SRC TR 85-39

A New Approach for Compiling
Boolean Functions

by

J. Ja'da' & S. M. Wu

TR-85-39

A New Approach
for
Compiling Boolean Functions-
(Preliminary Draft)

Joseph Ja’Ja’

Department of Electrical Engineering
and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20740

Sau-Mou Wu
Chastali Chakrabart:

Department of Electrical Engineering

University of Maryland, College Park

Abstract

We propose a new approach for laying out Boolean functions which is based on eztracting
the symmetries of a given set of functions and applying optimization procedures especially
tailored to exploit these symmetries. This paper establishes a rigorous foundation for this
approach and shows that it will outperform ezisting methods for many classes of functions.

The different components of a newly developed system, SYMBL, will be briefly described.

* Supported partially by the U.S. Army Research Office, Contract No. DANG29-82-k-0110, NSA Contract
No. MDA-904-85H-0015, by NSF Contract No. MCS-83-15890, and by the Systems Research Center Contract

No. OIR-8500108.

1. Introduction

The recent advances in the integrated circuit technology [1] have substantially increased the
amount of hardware that can be put on a single chip, and hence the overall design process
has become much more complex. Good and efficient automated tools that can assist the user
in all the different design phases have become a necessity. In particular, the automatic layout
of Boolean functions is an essential ingredient of any set of design tools. The problem of the
automatic generation of good layouts for a given set of functions has been considered by many
researchers most of who have refined and elaborated on the PLA approach. The main goal
of this research has been to develop algorithms that can efficiently generate layouts that are

regular, small and whose overall delay is minimal.

Programmable Logic Arrays (PLA’s) are certainly the most popular tools used for laying
out Boolean functions. These structures implement two-level logic in a simple and regular
fashion using two planes: AND and OR. The main strategy used revolves around the Quine-
McCluskey procedure to determine a minimum cover of prime imiplicants. There are two
main difficulties with this method. The first, and the more serious, is that the optimal PLA’s
tend to be quite large even for some simple and natural functions. This is due to the fact
that the restriction to two-level logic causes circuits for many problems to become excessively
large. The second difficulty is related to the complexity of the corresponding optimization
problems most of which can be shown to be NP-complete. Many researchers have developed

good heuristics to handle these optimization problems [2,3](see [4] for more references).

Another approach that seems to offer more flexibility is based on using Weinberger ar-
rays[5]. In this case, Boolean functions are expressed in multi-level NAND and NOR logic,
and are then laid out in a structure with pull-up transistors at the top and pulldown tran-
sistors along with the connecting wires under the pullups. In spite of the added flexibility,
however, it is not clear that the resulting layout will in general be mu~4 smaller, and moreover
no good general layout scheme has appeared in the literature. In addition, the corresponding

optimization problems are much more difficult than those which have risen in the PLA case.

In this paper, we propose a new approach to layout a set of Boolean functions . It
consists of (i) extracting all the possible symmetries in the given set of functions, (ii) applying

optimization procedures designed for symmetric functions, and finally (iii) obtaining a regular

1

layout whose main components are variations of PLA’s and Weinberger arrays. We establish
a rigorous foundation for our approach and show that our method will always yield a layout
that is at least as good as the corresponding PLA. We also show that any set of functions
which have a reasonable degree of symmetry can be laid out in a much smaller area. A system
SYMBL, SYMmetric Boolean Layout, has been partially written and our initial experiments

are encouraging.

The rest of the paper is organized as follows. The next section addresses the class of func-
tions that are completely symmetric and shows how to lay them out efficiently in a very small
area. Section 3 introduces the class of functions that have partial symmetries and discusses
an extension of the layout method developed for the symmetric functions. An overview of the
software system is given in the last section together with an analysis of the time complexity

of some of the main procedures involved.

2. Layout of Symmetric Function

In this section, we briefly introduce the class of symmetric functions and show that any such
function can be laid out quite compactly with a relatively small overall delay. A software
system, SYMMETRIC, checks whether a given set of Boolean functions are symmetric[6}and,
in the affirmative, produces the layout. A brief outline of the overall algorithm will be given

and its time complexity will be also analyzed.

