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Electromagnetic �uctuations of the quantum vacuum cause an attractive force

between surfaces, called the Casimir force. In this dissertation, the �rst Casimir

force measurements between two gold-coated spheres are presented. The proximity

force approximation (PFA) is typically used to compare experiment to theory, but it

is known to deviate from the exact calculation far from the surface. Bounds are put

on the size of possible deviations from the PFA by combining several sphere-sphere

and sphere-plate measurements.

Electrostatic patch potentials have been postulated as a possible source of

error since the �rst Casimir force measurements sixty years ago. Over the past

decade, several theoretical models have been developed to characterize how the patch

potentials contribute an additional force to the measurements. In this dissertation,



Kelvin probe force microscopy (KPFM) is used to determine the e�ect of patch

potentials on both the sphere and the plate. Patch potentials are indeed present

on both surfaces, but the force calculated from the patch potentials is found to

be much less than the measured force. In order to better understand how KPFM

resolves patch potentials, the artifacts and sensitivities of several di�erent KPFM

implementations are tested and characterized. In addition, we introduce a new

technique, called tunable spatial resolution (TSR) KPFM, to control resolution by

altering the power-law separation dependence of the KPFM signal.
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∆ωc Error in initial frequency estimate

∆ωerr Extra frequency shift due to poor estimate of resonance frequency
∆φ Phase error in FM measurement

∆θref Uncertainty in reference phase of LIA
ωA Frequency at which VAC is applied
ωD Frequency at which the KPFM signal is detected
ωi Frequency of eigenmode i
ωM Frequency at which force is modulated
ωp Frequency of voltage perturbations applied to plate
ωT Frequency of topography/carrier oscillation
φ Phase in FM measurement
φA Phase of applied voltage VAC
φD Phase of shift of lock-in ampli�er
φT Phase of topography/carrier oscillation

Φi(x) Shape of cantilever eigenmode
θholder Angle of the tip holder

Θi Angle relative to vertical of the tip apex for the ith eigenmode
ξ(Yi) Angle of the line tangent to the cantilever at position xt and displacement Yi
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Chapter 1: Introduction to the Casimir force and a brief history of its

measurement

The simplicity of H. B. G. Casimir's derivation has drawn much attention

to the force which bears his name. In less than three pages, using basic concepts

from quantum mechanics and electromagnetism, the attraction between perfectly

conducting uncharged metal plates is calculated [1]. The ease of the calculation, and

the fact that the force seems to come from nowhere, grants the force an allure to both

physicists and the public. Despite its apparent simplicity, the Casimir force has a

long history dating back to the 1870s, when the equations governing electricity and

magnetism were �rst being developed by Maxwell and van der Waals was modifying

the ideal gas law to take into account the attraction between particles [2]. Initially,

the origin of the forces postulated by van der Waals (vdW) was unknown, but

Lebedev, in his PhD work (1890s), posited that the force originated from molecules

sending and receiving electromagnetic radiation [3]. In the 1930s, the vdW forces

were calculated for several special molecular scenarios: two permanent dipoles, a

permanent dipole and an induced dipole, and two induced dipoles [2]. Later in the

decade, Hamaker showed that forces between individual molecules could be summed

to approximate the force between surfaces [4]. Then, �nally, Casimir realized two
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key facts that put �uctuation forces on a �rm foundation: (1) the �uctuations which

contribute to the force are described by the bulk material optical properties and (2)

the �nite speed of light signi�cantly a�ects the force and in most cases increases how

quickly the force falls o� with separation [2, 5]. Further developments by Lifshitz

and coworkers generalized Casimir's ideas to arbitrary dielectric materials [6, 7].

Measurements of the Casimir force also have a long history. After �ve decades

since the �rst experiments, and nearly two decades of intense activity, everyone

agrees that the Casimir force has been observed [8, 9]�as well as several interest-

ing properties such as repulsion and its material dependence [10�12]�but, some

fundamental experimental questions remain unanswered, such as: what errors are

typically present and what are the e�ects of probe and sample geometry? Moreover,

one of the catalysts for the recent development of new measurements from the 1990s

onward was the proposition that the Casimir force could be used in microelectrome-

chanical systems (MEMS) as a switch or an actuator. While measurements on a

silicon chip [13,14] represent an important step towards utilizing the Casimir force,

it has not yet been utilized in commercial devices.

Characterizing measurement uncertainties not only clari�es how accurately

experiment can be compared to theory, but it also helps to show what other e�ects

will be present in MEMS that utilize the Casimir force. One of the most signi�cant

of these e�ects, and one that has proven itself quite di�cult to test, is the presence

of patch potentials. A patch potential is a region on a surface with an electrostatic

potential that di�ers from the surrounding regions. Electrons within the region of

the patch potential have a di�erent chemical potential than electrons outside the
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region, so that even when the material is characterized by the same Fermi level,

di�erences in the electrostatic potential are present. Two main sources of patch

potentials have been identi�ed: crystal orientation and adsorbates [15]. The di�ering

work functions of di�erent crystal faces primarily originate from electron double-

layer e�ects at the surface [16]. Likewise, adsorbates also a�ect the surface dipole

layer and the material's work function [17]. Patch potentials have been predicted

since the earliest experimental comparisons to the Casimir-Lifshitz theory [18], but

only recently have adequate theoretical treatments allowed its quanti�cation from

electrostatic measurements of interacting surfaces [15, 19]. Other major sources of

error include roughness and separation determination. Furthermore, it is di�cult to

disentangle the Casimir force from hydrodynamic drag in air or liquid environments

[20,21].

In this thesis, new Casimir force measurements are discussed (including the

�rst measurement between two metallized spheres), typical artifacts, and the e�ect of

patch potentials on the measured force. Before that, Kelvin probe force microscopy

is discussed, both as a tool to examine the surfaces used in later measurements, and

as a simpler platform to introduce several of the errors which plague Casimir force

measurements. The dissertation concludes with a new technique to align surfaces

in Casimir force measurements, which allows sphere-sphere measurements to be

performed. The sphere-sphere measurements are in turn used to put bounds on

corrections to the proximity force approximation (PFA).
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1.1 What is the Casimir force?

H. B. G. Casimir imagined a perfectly conducting box with sides of length

L in which the boundary conditions only permitted certain electromagnetic modes

de�ned by the wave numbers [1]:

kx =
π

L
nx, ky =

π

L
ny, kz =

π

d
nz, (1.1)

where the ni are integers, and d is the separation between the two walls perpendicular

to the z-axis. Each mode has 1
2
~ω energy in its quantum-mechanical ground state,

where ω is the frequency of a particular mode. Casimir summed the energy of all

the modes to �nd:

1

2

∑
~ω = ~c

L2

2π

∑
n

′
∫ ∞

0

√(
n2
π2

d2
+ χ2

)
χdχ, (1.2)

where the ′ on
∑

indicates that the n=0 term is multiplied by 1/2. The total energy

appears to be in�nite, but only energy di�erences, rather than the total energy, lead

to forces, so the energy at d→∞ is subtracted from the sum. The remaining energy

per unit area is then:

E

L2
= − ~cπ2

720d3
. (1.3)
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The force per unit area is then found to be:

F

L2
= −~c π2

240d4
. (1.4)

Modern calculations incorporate measured material dielectric functions following

the theoretical developments of the 1950s [6, 7]. More recent developments have

focused on how to include the zero-frequency transverse electric (TE) mode [22] and

how to compute Casimir forces e�ciently for di�erent geometries [23�26].

The power law of the Casimir force can also be obtained by dimensional ar-

guments. A conservative force is given by minus the spatial gradient of a potential

energy. Such a force is proportional to an energy per distance, so that the force

per unit area goes as the energy per distance to the third power. The energy of the

quantum electromagnetic �uctuations goes as ~ω = ~c
λ
. To �rst order, we assume

that the strongest contribution comes from λ that are comparable to the separation

d, i.e. λ ∼ d.1 Thus, F
A
∝ ~c

d4
.

The fundamental constants present in equation 1.4 reveal several characteris-

tics of the Casimir force. The presence of ~ shows that the force depends on the

quantum nature of the �uctuations. The presence of the speed of light, c, shows

that the force depends on the speed at which �uctuations propagate between the

surfaces. Finally, the force results from electromagnetic �uctuations, rather than

electromagnetic charge, as can be noted by the absence of the electron charge, e,

from the formula.

1Very large λ do not �t between the plates and very small λ, e.g. x-rays, become invisible to
the plates and do not contribute to the force.
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1.1.1 Proximity force approximation

The proximity force approximation (PFA) is used to compare Casimir force ex-

periments to theory, because calculations of the Casimir force beyond the plate-plate

geometry are computationally intensive [27]. The proximity force approximation is

the assumption that the interaction between two curved surfaces can be modeled as

the sum of a series of parallel plates. Derjaguin showed that for uniform surfaces,

this approximation leads to a relationship between the force between curved surfaces

and the energy between parallel plates [28]:

Fsp = 2πR′Epp, (1.5)

where R′ is the e�ective radius of the interacting surfaces, Fsp is the sphere-plate

force, and Epp is the energy per unit area between parallel plates. In this thesis,

we are concerned with the simpler sphere-sphere and sphere-plate interactions for

which the e�ective radius is R′ = (R−1
1 +R−1

2 )−1, where R1 is the upper sphere and

R2 is the lower sphere. For the sphere-plate geometry, R2 →∞, so that R′ → R1.

To derive equation 1.5 from the proximity force approximation, we assume a

sphere-plate geometry and a force with a power-law dependence on separation, e.g.

the force per unit area is Fpp = Cd−n, with C a constant and n>0. The PFA states

that force between a sphere and a plate is:

Fsp =

∫ 2π

0

∫ R

0

C(
d+ r2

2R

)n rdrdθ. (1.6)
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By integrating, the simpli�ed PFA is veri�ed to agree with equation 1.5:

Fsp = 2π
R

n− 1

C

dn−1
, (1.7)

= 2πEppR

where the term on the right is the potential energy per unity area that would give rise

to the power-law force. Because the Casimir force depends on the optical properties

of the samples used for the measurement, and because these optical properties vary

signi�cantly between di�erent samples of the same material [29, 30], it is necessary

to calculate the Casimir force using the optical properties of the exact samples.

Because it is typically not computationally feasible to perform a complete Casimir

force numerical calculation that includes both optical properties and the sphere-

plate geometry, the proximity force approximation is used instead. Recent work has

focused on how sample optical properties change corrections to the PFA [27].

1.2 A brief history of Casimir force measurements

Here we brie�y discuss the Casimir force measurements made prior to and

during my work on this thesis. The point here is to show how a gradual increase

in precision enabled a �urry of new Casimir-based phenomena to be experimentally

observed in the 1990-2000s. The rate of new discoveries has slowed signi�cantly

since 2010, with some authors expressing concern about experimental precision and

accuracy claims [31�33].
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Soon after the development of the Lifshitz theory, Sparnaay found that �The

observed attractions do not contradict Casimir's theoretical prediction� [18], but the

errors were too large to stringently test the theory. In a later experiment, the force

between a chromium coated plate and a half-sphere was measured and found to

follow the general power law of the force predicted by Lifshitz with a correction due

to the optical properties of the chromium [8]. In 1997 the modern era of Casimir force

measurements began with a measurement by Lamoreaux in which the Casimir force

was measured between a gold-coated lens and a plate over separations that varied

over an order of magnitude [9]. By observing the force over such a wide range of

separations, its power law was deduced clearly, and agreed with the Casimir-Lifshitz

prediction within experimental uncertainty.

After Lamoreaux, many more groups started to measure the Casimir force.

Modern technology, particularly the development of the atomic force microscope

(AFM) [34], enabled precise force measurement with smaller, more controllable sam-

ples. While the AFM was originally designed for spatial imaging more than force

measurements, the sensitivity of AFM cantilevers to small forces [35] (<10 pN) al-

lowed Casimir force measurements to be performed on commercial instrumentation.

First among them was the group of Mohideen, who pioneered combining several se-

quential cantilever de�ection versus distance curves, each at a di�erent voltage, for

the measurement of the Casimir force [36]. The spheres used in AFM measurements

tend to be smaller than those used within torsion pendulums, and so, while the

range of the earlier experiments usually covered separations out to several microns,

the AFM experiments focused on measuring the force in the 20 - 700 nm separation
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range [11,20,37].

1.2.1 New developments in Casimir force measurements

Many subsequent experiments expanded the range of materials and geometries

between which the Casimir force could be measured, while others focused on devel-

oping microelectromechanical systems (MEMS) to utilize Casimir force. MEMS are

expected to be one of the most pertinent applications of Casimir force experiments,

and as such, they contributed some of the most accurate measurements [38,39] and

have been used to study the dynamics accessible when driving with a non-linear

force [40]. A large step towards fabricating MEMS devices that incorporate the

Casimir force was the recent fabrication of a force measurement device etched into

a silicon chip [13].

The dependence on the interacting materials' dielectric response was tested by

measuring the force between dissimilar metals [41], semiconductors [42, 43], trans-

parent conduction oxides [11], and semi-metals [44], and with 2D materials [45]. A

gold and silicon dioxide interacting across bromobenzene led to the measurement

of a repulsive Casimir force [10]. Several measurements have been performed in air

and other gases [11, 37, 46]. While air is not predicted to alter the Casimir force,

measurements in air show how e�ects such as a thin water layer and the hydrody-

namic force must be accounted for in a MEMS device that relies on the Casimir

force [47, 48].

The �rst steps towards a switchable Casimir force were made by optically
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injecting charge carriers into a silicon membrane and observing the change in the

measured force modulation [49]. By assuming all other forces were constant, e.g.

electrostatic forces or temperature gradient induced forces, the observed force mod-

ulation was attributed to the Casimir force. Further work used two phases of AIST,

a phase-change material often cited as a candidate for information storage [50]. The

ideal experiment would utilize a material that can switch in situ and would allow

calibration to ensure that it is only the Casimir force, and not some other force,

that is varying. The di�erence between the Casimir forces between two states of a

material is typically only a small portion of the total force, and so measurements of

switchable forces are particularly sensitive to uncertainty. In chapters 2 and 3, het-

erodyne Kelvin probe force microscopy is introduced and its resolution is evaluated

so that it can be used later to characterize patch potentials on the interacting sur-

faces used in Casimir force experiments. Chapter 4 presents our force measurement

method, compares it to two other techniques in air, identi�es several major sources

of error, and quanti�es how much each source contributes to the total uncertainty.

Chapter 5 presents measurement of patch potentials on the surfaces used for Casimir

force measurements, alongside force measurements themselves.

The unusual non-additivity of the Casimir force has led to several experiments

and proposals involving the geometry-dependence of the Casimir force. Gratings

are a common structure to study as they are simple to approach theoretically, as

they can be de�ned completely by a period, a width, and a depth. Early studies

of gratings in silicon showed a small increase in the total force compared to a prox-

imity area approximation [51], while later studies on gold showed a decrease [52].

10



A recent MEMS device even measured a non-monotonic force [14]. A number of

interesting theoretical predictions, including repulsion and non-contact gears, rely

on controlling the interaction geometry [53�55]. Much recent work has also been

focused on measuring a Casimir torque, which is caused by anisotropy of the inter-

acting surfaces [56�59]. In chapter 6, our measurement of the Casimir force between

two spheres is presented. Chapter 7 provides an outlook for future experiments.
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Chapter 2: Kelvin probe force microscopy: a prelude

The atomic force microscope (AFM) was developed by Binnig and Quate [34]

in 1986, about ten years before Lamoreaux measured the Casimir force out to six

microns [9]. Even though much of the development of the atomic force microscope

has been focused towards improved spatial resolution [60�62], rather than force mea-

surements which came later [63,64], many of the techniques used in AFM operation

are pertinent to Casimir force measurements as well. In addition, AFM has served

as the basis for many scanning probe techniques, one of which, Kelvin Probe force

microscopy (KPFM), is itself incorporated into many Casimir force measurements.

Atomic force microscopy is discussed in order to introduce the microscope and

its components, as well as to introduce, in a simpler setting, some of the techniques

used in the Casimir force measurements themselves. Later, in chapter 5, KPFM

is used to determine the patch potentials on gold surfaces used for Casimir force

measurements. This chapter is a modi�ed version of [65].

2.1 History of Kelvin probe force microscopy

The original amplitude-modulation Kelvin probe force microscopy (AM-KPFM)

method [66] has been used in numerous studies investigating nanoscale phenomenon
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Figure 2.1: A feedback loop controls the separation between a photothermally driven
cantilever and the sample through the cantilever's oscillation amplitude by adjusting
the sample height (left). A voltage VAC at frequency ωA is added to VK, the KPFM
voltage, and applied to the probe. The cantilever oscillation at ωD is then detected
by lock-in ampli�er B and used by a feedback loop to control the DC voltage applied
to the cantilever (right). A third lock-in ampli�er measures the response of VK to a
perturbation in order to deduce the KPFM transfer function.

including: potential contrast between metals [67], components of integrated cir-

cuits [68], semiconductor doping [69], pn junctions [70], self-assembled monolay-

ers [71], Langmuir �lms [72], crystal orientation of metals [73], and biomolecular

binding to DNA [74]. Developments such as lift mode [75] alleviated problems with

adhesion and allowed the investigation of softer surfaces [76, 77]. AM-KPFM may

seem suited for fast measurements, as it can operate quickly, and scan speeds of

over 1 mm/s have been reported [74]; however, in AM-KPFM, the voltage contrast

is typically only a qualitative representation of the surface potential due to an av-

eraging e�ect of the cantilever, the stray capacitance e�ect [75, 78�80]. Moreover,

AM-KPFM is susceptible to a class of artifacts that originate from interfering signals

and appear in traditional KPFM measurements as topographical coupling [81�84].

The development of Frequency-Modulation (FM) KPFM [85] improved spatial

resolution and repeatability [86�88] and has been used to quantitatively compare
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nanoscale potentials with macroscopic work functions on both semiconductors [89]

and graphene [88], to identify semiconductor crystal orientations [90], to character-

ize lipid self-organization [91], to quantify band bending at grain boundaries [92],

to study charge transport and trapping in quantum dots [93], and to investigate the

charge distribution at sub-molecular and atomic length scales [94,95]. However, dy-

namics are di�cult to measure with FM-KPFM because of its slow scan speeds�the

result of potential and topographic feedback loops detected near the same cantilever

resonance, limiting detection bandwidth [86,87].

Techniques that try to couple the repeatability and spatial resolution of FM-

KPFM with enhanced time resolution include time resolved electrostatic force mi-

croscopy and pump-probe KPFM, which both probe the dynamic response to an

impulse point-by-point [96,97], and open loop (OL) KPFM techniques, which elimi-

nate the KPFM voltage feedback loop [98�100]. However, not every dynamic process

is caused by an impulse, and the typical scan speed with high-resolution open-loop

techniques is about 1 µm/s [98,100], slower than AM-KPFM.

Operation in air is necessary to study biological molecules such as lipids and

DNA [74, 101] and to study solar cell properties such as open-circuit voltage and

degradation in realistic operation conditions [102, 103]. However, developments of

KPFM have often focused on operation in vacuum [85,104]. In air, challenges such

as vastly lower Q factors, which reduce sensitivity, and a thin adhesive water layer

must be overcome [105].

A recent technique, Heterodyne (H) KPFM, operates similarly to FM-KFPM

but separates the topography and voltage signals by hundreds of kHz [104]. Orig-
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inally, in vacuum, the separation was utilized to increase the voltage sensitivity

through ampli�cation by the second cantilever eigenmode, while maintaining spa-

tial resolution equal to FM-KPFM [104, 106]. Measurements in vacuum show that

H-KPFM, like FM-KPFM, avoids the stray capacitance artifact that a�ects AM-

KPFM [80].

2.1.1 Heterodyne KPFM

Here we demonstrate that H-KPFM combines the repeatability and spatial

resolution of FM-KPFM with scan speeds of up to 32 µm/s (1x1 µm, 256×256

pixels, 16 s, trace and retrace). Moreover, H-KPFM achieves its time resolution

without requiring an impulse. We show that it is not susceptible to several topo-

graphical artifacts that hinder the other KPFM methods. We demonstrate that it is

compatible with lift mode. A second implementation of H-KFPM is also introduced,

in which the topography is detected with the second cantilever resonance and the

voltage with the �rst, for additional voltage sensitivity. The temporal resolution,

voltage contrast, and spatial resolution of H-KPFM are each compared to those of

both FM- and AM-KPFM. It is deduced that H-KPFM improves upon the spatial

resolution of AM-KPFM and improves upon the scan speed of FM-KPFM, resulting

in a new technique with improved performance in ambient conditions.
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2.1.2 Analysis of the KPFM method

In KPFM, a signal, SK, is generated by applying an AC voltage, VAC, at

frequency ωA to a conductive tip above a grounded sample. A feedback loop applies

a KPFM voltage, VK, to the probe so that SK vanishes. The signal on which the

KPFM feedback acts is:

SK = −ζj(VK + V0), (2.1)

where V0 = Vtip − Vsample is the contact potential di�erence between the tip and

sample when both are grounded, and ζj ≡ ζj(VAC) is the sensitivity, which depends

on the KPFM technique used (indicated through the subscript j), VAC, the probe

geometry, and imaging settings: such as the lift height. When VK = −V0 = Vsample−

Vtip, the signal vanishes. An image is created from the recorded VK as the cantilever

raster scans the surface. The KPFM signal is written in the form of equation 2.1

in order emphasize the similarity of H-KPFM to prior KPFM techniques and to

facilitate their comparison.

In AM-KPFM, SK is detected at the same frequency as the applied VAC (l

in �gure 2.2), i.e. ωD = ωA for AM-KPFM. Here we calculate the force above a

conducting sample by modeling the tip-sample system as an metallic capacitor with

energy U = 1
2
CV 2. The case for semiconductors is more complicated, but KPFM

feedback operation is similar, and reduces to the metal case in the heavily-doped

limit [107]. The force on the cantilever has components at frequencies DC, ωD, and
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Figure 2.2: In H-KPFM (� a,b) an alternating voltage is applied at a frequency ω2−
ω1 (↓). The cantilever's response is mixed with oscillation at the carrier frequency in
order to be detected at one resonance (↑). The carrier oscillation occurs at another
resonance and is also used to maintain time-averaged distance to the surface (|).
Likewise, in the sideband implementation of FM-KPFM (�, c) a voltage is applied
and the response detected at di�erent frequencies: the alternating voltage is applied
at ωA � ω1 and detected at ω1 + ωA. In AM-KPFM (�), the alternating voltage is
applied at the same frequency at which the cantilever response is detected (l). The
magnitude of the cantilever transfer function G(ω) with each eigenmode modeled
as a point-mass, is shown in (e).

2ωD. The vertical force on the cantilever at frequency ωD is then [75]:

FωD = −C ′VAC(VK + V0), (2.2)

where C ′ = ∂C
∂d
. We assume that the motion of each cantilever eigenmode is purely

along the ẑ-axis so that the transfer function of the cantilever G(ω) relates the

driving force on the tip to the oscillation amplitude AD of the cantilever:

AD = G(ωD)FωD . (2.3)

The optical lever sensitivity γ(ωD) relates the signal generated at the photodetector
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to the amplitude of cantilever oscillation, so that:

Sphoto = γ(ωD)AD, (2.4)

= −γ(ωD)G(ωD)C ′VAC(VK + V0).

