed with the piecewise slopes was 
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found in the random effects, as the addition of a random growth slope (Slope12) 

explained 11% of the variance at level-1 as compared to the null model. Additional 

expressions of growth were considered and are addressed below.  

 Returning now to the first two research questions, the results shown above in 

Table 19 confirmed the hypotheses that there was significant variability across 

individuals at the time of graduation (the intercept), as well in initial growth 

(Slope12). In the Slope12R model, time was described with two slopes, one to 

describe a slope between the first and second test occasions that was allowed to vary, 

and a second slope from the second to sixth test occasions that was fixed. The results 

indicated that individuals graduated with a score in listening, on average, in the ILR 

Level 2 range (2.25), which dropped, on average, 0.03 of an ILR level between the 

first two test occasions and rose 0.05 of an ILR level thereafter, on average. While 

statistically significant, likely due to the large sample size, these slope estimates were 

quite small and would not have a meaningful impact on the ILR level itself, given that 

ILR Level 2 ranges from 2.0 to 2.6. For the Slope12R listening model, a 95% random 

effects confidence interval for the intercept and slope indicated that 95% of the 

sample was expected to have individual ILR levels at graduation ranging from 1.41 to 

3.11, while the 95% CI for initial growth (Slope12) was -0.11 to 0.05. While there 

was a significant rate of linear change (a decrease) between the first two tests on 

average, the random variation around the first slope indicated that some individuals 

dropped in level and others rose, as evidenced by the overlap with 0 in the random 

effect CI (Hoffman, 2015, p. 166). There was significant variance in ILR levels in 

initial growth, but not in subsequent growth. Because three-level models were not 
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used due to the small number of languages in the data, these models were not able to 

assess the proportion of variance that could be attributed to language, as opposed to 

individual.  

Assumptions of the level-1 model were checked. There was deviation present 

at the tail of the residuals plot (see Figure 5), but in general the other assumptions for 

the level-1 model were considered to be met.  

Figure 4 
 
Normal Q-Q plot of level-1 residuals 

 

 
The next set of models was designed to investigate the third research question, 

to what extent does language aptitude predict language proficiency growth outcomes 

across languages, beyond what is predicted by general aptitude? Model building 

continued in a stepwise fashion to consider the effects of the level-2 covariates on 

proficiency scores and whether the scores varied by language. The subtest scores for 

ASVAB were standardized and centered on the grand mean and added 
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simultaneously to the Slope12R model above in Equation 6 to predict the intercept 

and both slopes. In the dataset, the ASVAB subtests were standardized, labeled 

ZA_XX and entered in alphabetical order. The mixed model equation for this model 

is shown below in Equation 7, and the results are in Table 20. At this point it is 

perhaps useful to explain the notation system in the output, as the model greatly 

increased in its complexity. The β’s represented the coefficients at the person-level; 

the first subscript represented a sequential count of predictors at level-1, while the 

second subscript represented a sequential count of predictors at level-2. As variables 

were added or subtracted from the model, the β’s subscripts were updated, as seen by 

comparing Equations 7 and 8 below. Therefore, in tables combining output from 

several models, the subscripts were omitted from the variables.  

In the model adding the ASVAB subtests (Equation 7), the intercept was 

represented by β00, while the first slope was represented by β10*SLOPE12ti and the 

second slope, β20*SLOPE26ti. Predictors of the intercept ranged from β01 to β09, while 

predictors of the first slope ranged from β11 to β19 and predictors of the second slope 

from β21 to β29. In this model, the random effects included the variance of the intercept, 

r0i, the first slope, r1i*SLOPE12ti and the residual, or level-1 variance, eti. Because the 

variables were time-invariant, they do not have random effects, as by definition they 

do not vary within persons.  



 

 87 

   ILRNUMti = β00 + β01*ZA_AOi + β02*ZA_ARi + β03*ZA_ASi  + β04*ZA_EIi + 

β05*ZA_GSi + β06*ZA_MCi + β07*ZA_MKi + β08*ZA_PCi + β09*ZA_WKi  + 

β10*SLOPE12ti + β11*ZA_AOi*SLOPE12ti + β12*ZA_ARi*SLOPE12ti + 

β13*ZA_ASi*SLOPE12ti + β14*ZA_EIi*SLOPE12ti + β15*ZA_GSi*SLOPE12ti + 

β16*ZA_MCi*SLOPE12ti + β17*ZA_MKi*SLOPE12ti + β18*ZA_PCi*SLOPE12ti + 

β19*ZA_WKi*SLOPE12ti + β20*SLOPE26ti + β21*ZA_AOi*SLOPE26ti + 

β22*ZA_ARi*SLOPE26ti + β23*ZA_ASi*SLOPE26ti + β24*ZA_EIi*SLOPE26ti + 

β25*ZA_GSi*SLOPE26ti + β26*ZA_MCi*SLOPE26ti + β27*ZA_MKi*SLOPE26ti + 

β28*ZA_PCi*SLOPE26ti + β29*ZA_WKi*SLOPE26ti  + r0i + r1i*SLOPE12ti + eti 

         (7) 

Six of the nine subtests were significantly related to the intercept (ASVAB-AO, 

-EI, -MC were not), while only one subtest, ASVAB-MC, was significantly (and 

negatively) related to the first slope (-0.02, p = .006), and none to the second slope. 

Specifically, the mean ILR score for those with mean ASVAB scores (β00= 2.26, p < 

.001) dropped between the first two test occasions (β10= -0.03, p < .001) and 

subsequently rose (β20= 0.05, p < .001) for those with average ASVAB scores. Of the 

significant subtests, the -AS subtest was a negative predictor of graduation (intercept), 

and the remainder were positive, meaning that those higher ASVAB scores other than 

-AS were associated with higher ILR levels, all else being equal. Variance component 

estimates once again confirmed significant variation in observed versus predicted ILR 

scores within-individual (level-1 variance σ2 = 0.12, p < .001) and significant 

variation in ILR scores at the time of graduation from DLI (level-2 variance r0 = 0.18, 

p < .001). There was also significant variation (r1 = 0.04) in initial growth (i.e., 
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between the first two test occasions). The level-1 variance was unchanged, as 

expected, because only level-2 predictors were added. The addition of the ASVAB 

variables explained 7% of the variance in graduation (intercept) and 2% of the 

variance in initial growth (first slope) as compared to the unconditional piecewise 

model.  

The final ASVAB model (ASVABsig) with only the significant subtests is 

shown in Table 20 and is represented by the equation below. 

 ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MKi + 

β05*ZA_PCi + β06*ZA_WKi + β10*SLOPE12ti + β11*ZA_MCi*SLOPE12ti + 

β20*SLOPE26ti  + r0i + r1i*SLOPE12ti + eti   (8) 

Given earlier studies which confirmed the additional predictive validity of 

adding a language aptitude measure (Silva & White, 1976; Mackey, B., 2014; 

Wagener, 2016), and the current study’s interest in how aptitude predicts growth, 

the next stage was to add the four DLAB subtests, resulting in Equation 9 below. 

The subtests were standardized and once again centered on the grand mean. The 

four DLAB subtests representing DLAB Part I, Part II, Part III and Part IV are 

labeled ZD_1, ZD_2, ZD_3 and ZD_4 in the software.  

    ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MKi + 

β05*ZA_PCi + β06*ZA_WKi + β07*ZD_1i + β08*ZD_2i + β09*ZD_3i + β010*ZD_4i + 

β10*SLOPE12ti + β11*ZA_MCi*SLOPE12ti + β12*ZD_1i*SLOPE12ti + 

β13*ZD_2i*SLOPE12ti + β14*ZD_3i*SLOPE12ti + β15*ZD_4i*SLOPE12ti + 

β20*SLOPE26ti + β21*ZD_1i*SLOPE26ti + β22*ZD_2i*SLOPE26ti + 

β23*ZD_3i*SLOPE26ti + β24*ZD_4i*SLOPE26ti  + r0i + r1i*SLOPE12ti + eti     (9) 
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The output from this model (DLAB) is presented in Table 20 below. The fixed 

estimates for the intercept and slopes were unchanged, and of the language aptitude 

subtests predicting the intercept, all but DLABPt4 was a significant predictor of 

graduation (intercept), all else being equal. The relationship between DLAB and each 

slope was different: for initial growth (Slope12), DLABPt1, DLABPt3 and -Pt4 were 

significant, with the direction of the estimate for -Pt1 positive and for -Pt3 and -Pt4 

negative. For subsequent growth (Slope26), only the effect of DLABPt3 was 

significant, though the estimate itself was quite small (-0.007). A model with the 

significant DLAB variables in addition to the ASVAB subtests was taken forward in 

the model building process. The reliability estimate for the random level-1 Slope12 

coefficient remained at 0.20. The addition of the DLAB models explained 2% of the 

variation in graduation and 1% of the variation in initial growth as compared to the 

model with only the ASVAB variables.  

The output for an intervening model with only the significant aptitude models 

(DLABsig) is displayed in the fourth column of Table 20 and its equation in mixed 

form is below in Equation 10.  

 ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MKi + 

β05*ZA_PCi + β06*ZA_WKi + β07*ZD_1i + β08*ZD_2i + β09*ZD_3i + β10*SLOPE12ti + 

β11*ZA_MCi*SLOPE12ti + β12*ZD_1i*SLOPE12ti + β13*ZD_3i*SLOPE12ti + 

β14*ZD_4i*SLOPE12ti + β20*SLOPE26ti + β21*ZD_3i*SLOPE26ti + r0i + 

r1i*SLOPE12ti + eti     (10) 
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Table 20 
 
HLM listening with aptitude subtests model parameters 

 ASVAB ASVABsig DLAB DLABsig 
Fixed effect  

For INTRCPT1, π0     
    INTRCPT2, β00 2.26*** (0.01) 2.26*** (0.01) 2.26*** (0.01) 2.26*** (0.01) 
     ZA_AO  -0.01 (0.01)       
     ZA_AR  0.03*** (0.01) 0.02*** (0.01) 0.02** (0.01) 0.02** (0.01) 
     ZA_AS  -0.02** (0.01) -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) 
     ZA_EI  -0.01 (0.01)       
     ZA_GS  0.03*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 
     ZA_MC  -0.01 (0.01)       
     ZA_MK  0.04*** (0.01) 0.04*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 
     ZA_PC  0.04*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 
     ZA_WK  0.05*** (0.01) 0.05*** (0.01) 0.04*** (0.01) 0.04*** (0.01) 
     ZD_1    0.02*** (0.01) 0.02*** (0.01) 
     ZD_2    0.03*** (0.01) 0.02*** (0.00) 
     ZD_3    0.04*** (0.01) 0.04*** (0.01) 
     ZD_4    0.00 (0.01)   
For SLOPE12 slope, π1         
    INTRCPT2, β10 -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) 
     ZA_AO  -0.01 (0.01)     
     ZA_AR  0.00 (0.01)     
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 ASVAB ASVABsig DLAB DLABsig 
     ZA_AS  0.00 (0.01)     
     ZA_EI  0.01 (0.01)     
     ZA_GS  -0.01 (0.01)     
     ZA_MC  -0.02** (0.01) -0.03*** (0.00) -0.02*** (0.00) -0.02*** (0.00) 
     ZA_MK  0.00 (0.01)    
     ZA_PC  -0.01 (0.01)    
     ZA_WK  0.01 (0.01)      
     ZD_1    0.02*** (0.01) 0.02*** (0.01) 
     ZD_2    -0.01 (0.01)   
     ZD_3    -0.01* (0.01) -0.02** (0.01) 
     ZD_4    -0.02*** (0.01) -0.01*** (0.00) 
For SLOPE26 slope, π2         
    INTRCPT2, β20 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 
     ZA_AO 0.00 (0.00)      
     ZA_AR  0.00 (0.00)      
     ZA_AS  0.00 (0.00)      
     ZA_EI  0.00 (0.00)      
     ZA_GS  0.00 (0.00)      
     ZA_MC  0.00 (0.00)      
     ZA_MK  0.00 (0.00)      
     ZA_PC  0.00 (0.00)      
     ZA_WK  0.00 (0.00)      
     ZD_1    0.00 (0.00)  
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 ASVAB ASVABsig DLAB DLABsig 
     ZD_2    0.00 (0.00)   
     ZD_3    -0.01*** (0.00) -0.01*** (0.00) 
     ZD_4    0.00 (0.00)   
     
Final estimation of variance components   
     

Random Effect 
level-1, e 0.12 (0.35) 0.12 (0.35) 0.12 (0.35) 0.12 (0.35) 
INTRCPT1, r0 0.18*** (0.42) 0.18*** (0.42) 0.17*** (0.42) 0.17*** (0.42) 
SLOPE12 slope, r1 0.04*** (0.21) 0.04*** (0.21) 0.04*** (0.21) 0.04*** (0.21) 
     
Deviance 42854.2894 42701.1228 42635.3716 42589.3424 
Parameters 4 4 4 4 

 
Note: Standard error in parentheses for estimated coefficients. All level-2 variables were centered on the grand mean.  

*** p < .001 ** p < .01 * p < .05 
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Though not the focus of the current study, other individual differences 

variables have been shown to moderate the prediction of aptitude and therefore were 

included in the model at this stage to account for their possible influence before 

considering language distance and interactions. As explained above, these variables 

were collected once at the start of the basic language course and therefore were time-

invariant: the level of education prior to the basic course, the motivation to train in the 

language of the basic course, the level of prior language proficiency, and whether the 

individual’s first language was English. They were entered into the model centered on 

the grand-mean to facilitate the interpretation of the estimates, as shown in Equation 

11 below. In the software, these variables were represented by EDUC, MOT, 

PRIORPRO and ENGY. EDUC, MOT and PRIORPRO were coded such that a higher 

number indicated more of the measure; ENGY was coded such that 0 = not English as 

a first language and 1 = English as a First Language.  

 ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MKi + 

β05*ZA_PCi + β06*ZA_WKi + β07*ZD_1i + β08*ZD_2i + β09*ZD_3i + β010*EDUCi + 

β011*MOTi + β012*PRIORPROi + β013*ENGYi + β10*SLOPE12ti + 

β11*ZA_MCi*SLOPE12ti + β12*ZD_1i*SLOPE12ti + β13*ZD_3i*SLOPE12ti + 

β14*ZD_4i*SLOPE12ti + β15*EDUCi*SLOPE12ti + β16*MOTi*SLOPE12ti + 

β17*PRIORPROi*SLOPE12ti + β18*ENGYi*SLOPE12ti + β20*SLOPE26ti + 

β21*ZD_3i*SLOPE26ti + β22*EDUCi*SLOPE26ti + β23*MOTi*SLOPE26ti + 

β24*PRIORPROi*SLOPE26ti + β25*ENGYi*SLOPE26ti + r0i + r1i*SLOPE12ti + eti 

 (11) 
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 The output from this model is shown in Table 21. The fixed effect estimates 

for the intercept and two slopes were unchanged. Because the model with the survey 

variables was the first model in which imputed values were modeled, ten separate 

models were averaged and reported here; individual model statistics, including a 

deviance statistic for each model, were also produced. The deviance statistics varied 

by model, as expected given the multiply imputed data, and ranged from 42,546.42 to 

42,580.53 with 4 df and an average of 42,565.82.  

The addition of the survey variables to the DLAB model had a negligible 

effect on the intercept (PRV less than 1%) and none on the slope. The education and 

English variables had negative estimated coefficients as predictors of the intercept, all 

else being equal, meaning that the more education, the lower the ILR level upon 

graduation, and those with English as a first language were less likely to have higher 

ILR levels upon graduation. The motivation measure was not a significant predictor 

of the intercept. These three findings were counterintuitive. There was a positive 

effect of prior proficiency, as all else being equal, individuals with stronger prior 

proficiency were more likely to have a higher ILR level at graduation, a finding 

which would be predicted by the literature. The only survey variable to have a 

significant effect on growth was the education variable (EDUC); but its significance 

was marginal in the full survey model, and it dropped out of significance in 

subsequent modeling. The findings for the survey variables, especially in their 

direction, were somewhat surprising. The reliability of these measures and the 

multiple imputation may have impacted the results. It may also have been attributed 
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to the unique context of the DLIFLC learning environment, in which more traditional 

educational habits acquired in higher education are not as applicable.  

The final survey model (Equation 12 below) with only the significant 

variables was taken forward for further modeling. The output from this model is 

shown below.  

ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MKi + 

β05*ZA_PCi + β06*ZA_WKi + β07*ZD_1i + β08*ZD_2i + β09*ZD_3i + β010*EDUCi + 

β011*PRIORPROi  + β012*ENGYi + β10*SLOPE12ti + β11*ZA_MCi*SLOPE12ti + 

β12*ZD_1i*SLOPE12ti + β13*ZD_3i*SLOPE12ti + β14*ZD_4i*SLOPE12ti + 

β20*SLOPE26ti + β21*ZD_3i*SLOPE26ti + r0i + r1i*SLOPE12ti + eti  (12) 

Table 21 
 
HLM listening models with survey variables 

 Survey SurveySig 
Fixed Effect 

For INTRCPT1, π0   
    INTRCPT2, β00 2.26*** (0.01) 2.26*** (0.01) 
     ZA_AR, β01 0.02*** (0.01) 0.02*** (0.01) 
     ZA_AS, β02 -0.01* (0.01) -0.01* (0.01) 
     ZA_GS, β03 0.02*** (0.01) 0.02*** (0.01) 
     ZA_MK, β04 0.03*** (0.01) 0.03*** (0.01) 
     ZA_PC, β05 0.03*** (0.01) 0.03*** (0.01) 
     ZA_WK, β06 0.05*** (0.01) 0.05*** (0.01) 
     ZD_1, β07 0.03*** (0.01) 0.03*** (0.01) 
     ZD_2, β08 0.02*** (0.00) 0.02*** (0.00) 
     ZD_3, β09 0.04*** (0.01) 0.04*** (0.01) 
     EDUC, β010 -0.02*** (0.00) -0.02*** (0.00) 
     MOT, β011 0.00 (0.01)   
    PRIORPRO, β012 0.02*** (0.01) 0.02*** (0.00) 
     ENGY, β013 -0.15*** (0.04) -0.14*** (0.03) 
For SLOPE12 slope, π1    
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 Survey SurveySig 
    INTRCPT2, β10 -0.03*** (0.01) -0.03*** (0.01) 
     ZA_MC, β11 -0.02*** (0. 00) -0.02*** (0.00) 
     ZD_1, β12 0.01** (0.01) 0.02*** (0.01) 
     ZD_3, β13 -0.02*** (0.01) -0.02*** (0.01) 
     ZD_4, β14 -0.01*** (0.00) -0.01*** (0.00) 
     EDUC, β15 0.01*† (0.00)   
     MOT, β16 0.00 (0.01)   
    PRIORPRO, β17 0.01 (0.01)   
     ENGY, β18 0.02 (0.04)   
For SLOPE26 slope, π2     
    INTRCPT2, β20 0.05*** (0.00) 0.05*** (0.00) 
     ZD_3, β21 -0.01*** (0.00) -0.01*** (0.00) 
     EDUC, β22 0.00 (0.00)   
     MOT, β23 0.00 (0.00)   
    PRIORPRO, β24 0.00 (0.00)   
     ENGY, β25 -0.01 (0.01)   
   
Final estimation of variance components 

Random Effect 
level-1, e 0.12 (0.35) 0.12 (0.35) 
INTRCPT1, r0 0.17*** (0.41) 0.17*** (0.41) 
SLOPE12 slope, r1 0.04*** (0.21) 0.04*** (0.21) 

 
Note: Standard error in parentheses for estimated coefficients. All level-2 variables 

were centered on the grand mean.  

* p < .05 ** p < .01 *** p < .001 † dropped out of significance in subsequent models 

The next step was to add the language distance measures (centered on the 

grand mean) to a model with only the significant survey variables. The measures were 

added individually in six separate models: FSI, GateRev, TypeRev, NotLatin, 

NotIndo, and DLI.  To facilitate interpretation, the distance measures were all coded 

such that the higher values represented greater distance. For example, the NotLatin 

measure was coded such that 0=Latin script and 1=non-Latin script, and the Gateway 
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similarity index was reversed such that languages with higher numbers were further 

distant from English. The mixed model equation with the DLI language difficulty 

category measure is shown below in Equation 13 as an example, and in the interest of 

space, models with the other language distance measures are not provided here. These 

variables were represented in the software by LANGCAT, FSILANGC, GATEREV, 

TYPEREV, NOTLATIN and NOTINDO.    

 ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MKi + 

β05*ZA_PCi + β06*ZA_WKi + β07*ZD_1i + β08*ZD_2i + β09*ZD_3i + β010*EDUCi + 

β011*PRIORPROi + β012*ENGYi + β013*LANGCATi + β10*SLOPE12ti + 

β11*ZA_MCi*SLOPE12ti + β12*ZD_1i*SLOPE12ti + β13*ZD_3i*SLOPE12ti + 

β14*ZD_4i*SLOPE12ti + β15*LANGCATi*SLOPE12ti + β20*SLOPE26ti + 

β21*ZD_3i*SLOPE26ti + β22*LANGCATi*SLOPE26ti + r0i + r1i*SLOPE12ti + eti (13) 

The output for the average of the ten multiple imputations can be found in 

Table 22 for each language distance measure, FSI, GateRev, TypeRev, NotLatin, 

NotIndo, and DLI. The fixed effect and variance component estimates for the 

intercept and slope(s) were little changed across all the models. The FSI, TypeRev, 

NotIndo and DLI measures were significantly related to the intercept (proficiency at 

graduation); all but the NotIndo measure were significantly related to the first slope 

(initial growth), and the GateRev, TypeRev, NotLatin and DLI measures all had a 

significant effect on the second slope (subsequent growth). The DLABPt3 and 

DLABPt4 measures relationships to the first slope were differentially impacted by the 

addition of the distance measures. In all six models except for the TypeRev model, 

these two DLAB subtests either fell completely out of significance or were of 
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marginal significance in the models with the language distance measures. The 

addition of a language difference variable explained up to 1% of the variance in 

intercept and up to 4% of the first slope as compared to the survey model.  
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Table 22 
 
HLM listening language distance model parameters 

 FSI GateRev TypeRev NotLatin NotIndo DLI  
Fixed Effect       
For INTRCPT1, π0       
    INTRCPT2, β00 2.26*** (0.01) 2.26*** (0.01) 2.26*** (0.01) 2.26*** (0.01) 2.26*** (0.01) 2.26*** (0.01) 
     ZA_AR, β01 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 
     ZA_AS, β02 -0.01* (0.01) -0.01* (0.01) -0.01* (0.01) -0.01* (0.01) -0.01* (0.01) -0.01* (0.01) 
     ZA_GS, β03 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 
     ZA_MK, β04 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 
     ZA_PC, β05 0.04*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.04*** (0.01) 0.03*** (0.01) 
     ZA_WK, β06 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 
     ZD_1, β07 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 
     ZD_2, β08 0.03*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.03*** (0.00) 0.02*** (0.00) 
     ZD_3, β09 0.05*** (0.01) 0.04*** (0.01) 0.03*** (0.01) 0.04*** (0.01) 0.05*** (0.01) 0.04*** (0.01) 
     EDUC, β010 -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) -0.02* (0.00) 
    PRIORPRO, β011 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.03*** (0.00) 0.02*** (0.00) 
     ENGY, β012 -0.15*** (0.03) -0.14 *** (0.03) -0.14*** (0.03) -0.14*** (0.03) -0.14*** (0.03) -0.14*** (0.03) 
    [lang dist], β013 -0.03*** (0.00) 0.00 (0.00) 0.00*** (0.00) 0.01 (0.02) -0.11*** (0.01) -0.01* (0.01) 
For SLOPE12 
slope, π1       
    INTRCPT2, β10 -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) 
     ZA_MC, β11 -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) -0.02*** (0.00) 
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 FSI GateRev TypeRev NotLatin NotIndo DLI  
     ZD_1, β12 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 
     ZD_3, β13 -0.01 (0.01) -0.01* (0.01) -0.01* (0.01) -0.01 (0.01) -0.02** (0.01) -0.01  (0.01) 
     ZD_4, β14 0.00 (0.00) -0.01* (0.00) -0.01** (0.00) -0.01* (0.00) -0.01 (0.00) -0.01  (0.00) 
    [lang dist], β15 -0.01*** (0.00) 0.00*** (0.00) 0.00*** (0.00) -0.10*** (0.02) -0.01 (0.01) -0.03*** (0.01) 
For SLOPE26 
slope, π2       
    INTRCPT2, β20 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 
     ZD_3, β21 -0.01** (0.00) -0.01** (0.00) -0.01*** (0.00) -0.01*** (0.00) -0.01*** (0.00) 0.00* (0.00) 
    [lang dist], β22 0.00 (0.00) 0.00* (0.00) 0.00* (0.00) -0.01* (0.01) 0.00 (0.00) -0.01*** (0.00) 

Final estimation of variance components 
Random Effect 

level-1, e 0.12 (0.35) 0.12 (0.35) 0.12 (0.35) 0.12 (0.35) 0.12 (0.35) 0.12 (0.35) 
INTRCPT1, r0 0.17*** (0.41) 0.17*** (0.41) 0.17*** (0.41) 0.17 *** (0.41) 0.17*** (0.41) 0.17*** (0.41) 
SLOPE12 slope, r1 0.04*** (0.20) 0.04*** (0.20) 0.04*** (0.20) 0.04*** (0.20) 0.04*** (0.21) 0.04*** (0.20) 
       

 
Note: Standard error in parentheses for estimated coefficients. All level-2 variables were centered on the grand mean.  