2.1 Brief Review of Symmetric Function

Definition. A Boolean function f(z1,...,%s) is symmetric if for any permutation © € Sy,

f(zli' .. ’Zn) = f(x‘ir(l)a"- vx«(n))'

Let X = (zy,...,Zn) be a binary n-tuple and let the weight w(X) of X be the number
of 1’s in X. Then it is well-known that the value of a symmetric function f(X) depends on
w(X); in other words, f has the same value on all binary n-tuples that have the same weight.
Therefore, if f(X) has value ai, a; € {0,1} on n-tuples X of weight i, for 0 <7 < n, then f(X)

can be written in the form

f(X)zZaioai(X) (2.1)

where) and e denote AND and OR respectively, and the i-th elementary symmetric function,

oi(z1,...,2,) equals to 1 when w(zy,...,z,) = 1.

Let F = {fi(z1,...,2n)}i=,; be a set of symmetric Boolean functions. As shown in
Fig(2.1), a layout for F will consist of two parts: (1) a layout of the weight(or counting)
function f,(z1,...,2Zn) that counts the number of 1’s among the x’s and outputs its binary
expansion ; (2) a small PLA weight detector that takes the output of the weight function and
produce the set F.

j WEIGHT “_> WEIGHT
- _ ;"‘7\”
| FUNCTION |5y 7 | DETECTOR o

Fig(2.1)

o

2.2 Weight Function
2.2.1 Basic Logic Analysis

Recall that the weight function is a mapping f., : {0,1}™ — {0, 1}[%¢ (*+1)1 that outputs
the binary expansion of the weight. For simplicity, assume n = 2% -1 (the general case for any
n will be discussed later). It is well-known that f,, can be realized by a divide-and-conquer

strategy as follows.

k-1 _ k=1 _

ft(fk"l) (Zy,--ey2n) = f2 (g, zgkei o)+ FETT T (Zgkr by e Tgk_g) F Tok
(2.2)
If we take full adder as base operator, then equation (2.2) can be implemented as shown in

Fig(2.2}

Lemma. Let the full adder be the base operator of the weight function fy(z1,...,2z,) With
n = 2% — 1. Then we need 2F — k —2 = O(n) full adders to implement f,, with delay O(log n).

Now suppose that n # 2% — 1. Let [be the maximum integer such that n > 2t -1,

Put | adders along with one input variable at the root of the tree and make the left subtree

3

w&x) ‘..;Of,) w:k; w}ik) “‘?:’_K)
|
[.
T
,,,,, <<
FAL | FA IFAZ FA, =,

P
‘ l [T

(-0 FCay IR D R) (SRR L L
wk- . [2 Wl w.(wk i ‘J ov“ . (~1 Lv“
¢ _1 2k-1 1
ft(u)(:1:1,...,$2k—x_1) fls,)(sz—1+,...,x2k_2)

Fig(2.2)

a complete tree that corresponds to fff"l(:cl,. ..,Zg_y). For the remaining n — (2! — 2)
variables, apply the same procedure rescursively at the right subtree. One can show that the

number of adders used by the above construction is O(n) and the delay is O(logn).
2.2 Layout Scheme

A scheme that compactly lays out the tree of a weight function will be outlined in this
section. We require that all the inputs and outputs be on the boundary and that the enclosing

rectangle be as close to a square as possible.

Theorem 1. It is possible to lay out the tree of the weight function of n variables in a square

of size O(y/nlog n) such that all the inputs and outputs lie on the boundary.

Proof: We first show how to lay out the tree linearly in an area of O(nlog2 n) and then show

how to turn it into square.

Lay out the tree of (say) (k — 1)-adjacent adders in the middle. Recusively, lay out the
left subtree on the left side of the root and the right subtree on the right side. The length of
the layout is clearly O(n). Its height H(k), i.e. the number of horizontal tracks, is given by
the recurrence

HkE)<H(k-1)+k—-1 and H(2)=1

4

It then follows that H(k) = O(k?) = O(log? n).

voct Next, as illustrated on the left, we fold the linear layout

8 Y277 A 1

U/ into a square with the root on the top row. This folding

procedure does not increase the area by more than a factor

of 2[7). Thus we can make the layout into a square with the

desired properties. ¢

2.3 Weight Detector

A symmetric function f can be written in the form (2.1).

f(zl,...,a:n):Zaioai(zl,...,mn) (2.1)
1=0

The weight detctor is the function f, : {0,1}l*92(n+1)1 _ {0 1} that maps the outputs of the

weight function into {0, 1}.