The signal from the photodetector is recorded by a quadrature lock-in ampli�er

with relative phase φD:

SI = Re[−γ(ωD)G(ωD)C ′VAC(VK + V0)eiφD ], (2.5)

SQ = Re[−γ(ωD)G(ωD)C ′VAC(VK + V0)ei(φD+π
2

)],

where SI and SQ are the in-phase and quadrature components of the signal, respec-

tively, at the lock-in ampli�er. The KPFM feedback loop operates on SI, and when

put in the form of equation 2.1 is:

SK ≡ SI = −ζAM(VK + V0), (2.6)

where the sensitivity of AM-KPFM is:

ζAM = Re[γ(ωD)G(ωD)C ′VACe
iφD ]. (2.7)

The relative phase of the lock-in ampli�er, φD, is adjusted in order to maximize the

sensitivity.
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Table 2.1: Example cantilever characteristics
Name ω1 (kHz) k1 (N/m) Q1 γ1 (V/nm) ω2 k2 Q2 γ2

HQ:CSC35/Pt-C (µmasch) 130 5.0 230 0.030 810 88 440 0.070

Table 2.2: Common artifacts in Kelvin probe force microscopy
Type Example Source H FM AM

Extraneous Signal (SE)
Time-independent AC inductive coupling, between VAC and piezo (�gure 2.3) [84] - - ×
Periodic Topographical oscillation detected in voltage bandwidth (�gure 2.6i) - × -
Intermittent Collision with surface × × ×

Geometric
Stray Capacitance Long-range electrostatic force from cantilever [75,78,80] - - ×
Tip trajectory The tip apex trajectory of higher eigenmodes is not vertical (section 3.1, [108]) × - ×

Legend: × = large artifact, - = small artifact
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In H-KPFM and FM-KPFM, the cantilever is shaken with amplitude AT at

the carrier frequency ωT by a non-electrostatic method (here, photothermally), VAC

is applied at ωA, and the KPFM signal is detected at ωD (|, ↓, and ↑, respectively, in

�gure 2.2). The oscillation AT is used for topography control in single-pass mode,

but is also critical for the H-KPFM signal, and so must be present, even when lift

mode is used. We assume that the cantilever position is well-approximated by the

sinusoidal motion at ωT (�gure 2.2), so that:

(d− d̄) =AT cos(ωTt+ φT), (2.8)

where z is the instantaneous tip-sample separation, d̄ is the time-averaged separa-

tion, AT is the amplitude of the carrier oscillation, and φT is the phase. Here we

Taylor expand the tip-sample electrostatic force around its time-averaged height d̄

so that the capacitive force on the cantilever is [104]:

Fes = −

[
C ′ + C ′′AT cos(ωTt+ φT)

]

× [VAC cos(ωAt+ φA) + VK + V0]2

2
. (2.9)

As in AM-KPFM, a term linear in VAC is used for the KPFM feedback, and

there are three frequencies at which such a signal is generated: ωA, ωA + ωT, and

|ωA − ωT|. The force at the �rst frequency, proportional to C ′, is used for AM-

KPFM (see equation 2.2), while the forces at the second and third frequencies, each
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proportional to C ′′, are used for H-KPFM. Then, up to a phase shift, each force is:

FωD = −C
′′
AT

2
VAC(VK + V0). (2.10)

In this chapter, we choose ωD = ωA + ωT. The case ωD = |ωA − ωT| results in

an equivalent force. Then, as with AM-KPFM above, the signal used for H-KPFM

feedback depends on the cantilever transfer function and the optical lever sensitivity

at the detection frequency, so that the signal at the photodiode is, up to a phase

shift:

Sphoto = −γ(ωD)G(ωD)C
′′
AT

2
VAC(VK + V0). (2.11)

Once the phase shift is included, the H-KPFM feedback signal is put in the

form of equation 2.1 with sensitivity:

ζH = Re
[
γ(ωD)G(ωD)AT

2
C

′′
VACe

i(φT+φA+φD)

]
. (2.12)

Thus the sensitivity of H-KPFM di�ers from AM-KPFM both by its dependence on

C ′′ instead of C ′ and by its dependence on the carrier oscillation amplitude AT. If it

is necessary to scan far from the surface, AT can be increased to enhance sensitivity.

Note that FM-KPFM similarly depends on AT [87].

In H-KPFM, both the detection frequency, ωD and the carrier oscillation fre-

quency, ωT, are free to be chosen, and once chosen, determine the frequency at which

VAC is applied, ωA. Earlier works on H-KPFM considered the case ωT = ω1, the
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�rst cantilever resonance, and ωD = ω2, the second cantilever resonance [80,104,106].

In this article, this implementation is called �H2� for heterodyne ampli�ed by the

second cantilever resonance. Here the case ωT = ω2, ωD = ω1 is also considered,

for enhanced sensitivity, and we call it �H1� because SK is ampli�ed by the �rst

resonance.

2.2 Implementation

2.2.1 Experimental setup

All methods are implemented on a commercial AFM (Cypher, Asylum Re-

search). The motion of a platinum-coated cantilever is measured with an optical

lever employing a 860 nm laser and detected by a quad-photodiode. The opti-

cal lever sensitivity is determined for each eigenmode from amplitude vs. distance

curves, and the spring constants are determined by �tting the cantilever's thermal

spectrum (table 2.1).

KPFM is implemented using two direct digital synthesizers (DDS), each paired

with a lock-in ampli�er (LIA). In particular, the cantilever is excited at ωT pho-

tothermally by DDS B (�gure 2.1) for topography control. DDS A generates an AC

voltage at frequency ωA that is applied to the probe. LIA A detects the cantilever's

oscillation at ωD. The relative phases of signals from DDS A and B are maintained

through the synchronization of the AFM's internal clock. To measure the transfer

function of the KPFM loop, DDS C is used to apply an AC voltage, Vp to the

substrate. LIA C detects the response of VK to the perturbation.
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AM feedback is used for the topographical loop for all KPFM methods. In

our earlier experiment [109], an FM feedback loop controlled the tip-substrate dis-

tance while maintaining attractive-mode scanning [110]. Although FM topography

feedback is adapted for the original implementation of H-KPFM [104], it contains

one major disadvantage: the frequency shift is a non-monotonic function of dis-

tance [64] and so the tip collides with the surface when its motion deviates too far

from the topography setpoint. With AM topography control, the feedback operates

on a signal that is monotonic with distance, except at one bistability that can be

avoided [110]. When AM feedback is used for topography, small perturbations, that

once destroyed probes, no longer a�ect scan stability.

The settings for the di�erent KPFM techniques are chosen to realistically

represent each technique's capabilities and are similar to those of previous experi-

ments [86, 87]. FM-KPFM is implemented with sideband detection [87]: ωT = ω1

and ωD = ω1 + ωA, and the modulation frequency ωA = 2 kHz is maintained. For

AM-KPFM, VAC is applied at ω1, and the topography loop operates at ω2. For

H-KPFM, the H1 implementation uses ωT = ω2 and ωD = ω1, while ωT = ω1 and

ωD = ω2 for H2 (see �gure 2.2). For all methods, VAC = 1 V.

All scans are performed on a micron-sized �ake of few-layer graphene (FLG)

on boron doped silicon with a thin native oxide layer (15-25 Ohm-cm, Virginia Semi-

conductor), prepared by exfoliation [111]. Both �akes of highly ordered pyrolytic

graphite (HOPG) and FLG are observed with AFM (�gure 2.6). The HOPG is a

few tens of nm tall and causes band bending in the Si surface potential at its edges

but has negligible patch potentials. The FLG is ≈ 1 nm high and does not change
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the surface potential of Si around it but is covered with patch potentials. Because

the FLG/Si boundary has less topography change, and a surface potential pro�le

that is symmetric around the boundary, it is chosen for the following measurements.

2.2.2 Eliminating artifacts

Several artifacts originate from signals interfering with the Kelvin probe signal,

SK [81,82,84,112]. Examples of such signals include AC coupling between VAC and a

piezo in the cantilever holder (�gure 2.3) or detection of the topography oscillation

(at ωT) within the lock-in ampli�er (LIA) bandwidth (table 2.2). The resulting

signal detected at the LIA contains both the desired signal, SK, and an extraneous

signal, SE, and is given by:

SI = SK + SE. (2.13)

A setpoint, Sset for the voltage feedback loop is chosen to compensate for SE (above

we assume SE = 0, and so a setpoint is not needed). When both SE and Sset are

included, the Kelvin probe loop detects the voltage:

VK = −V0 + VE, (2.14)

which contains an extraneous voltage:

VE =
SE − Sset

ζj
. (2.15)
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Figure 2.3: H-KPFM removes the distortion caused by AC coupling in the KPFM
signal vs. detection frequency curves (SI

LIA vs ωD and SQ
LIA vs ωD). (a,b) At the

�rst eigenmode, the in-phase (I) and quadrature (Q) components of the AM-KPFM
signal show little distortion, but (e,f) at the second eigenmode, distortion due to
inductive AC coupling between the KPFM voltage and tip holder, which increases
with frequency, is observed. (c,d,g,h) Heterodyne excitation generates no distortion.
The KPFM voltage applied to the tip, VK, is sampled at values above and below the
contact potential di�erence. Similar measurements were used to detect AC coupling
in [81].

The topography is imprinted on VK through the height-dependence of ζj, the sen-

sitivity from equation 2.1, which complicates attempts to remove the artifact in

post-processing [84].

Conversely, the height dependence of VE can also be used to identify SE. If SE

is small enough and does not vary in time, Sset can be chosen so that the numerator

of equation 2.15 vanishes. In this dissertation, the height dependence of VK is used

to choose Sset. If a sample has uniform surface potential, then:
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dVK
dd̄

=
dVE
dd̄

=
Sset − SE

ζ2
j

∂ζj
∂d̄

. (2.16)

If dVK/dd̄ ≈ 0, then Sset ≈ SE, as dζj/dd̄ does not vanish.

To minimize VE, the KPFM feedback setpoint, Sset, is varied over a range

of 200 µV, and a VK vs. height curve is recorded for each Sset (�gure 2.4). For

most Sset, the measured VK does depend on height, indicating that Sset 6= SE. The

variation amongst the curves decreases when the tip-sample separation is reduced

(until intermittent contact with the sample begins at ≈ 20 nm). The setpoint with

the least distance dependence (240 µV), is maintained for the KPFM scans. The

o�set originates at the output of the low-pass �lter on the lock-in ampli�er for our

setup, and it varies slightly from day to day, so the calibration must be repeated for

every set of measurements.
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2.3 Resolutions

The temporal, voltage, and spatial resolutions of the di�erent KPFM imple-

mentations are compared through several tests, the results of which are summarized

in table 2.3.

2.3.1 Time resolution

H-KPFM achieves fast time resolution by avoiding several artifacts that limit

speed of the other KPFM techniques (Table 2.2). Because several limits on KPFM

time resolution are proportional to ωD, such as the bandwidth of a cantilever reso-

nance (ωD/2Q) and the Nyquist frequency (ωD/2), higher resonant frequencies are

expected to increase bandwidth. However, for AM-KPFM, higher frequencies also

increase the AC coupling [84] (�gure 2.3). AC coupling does not a�ect H-KPFM or

FM-KPFM as signi�cantly because the applied and detected signals are at di�erent

frequencies. Consequently, H-KPFM can employ cantilevers with higher resonant

frequencies than AM-KPFM. This limitation of AM-KPFM is due to the drive piezo

that is present in most cantilever holders. Additional circuitry can mitigate this ar-

tifact [81�83], but typically the circuitry must be custom-made.

On the other hand, the artifact that limits FM-KPFM scan speed is funda-

mental to its operation. In both H- and FM-KPFM, carrier and KPFM signals

must be present at the same time. If AT = 0, then SK vanishes, even in lift mode

(equation 2.11, [87]). FM-KPFM scan speed is limited by a periodic SE imprinted

on the KPFM signal because the two signals, at ωD and ωT, are so close in frequency
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space. Then the extraneous signal is estimated by considering how the cantilever

oscillation AT at ωT is detected by a lock-in ampli�er with reference signal at ωD.

When the signal is input into equation 2.15, the extraneous voltage is:

V T
E =

γ(ωT)AT

ζj
Re

[
ei(ωAt)

1 + iωA/(2πB)

]
, (2.17)

where B is the bandwidth of the LIA's low-pass �lter, and we set Sset = 0 for

simplicity. In typical KPFM operation, the prefactor, γ(ωT)AT
ζj

, is large compared

to the surface voltage contrast being measured. To reduce V T
E then, B must be

chosen so that B � ωA. For H-KPFM ωA >100 kHz, so the bound on B is large.

FM-KPFM, however, typically works with ωA/2π ≈ 1− 3 kHz, which limits B. V T
E

decreases with increasing ωA, which can be used to increase the available bandwidth

even though it concurrently decreases the sensitivity because |G(ω1 +ωA)|, which is

proportional to the sensitivity, decreases with increasing ωA. Note also that because

V T
E is periodic in time it cannot be mitigated by varying the KPFM feedback loop

setpoint.

Previous measurements of time resolution either investigate the KPFM feed-

back loop response to a periodic voltage applied to the setpoint [87], or substrate

[113], or how quickly a well-characterized sample can be scanned while retaining

KPFM contrast [74]. Here the former method is used to estimate the cut-o� fre-

quency, ωc, which is de�ned as the frequency at which the KPFM loop response has

dropped to ≈ 71% of the low-frequency response (-3 dB). In table 2.3, the cut-o�

time, tc = 2π/ωc, is listed instead, so that smaller values indicate a better resolution.
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Figure 2.5: The transfer functions for the di�erent KPFM methods are measured
by applying a periodic voltage perturbation to the substrate and recording the re-
sponse of the KPFM loop. (a) The transfer function of a H-KPFM voltage feedback
loop increases and becomes more uniform as the gain is increased (H2 implementa-
tion). The proportional gain is increased 3 orders of magnitude, and overshoot is
constrained to VK

Vp
≤ 1.2. A dashed line indicates the -3 db point used to calculate

the cut-o� frequency, ωc. (b) The cut-o� frequency depends strongly on the method
used, varying by almost an order of magnitude. The gain for each of the methods
is chosen by the same optimization procedure.

The reported time resolutions of AM-KPFM typically exceed those of FM-

KPFM, even though the speci�c resolution depends on both the cantilever and

atomic force microscope used. Of the references discussed here, a few optimize

temporal resolution for their AFMs [74, 113]. For the others, the speeds cited are

typical of an imaging method rather than the outcome of an optimization procedure.

Diesinger et al. [113] report an implementation of AM-KPFM that achieves ωc/2π ≈

200 Hz, limited by the analog-digital conversion of the KPFM loop. In air, Sinensky

and Belcher demonstrate that AM-KPFM can maintain some voltage contrast at

scan speeds up to 1, 172 µm s−1, by scanning 2-µm wide stripes of DNA [74]. In the
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language used here, that corresponds to ωc/2π ≈ 1.2 kHz. FM-KPFM is reported

to operate with similar speed when either in the sideband (ωc/π ≈ 35 Hz) or phase

locked loop (ωc/2π ≈ 30 Hz) is used, even though the sources of speed limitation are

dissimilar [87,114]. Recent improvements to the KPFM feedback increase the cut-o�

frequency to 100 Hz with a larger modulation frequency (4 kHz) [115]. Reported

open-loop FM-KPFM scan speeds include 0.85 µms−1 (or 5 min per (500 nm)2,

256×256 pixel scan, trace and retrace) [100] and 1.3 µms−1(or 3 min per (450 nm)2,

256×256 pixel scan, trace and retrace) [98].

To measure the closed loop transfer function of each KPFM method, an AC

voltage (Vp = 1 V at perturbation frequency ωp) is applied to the substrate by a third

DDS, while the cantilever height is maintained at the surface by a topographical

feedback loop, with AT ≈ 8 nm. The KPFM loop tracks the voltage, and VK(ωp) is

detected by a third lock-in ampli�er. The frequency is swept from ωp/2π = 10 Hz to

25 kHz. The proportional gain of the control loop is increased until the bandwidth

stops increasing, and the integral gain is then increased until the transfer function is

�at across its bandwidth (�gure 2.5). The cuto� frequencies for H2, H1, and AM are

5.3, 2.3, and 5.0 kHz, respectively (table 2.3). By further optimizing the feedback

loops the bandwidth might be increased [113,115,116].

The measurement of the FM-KPFM transfer function is complicated by the

presence of the topographical feedback signal near the KPFM signal, which causes

VK to include an extraneous, rapidly oscillating voltage (see equation 2.17). The

separation between the KPFM signal and the interfering topography signal is equal

to the ωA of FM-KPFM, which here is 2 kHz, quite typical for FM-KPFM [86,87].
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First the transfer function is measured with only the lock-in ampli�er's own low-

pass �lter, but the extraneous voltage is so large that it overwhelms the signal until

the frequency of the low-pass �lter is decreased to 700 Hz, giving ωc/2π ≈ 400 Hz.

However, the extraneous voltage imprinted by the topography signal remains ≈ 400

mV, prohibitively large for practical measurements. Second, a notch �lter is placed

on the lock-in ampli�er at ωA/2π (2 kHz) in order to further mitigate V T
E . The

notch �lter both decreases V T
E , and also allows the �lter on the lock-in ampli�er to

be increased to 1 kHz. In this con�guration the cuto� frequency of FM-KFPM is

determined to be ωc/2π ≈ 820 Hz.

To investigate how ωc translates into imaging speed, a few-layer graphene

(FLG) �ake is scanned with H- and FM-KPFM while the line scan speed is increased

from 1 Hz to 79 Hz, over a 1×1 µm area with 256×256 pixels with AT = 16 nm

(�gure 2.6). By 4 Hz (48 s per frame), FM-KPFM shows stripes. To investigate

the cause of these stripes, the FLG is imaged without the aforementioned notch

�lter at 2 kHz. At 8 Hz, the amplitude of the stripes is < 0.3 V with the notch

�lter, but rises to > 1.5 V when the notch �lter is removed. Thus the signal V T
E

does contribute to the stripe artifact, although the details of the feedback loop likely

in�uence the stripes as well. At higher frequencies, the FM feedback loop oscillates

wildly near the edges of the FLG.

With H-KPFM, on the other hand, clear contrast is maintained up to 16 Hz

(16 s per frame), and at higher frequencies some contrast is maintained. However,

the topographical feedback loop stops tracking the surface, and topographical in-

consistency a�ects the potential image. At 79 Hz, patches on the graphene �ake are
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no longer visible. A similar limitation due to topographical feedback loop speed is

reported in [74].
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Figure 2.6: Images show the a�ect of increasing scan speed. (a-c) Topography
images of the few layer graphene (FLG) become blurred. (d-f) H-KPFM allows the
potential of FLG to be imaged with increasing speed and minimal distortion. (g-i)
The topography oscillation is imprinted on the potential image when the bandwidth
is increased if FM-KPFM is used. Topography scanning may be the primary speed
limit. The height of the FLG is ≈ 2 nm. All scans are 256×256 pixels.
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Table 2.3: Resolutions that characterize KPFM
Resolution Figure of Merit De�nition H2 H1 FM AM (units)

Time* tc = 1/ωc Closed-loop 3 dB cut-o� time [113] 0.19 0.43 1.2 0.20 ms

Voltage** Vm V = VK + V0 for which signal = noise [66] 73 41 96 2.0 mV

Space** l10−90 Distance from boundary over which voltage 45 42 49 68 nm
changes from 10% to 90% [87]

*At AT = 8 nm, VAC = 1, Vp = 1 V, and at the surface, with topographical feedback on
**At AT = 8 nm, Bandwidth = 200 Hz, VAC=1 V, and lift height 11 nm

33



2.3.2 Voltage resolution

Whereas the tip apex detects the potential directly beneath it, the inclusion of

stray capacitance from the cantilever results in surface potential spatially averaged

over many microns (about the width of the cantilever) [75, 78�80]. The unknown

and varying relative capacitances of the tip apex and cantilever limit AM-KPFM

to qualitative contrast in most conditions [75, 78]. Both H-KPFM and FM-KFPM

mitigate the stray capacitance e�ect through their dependence on C ′′ rather than

C ′ [80, 86]. Here the stray capacitance must be assessed in order to understand

the relation between the measured potential sensitivity and the ability to actually

distinguish between two nanoscale objects. The capacitance of tip and cantilever
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Figure 2.7: The voltage contrast between a few layer graphene (FLG) �ake and Si
substrate reveals the stray capacitance e�ect. (a-c) The voltage contrast between
(few-layer) graphene and silicon changes little as the probe height increases from
4 to 100 nm for H-KPFM. (d-f) However, for AM-KPFM, the contrast at 100 nm
di�ers by a factor of �ve from that at 4 nm. (g) A comparison between the four
di�erent KPFM methods shows that methods that depend on C ′′ more accurately
represent the potential contrast than AM-KPFM, which depends on C ′.

changes with tip-sample separation, and consequently, so does the measured average

voltage contrast between the FLG �ake and Si substrate, ∆V . The correspondence
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between the actual and measured potentials is tested by observing the change of

∆V with lift height, akin to [117]. At closest approach the tip apex capacitance

dominates. As the tip-sample separation is increased, ∆V changes little until the

proportion of capacitance due to the apex decreases to a value comparable to the

cantilever capacitance contribution. The criterion of d∆V
dd̄
≈ 0 near the surface is

adopted to ensure that the apex contribution dominates. In the limit of large lift

height, the cantilever contribution dominates, and no potential contrast is observed.

The potential contrast is estimated for each height by calculating the di�erence

between the average potential inside the FLG/silicon boundary (�gure 2.11e) and

the average potential outside.

The contrast between Si and FLG changes little for H- and FM-KPFM, as the

cantilever lift height is varied (�gure 2.7a-c,g). On the other hand, the AM-KPFM

detected voltage contrast changes by a factor of �ve as the lift height is decreased

from 100 to 4 nm (�gure 2.7d-f,g). Thus the average potential contrast measured

with C ′′ methods is more accurate than the contrast measured by AM-KPFM.

The minimum detectable voltage, Vm, is the tip-sample voltage di�erence at

which the signal is equal to the noise [64,66,104,106]. Here N(B) is the noise power

in the signal SI
LIA within the bandwidth B. The minimum detectable voltage for

any KPFM method is:

Vm =

√
N(B)

ζj
. (2.18)

Note that N(B) increases as the bandwidth increases. Thus increasing temporal
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resolution restricts voltage resolution.

The sources of noise in an AFM can be divided into three categories [118].

The �rst, detection noise, includes angular �uctuations of the light beam and optical

shot noise. The second, displacement noise, includes the reaction of the topography

feedback loop to perturbations, such as 60 Hz line noise or the voltages applied in

KPFM. The third, force noise, includes Brownian motion and stresses caused by

light optical intensity �uctuations. Because ωD is near a resonance in H-KPFM, we

assume Brownian motion is the dominant force noise. In this limit, the total noise

in the signal is:

N(B) =
1

2

∫ B

−B

[
2γ2

i kikBT

πωiQi

|G(ωi + ω)|2 (2.19)

+ n2
det(ω) + n2

dis(ω)

]
dω,

where the �rst term in the brackets represents the noise due to Brownian motion

of the cantilever [119], kB is Boltzmann's constant, T is temperature, ndet is the

detection noise amplitude spectral density (which is nearly constant over the inte-

gral), and ndis is displacement noise amplitude spectral density (which depends on

the speci�cs of KPFM operation). If we consider only the Brownian motion of the

cantilever, and assume the detection bandwidth B is less than the bandwidth of

the cantilever (B < ωi/2Qi), then the integral in equation 2.19 can be computed
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analytically:

N(B) ≈ γ2
i kBT

πki
arctan

(
2QiB

ωi

)
, (2.20)

yielding the same noise as used in previous calculations of Vm, in the limit of small

B [66].