* p < .05 ** p < .01 *** p < .005 
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Interpreting effects in multilevel models is complex, especially given the 

different scales that each variable used in these models.  In the case of FSI, GateRev 

(n/s), NotIndo, and DLI their relationship was negative for the intercept (proficiency 

at graduation) and first slope (initial growth), while for TypeRev and NotLatin (n/s), 

it was positive for the intercept and negative for the first slope. For the second slope 

(subsequent growth), the direction of the estimates was negative. In the case of the 

intercept, the model would predict that those in harder languages would have lower 

scores upon graduation, while for the first slope, there would be a deeper drop 

between the first two test occasions, and for the second slope a shallower rise 

thereafter, all other things being equal. In all cases, the sizes of the estimates were 

such that they would have little practical value to prediction.  

The deviance statistic was not reported on the average output summary 

reported in Table 22, but individual deviance statistics for each of the ten models per 

distance measure were reviewed; and in combination with the coefficient and 

variance estimates and the PRV for the intercept and slope, the best fitting model 

among the models with a distance measure was determined to be the FSI model.  

To investigate the final research question which examined the effect of the 

interaction of aptitude and language difficulty and its effect on growth, the 

FSI0*[aptitude] interaction terms were added to the model. The mixed model for the 

aptitude interactions with FSI0 is below in Equation 14 and its output is in Table 23.  

ILRNUMti = β00 + β01*ZA_AOi + β02*ZA_ARi + β03*ZA_ASi + β04*ZA_EIi + 

β05*ZA_GSi + β06*ZA_MCi + β07*ZA_MKi + β08*ZA_PCi + β09*ZA_WKi + β010*ZD_1i + 

β011*ZD_2i + β012*ZD_3i + β013*ZD_4i + β014*EDUCi + β015*PRIORPROi + 
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β016*ENGYi + β017*FSI0i + β018*AO_FSI0i + β019*AR_FSI0i + β020*AS_FSI0i + 

β021*EI_FSI0i + β022*GS_FSI0i + β023*MC_FSI0i + β024*MK_FSI0i + β025*PC_FSI0i + 

β026*WK_FSI0i + β027*D1_FSI0i + β028*D2_FSI0i + β029*D3_FSI0i + β030*D4_FSI0i + 

β10*SLOPE12ti + β11*ZA_AOi*SLOPE12ti + β12*ZA_ARi*SLOPE12ti + 

β13*ZA_ASi*SLOPE12ti + β14*ZA_EIi*SLOPE12ti + β15*ZA_GSi*SLOPE12ti + 

β16*ZA_MCi*SLOPE12ti + β17*ZA_MKi*SLOPE12ti + β18*ZA_PCi*SLOPE12ti + 

β19*ZA_WKi*SLOPE12ti + β110*ZD_1i*SLOPE12ti + β111*ZD_2i*SLOPE12ti + 

β112*ZD_3i*SLOPE12ti + β113*ZD_4i*SLOPE12ti + β114*FSI0i*SLOPE12ti + 

β115*AO_FSI0i*SLOPE12ti + β116*AR_FSI0i*SLOPE12ti + β117*AS_FSI0i*SLOPE12ti + 

β118*EI_FSI0i*SLOPE12ti + β119*GS_FSI0i*SLOPE12ti + β120*MC_FSI0i*SLOPE12ti + 

β121*MK_FSI0i*SLOPE12ti + β122*PC_FSI0i*SLOPE12ti + 

β123*WK_FSI0i*SLOPE12ti + β124*D1_FSI0i*SLOPE12ti + 

β125*D2_FSI0i*SLOPE12ti + β126*D3_FSI0i*SLOPE12ti + β127*D4_FSI0i*SLOPE12ti + 

β20*SLOPE26ti + β21*ZA_AOi*SLOPE26ti + β22*ZA_ARi*SLOPE26ti + 

β23*ZA_ASi*SLOPE26ti + β24*ZA_EIi*SLOPE26ti + β25*ZA_GSi*SLOPE26ti + 

β26*ZA_MCi*SLOPE26ti + β27*ZA_MKi*SLOPE26ti  + β28*ZA_PCi*SLOPE26ti + 

β29*ZA_WKi*SLOPE26ti + β210*ZD_1i*SLOPE26ti + β211*ZD_2i*SLOPE26ti + 

β212*ZD_3i*SLOPE26ti + β213*ZD_4i*SLOPE26ti + β214*FSI0i*SLOPE26ti + 

β215*AO_FSI0i*SLOPE26ti + β216*AR_FSI0i*SLOPE26ti + β217*AS_FSI0i*SLOPE26ti + 

β218*EI_FSI0i*SLOPE26ti + β219*GS_FSI0i*SLOPE26ti + β220*MC_FSI0i*SLOPE26ti + 

β221*MK_FSI0i*SLOPE26ti + β222*PC_FSI0i*SLOPE26ti + 

β223*WK_FSI0i*SLOPE26ti + β224*D1_FSI0i*SLOPE26ti + 
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β225*D2_FSI0i*SLOPE26ti + β226*D3_FSI0i*SLOPE26ti + β227*D4_FSI0i*SLOPE26ti + 

r0i + r1i*SLOPE12ti + eti 

Table 23 
 
HLM listening FSI0*[aptitude] interactions 

  Coefficient p < B-H  
Fixed Effect 

For INTRCPT1, π0   
    INTRCPT2, β00 2.26*** (0.01) † 
     ZA_AO, β01 -0.01 (0.01)  
     ZA_AR, β02 0.03* (0.01)  
     ZA_AS, β03 0.01 (0.01)  
     ZA_EI, β04 -0.01 (0.01)  
     ZA_GS, β05 0.02 (0.01)  
     ZA_MC, β06 0.00 (0.01)  
     ZA_MK, β07 0.02* (0.01)  
     ZA_PC, β08 0.04*** (0.01) † 
     ZA_WK, β09 0.05*** (0.01) † 
     ZD_1, β010 0.04*** (0.01) † 
     ZD_2, β011 0.02*** (0.01) † 
     ZD_3, β012 0.07*** (0.01) † 
     ZD_4, β013 0.03*** (0.01) † 
     EDUC, β014 -0.02*** (0.00) † 
    PRIORPRO, β015 0.03*** (0.00) † 
     ENGY, β016 -0.14*** (0.03) † 
     FSI0, β017 -0.16*** (0.01) † 
     AO_FSI0, β018 -0.01 (0.01)  
     AR_FSI0, β019 0.00 (0.01)  
     AS_FSI0, β020 -0.04* (0.01)  
     EI_FSI0, β021 0.01 (0.02)  
     GS_FSI0, β022 0.01 (0.02)  
     MC_FSI0, β023 -0.02 (0.02)  
     MK_FSI0, β024 0.01 (0.01)  
     PC_FSI0, β025 0.00 (0.01)  
     WK_FSI0, β026 -0.01 (0.01)  
     D1_FSI0, β027 0.00 (0.01)  
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  Coefficient p < B-H  
     D2_FSI0, β028 0.03* (0.01)  
     D3_FSI0, β029 -0.03** (0.01)   
     D4_FSI0, β030 -0.02 (0.01)  
For SLOPE12 slope, π1    
    INTRCPT2, β10 -0.03*** (0.01) † 
     ZA_AO, β11 -0.01 (0.01)  
     ZA_AR, β12 0.01 (0.01)  
     ZA_AS, β13 0.00 (0.01)  
     ZA_EI, β14 0.01 (0.01)  
     ZA_GS, β15 -0.01 (0.01)  
     ZA_MC, β16 -0.03** (0.01) † 
     ZA_MK, β17 0.00 (0.01)  
     ZA_PC, β18 -0.01 (0.01)  
     ZA_WK, β19 0.02* (0.01)  
     ZD_1, β110 0.01 (0.01)  
     ZD_2, β111 -0.01 (0.01)  
     ZD_3, β112 -0.03*** (0.01) † 
     ZD_4, β113 -0.03*** (0.01) † 
     FSI0, β114 0.00 (0.01)  
     AO_FSI0, β115 0.00 (0.01)  
     AR_FSI0, β116 -0.02 (0.01)  
     AS_FSI0, β117 0.00 (0.01)  
     EI_FSI0, β118 -0.01 (0.02)  
     GS_FSI0, β119 0.00 (0.01)  
     MC_FSI0, β120 0.03 (0.02)  
     MK_FSI0, β121 0.00 (0.01)  
     PC_FSI0, β122 0.01 (0.01)  
     WK_FSI0, β123 -0.03* (0.01)  
     D1_FSI0, β124 0.02* (0.01)  
     D2_FSI0, β125 0.00 (0.01)  
     D3_FSI0, β126 0.03** (0.01)  
     D4_FSI0, β127 0.03* (0.01)  
For SLOPE26 slope, π2    
    INTRCPT2, β20 0.05*** (0.00) † 
     ZA_AO, β21 0.00 (0.00)  
     ZA_AR, β22 0.00 (0.00)  
     ZA_AS, β23 0.00 (0.00)  
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  Coefficient p < B-H  
     ZA_EI, β24 0.00 (0.00)  
     ZA_GS, β25 0.00 (0.00)  
     ZA_MC, β26 0.01 (0.00)  
     ZA_MK, β27 0.00 (0.00)  
     ZA_PC, β28 0.00 (0.00)  
     ZA_WK, β29 0.00 (0.00)  
     ZD_1, β210 0.00 (0.00)  
     ZD_2, β211 0.00 (0.00)  
     ZD_3, β212 0.00 (0.00)  
     ZD_4, β213 0.00 (0.00)  
     FSI0, β214 0.00 (0.00)  
     AO_FSI0, β215 0.00 (0.00)  
     AR_FSI0, β216 0.00 (0.01)  
     AS_FSI0, β217 -0.01 (0.01)  
     EI_FSI0, β218 0.00 (0.01)  
     GS_FSI0, β219 0.00 (0.01)  
     MC_FSI0, β220 0.00 (0.01)  
     MK_FSI0, β221 0.00 (0.00)  
     PC_FSI0, β222 0.00 (0.00)  
     WK_FSI0, β223 0.00 (0.01)  
     D1_FSI0, β224 0.00 (0.00)  
     D2_FSI0, β225 0.00 (0.00)  
     D3_FSI0, β226 -0.01 (0.00)  
     D4_FSI0, β227 0.00 (0.00)  
Final estimation of variance components 
   

Random Effect  
level-1, e 0.12 (0.35)  
INTRCPT1, r0 0.17*** (0.41)  
SLOPE12 slope, r1 0.04*** (0.20)  

 
Note: Standard error in parentheses for estimated coefficients. All level-2 variables 

were centered on the grand mean.  

* p < .05 ** p < .01 *** p < .005 † p < B-H critical value 
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The interaction model was corrected for multiple comparisons and a number 

of estimates, including several DLAB/FSI interaction terms, failed to meet the criteria 

although their p-value estimates were significant (p < .01). As a result of the 

correction, no interaction terms had a significant effect on graduation (intercept) or 

growth (either slope). ASVAB-MC, DLAB Part 3 and DLAB Part 4 were significant 

predictors of the first slope, all else being equal. All three estimates were negative, 

which indicated that individuals with higher scores on these subtests experienced a 

larger drop in score between the first two tests, though the size of that drop remained 

small (0.03 of an ILR Level). The addition of the interaction terms also resulted in 

several of the ASVAB subtests as predictors of the intercept dropping out of 

significance (including ones that had been significant up until this model): ASVAB-

AO, -AS, -EI, -GS, -MC. The FSI0 measure entered as a main effect was also 

significant as a predictor of the intercept in this model (coeff. -0.16, p < .001).  

The level-2 variance estimates were reduced for this final model and 

compared to the FSI model, the interactions explained another 2% of the variance in 

intercept and 1% in slope. Assumptions in this final model were checked. The level-2 

residuals and the covariance matrix for the random slopes-piecewise time were 

examined for the presence of heteroscedasticity and autocorrelation. An alternate 

covariance structure was modeled but was rejected. There was deviation present at 

the tail of the plot as seen above at level-1, but in general, the assumptions for the 

final model were considered to be met.  

Although multilevel modeling allows for unbalanced outcome data, to 

understand the population more thoroughly, individual differences for those with only 
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a few test occasions (up to three tests, n=5358) were compared to those with more test 

occasions (four or more, n=4194) using independent t-tests. A number of the ASVAB 

subtests were significant: ASVAB-AO, -AS, -EI, -PC and -WK and of the four DLAB 

subtests, Parts 1, 2 and 3 were significant. These findings indicated that there were 

differences between those who tested up to three times, and those who tested more 

than three times. The direction of the difference varied by subtest, however, with 

those with fewer tests having higher mean scores on ASVAB-AO, t(9550) =-2.52, p < 

.01, DLAB Part 2, t(9550) = -2.20, p < .01, and DLAB Part 3, t(9550) = -2.41, p < 

.01, and lower scores on ASVAB-AS, t(9550) = 2.6, p < .01, -EI, t(9550) = 2.75, p < 

.01, -PC, t(9550) = 3.78, p < .01,  -WK, t(9550) = 3.24, p < .01, and DLAB Part 1 

t(9550) = 3.77, p < .001. There could be many reasons for the differing number of test 

occasions per individual. Some individuals attended training at the beginning of the 

time period captured by this dataset and completed their tour of duty, while others 

stayed in the service and continued testing. Other individuals tested at the end of the 

time period and therefore did not have the opportunity to be tested more than two or 

three times. However, the differences in these two populations were statistically 

significant.   

Before moving on to the reading data, therefore, additional formulations of the 

slopes were compared to better assess the impact of attrition in the outcome data. The 

first slope, representing initial growth and coded as Slope12, was the same in all three 

trials. Three versions of subsequent growth were trialed, one which included only 

scores up through the fourth test (Slope24), one which included scores up through the 

fifth test (Slope25), and one which included all of the scores in the dataset (Slope26). 
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Table 20 below displays the coding system used. Missing test occasions from test 

occasions 5 and 6 were dropped from the Slope24 and Slope25 analyses.  

Table 24 

Alternate Recoding Schemes 

 
Test 
Occasion 

Slope12 Slope24 Slope25 Slope26 

1 0 0 0 0 

2 1 0 0 0 

3 1 1 1 1 

4 1 2 2 2 

5 1 - 3 3 

6 1 - - 4 

Number 
of tests 

34,742 29,383 32,768 34742 

 

The same full set of models conducted above for Study 1 (Listening HLM) 

with Slope12/Slope26 were conducted using the piecewise slopes Slope12/Slope24 

and then again with Slope12/Slope25. The final model in all three trials of the slopes 

(which included all of the ASVAB, DLAB, and language distance interactions, for a 

total of 88 comparisons) was corrected for multiple comparisons and a summary chart 

of the significant variables in all three slope variations is shown below with the full 

chart in Appendix B. Had the estimates not been corrected, the table would include 

identical significant variables. 

The results for the fixed effect estimates for the second slope differed only by 

0.008 across the three models, and therefore, given the robustness of HLM with 

unevenly spaced outcomes (Finch, 2013; Hox, 2000; Raudenbush & Bryk, 2002) as 
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well as these findings, modeling continued with the reading data, and test occasions 

were modeled as two piecewise slopes, Slope12 and Slope26 to take advantage of the 

full dataset.  

Table 25  
 
Comparison chart of significant variables in variations of slopes 

  Slope24 Slope25 Slope26 
 Intercept β00 † † † 
     ZA_PC, β08 † † † 
     ZA_WK, β09 † † † 
     ZD_1, β010 † † † 
     ZD_2, β011   † † 
     ZD_3, β012   † † 
     ZD_4, β013 † † † 
     EDUC, β014 † † † 
     PRIORPRO, β015 † † † 
     ENGY, β016 † † † 
     FSI0, β017 † † † 
     D2_FSI0, β028 †     
     D3_FSI0, β029 †     
For SLOPE12 slope, π1    
    INTRCPT2, β10 † † † 
     ZA_MC, β16 † † † 
     ZD_3, β111 † † † 
     ZD_4, β112 † † † 
For SLOPE24 slope, π2    
    INTRCPT2, β20 † † † 
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Study 2 Hierarchical Linear Modeling (Reading)  
 

The reading data was modeled in a similar approach, first settling on the level-

1 model and then adding in predictors at level-2. The first model, Equation 1 as 

above, served to set a baseline and outline the multilevel framework and provide the 

warrant for a multilevel model. There was a maximum of 34,935 level-1 units (test 

scores) and 9,564 level-2 units (individuals) in the reading data. The random level-1 

coefficient for the intercept had a moderate reliability estimate of 0.76. The mean ILR 

Score (β00) (reported throughout the research with robust standard errors unless 

otherwise noted) for reading was 2.40 (p < .001), an ILR score between ILR Levels 2 

and 2+, a score that was slightly higher than the listening score. Random effects 

estimates showed the ILR score variance estimates at level-1, within-person, as σ2 = 

0.121 and τ00 (level-2, between-person) as 0.134 with both estimates significant (p < 

.001). Assuming normal distribution of the residuals, 95% of the individuals had 

mean ILR scores between 1.67 and 3.12 (i.e., 2.4 ± 1.96 [0.37]), which would mean 

scores between ILR Level 1+ and Level 3. The intraclass correlation (ICC), which 

describes the proportion of variance that lies between individuals, was calculated by 

dividing the variance at level-2 by the model’s total variance and found to be 52%, 

which was taken as a warrant to continue with a multilevel model. The next step in 

modeling was to build out the level-1 model to investigate the rate and shape of 

growth.  

For the reading data, time was first modeled as a linear function with a 

random intercept (repeating Equation 2 above). The fixed effect estimate for the 

intercept dropped slightly to 2.35, and the estimate for the slope was 0.03 (p < .001), 
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meaning that the ILR level rose, on average, only slightly across the six test occasions 

in the dataset. With only one variable describing time, the drop-and-recover pattern in 

the data is not visible. Because there were up to six test occasions in the data, time 

could be modeled with polynomial functions, so models with quadratic and cubic 

forms of time (Equations 3 and 4 above) were first tested with random intercepts. The 

output from these models is shown below in Table 26. These models did not explain 

additional level-1 variance. The cubic model showed a negative estimate for linear 

time, with an acceleration in the quadratic function followed by a slight decline in 

slope. As seen in the listening model above, this meant that the cubic effect dampened 

the acceleration (quadratic effect) of the linear downward slope. Models that allowed 

the time functions Time, Time2 and Time3 to vary had reliability estimates below 0.10 

and therefore random slope models were not pursued further.  
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Table 26 
 
HLM reading models of time 

  Null Model  RI Time  RI Quad  RI Cube  
Fixed Effects 

Intercept 2.40*** (0.00) 2.35*** (0.00) 2.37*** (0.00) 2.38*** (0.01) 
Time  0.03*** (0.00) -0.01 (0.00) -0.08*** (0.01) 
Time Quad    0.01*** (0.00) 0.06*** (0.00) 
Time Cube     -0.01*** (0.00) 
      

Random Effects 
Level-1, e  0.12   0.12   0.12   0.12   
Level-2 intercept, r 0.13   0.13   0.13   0.13   

Goodness of fit 
Deviance 40039.1785 39396.8288 39290.4588 39184.259 

Number of 
parameters 2 2 2 2 

Note: Standard error in parentheses for estimated coefficients. 

 *** p < .001 

As with the listening data, time was also modeled for reading with two 

piecewise slopes as in Equation 6 above. The output for this model is shown in the 

first column in Table 27. The fixed effect for the intercept dropped very slightly as 

compared to the Null model to 2.38, and the mean change of ILR level between the 

first two test occasions (Slope12) was negative (-0.04), while the mean change after 

the second test occasion (Slope26) was positive (0.05) and both estimates were 

significant (p < .001). The average growth trajectories were very shallow, with a very 

slight decrease in initial growth by a small increase in subsequent growth per test 

occasion.  

Random slopes were tested next to allow the growth rate to vary across 

individuals, first allowing each slope to vary randomly (first Slope12, then Slope26) 
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and then testing a model with both slopes varying. The model with Slope26 varying 

required an increase in iteration settings and the model converged at iteration 597, but 

the reliability estimate for the random level-1 coefficient Slope26 was below 0.10 and 

therefore this model was rejected. A model with both slopes varying failed to 

converge. Therefore, the best fitting piecewise model appeared to be a model in 

which only Slope12 was allowed to vary randomly. This model’s output is reported in 

Table 27 along with the null model for comparison, and the random intercept, 

piecewise time model.  

The intercept, the average ILR score in reading across individuals at the time 

of graduation, was 2.38; and the mean change of ILR level between the first two test 

occasions (Slope12) was negative (0.04 of an ILR level), while the mean change after 

the second test occasion (Slope26) was positive (0.05 of an ILR level). The piecewise 

model with a random first slope explained an additional 14% of the level-1 

variance as compared to the null model, and the model was a better fit than the 

random intercept model with two slopes (χ2 = 96.75, p < .01, df 2). This model 

responded to the first two research questions, showing that reading scores varied 

by individual, and after dropping slightly following the first test occasion, rose 

slightly over time. The reading scores were, on average, higher than the listening 

scores, but the pattern of growth was quite similar. The 95% random effects 

confidence intervals for the intercept and random linear time indicated that 95% of 

the sample was expected to have individual intercepts ranging from 2.08 to 2.68 and 

the slope representing initial growth (Slope12) ranging from -0.13 to 0.05.  While 

there was a significant rate of linear increase between the first two tests on average, 
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the random variation around this initial growth indicated that some individuals 

dropped in level and others rose. Assumptions of the final level-1 model (Slope12R) 

were checked as with the listening model, and in general the assumptions for the 

level-1 model were considered to have been met.  

Table 27 
 
HLM reading with piecewise slopes 

  Null Model  
Random Intercept, 

two slopes Slope12 Random  

Fixed Effects 

Intercept     2.40*** (0.00) 2.38*** (0.00) 2.38*** (0.00) 

Slope12     -0.04*** (0.00) -0.04*** (0.00) 

Slope26     0.05*** (0.00) 0.05*** (0.00) 

Random Effects 

Level-1, e  0.12  0.12  0.11  

Level-2 intercept, r0 0.13  0.13  0.15 

Slope12, r1   0.05 

Goodness of fit 

Deviance 40039.1785 39185.6549 39088.9063 
Number of 
parameters 2 2 4 

Note: Standard error in parentheses for estimated coefficients, standard deviation in 

parentheses for estimated variances.  

*** p < .001 
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The next set of models was designed to model the extent to which aptitude 

was related to growth. Model building continued in a stepwise fashion to consider the 

effects of the level-2 covariates on proficiency scores and whether the scores varied 

by language. The subtest scores for ASVAB were standardized and centered on the 

grand mean and added simultaneously to the Slope12R model above to predict the 

intercept and both slopes. The mixed model equation for this model is above in 

Equation 5 and the results are in Table 28. 

Seven of the nine ASVAB subtests were significantly related to the intercept 

(-AO and -EI, were not). None of the subtests were significantly related to the first 

slope and only -AR, -PC and -WK were significantly related to the second slope. The 

addition of the subtest variables changed the interpretation of the parameter estimates: 

the intercept was now understood as the average ILR score for those with mean 

ASVAB subtest scores, and the slopes were now the average change in those persons’ 

ILR level between test occasions 1 and 2, and test occasions 2 and 6. Specifically, for 

those with average ASVAB scores, there was a significant mean ILR score (β00= 

2.38, p < .001) that dropped between test occasions 1 and 2 (β10= -0.04, p < .001) and 

rose between occasions 2 and 6 (β20= 0.05, p < .001), on average. Of the significant 

subtests, the -AS and -MC subtests were negative predictors of the intercept, while -

AR, -PC and -WK were negative predictors of Slope26. This was interpreted to mean 

that those with higher scores on these subtests had lower ILR scores at graduation (-

AS and -MC) or less of an increase in subsequent growth (-AR, -PC and -WK). 

Variance component estimates once again confirmed significant variance in observed 

versus predicted ILR scores within-individual (level-1 variance σ2 = .11, p < .001) 
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and significant variance in ILR scores at the time of graduation from DLI (level-2 

variance r0 = .13, p < .001). The estimate for the first slope, Slope12, was also 

significant and indicated that there was variance (r1 = .05, p < .001) in proficiency 

scores between the first two test occasions. The level-1 variance was unchanged, as 

expected, because only level-2 predictors were added. The level-2 variance estimates 

decreased, and the addition of the ASVAB subtests explained 14% of the variation in 

level-2 intercept and 1% of the slope as compared to the Slope12R model above. 

Before adding the DLAB subtests to the model, a model with only the significant 

ASVAB subtests, shown below in Equation 15, was run and results are displayed in 

Table 28.  

 ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MCi + 

β05*ZA_MKi + β06*ZA_PCi + β07*ZA_WKi + β10*SLOPE12ti + β20*SLOPE26ti + 

β21*ZA_ARi*SLOPE26ti + β22*ZA_PCi*SLOPE26ti + β23*ZA_WKi*SLOPE26ti  + r0i + 

r1i*SLOPE12ti + eti        (15) 

As with the listening models, the next stage was to add the four DLAB 

subtests, resulting in Equation 16 below. The subtests were centered on the grand 

mean.  

ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MCi + 

β05*ZA_MKi + β06*ZA_PCi + β07*ZA_WKi + β08*ZD_1i + β09*ZD_2i + β010*ZD_3i + 

β011*ZD_4i + β10*SLOPE12ti + β11*ZD_1i*SLOPE12ti + β12*ZD_2i*SLOPE12ti + 

β13*ZD_3i*SLOPE12ti + β14*ZD_4i*SLOPE12ti + β20*SLOPE26ti + 

β21*ZA_ARi*SLOPE26ti + β22*ZA_PCi*SLOPE26ti + β23*ZA_WKi*SLOPE26ti + 
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β24*ZD_1i*SLOPE26ti + β25*ZD_2i*SLOPE26ti + β26*ZD_3i*SLOPE26ti + 

β27*ZD_4i*SLOPE26ti + r0i + r1i*SLOPE12ti + eti    (16) 

The output from this model is in Table 28 below. The fixed estimates for the intercept 

and slopes were unchanged, and all four DLAB subtests were significant predictors of 

the intercept. The coefficients for ASVAB-PC, ASVAB-WK and DLABPt3 were the 

highest estimates among the significant predictors of the intercept. Several of the 

ASVAB estimates shifted slightly after adding the DLAB subtests into the model, and 

Slope26*ASVAB-AR and Slope26*ASVAB-PC fell out of significance, though in 

practical terms these estimates were so small to begin with (approaching zero) the 

change in significance was not necessarily important.  

The relationship between the DLAB subtests and each slope was different: for 

Slope12, DLABPt1 and -Pt3 were significant, with the direction of the estimate for -

Pt1 positive and for -Pt3 negative. For Slope26, only the effect of DLABPt3 was 

marginally significant, though the estimate itself was approaching zero (-0.004, p = 

.05). The addition of the DLAB variables explained 3% of the level 2 intercept 

variance as compared to the model with only ASVAB scores, but DLAB did not 

explain any variance in slope.    

The output for an intervening model with only the significant aptitude models 

(DLABsig) is displayed in the fourth column of Table 28 and its equation in mixed 

form is shown below in Equation 17. This model’s intercept would now be 

understood as the average ILR score in listening for individuals with mean scores in 

the following aptitude subtests: ASVAB-AR, -AS, -GS, -MC, -MK, -PC and -WK, as 

well as the four DLAB subtests. The coefficients β01(VARIABLE) through β14(VARIABLE) 
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were the mean differences at graduation. Results showed that individuals with higher 

scores in ASVAB-AR, -GS, -MK, -PC and -WK, as well as DLAB scores in Parts 1, 2, 

3, and 4 had significant increases in ILR level at graduation, though these estimates 

were quite small, ranging from 0.02 to 0.05. There were significant decreases 

between the first and second test occasions (-0.01, p = .001) and significant increases 

between the second and sixth test occasion (.05, p < .001).  

  ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MCi + 

β05*ZA_MKi + β06*ZA_PCi + β07*ZA_WKi + β08*ZD_1i + β09*ZD_2i + β010*ZD_3i + 

β011*ZD_4i + β10*SLOPE12ti + β11*ZD_1i*SLOPE12ti + β12*ZD_3i*SLOPE12ti + 

β20*SLOPE26ti + β21*ZA_WKi*SLOPE26ti + β22*ZD_3i*SLOPE26ti + r0i + 

r1i*SLOPE12ti + eti      (17) 
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Table 28 
 
HLM reading with aptitude subtests model parameters  

 ASVAB ASVABsig DLAB DLABsig 
Fixed Effect 

For INTRCPT1 π0     
    INTRCPT2 β00 2.38*** (0.00) 2.38*** (0.00)  2.38*** (0.00) 2.38*** (0.00) 
     ZA_AO  0.00 (0.01)       
     ZA_AR  0.04*** (0.01) 0.04*** (0.01) 0.03*** (0.01) 0.03 (0.01) 
     ZA_AS  -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) 
     ZA_EI  0.00 (0.01)       
     ZA_GS  0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 
     ZA_MC  -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) 
     ZA_MK  0.04*** (0.01) 0.05*** (0.00) 0.04*** (0.00) 0.04*** (0.00) 
     ZA_PC  0.05*** (0.01) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 
     ZA_WK  0.07*** (0.01) 0.07*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 
     ZD_1    0.02*** (0.01) 0.02*** (0.01) 
     ZD_2    0.02*** (0.01) 0.01** (0.00) 
     ZD_3,    0.05*** (0.01) 0.05*** (0.01) 
     ZD_4    0.03*** (0.01) 0.02*** (0.00) 
For SLOPE12 slope, π1         
    INTRCPT2, β10 -0.04*** (0.01) -0.04*** (0.01) -0.04*** (0.01) -0.04*** (0.01) 
     ZA_AO  -0.01 (0.01)    
     ZA_AR  0.00 (0.01)    
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 ASVAB ASVABsig DLAB DLABsig 
     ZA_AS  -0.01 (0.01)    
     ZA_EI  0.00 (0.01)    
     ZA_GS  0.00 (0.01)    
     ZA_MC  -0.01 (0.01)    
     ZA_MK  0.01 (0.01)    
     ZA_PC  0.00 (0.01)    
     ZA_WK  0.00 (0.01)    
     ZD_1    0.02*** (0.01) 0.02*** (0.00) 
     ZD_2    -0.01 (0.01)   
     ZD_3,    -0.01* (0.01) -0.02*** (0.01) 
     ZD_4    -0.01 (0.01)   
For SLOPE26 slope, π2         
    INTRCPT2, β20 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 
     ZA_AO 0.00 (0.00)      
     ZA_AR  0.00* (0.00) 0.00* (0.00) 0.00 (0.00)  
     ZA_AS  0.00 (0.00)     
     ZA_EI  0.00 (0.00)     
     ZA_GS  0.00 (0.00)     
     ZA_MC  0.00 (0.00)     
     ZA_MK  0.00 (0.00)     
     ZA_PC  0.00* (0.00) 0.00*** (0.00) 0.00 (0.00)   
     ZA_WK  -0.01*** (0.00) -0.01*** (0.00) 0.00* (0.00) -0.01*** (0.00) 
     ZD_1    0.00 (0.00)   
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 ASVAB ASVABsig DLAB DLABsig 
     ZD_2    0.00 (0.00)   
     ZD_3,    0.00* (0.00) 0.00*** (0.00) 
     ZD_4    0.00 (0.00)   
 

    
Random Effect   

     
level-1, e 0.11 (0.33) 0.11 (0.33) 0.11 (0.33) 0.11 (0.33) 
INTRCPT1, r0 0.13*** (0.36) 0.13*** (0.36) 0.13*** (0.36) 0.13*** (0.36) 
SLOPE12 slope, r1 0.05*** (0.22) 0.05*** (0.22) 0.05*** (0.22) 0.05*** (0.22) 

 
 
 
Note: Standard error in parentheses for estimated coefficients. Parameter designators from ASVAB model. All level-2 variables 

centered on grand mean.   

*** p < .005 ** p < .01 * p < .05
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 The next step in model building was to add the four individual difference 

variables collected via the survey, EDUC, MOT, PRIORPRO, and ENGY, for the 

reasons explained above in Study 1. The mixed model equation for reading is below.  

  ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MCi + 

β05*ZA_MKi + β06*ZA_PCi + β07*ZA_WKi + β08*ZD_1i + β09*ZD_2i + β010*ZD_3i + 

β011*ZD_4i + β012*EDUCi + β013*MOTi + β014*PRIPROFi + β015*ENGYi + 

β10*SLOPE12ti + β11*ZD_1i*SLOPE12ti + β12*ZD_3i*SLOPE12ti + 

β13*EDUCi*SLOPE12ti + β14*MOTi*SLOPE12ti + β15*PRIPROFi*SLOPE12ti + 

β16*ENGYi*SLOPE12ti + β20*SLOPE26ti + β21*ZA_WKi*SLOPE26ti + 

β22*ZD_3i*SLOPE26ti + β23*EDUCi*SLOPE26ti + β24*MOTi*SLOPE26ti + 

β25*PRIPROFi*SLOPE26ti + β26*ENGYi*SLOPE26ti + r0i + r1i*SLOPE12ti + eti 

      (18) 

 The output from this model is in Table 29. The estimated fixed effect 

coefficients and variance components for the aptitude variables were basically 

unchanged from the last model. For the reading data, the fixed effects for the 

motivation and prior proficiency variables were not significant as predictors of  

graduation (the intercept) or either slope (initial growth or subsequent growth), while 

education and English were. Those with higher levels of education and who had 

English as a first language were less likely to have higher ILR levels upon graduation, 

though this estimate was quite small and its significance marginal (-.005, p = .05). 

This was counterintuitive and contrary to findings in other research, but given that 

EDUC fell out of significance in subsequent models, it may be an artifact of the 
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dataset. Education was also significantly related to growth, such that those with 

higher education experienced less of a decrease in initial growth, subsequent growth 

was not as steep. The final model including only the significant survey variables is 

shown below in Equation 19. The addition of the survey variables did not change the 

variance for either the intercept or for the slope.  

ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi  + β04*ZA_MCi + 

β05*ZA_MKi + β06*ZA_PCi + β07*ZA_WKi + β08*ZD_1i + β09*ZD_2i + β010*ZD_3i + 

β011*ZD_4i + β012*ENGYi + β10*SLOPE12ti + β11*ZD_1i*SLOPE12ti + 

β12*ZD_3i*SLOPE12ti + β20*SLOPE26ti + β21*ZA_WKi*SLOPE26ti + 

β22*ZD_3i*SLOPE26ti + β23*EDUCi*SLOPE26ti + r0i + r1i*SLOPE12ti + eti   (19) 

Table 29 

HLM reading survey variables model parameters  

 SURVEY 
SURVEYSig 
(Final) 

   
Fixed Effect 

For INTRCPT1, π0   
    INTRCPT2, β00 2.38*** (0.00) 2.38*** (0.00) 
     ZA_AR  0.03*** (0.01) 0.03*** (0.01) 
     ZA_AS  -0.02*** (0.01) -0.02*** (0.01) 
     ZA_GS  0.02*** (0.01) 0.02*** (0.01) 
     ZA_MC -0.03*** (0.01) -0.03*** (0.01) 
     ZA_MK  0.04*** (0.00) 0.04*** (0.00) 
     ZA_PC  0.05*** (0.00) 0.05*** (0.00) 
     ZA_WK  0.06*** (0.01) 0.05*** (0.01) 
     ZD_1  0.02*** (0.01) 0.02*** (0.01) 
     ZD_2  0.01** (0.00) 0.01** (0.00) 
     ZD_3  0.05*** (0.01) 0.05*** (0.01) 
     ZD_4  0.02*** (0.00) 0.02*** (0.00) 
     EDUC  -0.01* (0.00) †   
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     MOT  0.00 (0.01)   
     PRIPROF  0.00 (0.00)   
     ENGY  -0.10*** (0.03) -0.10*** (0.03) 
For SLOPE12 slope, π1     
    INTRCPT2, β10 -0.04*** (0.01) -0.04*** (0.01) 
     ZD_1  0.01* (0.01) 0.02*** (0.00) 
     ZD_3  -0.02*** (0.01) -0.02*** (0.01) 
     EDUC  0.01* (0.00) † 0.00 (0.00) 
     MOT  0.00 (0.01)   
     PRIPROF  0.00 (0.00)   
     ENGY  -0.01 (0.03)   
For SLOPE26 slope, π2     
    INTRCPT2  0.05*** (0.00) 0.05*** (0.00) 
     ZA_WK  -0.01** (0.00) 0.00** (0.00) 
     ZD_3  -0.01*** (0.00) -0.01*** (0.00) 
     EDUC  0.00*** (0.00) 0.00*** (0.00) 
     MOT  0.00 (0.00)   
     PRIPROF  0.00 (0.00)   
     ENGY  0.02 (0.01)  
   
Final estimation of variance components  

Random Effect 
   

level-1, e 0.11 (0.32) 0.11 (0.32) 
INTRCPT1, r0 0.13*** (0.36) 0.13*** (0.36) 
SLOPE12 slope, r1 0.05*** (0.22) 0.05*** (0.22) 

 
Note: Standard error in parentheses for estimated coefficients. All level-2 variables 

centered on grand mean.   

*** p < .005 ** p < .01 * p < .05  † dropped out of significance in next model 

The next model added the language distance measures (centered on the grand 

mean). These measures were treated individually. The mixed model equation for the 

FSILangCat measure is shown below in Equation 20. The output each of the six 

language distance measures: FSI, GateRev, TypeRevRev, NotLatin, NotIndo, and 
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LangCat (DLI) can be found below. For brevity, the mixed model equations for the 

other language distance measures are not repeated here.  

ILRNUMti = β00 + β01*ZA_ARi + β02*ZA_ASi + β03*ZA_GSi + β04*ZA_MCi + 

β05*ZA_MKi + β06*ZA_PCi + β07*ZA_WKi + β08*ZD_1i + β09*ZD_2i + β010*ZD_3i + 

β011*ZD_4i + β012*ENGYi + β013*FSIi + β10*SLOPE12ti + β11*ZD_1i*SLOPE12ti + 

β12*ZD_3i*SLOPE12ti + β13*FSIi*SLOPE12ti + β20*SLOPE26ti + 

β21*ZA_WKi*SLOPE26ti + β22*ZD_3i*SLOPE26ti + β23*EDUCi*SLOPE26ti + 

β24*FSIi*SLOPE26ti + r0i + r1i*SLOPE12ti + eti (20) 

The fixed effect and variance component estimates for the intercept and 

slope(s) were little changed across all of the models with the exception of DLAB Part 

3. For reasons that are not clear, in all but one of the distance measures (TypeRev), the 

estimated coefficients for DLABPt3 dropped out of significance in relationship to 

Slope12, while it also fell out of significance for Slope26 in three of the measures (all 

except for TypeRev, NotLatin and NotIndo).  

The relationships between each language distance measure and the intercept 

and slopes varied, possibly indicating that each measure tapped into a different aspect 

of language difficulty, though the estimates themselves were quite small. Three 

measures had a significant effect on the intercept (FSI, TypeRev, NotIndo); all six 

measures had significant estimates for Slope12, while five had significant estimates 

for Slope26 (FSI, GateRev, TypeRev, NotLatin, DLI). The direction of the language 

distance estimates varied for the intercept, but was consistently negative for the 

slopes, meaning that language distance constrained growth.   
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Interpreting effects and comparing models in multilevel analyses is complex, 

especially given the use of continuous and categorical variables. Language distance 

measures were interpreted as an estimate of the relationship of language distance with 

the ILR level for individuals with average scores on the predictor variables (aptitude 

and survey) at the time graduation (intercept), as well in growth (both slopes). In the 

case of two of the three significant predictors of the intercept, FSI and NotIndo, this 

relationship was negative. This meant that for those in harder languages (higher FSI 

categories or non-IndoEuropean languages, respectively), all else being equal, ILR 

levels at graduation were slightly lower. In the case of the slopes, significant 

relationships were negative, meaning a steeper drop between the first two test 

occasions for those in harder languages or a shallower rise thereafter. In almost all 

cases, however, practical significance was slight, as most estimates ranged from 0.00 

to 0.05. The exception was the estimate for Slope12*NotLatin, which was -0.13.  

The variance component estimates for the intercept were mostly unchanged as 

compared to the Survey model, which indicated that the language distance measures 

did not explain any additional variation in the intercept; but there was a reduction in 

the variance in the slope, as the PRV for Slope12 ranged from 0.00 to 0.06, depending 

on the distance measure modeled. 
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Table 30 
 
HLM reading language distance models 

 FSI GateRev TypeRev NotLatin NotIndo DLI  

Fixed Effect 
INTRCPT1π
0       
    INTRCPT2, β00 2.38*** (0.00) 2.38*** (0.00) 2.38*** (0.00) 2.38*** (0.00) 2.38*** (0.00) 2.38*** (0.00) 

     ZA_AR, β01 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 0.03*** (0.01) 

     ZA_AS, β02 -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) -0.02*** (0.01) 

     ZA_GS, β03 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 

     ZA_MC, β04 -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) -0.03*** (0.01) 

     ZA_MK, β05 0.04*** (0.00) 0.04*** (0.00) 0.04*** (0.00) 0.04*** (0.00) 0.04*** (0.00) 0.04*** (0.00) 

     ZA_PC, β06 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 

     ZA_WK, β07 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 

     ZD_1, β08 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 0.02*** (0.01) 

     ZD_2, β09 0.02*** (0.00) 0.01*** (0.00) 0.01** (0.00) 0.01*** (0.00) 0.01*** (0.00) 0.01*** (0.00) 

     ZD_3, β010 0.05*** (0.01) 0.05*** (0.01) 0.04*** (0.01) 0.05*** (0.01) 0.05*** (0.01) 0.04*** (0.01) 

     ZD_4, β011 0.03*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.03*** (0.00) 0.02*** (0.00) 

     ENGY, β012 -0.10 *** (0.03) -0.10*** (0.03) -0.10*** (0.03) -0.10*** (0.03) -0.10*** (0.03) -0.10*** (0.03) 

     [lang dist]   -0.01*** (0.00) 0.00 (0.00) 0.00*** (0.00) 0.01 (0.02) -0.03** (0.01) 0.01 (0.01) 
For SLOPE12 slope, 
π1             

    INTRCPT2, β10 -0.04 *** (0.01) -0.04*** (0.01) -0.04*** (0.01) -0.04*** (0.01) -0.04*** (0.01) -0.04*** (0.01) 

     ZD_1, β11 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 0.02*** (0.00) 
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 FSI GateRev TypeRev NotLatin NotIndo DLI  

     ZD_3, β12 0.00 (0.01) 0.00 (0.01) -0.01 (0.01) -0.01 (0.01) -0.01 (0.01) 0.00 (0.01) 

   [lang dist]   -0.02*** (0.00) 0.00*** (0.00) 0.00*** (0.00) -0.13*** (0.02) -0.04*** (0.01) -0.05*** (0.01) 
For SLOPE26 slope, 
π2            
    INTRCPT2, β20 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 0.05*** (0.00) 

     ZA_WK, β21 0.00* (0.00) 0.00** (0.00) 0.00* (0.00) 0.00* (0.00) 0.00* (0.00) 0.00* (0.00) 

     ZD_3, β22 0.00 (0.00) 0.00 (0.00) 0.00* (0.00) 0.00* (0.00) 0.00* (0.00) 0.00 (0.00) 

     EDUC, β23 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00) 

   [lang dist]   0.00** (0.00) 0.00*** (0.00) 0.00** (0.00) -0.02** (0.01) 0.00 (0.00) -0.01*** (0.00) 

       
Final estimation of variance 
components     

Random Effect 

level-1, e 0.11 (0.32) 0.11 (0.32) 0.11 (0.32) 0.11 (0.32) 0.11 (0.32) 0.11 (0.32) 

INTRCPT1, r0 0.13*** (0.36) 0.13*** (0.36) 0.13*** (0.36) 0.13*** (0.36) 0.13*** (0.36) 0.13*** (0.36) 

SLOPE12 slope, r1 0.05*** (0.22) 0.05*** (0.22) 0.05 *** (0.22) 0.05*** (0.22) 0.05*** (0.22)         0.05*** (0.22) 
 
Note: Standard error in parentheses for estimated coefficients. All level-2 variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 
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The next stage in modeling addressed the last research question concerning 

the presence of an interaction effect on proficiency. The FSI0*[aptitude] terms were 

once again added to the Surveysig model as seen above in Study 1, along with the 

main effects for the DLAB and ASVAB subtests. The new model is below in 

Equation 21. 

ILRNUMti = β00 + β01*ZA_AOi + β02*ZA_ARi + β03*ZA_ASi + β04*ZA_EIi + 

β05*ZA_GSi + β06*ZA_MCi + β07*ZA_MKi + β08*ZA_PCi + β09*ZA_WKi + β010*ZD_1i + 

β011*ZD_2i + β012*ZD_3i + β013*ZD_4i + β014*EDUCi + β015*ENGYi + β016*FSI0i + 

β017*AO_FSI0i + β018*AR_FSI0i + β019*AS_FSI0i + β020*EI_FSI0i + β021*GS_FSI0i + 

β022*MC_FSI0i + β023*MK_FSI0i + β024*PC_FSI0i + β025*WK_FSI0i + β026*D1_FSI0i + 

β027*D2_FSI0i + β028*D3_FSI0i + β029*D4_FSI0i + β10*SLOPE12ti + 

β11*ZA_AOi*SLOPE12ti + β12*ZA_ARi*SLOPE12ti + β13*ZA_ASi*SLOPE12ti + 

β14*ZA_EIi*SLOPE12ti + β15*ZA_GSi*SLOPE12ti + β16*ZA_MCi*SLOPE12ti + 

β17*ZA_MKi*SLOPE12ti + β18*ZA_PCi*SLOPE12ti + β19*ZA_WKi*SLOPE12ti + 

β110*ZD_1i*SLOPE12ti + β111*ZD_2i*SLOPE12ti + β112*ZD_3i*SLOPE12ti + 

β113*ZD_4i*SLOPE12ti + β114*EDUCi*SLOPE12ti + β115*FSI0i*SLOPE12ti + 

β116*AO_FSI0i*SLOPE12ti + β117*AR_FSI0i*SLOPE12ti + β118*AS_FSI0i*SLOPE12ti + 

β119*EI_FSI0i*SLOPE12ti + β120*GS_FSI0i*SLOPE12ti + β121*MC_FSI0i*SLOPE12ti + 

β122*MK_FSI0i*SLOPE12ti + β123*PC_FSI0i*SLOPE12ti + 

β124*WK_FSI0i*SLOPE12ti + β125*D1_FSI0i*SLOPE12ti + 

β126*D2_FSI0i*SLOPE12ti + β127*D3_FSI0i*SLOPE12ti + β128*D4_FSI0i*SLOPE12ti + 

β20*SLOPE26ti + β21*ZA_AOi*SLOPE26ti + β22*ZA_ARi*SLOPE26ti + 

β23*ZA_ASi*SLOPE26ti + β24*ZA_EIi*SLOPE26ti + β25*ZA_GSi*SLOPE26ti + 
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β26*ZA_MCi*SLOPE26ti + β27*ZA_MKi*SLOPE26ti + β28*ZA_PCi*SLOPE26ti + 

β29*ZA_WKi*SLOPE26ti + β210*ZD_1i*SLOPE26ti + β211*ZD_2i*SLOPE26ti + 

β212*ZD_3i*SLOPE26ti + β213*ZD_4i*SLOPE26ti + β214*EDUCi*SLOPE26ti + 

β215*FSI0i*SLOPE26ti + β216*AO_FSI0i*SLOPE26ti + β217*AR_FSI0i*SLOPE26ti + 

β218*GS_FSI0i*SLOPE26ti + β219*MC_FSI0i*SLOPE26ti + 

β220*MK_FSI0i*SLOPE26ti + β221*PC_FSI0i*SLOPE26ti + 

β222*WK_FSI0i*SLOPE26ti + β223*D1_FSI0i*SLOPE26ti + 

β224*D2_FSI0i*SLOPE26ti + β225*D3_FSI0i*SLOPE26ti + β226*D4_FSI0i*SLOPE26ti + 

r0i + r1i*SLOPE12ti + eti      (21)   

  
Reviewing the main effects for the intercept, the ASVAB-AO, -AS, -EI and -GS 

estimated coefficients for the intercept were all non-significant, while -MC, -MK had 

p-values less than the B-H critical value and therefore were also considered to be non-

significant. The four DLAB subtests’ estimated coefficients for the intercept were 

significant, though DLABPt2 had a p-value less than the critical value. None of the 

interaction terms were significant predictors of the intercept after the correction. For 

the two slopes, the only remaining significant variable with an effect on either slope 

after correcting for the false discovery rate was the EDUC variable, which had a 

negative estimated coefficient for the second slope, and the estimate itself was 

approaching zero (0.004, p = 0.002). None of the aptitude variables, whether as main 

effects or as interaction terms, had an effect on either slope. The results are displayed 

below in Table 31. The model with interactions explained an additional 1% of the 

variance in intercept and 4% of the first slope as compared to the FSI model.  
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Table 31 
 