Let m = [loga(n+1)] and I C {0,1,...,n} be such that a; = 1 for all € I. Then f,

can be written in the following form.
fp(y1,° .- ,ym) = Z 6‘5(:’/1) s 1ym)
el
where §; equals to 1 only when the binary expansion of ¢ is equal to (y1,...,ym)-

It is very easy to use a PLA to implement f, once I is known. Since I C {0,1,...,n},
the area occupied by the PLA part is at most O(nlogn), which is small compared with that of
the weight function. On the other hand, if there are more than one symmetric function, only

the OR plane will grow linearly with the number of functions.

Theorem 2. It is possible to lay out m n-variable symmetric functions in an area O(nlogn+

mn) with O(logn) delay.

We end this section by presenting the layout produced by SYMMETRIC for the three

symmetric functions on next page.

Example: layout of a set of totally symmetric functions
fi(z1,22,...27) =21 B 22D ... & z7;

fa(z1y. .. z7) = > (112 104 100 98 97 88 84 82 81 76 74 73 70 69 67 56 52 50 49 44 42 41 38
37 35 28 26 25 22 21 19 14 13 11 7 124 122 121 118 117 115 110 109 107 103 94 93 91
87 79 62 61 59 55 47 31)

fa(Z1,...,27) = (127 124 122 121 118 117 115 110 109 107 103 94 93 91 87 79 62 61 59 55
47 31 96 80 72 68 66 65 48 40 36 34 33 24 20 18 17121096 5 3);

14 S5 RSN AR TN o o x'..i‘:I;.’ﬁM:’x'w"w, NP PN
7
5
-
M T AP I
3 i 7
2 i
4 3
4 H [3
o S GRS T TR SR -
B Ro O 0:
= 5
= £ s -
i EE
< ¥ = T A AR
3 3
= Y 2 T 2 :
1 |
2 : O SRS R S AT 23 3 y
5 7 =
f . 2 e s k. ok S
=
g
P SNSRI SA% T L i R X I
s s ——— RN il NGNS
= TR e =
i
!
i
|
1
|
t
e

3. Layout of Partially Symmetric Functions

In this section, we will introduce the notion of partially symmetric functions and establish some
of their basic properties. Later we show how to layout these functions efficiently. Given any
function, our overall strategy is to extract all the partial symmetries in the function and then
apply some optimization procedures particularly tailored for partially symmetric functions
which will yield the final layout. We will show that we always end up with a layout at least as
good as the corresponding PLA. As a matter of fact, we will generalize the concept of prime
implicants and show that a slight modification of the Quine-McCluskey procedure will yield

optimal solutions for our case.
3.1 Partially Symmetric Functions

Let f(z1,Z2,...,%n) be a Boolean function and let p = {Xy, Xz,...,X,} be a partition
of {z1,23,...,2n} such that | X;| =n;, 1 <i<s and Y, n;=n. fis callel p-symmetric if

(X1, Xe, .., X)) = f(X1, X5,..., X0)

where X! = [[,(X;), []; is an arbitrary permutation on X;.

It follows that f is determined by the weight functions on the X;’s, i.e., by w(X;) =
ki, 1 <1 <s. Defince C(f) to be

C(f) = { (ki kay. .y k) | f=1 for w(Xi)=k;, 1<i<s}
Let (ki,ks,...,k,) € C(f) and let ok, k;,...k.)(X) = 0%, (X1)ok, (X2) ... 0k, (X,), where

ok, (X;) is the k;th elementary symmetric function on X;. Clearly,

f(zlyz%‘--axn) = Z Uk(X)

k=(ky,kz,....k.)EC(f)

We want to rewrite f as follows:

F(Z1,T2, -, Tn) = D fiy (K1) fin (X2) - i, (X0)

where f; (X;) is a symmetric function over X; and the number of terms is as small as possible.

Such a realization is called a mintimum symmetric realization. It turns out that a variation of

7

the Quine-McCluskey procedure will allow us to find such a realization. Notice that if f has
no symmetries, i.e. n; = 1 for all 1, the realization is a minimum cover of f. We now introduce

two definitions.