To understand how cantilever characteristics a�ect the minimum detectable

voltage, each eigenmode ofG(ω) is modeled as a point mass harmonic oscillator [120].

Then the minimum detectable voltage becomes:

Vm,H =
2
√

2kBT√
πATVACC ′′

√
kiarctan

(
2QiB

ωi

)
. (2.21)

Conversely, if the dominant noise source is broadband detector noise (e.g. o�-

resonance), then N(B) ≈ n2
detB. The minimum detectable voltage when detector

noise dominates is:

Vm,H =
2ndet

√
B

ATVACC ′′
1

|G(ωD)|γ(ωD)
. (2.22)

Note that the optical lever sensitivity depends on the eigenmode excited (a cantilever

bends more for the same d displacement if excited at higher eigenmodes [121]).

The minimum detectable voltage, Vm is experimentally determined by measur-

ing the signals at the lock-in ampli�er, SI and SQ (equation 2.5), with the feedback

loop open. The detection phase, φD, is swept from -180◦ to 180◦ at VK = -1, -0.3, 0.3,

and 1 V. For each φD, the sensitivity ζj is determined by �tting SI vs (VK +V0) to a
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Figure 2.8: The (a) minimum detectable voltage and (b) 10-90 resolution both in-
crease with lift height, for all methods. The data plotted here are for cantilever
topographical oscillation of AT = 8 nm. Both heterodyne methods achieve resolu-
tions similar to FM-KFPM.

line, the slope of which is ζj (equation 2.1). Calculating ζj for several φD, allows us

to account for a small systematic o�set on the output of the LIA, and to determine

the φD that maximizes ζj. The noise at the output of the LIA is sampled at 5 kHz,

and the calculations here consider the noise within a bandwidth of 200 Hz. Then

equation 2.18 is used to calculate Vm.

The lift-height dependence of Vm for FM- and H-KPFM is measured. For

each lift height, a force curve is used to set the position at the chosen lift height,

where the probe is held for the duration of the Vm measurement. As the separation

is increased, Vm increases, for all implementations (�gure 2.8a). AM-KPFM has

the smallest minimum detectable voltage; however, the small Vm is a consequence

of the stray capacitance of the cantilever, which causes potential contrast to only

be qualitative, and limits spatial resolution [75, 87]. Within H2, Vm increases more
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Figure 2.9: With H-KPFM in the H2 implementation, (a) the minimum detectable
voltage, Vm, and (b) the 10-90 resolution, l10−90, both increase with lift height.
Larger shake amplitude, AT, decreases Vm, but no e�ect on resolution is found
above the noise level as a function of AT. A cantilever model is used to calculate
expected Vm (shaded regions).

quickly with lift height for smaller AT (�gure 2.9a). In addition, Vm is calculated

from a model cantilever geometry [78] combined with noise from equation 2.20 for

the cantilever described in table 2.1, where the tip radius and opening angle are the

only free parameters. A tip radius of 16 ± 2 nm with an opening angle of 40 ± 5◦

is found to approximate the AT = 4 nm data. The calculated Vm for this geometry,

for all AT are plotted in �gure 2.9.

Similarly, we measure Vm while in tapping mode, as the topographical setpoint

is gradually decreased. The noise in both H-KPFM implementations increases slowly

as the setpoint is decreased, but the noise density in FM-KPFM increases rapidly,

so that close to the surface, Vm for FM-KPFM is about an order of magnitude larger

(�gure 2.10). Because the noise does not increase as rapidly for H1, the source of the
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Figure 2.10: The minimum detectable voltage changes as a function of the normal-
ized AT, which decreases as the probe moves closer to the surface (as in �gure 2.4).
A smaller setpoint moves the cantilever closer to the surface. Far from the surface
H2 and FM-KFPM have similar Vm, but it becomes much greater for FM-KPFM
nearer the surface, where the noise increases. The H1 method uses a di�erent eigen-
mode for topography, and does not have the steep increase in Vm. The gradient
from dark to light represents the change from tapping mode to a non-contact mode
as the topography setpoint is increased and the probe is lifted from the surface.

noise is not solely due to using the �rst resonance for KPFM detection. Likewise,

because the rapid noise increase is not seen in H2, the source of the extra noise is

not solely due to which resonance is used for topography control. Thus, we suspect

that the rapid increase in noise when FM-KPFM approaches the surface is due to

signal detection (ωD) and topography control (ωT) utilizing the same eigenmode.

2.3.3 Spatial resolution

Determining the spatial resolution of KPFM typically involves observing po-

tential change around a boundary. Jacobs et al. showed that the boundary between

two micron-scale objects allows for a clear empirical de�nition of spatial resolution

and calculated a 25-75 resolution, i.e. the distance over which 50% of the total

observed voltage change occurred, as a function of lift height [75,122,123]. Zerweck

et al. similarly calculate a 10-90 resolution [87]. An equation for the resolution from
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a point probe is derived in [123]. Others have sought information about the resolu-

tion by comparing the boundaries to particular functions, such as arctangent [123]

or Boltzmann functions [124].

Here we estimate a 10-90 resolution, l10-90, by �tting the measured potential

as a function of distance from the boundary to a hyperbolic tangent (tanh, �gure

2.11). The theoretically expected form of the measured potential near the boundary

is very nearly a tanh within the proximity force approximation, as shown in section

2.3.3.1. For large lift heights (> 20 nm), the resolution is large enough to prevent VK

from reaching its asymptotic value over the scan size, which necessitates the use of

a �t. The noise inherent in KPFM is overcome by averaging around the boundary.

The equation of the tanh �t to the boundary is:

VK(x) = (Vb tanh
[
ln(9)(x− x0)/l10-90

]
+ c)/2, (2.23)

where Vb is the potential change across the boundary, VK(x) is the average measured

VK a distance x from the boundary, x0 is the center of the boundary, and l10-90 is

the 10-90 resolution. This �t gives the empirical spatial resolution. In order to

determine whether or not the measured potential on either side of the boundary

corresponds to the actual potential di�erence, one must supplement this data with

either theory [87] or knowledge of the accuracy of the detected voltage (as in �gure

2.7).

Regions of few layer graphene and silicon are identi�ed by watershed segmen-

tation [125]. First, the image is median �ltered in order to mitigate the e�ect of noise
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Figure 2.11: Few layer graphene on silicon shows (a) height contrast and (b)
signi�cant voltage contrast. (c) A histogram of the KPFM dat shows that the
potential distribution is bimodal. (d,e) A watershed algorithm is applied to gradient
magnitude of the potential image (d) in order to calculate the boundary (e, −−−).
(f) Voltages are summed as a function of the distance from the boundary (•) and
�t to a tanh function (black solid line), from which the 10-90 resolution is deduced.

on the algorithm, and the trace and retrace are averaged. Second, the gradient mag-

nitude of the resultant potential image is calculated with a Sobel algorithm [125].

Third, points of lowest and highest potential across the image are marked. Fourth,

the watershed algorithm is applied with the two marked points forming the origin

of each basin (�gure 2.11).

Once the image is divided into two components, we plot the potential of the

unaltered measurement as a function of the distance from the estimated boundary,

and �t the resulting curve to a tanh function (�gure 2.11e,f). The 10-90 resolution,

l10-90, is then extracted from the �t.

For all KPFM methods used, l10-90 increases with lift height (�gures 2.8,2.9b),

as observed before with AM-KPFM [75]. Both implementations of H-KPFM and

FM-KPFM achieve better spatial resolution than AM-KPFM, at all heights, but

the error is too large to discern a di�erence between the former three. However,
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when the resolution approaches the length of the few layer graphene, or when the

minimum detectable voltage reaches the contrast between the objects, the error

grows large. Finding a longer, straighter boundary to measure, with larger contrast,

could aid in future measurements of resolution at larger lift heights.

2.3.3.1 An equation for spatial resolution

Above we discuss the spatial resolution of KPFM in terms of l10-90, the 10-90

resolution, or the distance over which 80% of the voltage change across a bound-

ary occurs. We determine l10-90 by �tting VK(x), the potential measured across a

boundary, to a hyperbolic tangent (equation 2.23).

Here, we use the proximity force approximation (PFA) for a sphere interacting

with a plate to derive an analytic expression for VK(x) for both C ′ and C ′′ KPFM

methods. Furthermore, we demonstrate that the tanh function approximates the

form of VK(x) better than the arctan function in order to motivate our choices in the

text. Finally, we estimate how l10-90 changes with height and tip radius. We note

that an equation for resolution exists in the large separation, small probe limit [123],

but better resolution is achieved with small tip-sample separation, and so that is

our focus here.

The PFA for the capacitive force of a sphere above a plate can be written

as [126]:

F (d) =
ε0
2

∫ 2π

0

dφ
∫ R

0

rdr
(V − Vpl(r, φ))2

(d+ r2/2R)2
, (2.24)

43



where R is the radius of the sphere, Vpl(r, φ) is the potential of the plate at position

(r, φ), and V is the potential of the sphere (here assumed to be spatially uniform).

The voltage applied to the probe that minimizes nth derivative of this force can be

found by taking n derivatives with respect to d and one with respect to V ,

∂n+1F (d)

∂V ∂zn
=

∂

∂dn

[
ε0

∫ 2π

0

dφ
∫ R

0

rdr
V − Vpl(r, φ)

(d+ r2/2R)2

]
. (2.25)

At the Kelvin probe voltage, V = VK(x), for which the KPFM signal SK van-

ishes, equation 2.25 vanishes as well. Near a boundary, the potential of the plate is

Vpl(r, φ) = VbΘ(cos(φ)+L/r), where L = x−x0 is the distance between the location

of the probe and the boundary and Θ is the Heaviside step function . The potential

is Vb for r cos(φ) > −L and 0 otherwise. To simplify the calculation, we de�ne the

function Λ(z,R, L):

Λ(d,R, L) =

∫ 2π

0

dφ
∫ R

0

rdr
Θ(cos(φ) + L/r)

(d+ r2/2R)2
, (2.26)

= R

2L arctan
(√

R2−L2

L2+2Rd

)
d
√
L2 + 2Rd

+
2R arccos

(
−L
R

)
d(R + 2d)

 .

For a KPFM method with a signal proportional to the (n+ 1)th derivative of capac-

itance, the Kelvin probe voltage near a boundary is:

V C(n+1)

K (L) = Vb
Λ(n)

2Λ(n)|L=0

, (2.27)

where Λ(n) = ∂nΛ
∂dn

, and C(n+1) represents a method that depends on the (n + 1)th
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derivative of capacitance. For example, for AM-KPFM, the signal of which is pro-

portional to C ′, the Kelvin probe voltage is:

V C(1)

K (L) =Vb

[
1

2
+

arcsin
(
L
R

)
π

+
L(2d+R) arctan

(√
R2−L2

L2+2dR

)
πR
√

2dR + L2

]
. (2.28)

It must be noted that the PFA only considers the contribution of the tip apex to the

KPFM signal. In AM-KPFM the dominant contribution to the signal comes from

the cantilever. At a boundary, equation 2.28 will predict the shape of V C(1)

K (x), but

the Vb coe�cient will be much less than the potential di�erence across the boundary

because AM-KPFM only measures qualitative potential contrast [75].

For the C ′′ methods (H- or FM-KPFM) the minimizing potential equation is

more complicated, and so it has been plotted in �gure 2.12a. To facilitate data

analysis, a simpler function can be used to approximate equation 2.27. Both arctan

and tanh functions have the desired behavior: monotonic, odd around L = 0, and

asymptotic to a constant as L→∞. The slope of V C(n+1)

K (L) is steepest at L = 0 and

so �tting for small L is most important. Arctan and tanh are used to approximate

equation 2.27 by matching the �rst derivative of each function to our exact analytic

expression:

V C(n+1)

tanh =Vb
tanh(2aC

(n+1)
L) + 1

2
, (2.29)

V C(n+1)

arctan =Vb
arctan(πaC

(n+1)
L) + π/2

π
,
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Figure 2.12: The normalized Kelvin probe voltage near a boundary in the proximity
force approximation (PFA) is shown in (a) for both the AM-KPFM (C ′, red) and
H- and FM-KPFM (C ′′, blue) variants. The dashed black line shows the normalized
potential on the surface directly and two grey lines indicate the 10-90 potential
change. (b) A tanh function (dashed orange) is a much better �t to the analytic
expression (PFA) for the C ′′ method than an arctan function chosen in the same way
(dashed green). (c) The 10-90 resolution predicted by a tanh function �t (solid) is
compared to that calculated numerically by the exact PFA expression (•). At small
d/R, the 10-90 resolution increases with separation ∝

√
d/R, and this approximate

expression is plotted for both the C ′ and C ′′ methods (dashed). A purple line
indicates the value of d/R for which (a,b) are plotted.

where,

aC
(n+1)

=
∂V C(n+1)

K

∂L

∣∣∣∣∣
L=0

, (2.30)

Both functions are plotted in �gure 2.12b to visually depict how well each �ts equa-

tion 2.27. The tanh �t follows the exact expression more closely than the arctan �t.

The tanh �t can then be used to estimate l10−90 as a function of d and R:

lC
(n+1)

10−90 =
ln(9)

2aC(n+1)
. (2.31)
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Which, for AM-KFPM is:

lC
(1)

10−90 =
π log(81)

√
dR

2
√
d/R +

√
2(2d/R + 1) arctan

(√
R
2d

) . (2.32)

The more complicated expression of lC
′′

10−90 is plotted in �gure 2.12c. Taylor

expanding around
√
z/R ≈ 0, the resolutions are:

lC
(1)

10−90

R
≈
√

2 ln(9)

√
d

R
(AM method), (2.33)

lC
(2)

10−90

R
≈ 2

3

√
2 ln(9)

√
d

R
(H-,FM- methods).

Jump-to-contact limits how small d can become, and consequently limits the possible

spatial resolution. These approximations are also compared to the exact PFA result

in �gure 2.12c.

The resolutions calculated here are a lower bound on the resolution possible

with KPFM because many components of the probe that would broaden the reso-

lution are neglected. Though the electrostatic probe-surface force from the tip cone

and cantilever have been calculated for uniform potential [78, 127], we are unaware

of any analytic procedure to take into account variations of the surface potential.

A procedure does exist to calculate the electrostatic force between a sphere and a

plate with potential variations [128], but the KPFM probe geometry is only slightly

better represented by such a model. Most importantly, these extra cases all reduce

to the PFA near the surface, where the best spatial resolution is achieved.
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2.4 H-KPFM summary

In this chapter, we explore the versatility of H-KPFM and uncover its bene�cial

characteristics, the most prominent of which is its speed. The H1 implementation

improves the minimum detectable voltage by ≈ 80% relative to the original imple-

mentation. The next chapter discusses both our investigations into the e�ects of

roughness and cantilever dynamics on H-KPFM and a generalization of the hetero-

dyne actuation technique. Further studies into the technique of H-KPFM should

investigate how to incorporate better control techniques for potential estimation

(e.g. [115]) and tracking of the surface (e.g. [129]), which now limits KPFM scan

speed. Cantilevers could be designed speci�cally for H-KPFM [130] to reduce the

di�erence between the spring constants of the �rst and second eigenmodes, which

would improve the sensitivity of H-KPFM. Likewise, cantilever resonance frequen-

cies could be chosen to enable open-loop H-KPFM [99].

Heterodyne KPFM improves upon the time resolution of FM-KPFM. Rates of

several frames per minute are achieved. Its speed is not limited by AC coupling or

bandwidth overlap, and so with appropriate cantilevers it will operate even faster. It

also improves upon the spatial resolution of AM-KPFM. These new implementations

of H-KPFM will facilitate fast and accurate measurements of nanoscale potential

dynamics. Most importantly, it provides a robust method for determining the force

from patch potentials later in chapter 5.
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Chapter 3: Utilizing cantilever dynamics in KPFM

This chapter tests and develops the KPFM methods described in chapter 2 us-

ing a more comprehensive model of the cantilever dynamics. The �rst half, adapted

from a recent publication [108], tests how the tip apex trajectory interacts with the

slope of a sample to a�ect the stability of the KPFM feedback loop. The second

half explores how non-linearities in the tip-sample force can be used to improve the

spatial resolution of KPFM, in order to calculate the patch potential force more

accurately later in chapter 5. An improvement in spatial resolution is achieved, but

is tied to a simultaneous loss in voltage contrast.

3.1 Lateral tip motion

In atomic force microscopy (AFM), the angle relative to the vertical (θi) that

the tip apex of a cantilever moves is determined by the tilt of the probe holder,

and the geometries of the cantilever beam and actuated eigenmode i. Even though

the e�ects of θi on static and single-frequency AFM are known (increased e�ective

spring constant, sensitivity to sample anisotropy, etc.), the higher eigenmodes used

in multifrequency force microscopy lead to additional e�ects that have not been fully

explored. Here we use Kelvin probe force microscopy (KPFM) to investigate how
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θi a�ects not only the signal amplitude and phase, but can also lead to behaviors

such as destabilization of the KPFM voltage feedback loop. We �nd that longer

cantilever beams and modi�ed sample orientations improve voltage feedback loop

stability, even though variations to scanning parameters such as shake amplitude

and lift height do not.

The development of specialized cantilever probes enabled atomic force mi-

croscopy (AFM) [34]. Later, it was realized that the holder tilts the cantilever and

the trajectory of the tip apex which both increases the e�ective static spring con-

stant and causes the phase of Amplitude Modulation (AM) AFM to be sensitive to

both the anisotropy and slope of samples [131�134]. For higher eigenmodes i, the

angle between the tip apex trajectory and the vertical axis (θi) also depends the

geometries of the cantilever and eigenmode, so that recent experiments were able

to use eigenmodes with di�erent θi to probe forces in several directions [135�140].

Bimodal AFM, in which two eigenmodes are driven by excitation of the cantilever

base, was used for most of these experiments, but it is only one of many multifre-

quency techniques [65, 66, 87, 104, 141�150], and the e�ects of θi have not yet been

explored for the general multifrequency case.

Sideband multifrequency AFM methods are promising ways to investigate op-

toelectronic materials and devices at the nanoscale [65, 87, 104, 146�150]. In order

to eliminate long-range artifacts and improve spatial resolution, they drive a signal

by mixing a modulated tip-sample force with piezo-driven cantilever oscillations.

A prominent sideband method is photo-induced force microscopy (PIFM), which

has been used for nanoscale imaging of Raman spectra [146], nanoparticle reso-
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nances [148], and refractive index changes [150]. However, there is considerable

debate about how to extract quantitative data from PIFM scans [148�150] because

it is unclear how the force couples into the probe and optical forces themselves are

di�cult to characterize a priori.

Because the electrostatic force is well-characterized and controllable compared

to optical forces, it o�ers an opportunity to test the sideband actuation technique.

The FM- and H-KPFM techniques introduced in chapter 2 are examples sideband

AFMmethods. In a recent experiment, height variation of around 10 nm destabilized

the H-KPFM voltage feedback loop, but FM-KPFM scans were stable for variations

of over 100 nm [151]. Because FM- and H-KPFM are primarily distinguished by

the eigenmode used to amplify the KPFM signal, the cause of their qualitatively

di�erent behavior likely originates from the geometry of the eigenmodes. Moreover,

the details of cantilever dynamics have been shown to be critical to understanding

AM-KPFM [152, 153], a much simpler technique that drives and detects its signal

at a single frequency, and which can be used for comparison. In this section, we

use KPFM measurements to answer the questions: (a) how does the θi of each

eigenmode a�ect the signals of KFPM, (b) why does the KPFM feedback instability

di�er between H- and FM-KPFM, and (c) how do the e�ects of θi appear in sideband

multifrequency force microscopy methods in general?
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Figure 3.1: The tip apex moves at an angle relative to the vertical for each eigen-
mode i (θi), which depends on the angle of the probe holder (θholder), the geometry of
the cantilever, and the geometry of the eigenmode (Φi). The inset shows the tip apex
with the �rst eigenmode excited (i=1), in which the amplitude of the eigenmode
(Y1), the tip apex displacement (~r1), and θ1 are labeled.

3.1.1 De�ning θi

The motion of a cantilever beam can be expressed as a sum of eigenmodes,

each a solution to the Euler-Bernoulli beam equation [121,154]:

zcant(x, t) =
∞∑
i=1

Yi(t)Φi(x), (3.1)

where Yi(t) contains the time-dependence, Φi is the shape of the ith cantilever beam

eigenmode (normalized so that Φi(L) = 1, where L is the length of the cantilever

beam), and zcant is the displacement of the cantilever beam (see �gure 3.1). To main-

tain generality, the exact form of Φi is not speci�ed until the numerical evaluation

of θi, at which point the solution for a rectangular cantilever beam is used [121,154].

Thus the following analysis holds even for non-rectangular cantilever beams and

probes with large tip cones, both which may have atypical Φi [155,156].

To calculate the trajectory of the tip apex, the probe is characterized by its tip
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cone height h, contact angle δ, and contact position xt (�gure 3.2). The position of

the tip apex is the location of base of the tip cone {xt, YiΦi(xt)} plus the position of

the tip apex relative to the base of tip cone, {h cos(ξ(Yi)−δ), h sin(ξ(Yi)−δ)}, where

ξ(Yi) = tan−1(Yi∂xΦi(xt)) is the angle of the vector normal to the cantilever at xt.

Because the probe is held at an angle θholder (here, 0.2 radians), the displacement of

the tip apex from equilibrium becomes, in the small oscillation limit (Yi � L):

~ri = R

 h(cos(ξ(Yi)− δ)− cos(δ))

YiΦi(xt) + h(sin(ξ(Yi)− δ) + sin(δ))

 , (3.2)

where R =
[

cos(θholder) sin(θholder)
− sin(θholder) cos(θholder)

]
is a 2D rotation matrix around the base of the

cantilever beam. For a single eigenmode in the Yi � L limit, the tip apex moves in

a straight line at an angle with respect to the vertical:

θi = lim
Yi/L→0

cos−1
(
~ri · (Yiẑ)

)
. (3.3)

Note that equations 3.2 and 3.3 imply that much of the trajectory of the tip apex is

in the x̂ direction, even for very small excitations. For example, a 10 nm amplitude

excitation of the �rst eigenmode of the cantilever beam in �gure 3.2b causes the tip

apex to move ≈ 3.9 nm in the x̂ direction and 8.6 nm in the ẑ direction. Because

the potential energy of an eigenmode must be the same whether the motion of the

end of cantilever beam (Φi(L)) or the tip apex (~ri) is considered, an e�ective spring

constant (ke�i ) for forces acting on the tip apex parallel to ~ri (perpendicular forces
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excite only eigenmodes 6= i) can be de�ned [137]:

ke�i = lim
Yi/L→0

Y 2
i

|~ri(Yi)|2
ki, (3.4)

where ki is the spring constant for an upward force acting at x = L [120].
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Figure 3.2: Cantilever geometry determines the direction of the tip apex mo-
tion. (a,b) SEM images show cantilevers of length 350 µm and 90 µm, respectively
(µmasch, CSC37/Pt-B and NSC35/Pt-B). (c) Each cantilever is characterized by
its tip cone height h, contact position xt, contact angle δ, and length L. (d,e) The
full calculation of ~ri (solid line, equation 3.2) and linear approximation (dashed line,
equation 3.3) show agreement. For each eigenmode, θi is greater for the short can-
tilever than for the long cantilever. (f) The slope of the sample is characterized by
its normal vector (n̂) and the angle it makes with the vertical (θn).