HLM reading FSI0 interaction model 

 Coefficient p < BH 
Fixed Effect 

For INTRCPT1, π0   
    INTRCPT2, β00 2.38*** (0.00) † 
     ZA_AO, β01 0.00 (0.01)  
     ZA_AR, β02 0.03*** (0.01) † 
     ZA_AS, β03 0.00 (0.01)  
     ZA_EI, β04 0.01 (0.01)  
     ZA_GS, β05 0.01 (0.01)  
     ZA_MC, β06 -0.02* (0.01)  
     ZA_MK, β07 0.02* (0.01)  
     ZA_PC, β08 0.05*** (0.01) † 
     ZA_WK, β09 0.07*** (0.01) † 
     ZD_1, β010 0.03*** (0.01) † 
     ZD_2, β011 0.02*** (0.01)  
     ZD_3, β012 0.06*** (0.01) † 
     ZD_4, β013 0.04*** (0.01) † 
     EDUC, β014 -0.01* (0.00)  
     ENGY, β015 -0.10*** (0.03) † 
     FSI0, β016 -0.08*** (0.01) † 
     AO_FSI0, β017 0.00 (0.01)  
     AR_FSI0, β018 0.00 (0.01)  
     AS_FSI0, β019 -0.02 (0.01)  
     EI_FSI0, β020 0.00 (0.01)  
     GS_FSI0, β021 0.02 (0.01)  
     MC_FSI0, β022 -0.02 (0.01)  
     MK_FSI0, β023 0.02* (0.01)  
     PC_FSI0, β024 -0.01 (0.01)  
     WK_FSI0, β025 -0.03* (0.01)  
     D1_FSI0, β026 0.00 (0.01)  
     D2_FSI0, β027 0.00 (0.01)  
     D3_FSI0, β028 0.00 (0.01)  
     D4_FSI0, β029 -0.02* (0.01)  
For SLOPE12 slope, π1    
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 Coefficient p < BH 
    INTRCPT2, β10 -0.04*** (0.01) † 
     ZA_AO, β11 -0.01 (0.01)  
     ZA_AR, β12 0.00 (0.01)  
     ZA_AS, β13 -0.01 (0.01)  
     ZA_EI, β14 0.01 (0.01)  
     ZA_GS, β15 0.00 (0.01)  
     ZA_MC, β16 -0.01 (0.01)  
     ZA_MK, β17 0.01 (0.01)  
     ZA_PC, β18 0.00 (0.01)  
     ZA_WK, β19 -0.01 (0.01)  
     ZD_1, β110 0.01 (0.01)  
     ZD_2, β111 0.00 (0.01)  
     ZD_3, β112 -0.01 (0.01)  
     ZD_4, β113 -0.01 (0.01)  
     EDUC, β114 0.01** (0.00)  
     FSI0, β115 -0.03*** (0.01) † 
     AO_FSI0, β116 0.00 (0.01)  
     AR_FSI0, β117 -0.01 (0.01)  
     AS_FSI0, β118 -0.01 (0.01)  
     EI_FSI0, β119 -0.01 (0.01)  
     GS_FSI0, β120 -0.01 (0.01)  
     MC_FSI0, β121 0.00 (0.01)  
     MK_FSI0, β122 0.00 (0.01)  
     PC_FSI0, β123 0.01 (0.01)  
     WK_FSI0, β124 0.00 (0.01)  
     D1_FSI0, β125 0.01 (0.01)  
     D2_FSI0, β126 0.00 (0.01)  
     D3_FSI0, β127 0.01 (0.01)  
     D4_FSI0, β128 0.02 (0.01)  
For SLOPE26 slope, π2    
    INTRCPT2, β20 0.05*** (0.00) † 
     ZA_AO, β21 0.00 (0.00)  
     ZA_AR, β22 0.00 (0.00)  
     ZA_AS, β23 0.00 (0.00)  
     ZA_EI, β24 0.00 (0.00)  
     ZA_GS, β25 0.00 (0.00)  
     ZA_MC, β26 0.00 (0.00)  
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 Coefficient p < BH 
     ZA_MK, β27 0.00 (0.00)  
     ZA_PC, β28 0.00 (0.00)  
     ZA_WK, β29 -0.01** (0.00)  
     ZD_1, β210 0.00 (0.00)  
     ZD_2, β211 0.00 (0.00)  
     ZD_3, β212 0.00 (0.00)  
     ZD_4, β213 0.00 (0.00)  
     EDUC, β214 0.00*** (0.00) † 
     FSI0, β215 0.00 (0.00)  
     AO_FSI0, β216 0.00 (0.00)  
     AR_FSI0, β217 0.00 (0.00)  
     GS_FSI0, β218 0.00 (0.00)  
     MC_FSI0, β219 0.00 (0.00)  
     MK_FSI0, β220 0.00 (0.00)  
     PC_FSI0, β221 0.00 (0.00)  
     WK_FSI0, β222 0.01 (0.00)  
     D1_FSI0, β223 0.00 (0.00)  
     D2_FSI0, β224 0.01 (0.00)  
     D3_FSI0, β225 0.00 (0.00)  
     D4_FSI0, β226 0.00 (0.00)  
   
Final estimation of variance components 

Random Effect 
level-1, e 0.11 (0.32)  
INTRCPT1, r0 0.13*** (0.36)  
SLOPE12 slope, r1 0.05*** (0.22)  

 
Note: Standard error in parentheses for estimated coefficients. All level-2 

variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 † p < BH critical  

Assumptions in this final model were checked. The Q-Q plot still retained the 

deviance at the tail as seen above in the level-1 model. Alternate covariance structures 
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were attempted but models failed to converge. Further modeling to explore other 

language distance measure interactions was not conducted.  
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Study 3 Hierarchical Generalized Linear Modeling (Listening)  
 
 HLM8 (Raudenbush & Congdon, 2021) was used to model the listening data 

with the outcome treated as an ordinal measure. Due to the low number of language 

clusters in the data, a two-level generalized linear model was used rather than a three-

level model. The first model tested in listening was an empty random intercept model, 

and the results for this model are displayed in Table 33. The model produced the 

estimates for the effect of explanatory variables on the odds of an individual being at 

or below each ILR level. The odds ratio (OR) provided an estimated probability of 

being at or below a proficiency level. In the null model for the listening data, the 

results showed that across all the individuals in the dataset, the expected log odds of 

being at Level 0/0+ was negative (–6.36, p < .001), meaning that it was more likely 

that individuals were at least ILR Level 1 or higher. The probability of an individual 

being at or below ILR Level 0/0+ was 0.0017 or .02%. There was significant variance 

(p < .001) in the intercept (level at graduation) at level-2 (4.13, p < .001). Given the 

importance of reaching ILR Level 2, the model predictions for being at or below ILR 

Level 2 were calculated and the predicted probability of being at or below ILR Level 

2 was 612.89, or 61.29%. The analysis also showed significant variation between 

individuals in their intercepts, τ00 = 4.132 (SE = 2.03). χ2 = 42595.522, p < .001. The 

level-2 ICC was calculated for this model following Snijders & Bosker (1999), as 

cited in O’Connell (2010) where “in a logistic model, the level-1 residuals are 

assumed to follow the standard logistic distribution, which has a mean of 0 and a 

variance of π2 / 3 = 3.29” (p. 5). Therefore, the total variance in the null model was 

7.42 [3.29 (level-1) + 4.13 (level-2)]. The level-2 ICC for the null model was then 
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calculated as .56 which indicated that 56% of the variance was attributed to the 

individual. This value matched the ICC seen in Study 1 above and provided the 

warrant to continue with a two-level model of growth. Before moving on to examine 

how predictors might account for the heterogeneity between individuals, the 

longitudinal nature of the data was modeled with two slopes, Slope12 (initial growth) 

and Slope26 (subsequent growth). 

Table 32 
 
HGLM listening null model 

 Coefficient (se) 
Odds 
Ratio 

 
C.I.  

Fixed Effects  
 

 

Intercept  -6.36*** (0.09) 0.00 (0.001,0.002)  

For THOLD2,    
 

    δ2 1.78*** (0.07) 5.91 (5.118,6.827)  

For THOLD3,    
 

    δ3 3.91*** (0.08) 49.96 (42.602,58.586)  

For THOLD4,    
 

    δ4 6.42*** (0.08) 612.89 (519.630,722.888)  

For THOLD5,    
 

    δ5 8.56*** (0.09) 5,229.51 (4418.467,6189.365)  

      

Random effects  

Intercept Variance, r0 4.13      

Note: Standard error in parentheses for estimated coefficients.  

*** p < .001 

The output for the random intercept model with piecewise slopes (RISlopes) 

is reported below. Both slopes were significant (χ2 25,184, p < .001), with a positive 

coefficient for the first slope and negative for the second. As explained above, the 
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interpretation of the coefficients in the HGLM model is opposite that of the earlier 

models, thus these results indicated that the likelihood of falling test scores was higher 

between the first two test occasions (positive estimate), and rising test scores thereafter 

(negative estimate), the same pattern seen above. The results could also be used to 

predict the probability of being at or below a given ILR level at various time points. For 

example, the predicted logit for an individual at or below ILR Level 2 at the third test 

occasion (time=2) was -0.209 [β00 + β10*2 + β20*2 + δ4], with the predicted probability 

as 81%. Overall, the fixed and random effects estimates changed only slightly from 

those in the Null Model, as can be seen in Table 33 below.  

Table 33 
 
HGLM listening piecewise slopes, random intercept and random Slope12 models  

 RISlopes  Slope12R   

 Coefficient 
Odds 
Ratio  Coefficient 

Odds 
Ratio 

Fixed Effects 

For INTRCPT1 slope, π0     
    INTRCPT2, β00 -6.35*** 0.00 -6.43*** 0.00 
For SLOPE12 slope, π1     
    INTRCPT2, β10 0.19*** 1.21 0.19*** 1.20 
For SLOPE26 slope, π2     
    INTRCPT2, β20 -0.27*** 0.76 -0.27*** 0.76 
For THOLD2,     
    δ2 1.79*** 5.96 1.80*** 6.08 
For THOLD3,     
    δ3 3.94*** 51.42 3.99*** 54.14 
For THOLD4,     
    δ4 6.49*** 657.54 6.58*** 717.57 
For THOLD5,     
    δ5 8.67*** 5833.70 8.79*** 6578.16 
       

Final estimation of variance components 
Random Effects 
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INTRCPT1, r0 4.23***  4.61***  
SLOPE12 slope, r1   0.66***  

 
*** p < .001  

 The next series of models tested the effects of allowing the slopes to vary 

randomly, first with Slope12 random, then with Slope26 random, then with both 

slopes random. Iteration settings had to be raised from the default of 100 to 500 to 

reach convergence. The random level-1 estimated coefficient reliability estimate was 

only marginal, but it remained above 0.10, and the random slope variance component 

estimate was significant (p < .001). Models with a varying second slope failed to 

converge, so it was fixed in later modeling. The Slope12R model is above in Table 

33. The estimated coefficients changed slightly between the random intercept and 

random first slope models. Although convergence took more iterations, the random 

slope variance estimate was significant, and based on the earlier modeling and the 

patterns in the observed data, modeling continued with piecewise slopes, with the first 

slope allowed to vary and the second slope fixed.  

The next set of models was designed to explore aptitude. The general aptitude 

subtests (ASVAB), and then language aptitude battery (DLAB), were added to the 

model as in the studies above. The ASVAB subtests were first added to the model as 

predictors of graduation (the intercept) and growth (two slopes), and the model output 

is shown below. The standardized scores from the subtests were centered by grand 

mean when added to the model. As seen in Study 1 above, the ASVAB-AO, EI and -

MC failed to reach significance as predictors of the intercept. Of the six other 

subtests, the estimates for -AR, -GS, -MK -PC and -WK were all negative, and the 

estimate for ASVAB-AS was positive. The subtests with the largest effects were -PC 
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and -WK. Only ASVAB-MC was significantly related to Slope12, again parallel with 

the findings in Study 1. None of the ASVAB subtests were significantly related to the 

second slope. The ASVAB model described the effect of the nine subtests on the 

intercept and slopes. ASVAB-AR, -GS, -MK, -PC and -WK tended to decrease the 

logit, making it more likely that individuals with higher scores on these subtests 

would be in higher proficiency categories relative to those with lower scores at the 

time of graduation from DLI. Those with higher ASVAB-AS scores would be more 

likely to have lower ILR levels relative to those with lower scores. This may be an 

artifact of selection based on the ASVAB-AFQT score into the basic course at 

DLIFLC. In the ASVAB model, the slope coefficients were interpreted to be the 

estimated slopes for those with mean ASVAB scores. Only one subtest, ASVAB-MC, 

had a statistically significant relationship with growth, in this case the first slope, and 

the results indicated that individuals with higher scores on the -MC subtest would be 

less likely to be in higher proficiency categories between the first two test occasions. 

The addition of the ASVAB variables to the Slope12R model reduced the variance in 

the level-2 intercept by 8% and the variation in the first slope by 7%.  

 An intervening model with only the significant ASVAB variables was run, 

and the results are shown in Table 34 below. Language aptitude predictor variables 

were then added to the model as predictors of the intercept and both slopes. The 

estimated coefficients for the intercept and slopes did not change with the addition of 

the language aptitude variables, but many of general aptitude estimates changed 

slightly. DLABPt1, DLABPt2 and DLABPt3 were all significantly related to the 

intercept, while DLABPt1, DLABPt3 and DLABPt4 were significantly related to the 
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first slope. Only DLABPt3 was significantly related to the second slope. These results 

mirrored the findings in the HLM listening models in Study 1. The results are to be 

interpreted as follows: positive, significant effects make the likelihood of being in a 

higher proficiency category lower for those with below average aptitude scores, and 

negative effects make the likelihood of being in a higher ILR category higher for 

those with below average scores. The logic is similar for the slopes. The first slope 

coefficient was interpreted as the estimated slope for an individual with average 

aptitude scores. Controlling for the other subtests, a negative significant effect of a 

subtest meant that the likelihood was greater that an individual with higher scores on 

that subtest improved over time.    

The addition of the DLAB variables reduced the level-2 variances in the 

model by 2% as compared to the model with only the ASVAB variables. The four 

survey variables were next entered into the model as in the studies above. 
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Table 34 
 
HGLM listening ASVAB and ASVABsig models  

 ASVAB    ASVABsig     
 Coefficient Odds C.I.  Coefficient Odds C.I. 

 Fixed Effect 
For INTRCPT1 slope, π0)       
    INTRCPT2, β00 -6.43*** 0.00 (0.001,0.002)  -6.43*** 0.00 (0.001,0.002) 
     ZA_AO, β01 0.04 1.04 (0.974,1.104)     
     ZA_AR, β02 -0.15*** 0.86 (0.797,0.926)  -0.12*** 0.89 (0.838,0.944) 
     ZA_AS, β03 0.10** 1.11 (1.027,1.196)  0.10*** 1.11 (1.051,1.170) 
     ZA_EI, β04 0.03 1.03 (0.951,1.119)     
     ZA_GS, β05 -0.13*** 0.88 (0.811,0.948)  -0.10*** 0.90 (0.849,0.958) 
     ZA_MC, β06 0.03 1.03 (0.945,1.114)     
     ZA_MK, β07 -0.19*** 0.83 (0.774,0.891)  -0.20*** 0.82 (0.776,0.871) 
     ZA_PC, β08 -0.21*** 0.81 (0.758,0.864)  -0.18*** 0.84 (0.795,0.885) 
     ZA_WK, β09 -0.25*** 0.78 (0.728,0.841)  -0.25*** 0.78 (0.732,0.824) 
For SLOPE12 slope, π1       
    INTRCPT2, β10 0.19*** 1.21 (1.145,1.277)  0.19*** 1.21 (1.144,1.277) 
     ZA_AO, β11 0.06 1.06 (0.998,1.127)     
     ZA_AR, β12 0.01 1.01 (0.937,1.083)     
     ZA_AS, β13 -0.01 0.99 (0.919,1.066)     
     ZA_EI, β14 -0.03 0.97 (0.895,1.048)     
     ZA_GS, β15 0.02 1.02 (0.948,1.104)     
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 ASVAB    ASVABsig     
 Coefficient Odds C.I.  Coefficient Odds C.I. 

     ZA_MC, β16 0.11** 1.12 (1.030,1.213)  0.13*** 1.14 (1.087,1.192) 
     ZA_MK, β17 -0.01 0.99 (0.923,1.059)     
     ZA_PC, β18 0.06 1.06 (0.994,1.130)     
     ZA_WK, β19 -0.03 0.98 (0.911,1.044)     
For SLOPE26 slope, π2       
    INTRCPT2, β20 -0.27*** 0.76 (0.746,0.777)  -0.27*** 0.76 (0.745,0.776) 
     ZA_AO, β21 0.00 1.00 (0.980,1.026)     
     ZA_AR, β22 0.02 1.02 (0.992,1.045)     
     ZA_AS, β23 -0.01 0.99 (0.967,1.020)     
     ZA_EI, β24 -0.01 0.99 (0.964,1.020)     
     ZA_GS, β25 0.02 1.02 (0.988,1.044)     
     ZA_MC, β26 -0.02 0.98 (0.955,1.013)     
     ZA_MK, β27 -0.01 0.99 (0.963,1.013)     
     ZA_PC, β28 -0.01 0.99 (0.972,1.018)     
     ZA_WK, β29 0.01 1.01 (0.988,1.039)     
For THOLD2,        
    δ2 1.80*** 6.07 (5.25,7.029)  1.80*** 6.07 (5.25,7.03) 
        
For THOLD3,        
    δ3 3.99*** 54.14 (46.07,63.64)  3.99*** 54.11 (46.04,63.60) 
For THOLD4,        
    δ4 6.58*** 719.80 (608.73,851.13)  6.58*** 718.95 (607.98,850.18) 
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 ASVAB    ASVABsig     
 Coefficient Odds C.I.  Coefficient Odds C.I. 

For THOLD5,        
    δ5 8.80*** 6626.00 (5582.72,7864.26)  8.80*** 6616.15 (5574.11,7853.00) 
          
Final estimation of variance components              

Random Effect 
             
Variance d.f. χ2  Variance d.f. χ2 

INTRCPT1, r0 4.26*** (2.06) 8234 15160.17212  4.26*** (2.06) 8237 15153.24869 
SLOPE12 slope, r1 0.62*** (0.79) 8234 8656.99908  0.62*** (0.79) 8242 8666.536 
            

Note: Standard deviation in parentheses for estimated variances. All level-2 variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 

 

Table 35 
 
HGLM listening DLAB and DLAB sig models 

 
 DLAB   DLABsig   
 Coefficient Odds C.I. Coefficient Odds C.I. 

Fixed Effect 
For INTRCPT1 slope, π0      
    INTRCPT2, β00 -6.43*** 0.00 (0.001,0.002) -6.43 0.00 (0.001,0.002) 
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 DLAB   DLABsig   
 Coefficient Odds C.I. Coefficient Odds C.I. 
     ZA_AO, β01       
     ZA_AR, β02 -0.08** 0.92 (0.866,0.976) -0.09 0.92 (0.863,0.972) 
     ZA_AS, β03 0.09*** 1.10 (1.041,1.159) 0.09 1.10 (1.041,1.159) 
     ZA_EI, β04       
     ZA_GS, β05 -0.11*** 0.90 (0.846,0.955) -0.11 0.90 (0.844,0.953) 
     ZA_MC, β06       
     ZA_MK, β07 -0.16*** 0.86 (0.808,0.907) -0.16 0.85 (0.806,0.905) 
     ZA_PC, β08 -0.16*** 0.85 (0.808,0.900) -0.16 0.85 (0.807,0.898) 
     ZA_WK, β09 -0.20*** 0.82 (0.775,0.872) -0.20 0.82 (0.773,0.870) 
     ZD_1, β07 -0.13*** 0.88 (0.831,0.932) -0.13*** 0.88 (0.830,0.931) 
     ZD_2, β08 -0.15*** 0.86 (0.814,0.915) -0.12*** 0.89 (0.848,0.934) 
     ZD_3, β09 -0.21*** 0.81 (0.762,0.861) -0.22*** 0.80 (0.754,0.851) 
     ZD_4, β010 -0.03 0.97 (0.912,1.033)    
For SLOPE12 slope, 
π1    0.19*** 1.21 (1.143,1.276) 
    INTRCPT2, β10 0.19*** 1.21 (1.144,1.277)    
     ZA_AO, β11       
     ZA_AR, β12       
     ZA_AS, β13       
     ZA_EI, β14       
     ZA_GS, β15       
     ZA_MC, β16 0.09*** 1.09 (1.043,1.148) 0.10*** 1.10 (1.049,1.154) 
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 DLAB   DLABsig   
 Coefficient Odds C.I. Coefficient Odds C.I. 
     ZA_MK, β17       
     ZA_PC, β18       
     ZA_WK, β19       
     ZD_1, β12 -0.09*** 0.92 (0.866,0.968) -0.08*** 0.92 (0.875,0.970) 
     ZD_2, β13 0.04 1.05 (0.989,1.107)    
     ZD_3, β14 0.06* 1.07 (1.005,1.129) 0.08* 1.08 (1.021,1.142) 
     ZD_4, β15 0.09*** 1.10 (1.036,1.165) 0.07*** 1.08 (1.028,1.126) 
For SLOPE26 slope, 
π2       
    INTRCPT2, β20 -0.27*** 0.76 (0.747,0.778) -0.27*** 0.76 (0.747,0.778) 
     ZA_AO, β21       
     ZA_AR, β22       
     ZA_AS, β23       
     ZA_EI, β24       
     ZA_GS, β25       
     ZA_MC, β26       
     ZA_MK, β27       
     ZA_PC, β28       
     ZA_WK, β29       
     ZD_1, β21 0.00 1.00 (0.985,1.025)    
     ZD_2, β22 0.00 1.00 (0.981,1.023)    
     ZD_3, β23 0.03* 1.03 (1.006,1.050) 0.03* 1.03 (1.007,1.049) 
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 DLAB   DLABsig   
 Coefficient Odds C.I. Coefficient Odds C.I. 
     ZD_4, β24 0.00 1.00 (0.976,1.016)    
For THOLD2,       
    δ2 1.80*** 6.06 (5.241,7.017) 1.80*** 6.06 (5.239,7.015) 
For THOLD3,       
    δ3 3.99*** 53.99 (45.941,63.448) 3.99*** 53.96 (45.912,63.416) 
For THOLD4,       
    δ4 6.58*** 718.25 (607.460,849.240) 6.58*** 717.54 (606.834,848.442) 
For THOLD5,       
    δ5 8.80*** 6628.72 (5585.224,7867.173) 8.80*** 6620.83 (5578.306,7858.200) 
       
Final estimation of variance components      

Random Effect 
 Variance d.f. χ2 Variance d.f. χ2 

INTRCPT1, r0 
4.18*** 
(2.04) 8233 15037.47825 

4.18*** 
(2.04) 8234 15031.80561 

SLOPE12 slope, r1 
0.60*** 
(0.78) 8238 8635.46489 

0.60*** 
(0.78) 8239 8635.78561 

Note: Standard deviation in parentheses for estimated variances. All level-2 variables centered on grand mean.   

*** p < .005 * p < .05
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The four survey variables were next added (group centered) into the last 

aptitude model (DLABsig) as predictors of graduation (intercept) and growth (both 

slopes). The results are shown in Table 36. Of the four survey variables, EDUC, 

PRIORPRO and ENGY were significantly related to the Intercept (p < .001). The 

estimate for the fixed effect of PRIORPRO as a predictor of graduation (Intercept) 

was negative, and EDUC and ENGY were both positive. For initial growth (Slope12), 

the estimated coefficient for EDUC was -0.03 and of marginal significance at p 

=.052. None of the survey variables were significant in their relationship with 

subsequent growth (Slope26). The fixed effect coefficient estimates for the aptitude 

variables shifted with the addition of the survey variables, either increasing slightly or 

decreasing, but very slightly given the scale of these estimates. The addition of the 

survey variables reduced the level-2 intercept variance by 1% and the level-2 slope12 

variance was unchanged. The Slope12*EDUC variable dropped out of significance in 

an intervening model, so in later models there were no remaining survey variables in 

as predictors of growth.   

Intercept: ASVAB-AR, -AS, -GS, -MK, -PC, -WK, DLABPt1, DLABPt 2, 

DLABPt3, EDUC, PriorPro, ENGY 

Slope12:  ASVAB-MC, DLABPt1, DLABPt 3, DLABPt4 

Slope26: DLABPt 3
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Table 36 
 
HGLM listening with survey variables 

 Survey  SurveySig  
   Coefficient  Odds C.I.   Coefficient  Odds C.I.  