A product of symmetric tunctions P = f;, (X1) fi, (X2)... fi, (X,) will be called a symmetric
tmplicant of f if f = 1 whenever P = 1. P will be called a symmetric prime tmplicant if P
is a symmetric implicant such that there is no symmetric implicant P’ with fewer terms with

the property that P’ = 1 whenever P = 1.

Lemma. Let f be a partially symmetric function with respect to {X1,X,,...,X,}. Then
there exists a minimal symmetric realization of f such that each of the products is a symmetric

prime implicant.

3.2 Layout Scheme

Our scheme for laying out partially symmetric functions consists of two parts. The first
part is a combination of layouts of the form presented in section 2, while the second is a regular

structure that can be viewed as an extension of a Weinberger array.

Theorem 3. Let f be partially symmetric with respect to { X1, X2,...,X,} such that | X;| =
ng, 1 < 1 < s, and let ¢,(f) be the number of terms in a minimal symmetric ralization of f.

Then we can layout f in an area of

0] (i nilog? n; + nc,(f))

=1

Proof: We have already seen how to layout w(X;) in an area of O(n;log? n;). It is easy to
see that we can get all the elementary symmetric functions on X; in essentially the same area.
Hence let’s assume that we have cells ES(X;) to compute the elementary symmetric functions
of X; for all i. Useing the configuration in Fig(3.1), we can realize each of the products in a

minimal symmetric form. <

(! '
Co |
,'l?\l [I | ' | | !]
vV f-l. | 'E.L ! | B] [! [> F
o ! b ﬁ' I}r i 1?

—-C_j | ' ! D N T 1~
'v,\r &f__ I f : . . ' | D‘v f
o t fi;f - -

P! | T ; ' ' N
"’\/—‘\/I:Tl ‘*1; 1*1-]T r Y - '%P._...
B = T
o ‘ ' T ,
R L IR
1 I L Co
% T S T, T 3:,1! i w5 %Si GND }/(
l | |
ES(x) ES(X.) | ES(x) |
| ‘ ‘:
| | .

- —. POLYSILICON
——— DIiFFUSION

Fig (3.1)
3.3 Comparison with PLA’s

Let f be a partially symmetric function with respect to {Xi, Xs,...,X,} such that | X;| =
ni, 1 <t <sandn=73_ n, Letc(f) be the number of prime implicants in a minimum cover
of f. Clearly the size of an optimal PLA realizing f is O(nc(f)). As we have seen in the
previous subsection, our method produces a layout of size O(nlog? n + nc,(f)). It is obvious
that ¢,(f) < ¢(f). The exclusive OR is a trivial example for which ¢,(f) (= 1) is substantially
smaller than ¢(f) (= 2"!). We now show that if the function has a reasonable degree of
symmetry, then ¢(f) will be much larger than ¢,(f). First, let p < 0 < n be positive integers

and let X = {zy,22,...,2,}. Then

wPdl(X) = { 1, ifw(X)epql;

0, otherwise

o= ()22

9

Note that

One can check that the partially symmetric function f can be rewritten in the form

ey (f)
f(X1$X27"-,Xs) = Z Wi (31)
=1

where

W; = H wlotil (X)
=1

Then we are ready for the following theorem.

Theorem 4. Let f be a function partially symmetric over {Xy,...,X,} such that | X;| = n,,
n; > 2 for 1 < 1+ < s. Suppose that there exist at least a pair of intervals [vik,tix] and
[vik,tsk] that are not adjacent and nonoverlapping for every + and 7, 1 # j. If we replace each
wlvisitiil (X;) with its minimum cover, then after applying the distributive law, the products

obtained are all prime implicants of f. Moreover, they form a minimum cover.

Proof: We start by observing the following fact. Let {p1;} and {ps;} be the minimum covers
of f1(Xi) and f2(X2) respectively such that X; N X; = @. Then {p1:p2;} is 2 minimum cover
of prime implicants of f1(X})f2(Xa2)-

It follows that the products obtained from w/(?ss:is] (X;), 1 < 7 < sform a minimum cover

of Wi, 1 << c(f).