3.1.2 Lateral motion in multifrequency AFM

The tip apex trajectory a�ects AFM techniques that use a modulated tip-

sample force ~Fdir to actuate the cantilever either directly or through sideband cou-

Table 3.1: Cantilever resonance frequencies
L (µm) ω1

2π
(MHz) ω2

2π
ω3

2π
ω4

2π
ω5

2π
ω6

2π
ω7

2π

90 0.25 1.62 4.58 - - - -
350 0.02 0.13 0.37 0.72 1.20 1.79 2.50
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Figure 3.3: An AC voltage, VAC, is applied to the cantilever at frequency ωA,
while tip-sample separation is controlled by piezo-driven oscillation at frequency ωT
and the sample is grounded. The oscillations at ωT mix with the electrostatic force
driven by VAC at frequency ωA to drive the tip apex at the detection frequency, ωD,
which is ampli�ed by one of the cantilever's resonance frequencies and detected by
a lock-in ampli�er. When KPFM feedback is used, the grey signal paths are added
to the circuit, and ωA = (ωD − ωT)/2 is changed to ωA = ωD − ωT.

pling while relying on piezo-driven oscillation with amplitude AT at frequency ωT for

topography control (here, ωT = ω1 in table 3.1 is used). Sideband techniques gener-

ate a signal by modulating a separation-dependent force ~Fdir at frequency ωM, which

is then mixed with the piezo-driven oscillations, typically AT. Here, the resonance

frequency used for detection determines the modulation frequency ωM = ωi − ωT

(table 3.1). By using the force gradient, sideband methods exclude the non-local

e�ects of the cantilever beam that are present when ~Fdir is used for direct actuation,

such as in AM-KPFM [87,104,149].

To con�rm that the cantilever beam's contribution to the total force is small

even when higher eigenmodes are used, the force on the beam is computed for

both direct actuation (−∂U/∂Yi) and sideband actuation (−∂2U/∂Y 2
i ), where U

is the electrostatic potential energy between the probe and the surface evaluated

using the proximity force approximation and the geometry of the longer probe. The

contribution from the tip apex is calculated by modeling it as a 30 nm radius sphere
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Figure 3.4: (a,b) The height of a trench that is scanned with KPFM (1282 pixels,
500 nm/s). (c) Where the normalized signal (Ã2ω, red) becomes negative, the KPFM
voltage with feedback on (blue) becomes unstable and approaches the limit imposed
on the feedback loop, for both trace (solid) and retrace (dashed). Long (d) and short
(e-g) cantilever beams scan across the trench edge in three di�erent orientations:
down (i, θn < 0), parallel to (ii), and up the slope (iii, θn > 0). In (i,ii), Ã2ω

remains positive for all methods, but in (iii) all methods except FM-KPFM contain
a negative portion for the short cantilever beam. (f,g) Varying scan parameters such
as AT (used for topography control) and lift height are not su�cient to prevent Ã2ω

< 0. The di�erent scanning modes are labeled by a pre�x (eg. `H' for H-KPFM)
and a number indicating the eigenmode used to amplify the signal, except for FM-
KPFM, which always uses the �rst eigenmode. (h) An artifact is present in an
H-KFPM scan of Au nanoparticles on indium tin oxide when the signal is ampli�ed
by the second eigenmode of the short cantilever beam. (i) When the long cantilever
beam is used to scan other Au nanopaticles on the same sample, the artifact is
eliminated.

10 nm above the surface. The percent of the signal originating from the cantilever

beam using direct actuation is found to be 17-53% for the �rst seven eigenmodes,

while with sideband actuation 0.1-0.2% of the signal originates from the beam. The

small contribution from the beam validates the approximation that the electrostatic

force acts on the tip apex for sideband actuation of higher eigenmodes.

In the small-oscillation approximation [65, 149], the force driving sideband
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oscillation is ~Fside cos(ωDt), where:

~Fside = ∂d ~Fdir
AT

2
cos(θi − θn), (3.5)

in which d is the tip-sample separation, ωD is the detection frequency, and the

cos(θi − θn) factor originates from the angle between the trajectory of the tip apex

and the force vector (parallel to n̂). The displacement of the tip apex at ωD is then

~rj(t) = AD cos(ωDt)r̂j, where eigenmode j is driven and the signal detected by the

lock-in ampli�er is:

AD =
Qj

ke�j
~F · r̂j, (3.6)

for both the sideband and direct driving forces (�gure 3.3). A change in the sign of

AD corresponds to a phase shift by π radians.

The interplay of θj and sample slope can then be observed in the signal AD

normalized by the its value on a �at surface (ÃD ≡ AD
AD(θn=0)

):

Ãdir
D =

cos(θj − θn)

cos(θj)
, (3.7)

Ãside
D =

cos(θn − θj) cos(θn − θi)
cos(θj) cos(θi)

, (3.8)

where it is assumed that n̂ is in the x-z plane and θi, θj 6= ±π/2. Note that if

|θi − θn| > π
2
> θi, ÃD changes sign.
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Equations 3.7 and 3.8 predict how the geometry of tip apex motion causes

scanning probe methods to be sensitive to sample slope. To test the equations,

a silicon trench is fabricated using e-beam lithography to pattern a 2 µm × 100

µm line on a silicon wafer which is then etched using reactive ion etching (RIE) and

coated with 5 nm of chromium for conductivity. The edges of the trench are imaged,

in attractive mode [157], trace and retrace images are averaged, and each column of

pixels is summed and averaged (�gure 3.4a,b).

3.1.3 Frequencies of electrostatic actuation

In the static limit, when an AC voltage is applied to a probe at frequency

ωA, the tip-sample electrostatic force has components at three frequencies [66, 87]:

~Fes = ~FDC + ~FωA cos(ωAt) + ~F2ωA cos(2ωAt). Either ~FωA or ~F2ωA can be used in

equation 3.5 to drive the sideband signal by choosing ωM = ωA or 2ωA, respectively.

The signal then depends on the gradient of the original modulation force [87, 104].

For FM-KPFM, ωA � ω1 [87]. Closed loop KPFM measures the contact potential

di�erence between the probe and sample using a feedback loop to nullify a signal

driven by the force ~FωA . Alternatively, open loop KPFM uses oscillation driven by

~F2ω combined with the ~FωA signal to estimate the potential di�erence ∆V from the

relationship between the forces ~F2ωA = ~FωAVAC/(4∆V ) [98, 158]. The relationship

between ~F2ωA (which drives A2ωA according to equation 3.6) and KPFM feedback

loop itself can be seen in �gure 3.4c: the feedback becomes unstable at locations

where A2ωA changes sign. Moreover, any change in A2ωA makes KPFM susceptible
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to topographic cross-talk [84]. The signal is driven by ~F2ωA because it reveals the

behavior of the KPFM feedback loop, without requiring feedback to be used and is

not susceptible to patch potentials or tip change.

3.1.4 E�ect of θi observed by scanning a trench

The e�ect of slope is revealed by observing how the normalized signal (Ã2ωA)

changes as the tip apex approaches an edge of the trench at di�erent orientations,

for AM-, FM- and H-KPFM with the �rst three eigenmodes of each cantilever, and

VAC = 3 V. In �gure 3.4 the trench edge is crossed with three di�erent orientations:

(i) the vector from the base of the cantilever beam to its tip apex points down the

slope (θn > 0, from the higher to the lower level) (ii) parallel to the slope (n̂ out

of plane) and (iii) up the slope (θn < 0). One trend predicted by equation 3.8 is

observed: Ã2ωA tends to increase as θn increases. However, the decrease of Ã2ωA is

greater for the short cantilever beam than for the long cantilever beam. For the

short cantilever beam, the θn < 0 edge leads to Ã2ωA < 0 for every technique except

FM-KPFM.

Other scan parameters a�ect Ã2ωA much less. AT, used for topography control,

is varied from 10 to 40 nm, but the shape of Ã2ωA retains a negative portion as the

θn < 0 edge is crossed. Similarly, using a two-pass method and varying the lift

height from 2 nm to 16 nm does not prevent Ã2ωA < 0 at the θn < 0 edge. Thus, if

KPFM feedback is unstable for geometric reasons, adjustments to the scan settings

do not typically stablize it.
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Figure 3.5: (a) A cantilever scans, using H-KPFM, across a 2 µm wide chromium-
coated silicon trench (64×256 pixels, 800 nm/s). (b) On the downward slope (left),
the normalized signal Ã2ωA becomes larger, but on the upward slope (right), the
signal decreases. (c) Measured and (d) predicted values of Ã2ωA are plotted against
the local slope of the trench. Higher eigenmodes tend to show a greater change with
slope, as predicted from their larger θi. Bimodal AFM is also used to scan across
the surface, while biased to 3 V. (e) The change in phase shows peaks at the edges,
but unlike the H-KPFM case, the relative amplitude of the phase change decreases
for higher eigenmodes, because the of increased ke�i . (f) The amplitude decreases in
the middle of the trench, but not at the edges, and changes by < 0.5%.
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To test the predictions with a wider range of θi, the trenches are scanned again

with the long probe in H-KPFM mode using the �rst eigenmode for topography

control and amplifying the ~F2ω signal with eigenmodes 2-7 (ie. ωA = ωM/2 =

(ωi− ω1)/2, so that ωD = ωi for 2≤ i ≤7, table 3.1). Because each eigenmode has a

slightly greater θi than the one before it (ie. θi+1 > θi), equation 3.8 predicts that

the e�ect of sample slope is greater for the higher eigenmodes than the lower ones,

and the experiment con�rms this trend, although the seventh eigenmode changes

less than the sixth (�gure 3.5b-d). The experimental data do not all fall on a single

line (�gure 3.5c), perhaps because the region on the sample from which the ~F2ω force

originates deviates from the single-slope assumption.

For eigenmodes 3-7, the data agree better with equation 3.8, which has no

free parameters, than with the null hypothesis that the signal does not depend on

slope, thus con�rming that the direction of the force a�ects how it drives the tip

apex. However, equation 3.8 tends to underestimate Ã2ωA , particularly for slopes

< −0.5, which suggests that other factors, such as the tip cone and changes to the

piezo-driven oscillation, AT, may also matter. An initial test of e�ect of slope on

piezo-driven oscillation with bimodal AFM shows a change in the phase at the edges

of the trench (�gure 3.5e,f). Because the sideband excitation technique is similar for

di�erent forces, the results here indicate that θi a�ects the whole class of methods.

The direction of the tip apex trajectory depends on cantilever geometry and

the eigenmodes used, and in�uences sideband multifrequency force microscopy meth-

ods. It can even change the sign of the signal, which leads to feedback instability

in KPFM. The results here show that considerable topographic restrictions exist for
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multifrequency methods when short cantilevers are used. Because short cantilevers

enable faster scanning than long cantilevers [159], the restriction amounts to a speed

limitation for any given roughness. Because the equations above separate the calcu-

lation of θi (3.1-3.4) from the analysis of the sideband signal (3.5-3.8), either portion

can be combined with numerical methods to account for non-rectangular cantilever

beams, or non-analytic forces. Knowledge of the e�ect of geometry will assist in the

development of additional multifrequency methods and will make the interpretation

of current methods more accurate. In particular, the improved stability of KPFM

will enable high resolution voltage mapping of rough or textured surfaces, which will

allow for improved nanoscale characterization of optoelectronic structures such as

solar cells and for the study of light induced charging e�ects resulting from hot car-

rier generation or plasmoelectric excitation of nanostructured metals [148,151,160].

Moreover, the above experiments showed us that H-KPFM with the �rst cantilever

eigenmode allows scanning on the spherical surface of Casimir force probes.

3.2 Tunable spatial resolution

The spatial resolution of dynamic force microscopy is limited primarily by

three factors: tip geometry, jump-to-contact, and the separation dependence of

the tip-sample interaction [64]. The �rst two of these factors can be controlled by

either the choice of cantilever (tip radius, spring constant) or scan parameters (drive

amplitude, setpoint). On the other hand, a few techniques have been used to control

the signal separation dependence in particular situations, but no general method has
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emerged.

A long-range force, like the electrostatic (d−1 for tip-plate) or van der Waals

force (d−2), interacts with a larger region of the AFM tip than a shorter range force,

such as the contact force from the overlap of electron wavefunctions (≈ d−12), and

so limits the spatial imaging resolution. One successful technique to increase the

separation dependence is to immerse a sample in liquid to minimize van der Waals

force so that the repulsive contact force dominates tip dynamics [161]. However,

this technique requires operation in liquid which lowers the cantilever Q-factor and a

liquid environment may not be suitable for all samples. Another technique is to a�x

a dissimilar particle to the end of the tip (e.g. atom, quantum dot, etc) [162�164], but

stability on rougher surfaces and at ambient conditions has not been tested. Other

methods that increase the separation dependence of the signal include frequency

modulation or phase detection, which (in the small-amplitude limit) detect the force

gradient instead of the force itself [85,147,165]. The idea of imaging force gradients,

instead of forces, to increase spatial resolution has been further developed into a

sideband technique, that can be used with any force that can be driven at >500

Hz [65,87,104,147,149].

In this section, a general technique is proposed to increase the separation

dependence of a signal by mixing the oscillation of the cantilever at one (carrier)

frequency with force modulation at another, in order to excite the cantilever at

a third frequency, ampli�ed by one of its eigenmodes (�gure 3.6). The tunable

spatial resolution (TSR) technique presented here is a generalization of sideband

actuation that uses the nonlinearity of the tip-surface interaction to control the
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spatial resolution. The scheme is demonstrated with Kelvin probe force microscopy

[66, 87], and noticeable resolution enhancement is achieved. Concurrent changes to

the noise level and the feasibility of extending the TSR technique to measure other

forces are discussed.
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Figure 3.6: Applied and detected signals along the cantilever transfer function. (a)
Frequencies are chosen for the carrier signal/topography control (ωT, |) and signal
detection (ωD,↑). (b) The di�erent frequencies at which the force can be modulated
to generate a signal at ωD are determined by the equation ωM = nωT ± ωD, where
n chooses the term of a Taylor series expansion of the force used to generate the
signal, which in turn determines its dependence on separation d. The arrows show
di�erent choices for ωM. Solid arrows correspond to `−', dashed arrows correspond
to `+', and the colors correspond to di�erent n. (c) The cantilever transfer function
G(ω) is used to amplify the signal.

We introduce a technique to improve the spatial resolution of the scanning force

microscopy by altering the e�ective force on the cantilever. We motivate the tech-

nique mathematically by considering the electrostatic force and then demonstrate

the technique with Kelvin probe force microscopy (KPFM). The spatial resolution

is investigated by scanning a �ake of few layer graphene, and the voltage contrast

is investigated by measurements of the minimum detectable voltage. The spatial

resolution is found to improve by almost a factor of two, while the voltage contrast

decreases according to a perturbative model discussed below.
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3.2.1 Modeling tunable spatial resolution

Tunable spatial resolution works by controlling the e�ective d-dependence of

the signal. The vertical component of the force between a conductive probe and a

conductive surface is F = −1
2
∂dCV

2, where ∂dC = ∂C
∂d

is the tip-sample capacitance

gradient and V is the (height-independent) voltage between the tip and the sample.

The time-averaged tip-sample separation is maintained through feedback acting on

photothermally driven oscillation of the cantilever at frequency ωT. When the can-

tilever is interacting weakly with the surface (often called `attractive mode') [157],

its motion is approximately d(t) = d̄+AT sin(ωTt), where AT is the amplitude of the

cantilever and ωT is the frequency of the oscillation used for topography feedback.

The force on the cantilever, when Taylor expanded around its equilibrium position,

is thus:

Fes = −1

2

(
∞∑
n=0

∂
(n+1)
d C

n!

∣∣∣∣∣
d̄

AnT sinn(ωTt)

)
V 2. (3.9)

In KPFM, both a DC voltage (VK) an voltage oscillating at frequency ωA (VAC)

are applied to the probe. There is also an inherent contact potential di�erence, V0,

relative to the surface, so that V = VAC sin(ωAt)+VK+V0. Then, V 2 has components

at three frequencies: DC, ωA, and 2ωA, as discussed in section 3.1.3. Initially, the

force modulation frequency ωM is chosen to be ωA. To estimate the magnitude of

the TSR signal, we make two more simplifying assumptions. First, we assume that
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∂
(n)
d C > ∂

(n+1)
d CAT so that the signal at each frequency is dominated by the smallest

n which contributes to it. Because ∂dC ∝ d−1 near the surface, this assumption is

equivalent to saying that AT/d̄ < 1. Second, we assume that the motion generated

by the force at frequencies other than ωT is small because they are not ampli�ed by a

cantilever resonance, so that our original equation for d(t) remains valid, even when

these extra forces are present. The magnitude of the force at frequency |nωT ± ωA|

is then:

|FnωT±ωA| =
AnT∂

(n+1)
d C

2nn!
VAC|VK + V0|, (3.10a)

=

(
AT

2d̄

)n
|FωA| ≤

|FωA|
2n

, (3.10b)

where both the identity that sinn(x) = 2−n sin(n(x−π/2)+π/2)+O(sin(mx), m <

n), and the proximity force approximation (d/R� 1) have been used. The inequal-

ity 3.10b is the same for the case when the electrostatic force modulation at 2ωA is

used (i.e. ωM = 2ωA).

Now ωM is chosen so that the force to be ampli�ed coincides with one of the

eigenmodes of the cantilever (pictured in 3.6 as the second eigenmode), so that:

ωM = |nωT ± ωD|. (3.11)

The proximity force approximation (PFA) is used to predict how stronger distance

dependence a�ects the spatial resolution. It states that near the surface, the force

on a spherical probe can be approximated as if it were the force on many individual
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plates arranged in the shape of the sphere. In chapter 2, the PFA is used to derive

the spatial resolution of a method using the (n + 1)th derivative of capacitance

(equation 2.27). Figure 3.7 shows how the e�ective separation dependence of the

signal changes for n=0-3. By approximating the VK at a boundary as a tanh function

(section 2.3.3.1), the 10-90 spatial resolution (the distance over which 80% of the

apparent voltage change occurs) can be written as:

lC
(n+1)

10−90 =
ln(9)

2(∂xV C(n+1)

K (x))|x=0

, (3.12)

=⇒ lC
(n+1)

10−90

d/R→0
=
√

2 ln(9)
(2nn!)2

(2n+ 1)!

(
d

R

)1/2

, (3.13)

=⇒ lC
(n+1)

10−90

d/R→0
=

(
1− 1

2n+ 1

)
lC

(n)

10−90. (3.14)

Thus heterodyning the modulated force with a larger-n term of the Taylor series in

equation 3.9 both improves spatial resolution and harms voltage sensitivity.
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Although it is not always possible to change the tip radius used for imaging,

it is a useful comparison for the changes in resolution discussed above. In equation

3.10b, increasing n by 1 cuts the force, and hence the sensitivity, in half. Because

force is proportional to radius in the PFA, this would be equivalent to halving the

probe radius. Now, when d�R, the spatial resolution is ∝
√
R (equation 3.13),

so halving the radius leads to a ≈ 29% improvement in spatial resolution. The

improvement in spatial resolution due to increasing n is 1/(2n+1) (equation 3.14), so

the �rst few improvements are ≈ 33%, 20%, 14% and so on. Thus, in the PFA limit,

raising n causes a comparable change in both spatial resolution and sensitivity as

changingR. Raising n changes only the e�ective force at the detection frequency, but

does not change the time-averaged force on the probe, and so does not prevent jump-

to-contact as reducing the probe radius would. However, it is not always possible

to change the probe radius. In air the radius of a metal-coated probe is typically

limited to ≥ 20 nm, and changing the probe requires unloading the cantilever, which
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could disrupt an experiment. For these reasons, TSR is competitive and, in many

situations, preferable to choosing a tip with a smaller radius.
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Figure 3.9: (a) Some change in the resolution is observed with TSR-KPFM, but not
as much as is predicted by the PFA (equation 3.14), possibly because the boundary
itself has an inherent width. (b) The minimum detectable voltages increases for a
similar amount for each increase in n, and that amount depends on the AT. (c)
Changing the topography setpoint changes d̄, which in turn can drastically change
the sensitivity.

The 10-90 spatial resolution (l10−90) is determined by imaging a 200 nm long

edge on a piece of few layer graphene (FLG) on doped silicon (the boxed area in

�gure 3.8). For these measurements, a platinum-coated HQ:NSC35/Pt-A probe

(µmasch) is used. The topographical oscillation is excited photothermally, rather

than piezoelectrically, for a more stable transfer function. The 10-90 resolution is

then calculated by �tting the potential as a function of its distance to a boundary

to a tanh function, as discussed in chapter 2. Oscillation amplitudes of 6, 12, 24,
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and 36 nm are used for the topographical feedback. For the 6 and 12 nm ampli-

tudes, spatial resolution measurements are not shown, because stable scanning is

not achieved. For 24 and 36 nm oscillation amplitudes, noticeable improvement in

resolution is measured, though not as signi�cantly as predicted by the PFA (�gure

3.9a). The discrepancy could be caused by the oscillation amplitude of the probe

(not considered in the PFA), the �nite width of the FLG-Si boundary, or by the va-

lidity of the PFA at small separations. The Vm increase consistent with the (2d̄/AT)n

proportionality of equation 3.10b (�gure 3.9b,c). Using a larger shake amplitude re-

duces the loss in sensitivity, possibly because it allows for a greater (AT/d̄) without

jump-to-contact (�gure 3.9b). However, the Vm measurements are sensitive to the

setpoint amplitude at which KPFM is operating. For the same free amplitude (≈ 13

nm), the Vm changes drastically as the setpoint amplitude is changed (�gure 3.9c).

The minimum detectable voltage (Vm) is measured for n ranging from 0 to 6

(�gure 3.9). The connections of each lock-in ampli�er (LIA) are identical to [65], and

the relative phase is tuned between them in the same way. The Vm measurements

are made by sweeping VK from -1.5 to 1.5 V, across the force minimum, with 20

di�erent relative phases settings between -π and π on LIA, each collected for 1 s.

The minimizing voltage is then, Vm = N/ζ, where N is the measured noise (in mV)

in a 200 Hz bandwidth, and ζ is the KPFM sensitivity, as described in section 2.3.2.

One of the advantages of the TSR method is that it allows amplifying sev-

eral signals through the same cantilever resonance. For example, open loop (OL)

TSR-KPFM is achieved by applying two di�erent AC voltages (�gure 3.10). The

frequencies used for the two voltages are chosen so that the F2ω signal from the �rst
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Figure 3.10: Open loop TSR-KPFM is performed on a �ake of FLG on Si. (a) The
topography shows the FLG in the upper-left corner. Separate AC voltages actuate
the signal originating from (b) Fω and the signal originating from (c) F2ω. The ratio
of (b) to (c) can then be related to the potential di�erence, which is shown in (d-f)
for n=0-2. (g) Both signals are ampli�ed by the same eigenmode.

voltage and the Fω signal from the second are ampli�ed by the same resonance. The

potential di�erence between the tip and sample is then calculated from the ratio of

the two signals [98, 99]. The advantage of an OL KPFM implementation is that it

avoids the low-frequency bias voltage associated with closed loop KPFM, which can

alter surfaces such as semiconductors or batteries.