Fixed effect  
For INTRCPT1 slope, π0      
    INTRCPT2, β00 -6.43*** 0.00 (0.001,0.002) -6.43*** 0.00 (0.001,0.002) 
     ZA_AR, β01 -0.11*** 0.90 (0.848,0.955) -0.11*** 0.90 (0.847,0.954) 
     ZA_AS, β02 0.06* 1.07 (1.011,1.126) 0.07* 1.07 (1.011,1.126) 
     ZA_GS, β03 -0.10*** 0.91 (0.855,0.963) -0.10*** 0.91 (0.854,0.963) 
     ZA_MK, β04 -0.15*** 0.86 (0.815,0.914) -0.15*** 0.86 (0.815,0.914) 
     ZA_PC, β05 -0.19*** 0.83 (0.787,0.877) -0.19*** 0.83 (0.788,0.877) 
     ZA_WK, β06 -0.26*** 0.77 (0.724,0.817) -0.26*** 0.77 (0.723,0.817) 
     ZD_1, β07 -0.18*** 0.83 (0.783,0.889) -0.18*** 0.84 (0.786,0.892) 
     ZD_2, β08 -0.11*** 0.90 (0.854,0.941) -0.11*** 0.90 (0.855,0.942) 
     ZD_3, β09 -0.21*** 0.81 (0.763,0.862) -0.21*** 0.81 (0.765,0.863) 
     EDUC, β010 0.12*** 1.13 (1.089,1.167) 0.12*** 1.13 (1.089,1.167) 
     MOT, β011 0.01 1.01 (0.948,1.070)    
    PRIORPRO, β012 -0.11*** 0.90 (0.847,0.946) -0.12*** 0.88 (0.845,0.923) 
     ENGY, β013 0.78*** 2.17 (1.484,3.187) 0.74*** 2.10 (1.499,2.940) 
For SLOPE12 slope, π1      
 INTRCPT2, β10 0.19*** 1.21 (1.143,1.276) 0.19*** 1.21 (1.142,1.275) 
     ZA_MC, β11 0.10*** 1.10 (1.050,1.155) 0.10*** 1.10 (1.052,1.157) 
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 Survey  SurveySig  
   Coefficient  Odds C.I.   Coefficient  Odds C.I.  
     ZD_1, β12 -0.06* 0.94 (0.890,0.998) -0.06* 0.94 (0.888,0.992) 
     ZD_3, β13 0.08** 1.09 (1.026,1.150) 0.08** 1.08 (1.022,1.143) 
     ZD_4, β14 0.08*** 1.08 (1.031,1.129) 0.08*** 1.08 (1.031,1.130) 
     EDUC, β15 -0.03* 0.97 (0.942,1.000) -0.03 0.98 (0.948,1.003) 
     MOT, β16 0.00 1.00 (0.937,1.067)    
PRIORPRO, β17 -0.04 0.96 (0.911,1.015)    
     ENGY, β18 -0.10 0.90 (0.621,1.306)    
For SLOPE26 slope, π2      
 INTRCPT2, β20 -0.27*** 0.76 (0.746,0.777) -0.27*** 0.76 (0.747,0.778) 
     ZD_3, β21 0.02* 1.02 (1.002,1.044) 0.03** 1.03 (1.007,1.048) 
     EDUC, β22 0.00 1.00 (0.993,1.016)    
     MOT, β23 0.02 1.02 (0.994,1.040)    
PRIORPRO, β24 0.01 1.01 (0.996,1.033)    
     ENGY, β25 0.04 1.04 (0.915,1.186)    
For THOLD2,      
 δ2 1.80*** 6.05 (5.232,7.007) 1.80*** 6.05 (5.232,7.007) 
For THOLD3,      
    δ3 3.99*** 53.87 (45.826,63.315) 3.99*** 53.86 (45.824,63.317) 
For THOLD4,      
    δ4 6.58*** 717.21 (606.426,848.222) 6.57*** 716.84 (606.107,847.806) 
For THOLD5,      
    δ5 8.80*** 6623.61 (5579.170,7863.576) 8.80*** 6618.35 (5574.672,7857.411) 
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 Survey  SurveySig  
   Coefficient  Odds C.I.   Coefficient  Odds C.I.  
Final estimation of variance components    

Random Effect 
 Variance (s.d.) d.f. χ2 Variance (s.d.) d.f. χ2 

INTRCPT1, r0 4.10*** (2.03) 8230 14889.28536 4.10*** (2.03) 8231 14890.35649 
SLOPE12 
slope, r1 0.60*** (0.78) 8235 8628.7225 0.61*** (0.78) 8238 8634.89429 

 
Note: Standard deviation in parentheses for estimated variances. All level-2 variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 
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The next stage of models considered the language distance measures. As in 

the above studies, the distance measures, FSI, GateRev, TypeRev, NotIndo, NotLatin,  

and DLI were modeled separately. The models all required an increase in the default 

number of estimation settings to converge, and the models’ level-1 random 

coefficient reliability estimate remained marginal in a range of 0.098 to 0.105. 

Reduced output from these five models is displayed in Table 37. The main effect for 

the intercept at the first threshold was similar to all other models, with an estimated 

coefficient of either -6.44 or -6.43, depending on the measure. The two slopes were 

consistent with earlier models, showing the greater likelihood of scores dropping 

between the first two test occasions and rising thereafter. For the intercept, in addition 

to the NotLatin measure, the GateRev measure was also not significant; for the first 

slope, the results were identical (all but the NotIndo measure were significantly 

related to the first slope), and for the second slope, there were two measures found to 

be significant predictors of the second slope (NotLatin and DLI).  

The direction of the estimates also provided information about the effect of 

language distance. For the significant measures for the intercept, FSI, NotIndo and 

DLI were all positive, which meant that all things being equal, individuals in the 

harder languages had a greater probability of being at or below a threshold. TypeRev 

was in the opposite direction, i.e., negative. All of the significant predictors of the 

either slope, including TypeRev, were positive, confirming the hypothesis that 

language distance would constrain growth. The addition of the distance measures 

effected the estimated coefficients and their significance in several cases, most 

notably in the DLAB-Slope12 terms: in the FSI, NotLatin and DLI models, the 
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DLABPt3*Slope12 coefficient dropped out of significance, while in GateRev it was 

marginal (p < .05); in the FSI and DLI models, DLABPt4* Slope12 also fell out of 

significance, while in NotIndo model it was marginal. In the two models with 

continuous distance measures, GateRev or TypeRev, the two DLAB subtest estimates 

remained significant in their effect on the first slope. The DLABPt3*Slope26 

estimated coefficient, which had been significant (p = .03) in the earlier models, 

dropped out of significance for the FSI, GateRev, NotLatin and DLI models. The FSI 

variable was selected to take forward to the next stage in model in order to mirror the 

earlier studies.  
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Table 37 
 
HGLM listening language distance models  

 
 

 FSI  GateRev  TypeRev  
  Coeff  Odds Coeff  Odds Coeff  Odds 
Fixed effect          
For INTRCPT1 slope, π0     
    INTRCPT2, β00 -6.44*** 0.00 -6.43*** 0.00 -6.43*** 0.00 
     ZA_AR, β01 -0.11*** 0.89 -0.11*** 0.90 -0.10*** 0.90 
     ZA_AS, β02 0.07* 1.07 0.07** 1.07 0.06* 1.07 
     ZA_GS, β03 -0.10*** 0.91 -0.10*** 0.91 -0.10*** 0.91 
     ZA_MK, β04 -0.16*** 0.86 -0.15*** 0.86 -0.14*** 0.87 
     ZA_PC, β05 -0.19*** 0.82 -0.19*** 0.83 -0.18*** 0.83 
     ZA_WK, β06 -0.27*** 0.77 -0.26*** 0.77 -0.26*** 0.77 
     ZD_1, β07 -0.19*** 0.83 -0.17*** 0.84 -0.16*** 0.85 
     ZD_2, β08 -0.14*** 0.87 -0.12*** 0.89 -0.10*** 0.90 
     ZD_3, β09 -0.28*** 0.76 -0.22*** 0.80 -0.18*** 0.83 
     EDUC, β010 0.10*** 1.11 0.10*** 1.11 0.11*** 1.11 
    PRIORPRO, β011 -0.13*** 0.88 -0.12*** 0.88 -0.13*** 0.88 
     ENGY, β012 0.78*** 2.18 0.75*** 2.12 0.73*** 2.08 
    [langdist], β013 0.16*** 1.18 0.00 1.00 -0.02*** 0.98 
For SLOPE12 slope, π1      
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 FSI  GateRev  TypeRev  
    INTRCPT2, β10 0.19*** 1.21 0.19*** 1.21 0.19*** 1.21 
     ZA_MC, β11 0.10*** 1.11 0.10*** 1.10 0.09*** 1.10 
     ZD_1, β12 -0.09*** 0.91 -0.09*** 0.91 -0.09*** 0.91 
     ZD_3, β13 0.05 1.05 0.06* 1.06 0.06* 1.06 
     ZD_4, β14 0.03 1.03 0.05* 1.05 0.07*** 1.07 
    FSILANGC, β15 0.06*** 1.07 0.01** 1.01 0.01*** 1.01 
For SLOPE26 slope, π2      
    INTRCPT2, β20 -0.27*** 0.76 -0.27*** 0.76 -0.27*** 0.76 
     ZD_3, β21 0.02 1.02 0.02 1.02 0.02* 1.02 
    FSILANGC, β22 0.01* 1.01 0.00 1.00 0.00 1.00 
For THOLD2,      
    δ2 1.81*** 6.08 1.80*** 6.07 1.80*** 6.04 
For THOLD3,       
    δ3 3.99*** 54.22 3.99*** 54.02 3.98*** 53.60 
For THOLD4,      
    δ4 6.58*** 723.44 6.58*** 719.58 6.57*** 714.21 
For THOLD5,      
    δ5 8.81*** 6691.08 8.80*** 6649.67 8.80*** 6604.21 
Final estimation of variance components    
Random Effect Variance  Variance   Variance  
INTRCPT1, r0 4.06***  4.11***  4.07***  
SLOPE12 slope, r1 0.59***  0.60***  0.60***   
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 NotLatin   NotIndo  DLI  
  Coeff  Odds Coeff  Odds Coeff  Odds 
Fixed effect          
For INTRCPT1 slope, π0      
    INTRCPT2, β00 -6.43*** 0.00 -6.43*** 0.00 -6.44*** 0.00 
     ZA_AR, β01 -0.11*** 0.90 -0.12*** 0.89 -0.11*** 0.90 
     ZA_AS, β02 0.07* 1.07 0.06* 1.07 0.07* 1.07 
     ZA_GS, β03 -0.10*** 0.91 -0.10*** 0.90 -0.10*** 0.91 
     ZA_MK, β04 -0.15*** 0.86 -0.15*** 0.86 -0.15*** 0.86 
     ZA_PC, β05 -0.18*** 0.83 -0.19*** 0.82 -0.19*** 0.83 
     ZA_WK, β06 -0.26*** 0.77 -0.27*** 0.77 -0.26*** 0.77 
     ZD_1, β07 -0.17*** 0.85 -0.18*** 0.83 -0.17*** 0.84 
     ZD_2, β08 -0.12*** 0.89 -0.14*** 0.87 -0.13*** 0.88 
     ZD_3, β09 -0.21*** 0.81 -0.27*** 0.77 -0.22*** 0.80 
     EDUC, β010 0.10*** 1.11 0.10*** 1.11 0.10*** 1.11 
    PRIORPRO, β011 -0.12*** 0.89 -0.14*** 0.87 -0.12*** 0.88 
     ENGY, β012 0.76*** 2.15 0.74*** 2.09 0.76*** 2.14 
    [langdist], β013 0.01 1.01 0.53*** 1.71 0.08* 1.08 
For SLOPE12 slope, π1      
    INTRCPT2, β10 0.19*** 1.21 0.19*** 1.21 0.19*** 1.21 
     ZA_MC, β11 0.10*** 1.10 0.10*** 1.10 0.10*** 1.10 
     ZD_1, β12 -0.09*** 0.91 -0.08*** 0.92 -0.10*** 0.91 
     ZD_3, β13 0.05 1.05 0.07** 1.08 0.04 1.04 
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 NotLatin   NotIndo  DLI  
     ZD_4, β14 0.05* 1.05 0.05* 1.05 0.03 1.04 
    [langdist], β15 0.46** 1.59 0.06 1.06 0.15*** 1.16 
For SLOPE26 slope, π2      
    INTRCPT2, β20 -0.27*** 0.76 -0.27*** 0.76 -0.27*** 0.76 
     ZD_3, β21 0.02 1.02 0.02* 1.02 0.01 1.01 
    [langdist], β22 0.09** 1.09 0.02 1.02 0.04*** 1.04 
For THOLD2,      
    δ2 1.80*** 6.06 1.80*** 6.07 1.80*** 6.07 
For THOLD3,      
    δ3 3.99*** 53.95 3.99*** 54.03 3.99*** 54.01 
For THOLD4,      
    δ4 6.58*** 719.44 6.58*** 720.48 6.58*** 720.57 
For THOLD5,      
    δ5 8.80*** 6653.74 8.80*** 6653.03 8.81*** 6668.67 
Final estimation of variance components    
Random Effect Variance  Variance  Variance   
INTRCPT1, r0 4.10***  4.04***  4.11***  
SLOPE12 slope, r1 0.57***  0.60***  0.57***  

Note:. All level-2 variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 



 

 157 

The final stage of modeling investigated whether there were any significant 

interactions for aptitude subtests and language distance in the ordinal model of 

listening. In addition to the interaction terms, the main effects of the variables were 

also modeled even if their p-values were larger than 0.05 in earlier models. The FSI 

measure was selected for this model, and as with the first two studies, FSI was coded 

as a dichotomous variable. A finding of significant interaction would mean that the 

relationship between the scores on an aptitude subtest and either the intercept or 

slopes was different in harder languages (FSI0=1) than in the easier languages 

(FSI0=0).  Given the number of variables now in the model, corrections were made 

for multiple comparisons. The B-H approach was applied to this final model to reduce 

the false discovery rate, and the last two columns in Table 38 below display the p-

value as reported in the model and whether the p-value is below the B-H critical 

value. Adding the interaction terms complicated the interpretation of the estimates. 

With the interaction terms, the effect of the aptitude predictor variables on the 

outcome is different for different values of language distance, all other things being 

equal. 

Table 38 
 
HGLM Listening with FSI0 interactions model  

 
Fixed Effect  Coefficient  Odds  p-value p < BH 
For INTRCPT1 slope, π0)     
    INTRCPT2, β00 -6.44*** 0.00 <0.001 † 
     ZA_AO, β01 0.05 1.05 0.31  
     ZA_AR, β02 -0.13* 0.88 0.015  
     ZA_AS, β03 -0.07 0.94 0.23  
     ZA_EI, β04 0.03 1.03 0.653  
     ZA_GS, β05 -0.08 0.92 0.126  
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Fixed Effect  Coefficient  Odds  p-value p < BH 
     ZA_MC, β06 0.00 1.00 0.968  
     ZA_MK, β07 -0.11 0.90 0.035  
     ZA_PC, β08 -0.22*** 0.80 <0.001 † 
     ZA_WK, β09 -0.25*** 0.78 <0.001 † 
     ZD_1, β010 -0.19*** 0.83 <0.001 † 
     ZD_2, β011 -0.11*** 0.90 0.002 † 
     ZD_3, β012 -0.38*** 0.68 <0.001 † 
     ZD_4, β013 -0.17*** 0.84 <0.001 † 
     EDUC, β014 0.10*** 1.11 <0.001 † 
    PRIORPRO, β015 -0.14*** 0.87 <0.001 † 
     ENGY, β016 0.74*** 2.09 <0.001  
     FSI0, β017 0.81*** 2.25 <0.001 † 
     AO_FSI0, β018 0.06 1.06 0.344  
     AR_FSI0, β019 -0.01 0.99 0.921  
     AS_FSI0, β020 0.20** 1.22 0.009  
     EI_FSI0, β021 -0.03 0.98 0.759  
     GS_FSI0, β022 -0.06 0.94 0.453  
     MC_FSI0, β023 0.08 1.08 0.361  
     MK_FSI0, β024 -0.04 0.96 0.589  
     PC_FSI0, β025 0.01 1.01 0.859  
     WK_FSI0, β026 0.02 1.02 0.807  
     D1_FSI0, β027 0.00 1.00 0.972  
     D2_FSI0, β028 -0.15** 0.86 0.007  
     D3_FSI0, β029 0.17** 1.18 0.011  
     D4_FSI0, β030 0.11 1.11 0.105  
For SLOPE12 slope, π1     
    INTRCPT2, β10 0.19*** 1.21 <0.001 † 
     ZA_AO, β11 0.04 1.04 0.365  
     ZA_AR, β12 -0.06 0.94 0.242  
     ZA_AS, β13 0.01 1.01 0.787  
     ZA_EI, β14 -0.06 0.94 0.275  
     ZA_GS, β15 0.02 1.02 0.679  
     ZA_MC, β16 0.16** 1.18 0.006  
     ZA_MK, β17 -0.02 0.98 0.708  
     ZA_PC, β18 0.06 1.06 0.211  
     ZA_WK, β19 -0.11* 0.89 0.021  
     ZD_1, β110 -0.03 0.97 0.441  
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Fixed Effect  Coefficient  Odds  p-value p < BH 
     ZD_3, β111 0.13*** 1.14 0.002 † 
     ZD_4, β112 0.15*** 1.17 <0.001 † 
     FSI0, β113 -0.01 0.99 0.911  
     AO_FSI0, β114 -0.01 0.99 0.817  
     AR_FSI0, β115 0.11 1.12 0.129  
     AS_FSI0, β116 -0.01 0.99 0.921  
     EI_FSI0, β117 0.05 1.05 0.549  
     GS_FSI0, β118 -0.02 0.98 0.788  
     MC_FSI0, β119 -0.14 0.87 0.105  
     MK_FSI0, β120 -0.02 0.98 0.814  
     PC_FSI0, β121 -0.02 0.98 0.747  
     WK_FSI0, β122 0.16* 1.18 0.022  
     D1_FSI0, β123 -0.10 0.91 0.085  
     D2_FSI0, β124 0.04 1.04 0.391  
     D3_FSI0, β125 -0.13* 0.88 0.038  
     D4_FSI0, β126 -0.12* 0.88 0.054  
For SLOPE26 slope, π2     
    INTRCPT2, β20 -0.27*** 0.76 <0.001 † 
     ZA_AO, β21 0.01 1.01 0.662  
     ZA_AR, β22 0.01 1.01 0.606  
     ZA_AS, β23 -0.03 0.98 0.163  
     ZA_EI, β24 0.00 1.00 0.947  
     ZA_GS, β25 0.02 1.02 0.411  
     ZA_MC, β26 -0.02 0.98 0.405  
     ZA_MK, β27 -0.01 0.99 0.477  
     ZA_PC, β28 0.01 1.01 0.712  
     ZA_WK, β29 0.01 1.01 0.411  
     ZD_1, β210 0.01 1.01 0.655  
     ZD_2, β211 0.01 1.01 0.625  
     ZD_3, β212 0.01 1.01 0.427  
     ZD_4, β213 -0.02 0.98 0.231  
     FSI0, β214 0.02 1.02 0.388  
     AO_FSI0, β215 -0.01 0.99 0.554  
     AR_FSI0, β216 0.01 1.01 0.602  
     AS_FSI0, β217 0.04 1.04 0.116  
     EI_FSI0, β218 -0.01 0.99 0.651  
     GS_FSI0, β219 0.00 1.00 0.977  
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Fixed Effect  Coefficient  Odds  p-value p < BH 
     MC_FSI0, β220 0.00 1.00 0.978  
     MK_FSI0, β221 -0.01 0.99 0.718  
     PC_FSI0, β222 -0.02 0.98 0.323  
     WK_FSI0, β223 -0.01 0.99 0.578  
     D1_FSI0, β224 -0.01 0.99 0.569  
     D2_FSI0, β225 0.00 1.00 0.932  
     D3_FSI0, β226 0.02 1.02 0.375  
     D4_FSI0, β227 0.03 1.03 0.238  
For THOLD2,     
    δ2 1.81*** 6.08 <0.001 † 
For THOLD3,     
    δ3 3.99*** 54.18 <0.001 † 
For THOLD4,     
    δ4 6.59*** 724.54 <0.001 † 
For THOLD5,     
    δ5 8.81*** 6717.22 <0.001 † 
Random Effect     
 Variance   d.f. χ2 p-value 
INTRCPT1, r0 3.95 (1.99) 8213 14700.4623 <0.001 
SLOPE12 slope, r1 0.58 (0.76) 8217 8596.71833 0.002 

Note: All level-2 variables centered on grand mean.  

*** p < .005 ** p < .01 * p < .05 † p < BH critical  

A number of estimates dropped out of significance in this model. With the 

FSI*aptitude interaction terms added to the model, the only remaining significant 

effects in the model for the intercept were ASVAB-PC, ASVAB-WK, and all four 

DLAB subtests. These estimates were all negative, which was meant that all else 

being equal, those with higher scores on each subtest were more likely to be at higher 

proficiency levels at the time of graduation, as expected. The three survey variables in 

the model for the intercepts were also still significant. The DLABPt3 and DLABPt4 as 

predictors of the first slope, Slope12, and the direction of the estimates indicated that 

those with higher aptitude scores were  more likely to have a lower scores between 
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the first two tests, which had the effect of steepening Slope12. None of the interaction 

terms themselves were significant in the model for the intercepts, the model for 

Slope12 or the model for Slope26. The PRV for this final model’s level-2 intercept 

was 0.14 and for the level-2 slope it was 0.12, indicating that this model did explain 

additional variance in mean proficiency level at the time of graduation and in mean 

initial growth. Significant unexplained variance remained in the model, but as this 

model responded to the final research question, no further exploration was conducted.
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Study 4 Hierarchical Generalized Linear Modeling (Reading) 
 

In the final study, HLM8 (Raudenbush & Congdon, 2021) was used once 

again to model the reading data with the outcome treated as an ordinal measure with 

six categories (Levels 0/0+, Level 1, Level 1+, Level 2, Level 2+ and Level 3). The 

first model was an empty random intercept model and the results for this model are 

displayed in Table 39.  

Table 39 
 
HGLM reading null model 

  Coefficient 
 Odds 
Ratio 

 Confidence 
Intervals 

Fixed Effect 
For INTRCPT1 slope, π0)   
    INTRCPT2, 
β00 -6.32*** 0.00 (0.002, 0.002) 
For THOLD2,   
    δ2 1.04*** 2.83 (2.493, 3.216) 
For THOLD3,   
    δ3 3.12*** 22.68 (19.384, 26.533) 
For THOLD4,   
    δ4 5.68*** 292.22 (247.962, 344.368) 
For THOLD5,   
    δ5 8.10*** 3285.96 (2778.490, 3886.109) 

 
Random Effect 

INTRCPT1, r0 3.69 (8.10)   
*** p < .001 

The model produced the estimates for an individual being at or below each ILR level. 

In the null model for the reading data, the results showed that across all the 

individuals in the dataset, the expected log odds of being at Level 0/0+ was negative 

(–6.32, p < .001), meaning that it was more likely that individuals were at least ILR 
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Level 1 or higher. The analysis also showed significant variation between individuals 

in their intercepts (proficiency at graduation), τ00 = 3.693 (SE = 1.92), χ2 = 38828.94, 

p < .001. The level-2 ICC was calculated for this model using the definition presented 

above as 0.53, which indicated that 53% of the variance was attributed to the 

individual, which is just slightly above the ICC calculated for reading in Study 2. 

Before moving on to examine how predictors might account for the heterogeneity 

between individuals, the longitudinal nature of the data was modeled with two slopes, 

Slope12 (initial growth) and Slope26 (subsequent growth). 

 The output for the random intercept model with two piecewise slopes 

(RISlopes) is reported below. Both slopes were significant, with a positive coefficient 

for the first slope and negative for the second. As explained in Study 3, the direction 

of the coefficients in the ordinal HGLM model is opposite that of the earlier HLM 

models, so these results indicated that the likelihood of falling test scores was higher 

between the first two test occasions, and rising test scores were seen thereafter. 

Overall, the fixed effect estimates for the intercept and thresholds changed only 

slightly from those in the Null Model, as can be seen in Table 40 below.  

Table 40 
 
HGLM reading random intercept, piecewise slopes model 

Fixed Effect  Coefficient  Odds  Confidence 
For INTRCPT1 slope, π0    
    INTRCPT2, β00 -6.32*** 0.00 (0.002,0.002) 
For SLOPE12 slope, π1    
    INTRCPT2, β10 0.22*** 1.25 (1.180,1.314) 
For SLOPE26 slope, π2    
    INTRCPT2, β20 -0.31*** 0.74 (0.721,0.751) 
For THOLD2,    
    δ2 1.05*** 2.85 (2.515,3.239) 
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Fixed Effect  Coefficient  Odds  Confidence 
For THOLD3,    
    δ3 3.15*** 23.38 (19.999,27.326) 
For THOLD4,    
    δ4 5.76*** 318.31 (270.273,374.878) 
For THOLD5,    
    δ5 8.25*** 3819.11 (3230.437,4515.044) 
Final estimation of variance 
components   

 

Random Effect 
INTRCPT1, r0 3.90*** (1.97)   

*** p < .001 
 
 The next series of models tested the effects of allowing the slopes to vary 

randomly, first with Slope12 random, then with Slope26 random, then with both 

slopes random. Models with either slope random would not converge, even after 

raising the default iteration settings. Therefore, model building in reading continued 

with a random intercept and two fixed slopes.  

The next set of models were designed to respond to RQ 3. The general 

aptitude subtests from ASVAB, and then language aptitude battery, DLAB, were 

added to the model as in the studies above. The ASVAB subtests were first all added 

to the model as predictors of the intercept and slopes, and the model output is in the 

first two columns of Table 41. The standardized scores from the subtests were 

centered by grand mean when added to the model. The estimates for the main effect 

of the intercept, Slope12, or Slope26 did not fundamentally change. The results 

showed that of the nine ASVAB subtests, only the ASVAB-AO and EI subtests failed 

to reach significance as predictors of the intercept. The subtests with the largest 

effects on the intercept were -PC and -WK. Only ASVAB-AO was significantly related 
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to Slope12 and only ASVAB-WK was a significant predictor of Slope26. The addition 

of the ASVAB subtests to the model reduced the variance by 16%.     