Claim. Minterm(W;)N Minterm(W;) = 0, Vi # j, where Minterm(g) is the set of

minterms of g.

Proof of claim: Let m € Minterm(W;) N Minterm(W;). Then for some k, [vik, tik|
and [vj, t;x] are not adjacent and nonoverlapping. Assume, without loss of generality,
that vjx > t;k. Since m € Minterm(W;), m has at least n; — t;x complemented
variables from Xj. On the other hand, m € Minterm(W;) implies that at most
n; — v, complemented variables from Xi. But n; — vz < n; — £, a contradiction

and hence the claim follows. <

We now show that each element p of the minimum cover of W; is a prime implicant of f.
Suppose not. Then there exists an implicant ¢ of f such that eitherp=1=¢=1= f=1or

p + ¢ is an implicant of f. In the first case, ¢ covers some minterms of f. By the disjointness

10

property, ¢ can only cover minterm belonging to one W;, for some j. It is then easy to check
that the first case can not happen. The second case implies that W; and W; are adjacent,

which is impossible.

Using the above claim, it is easy to check that the resulting prime implicants form a

minimum cover. <

Corollary. For the function f, the following holds:

0> 1))

-t
i=1 [7=1 b

4 Main Components of SYMBL

There are three main procedures in SYMBL: PARTITION, SYMCOVER, and LAYOUT.
PARTITION takes the description of a set of functions and partitions the Boolean variables
into sets such that all the the given functions are partially symmetric with respect to this
partition. SYMCOVER applies a variation of the Quine-McCluskey procedure to obtain a
minimal symmetric realization. The procedure LAYOUT takes input from SYMCOVER and
generates the layout using the program SYMMETRIC described in section 2. In this version
of the paper, we will briefly sketch the basic algorithms behind the first two programs.

4.1 Partitioning

Given a Boolean function f(z1,...,z,), the relation z, ~ z; holds, if and only if f has
the same value whenever z; and z; are interchanged. It is easy to see that ~ is an equivalence

relation. Our problem is to find the equivalence classes of the set {z1,z3,...,zn} [8-10].
For a function f(z1...zn), let us denote
foiz; (@i, a5) = zga‘)xga")f(zl Ve D1y Gigen Tjo1y Qgyen e Din)
where

:z:(“‘) Sz, ifar =1
k7 1z if ax =0.

Then for any z; and z;, 1 # 3
f(xlu- . zn) = fz.'zj(oa O) + fZ{IJ‘(O’ 1) + fz;z,'(ljo) + fz‘-:z,-(ls 1)

11

and the following lemma is obvious.
Lemma 3. z; ~z; <= fz,2,;(0,1) = fz;2,(1,0)

Hence, it is obvious that given a truth table of a function f(z, ... Tn), Ti ~ z; iff for any
row containing z;z; = 01, there must exist another row containing z;z; = 10 such that the

values of the other variables in these two rows are the same.

Theorem 5. Given a truth table of a n-variable function, it takes O(n2T') time to partition
the input variables into the partial symmetric blocks, where T is the number of rows of the

table.

Proof: In order to check the compatibility of any two variables z; and z;, O(nT) comparisions
are required to ensure that f;,..(01) = f;,2,(10). Thus O(n®T) is needed to partition n-

variable function.$

The procedure Partition given in Fig(4.1) can be extanded to generate an array repre-
sentation of C(f) i.e. a t X s array K such that the j-th tuple of C(f) is represented by j-th

row of K. Also, this procedure can be easily generalized to work for a set of functions.

12

Algorithm: Partition
Input: truth table Ty of an n-variable function.

Output: the partial-symmetric partitioning block.
Method:

k=1;
Py = {z1} /* Py thei-th partition block */

pr =21 /* pi: the representative ofthe variables in P;. */

for j =2 ton do
fort:=1tok do
if(z; is equivalent to variable p;)
{ Pi=PRu{z}
exitfor-i
}
else/* z; can not be in P; */
if(s = k)
{ k=k+1; [*creat new block*/
Py = {z;}; pe = 253
exitfor-i;
}
endfor-i
endfor-j

Fig(4.1)

4.2 Minimization

Symmetric Prime Implicants:

Let t be the number of the symmetric implicants and s be the number of equivalence
partitions. The output of the partitioning procedure is an array of vectors K; = (k1,...,ks;),
J=1,...,tand 0 < k;; < n;. Quine McCluskey’s method for generating prime implicants
has been modified to generate the symmetric prime implicants from this array. Unlike the

grouping of implicants of two valued Boolean variables (which was on the basis of number of

13

0’s), here the grouping of K;’s has to be done on the basis of a value p which occurs in all
the s columns of the array. As a result, only K;’s in the same group and adjacent group can
be combined. At the i-th iteration (¢ > 1), the vectors take the form K| = (ki,,...,k};),
where each of the kfj is a combination of k;’s, 0 < ki < n;. The procedure for combining two

vectors K and K] is as follows.

K} = (kij,...,kq;) can be combined with K| = (ki,...,kl;) to form K} = (k,,...,k.,) iff
s — 1 of the k;;’s and kj;’s are same. If the two vectors differ only in the ¢-th column, i.e.
ki; # ki, then ki, is a combination of ki; and ky;. The procedure Symmetric Prime Implicants

is given in Fig(4.2).

Algorithm: Symmetric Prime Implicants
1. Choose a suitable value p and group K’s accordingly. Let ¢ be the number of groups.
2. for j=1tot do

K; = Kj;
mark K7 ;
}
3.1=1;
while 1 <=¢—~1 do
{
compare every K in group ¢ with Kj in group 7 and 7 + 1.
if combination is possible
create K, and mark it
else unmark K7 ;
t=1+1
}
4. if there have been no combinations in step3 , halt .
else
{ e¢=a-14
go to step3d;
ki

The symmetric prime implicants are the marked Kj’s.

Fig(4.2)

14

Symmetric Minimum Cover:

The symmetric prime implicants are used to form a chart which is essentially an array
of u rows and v columns where v is the number of symmetric prime implicats and v is the
number of K;’s in C(f). The (7,7)-th entry in the array is 1 if the ¢-th symmetric prime
implicant covers K;. Existing procedures for finding the minimum cover of prime implicants
by identifying essential rows, essential columns, dominating rows, dominated columns have

been used to find the symmetric minimum cover.
A few steps of the minimization procedure are sketched in the example below.

Example 4.1: The input to the procedure is an array of the form

@]
Q

P OOt =
HARIOO O
FORNOOH

Choice of p=0 leads to three groups.

i=0 i=1 i=2
100 1 (o,1) 1 (0,1) (0,1)**
001 1 0 (0,1) 1 0 (0,1,2)**
0 2 0** 1 o (0,2) _
(0,1) o P**
110 —_—
210 (1,2) 1 Qx*
102 1 1 (0,1)
101 1 0 (1,2)
i1 Lo

|

The symmetric prime implicants are

00(X1)o2(X2)03(Xo),
(00(X1) + 01(X1))oo(X2)01(X3), (01(X1) + 02(X1))01(X2)00(X3),
o1(X1)o0(X2)(00(X3) + 01(X3) + 02(X3)), 01(X1)(00(X2) + 01(X2))(00(X3) + 01(X3))

We illustrate the layout of partially symmetric functions with two examples. Example
4.2 realizes three functions f,, f2 and f3 of 23 variables. The partitioning procedure yields
a partition with 7, 7 and 9 variables in each equivalence block, X;, + = 1,2,3. The T;’s are
the symmetric prime implicants which combine to form the minimum cover of the functions.
Similarly, example 4.3 realizes another set of partially symmetric functions of 14 variables,

partitioned into three blocks with 3, 5 and 6 variables.

15

Example 4.2 : -
= {00(X1) + 04(X1) + 06(X1)) (01(X2) + 03(X2)) (00(X3) + 03(X3) + 04 (X))

)

Tg = (UQ(XI) -+ 05(X1) +U7(X1))(¢70 Xz) + 0’5(X2) + O’e(Xz) + 0'7(X2))((71(X3) + Uz(Xs) + 0’5(X3))
Ts = (05(X1))(02(X2) + 04(X2) + 06(X2))(06(Xs) + 07(X3))

Ty = (06(X1) + o7(X1))(03(X2)) (05 (Xs) + 08(X3) + 09(X3))