The TSR technique is possible to implement with any long-range tip-surface

force which can be modulated externally. Recent experiments show that it is pos-

sible to use the sideband technique, from which TSR is generalized, with magnetic

and photo-induced forces as well as the electrostatic force [147,149]. Moreover it is
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Figure 3.11: (a) The FLG topography is measured with standard amplitude mod-
ulation feedback on the oscillation at frequency ωT. The cantilever is shaken at
frequency ωM = ω2 − ωT piezoelectrically at an amplitude of ≈1.4 nm. (b,c) The
mixing of the oscillations at ωT and ωM generates another signal at ω2, which is
divided into in-phase (SI) and quadrature (SQ) components at the lock-in ampli-
�er. (d) The phase of the ωT shows similar contrast to SI and SQ (d). (e,f) The
phase and amplitude of a second scan using bimodal AFM show similar regions of
contrast.

expected that other forces present at the nanoscale, such as van der Waals/Casimir

forces, can be modulated as well [49, 50, 166�168]. The total tip-sample force can

even be modulated implicitly, by modulating the tip-sample separation [21]. The

separation is modulated here by shaking the cantilever directly at ωM to mix the

modulated force with the oscillations at ωT. It has been known for some time that

the nonlinear tip-sample force excites the cantilever at additional frequencies [169],

but the TSR technique clari�es how to amplify the signal. A preliminary test of im-

plicitly varying the tip-sample force is compared to bimodal AFM by scanning FLG

(and adhesive residue) on Si (�gure 3.11). The resolution enhancement is not clearly

observed for implicit force modulation, but developing a procedure to convert the

signal to a force, as has been done for other AFM techniques [63, 170, 171], should
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clarify what resolution control is possible. Furthermore, because the tip-trajectories

of di�erent cantilever eigenmodes are in di�erent directions (previous section), im-

plicitly varying the force with TSR allows one to drive and probe the force along

di�erent axes, unlike typical bimodal AFM. The TSR technique presented here will

enable better resolution control with modulated tip-sample force. Even though the

increase in resolution is small, it will be critical in situations where it is necessary to

tease out the e�ect of probe resolution, such as in the estimation of surface potential

autocorrelation functions [109,172].
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Chapter 4: Casimir force measurements in air

4.1 Introduction

The Casimir force has long been a theoretical marvel. The simplicity of its

original derivation lends itself to pedagogy [1], while the comprehensiveness of the

Lifshitz formulation extends the analysis to arbitrary materials [6], including a pre-

diction [7] that led to the measurement of a repulsive Casimir force nearly �fty years

later [10]. The Casimir force is a force between surfaces that originates from electro-

magnetic �uctuations. Experimental progress has lagged behind theoretical devel-

opments, but the force has been measured numerous times [8, 9, 18,36,38,173,174],

between many materials [11, 41, 44, 50, 175, 176], in several geometries [14, 52, 177],

and with increasing precision [39,178,179].

One branch of Casimir force measurements seeks to harness the force to develop

new MEMS devices [180], which has resulted in non-linear MEMS oscillators [40,181]

and on-chip Casimir force measurement devices [13, 14]. Several measurements of

the Casimir force have been made in ambient conditions, a necessary test for realistic

MEMS devices, which preferably can operate in air at room temperature [11,37,46].

In a sense, the Casimir force can be utilized in a MEMS device only to the level of

accuracy with which it has been measured (otherwise the device itself would lead
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to a better measurement technique). Therefore, the limitations to measurements of

the Casimir force in air are also the limitations to any Casimir-based MEMS device

than operates in air.

Piezo Voltage
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DDS B 

Lock-in A Lock-in C

Z piezo
Voltage Feedback

Lock-in B

ω

ω , 2ω

4ω
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Figure 4.1: An atomic force microscopy setup is used to measure the Casimir force.
An optical lever detects de�ections of the cantilever to which the sphere is attached.
Direct digital synthesizer (DDS) A is used to drive the piezoelectric transducer
and shake the gold-coated plate. The cantilever's response to this oscillation is
detected using a lock-in ampli�er (LIA) and separated into in-phase and quadrature
components. DDS B is used to apply an AC voltage to the cantilever at frequency
ωA. The oscillations of the cantilever are then detected at frequencies ωA, 2ωA,
and 4ωA with LIAs B and C. During the measurement of the Casimir force VAC is
adjusted so that the oscillation at 2ωA is constant, but during the calibration the
voltage is held constant. For both, the signal at ωA is used to estimate and eliminate
the minimizing voltage V0, by applying a DC voltage to the sphere.

Here we test the relative merits of di�erent measurement techniques in air,

identify several sources of uncertainty, estimate the uncertainty from each source,

and discuss strategies to reduce uncertainty in future measurements. As stated

in [21], in addition to measuring the force, a measurement must satisfy three re-

quirements: (i) it must mitigate the contributions of other forces (hydrodynamic,

electrostatic, etc.), (ii) it must estimate the separation between the sphere and

plate, and (iii) it must calibrate the force signal. We characterize how well (i)-(iii)

are achieved in an actual measurement, and quantify the amount of uncertainty each

75



imparts. Furthermore, several other sources of error, such as optical interference,

may manifest themselves di�erently in di�erent experiments, but are common to

many force measurement techniques. Other sources of error, such roughness, patch

potentials, and limited dielectric information, have been discussed extensively in the

literature.

Our ambition here is to combine all the di�erent sources of uncertainty present

in Casimir force measurements, in order to provide a total estimate of the uncer-

tainty. For our measurements, uncertainty in separation is found to dominate the

error at distances < 110 nm, while interference dominates the error at separations

> 170 nm, and the overall calibration error dominates in the region between the two

extremes.

4.1.1 Adapting an AFM for Casimir force measurements

All atomic force microscopes (AFMs) contain a microcantilever, a system to

control the sample position (typically via a piezoelectric transducer), a system to

excite the cantilever (piezoelectrically, electrostatically, photothermally, etc.), and a

method to detect the motion of the cantilever (optical lever, interferometry, piezo-

electrically, etc.). Although the uncertainty varies from system to system, there

are general trends that di�erent sources of error follow. For example, almost all

sphere-plate Casimir force measurements rely on the electrostatic force for the es-

timation of the absolute separation, and the sphere-plate electrostatic force itself

has been studied several times [182, 183]. Various approximations are used for the
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electrostatic force, and the force is �t over a di�erent range for most measurements.

Thus systematic errors in the sample separation estimation may manifest themselves

di�erently across di�erent measurements, but there are many similarities.

Because the AFM used here (Cypher, Asylum Research) is very similar to

the AFMs used in prior Casimir force measurements (�gure 4.1), an analysis of the

inherent uncertainty helps to predict the uncertainty present in other systems. It

actuates the sample and cantilever via piezoelectric transducers, which is common

to many force measurement procedures [11, 179]. The motion of the cantilever is

detected by an optical lever, a beam of light re�ected o� of the cantilever and

onto a quad-photodiode [36, 37, 46]. The electrical signal is then fed into several

lock-in ampli�ers (LIAs), which are used to detect the motion of the cantilever at

the relevant frequencies. The voltage applied to the probe is the sum of a signal

form a direct digital synthesizer (DDS), VAC sin(ωAt), and another voltage controlled

by a feedback loop V0, while the sample is grounded through a 3.3 kΩ resistor to

prevent harming the probe. The plate used in the measurements discussed here is

a silicon substrate coated with 5 nm of chromium and 100 nm of gold (e-beam),

and the sphere is made of hollow glass (Trelleborg) coated with Cr(3 nm)/SiO2(50

nm)/Cr(3 nm)/Au(100 nm).

4.1.1.1 Lock-in ampli�ers

The LIAs su�er from several artifacts, which is common enough that several

groups have started building their own. The signals output from each contain a
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small o�set voltage (≈ −180 µV), which varies over time. To eliminate the e�ect

of its variation, a null signal is collected from each LIA at each separation, and the

null signal is averaged over time to reduce noise. In addition, the driving signal of

from each DDS couples directly into the output of the corresponding LIA. Although

our LIAs di�er from most others, because they are built from �eld programmable

gate arrays, the types of artifacts generated by their imperfections are similar across

di�erent systems.

4.1.1.2 An overview of the method

The method here follows the phase-separated amplitude modulation (AM)

method developed by de Man et al. [21], in which the plate's position is oscillated,

and the in-phase and π/2 delayed (quadrature) response of the cantilever are tracked.

The separation is determined using the cantilever's response to an applied AC volt-

age VAC on the probe at frequency ωA, and observing the 2nd harmonic. The plate

is slowly brought towards the sphere at discrete positions. The sphere approaches

and retracts from the plate about 100 times over two days.

4.2 Force measurement

All Casimir force measurements must select some signal by which the force is

measured. Common choices have included the static or oscillating de�ection of either

a beam or a torsion pendulum, or a frequency shift. Here, several measurement

techniques are discussed, with a particular focus on their suitability in an ambient
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Figure 4.2: The transfer function of the cantilever, G(ω) describes how forces at
di�erent frequencies are converted into cantilever oscillation. (a) An AC voltage is
applied, and the oscillation is used to minimize the electrostatic force (red arrow).
The 2nd and 4th harmonics (blue and purple arrows) are then used to estimate
the separation and sensitivity, respectively. (b) The plate is shaken at ωpz, and
the in-phase response is due to the conservative forces between the plate and the
sphere. (c) The quadrature response is due to the dissipative forces (∝ ḋ). (d) The
cantilever transfer function far from the surface (black) has a fairly large Q factor
(≈ 100), but as it approaches the surface, hydrodynamic damping decreases the Q
factor (grey curves).

environment. The amplitude modulation method used in later sections is presented

�rst, followed by de�ection and frequency modulation methods.

4.2.1 Amplitude modulation

The amplitude modulation (AM) technique of de Man et al. drives cantilever

oscillation with the Casimir force directly, by shaking the plate vertically at fre-

quency ωpz [21]. The AM technique is similar to a new (vacuum) technique that

measures the di�erence in the Casimir force between two materials by spinning

them, so that a lock-in can be used to probe the di�erence of the force between the

two materials [176], but instead of changing the material, the separation is varied.

The response of the cantilever to the moving plate has two components: an in-phase
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Figure 4.3: (a) The sphere-plate force is probed by shaking the plate and observing
the response of the probe. (b) Conservative forces, which depend on position but not
velocity, bend the probe proportionally to the plates displacement, so the response
they cause is in-phase with the position of the plate. (c) The hydrodynamic force,
on the other hand, is proportional to velocity, so that it is π/2 radians out-of-phase
with the plate's displacement.

and a quadrature component (�gure 4.3):

SI = −γ
k

(
∂Fes
∂d

+
∂FC
∂d

)
∆d, (4.1)

SQ =
γ

k
FH, (4.2)

where γ is the optical lever sensitivity (V/m), ∆d is the shake amplitude, k is the

spring constant, FC is the Casimir force, Fes is the electrostatic force, and FH is

the hydrodynamic force. The proximity force approximation (PFA) is then used to

compare the measured signal to the Casimir force between parallel plates:

1

R

∂FC
∂d

= 2πFpp, (4.3)

where Fpp is the Casimir force between parallel plates. The procedure used to

implement the AM method is described below, along with the errors characteristic

to the AM method.
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4.2.1.1 The procedure

The entire measurement cycle is divided into a force measurement portion

(≈25 min per run) and a calibration portion (≈5 min). During the measurement

portion, the sphere begins about 5 µm from the plate and is brought towards it

at discrete separations. At each separation, the measurement is performed in two

steps. During the �rst, an AC voltage, VAC, is applied to the sphere at frequency

ωA (while the plate is grounded), which in turn drives the cantilever at frequencies

ωA and 2ωA. The signal at 2ωA is input into a feedback loop that controls VAC

to maintain a constant amplitude setpoint Aset. A second feedback loop applies

a slowly varying voltage, V0, to the sphere in order to minimize the signal at ωA,

which in turn eliminates the potential di�erence between the sphere and the plate.

During the �rst step, the plate is not shaken, but the null signal of the LIA which

detects the cantilever's response to the shake is recorded in order to characterize is

slowly-varying voltage o�set.

The force measurement is performed in the second step. The oscillating voltage

VAC is turned o�, and the minimizing voltage, measured in the �rst step, is applied

to the sphere, so that the electrostatic force is mitigated. Then the position of the

plate is oscillated by a piezo, while the response of the cantilever is detected by

the optical lever and recorded by a lock-in ampli�er. Null signals of the LIAs that

detect the electrostatic force are also collected during the second step.

The calibration portion follows a similar approach/retract procedure, collect-

ing data in two steps at each separation, except a constant VAC = 8 V is used to
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drive the electrostatic force, in order to excite the 4ωA harmonic. During the cal-

ibration run, the cantilever remains >200 nm from the surface, so that the large

electrostatic force does not cause jump-to-contact. The 4ωA harmonic is combined

with the 2ωA harmonic to estimate γ and k (see 4.3 for details). The measurements

here use ωpz/2π=211 Hz and ωA/2π=77 Hz.

4.2.1.2 Excluding the hydrodynamic force

When the plate is oscillating at over 100 Hz, the hydrodynamic force is com-

parable to or larger than the Casimir force at separations greater than 100 nm.

However, the hydrodynamic force is proportional to velocity, which is π/2 radians

out of phase with the position. A lock-in ampli�er separates the in-phase from the

quadrature signal in order to separate the hydrodynamic force from the Casimir

force (�gure 4.3). The delay between the direct digital synthesizer and plate must

be measured in order to set the reference phase to su�cient accuracy, because the

hydrodynamic force enters into the Casimir force signal ∝ sin(∆θref), where ∆θref is

the error in the reference phase. The reference phase is set to within 0.2 degrees by

the method discussed in section 4.2.1.5.

4.2.1.3 Ratcheting

Because the Casimir force signal is proportional to ∆d (equation 4.1), increas-

ing the shake amplitude can vastly improve the signal-to-noise ratio and permit

measuring the Casimir force at larger separations. However, using a larger ampli-
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Figure 4.4: (a) To increase the sensitivity of the distance modulation measurement
technique, while also avoiding errors associated with the strong nonlinearity of the
force, the amplitude is varied across the measurement. (b) The data collected at
each shake amplitude are combined for the �nal estimate of the force gradient. The
data are shown binned into groups of 200 individual measurements. The red line
shows the calculated Casimir force gradient. The inset shows the force as measured
by the de�ection technique, and the black line shows the calculated Casimir force.

tude both limits the minimum achievable separation and can lead to a systematic

overestimate of the Casimir force ∝ (∆d/d)3 [184]. However, the Casimir force

signal is smaller than the noise from thermal motion at a single separation in one

measurement cycle, and so a typical proportional/integral feedback loop would ei-

ther have gain too small to change the amplitude quickly enough, or would be too

noisy to get a clear force signal.

To maximize the signal while mitigating the errors associated with large shake

amplitudes, a ratcheting technique is introduced. As the tip approaches the surface,

it begins with a 48 nm shake amplitude at a separation of ≈5 µm. At about 150 nm

from the surface, the raw force signal reaches a threshold, and the shake amplitude
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decreases to 32 nm. At a slightly closer distance, the signal hits the threshold again,

and the amplitude drops to 16 nm. The process repeats until a 1 nm shake amplitude

is achieved at the closest separation (�gure 4.4a). With retraction, the process is

reversed. The amplitude starts at 1 nm and then becomes larger after the signal

falls below a threshold.

4.2.1.4 Interference

Because the optical lever used to detect the motion of the cantilever is coherent,

an interference pattern appears in the response signal of the cantilever to the shaking

plate. Some small amount of the optical beam falls partially o� of the cantilever

(e.g. Airy disks), and that light has a di�erent path length to the detector than the

light re�ected directly o� the cantilever [185]. As the cantilever is brought towards

the surface, the interference condition at the photodiode changes. The interference

artifact is common to AFMs that use optical lever detection [185], and has been

mentioned before in Casimir force measurements as a factor that limits accuracy at

large separations [46].

In order to minimize the optical interference in the Casimir measurements

presented here, two di�erent optical sources are tested, a diode laser (860 nm) and

a superluminescent diode (SLD) [186], which limits the coherence of the light (by

increasing its frequency spread). The test is preformed using the same procedure

as the force measurement. The cantilever approaches the surface once with the

laser and once with the SLD (�gure 4.5). The SLD is con�rmed to decrease the
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factor of 10.

interference artifact in the force signal by about an order of magnitude relative to

the laser. Even so, the interference from the SLD is apparent in later force data at

the level of about 1 N m−2.

The uncertainty due to the interference is estimated by �tting the data to

sine waves at separations > 500 nm. The primary wavelength in the interference

is half the wavelength of the source, but the �t also includes the wavelengths of

the next three harmonics (so that λ/2, λ/4, λ/6, and λ/8 are included). During the

�tting, only one of harmonics is permitted to vary at a time. The amplitudes of

all the harmonics are summed to estimate the uncertainty imparted by interference.

Although the �ts characterize the uncertainty of the measurement well, in so much

as the amplitude of oscillations observed tends to be about what the �t predicts,

attempts to use the �ts to remove the interference after measurement removed min-

imal uncertainty because the four spatial frequencies do not completely describe the
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interference, and the interference may change its amplitude at separations where

the Casimir force is present, as it does between 2 and 4 µm in �gure 4.5. The in-

terference artifact varies by a factor of ≈ 4 between measurements, and tends to be

less if the beam is further from the surface.

-200
-100

0
100

15
10

5
0

4.54.03.53.02.52.0

Separation (µm)

(a) (b)

(c)

(d)

100 μm

Si
gn

al
 (μ

V/
nm

)

In-phase

Quadrature

Figure 4.6: (a) During force measurements, the detection laser is focused at least
15 µm away from the edges of the cantilever, in order to minimize interference.
(b) By focusing the detection laser at the tip of the cantilever, the interference is
greatly increased. (c) Because the interference only appears in the in-phase channel
of the lock-in ampli�er, it can be used to precisely characterize the phase of the
lock-in ampli�er, to within about 0.2 degrees, so that the hydrodynamic force can
be excluded from the Casimir force channel more completely (0-5 degree reference
phases shown).

4.2.1.5 Setting phase

While interference is problematic in the force measurement, it can be utilized

to set the reference phase of the lock-in ampli�er that records the response of the

cantilever to the shaking plate (�gure 4.6). First, note that the interference is pro-

portional to the position of the plate, so the interference appears in the same channel

as the Casimir force, and is excluded from the channel containing the hydrodynamic
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force. The reference phase is adjusted so that the interference falls entirely in the

in-phase channel of the lock-in ampli�er. Because of the delay between the direct

digital synthesizer and the z-piezo, the phase is not known initially. Other methods

that determine the reference phase by adjusting it while recording the output of a

known signal are disrupted by the LIA o�set. The interference method of setting

the phase removes the e�ect of the LIAs output voltage by observing the phase over

many separations.

4.2.2 Frequency modulation

The highest precision claimed in measurements of the Casimir force comes

from frequency modulation (FM) measurements in vacuum [39, 179], in which the

probe sphere is attached to an oscillator. The resonance frequency of the oscillator

then changes as the force gradient on the sphere changes. The frequency shift is

given by:

∆ω = −ω1

2k

∂F

∂d
, (4.4)

where ω1 is the resonance frequency of the �rst eigenmode. No Casimir force ex-

periments using the FM technique have been reported in environments other than

vacuum. Our attempts toward an FM measurement in ambient condition and the

artifacts found in that environment are discussed below.
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electric and photothermal drive. Both the amplitude (a) and the phase (b) of the
piezoelectric drive show signi�cant oscillations relative to photothermal actuation.
If the phase curve crosses the 90 degree line more than once, instabilities occur in
frequency-modulation measurements, in which the cantilever's apparent resonance
frequency jumps from one crossing to another, without any change to the cantilever's
actual resonance frequency. It should be noted that even though the photothermal
actuation produces a transfer function much more similar to the transfer function
of the undriven cantilever, it still di�ers from the ideal cantilever transfer function
because of the thermal time constant. (c) For a small initial frequency misalign-
ment ∆ωc, there is an associated phase misalignment, ∆φ. The Q-factor decreases
as the sphere approaches the surface, so that, while ∆φ remains roughly constant,
the frequency misalignment grows, ∝ 1/Q ∝ 1/d.
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Because FM-AFM is a fairly mature �eld [165], experiments with FM-AFM

were the �rst to identify a major source of error: piezo actuation [187�190]. When

the transfer function of a cantilever is measured from its thermal motion, or from

photothermal actuation, it has several resonance peaks but is otherwise quite smooth.

On the other hand, the transfer function of the entire piezoelectric transducer/cantilever

system is quite jagged and unpredictable, and even changes signi�cantly over time

(�gure 4.7a). In vacuum, appearance of the piezo transfer function is masked by

the very large Q factor of the cantilever, but its e�ects are still present, even if

reduced [189]. The uncontrolled nature of the piezoelectric transfer function causes

several problems: (1) There are multiple nearby frequencies which satisfy the 90

degree phase shift condition that is used by the feedback to track the resonance

frequency of the cantilever, (2) the piezo drive voltage necessary to maintain con-

stant piezo oscillation depends strongly on the drive frequency, and (3) the transfer

function cannot be described by a harmonic oscillator, which makes it di�cult to

deduce the exact resonance frequency. Having multiple frequencies that satisfy the

feedback condition can lead to `jumps' in ∆ω which do not correspond to any real

change in the force and inhibit data analysis (�gure 4.8a).
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Figure 4.8: Several errors are common to frequency modulation force measurements
in air. (a) When there to be multiple frequencies for which the phase of oscillation
is 90 degrees, the feedback loop can then jump between these di�erent frequencies,
so that the value of the frequency shift is no longer related to the force gradient.
(b) Any initial error in the estimated resonance frequency (equivalent to error in
the initial phase estimate) grows ∝ 1/d as the sphere approaches the surface. (c)
Even if the initial frequency error is set to be negligibly small, an error appears in
the frequency o�set channel ∝ 1/d2.
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The second and third conditions are not quite as prohibitive on their own, but

enlarge the impact of other errors. The frequency at which a cantilever is driven

in an FM measurement is the resonant frequency itself, plus some small o�set that

depends on the accuracy of the �tting ω = ω1 + ∆ωc. Trying to estimate ∆ωc

directly from the piezoelectric transfer function leads to errors on the order of 100

Hz, but using the thermal motion of the cantilever over several minutes enables the

reduction of ∆ωc/2π to a few Hz. The error in ∆ωc is equivalent to an error in the

setpoint of the phase, so that the phase is 90◦+∆φ, where 90 degrees is the phase of

the cantilever exactly on resonance (�gure 4.7c). The phase, then, is the measured

quantity used by the feedback loop to control ω1. When the separation between the

sphere and the plate changes, so does the hydrodynamic damping, which leads to a

change in the Q-factor [191]:

Q = ω−1
1

(
Γ0 +

6πηR2

d

)−1

, (4.5)

where Γ0 is the damping of the probe far from the plate, and η is the dynamic

viscosity. The phase of the cantilever's oscillation is:

φ = arctan

(
ωω1

Qk(ω2
1 − ω2)

)
, (4.6)

so that:

ω(φ) = −ω1 cot(φ)

2Qk
+

√
ω2

1 cot2(φ)

4Q2k2
+ ω2

1. (4.7)
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Setting φ = π/2 + ∆φ and assuming ∆φ�1,

ω(π/2 + ∆φ) ≈ ω1(1 +
∆φ

2kQ
). (4.8)

A frequency o�set error ∆ωerr, resulting from the phase error, can be de�ned. It

has a d−1 dependence near the surface:

∆ωerr ≈ ω2
1

6πηR2

2kd
∆φ. (4.9)

Thus, ∆φ causes an arti�cial frequency o�set. Over several di�erent FM measure-

ments, the phase o�set is varied from 12 degrees below resonance to 4 degrees above

resonance. The frequency o�set follows a power law, the amplitude of which de-

pends strongly on ∆φ. Because there is no force which is expected to have that

behavior, it is be attributed to equation 4.9. Note that even in the smallest phase

o�set achieved (< 1 degree), the artifact remains noticeable.