Before moving on to add the DLAB subtests, an interim model was tested in 

which only the significant ASVAB subtests were included. This model’s output is 

displayed in the third and fourth columns of the table below. Slight changes to the 

ASVAB subtest intercept estimates were observed, but the intercept, slopes and 

threshold estimates, as well as the variance estimates and significance, were 

unchanged.  

Table 41 
 
HGLM reading with ASVAB subtests 

  ASVAB ASVABsig 
   Coefficient O.R  Coefficient O.R. 
For INTRCPT1 
slope, π0) Fixed effect 
    INTRCPT2, β00 -6.35*** 0.00 -6.34*** 0.00 
     ZA_AO  -0.02  0.98   
     ZA_AR  -0.22*** 0.81 -0.21*** 0.81 
     ZA_AS  0.13*** 1.14 0.13*** 1.14 
     ZA_EI  -0.02 0.98   
     ZA_GS  -0.11*** 0.89 -0.11*** 0.89 
     ZA_MC  0.12*** 1.13 0.14*** 1.15 
     ZA_MK  -0.22*** 0.80 -0.25*** 0.78 
     ZA_PC  -0.29*** 0.75 -0.28*** 0.76 

     ZA_WK  -0.36*** 0.69 -0.38*** 0.68 

For SLOPE12 slope, π1     
    INTRCPT2, β10 0.22*** 1.25 0.22*** 1.25 

     ZA_AO  0.06* 1.06 0.06*** 1.06 

     ZA_AR  0.00 1.00   
     ZA_AS 0.03 1.03   
     ZA_EI 0.00 1.00   
     ZA_GS  0.03 1.03   
     ZA_MC  0.07 1.08   
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     ZA_MK  -0.05 0.95   
     ZA_PC  0.01 1.01   
     ZA_WK  -0.03 0.97   
For SLOPE26 slope, π2     
    INTRCPT2, β20 -0.31*** 0.74 -0.31*** 0.74 
     ZA_AO  -0.01 0.99   
     ZA_AR  0.02 1.02   
     ZA_AS  -0.01 0.99   
     ZA_EI  -0.01 0.99   
     ZA_GS  -0.01 0.99   
     ZA_MC  -0.02 0.98   
     ZA_MK  0.01 1.01   
     ZA_PC  0.01 1.01   
     ZA_WK  0.04*** 1.04 0.03*** 1.03 
For THOLD2,     
    δ2 1.05*** 2.85 1.05*** 2.85 
For THOLD3,     
    δ3 3.16*** 23.47 3.15*** 23.42 
For THOLD4,     
    δ4 5.78*** 323.69 5.78*** 322.22 
For THOLD5,     
    δ5 8.27*** 3915.94 8.27*** 3894.38 
Final estimation of variance components     

Random Effect 
 Var (s.d)    
INTRCPT1, r0 3.36*** (1.83)     

Note: All level-2 variables centered on grand mean.  

*** p < .005 ** p < .01 * p < .05 

Next, the DLAB subtest measures were added as predictors of intercept and 

slopes to the random intercept, piecewise slopes model with only the significant 

ASVAB subtests. The standardized DLAB subtests were grand mean centered when 

added to the model, and the output is presented in Table 42. All four of the DLAB 

subtests were significant predictors of the intercept, and only DLABPt1 was 

significantly related to the first slope. None of the DLAB subtests had a significant 
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effect on the second slope. The logits for the subtests -AR, -GS, -MK -PC and -WK 

remained negative in their relationship with the intercept while ASVAB-AS and -MC 

were positive. The four DLAB subtests were all negative in relation to the intercept 

and DLABPt3 had the largest effect. Language aptitude explained 3% of the variance 

in intercept between individuals. Before moving on to add the survey variables, a 

model was built to include only the significant aptitude subtests these results 

(DLABsig) are also shown below.  

Table 42 
 
HGLM reading with DLAB subtests  

 DLAB  DLABsig  
 Coefficient O.R. Coefficient O.R. 

Fixed Effect 
For INTRCPT1 slope, π0     
    INTRCPT2, β00 -6.34*** 0.00 -6.34*** 0.00 
     ZA_AR  -0.15*** 0.86 -0.16*** 0.86 
     ZA_AS  0.10*** 1.10 0.10*** 1.10 
     ZA_GS  -0.11*** 0.90 -0.10*** 0.90 
     ZA_MC 0.15*** 1.16 0.15*** 1.16 
     ZA_MK -0.19*** 0.83 -0.19*** 0.83 
     ZA_PC, -0.25*** 0.78 -0.25*** 0.78 
     ZA_WK -0.29*** 0.75 -0.30*** 0.74 
     ZD_1 -0.12*** 0.89 -0.13*** 0.88 
     ZD_2 -0.09*** 0.91 -0.07*** 0.93 
     ZD_3 -0.25*** 0.78 -0.21*** 0.81 
     ZD_4 -0.14*** 0.87 -0.12*** 0.88 
For SLOPE12 slope, π1    
    INTRCPT2, β10 0.22*** 1.25 0.22*** 1.25 
     ZA_AO  0.06*** 1.06 0.08*** 1.08 
     ZD_1  -0.09*** 0.91 -0.07*** 0.93 
     ZD_2  0.03 1.03   
     ZD_3  0.05 1.06   
     ZD_4  0.01 1.01   
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 DLAB  DLABsig  
 Coefficient O.R. Coefficient O.R. 

For SLOPE26 slope, π2     
    INTRCPT2, β20 -0.31*** 0.74 -0.31*** 0.73 
     ZA_WK  0.02*** 1.02 0.03*** 1.03 

     ZD_1  0.01 1.01   

     ZD_2  0.00 1.00  
 

     ZD_3  0.02 1.02  
 

     ZD_4  0.01 1.01   
For THOLD2,     
    δ2 1.05*** 2.85 1.05*** 2.85 

For THOLD3,     
    δ3 3.15*** 23.31 3.15*** 23.29 

For THOLD4,     
    δ4 5.77*** 321.14 5.77*** 320.17 

For THOLD5,     
    δ5 8.27*** 3895.50 8.26***  3882.07 

Final estimation of variance components     
Random Effect (s.d.)  

INTRCPT1, r0 3.26*** (1.80)  3.26*** (1.80)   
Note: All level-2 variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 

The four survey variables were next added (group centered) into the last 

aptitude model (DLABsig) as predictors of intercept and both slopes. Of the four 

survey variables, education, motivation, prior proficiency and English as a first 

language, only ENGY (0=Not English) was significantly related to the Intercept (β015 -

0.55, p = .003). EDUC was significantly related to Slope26, with a positive estimate 

(β22 0.02, p < .001), which indicated that contrary to expectations, individuals with 

higher levels of education and all other things being equal, individuals were more 

likely to be at a lower proficiency level in reading. While unexpected, these findings 

mirrored those in the earlier HLM study. The fixed effect coefficient estimates for the 
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aptitude variables shifted very slightly with the addition of the survey variables, either 

increasing or decreasing. The survey variables did not explain any additional level-2 

variance in reading. A model with only the significant level-2 predictors resulted in 

the Slope12/EDUCM relationship dropping out of significance, and the final 

SurveySig model is shown below in columns 3 and 4.  

Table 43 
 
HGLM reading with survey variables 

 Survey SurveySig 
   Coefficient OR  Coefficient OR 

Fixed effect 
For INTRCPT1 slope, π0    
    INTRCPT2, β00 -6.34*** 0.00 -6.34*** 0.00 
     ZA_AR  -0.16*** 0.85 -0.16*** 0.86 
     ZA_AS  0.09*** 1.09 0.09*** 1.10 
     ZA_GS  -0.10*** 0.90 -0.11*** 0.90 
     ZA_MC  0.15*** 1.16 0.15*** 1.16 
     ZA_MK  -0.19*** 0.83 -0.19*** 0.83 
     ZA_PC  -0.25*** 0.78 -0.25*** 0.78 
     ZA_WK  -0.31*** 0.73 -0.31*** 0.74 
     ZD_1  -0.14*** 0.87 -0.13*** 0.88 
     ZD_2  -0.07*** 0.93 -0.07*** 0.93 
     ZD_3  -0.21*** 0.81 -0.21*** 0.81 
     ZD_4  -0.12*** 0.88 -0.12*** 0.88 
     EDUC  0.03 1.03   
     MOT  0.01 1.01   
     PRIPROF  -0.02 0.98   
     ENGY  0.55*** 1.73 0.55*** 1.74 
For SLOPE12 slope, π1    
    INTRCPT2, β10 0.22*** 1.25 0.22*** 1.25 
     ZA_AO  0.08*** 1.08 0.08*** 1.08 
     ZD_1  -0.06* 0.94 -0.09*** 0.92 
     EDUC  -0.04* 0.96   
     MOT  0.00 1.00   
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 Survey SurveySig 
   Coefficient OR  Coefficient OR 
     PRIPROF  -0.01 0.99   
     ENGY  0.08 1.08   
For SLOPE26 slope, π2    
    INTRCPT2, β20 -0.31*** 0.73 -0.31*** 0.73 
     ZA_WK  0.02* 1.02 0.02* 1.02 
     EDUC  0.02*** 1.02 0.02*** 1.02 
     MOT  0.01 1.01    
     PRIPROF  -0.01 0.99   
     ENGY  -0.10 0.90   
For THOLD2,     
    δ2 1.05*** 2.85 1.05*** 2.85 
For THOLD3,     
    δ3 3.15*** 23.32 3.15*** 23.31 
For THOLD4,     
    δ4 5.77*** 321.10 5.77*** 320.72 
For THOLD5,     
    δ5 8.27*** 3901.27 8.27*** 3893.49 

     

Final estimation of 
variance components     

Random Effect (s.d) 
INTRCPT1, r0 3.26*** (1.80)  3.26*** (1.80)   

 
Note: All level-2 variables centered on grand mean.   

*** p < .005 ** p < .01 * p < .05 

The next stage of models examined the influence of the language distance 

measures on reading language proficiency, while considering significant ASVAB, 

DLAB and other individual differences. As in the above studies, the distance 

measures, FSI, GateRev, TypeRev, NotLatin, NotIndo, and DLI, were modeled 

separately. The estimated coefficients for graduation (the intercept) and growth (two 

slopes) changed only slightly as compared to the SurveySig model above. The new 
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models accounting for language distance explained up to 1% of the intercept variance 

between individuals.  

Reduced output from these five models is displayed in Table 44. FSI, 

TypeRev, and NotIndo all had significant effects on the intercept, though the direction 

of the estimates varied: FSI and NotIndo were both negative, while TypeRev was 

positive, as seen in the listening models. This meant that for FSI and NotIndo, those 

in harder languages were expected to be in lower ILR categories. The differing scales 

of the estimates complicated any comparison of effects, but as noted earlier in the 

other studies, none of the estimates of language distance were large relative to the 

coefficient for the intercept. All six of the distance measures were significant, positive 

predictors of the first slope, again meaning that those in the more difficult languages 

were more likely to show a decrease in initial growth. Five of the six distance 

measures (FSI, GateRev, TypeRev, NotLatin and DLI ) were significantly related to 

subsequent growth, and the estimates for Slope26 were positive, which as explained 

above, was interpreted to mean that all else equal, individuals in this population in the 

harder languages were more likely to have their growth constrained between the 

second and sixth tests as well. The effect of ASVAB-WK as a main effect of the 

second slope dropped out of significance in each of the six models when distance was 

added to the model. The FSI variable was selected to take forward to the next model, 

given that it was chosen in the earlier models for the exploration of interaction 

effects.  
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Table 44 
 
HGLM reading with language distance measures  

 FSI GateRev TypeRev 
 Coefficient OR Coefficient OR Coefficient OR 

Fixed effect 
For INTRCPT1 slope, π0)      
    INTRCPT2, β00 -6.36*** 0.00 -6.36*** 0.00 -6.36*** 0.00 
     ZA_AR, β01 -0.16*** 0.86 -0.16*** 0.85 -0.15*** 0.86 
     ZA_AS, β02 0.09*** 1.09 0.09*** 1.10 0.09*** 1.10 
     ZA_GS, β03 -0.11*** 0.90 -0.11*** 0.90 -0.11*** 0.90 
     ZA_MC, β04 0.16*** 1.17 0.15*** 1.16 0.15*** 1.16 
     ZA_MK, β05 -0.19*** 0.83 -0.19*** 0.83 -0.19*** 0.83 
     ZA_PC, β06 -0.25*** 0.77 -0.25*** 0.78 -0.25*** 0.78 
     ZA_WK, β07 -0.30*** 0.74 -0.30*** 0.74 -0.31*** 0.74 
     ZD_1, β08 -0.13*** 0.88 -0.12*** 0.89 -0.11*** 0.89 
     ZD_2, β09 -0.11*** 0.90 -0.08*** 0.92 -0.07*** 0.93 
     ZD_3, β010 -0.28*** 0.75 -0.24*** 0.79 -0.21*** 0.81 
     ZD_4, β011 -0.18*** 0.84 -0.14*** 0.87 -0.12*** 0.88 
     ENGY, β012 0.59*** 1.80 0.56*** 1.75 0.56*** 1.74 
[langdist], β013 0.08*** 1.09 0.00 1.00 -0.02*** 0.98 
For SLOPE12 slope, π1      
    INTRCPT2, β10 0.23*** 1.25 0.23*** 1.25 0.23*** 1.25 
     ZA_AO, β11 0.06*** 1.07 0.06*** 1.06 0.07*** 1.07 
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 FSI GateRev TypeRev 

 Coefficient OR Coefficient OR Coefficient OR 
     ZD_1, β12 -0.12*** 0.89 -0.11*** 0.89 -0.10*** 0.90 
     [langdist] β13 0.12*** 1.13 0.02*** 1.02 0.03*** 1.03 
For SLOPE26 slope, π2      
    INTRCPT2, β20 -0.31*** 0.73 -0.31*** 0.73 -0.31*** 0.73 
     ZA_WK, β21 0.01 1.01 0.02 1.02 0.02 1.02 
     EDUC, β22 0.02*** 1.02 0.02*** 1.02 0.02*** 1.02 
     [langdist], β23 0.02*** 1.02 0.00*** 1.00 0.01*** 1.01 
For THOLD2,      
    δ2 1.05*** 2.86 1.05*** 2.85 1.05*** 2.85 
For THOLD3,      
    δ3 3.16*** 23.55 3.16*** 23.46 3.15*** 23.43 
For THOLD4,      
    δ4 5.79*** 326.53 5.79*** 325.77 5.79*** 325.69 
For THOLD5,      
    δ5 8.29*** 3998.60 8.29*** 3987.31 8.29*** 3991.25 

       
Final estimation of variance components    

Random Effect 

INTRCPT1, r0 
3.23*** 
(1.80)   

3.28*** 
(1.81)   

3.29*** 
(1.81)   
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 NotLatin NotIndo DLI 

  Coefficient OR  Coefficient OR  Coefficient OR 
Fixed Effect 

For INTRCPT1 slope, π0)      
    INTRCPT2, 
β00 -6.36*** 0.00 -6.35*** 0.00 -6.36*** 0.00 
     ZA_AR, β01 -0.15*** 0.86 -0.16*** 0.85 -0.15*** 0.86 
     ZA_AS, β02 0.09*** 1.10 0.09*** 1.09 0.09*** 1.10 
     ZA_GS, β03 -0.11*** 0.90 -0.11*** 0.90 -0.11*** 0.90 
     ZA_MC, β04 0.15*** 1.16 0.15*** 1.16 0.15*** 1.16 
     ZA_MK, β05 -0.19*** 0.83 -0.19*** 0.83 -0.19*** 0.83 
     ZA_PC, β06 -0.25*** 0.78 -0.25*** 0.78 -0.25*** 0.78 
     ZA_WK, β07 -0.30*** 0.74 -0.30*** 0.74 -0.30*** 0.74 
     ZD_1, β08 -0.12*** 0.89 -0.13*** 0.88 -0.12*** 0.89 
     ZD_2, β09 -0.09*** 0.92 -0.09*** 0.92 -0.09*** 0.91 
     ZD_3, β010 -0.24*** 0.79 -0.24*** 0.78 -0.25*** 0.78 
     ZD_4, β011 -0.14*** 0.87 -0.15*** 0.86 -0.15*** 0.86 
     ENGY, β012 0.58*** 1.79 0.56*** 1.74 0.57*** 1.77 
[langdist], β013 -0.01 0.99 0.13* 1.14 -0.04 0.96 
For SLOPE12 slope, π1      
    INTRCPT2, β10 0.22*** 1.25 0.23*** 1.26 0.23*** 1.25 
     ZA_AO, β11 0.07*** 1.07 0.07*** 1.07 0.06*** 1.06 
     ZD_1, β12 -0.11*** 0.90 -0.10*** 0.90 -0.12*** 0.89 
    [langdist], β13 0.68*** 1.97 0.24*** 1.27 0.24*** 1.27 
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 NotLatin NotIndo DLI 

  Coefficient OR  Coefficient OR  Coefficient OR 
For SLOPE26 slope, π2      
    INTRCPT2, 
β20 -0.31*** 0.73 -0.31*** 0.73 -0.31*** 0.73 
     ZA_WK, β21 0.01 1.01 0.02 1.02 0.01 1.01 
     EDUC, β22 0.02*** 1.02 0.02*** 1.02 0.02*** 1.02 
    NOTLATIN, 
β23 0.12*** 1.13 0.03 1.03 0.05*** 1.05 
For THOLD2,       
    δ2 1.05*** 2.85 1.05*** 2.86 1.05*** 2.85 
For THOLD3,      
    δ3 3.15*** 23.40 3.16*** 23.50 3.16*** 23.49 
For THOLD4,      
    δ4 5.78*** 324.65 5.78*** 324.58 5.79*** 326.59 
For THOLD5,      
    δ5 8.29*** 3978.70 8.28*** 3950.36 8.30*** 4005.63 

       
Final estimation of variance components 
Random effects    
       

 INTRCPT1, r0 
3.26*** 
(1.81)   

3.26*** 
(1.81)   

3.27*** 
(1.81)   

 

Note: All level-2 variables centered on grand mean.  *** p < .005 ** p < .01 * p < .05 
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The final stage of modeling investigated whether there were any interactions 

between language distance and aptitude. All the main effects for the ASVAB and 

DLAB variables were re-entered into the model along with their interaction terms. 

The B-H approach was applied to identify those estimates where the p-value was 

lower than the B-H critical value to reduce the false discovery rate. Even before the 

application of the correction, there were no significant interaction terms for either 

slope in reading. Two interaction terms for the Intercept, ASVAB-MK*FSI0 and 

DLABPt4*FSI0 had significant p-values (p < .05) that did not meet the criteria after 

the correction. The addition of the interaction terms also resulted in a number of the 

ASVAB subtests to fall out of significance as predictors of the intercept: ASVAB-AS, 

ASVAB-GS, ASVAB-MC, and ASVAB-MK.  

With the full model with interactions, the level-2 intercept variance was 

reduced by 1% as compared to the FSI model, and by 2% as compared to the Survey 

model, which suggested that the interactions did explain some of the variance in 

intercept at the individual level.  
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Table 45 
 
HGLM reading with aptitude-FSI0 distance interactions 

  Coefficient O.R.  Confidence P < BH  
Fixed Effect  

For INTRCPT1 slope, π0)     
    INTRCPT2, β00 -6.37*** 0.00 (0.001,0.002) † 
     ZA_AO, β01 0.03 1.03 (0.945,1.114)  
     ZA_AR, β02 -0.17*** 0.84 (0.766,0.929) † 
     ZA_AS, β03 0.01 1.01 (0.916,1.121)  
     ZA_EI, β04 -0.05 0.95 (0.855,1.061)  
     ZA_GS, β05 -0.05 0.95 (0.863,1.052)  
     ZA_MC, β06 0.10 1.11 (0.993,1.234)  
     ZA_MK, β07 -0.09 0.91 (0.835,1.002)  
     ZA_PC, β08 -0.30*** 0.74 (0.682,0.808) † 
     ZA_WK, β09 -0.34*** 0.71 (0.646,0.780) † 
     ZD_1, β010 -0.16*** 0.85 (0.791,0.923) † 
     ZD_2, β011 -0.12*** 0.89 (0.824,0.957) † 
     ZD_3, β012 -0.33*** 0.72 (0.659,0.778) † 
     ZD_4, β013 -0.24*** 0.79 (0.724,0.854) † 
     ENGY, β014 0.56*** 1.76 (1.300,2.381) † 
     FSI0, β015 0.48*** 1.62 (1.445,1.813) † 
     AO_FSI0, β016 0.00 1.00 (0.892,1.122)  
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  Coefficient O.R.  Confidence P < BH  
Fixed Effect  

     AR_FSI0, β017 0.01 1.01 (0.878,1.158)  
     AS_FSI0, β018 0.13 1.14 (0.989,1.307)  
     EI_FSI0, β019 0.04 1.04 (0.898,1.208)  
     GS_FSI0, β020 -0.10 0.90 (0.782,1.041)  
     MC_FSI0, β021 0.06 1.06 (0.907,1.233)  
     MK_FSI0, β022 -0.13* 0.88 (0.773,1.000)   
     PC_FSI0, β023 0.07 1.07 (0.947,1.208)  
     WK_FSI0, β024 0.11 1.11 (0.975,1.273)  
     D1_FSI0, β025 0.02 1.02 (0.916,1.135)  
     D2_FSI0, β026 -0.01 0.99 (0.890,1.104)  
     D3_FSI0, β027 0.02 1.02 (0.908,1.155)  
     D4_FSI0, β028 0.13* 1.14 (1.013,1.284)   
For SLOPE12 slope, π1     
    INTRCPT2, β10 0.23*** 1.26 (1.190,1.326) † 
     ZA_AO, β11 0.03 1.03 (0.954,1.122)  
     ZA_AR, β12 -0.01 0.99 (0.900,1.090)  
     ZA_AS, β13 0.02 1.02 (0.923,1.126)  
     ZA_EI, β14 -0.03 0.97 (0.873,1.086)  
     ZA_GS, β15 0.01 1.01 (0.911,1.114)  
     ZA_MC, β16 0.05 1.05 (0.944,1.171)  
     ZA_MK, β17 -0.05 0.95 (0.865,1.040)  
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  Coefficient O.R.  Confidence P < BH  
Fixed Effect  

     ZA_PC, β18 0.03 1.03 (0.945,1.113)  
     ZA_WK, β19 -0.04 0.96 (0.879,1.058)  
     ZD_1, β110 -0.07 0.93 (0.865,1.010)  
     ZD_2, β111 0.02 1.02 (0.947,1.104)  
     ZD_3, β112 0.07 1.07 (0.983,1.159)  
     ZD_4, β113 0.04 1.05 (0.963,1.135)  
     FSI0, β114 0.17*** 1.18 (1.050,1.331)   
     AO_FSI0, β115 0.04 1.04 (0.919,1.169)  
     AR_FSI0, β116 0.01 1.01 (0.876,1.168)  
     AS_FSI0, β117 0.04 1.04 (0.899,1.200)  
     EI_FSI0, β118 0.05 1.05 (0.900,1.231)  
     GS_FSI0, β119 0.03 1.03 (0.886,1.191)  
     MC_FSI0, β120 0.03 1.03 (0.875,1.202)  
     MK_FSI0, β121 -0.01 0.99 (0.863,1.132)  
     PC_FSI0, β122 -0.04 0.96 (0.845,1.089)  
     WK_FSI0, β123 0.01 1.01 (0.882,1.163)  
     D1_FSI0, β124 -0.05 0.95 (0.853,1.064)  
     D2_FSI0, β125 0.00 1.00 (0.888,1.117)  
     D3_FSI0, β126 -0.05 0.95 (0.837,1.077)  
     D4_FSI0, β127 -0.11 0.90 (0.793,1.016)  
For SLOPE26 slope, π2      
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  Coefficient O.R.  Confidence P < BH  
Fixed Effect  

    INTRCPT2, β20 -0.31*** 0.74 (0.720,0.751) † 
     ZA_AO, β21 -0.01 0.99 (0.958,1.019)  
     ZA_AR, β22 0.01 1.01 (0.971,1.043)  
     ZA_AS, β23 -0.02 0.98 (0.948,1.020)  
     ZA_EI, β24 0.01 1.01 (0.965,1.049)  
     ZA_GS, β25 -0.02 0.98 (0.941,1.018)  
     ZA_MC, β26 -0.02 0.98 (0.939,1.022)  
     ZA_MK, β27 0.01 1.01 (0.974,1.045)  
     ZA_PC, β28 0.01 1.01 (0.977,1.040)  
     ZA_WK, β29 0.04* 1.04 (1.004,1.078)   
     ZD_1, β210 0.00 1.00 (0.969,1.028)  
     ZD_2, β211 0.02 1.02 (0.990,1.048)  
     ZD_3, β212 0.02 1.02 (0.985,1.052)  
     ZD_4, β213 0.00 1.00 (0.974,1.034)  
     EDUC, β214 0.02*** 1.02 (1.005,1.027) † 
     FSI0, β215 0.01 1.01 (0.967,1.059)  
     AO_FSI0, β216 0.01 1.01 (0.964,1.055)  
     AR_FSI0, β217 0.02 1.02 (0.967,1.075)  
     AS_FSI0, β218 0.01 1.01 (0.959,1.068)  
     EI_FSI0, β219 -0.03 0.97 (0.918,1.032)  
     GS_FSI0, β220 0.02 1.02 (0.965,1.079)  
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  Coefficient O.R.  Confidence P < BH  
Fixed Effect  

     MC_FSI0, β221 0.00 1.00 (0.945,1.068)  
     MK_FSI0, β222 -0.01 0.99 (0.943,1.045)  
     PC_FSI0, β223 0.01 1.01 (0.960,1.057)  
     WK_FSI0, β224 -0.03 0.97 (0.917,1.019)  
     D1_FSI0, β225 -0.01 0.99 (0.954,1.036)  
     D2_FSI0, β226 -0.03 0.97 (0.928,1.009)  
     D3_FSI0, β227 -0.01 0.99 (0.945,1.039)  
     D4_FSI0, β228 0.01 1.01 (0.964,1.055)  
For THOLD2,     
    δ2 1.05*** 2.86 (2.522,3.245) † 
For THOLD3,      
    δ3 3.16*** 23.65 (20.242,27.636) † 
For THOLD4,     
    δ4 5.79*** 327.89 (278.410,386.156) † 
For THOLD5,     
    δ5 8.30*** 4004.60 (3385.464,4736.962) † 
Final estimation of variance components  Random effects   
INTRCPT1, r0 
 

3.20*** (1.79) 
    

Note: All level-2 variables centered on grand mean.   
*** p < .005 ** p < .01 * p < .05 † p-value < B-H critical value
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Summary 
 

There was very little growth in language proficiency in either listening or 

reading. Language proficiency followed a drop-and-recover pattern, but in general, 

scores were between ILR Level 2 and ILR Level 2+. ILR levels dropped slightly 

between the first two test scores, and then rose slightly in subsequent testing, and a 

piecewise approach with two slopes was used to model the data. The first slope, 

representing initial growth, described the slope between the first two test occasions, 

and the second slope, representing subsequent growth, described the slope from the 

second test occasion through the sixth. Three of the aptitude subtests, ASVAB-MC, 

DLAB Part 3 and DLAB Part 4, were found to have a significant, negative 

relationship with initial growth in listening, regardless of how the ILR scale was 

treated (continuous or ordinal). No other significant relationships between aptitude 

(general or language aptitude) and growth were found.  