Ts = (01(X1) + 02(X1))(03(X2) + 05(X2) + 06(X2)) (07(Xa) + 09 (X5))

Te = (00(X1) + 03(X1) + 06(X1))(04(X2))(00(X3) + 05(X3) + 09 (X3))

= (01(X1) + 02(X1) + 03(X1) + 04 (X1) + 05(X1))(02(Xz2) + 03(X2)) (07(X3))
Ts = (01(X1) + 06(X1))(02(X2) + 03(X3) + 04(X2)) (06 (X3) + 05(X3))

Ty = (00(X1))(01(X32) + 02(X2) + 04 (X2)}(01(Xs) + 02(Xa) + 03 (X3) + 04 (X3))
Tio = (05(X1) + 06(X1))(07(X3)) (00 (X3) + o8(X3) + 09 (X))

fi=T1+ T +Ts+T7 + T+ To+ Tio

fa=Ta+ T4+ T

fa=T1 +T2+T7r +Ts + Tho

16

Example 4.3 :
= (00(X1) + o1 (X1)) (o1 (X2
Ul(X], +02(X1))(0'2 X,
3(X1)) (e

(X2) + 03(X2))(02(Xa) + 04 (X3) +
(X2) + 04(X2) + 05(X2)) (00 (X3) +
o(X2) + 01(X2))(02(X3) + 03(X3))
(X2)
(Xz2)
)

?ﬁ

)

)

)

)
0o(X1) + 03(X1)){(03(X2))(04(Xs) + 05(X3))
o2 1;+03(X1))(<73 X2) + 05(X2))(00(Xa))
)
1)
)

— p— p— p—

X

O’]_(Xl)(U]_(Xz) + 0’4(X2)(02(X3) +U4(X3) + 0’5(X3)

00(X1) + o1 (X1) + 02(X1))(02(X2) + 03(X3))(01(X35) +
(01(X1) + 02(X1) + 03 (X1) o (X2))(03(Xa) + 04 (X))

To = (02(X1))(01(X2) + 02(X32) + 03(X3))(00(X3) + 06(Xa))

fi=T1+Te+T7r+Ts+ Ty

fo=T+T:+T%

fa=Ti+Ts+To

mﬂmo‘:‘u:ﬁ:i
T TR

i

1
it

1,
|
o

Jifil

=]
== ==
M i
" = e
$ ==
1Ll
— L LREL.
'-====. P B
| ; ;
;Lga ‘J
gﬁl = i
m
<= : i L,mw

17

References
[1] C. Mead & L. Conway, Introduction to VLSI Systems, Addison-Wiley, 1980.

[2] R. Brayton, G.D. Hachtel, L. Hemachandra, A.R. Newton & A.L. Sangiovanni-Vincentelli, “A
Comparision of Logic Minimization Strategies Using ESPRESSO. An PLA Program Package
for Partitioned Logic Minimization,” Proc. Int. Symp. on Cir. and Syst. (May 1982).

[3] E. Morreale, “Recursive Operators for Prime Implicant and Irredundant Normal Form Deter-
mination,” IEEE T. Computer C-19, No.6 (June 1970).

[4] R. Brayton, G.D. Hachtel, C.T. McMullen & A.L. Sangiovanni-Vincentelli, “Logic Minimiza-
tion Algorithm for VLSI Synthesis,” Kluwer Academic Publishers (1984).

(5] A. Weinberger, “Large Scale Integration of MOS Complex Logic: A Layout Method ,” IEEE
J. Solid State Circuits SC-2 (Dec. 1967), 182-190.

[6] Kohavi, Switching and Finite Automata Theory , McGraw-Hill, Reading, 1978.
[7] C. Leiserson, “Area Efficient Layouts,” 21 Symp. on Fundation of Comp. Science IEEE (1980).

[8] Das & Sheng, “On Detecting Total or Partial Symmetry of Switching Functions,” IEEE T.
Computer C-20 (1971), 352-355.

[9] Yao & Tang, “On Identification of Redundancy and Symmetry of Switching Functions,” IEEE
T. Computer C-20(1971b), 1609-1613.

[10] M. Davio, J. Deschamps & M. Thayse, Discrete and Switching Functions, McGraw-Hill, Read-
ing, 1978.

18