If ∆φ is small enough, another artifact appears with a d−2 dependence. Be-

cause the LIA that detects the cantilever oscillation is electronically coupled (unin-

tentionally) to the direct digital synthesizer DDS that drives the shake piezo, the

output signal of the LIA contains a small component related to the DDS drive sig-

nal. Because the output of the LIA is used to determine the measured phase, we

can write φLIA ≈ φ + aVshake, where a describes the coupling1. Up to equation 4.9,

the analysis is identical, but now it is assumed that ∆φ is zero far from the surface,

1Linear coupling is used as a reasonable model, even though the actual coupling is more
complicated.
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but includes the LIA error so that ∆φ = aVshake. Note that the phase error is sim-

ilarly coupled to the shake amplitude A. When it is further assumed that Vshake is

controlled to maintain a constant A (i.e. Vshake = bA/Q), and b is the frequency

dependent ratio between the driving voltage and amplitude response, the artifact

becomes:

∆ωerr ≈ ω2
1

62π2η2R4

2kd2
abA. (4.10)

Unlike equation 4.9, which can be corrected by improving the estimate of ω1, there

is no simple way to mitigate equation 4.10, except by improving the isolation of the

LIA. Figure 4.8c shows the frequency shift and drive voltage for a measurement in

which the initial frequency o�set is minimized. The d−2 power law is similar to that

predicted above, and further tests are carried out on the sample used to exclude

the possibility that patch potentials caused the appearance of the d−2 signal ( [109]

and chapter 5). Ergo, it is concluded that the LIA coupling (which can be observed

independently of the frequency o�set it causes) is the source of the artifact.

Additional options to eliminate the e�ect of the LIA coupling remain. One

possibility is to hold Vshake constant and let the amplitude vary, but that leads to a

similar artifact. If a were known exactly, the artifact could plausibly be subtracted,

but there is no reason to suspect that the coupling does not also contain higher-order

terms whose behavior is only masked by the magnitude of the artifact created by the

linear term. The artifact of equation 4.10 does not necessarily make FM Casimir

force measurements impossible in air, it only clari�es the necessity of decoupling
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electronics from one another to a degree not possible in our current setup. Many of

the artifacts discussed here should a�ect measurements in vacuum less.

4.2.3 De�ection measurements

Several experiments in air have measured the Casimir force through the detec-

tion of the cantilever de�ection of the cantilever [36, 37,46]. At any one height, the

de�ection D = F (d)/k, but low-frequency 1/f noise dominates the signal, which

leads to a trade-o�: acquiring force curves faster excludes more low-frequency drift,

but also leads to more correlation between the error at nearby separations. More-

over, increasing the speed at which the data are collected causes the hydrodynamic

force, which is proportional to velocity, to be present in the data at higher levels. In

addition, repeated contact with the surface during measurements can damage the

tip. While damage does not always occur, and can be observed after the measure-

ment by AFM or SEM, it can be di�cult to identify when during a measurement

the probe is damaged.

Here, during the course of the measurements, de�ection data is acquired in

addition to amplitude modulation data. In the de�ection data, the force is observed

out to separations of ≈ 100 nm. In principle, it should be possible to observe the

Casimir force over a longer range than the force derivative because is follows a d−3

instead of a d−4 power law. However, the inability to lock-in on the de�ection

harms the signal-to-noise, because of the large 1/f noise at low frequencies. The

force measured through de�ection can be seen in the inset of �gure 4.4b.
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4.3 Calibration and separation estimation

The calibration and separation estimation in Casimir force measurements are

most often performed with the electrostatic force, although the hydrodynamic force

has been used as well in liquids, where Debye screening limits a�ects the electro-

static force [192]. In the low Reynolds number limit, the hydrodynamic force is

proportional to d−1, so it seems as though it might also be possible to use it to

estimate the tip-sample separation in air, as it has been used in liquid [20]. The dif-

�culties with using the hydrodynamic force are twofold: (1) the hydrodynamic force

is nearly two orders of magnitude weaker in air than in water, so the signal to noise

of its detection is smaller and (2) the slip length2 at ambient pressures is quite large

(≈ 50 nm [193]), and while it can be included in the �t, the extra free parameter

further reduces the accuracy of the separation estimation. Thus, calibration with

the electrostatic force is the focus of this section.

4.3.1 The electrostatic force

The electrostatic force between a plate and a sphere is:

F = −C
′(V + V0)2

2
, (4.11)

2The slip length is the separation from the surface below which the separation-dependence of
the hydrodynamic force becomes more gradual.
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where V is the applied potential between the plate and the sphere, V0 is the mini-

mizing potential, and C ′ = ∂C/∂z, where C is the sphere-plate capacitance,

C ′ = 2πε0R
∞∑
n=1

coth(α)− n coth(nα)

sinh(nα)
, (4.12)

and α is de�ned by the equation cosh(α) = 1 + d/R. The voltage applied to

the probe has two components: VAC and V0, so that the total applied voltage is

V = VAC cos(ωAt) + V0. We can separate the electrostatic force on the cantilever on

the sphere into three terms:

Fes = FDC + Fa + Fb, (4.13)

where the individual forces are separated according to the frequency of the voltage:

FDC = −C
′(t)

2

(
(V0 + V0)2 +

V 2
AC

2

)
, (4.14)

Fa = −C ′(t)VAC(V0 + V0) cos(ωAt), (4.15)

Fb = −C
′(t)

4
V 2
AC cos(2ωAt), (4.16)

where it is noted that C ′ itself depends on t implicitly, because the sphere-plate

separation varies with time.

Signals generated by the latter two forces, Fa and Fb, are crucial to the

measurement procedure. The signal generated by Fa is used as the input to a

feedback loop which measures V0, akin to the loop used in Kelvin probe force mi-
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croscopy [66]. The intricacies of the V0 estimation procedure have been discussed ex-

tensively in the literature relating to patch potentials [183,194], and in the literature

of KPFM [82�84], and so here they are only discussed brie�y. The force Fb causes

the cantilever to oscillate, which in turn generates a signal with S2ωA = γ C
′

4
V 2
AC/k.

To determine the separation and sensitivity, the measured values of S2ωA(d)

are �t to the a function of the form:

S2ωA

V 2
AC

=
B

2

C ′
(
dpz−d0
R

)
R

, (4.17)

in which the two free parameters are the sensitivity (B = γR/2k) and the absolute

position o�set (d0). The relative piezo displacement is typically measured accurately,

for example, by a linear di�erential transformer, so that the the electrostatic force

can be �t assuming that relative displacements over a measurement are exact, and

only the absolute sphere-plate separation (d0) is unknown. Both γ and k are both

assumed to be frequency-independent, because all the frequencies used are much

lower than the resonant frequency of the cantilever. The electrostatic force data is

�t over a large range (generally ≈100 nm to ≈5 µm) to minimize the correlated

errors between the �t parameters 3.

3For example, if the �t were performed only over 300-400 nm, there would be lots of variance
in the possible B and d0 values that could be �t to the data. Increasing d0 and B both by a factor
of two would lead to about the same �t quality. However, when the �t is performed from 0.1-5
µm, the two �t parameters are independent.
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4.3.2 Systematic uncertainty in V0

The �rst major source of uncertainty in V0 comes from using Fa to determine

V0. From the analogy with KPFM, it is known that the voltage which minimizes

the electrostatic force is not the same as the voltage that minimizes the electrostatic

force derivative, because the cantilever (rather than the tip) contributes the majority

of the electrostatic force signal, but the tip contributes most of the force derivative

signal [87]. For Casimir force measurements, the spherical probe has a much larger

radius than an AFM probe (40 µm vs 30 nm), so the cantilever contributes a much

smaller portion of electrostatic force.

The second source of uncertainty is present because an AC voltage (rather than

DC) is applied to the probe. The AC voltage applied to the probe can inductively

couple into the drive piezo, which leads to an extra signal fed into the voltage

feedback loop (section 2.2.2). The additional signal combined with the separation-

dependence of the electrostatic force leads to a distant-dependent artifact in V0 [82].

Any generic o�set of the output of a lock-in ampli�er, in fact, leads to such an

error. The voltage artifact is proportional to 1/C ′, and knowledge of C ′ permits an

estimate of the voltage error. If all the separation-dependence of V0 is attributed to

the extraneous voltage, then estimates can be made of the original o�set and the

residual electrostatic force that remains because of the extraneous voltage. For the

forces here we estimate that the o�set in the signal is less than 10 µV, which would

lead to an error in V0 of less than 10 mV at separations where the Casimir force is

measured.
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Figure 4.9: (a) The full sphere-plate capacitance gradient (C ′) is an in�nite sum.
For d/R > 1, less than ten terms are required, but in the small d limit, thousands
of terms are required to reach accuracy within 1% of the C ′. The highlighted
central region shows the range of data pertinent to the Casimir force measurements
discussed in this thesis. (b) Several approximations exist for the sum: the proximity
force approximation (PFA) has been the traditional choice, the approximation of
Chen et. al. [175] (orange) extend the PFA as a power series in d/R, the Hudlet et.
al. approximation [127] (purple) gives the correct behavior in both the large and
small-d limits, and deviates from the sum by at most 5%. Interpolation decreases
computational demands, while eliminating the systematic errors associated with
the approximations. For linear interpolation (pink) and logarithmic interpolation
(red), the exact force is calculated at 43 points and then plotted from interpolation
for 100 di�erent points. (c) The logarithmic interpolation (black) outperforms the
PFA even when the estimated sphere radius is over- (dashed) or under-estimated
(dotted). The cantilever alters C ′ by less than 2% in the pertinent range for the
spheres with 40 µm radii (black).
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4.3.3 Approximations and �tting

The computational demands of equation 4.12 have caused several approxima-

tions to be used, the most prominent of which is the proximity force approximation

for C ′:

C ′PFA ≈
2πε0R

dpz − d0

. (4.18)

The other common approximation in Casimir force measurements was developed by

Chen et al [175] to improve the estimate of the separation. It starts with the PFA

and then expands C ′ − C ′PFA as a Taylor series in d/R around d = 0 out to the

seventh term, so that the error is vastly reduced for d/R ≤ 0.08. Unfortunately, for

d/R > 0.08, the Chen approximation diverges even more quickly than the PFA with

increasing d/R, and the divergence only becomes worse with more terms. Another

approximation to the exact C ′ is the Hudlet et al. approximation [127]:

C ′Hudlet ≈
2πε0R

2

(dpz − d0)(d− d0 +R)
. (4.19)

Although it has not been used for Casimir force measurements before, it is notewor-

thy because it approximates the exact solution well in both the near and far limits,

and diverges from the exact C ′ by less than 6%.

All the aforementioned approximations are inadequate for our experiments,

particularly because the capacitance at short range is most a�ected surface rough-
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ness, or a water layer, or surface states [195]. The computational di�culty of the in-

�nite sum is not in the evaluation of the sum itself, which takes less than a minute to

solve to better than 1% accuracy on a laptop, but the fact that it has to be summed

for every iteration of the �tting procedure. If instead the force is calculated once for

a number of points, the data for those points can be saved and interpolated for later

�ts. The simplest interpolation is to linearly interpolate the calculated C ′(d/R)

versus d/R, which works quite well and is within 2% of the actual C ′ over the whole

range of the electrostatic �ts, better than any of the other approximations. Still, it

imparts more error than is preferable, particularly at separations below d/R = 0.01,

where it is worse than the PFA.

To improve the interpolation, we note that C ′ is approximately linear on a

log-log plot. Hence, log(C ′) vs log(d/R) is linear enough for interpolation, hereon

called the logarithmic interpolation. It deviates from the exact C ′ by less than

0.5 % over the whole range of the �tting, which is less than any of the previous

approximations or the linear interpolation, even though the full equation 4.12 sum

is only calculated for 43 separations. Because the interpolation itself is limited to

the values between the minimum and maximum value of d/R, it can be helpful for

�tting to use equation 4.18 for separations below the lowest interpolated value and

the n = 1 term of equation 4.12 for separations above the largest interpolated value.

Then however the �tting algorithm chooses to direct its iterations, the function is

well de�ned.

One possible advantage of the PFA is that lumps the spring constant k and the

radius R into one term, decreasing the number of sources of uncertainty. However,
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the value of of R is available from, for example, an SEM or AFM image of the probe.

One might be concerned that error in R would impart more error into the �t than

the R-agnostic PFA. However, �gure 4.9c shows that the e�ect of either over- or

under-estimating the value of R by 10% a�ects the estimate less adversely than the

use of the PFA.

4.3.4 Determining k and γ

Higher harmonics driven by the non-linearity of the electrostatic force are used

to separate the k from γ. To calculate them, we expand C ′ to 1st order in a Taylor

series:

C ′(t) = C ′(d) + C ′′(d)A cos(2ωAt) + ... (4.20)

= C ′ − C ′′C
′

4k
V 2
AC cos2(2ωAt).

Then, inputting the Taylor series into Fb, forces at higher frequencies are found:

Fb = −C
′

4
V 2
AC cos(2ωAt) (4.21)

− C ′C ′′

16k
V 4
AC cos2(2ωAt).

The cos2 of the second term can then be expanded, so that the electrostatic force

on the cantilever at frequency 4ωA can be calculated up to �rst order as:

F4ωA,1 = −C
′′C ′

32k
V 4
AC cos(4ωAt). (4.22)
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Using the PFA approximation for the capacitance in equation 4.22,

F4ωA,1 = −π
2ε20R

2

8kd3
V 4
AC cos(4ωAt), (4.23)

which is the same value found by de Man et al. when the PFA is assumed from the

beginning [21].

Note that F4ωA,1 depends on k independent of γ, so the signal that it generates,

S4ωA , can be used to separate the two parameters. To do so, the electrostatic force

is driven with VAC = 8 V on approach, so that both the S2ωA and S4ωA signals are

generated. The determination of d0 is performed with the S2ωA data to estimate

the overall prefactor (B) and d0. Using the d0 found from the �rst �t, the S4ωA

signal is �t to equation 4.23. Because it is small far from the surface, the relative

phase of S4fωA (unlike all other signals used) is not set before the measurement,

so in-phase and quadrature components are measured and �t to functions of the

form B/(d− d0)3 separately. Then the phase of the signal is estimated and the two

components are added in quadrature. Then B can be used to separate k and γ:

k =
ε0πR

4

B

B
, (4.24)

γ =
B2

2B
, (4.25)

where B comes from the C ′ �t (equation 4.17).
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4.3.5 Systematic errors in separation determination

4.3.5.1 Drift

Drift both imparts error to each individual determination of the sensitivity

and separation and also hinders the integration of multiple data sets. To address

drift in our experiments, �rst the separation is determined for each run. Then the

drift within a run is estimated to be the change in d0 from the two runs before it

and the two runs after it. Approaches during which the drift is too non-linear to

be corrected by this technique are then excluded from the rest of the analysis. For

the measurement shown in this chapter, none of the approaches showed prohibitive

drift, and the average drift is about 3 nm/hr.

4.3.5.2 Cantilever bending

The cantilever bends as it approaches the surface, changing the surface separa-

tion. The bending itself is often used for Casimir force measurements, though here

it can only be used out to about 100 nm, because of the fairly sti� cantilevers being

used. Still the bending amounts to as much as 3 nm at the closest approach. To cor-

rect for it, the static de�ection is recorded at each height, and a phenomenological

power law is �t to the data to describe it. The de�ection signal (µV) is converted

into a separation by multiplication by γ−1. Then the recorded piezo extensions are

adjusted to account for the cantilever being closer to the surface by the amount

it bends. Although a fairly small correction, it imparts uncertainty into the �nal
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separation estimate proportional to the uncertainty in the γ, which is observed to

vary by ≈ 10% over a measurement in section 4.3.5.8.

4.3.5.3 Water layer

A thin water layer forms on most surfaces exposed to ambient conditions.

Because of the large DC permittivity of water (εH2O=80), even a nm-thick water

layer can signi�cantly a�ect the capacitance. The capacitance per unit area between

two parallel plates a separation d apart with a water layer of thickness t on one of

the surfaces is:

Cpp(t) =
ε0

d+ t( 1
εH2O
− 1)

. (4.26)

Thus, the relative increase due to the water layer is:

W (t) ≡ Cpp(t)

Cpp(t = 0)
=

1

1 + t
d
( 1
εH2O
− 1)

(4.27)

where εH2O is the DC permittivity of water, and Cpp is the capacitance between

parallel plates. Now, because the water layer is very thin relative to the radius of

the sphere, the PFA is used to calculate the a�ect of water on the sphere-plate �t,

so that C ′ with a water layer becomes:

C ′(t) ≈ C ′(t = 0)W (t), (4.28)
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where the equation is exact in the PFA limit.

Unfortunately, the thickness of the water layer can vary over the course of a

measurement unless humidity is controlled, and t can vary across a single sample,

particularly at grain boundaries. Moreover, estimates of t on gold vary widely

depending on the type of measurement and the exact deposition process for the

gold [47, 196, 197]. Without modeling or in situ measurement, the water leads to

uncertainty in d0 of at least a nanometer. The voltage applied between the sphere

and the plate can also increase t [198].

4.3.5.4 Second-order oscillation

The non-linearity of the electrostatic force not only leads to oscillations at

higher harmonics, but also leads to higher-order corrections to the S2ωA signal.

Using the PFA, the signal is [21]:

S2ωA = −γε0πRV
2
AC

2kd
− γε20π

2R2V 4
AC

2k2d3
−O(V 6

AC), (4.29)

= −γε0πRV
2
AC

2kd

(
1 + δ + ...

)
, (4.30)

where δ =
ε0πRV 2

AC

kd2
. Now estimating the e�ect of the second-order oscillation on the

capacitance comes down to estimating δ. Note that during the measurement run,

VAC is controlled by a feedback loop to produce a constant signal, Sset. Then, it is
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possible to solve for δ, assuming it is much less than one:

δ ≈ ε0πR

kd2

2kdSset
γε0πR

(4.31)

≈ 2Sset
γd

. (4.32)

Now, with a typical cantilever (table 4.1) and Sset = 1 mV, δ ≈ 0.014 at 100 nm.

Thus the correction is only a very small portion of the overall signal, however, the

slow d-dependence makes it di�cult to avoid the error without correcting for it. Note

that these oscillations have a similar source as equation 4.22, and can in principle

be estimated by measuring the 4ωA signal (however, our AFM setup does not have

su�cient channels).

Table 4.1: Typical probe
Name ω1

2π
(kHz) L (µm) W (µm) R (µm) k (N/m) 1/γ (nm/V) Q

CSC38-A 10 250 33 40 0.1 700 100

4.3.5.5 Feedback oscillations

If the proportional gain is set too high on either the V0 or VAC feedback loops,

the applied voltages can begin to oscillate, because the �lters on the lock-in ampli-

�ers are inadequate to completely eliminate the low-frequency noise from coupling

into the feedback loops, even combining 2nd-order low-pass and notch �lters. The

voltage oscillations tend to be at the frequency ωA and e�ectively decrease the ap-

plied voltage.

The e�ect on the e�ective applied voltage is measured by recording V0, VAC
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and the applied voltage VAC cos(ωAt)+V0 as time series data at 5 kHz, as well as the

time-averaged lock-in data. For large proportional gain, oscillations are seen in both

the V0 and VAC channels. The amplitude of the oscillations is proportional to the

proportional gain on the respective feedback loops, and is about 10 degrees out of

phase with the original applied voltage. It is possible to mitigate the source of these

oscillations by decreasing the proportional gain. Because the additional oscillations

are predictable, it is also possible adjust for them in data where they are present

with out imparting much error by adjusting the applied voltage by the amount of

the oscillations. However, it is preferable to maintain a low enough gain so that

such oscillations do not occur.

4.3.5.6 Roughness I

Roughness appears twice in the error analysis, �rst in the discussion of the error

in the separation determination and calibration and second in the direct evaluation

of the force. The importance of roughness pertains to the error it imparts into

the measurement, rather than how it changes the force on average, which can be

calculated fairly accurately.

Many di�erent roughness corrections have been developed for Casimir force

measurements. The �rst corrections were perturbative and assumed that the surface

could be described by an average height with some standard deviation [199]. Other

corrections realized that the correlation length of the surface roughness leads to a

spectrally-dependent change to the Casimir force [200]. After it was realized that
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surface roughness follows a very skewed probability distribution, new statistical

methods were developed to account for the irregularity of the distribution [201].

Finally, the dependence on the particular orientation of the sphere was noted, and

a PFA-based technique was developed to estimate the uncertainty in the force from

the uncertainty in the relative orientation of the sphere (the spheres are typically

much rougher than the plate) [202].

Here, the uncertainty due to roughness is estimated using the oriented-PFA

procedure akin to the one pioneered by Sedmik et al. [202]. However, whereas the

focus of the earlier paper is on the contribution of micron-scale spherical deforma-

tions to measurements of the Casimir force, here 10-100 nm-scale roughness is the

focus, because all spherical topographies measured with the AFM presented here

appear similar when a best-�t sphere is subtracted. Because one expects spheres

placed on cantilevers to be randomly oriented, their similarity indicates that, due

to the large z-range of the AFM scans, it is not long-range spherical deviations that

are being measured, but instead what is observed is due to the tip-shape of the

scanning probe [203]. Note that an apparatus for measuring microsphere roundness

is currently under development [204].

To prepare AFM topography scans of the spheres for a roughness analysis,

the topography is �rst �t to the shape of sphere (with the radius and center as free

parameters), and the �t is removed. The resulting image still has some systematic

long-range distortions. To correct for the distortions, the image is median �ltered

with a �lter size much larger than the short-range roughness (> 100 nm). The

median-�ltered image is then subtracted from the raw image so that only short-
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range roughness remains.

A point is chosen to be the point of closest approach on the sphere, and the

measured topography is placed onto a model sphere of the appropriate radius. The

PFA is used to compute the roughness correction. The force on a rough sphere

is computed as its variation from smooth sphere. For the regions on the sphere

where the topography is known, the force from the smooth sphere is subtracted and

replaced with the force from the rough sphere, on a pixel-by-pixel basis:

Fr(d) = Fs(d) (4.33)

−
∑
i,j

[
Fpp(hs(d, xi,j))− Fpp(hr(d, xi,j))

]
,

where
∑

i,j is a sum over all the pixels in an image, Fr and Fs are the forces from

the rough sphere and a smooth sphere, respectively, in the PFA limit, Fpp is the

force between each pixel and the plate below it, and hs(d, xi,j) and hr(d, xi,j) are the

separation between the surface of the sphere and the plate at that particular pixel

for a smooth and rough sphere, respectively, when the point of closest approach is d

away from the plate. Note that this formulation of a roughness PFA correction can

be used to calculate either the electrostatic or Casimir force, as in [202], and works

similarly well with force gradients (�gure 4.10).