The studies did confirm earlier findings in which general and language 

aptitude predicted language proficiency at the time of graduation. Higher scores on 

the two verbal subtests ASVAB-PC and ASVAB-WK, as well as higher scores on all 

four parts of the DLAB, predicted higher ILR proficiency in listening and reading at 

the time of graduation. In addition to these six subtests, the ASVAB-AR subtest was 

also found to significantly predict ILR levels in reading at the time of graduation.  

Language distance constrained proficiency levels at the time of graduation, as 
well as constraining growth. There was no effect of an interaction of aptitude and 
distance on proficiency. Table 46 summarizes the main findings of this research, and 
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Table 47 explains in more detail which language distance measures were 

significant predictors of graduation and growth.  

Table 46  
 
Summary of findings 

 HLM Listening (Study 1) HGLM Listening (Study 3) 
Graduation 
(Intercept) 

ASVAB-PC, -WK 
DLAB Part 1, Part 2, Part 3, 
Part 4 
Language distance  

ASVAB-PC, -WK 
DLAB Part 1, Part 2, Part 3, Part 4 
Language distance 

   
Growth 
(Slope12) 

ASVAB-MC 
Language distance 

ASVAB-MC 
Language distance 

   
Subsequent 
growth 
(Slope26)  

Language distance  Language distance 

   
 HLM Reading (Study 2) HGLM Reading (Study 4)  
Graduation 
(Intercept) 

ASVAB-AR, -PC, -WK 
DLAB Part 1, Part 3, Part 4 
Language distance 

ASVAB-PC, -WK 
DLAB Part 1, Part 2, Part 3, Part 4 
Language distance  

   
Growth 
(Slope12) 

Language distance Language distance 

   
Subsequent 
growth 
(Slope26)  

Language distance Language distance  
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Table 47  
 
Summary of significant language distance effects 

 HLM Listening HGLM Listening HLM Reading  HGLM Reading  

Graduation 
FSI, TypeRev, NotIndo, 
DLI 

FSI, TypeRev, NotIndo, 
DLI FSI, TypeRev, Indo FSI, TypeRev, Indo 

     

Growth 

FSI, GateRev, 
TypeRev, NotLatin, 
DLI 

FSI, GateRev, TypeRev, 
NotLatin, DLI 

FSI, GateRev, TypeRev, 
NotLatin, NotIndo, DLI 

FSI, GateRev, TypeRev, 
NotLatin, NotIndo, DLI 

     
Subsequent 
growth  

GateRev, TypeRev, 
NotLatin, DLI FSI, NotLatin, DLI 

FSI, GateRev, TypeRev, 
NotLatin, DLI 

FSI, GateRev, TypeRev, 
NotLatin, DLI 
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Chapter 7: Discussion  

Research questions 
 

This research looked beyond findings in earlier studies that cognitive abilities 

(general and language aptitude) predicted training outcomes to consider how these 

aptitude measures were related to growth after graduation. It also explored how 

language difficulty moderated these relationships. General linear mixed models and 

generalized linear mixed models were used to examine predictors of language 

proficiency growth in listening and reading. This chapter reviews the findings across 

all four studies in the context of the five research questions and compares the results 

by modality and methodology.  

The first two research questions explored the longitudinal nature of the 

datasets. The first question examined to what extent there was variation in language 

proficiency growth after training, across individuals and languages. Because this is 

generally the case for adult language learning, it was hypothesized that there would 

be significant variation in language proficiency growth. “Growth” in these studies 

indicated both increases and decreases in ILR level. This hypothesis was partially 

supported, as significant variation was found in initial growth (Slope12) in three of 

the four studies. Later modeling in this research explored which aptitude variables 

explained that variation. The lack of support for variation in subsequent growth 

(Slope26) may have been due to the lack of variability in scores, or it may have been 

that using two piecewise slopes to describe the small amount of change resulted in 

convergence problems in the models.  
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The second part of the first research question asked to what extent there was 

variation by language. How individuals’ scores varied by language was not tested 

directly (i.e., in a three-level model) due to the small number of languages in the 

study. In a three-level model, variation would have been partitioned by level, and the 

specific variation attributed to the nesting by language captured separately. In the 

two-level model used in this research, the variation was collapsed into level-2, and it 

was not possible to partition the variation by individual and by language.  

It is worth noting at the outset of this chapter that there was actually very little 

growth over time in either listening or reading. While the two slopes, one marking 

initial growth (Slope12) and the other marking subsequent growth (Slope26), were 

statistically significant, it was possibly due to the large sample size rather than to any 

meaningful growth.  

Although not the focus of this research question, there was also significant 

variation found around the proficiency level at the time of graduation (i.e., the 

Intercept). This means that individuals’ graduation scores varied around the mean, 

with some scores higher and some scores lower. The predictor variables included in 

this research explained some of that variation, but significant unexplained variance in 

the mean score at the time of graduation remained in the final model. This indicates 

that future research should address other possible predictors.  

The second research question considered the shape of language proficiency 

growth and how it varied by language. A series of unconditional longitudinal models 

was run to consider the effects of time. Polynomial models of change with linear, 

linear and quadratic, and linear, quadratic and cubic polynomials were compared. 
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Given the drop-and-recover patterns reported in earlier studies, piecewise models 

with two slopes were also compared. The best fitting model was determined to be a 

piecewise slopes model, with two slopes, one representing initial growth (Slope12) 

and one representing subsequent growth (Slope26). Initial growth captured changes in 

proficiency between the first two tests, and subsequent growth represented changes 

from the second to the sixth testing occasion.  

In the models for both listening and reading which treated the ILR scale as a 

continuous variable (Study 1 and Study 2), the estimated coefficient for the fixed 

effects for initial growth showed a very slight drop in proficiency. Listening scores 

dropped by 0.03 of an ILR level (p < .001) between the first two tests, while reading 

scores fell by 0.04 of an ILR level (p < .001). Subsequently, listening scores rose 0.05 

of an ILR level per test occasion, while reading scores increased by 0.06 of an ILR 

level, both estimates significant at p < .001. 

To better illustrate the meaning of the growth estimates for the two slopes, 

two figures are presented below. While drawn from real data, these figures are for 

illustrative purposes only as they represent only a small portion of the population. In 

Figure 5, each individual in this sample has their own slope between the first two test 

occasions (coded as Time 0 and Time 1). Some slopes are flat, others rise or fall, and 

the slope was allowed to vary randomly in the model to capture the variation around 

the mean. There is an overall downward trend seen, which would be represented in 

the model by a negative estimate for the mean slope, as was the case in these studies 

for initial growth (Slope12). 
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Figure 5  
 
An illustration of test scores at the first and second occasions (by individual)  

 

The second graph (Figure 6) illustrates subsequent growth (test scores 

between the second and sixth test occasion, or Slope26). There are up to four test 

occasions in this sample, as illustrated by the length of the slope along the x-axis. The 

slopes are almost parallel, indicating little to no variation in the slope, and the mean 

slope has a slight upward trend. These two features are represented in the estimates 

for this model, with the fixed effect of the slope for subsequent growth slightly more 

than zero and positive, while the random effect was non-significant. The second slope 

was fixed in future models due to this lack of variance around the mean.  
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Figure 6  
 
An illustration of test scores at the second to six test occasions 

 

 

Similar patterns were seen in growth for both modalities in the two studies 

(Study 3 and Study 4) which modeled the ILR scale as an ordinal variable, with 

individuals found, on average, to be more likely to have lower scores between the 

first two tests and higher scores thereafter. In the listening study (Study 3), the first 

slope was allowed to vary, and the second slope was fixed; in the reading study both 

slopes were fixed.  

The findings that initial growth was characterized by a decrease, and 

subsequent growth by an increase in proficiency can perhaps be explained by the 

context in which the first two tests are taken. The first test is the final hurdle for 

graduation, and without a successful test score (ILR Level 2), the DLI student fails 

1.29

1.70

2.11

2.52

2.93
IL

R 
Le

ve
l

0 1.00 2.00 3.00 4.00

Test occasions 2 through 6 (coded 0-4) 

Sample illustration of slope26



 

 191 

and is recycled into an “easier” language, is given more time in training in their 

current language of study or is released to another position in the military. There is 

considerable pressure on students to “pass” the DLPT—their course of language 

study is designed to help them be successful, practice tests are taken, and emphasis is 

placed on graduation. It is then perhaps not surprising that when they take their 

second test a year later, out of this intensive language training environment, that their 

scores are lower. Thus, the first test score may reflect the emphasis placed on the 

DLPT in language training, and the second test, approximately a year later, might be 

considered as the more realistic estimate of the language level. After the second test, a 

variety of influences such as on-going language training, job assignments, foreign 

language incentive pay, and/or the desire to be promoted, differentially impact the 

trajectories.  

The explanation for the drop-and-recover pattern could also be due to the 

selection process that was mentioned above. As explained in the first chapter, the 

majority of DLI graduates attend job-specific training at Advanced Intelligence 

Training for up to three months before they report to their duty station. While the job-

specific training and job assignments involve the foreign language, individuals are no 

longer focused solely on general language proficiency, as it is measured by the 

DLPT. While initial growth and subsequent growth were statistically significant in 

this research, the trajectories were, in practical terms, almost flat (estimates for the 

slopes in the first two studies ranged from ± 0.03 to 0.05 of an ILR level). The 

subsequent growth indicated by the slope estimates of 0.03 or 0.05 of an ILR level 

was quite small, even over a few test occasions.  
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There may, in fact, be growth in language that is not captured by the DLPT, as 

the language used on the job likely differs from the more general form of the 

language that is tested on the DLPT. New performance-based measures may be 

needed to measure language skills on-the-job, either instead of, or in addition to the 

DLPT. As one of the early members of the ILR testing committee who trained DLPT 

test developers explained,  

“Proficiency is essentially what a language user can do with (for present 
purposes) a second language he or she has acquired or learned, without 
reference to a particular task or mission. Performance, on the other hand, is 
driven by mission requirements calling for the use of language for special 
purposes. The two are not mutually exclusive…” (Child, 1998a, p. 390) 

If the language needed to perform on the job underlaps general proficiency to a great 

extent, it could be that language professionals do experience growth in language that 

is not assessed by the DLPT. Further research is necessary to better understand these 

possible differences between language proficiency and performance, and whether 

using the DLPT to measure language proficiency growth is appropriate. 

This research adds to the number of longitudinal studies in second language 

acquisition called for by Ortega & Iberri-Shea (2015) and Ross & Masters (2023). 

Language training at DLIFLC is long-term (up to 67 weeks in length), intensive (six 

hours of classroom time plus homework) and demanding (graduates must reach ILR 

Level 2 to be successful). It is not easy to be selected into a language billet, and the 

selection criteria are such that seats are quite competitive. Only those with high 

general aptitude scores are given the language aptitude test, and only those with high 

language aptitude are offered seats at DLIFLC. Drawing on a large dataset 

comprising over 9,500 service members who completed basic language training 
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between 2008 and 2018, and who then went on to test in a range of foreign languages, 

this study found that there was very little language growth after graduation from 

DLIFLC. Individuals in this sample followed a drop-and-recover pattern, but their 

trajectories, on average, were almost flat. Given the emphasis placed on graduation 

levels, and the need for ever-higher levels of language proficiency, these findings 

should concern the military services. Using the language on the job in itself does not 

guarantee increased language proficiency. The findings point to a need for continued, 

intensive language training if meaningful growth in proficiency is to be achieved.  

The third research question asked to what extent language aptitude predicted 

language proficiency growth outcomes across languages, beyond what is predicted by 

general aptitude. A finding that aptitude predicted growth would mean that existing 

measures could be used to predict not only the proficiency level at graduation, but 

also language growth after intensive language training stops. Before discussing the 

findings, several figures are provided to illustrate the estimates in a model and 

interpret their meaning. These figures are for demonstration purposes only. A random 

sample (0.01) was drawn from the final model in Study 1 and illustrated with the 25% 

and 75% percentiles from each subtest. Figure 8 illustrates ASVAB-MC (the 

mechanical comprehension subtest, coded ZA_MC), as a predictor of initial growth, 

or Slope12 in the model. The first two bars represent mean scores at the time of 

graduation (coded 0), and the second two bars represent the mean scores at the second 

test occasion (coded 1). The white bar represents those in the 25th percentile of 

ASVAB-MC scores, and the diagonally cross-hatched bar those in the 75% percentile. 

The two groups are quite similar at the time of graduation (the Intercept), but those 
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with higher ASVAB-MC scores drop more steeply between the two test occasions. 

This drop is captured in the model with the  negative fixed effect estimate for 

Slope12*ZA_MC.  

Figure 7  
 
Illustration of Slope12*ASVAB-MC 

 

Figure 8 below illustrates the effects of a positive estimate. ASVAB-WK (the 

word knowledge subtest, standardized and coded ZA_WK) scores are modeled here as 

a predictor of growth (Slope12). The first two bars represent mean scores at the time 

of graduation (coded 0), and the second two bars represent the mean scores at the 

second test occasion (coded 1). The white bar represents those in the 25th percentile of 

ASVAB-WK scores, and the diagonally cross-hatched bar those in the 75% percentile. 

The two groups differ in their mean ILR level at the time of graduation, and those 

with lower ASVAB-WK scores drop more steeply between the two test occasions. 
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Overall, the mean slope between the first two test scores is still negative, as scores for 

both groups fall, but as can be seen with the slope lines between the low/low and 

high/high bars were drawn, those with higher -WK scores have a drop that is less 

steep. This means that all else being equal, those with higher scores in Word 

Knowledge have higher proficiency scores when they test a year after graduation.  

Figure 8  
 
Listening HLM Slope12*ASVAB-WK 

 

Returning now to the question whether aptitude predicts growth, there was 

limited support in the data for the hypothesis that language aptitude contributes 

incremental prediction to growth outcomes, after accounting for general aptitude. 

Table 48 below summarizes the findings for the effects of aptitude on graduation 

outcomes, initial growth, and subsequent growth in each study, highlighting first the 

significant ASVAB subtests and then the significant DLAB subtests, by modality 
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(listening and reading) and methodology (continuous or ordinal outcome). The only 

subtests in the final models with a significant effect on growth were found in 

listening, where the mechanical comprehension measure (ASVAB-MC), the aural 

grammatical measure (DLAB Part 3) and the concept formation measure (DLAB Part 

4 ) subtests were significantly related to growth. The direction of these relationships 

was negative, meaning that those with higher scores on these subtests had a steeper 

decrease in their proficiency levels in listening scores in the initial growth period 

(Slope12). There were no significant relationships for any ASVAB or DLAB subtests 

with subsequent growth (Slope26), and no significant relationships were found in 

reading.  

 It is not clear why the effects of these subtests were found only in listening 

and not in reading. The ASVAB-MC subtest assesses mechanical comprehension and 

is one of the components of the technical knowledge factor on ASVAB. This subtest 

assesses one’s knowledge of mechanical concepts such as mass and velocity, and 

one’s ability to apply that knowledge to solve problems. It is likely a measure of 

explicit inductive learning, and as such, would indicate that those with higher 

inductive ability lose their language proficiency more quickly in the initial growth 

period after graduation. As Li (2016) explained, traditional aptitude measures may be 

more important for preliminary language learning, and for learning in an explicit 

environment. While ASVAB-MC was not a significant predictor of graduation 

outcomes, the fact that it was a significant, negative predictor of listening growth may 

be attributed to the environment after graduation, where individuals are using the 

foreign language, rather than studying it in an intensive program. It is less clear why 
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there was no finding of aptitude-growth relationships in reading, though it may be 

that the reading DLPT encourages explicit inductive processing, thereby cancelling 

out the effect.  

The DLAB results that also showed a negative relationship, and only for 

listening initial growth are also somewhat puzzling. Part 3 is an aural grammatical 

test, in which the test taker is given linguistic rules that they apply, and Part 4 is a 

written grammatical test in which the test taker derives the rules from examples using 

pictures (Bunting et al, 2011, p. 3-25). Those with higher scores on these two parts 

experienced a steeper drop in their scores in initial growth. It could be that there are 

other constructs involved in these two DLAB measures, such as rote memory or 

inductive language learning, that are more strongly called upon during training, and 

that are no longer called upon by the time the second test was administered. DLAB 

Part 3 “builds grammatical learning as it progresses, so that performance on later 

[parts] is dependent on successfully learning the grammatical rules from earlier 

[parts]” (Bunting et. al, 2011, p. 7-5). Success on DLAB Part 3 may call more upon 

rote learning ability, while DLAB Part 4 may draw on inductive language learning 

ability. These skills might be more related to listening than to reading skills, and more 

important to language acquired in the intensive basic training program. The negative 

direction of these two estimates suggested that the abilities tapped by DLAB were not 

as important for growth as they were for demonstrating language proficiency at 

graduation. There has been little language-related research that included all of the 

aptitude subtests, so further research on the relationship among the cognitive abilities 

subtests by modality and growth are called for.  
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None of the aptitude variables (as main effects or in the interaction terms with 

FSI0) were predictors of subsequent growth. Researchers have suggested that aptitude 

may have different effects at early and late acquisition (Doughty, 2019). It is possible 

that any predictive ability of ASVAB and DLAB is limited to the year after intensive 

training, captured in this research by the Slope12 variable. An aim for Hi-LAB was to 

measure aptitude for implicit learning (Doughty, 2019), and as such it may prove to 

be a better predictor of growth. More research on other cognitive ability predictors of 

growth, such as working memory and inductive learning, is called for.  

This research did not account for subsequent language training, but it is 

reasonable to expect that additional formal training, as well as language use on the 

job, contributed to language growth in the years following the basic course at 

DLIFLC. The DLPT, as a measure of language proficiency, may not capture these 

language gains and other measures might be more relevant. The lack of meaningful 

growth, as well as the limited range of DLAB scores in the sample, could also be 

contributing to the findings in this research.  



 

 199 

Table 48 
Comparison of HLM and HGLM significant findings on aptitude in listening and 
reading in final models 

 Listening HLM ASVAB Listening HGLM ASVAB  
Graduation   Intercept: PC, WK  Intercept: PC, WK 
Initial Growth Slope12: MC (neg) Slope12: MC (pos) 
Subsequent Growth Slope26: None  Slope26: None  
   
 Listening HLM add DLAB  Listening HGLM add DLAB  
Graduation   Intercept: Part I, Part II, 

Part III, Part IV 
Intercept: Part I, Part II, Part III, 
Part IV 

Initial Growth Slope12: Part III, Part IV  Slope12: Part III, Part IV 
Subsequent Growth Slope26: None  Slope26: None  
   
 Reading HLM ASVAB Reading HGLM ASVAB  
Graduation   Intercept: AR, PC, WK  Intercept: AR, PC, WK 
Initial Growth Slope12: None Slope12: None 
Subsequent Growth Slope26: None  Slope26: None  
   
   
 Reading HLM add DLAB Reading HGLM add DLAB 
Graduation   Intercept: Part I, Part III, 

Part IV 
Intercept: Part I, Part II, Part III, 
Part IV 

Initial Growth Slope12: None Slope12: None 
Subsequent Growth Slope26: None   Slope26: None  

 

The findings in this research replicated those in Silva & White (1993), 

Bunting et al. (2011) and Wagener (2016) which showed that language aptitude, as 

measured by DLAB, added incremental validity to the prediction of DLI outcomes 

beyond those predicted by ASVAB alone. In the present research, the ASVAB and 

DLAB subtests themselves, rather than composite scores, were included in the 

models and all nine subtest scores were modeled. This allowed for a more nuanced 

examination of how aptitude influenced the estimates of language proficiency at the 

time of graduation. In the final models for listening and reading, with the exception of 

Study 3 (HLM reading), all four DLAB subtests were significant, positive predictors. 

Even in the HLM reading study, three of the four DLAB subtests were significant and 
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DLABPt2 was significant (p = .004), but just under the B-H critical value. The 

estimates for the intercept were all in a direction that meant that higher aptitude 

scores were associated with higher ILR levels at graduation. The addition of the 

language aptitude variables to a model with general aptitude accounted for (ASVAB) 

reduced the unexplained variance in all four studies, providing additional support for 

the use of both batteries. The continued relevance of DLAB is an important finding of 

this research. As explained in the first chapter, even small increases in predictive 

validity lead to millions of dollars in cost savings. This research supports the 

continued use of both general and language aptitude tests to select students for the 

basic course at DLIFLC.  

Perhaps unsurprisingly, given that selection into DLIFLC was based on high 

ASVAB scores, the estimated coefficients for two subtests in the Verbal domain, 

(ASVAB-PC and ASVAB-WK) were consistently significant across the studies and had 

the highest estimates as predictors of the graduation outcomes even in the final model 

that included the interaction terms as well as previous language learning, motivation, 

and education. Recall that these two subtests form the Verbal Expression Composite 

(ASVAB-VE) score and also contribute to the composite AFQT score, which has often 

been used by the military services for selection in language training, among other 

professions. The arithmetic reasoning (ASVAB-AR) subtest, which along with math 

knowledge (-MK) and -VE comprise AFQT, also had a significant effect for outcomes 

in both final reading models. As Wagener (2016) suggested in his study after finding 

similar effects, -AR scores might indicate a sort of “symbolic assembly” (p. 212) 

ability that would differentiate learners by language, which might explain why the 
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variable was significant for reading but not for listening. In all four studies, the 

ASVAB-MK measure was also significant in earlier models but dropped out of 

significance in the final model when the B-H approach was applied to the data. The 

findings in the current study seem to confirm the utility of AFQT as a selection 

measure for prediction of success at DLI graduation, although this could be due to the 

selection bias inherent in this data.   

Given that the effects of motivation, education, prior proficiency and first 

language on language learning are well established in the literature, these variables 

were added following the aptitude measures so that their potential influence could be 

accounted for. While there was no effect found for motivation on graduation 

(intercept) or growth (slopes), this was not surprising given the inadequacy of the 

measure used. The source of the motivation measure was one question on a survey 

that was administered to students prior to their language training. The education 

variable was found to be a significant, negative predictor of graduation outcomes in 

listening, even after accounting for general aptitude and language aptitude, but its 

estimate was almost zero in reading and therefore of little practical value. The 

direction of the estimate meant that those with more education had lower scores at 

graduation, all else being equal, which was a counterintuitive effect. It may be that 

the intensive approach used at DLIFLC differed enough from typical formal 

education, negating its positive effect. Prior proficiency was found to be a significant, 

positive predictor of graduation outcomes in both listening models, but not in reading. 