4.3.5.7 Surface states

The assumption that the macroscopic equation for capacitance is adequate for

describing plate-plate and sphere-plate capacitance at the nanoscale has not been
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Figure 4.10: (a) To calculate the uncertainty due to roughness, an AFM image of
the sphere is �t to a sphere, and the �t is removed. After the �t is removed, a 64 ×
64 pixel median �lter is used to separate the roughness from any imaging artifacts.
(b) Several points are chosen on the roughness image to act as possible points of
closest approach. (c) Then the electrostatic force for the sphere with roughness
relative to a smooth sphere is calculated for each of the di�erent points, and the
grey area shades the region between the maximum and the minimum of the nine
locations. (d) The Casimir force gradient for a rough sphere relative to a smooth
sphere is also calculated for the nine points, and shows a much larger uncertainty
because of the stronger separation-dependence of the force.

stringently tested. For materials where this assumption has been tested (e.g. silicon

and germanium), naively �tting a measured electrostatic force to the macroscopic

form of the capacitance can lead to distance o�sets (for silicon) between 60 and

600 nm, depending on preparation, which were attributed to surface states [195].

The o�set for gold is likely less, but the presence of water or other adsorbates may

complicate the surface states.
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4.3.5.8 Stability of electrostatic calibration

To understand the stochastic error and drift in the electrostatic calibration,

the calculated absolute position o�set d0, the spring constant k, the optical lever

sensitivity γ, and the force gradient sensitivity are recorded for each approach (�gure

4.11). Over the ≈ 36 hours of measurements shown, d0 drifts by about 110 nm (or

3 nm/hr). Both k and γ vary by about 10% over time, and their variation is mostly

stochastic. The force gradient sensitivity, on the other hand, shows systematic drift,

but changes by less than 1%. While the stability of these calibrations shows that

they are very precise, one must be careful, as they may hide systematic errors.

(a) (b)

(c) (d)
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Figure 4.11: (a) The position of the plate, d0 drifts over time, at a rate of about
3 nm/hr on average. For each run, a line is �t to d0 versus time, including the
two previous runs, the two subsequent runs, and the run itself. The drift is then
deduced from the �t and the linear drift correction is applied. (b,c) The estimate
of the spring constant and 1/γ vary by about 10% over the measurement, but (d)
the calculated sensitivity, which is the product of the two, varies much less.

4.3.6 Uncertainty from the electrostatic calibration

Most of the above sources of error tend to cause the surface to appear closer

than it is. The exceptions is bending, which causes the true separation to deviate

from the piezo displacement. Moreover, these di�erent sources of uncertainty can
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cause correlated error. The uncertainty in the water layer thickness is quite large

from previous experiments, so we posit a 0-1.5 nm water layer on each surface,

which in turn leads to a ±1.5 nm uncertainty in the separation of the two metal

surfaces if determined from C ′, because εH2O � εair. The other sources contribute

less, mostly through uncertainty in γ. Thus, bending contributes about ±0.2 nm

of uncertainty, while second-order oscillations also contribute about ±0.3 nm of

separation uncertainty (based on �tting with vs without the correction), so that the

total uncertainty in position is about ±2 nm. Surface states and long-range surface

deformation could further increase the separation uncertainty, but they have been

left out of the present analysis in the absence of adequate methods of quantifying

them.

4.4 Total uncertainty

4.4.1 Fundamental limits to the measurement range

Understanding the fundamental limits to AM Casimir force measurements

helps to frame the e�ects of other sources of uncertainty. Jump-to-contact (JTC)

limits how close to the surface Casimir probes can approach, and for measurements

in which the shake amplitude is less than the separation (e.g. for de�ection measure-

ments, or the amplitude modulation measurements discussed here), the criterion for

JTC is k < ∂F/∂d [64, 205]. The minimum possible separation is then limited by
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the JTC, so that when the dominant force is the Casimir force [1]:

dmin '

(
~cπ3

120

R

k

)1/4

. (4.34)

A typical probe (table 4.1) should be able to measure up to about 43 nm from the

surface, which approximately agrees with experiment. Because of the d4 power law

in the force, equation 4.34 is fairly insensitive to k. For example, if k is increased by

an order of magnitude to 1 N/m, dmin only decreases to 24 nm, less than a factor

of two. To approach closer to the surface requires a combination of much smaller R

and larger k.

Thermal noise limits the furthest separation at which the force can be mea-

sured. The minimum detectable force that can be detected with the AM method

described above is Fmin = knd
√
B/γ, where nd (V Hz−1/2) is the noise amplitude

density at the detector, and B is the detection bandwidth. In the experiments

discussed here, the nd is dominated by the detector, but the fundamental limit to

sensitivity is the cantilever's thermal motion. Because the oscillation frequency is

much less than the resonant frequency, only the �rst eigenmode of the cantilever is

considered. When thermal noise is dominated by the cantilever's motion [119]:

nd = 2γ

√
kBT

kω1Q
. (4.35)

114



Then the minimum detectable force is:

Fmin = 2

√
kkBT

ω1Q

√
B, (4.36)

which, when the properties of a typical cantilever are used, is ≈ 10 fN. However, in

our technique the force derivative rather than the force is measured. The minimum

detectable force gradient is:

F ′min = 2

√
kkBT

ω1Q

√
B

∆d
, (4.37)

where ∆d is the oscillation amplitude of the plate. The maximum separation is

found by �nding the separation at which the force equals the minimum detectable

force gradient (employing the Casimir formula and PFA once more):

dmax =

(
~cπ3R

240

∆d√
B

√
ω1Q

kkBT

)1/4

. (4.38)

The appearance of ∆d suggests that it is possible to increase dmax arbitrarily, but

of course ∆d must always be signi�cantly less than d, so that the sphere does not

hit the surface, and to avoid systematic errors associated with the non-linearity of

the force [184]. The fairly generous bound ∆d < d/3 then gives:

dmax <

(
~cπ3R

720

1√
B

√
ω1Q

kkBT

)1/3

. (4.39)

For typical cantilevers with B ≈ 100 mHz, the furthest detectable force should occur
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at dmax < 1.5 µm. Note that the e�ective power law that the sensitivity follows falls

from d−4 to d−3 when ∆d is allowed to vary, showing how ratcheting (section 4.2.1.3)

increases the range over which the force may be measured.

Measurements of the Casimir force by the AM technique of de Man et al. are

thus fundamentally limited to separations between ≈ 40 nm to 1.5 µm, or about one

and a half orders of magnitude, which is comparable to the largest ranges probed by

previous measurements [9]. Using several probes with varying R and k may increase

the range a bit more, but the (R/k)1/4 and (R/k1/2)1/3 coe�cients in the minimum

and maximum separation imply that variations in either parameter minimally a�ect

on the range of separations that can be measured. The remaining sections discuss

the sources of uncertainty that prevent measurements from achieving the range set

by fundamental limitations.

4.4.2 Characteristics of di�erent uncertainties

The uncertainty in the measurement is divided into several groups (as shown

in �gure 4.12), depending on how each a�ects the measurement. First is the cal-

ibration uncertainty, which includes uncertainty in the measurements of k,R, and

γ, as well as uncertainty in the calibration of the piezo actuation. While variation

between di�erent techniques4 for calibrating k can be as large as 17% [206], similar

electrostatic calibration experiments on colloidal probes suggest that the error in k

from using electrostatic calibration is at the ≈ 5% level [207].

4Techniques used to estimate k include analyzing the cantilever's thermal motion, or measure
the change in the cantilever's resonance frequency when it is used to pick up particles of a known
mass.
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Uncertainty in the absolute position of the sample relative to the probe is

one of most problematic sources of error in Casimir force measurements because of

the strong separation-dependence of the force. The uncertainty in the measured F ′

is calculated from the uncertainty in the position (±2 nm) multiplied by F ′′. All

the separation uncertainties of section 4.3 are summed together as absolute values,

because correlations are expected.

Total
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Figure 4.12: The expected uncertainty in the Casimir force measurements is cal-
culated from several sources of error. At short range, separation determination and
roughness dominate the error, at large separations interference, the hydrodynamic
force and thermal motion dominate, and calibration errors (sensitivity, estimate of
piezo motion, etc.) dominate only for the intermediate separations.

Some amount of the hydrodynamic force is present in the Casimir force data,

and that is a product of the how well the reference phase is calibrated, and how

strong the hydrodynamic force is. The uncertainty originating from the hydro-

dynamic force is estimated by multiplying the measured hydrodynamic force by

sin(∆θref), where ∆θref is the uncertainty in the reference phase.

Even though using a superluminescent diode decreases the e�ect of interference

by an order of magnitude, interference remains a major source of uncertainty in

the measurements. The interference varies greatly in both phase and magnitude

between the di�erent spheres. The magnitude of the interference is estimated by
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the technique described above in section 4.2.1.4.

Stochastic noise is estimated dividing the standard deviation of the data within

a small separation range (≈ 1 nm) by the square root of the number of data collected

within that range. For a single approach, stochastic noise is likely to be one of the

largest sources of error, but after ≈50 approaches, it is no longer the largest source

of uncertainty. Here, the stochastic noise comes primarily from the photodetector,

which could be improved, but there is always at least some stochastic noise due to

the thermal motion of the cantilever.

The electrostatic force is present because of an artifact in the minimizing

voltage detected by the KPFM feedback loop. The uncertainty in the electrostatic

force is calculated from the largest possible voltage artifact consistent with the

measured V0 data, as discussed in section 4.3.2.

4.4.3 Total measurement uncertainty

To understand how the di�erence sources of error contribute to the force mea-

surement at di�erent separations, the uncertainties are added in quadrature to cal-

culate the total uncertainty in the measurement at separations from 50 nm to 300

nm (�gure 4.12). At short separations, separation and roughness uncertainty are

the greatest, while at large separations, interference, thermal noise, and the hydro-

dynamic force dominate the uncertainty. The force sensitivity is limited to ≈ 2

pN,5 about two orders of magnitude larger than the fundamental limitation of this

5The sensitivity is approximated from the smallest clearly observable force: smallest force
≈(minimum 1

R
∂F
∂d )×(∆d)× (R)≈(1 Nm−2)×(48 nm)×(40 µm).
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measurement method, which indicates that signi�cant reductions in uncertainty are

possible.

4.4.4 Reducing measurement uncertainty

Based on the above analysis, there are two routes to reduce the uncertainty in

the Casimir force measurements. The tactics used to reduce the uncertainty near

the surface must improve the separation determination, while far from the surface,

interference, thermal noise, and the hydrodynamic force must all be reduced.

4.4.4.1 Near the surface

At small separations, the Casimir force can be measured well above the thermal

noise level. To improve the measurement, it is necessary to improve the separation

determination. Because many factors contribute to the uncertainty in the separation

as determined by the electrostatic force, it would be infeasible to address them all

at once. Some, such as the presence of a water layer, could be addressed with im-

proved characterization of the samples, but others, such as second-order oscillations,

are intrinsic to the AC electrostatic separation determination technique. Therefore,

the clearest tactic is to develop new ways of determining the separation and com-

paring them. The most direct way to measure the position of the surface is through

contact measurements, although when roughness is present there is signi�cant un-

certainty in the relation between the distance-upon-contact and the relative position

of the two surfaces for typical spheres. However, for su�ciently smooth surfaces the
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di�erence vanishes. A few of the systematic errors depend explicitly on the AC

nature of the detection force. By using DC voltages and measuring static de�ection,

those errors could be avoided. Likewise, if an electrostatic signal proportional to

C ′′ rather than C ′ were used, as is used for H-KPFM (chapter 2), long-range de-

formations would contribute less uncertainty (although roughness would contribute

more). In addition, the hydrodynamic force, which has been used successfully for

separation estimation in liquids [20] could be tested in air, although the slip length

is considerably larger (≈ 50 nm versus < 10 nm) [193,208].

4.4.4.2 Far from the surface

While the measurements discussed here observe the Casimir force about as

close to the surface as is possible (limited by jump-to-contact, equation 4.34), the

force is predicted to be observable out to a separation about three times larger than

it is observed. Therefore, at large separations there is potentially more value to

decreasing the uncertainty. The hydrodynamic force can be made smaller by shaking

the plate at a lower frequency, by improving the accuracy of the reference phase, or

by using smaller spheres. The interference is harder to eliminate because the SLD

used is already designed to minimize coherence. One possibility would be to measure

the position of the cantilever with light at several wavelengths. Other possibilities

include measuring the force with the optical lever at a few di�erent positions along

the back of the cantilever to change the path length of the interference, or controlling

the focus of the light onto the cantilever. Di�erent detection techniques, such as

120



using laser doppler vibrometry [209] or a piezoelectric cantilever [210], could also

eliminate the artifact. The uncertainty from thermal noise can be reduced by taking

more data or using a larger shake amplitude.

4.5 Uncertainty from the force calculation

The uncertainty in Casimir force gradient measurements comes not only from

the measurement error, but also from uncertainty about the sample being measured,

which includes uncertainty in optical properties [29,30,211], patch potentials [15,19,

109, 126, 212], and roughness [37, 200�202]. Because of these factors, the calculated

force has some uncertainty itself. For example, if the orientation of the sphere were

known exactly, it would be possible to calculate the exact force on the rough sphere.

However, there is some uncertainty in the orientation of the sphere. The uncertainty

in the orientation of the sphere then leads to uncertainty in the calculation of the

force (equation 4.18). The percent deviation from the estimate is plotted at 1-σ,

e.g. at 30 nm separation, ≈ 68% of the orientations give a calculated force within

±4% of the average. We note that this is not the same as the percent change of the

force. The median force gradient increase due to roughness is 10% stronger, and

about 68% of the sphere orientation are within a 10± 4% change. Of the di�erent

uncertainties in the measured force, the uncertainty in the gold's optical properties

is the limiting uncertainty over most of the range, but at the shortest separations,

roughness is the larger source of error (�gure 4.13).
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Figure 4.13: The uncertainty in the force calculation comes from several sources
of error. Over most of the range, uncertainty in the dielectric constant at low
frequencies is the largest source of uncertainty, but at the shortest separations,
roughness becomes the largest. Patch potentials, which cause an additional force
between the plate and sphere, cause less uncertainty.

4.5.1 Sample dielectric function

Uncertainty in the dielectric function of the interacting surfaces leads to un-

certainty in the calculated Casimir force. Because εair ≈ 1, the two gold surfaces

contribute most of the uncertainty to the Casimir force measurement. Because tab-

ulated optical data used on its own leads 5-15% uncertainty in the force [29, 211],

the dielectric response is measured with ellipsometry of an evaporated 100 nm Au

�lm on a glass slide in the 0.73 to 6.3 eV range (�gure 4.14). The ellipsometry data

are then compared to the tabulated Palik data [213]. Because of the agreement

with the ellipsometry data at high energies, the Palik data at energies above those

collected with ellipsometry are used. The tabulated dielectric data agree with the

measurement less well at low energies, and so the response there is extended with

the Drude model. Pirozhenko et al. [29] lists the Drude model parameters for sev-

eral di�erent samples of gold. By comparing to measured ellipsometry data to the

Drude parameters, the data from ellipsometry are determined to be most similar to
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a plasma frequency ωp = 8.84 eV and ωτ = 0.042 eV or ωp = 7.50 eV and ωτ = 0.061

eV (�gure 4.14). The force is computed using the UMD/Palik combined optical data

together with each set of reference parameters, and the standard deviation of the

di�erence between the two calculations is used as the uncertainty from the optical

properties [23].
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Figure 4.14: The dielectric data used to estimate the Casimir force is computed
from ellipsometry data in the range 0.73 to 6.3 eV combined with Palik reference
data at higher energies and the Drude model at lower energies.

4.5.2 Patch potentials

The force from patch potentials on gold tends to be about 1% or less, but

it has become a major concern in Casimir force experiments, because it tends to

follow a similar separation-dependence to the Casimir force. A few experiments have

used various types of Kelvin probe force microscopy to calculate the patch potential

force that would be felt between two spheres force [109, 214]. For the estimation

of uncertainty presented here, the calculated patch potential forces from [109] are

used, and discussed in chapter 5.
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4.5.3 Roughness II

Roughness also adds uncertainty to the calculated force. Atomic force mi-

croscopy is used to measure the roughness on both the sphere and the plate, and if

the relative positions of sphere and plate were known, then the predicted forces can

be calculated directly from the topography images. However, there is uncertainty in

the exact orientation of the sphere because the point of closest approach is known

only to within about 3 µm, and the exact position above the plate is unknown as

well. Because the sphere tends to be much rougher than the plate, the focus of the

roughness uncertainty is based on how uncertainty in the orientation of the sphere

begets uncertainty in the roughness pro�le of the interacting surfaces [202]. The

same technique is used to calculate roughness corrections to the electrostatic force

in section 4.3.5.6. To compute the roughness uncertainty, the Casimir force gradi-

ent is calculated for 49 di�erent points on the sphere pro�le, and the uncertainty is

computed as the the range around the most likely estimate within which ≈68% of

the calculated roughness corrections fall. Note that the distribution of corrections

is extremely irregular. The average correction is about 10% at 30 nm, but for two

orientations, the sphere would have already made contact with the surface.

4.6 Conclusions

A measurement of the Casimir force has been presented, as well as several

experiments designed to characterize the uncertainty in Casimir force measurements.

Some of the sources of uncertainty are characteristic of only ambient environments
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(water layers, drag, etc.), but many of the sources of error, such as interference

artifacts and irregular transfer function from piezoelectric actuation uncertainty

(FM) apply to other environments as well. Comparing the measurements shown

and characterized here to the force that should be observable by a thermal-noise

limited measurement shows that the largest reduction of uncertainty is possible

between 400 nm and 1.5 µm. In that range, an interference pattern currently masks

any force, but detecting the cantilever with multiple wavelengths of light, or with

non-optical methods should greatly reduce the interference artifact. At separations

in the 30 - 400 nm range, the data are consistent with the best-�t power law to the

force gradient calculated by the Lifshitz theory, which is ≈ d−3.5. Higher accuracy

will assist the search for materials which can be used to electronically modulate the

Casimir force, which would have many uses in microelectromechanical systems [180].
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Chapter 5: Patch potentials in Casimir force measurements

Patch potentials are predicted to cause a pressure between conductive surfaces

and to introduce a small systematic error into Casimir force measurements [19]. The

Casimir force has been measured in various setups including torsion pendulums [9],

atomic force microscopes [36], and microelectromechanical systems [38,39]. Even in

early measurements, patch potentials were suspected to cause an additional attrac-

tive force [9], although it was not directly observed. In more recent measurements,

the force-minimizing voltage (V0) was found to be distance dependent [182] and was

attributed to patch potentials.

Theoretical models have been developed to quantify the pressure from patch

potentials between parallel plates [19] and its e�ect on Casimir force measurements

[19, 126]. A perplexing situation has arisen in the �eld of Casimir physics where

some experimental data has supported a theory based on use of the plasma model

for conductivity [39], while other data has supported a Drude model [178]. The

competition between the Drude and plasma models has focused attention on patch

potentials [15,128], as they may be a path to resolving the con�icting evidence from

di�erent experiments.

Electrostatic patch potentials complicate many other measurements as well
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[215]. Recent examples include increased noise in gravitation measurements [212,

216], heating in ion traps [217], metal whiskers that short electonic circuitry [218],

barrier height modi�cation for Rydberg atom ionization [219,220], and limited con-

ductivity in graphene on SiO2 [172]. In some cases, Kelvin probe force microscopy

(KPFM) is used to measure the surface potential (SP) in order to diagnose ex-

perimental artifacts originating from electrostatic patches. Similarly, amplitude-

modulated (AM) KPFM has been used to investigate patches originating from the

crystal structure of copper [73]. The potential contrast increased upon decreasing

relative humidity, a phenomenon which suggested that in ambient conditions, the

average patch size grows, but the voltage di�erence between patches decreases [128].

Recently, Kelvin probe techniques have been used to measure the SP of gold in

Casimir force experiments [214, 221]. The measurement of the SP on a gold-coated

silicon nitride membrane in situ with a modi�cation of frequency-modulated (FM)

KPFM is reported in [221]. The measured force agreed with that calculated in [126]

for two samples. The measurement, however, was limited in spatial resolution by the

size of the probe (4 mm), and was not able to resolve the smallest patches. Another

recent experiment [214] measured the SP on a gold plate in a nitrogen environment,

which had been used previously in vacuum-based Casimir force measurements [222,

223], and was used to estimate the sphere/plate equivalent electrostatic pressure

assuming both surfaces were covered with the measured potential. The estimated

pressure was over an order of magnitude less than the discrepancy between the

measured pressure and the pressure calculated by the Drude model.

In this chapter, we analyze our SP measurements in light of a recent patch
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model [15] and show that patch potentials contribute a systematic error in Casimir

force measurements, which likely increases the measured force between these mate-

rials by an amount of the same order of magnitude as the di�erence in the Casimir

force when calculated using the Drude or plasma models for conductivity. Humidity

is found to have a noticeable a�ect on patch potentials. Finally, patch potentials are

measured on spheres used for Casimir force measurements, and the residual patch

potential force is evaluated.

Note that the �rst section of this chapter is adapted from a paper published

in the Journal of Physics: Condensed Matter [109].

5.1 Patch potentials from di�erent deposition techniques

Measurements of the Casimir force require the elimination of the electrostatic

force between the surfaces. However, due to electrostatic patch potentials, the volt-

age required to minimize the total force may not be su�cient to completely nullify

the electrostatic interaction. Thus, these surface potential variations cause an addi-

tional force, which can obscure the Casimir force signal. In this section, we inspect

the spatially varying surface potential (SP) of e-beamed, sputtered, sputtered and

annealed, and template stripped gold surfaces with Heterodyne Kelvin Probe Force

Microscopy (H-KPFM). In this section, FM feedback is used to control the H-KPFM

topography loop, unlike the rest of the thesis, in which AM feedback is used. We �nd

that patch potentials vary depending on sample preparation, and that the calculated

pressure can be similar to the pressure di�erence between Casimir force calculations
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employing the plasma and Drude models.

5.1.1 Theoretical considerations

A method has been developed to describe the pressure due to patch potentials

in terms of the patch correlation function between parallel plates [19], which is given

by:

Ci,j(~x) =

∫∫
d2~x′ Vi(~x′) Vj(~x′ + ~x), (5.1)

where ~x and ~x′ are the spatial coordinates, and Vi,j are the potentials, with average

removed, on each plate. The correlation function is converted to a radial form,

C(r), and is averaged over all angles at each position r. To calculate the force, the

correlation function is transformed into k-space [15]:

Ci,j[k] = 2π

∫ ∞
0

dr r Ci,j(r) J0(kr), (5.2)

where J0 is a Bessel function. The pressure between two parallel plates resulting

from patches is:

P1,2(d) =
ε0
4π

∫ ∞
0

dk
k3

sinh(kd)2

[
C1,1[k] + C2,2[k]− 2C1,2[k]cosh(kd)

]
, (5.3)

where d is the distance between the two plates [15,19]. Here, we consider the pressure

between plates with the same autocorrelation, but vanishing cross-correlation, so
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that:

P (d) ≈ ε0
2π

∫ ∞
0

dk
k3

sinh(kd)2
C[k]. (5.4)

5.1.2 Computational methodology

Once the potential is determined by KPFM, the mean of the potential image

is subtracted. The x-y autocorrelation function of the SP is calculated, binned into

a radial autocorrelation function, and normalized to the number of pixels summed

over at each distance. Because our scan size is limited, the C(r) is truncated for

r > L
2
(by analogy to the Nyquist-Shannon sampling theorem [224, 225]). This

procedure may slightly reduce the calculated pressure, but at longer distances C(r)

is sampled less and so is not representative. The radial autocorrelation function

is numerically integrated to calculate C[k]. The pressure between parallel plates is

calculated from equation 5.4.