It did not have a relationship with growth in any of the models. The reliability of this 

variable should also be questioned, however, given that it was a self-report on a rather 
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vague scale (poor, fair, good, excellent). The fourth survey variable, English as a first 

language, had a strong, positive, and significant effect on graduation outcomes, but 

not growth, in all four studies. Almost all of the individuals in the sample were first 

language speakers of English, however; accordingly, the use of this variable in the 

models should be reconsidered. 

 To improve understanding of how these individual differences relate to 

language proficiency growth, future studies would benefit greatly from improved 

variables. For example, to better measure motivation, a new valid and reliable 

measure of motivation collected over time would improve understanding of how 

motivation relates to proficiency in a longitudinal study.   

The fourth research question examined the effects of language difficulty. 

While the data was not sufficient to model language at level-3 as originally proposed, 

six language distance measures were incorporated at level-2 to test whether any 

individual measure had a significant effect on growth. There was consistent support 

for the hypothesis that growth is constrained by language distance, after controlling 

for ASVAB, DLAB and the survey variables. In all four studies, at least three of the 

measures were significantly related to graduation (intercept) or growth (two slopes). 

Findings may have been influenced by the fact that the majority of languages in the 

dataset belonged to harder languages, as sixty percent of the languages in the study 

were in the hardest DLI category (Cat IV).  

Table 48 below depicts a summary of the significant findings. FSI, TypeRev, 

NotIndo were significant predictors of the graduation outcome in all four studies, and 

FSI, GateRev, TypeRev, NotLatin, and DLI were always significant predictors of 
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initial growth. There was less overlap among the various predictors of subsequent 

growth. What all of the measures did have in common, however, was that with one 

exception, the direction of the effect (negative) indicated that the harder the language, 

the lower the ILR level at graduation, the steeper the drop in initial growth, or the 

shallower the rise in subsequent growth. The one exception to this was the Typology 

measure in three of four studies, where estimates were in the opposite direction, but 

because the TypeRev estimates themselves were small relative to the intercept or 

slopes, they had little practical significance.  

There are no obvious theoretical reasons for the differences found in the 

models, but there are some common themes. The FSI and DLI categories were both 

developed to predict language learning difficulty in intensive, adult language learning 

settings, and, therefore, it might be expected that they would behave in a similar 

manner. In most of the models, that did indeed occur, in that if one was significant, 

the other was as well. The two continuous measures, Gateway and Typology were not 

always consistent in their effects, despite their high correlation. These measures were 

approaching zero even when significant, however, and given the lack of reliability 

information for the measures, it is difficult to draw conclusions.  

The non-Latin script measure might have been expected to have a stronger 

effect in reading, given that its focus is on the writing system of the language, and its 

effect more likely on graduation. However, that was not the case in these studies, as it 

was never a significant predictor of graduation. It may be that in language learning, 

different writing systems are acquired at an early stage, so even though the intercept 

represents the first test chronologically, DLI students are already well beyond the 
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stage when another writing system causes learning difficulty. By the time a DLI 

student graduates and takes their first DLPT, they are already at a proficiency level 

where the writing system is no longer a novelty, and therefore reading a non-Latin 

script would not constrain proficiency. However, this theory does not explain why the 

NotLatin measure was a significant predictor of initial growth and subsequent growth 

in all four studies, listening and reading. This measure may tap into other language 

features that contribute to language difficulty and therefore constrain growth.   

The findings of this research do support the hypothesis that language 

difficulty constrains growth, though as seen with the other significant variables, the 

estimates themselves were often quite small, which would have little practical impact. 

There are policy implications, though, as the results suggest that it is more difficult 

for individuals in the harder languages to maintain or improve their language, and 

additional incentive programs should be considered to meet the goal to raise language 

proficiency across all languages.  

The final research question looked at the interaction of language difficulty and 

aptitude as they related to growth. A finding of a significant effect of such an 

interaction would be interpreted to mean that the aptitude measures differentially 

predicted growth depending on language difficulty. No interaction terms were found 

to be significant in any of the four studies.  

The figures shown below illustrate the differences between main effects and 

interaction terms, drawing on data from the main effects for DLAB Part 3 (language 

aptitude) and FSI0 (language difficulty) for the first slope (growth) from the final 

model. Figure 10 below is used to illustrate how the main effects of aptitude and 
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distance from English could be significant, while the interaction is not. In this figure, 

DLAB Part 3 (ZD_3) and the language difficulty measure FSI0 (0=easier, 1 = hardest 

languages) are modeled as predictors of the first two test occasions (Slope12). Figure 

11 displays the interaction term DLAB Part 3 * FSI0 (coded D3_FSI0) for Slope12. 

These figures are for illustrative purposes only as they only reflect a small portion of 

the sample to describe the model’s effects.  

Figure 10 displays four combinations of the variables. The first bar for each 

test occasion are individuals with low DLAB Part 3 scores who test in easy 

languages; the second bar are those with low DLAB Part 3 scores who test in hard 

languages; the third bar are those with high DLAB Part 3 scores who test in an easy 

language and the fourth bar are those with high DLAB Part 3 scores who test in a 

hard language. Individuals with high DLAB Part 3 scores in the easiest languages (3rd 

bar) have the highest scores at the time of the first test and experience a drop in scores 

at the second test. Those with high DLAB Part 3 scores in the harder languages (4th 

bar) also experience a drop in score. Those with low DLAB scores, whether in an 

easy language or hard language, seem to be relatively flat. These effects, in 

combination with the sample distribution, likely explain why the average slope of the 

interactions is flat, while the average slope of the individual main effects is not.  
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Figure 9  
 
Listening HLM Slope12*DLAB Part 3*FSI0 

 

Figure 10  
 
Listening HLM DLAB Part 3 - FSI0 Interaction Term 

 

None of the interaction terms met the criteria for significance and as stated 

earlier, this might be attributed to the difficulty in trying to predict small amounts of 

growth with language distance measures that are not reliable, or to the distribution of 

languages in the sample. 
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Listening and reading modalities 
 

Listening and reading were modeled separately in this research. For the most 

part, the results showed very similar patterns in listening and reading. In both 

modalities, the shape and rate of growth was similar, with a drop-and-recover pattern 

and very little growth. Average listening scores at the time of graduation were slightly 

lower than average reading scores. As mentioned above, slight differences were seen 

in terms of which general and language aptitude variables were significant: the 

ASVAB-AR subtest was a significant predictor (positive) of graduation in reading, but 

not in listening, while the ASVAB-MC subtest was a significant (negative) predictor of 

initial growth in listening but not in reading. DLAB Parts 3 and 4 were found to be 

significant as (negative) predictors of initial growth in listening, but once again, not in 

reading. Negative estimates indicated a decrease in average growth for those with 

higher scores on the particular subtest, meaning in a steeper decline between the first 

two tests. There are no obvious reasons for the different findings by modality and 

these results are difficult to explain. Further research is called for to explore whether 

these results are idiosyncratic for this dataset.  

Two methodologies: HLM and HGLM  
 
 One of the contributions of this research to the field is its modeling of the ILR 

outcome as a continuous measure (Studies 1 and 2 with HLM) and as an ordinal 

measure (Studies 3 and 4 with HGLM). The analyses showed very similar findings in 

terms of the shape of growth, as well as in the statistical significance of the 

covariates. Both methodologies likely violate assumptions central to their analysis: 

HLM assumes a linear outcome, with equal spacing; HGLM assumes that the effect 
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of any predictor variable remains constant regardless of the response level. It is 

perhaps surprising, then, that the results were so similar. Further research on the use 

of ordinal and numeric scales to represent the ILR scores is called for. In practical 

terms, it was easier to interpret and graph the results from using the linear model, as 

the estimates could be more easily understood in the context of ILR levels.  

The warrant for a multilevel approach was common across all four studies, as 

the ICC in both listening studies was 56% and in reading the two studies’ ICCs were 

quite similar, 52-53%. Piecewise slopes were chosen as the best fitting model to 

reflect time, and the significant fixed effects were similar: the mean level at 

graduation was in the ILR Level 2 range (or in the ordinal models, more likely to be 

in the ILR Level 2 range); scores were lower between the first and second test 

occasions, on average, and rose thereafter, again on average. In all four studies the 

parameter estimates even for the significant variables were quite small, which means 

there was little overall growth.   

The significance of the variation in growth was not consistent across the 

studies. In the HGLM reading analysis, the lack of convergence of a random slope 

model suggested that the slopes be fixed and not allowed to vary, while in the HLM 

analyses the models converged to allow for a random first slope. Given the somewhat 

low reliability estimates of the random level-1 coefficients in the three studies with a 

random first slope, however, it may have been prudent to fix initial growth in the 

linear models. 

In the final model explored in each study, a consistent picture emerged in both 

approaches in which the main effects of the ASVAB-PC, ASVAB-WK and all four 
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DLAB subtests were all found to be significant for graduation, while accounting for 

education, prior proficiency, first language and interactions between aptitude and a 

dichotomous FSI variable. The -AR subtest was also found to be a significant 

predictor of reading scores at the time of graduation in HLM and HGLM. It was 

hypothesized that ASVAB and DLAB would also have an effect on growth, and that 

hypothesis was only supported by the data in listening, where DLABPt3 and 

DLABPt4 were found to constrain initial growth in both the HLM and HGLM 

methods. The general and language aptitude variables did not predict subsequent 

growth. In all, the two methodologies resulted in very similar findings, indicating that 

for this population, the approach did not make a difference.     

The research design in this dissertation contributes to the literature in the 

language assessment field. The use of a multilevel model is no longer as unique as it 

once was, but there are very few papers in the second language acquisition context 

that model repeated measures of language learning using hierarchical linear 

modeling. The treatment of the ILR scale as a continuous and ordinal measure is also 

a unique contribution, and the similar findings reported here are somewhat reassuring 

for those researchers who use a linear conversion of the ILR scale.    

After the present research was completed, Rhoades (2023) published her 

research in which she used another methodology, latent growth curve modeling, to 

analyze very similar data. She had access to a broader set of influences on language 

proficiency growth and found that cognitive and non-cognitive factors influenced 

language growth in this population. Unlike the current research, Rhoades (2023) 

conducted separate analyses by language and modality. Using only the -AR, -MK, -
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PC and -WK subtests from ASVAB-AFQT, all four DLAB subtests, other variables 

(motivation, age, sex, GPA, education level, training hours, type of billet) and the 

DLI language difficulty categories, she found that differing patterns of significance 

emerged in each language and modality, and she concluded that her results 

highlighted the importance of considering the impact of the individual components of 

aptitude and limiting generalizations based on composite scores or on more than one 

language in a difficulty category (p. 284). Additional studies comparing these 

different approaches to longitudinal data, latent growth curve modeling and 

multilevel modeling, should be carried out to investigate growth from a variety of 

perspectives.  

Limitations 
 
Only those recruits who performed well on the ASVAB and DLAB are 

assigned to attend DLIFLC, and only those who successfully completed basic 

language training served as language professionals who continued to test in their 

language. This led to range restriction in the general and language aptitude subtests 

scores, as those who did not qualify for training, in addition to those who did not 

complete training, never tested and therefore were not in the dataset. Reducing the 

original dataset to only those who graduated also further truncated the scores in the 

dependent and independent variables. To minimize the impact of the distribution of 

ASVAB and DLAB scores, they were standardized. While there are other methods to 

correct for range restriction by simulating the full population (see Bunting et al, 

2011), the data needed for such methods were not available to this researcher. The 

distribution of languages in this research, which heavily favored the harder languages, 
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was also a potential issue, but the reality of language training at DLI is that this is the 

context for military language professionals and will likely be the case for future 

researchers in this field.  

The quality and distribution of the survey variables was a limitation. The four 

variables that were used in the study were from a self-report questionnaire given to 

students prior to their basic language training. No reliability information was 

available for these four variables. A concerted effort on DLI’s part to design and 

administer a better survey, with a higher completion rate, would help future 

researchers. As mentioned above, it would also be ideal to have a longitudinal 

measure that better captured motivation across time.  

The current study was also unable to account for predictor variables from 

information available in on-the-job databases, such as job assignments and training 

information. Significant variation remained unexplained between individuals, and 

additional sources to explain this variation in proficiency should be investigated. 

Rhoades (2023), as a government researcher, was able to add variables for language 

use on-the-job and language training, and she found that in several languages, these 

job-related variables were significantly related to growth. Such information is not 

available to the general public and therefore could not be considered in this study. 

There is always a danger in over-fitting the data. Attempts were made to 

correct for the potential for Type I errors. The final models included up to 88 

variables, when the main effects of the general aptitude and language aptitude 

subtests were reintroduced with the interaction terms. The results were corrected with 

the Benjamini-Hochberg procedure following Thissen et al. (2002). With a large 
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enough sample size across a variety of languages, future studies could use a cross-

validation design that might lead to more generalizable findings.  

The HLM8 (Raudenbush & Congdon, 2021) software also had its 

disadvantages and limitations. Future studies should take advantage of advances in 

the packages available in R (R Core Team, 2023) for multilevel modeling, as the 

packages are updated regularly and offer a variety of model improvements not 

available in HLM, especially in graphing and the ability to model additional variance-

covariance matrices to explore assumptions. Improved graphical representations of 

these complex relationships would improve understanding.  

The final limitation to be mentioned here, especially considering the original 

research questions, was the use of a two-level model. Earlier research indicated that 

growth rates and trajectories might differ inter-individually as well as by language 

(Mackey, B., 2014), and indeed those findings motivated the current study which had 

planned to use a three-level model. A three-level model would have allowed for the 

individual test scores to be nested by person and then by language, which would have 

led to a better understanding of the role language played in explaining variation. 

Fixed and random effects could be modeled at each level: repeated measures, 

individual, and language. Predictors could be modeled at each level: individual 

differences in aptitude at level-2, the individual level, and language distance measures 

at level-3. Cross-level interactions would also be possible to model, such as language 

distance and aptitude. The inability to use a three-level model was a serious limitation 

of this study, given the original research questions and the focus on how language 

moderates growth. However, given that the number of languages taught in the basic 
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course at the time of this writing was only fourteen (DLIFLC, n.d.), it is not likely 

that a sufficient sample size will be found in the near future. One possible direction 

may be to leverage a three-level, cross-classified design, in which individuals are 

nested under more than one language, which might result in a sufficient number of 

languages at level-3.    
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Chapter 8: Summary 
 

In conclusion, this research used multilevel modeling to examine the effects of 

general aptitude, language aptitude and language distance on language proficiency 

growth of military language professionals. The findings have implications for DoD 

policymakers, as they point to a need for further refinement of selection criteria to 

include a focus on language proficiency after graduation from DLIFLC. While the 

costs of language training at DLIFLC have led to an emphasis on maximizing 

outcomes from the basic program, the majority of graduates do not reach the levels 

needed for successful job performance. The findings in this research indicate that 

there needs to be a new focus on how to best select those individuals who will be 

successful in the long run. While findings confirmed the differential validity 

contributions of the four subtests in DLAB beyond what is predicted by the nine 

ASVAB subtests for selection, there was only limited support for contributions of 

cognitive ability components, whether general or language-specific aptitude, to the 

prediction of growth. There are also a number of non-cognitive variables that could 

be leveraged to better predict outcomes. The government has already funded research 

on new aptitude measures designed to improve on existing language aptitude 

batteries, specifically DLAB2 (Bunting et al., 2011) and Hi-LAB (Linck et al., 2013; 

Doughty, 2019), which could be leveraged to support further longitudinal research. 

Neither measure has been deployed operationally in the military services, but a 

number of past and current language professionals participated in earlier validation 

studies, and their scores should be available for further longitudinal research. These 

batteries included new measures such as working memory and personality traits that 
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are not currently assessed by ASVAB or DLAB, and it may be that language growth 

post-DLI is better predicted by these different constructs.  

The rate and shape of growth after graduation from the basic program should 

also be considered by policymakers. Proficiency over time is quite flat, and given the 

language demands on the job, there is a need to revisit language training programs 

post-DLIFLC if the expectation remains for language professionals to reach and 

maintain ILR Level 3. Given the overall flat slope of growth in this research, it is 

clear that additional training interventions are needed to raise the average language 

proficiency level post-DLIFLC to meet the needs of the nation.  

Given the difference between language proficiency and performance 

mentioned above, the possibility also exists for the research and development of 

performance measures. The potential relationship between proficiency and 

performance in the military language environment has not been studied in any depth, 

and new measures might better capture language growth on the job, and studies could 

then investigate predictors of proficiency and performance over time.  

Drawing on the number of studies that have now shown the constraining 

effect of language distance on graduation as well as growth, the government should 

also consider the length of its training programs. Basic language training at DLI 

currently offers longer courses for languages deemed more difficult for an English 

native speaker, but nonetheless, differences in graduation outcomes still persist. 

Course length post-DLIFLC rarely accounts for language difficulty, and given that 

language distance continued to constrain initial and subsequent growth in this 
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research, this practice, too, should be reconsidered. Longer courses for harder 

languages may be needed to maintain and improve language proficiency.  

The scope and scale of the language profession in the military is a fertile 

ground for research if similar data could be made more widely available to 

researchers. The field of second language acquisition would greatly benefit from 

continued longitudinal research on these issues, including the treatment of the ILR 

scale, language growth, predictors of growth, and language distance.  
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Appendix A 
 
Correlation table for aptitude variables 
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Appendix B 
 
 

Comparison of slope variations in final model 
 
  Slope24 BH sig Slope25 BH Sig Slope26 BH Sig 
    INTRCPT2, β00 2.26 (2.26) † 2.26 (0.01) † 2.26 (0.01) † 
     ZA_AO, β01 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     ZA_AR, β02 0.03 (0.03)  0.03 (0.01)  0.03 (0.01)  
     ZA_AS, β03 0.01 (0.01)  0.01 (0.01)  0.01 (0.01)  
     ZA_EI, β04 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     ZA_GS, β05 0.02 (0.02)  0.02 (0.01)  0.02 (0.01)  
     ZA_MC, β06 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     ZA_MK, β07 0.02 (0.02)  0.02 (0.01)  0.02 (0.01)  
     ZA_PC, β08 0.04 (0.04) † 0.04 (0.01) † 0.04 (0.01) † 
     ZA_WK, β09 0.05 (0.05) † 0.05 (0.01) † 0.05 (0.01) † 
     ZD_1, β010 0.04 (0.04) † 0.03 (0.01) † 0.04 (0.01) † 
     ZD_2, β011 0.02 (0.02)   0.02 (0.01) † 0.02 (0.01) † 
     ZD_3, β012 0.07 (0.07)   0.07 (0.01) † 0.07 (0.01) † 
     ZD_4, β013 0.03 (0.03) † 0.03 (0.01) † 0.03 (0.01) † 
     EDUC, β014 -0.02 (-0.02) † -0.02 (0.00) † -0.02 (0.00) † 
    PRIORPRO, β015 0.02 (0.02) † 0.03 (0.00) † 0.03 (0.00) † 
     ENGY, β016 -0.14 (-0.14) † -0.14 (0.03) † -0.14 (0.03) † 
     FSI0, β017 -0.16 (-0.16) † -0.16 (0.01) † -0.16 (0.01) † 
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  Slope24 BH sig Slope25 BH Sig Slope26 BH Sig 
     AO_FSI0, β018 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     AR_FSI0, β019 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     AS_FSI0, β020 -0.04 (-0.04)  -0.04 (0.01)  -0.04 (0.01)  
     EI_FSI0, β021 0.01 (0.01)  0.01 (0.02)  0.01 (0.02)  
     GS_FSI0, β022 0.01 (0.01)  0.01 (0.02)  0.01 (0.02)  
     MC_FSI0, β023 -0.02 (-0.02)  -0.02 (0.02)  -0.02 (0.02)  
     MK_FSI0, β024 0.01 (0.01)  0.01 (0.01)  0.01 (0.01)  
     PC_FSI0, β025 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     WK_FSI0, β026 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     D1_FSI0, β027 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     D2_FSI0, β028 0.03 (0.03) † 0.03 (0.01)   0.03 (0.01)   
     D3_FSI0, β029 -0.03 (-0.03) † -0.03 (0.01)   -0.03 (0.01)   
     D4_FSI0, β030 -0.02 (-0.02)  -0.02 (0.01)  -0.02 (0.01)  
For SLOPE12 slope, 
π1          
    INTRCPT2, β10 -0.04 (-0.04) † -0.04 (0.01) † -0.03 (0.01) † 
     ZA_AO, β11 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     ZA_AR, β12 0.01 (0.01)  0.01 (0.01)  0.01 (0.01)  
     ZA_AS, β13 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     ZA_EI, β14 0.01 (0.01)  0.01 (0.01)  0.01 (0.01)  
     ZA_GS, β15 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     ZA_MC, β16 -0.03 (-0.03) † -0.03 (0.01) † -0.03 (0.01) † 
     ZA_MK, β17 0.00 (0.00)  0.01 (0.01)  0.00 (0.01)  
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  Slope24 BH sig Slope25 BH Sig Slope26 BH Sig 
     ZA_PC, β18 -0.01 (-0.01)  -0.01 (0.01)  -0.01 (0.01)  
     ZA_WK, β19 0.03 (0.03)  0.02 (0.01)  0.02 (0.01)  
     ZD_1, β110 0.00 (0.00)  0.01 (0.01)  0.01 (0.01)  
     ZD_3, β111 -0.03 (-0.03) † -0.01 (0.01) † -0.01 (0.01) † 
     ZD_4, β112 -0.03 (-0.03) † -0.03 (0.01) † -0.03 (0.01) † 
    PRIORPRO, β113 0.01 (0.01)  -0.03 (0.01)  (not modeled)   
     FSI0, β114 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     AO_FSI0, β115 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     AR_FSI0, β116 -0.01 (-0.01)  -0.01 (0.01)  -0.02 (0.01)  
     AS_FSI0, β117 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     EI_FSI0, β118 -0.02 (-0.02)  -0.01 (0.02)  -0.01 (0.02)  
     GS_FSI0, β119 0.01 (0.01)  0.00 (0.02)  0.00 (0.01)  
     MC_FSI0, β120 0.03 (0.03)  0.03 (0.02)  0.03 (0.02)  
     MK_FSI0, β121 0.00 (0.00)  0.00 (0.01)  0.00 (0.01)  
     PC_FSI0, β122 0.01 (0.01)  0.01 (0.01)  0.01 (0.01)  
     WK_FSI0, β123 -0.04 (-0.04)  -0.03 (0.01)  -0.03 (0.01)  
     D1_FSI0, β124 0.03 (0.03)  0.03 (0.01)  0.02 (0.01)  
     D2_FSI0, β125 -0.01 (-0.01)  0.01 (0.01)  0.00 (0.01)  
     D3_FSI0, β126 0.03 (0.03)  0.03 (0.01)  0.03 (0.01)  
     D4_FSI0, β127 0.02 (0.02)  0.03 (0.01)  0.03 (0.01)  
For SLOPE24 slope, 
π2          
    INTRCPT2, β20 0.06 (0.06) † 0.06 (0.00) † 0.05 (0.00) † 



 

 221 

  Slope24 BH sig Slope25 BH Sig Slope26 BH Sig 
     ZA_AO, β21 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_AR, β22 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_AS, β23 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_EI, β24 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_GS, β25 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_MC, β26 0.01 (0.01)  0.01 (0.00)  0.01 (0.00)  
     ZA_MK, β27 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_PC, β28 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZA_WK, β29 -0.01 (-0.01)  -0.01 (0.00)  0.00 (0.00)  
     ZD_1, β210 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZD_2, β211 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     ZD_3, β212 -0.01 (-0.01)  0.00 (0.00)  0.00 (0.00)  
     ZD_4, β213 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
    PRIORPRO, β214 -0.01 (-0.01)  0.00 (0.00)     
     FSI0, β215 0.00 (0.00)  0.00 (0.01)  0.00 (0.00)  
     AO_FSI0, β216 0.00 (0.00)  0.00 (0.01)  0.00 (0.00)  
     AR_FSI0, β217 -0.01 (-0.01)  -0.01 (0.01)  0.00 (0.01)  
     AS_FSI0, β218 0.00 (0.00)  -0.01 (0.01)  -0.01 (0.01)  
     EI_FSI0, β219 0.00 (0.00)  0.01 (0.01)  0.00 (0.01)  
     GS_FSI0, β220 -0.01 (-0.01)  0.00 (0.01)  0.00 (0.01)  
     MC_FSI0, β221 0.00 (0.00)  -0.01 (0.01)  0.00 (0.01)  
     MK_FSI0, β222 0.00 (0.00)  0.01 (0.01)  0.00 (0.00)  
     PC_FSI0, β223 0.00 (0.00)  0.00 (0.01)  0.00 (0.00)  
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  Slope24 BH sig Slope25 BH Sig Slope26 BH Sig 
     WK_FSI0, β224 0.01 (0.01)  0.01 (0.01)  0.00 (0.01)  
     D1_FSI0, β225 0.00 (0.00)  0.00 (0.00)  0.00 (0.00)  
     D2_FSI0, β226 0.00 (0.00)  -0.01 (0.00)  0.00 (0.00)  
     D3_FSI0, β227 0.00 (0.00)  0.00 (0.01)  -0.01 (0.00)  
     D4_FSI0, β228 -0.01 (-0.01)   0.00 (0.01)   0.00 (0.00)   
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