5.1.3 Multiple deposition techniques

We prepared e-beam deposited, sputtered, sputtered and annealed, and tem-

plate stripped gold (TSG) samples in order to determine how patch potentials vary

with preparation. Gold was deposited to 100 nm thickness for all samples. One

sample was e-beam deposited (Denton) at 3 µTorr with a 10 nm Cr sticking layer

onto a polished silicon wafer, which was epoxied to a metallic puck pior to depo-
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sition (EPO-TEK E4110). The other samples were sputtered (AJA International,

Inc.) in a 2.5 mTorr argon environment onto a polished silicon wafer. Two were

sputtered with a 20 nm Cr sticking layer, and their silicon substrates were epoxied

to the pucks. The third was sputtered onto a silicon wafer directly, and a puck was

epoxied to the exposed Au surface so that it could be template stripped [173, 226].

All three sputtered samples were heated for 6 hours at 80 ◦C to solidify the epoxy.

One of the samples with a Cr sticking layer was annealed at 200 ◦C in ambient

atmosphere for an additional 3 hours. The TSG sample was mechanically removed

from the silicon immediately before scanning.
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100 nm 

E-beam Annealed Sputtered TSG 

50 

-50 

0 

Potential (m
V) 

3 
2 
1 
0 

-1 
-2 
-3 

Topography (nm
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Figure 5.1: Surface potential of gold for e-beamed, sputtered, annealed, and tem-
plate stripped gold (a-d) respectively. The topography recorded simultaneously
(e-h).

The spatial distribution of the surface potential we observe di�ers signi�cantly

from sample to sample; however, the amount of the variation remains similar. �gure

5.1 shows 500 nm scans of the surfaces, both the potential and topography. The

e-beamed sample has the smallest patches, while the patches on the sputtered and
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TSG samples are of similar size. The largest patches are found on the annealed

sample.

The topography also varies signi�cantly. Both the e-beamed and sputtered

samples have similar roughness, while the sputtered and annealed sample shows less

topographical variation. The TSG sample is the smoothest, as expected [173].
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Figure 5.2: The measured patch potentials on a sputtered gold surface maintain the
same general shape and distribution as the size of the scan is increased from 250 nm
(a) to 1 µm (b), 2 µm (c), and 4 µm (d). However, the calculated autocorrelation
function falls o� much more quickly for increasing r in small scans (e) which leads
to a smaller calculated pressure (f).

To understand how scan size a�ects the calculated pressure between plates,

we investigate how C(r) changes with scan size. Here we focus on the sputtered

sample. �gures 5.2 (a-d) and �gure 5.1b show scans of the sputtered gold sample

ranging from 250 nm to 4 µm. All scans are 1024 x 1024 and recorded at 0.3 Hz.

The frequency o�set was chosen from - 40 Hz (4 µm) to - 70 Hz (250 nm), in order

to maximize resolution while maintaining stability. The general patch shape and

size are consistent as the scan size is varied.
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In some of the scans there is an abrupt di�erence between scan lines, a phe-

nomenon which has been attributed to charge transfer at the tip [68]. Because we

are concerned with the potential of the surface and not of the tip, the scan is 0th

order �attened (the average of each scan line is subtracted) to mitigate the e�ect

of any change in Vtip. This procedure slightly decreases the amplitude of C(r) for

all the scans. However, for the smallest scans, it also introduces anticorrelations

which were not seen in the larger scans. For this reason, we do not include any

500 or 250 nm scans in the pressure calculations of the subsequent sections. To

observe the e�ect of 0th order �attening, compare the images in �gure 5.1 to those

in �gure 5.2 (un�attened). A recent analysis of the spheres used in Casimir force

measurements showed that �attening can remove low-frequency spectral data from

an AFM image and a�ect the calculated autocorrelation function [202], particularly

at long distances. Here, we remove Vtip variations in order to avoid an overestimate

of the pressure.

5.1.4 Comparing surface potential pressure to plasma and Drude mod-

els for the Casimir force

We calculate the pressures from the 1, 2, and 4 µm scans and compare them

to the plasma-Drude Casimir pressure di�erence. Before computing pressures, the

surface potential measurements are 0th order �attened, as discussed above, and 3x3

median �ltered in order to remove stochastic noise [225].

The Casimir pressure for parallel gold plates is calculated at 300 K, using the
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Figure 5.3: The pressure di�erence between the plasma and Drude models for the
Casimir force (Pdi�erence = Pplasma − PDrude, solid black line) falls between the mini-
mum and maximum patch potential pressures calculated from the e-beamed, sput-
tered and TSG surfaces (blue band). AM-KPFM (dashed line) predicts a much
smaller force than H-KPFM (dotted line) for the same area (1 µm2). All pressures
displayed here are attractive.

plasma and Drude models with γ̃ = 0.035 eV and ω̃p = 9.0 eV [2, 227] without the

addition of optical data at other frequencies, both for simplicity and because optical

properties vary based on preparation [30]. Although most Casimir force experiments

are performed in a sphere/plate geometry, the calculation here remains in a parallel

plate formulation, as the proximity force approximation is not su�cient to convert

the patch potential pressure to a sphere/plate geometry [128].

The patch potential pressures computed from di�erent samples varies by over

an order of magnitude at a separation of 1 µm and by a factor of 4 at 30 nm (�gure

5.3). The plasma-Drude pressure di�erence remains between the smallest and largest

pressures calculated from the scans of the e-beamed, sputtered, and TSG surfaces

with scan length of 1 µm over all distances from 30 nm to 1 µm.
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5.1.5 Modeling patch potentials for Casimir force measurements

The potential variation and patch size distribution can be obtained from our

measurements and used in simple patch potential models when the exact SP is

unknown. Here we compare our measurements to the quasi-local model [15] (QLM),

which takes the patch size distribution and VRMS as inputs. In [15] it was suggested

that in vacuum conditions, the grain size determines the patch potential size, while

in ambient conditions, patch potentials result from adsorbates, and thus are larger

in size but of less magnitude. The size of patches that we found in an image do

not seem to correlate directly to the grain size of the material, as established from

an AFM image. For example, in �gure 5.1, the e-beam and sputtered samples have

very similar topography, while the length scales of their patch potentials di�er.

The surface potentials measured here, in ambient conditions, show variation

on both small (30 - 100 nm) and large (300 - 1000 nm) scales, although the latter

variation is of less magnitude and more sensitive to �attening. The smallest patches

are of the same size as the tip radius, so it is likely that still smaller patches exist on

the surface. Both preparation and scan size in�uence VRMS, but in general it falls

between 15 and 28 mV (after a 3x3 median �lter to remove noise).

Two ranges of patch size are incorporated into the QLM to replicate the two

observed scales of correlation. In [15], the QLM for one patch size gives

C(r) =
2V 2

RMS

π

∫ ∞
r

dlΠ(l)

[
cos−1

(r
l

)
− r

l

√
1−

(r
l

)2
]
, (5.5)
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with the probability distribution,

Π(l) =
Θ(l − lmin)Θ(lmax − l)

lmax − lmin
, (5.6)

where Θ is the Heaviside function, lmin is the smallest patch diameter and lmax is

the largest. Here, multiple patch sizes are incorporated into the QLM by giving

each di�erent patch size range a di�erent VRMS. Correlations coming from both

large patches with diameters llargemin < l < llargemax and potential variation V large
RMS and

small patches with diameters lsmallmin < l < lsmallmax and potential variation V small
RMS are

incorporated into C(r). If the large and small patches are uncorrelated,

C(r) = Clarge(r) + Csmall(r). (5.7)

This model allows the creation of autocorrelation functions where long-range corre-

lations are present (to allow for adsorbates and contamination often unavoidable),

while still considering the short-range correlations which cause most of VRMS and

gives a better approximation of the measured autocorrelation functions (�gure 5.4a).

A simulation of patch potentials was used to conclude that patch potentials did

not contribute to a measured force in [179]. Because the force-minimizing voltage,

V0, varied with distance in the simulation when patch potentials were present, the

lack of a distance dependent V0 led the authors to conclude the patch potential

force was zero. The range of SP values (± 90 mV) was similar to our observations,
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b

a

Figure 5.4: In the quasi-local model, neither small patches nor large patches alone
match the C(r) data from experiments; however, their combination, by equation
5.7, does (a). The parameters are, for small patches: lmin = 10 nm, lmax = 100 nm,
VRMS = 20 mV, while for large patches: lmin = 500 nm, lmax = 1 µm, VRMS = 4 mV
using the uniform size distribution as in [15]. Consequently, two patch sizes also
better approximate the calculated pressure from the measured data as well (b).

however, their spatial form di�ered. The potentials were modeled as square patches

of side length s on a grid with spacing l > s. Outside the squares, the SP took

on a uniform value. In our experiment, patches varied continuously, and there

were small long-distance correlations not present in the simulated model. Distance

dependence of V0 is suppressed when the area of interaction (2πRd, where R is the

sphere radius, and d is the sphere/plate separation) is much larger than the average

patch [126, 128, 228], here found to be about 100 nm across. Thus, V0 distance
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dependence may not be observed even if patches still contribute to the force for

d� r2
patch

2R
, where rpatch is the typical patch radius.

5.2 Resolution of patch potential measurements

The tunable spatial resolution technique developed in section 3.2 is used to

evaluate how well the patch potentials are being resolved. A 1 µm2 region of gold on

an e-beam deposited sample is scanned with TSR-KPFM, using signals ampli�ed by

C(2), C(3), and C(4), where C(2) is equivalent to H-KPFM used at the beginning of the

chapter. The resolution improvement shows that the patches have a slightly larger

potential di�erence between them than is estimated with H-KPFM alone. Because

there is still some di�erence between the C(3) and C(4) signals, it is expected that

further improvements to resolution would show that even with these signals, the

patches are not completely resolved. At larger separations (r > 20 nm), the C(r)

shows a reduction for C(3) and C(4), perhaps because even with the C(2)-dependent

signal of H-KPFM, the resolution causes one patch to blend into another. However,

the measurements with C(3) and C(4) agree closely with one another in the 50-80 nm

range, it is expected that they are resolving the patch size accurately. The improved

resolution increases the calculated force at separations < 70 nm, and decreases it

at larger separations. However, we expect that the force estimate only decreases

because the 1 µm2 scan size is too small to observe the largest patches (see �gure

5.2).
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Figure 5.5: (a-c) TSR-KPFM is used to scan the same (1 µm)2 region of a gold
�lm as the spatial resolution is increased, by utilizing higher order derivatives of
C (section 3.2, 5122 pixels, 0.6 µm/s). (d) As the resolution is increased, C(r)
increases by about a factor of 2 for r < 20 nm, but decreases at larger r, showing
that improving resolution helps to resolve the smallest patches. The inset shows the
topography.

5.3 Humidity and patch potentials

In this section, the e�ect of humidity on patch potentials is determined by mea-

suring the patch potentials directly with H-KPFM while the humidity is decreased.

Because patch potentials are observed to occur at two di�erent length scales on gold

surfaces (�gure 5.4), it is necessary to understand the origin of each of the length

scales in order to control the patch potential force in Casimir force measurements.

Behunin et al. [15] predict that adsorbates mask patch potentials in air. Because

water molecules are likely to be the primary adsorbates, varying humidity is one way
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to investigate their hypothesis. Moreover, because water layer thickness is identi�ed

as one of the major sources of error in determining the surface separation in section

4.3.5.3, spatially varying patch potentials from humidity indicate that the thickness

of the water layer is not uniform.
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Figure 5.6: H-KPFM is used to scan the same (4 µm)2 region of a gold �lm as the
humidity is decreased (10242 pixels, 4 µm/s) (a-f). The autocorrelation function
decreases by about an order of magnitude for r > 80 nm (g). The C(r) are colored to
correspond to the di�erent humidities. The inset shows the di�erence between each
C(r) function and the original C(r) at small r, where the autocorrelation function
grows with decreasing humidity. The calculated patch potential force also depends
on humidity (h).

Control of humidity is achieved by �owing dry air into the AFM scan chamber.

While the air is �owing nine H-KPFM scans (six shown in �gure 5.6), which each

required half an hour, are recorded. Simultaneously, the humidity level is recorded

with a humidity logger (Lascar). Because the humidity is changing during the
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scans, they are organized by the humidity in the chamber when each scan starts

(�gure 5.7). The autocorrelation functions do show two sizes of patches (�gure 5.6g).
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Figure 5.7: The humidity is controlled by �owing dry air into the AFM chamber.
The time that a KPFM scan shown in �gure 5.6 is started is indicated by an arrow.

The observation that C(r) decreases with decreasing humidity by about an order of

magnitude at large r suggests that water molecules are primarily responsible for the

larger patch size, and that the water layer thickness varies across the sample. To

the contrary, at short separations, C(r) increases by a few percent with decreasing

humidity. The increase is consisted with the idea in [15] that adsorbates screen

the electric �elds from some patches intrinsic to the gold surface. Note that the

change in the screening is likely underestimated, because it occurs at a length scale

comparable to the spatial resolution of H-KPFM.

5.4 Scanning on spheres

There are three distinct obstacles to measuring the patch potentials on the

spherical probes. First, because the cantilever is held at 11 degrees below the ver-

tical, the region on the sphere that is closest to the plate during a measurement is

not the same region as is scanned when the probe is lying �at. Second, because
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Figure 5.8: (a) The sphere is placed on a tilted surface to be scanned. (b,c) The
topography and surface potential of a 1 µm2 region on the sphere surface show
patches similar to those on the plate. (d,e) A larger scan of the potential on the
sphere shows the region that contributes much of the patch potential force.

the spring constants and resonant frequencies of the Casimir force probes are very

low compared to those of the probes used for H-KPFM, the Casimir probes respond

more to low-frequency excitations. Third, the curvature of the spheres causes multi-

frequency AFM techniques to lose sensitivity away from the center of the sphere (see

section 3.1). The �rst obstacle is overcome by building a stand to hold the Casimir

probe at an 11 degree angle while it is being scanned. The second is overcome by

using H-KPFM probes with resonance frequencies much larger than the resonance

frequency of the Casimir probe. The third is overcome by using lower eigenmodes of

the cantilever, most often the �rst, for signal detection. The variations of H-KPFM

discussed in chapter 2 are used while topography control is maintained using a fre-

quency slightly greater than the �rst eigenmode to stay in `attractive' mode [157].

One of the �rst observations while scanning spheres is that many of spheres

have patches much larger than those on the plate (�gure 5.9). The origin of the
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Figure 5.9: (a-c) Using a Cr sticking layer for the gold on glass results in micron
scale patches. (d-f) A titanium sticking layer causes sub-micron patches. (g-i) Using
a SiO2 boundary layer between the glass and the gold mitigates the patches. The
three columns show three di�erent spheres with each sticking layer.

patches is investigated by changing the sticking layer on the spheres (Trelleborg

SI-100). All the depositions begin by cleaning the sphere with contact mode AFM

to remove dust/debris, followed by a acetone, isopropyl alcohol, and DI water rinse.

The depositions are performed in an e-beam evaporator (Denton). The �rst deposi-

tion uses a 15 nm Cr sticking layer, the second uses 5 nm Ti, and the third uses Cr (3

nm) /SiO2 (50 nm)/Cr (3 nm), before depositing 100 nm gold on top. Micron-scale

patches are observed on the surface of the spheres with the Cr sticking layer, but the

patches are reduced to sub-micron sizes with Ti. On the spheres that incorporate

an SiO2 blocking layer, the patches become too small to be observed. Because scan-
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ning electron microscopy measurements with electron scattering di�raction show the

presence of Ca on the spheres, the reduction in patches may be due to blocking Ca

ions from entering into the gold.
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Figure 5.10: Two spheres are scanned with KPFM before a Casimir force measure-
ment, to observe patches at large (a,e) and small (b,f) length scales. Before and after
the force measurement, an in situ KPFM scan is performed (e,g). Another KPFM
scan of the spheres after the measurement shows some change to the potential for
one sphere (d), but the change is less clear for the other (h).

In order to understand the stability of the patches during a force measurement,

H-KPFM scans of the spheres are recorded both before and after (�gure 5.10).

One 100 µm2 image is recorded to evaluate the potential over the whole region of

interaction. One 1 µm2 scan is recorded in order to characterize the smallest patches.

Once the probe with the sphere attached is loaded above the plate, it is used as the

KPFM probe in order to measure the patches on the plate in situ, as in [221]. One

sphere with a Cr sticking layer showed signi�cant change to its patches from before to

after the measurement, which indicates that in some situations patch dynamics may

in�uence the measurement (�gure 5.11). Some preprocessing (�attening, median

�ltering) is used to reduce the e�ects of line noise on the KPFM scans, but the

preprocessing also means that the calculated forces may underestimate the total
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electrostatic force, particularly from patches comparable to the scan size.
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Figure 5.11: (a-d) The sphere topography changes little from before to after a force
measurement. The top row shows the raw topography images. In the second row,
the roughness is shown. (e-f) The potential on a sphere with chromium sticking
layer, on the other hand, shows a noticeable increase in variation from before to
after a force measurement.

The clearest signature of patch potentials in a Casimir force measurement is a

minimizing potential, V0 that varies with separation [126]. The PFA (equation 2.24)

is used to calculate how the minimizing potential changes for the spheres used in the

measurements (equation 4.33) [202]. The lower half of the sphere is modeled as a

surface of parallel plates, each consisting of one pixel, above a larger, grounded plate

(assumed to be a grounded equipotential). A point of closest approach is chosen

for some point on the potential map, which is placed onto a sphere. The region

of the sphere not covered by the image is assigned the voltage Vmacro, which, for

the calculations here, is taken to be the average of the KPFM image. To �nd the

minimizing voltage, the force derivative with respect to the applied voltage is set
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equal to zero, and then solved for the applied voltage. At each separation d, the

voltage which must be applied to the sphere to minimize the electrostatic force is:

V0 = −

(
Vmacro +

d

2πR

∑
i,j

(Vi,j − Vmacro)
Ai,j
h2
i,j

)
, (5.8)

where hi,j is the separation of the i, jth pixel of the sphere from the plate and Ai,j

is the area of the pixel. The V0 are calculated for 49 points on a 16 µm2 grid around

where the point of closest approach on the sphere is expected to be. The calculation

extends out to separations of 1 µm, because at larger separations Vmacro becomes the

dominant factor in determining V0. The calculated V0 are compared to the measured

values in �gure 5.12. The value of V0 at closest separation is subtracted, because the

variation in V0 with distance conveys the information about patch potentials. The

measured V0 includes separation-independent o�sets from the electronics connecting

the sphere to the plate. The V0 of sphere 1 is consistent with the calculated values

up to the noise level. For sphere 2, the observed change in V0 is several times larger

than any of the calculated values.

Because the primary problem caused by patch potentials is the force gradient

they impart into the signal, it is also investigated. The residual force gradient due

to the measured patch potentials is determined from KPFM scans of the sphere

both before and after the measurement using the PFA (equation 1.5) and equation

5.4. The calculated patch potential forces from the spheres are compared directly

to the measured force (�gure 5.13). For both spheres, the calculated electrostatic

force gradient is less than the measured force gradient, which indicates that it is not
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Figure 5.12: (a,d) The minimizing voltage (V0) is measured during each Casimir
force measurement. The data are recorded over many approach/retract cycles
(changing from dark to light red over time). The V0 is computed for 49 possi-
ble orientations of each sphere from both the (b,e) before and (c,f) after KPFM
scans. Each line corresponds to one possible sphere orientation.

the electrostatic patch potential force gradient, but the Casimir force gradient that

is being measured.

Even though the patches on the spheres can be signi�cantly di�erent from the

patches observed on the plates, they can be controlled so that the contribution of the

patches to the total force is much less than the Casimir force. The SiO2 boundary

layer is not necessary for the plate, because the plate already has a native oxide layer

and Ca is probably not even present in the Si wafer. It is suspected that Ca di�uses

out from the glass and into the gold when the boundary layer is absent, based on the

composition of the glass. The di�usion of atoms from an interface into the bulk could

be a problem in other precision measurements as well. For example, Wang et al. [229]

discuss an experiment in which the isoelectronic technique1 is used to mask the work

function di�erence between two materials of di�erent mass (gold and silicon), but

1In the isoelectronic technique, two di�erent materials are coated with the same metal layer
to eliminate electrostatic and Casimir force contrast between them [212].
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Figure 5.13: The measured force (blue, binned) is compared to the calculated
Casimir force (black) and the calculated patch force (dark or light red) for both
spheres (a,b). The patch force calculated from KPFM is much less than the mea-
sured force.

�nd that the electronic contrast is not eliminated by the gold coating until it is

several hundred nanometers thick and annealed. The authors attribute the extra

electrostatic force to patch potentials, which happen to align themselves with the

masses below the isoelectronic surface. One possible explanation for the observation

of the unusual patches is that ions, either from one of the masses or from residue from

the fabrication procedure, are di�using onto the surface. The experiments in this

chapter show that some patch potentials can be e�ectively identi�ed by KPFM and

controlled through the use of a boundary layer. Due to developments pertaining to

KPFM in liquids [230], a similar study of patch potentials should be feasible in liquid

environments, which might have very di�erent electrostatic patch potentials [192].
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Chapter 6: Measurement of the Casimir force between two spheres

6.1 Overview

Many theoretical predictions regarding the Casimir force rely on complex inter-

action geometries, but measurements have traditionally been limited to sphere-plate

or plate-plate con�gurations. Prior attempts to extend Casimir force measurements

to new geometries either relied on intricate nanofabrication or slight modi�cations

of the sphere-plate geometry. Here, measurements of the Casimir force between

two gold spheres are alternated with topographical scans in the x-y plane in order

to maintain alignment of the centers of the two spheres to within about 400 nm

(≈1 % of the sphere radii). Deviations from the proximity force approximation are

bounded using 9 sphere-sphere and 3 sphere-plate measurements with spheres of

varying radii.

6.2 Geometry in the theory of the Casimir force

The original derivation of the Casimir force between parallel plates results

from the change of the quantum vacuum energy of electromagnetic modes in a

metallic cavity as the separation between two walls changes [1]. The �rst calcula-
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tions of the force for curved surfaces relied upon the proximity force approximation

(PFA), in which each small portion of a curved surface interacts with a small portion

of another surface [2, 28]. The inherent con�ict between the global perspective of

the original derivation and the local perspective of the PFA led to much theoretical

work. Sharp edges lead to some of the strongest corrections to the PFA [53,231,232],

while smoother surfaces allow a perturbative treatment [27, 233, 234]. Several new

geometries have been proposed for nanoelectromechanical devices which utilize the

Casimir force, including non-contact gears [54] and geometrically-controlled repul-

sion [53, 235, 236]. Even with modern algorithms, searching for corrections and

identifying new geometries is computationally intensive and analytical results are

speci�c to a few geometries for perfect conductors. Some analytical results for perfect

conductors exist for geometries including: two spheres, nanoscale gratings on plates,

crossed cylinder, a wedge above a plates, and a cone above a plate [231, 232, 234].

Measurements in new geometries would test and help guide such theoretical devel-

opments.

6.3 Prior experiments in new geometries

Despite the well-motivated theoretical investigation into exotic geometries,

most experiments still rely on the sphere-plate geometry [8�11, 237], because it is

insensitive to rotations and horizonal motions of the sphere. Other measurements

have used a plate-plate con�guration [18, 177, 238], which was used for the original

derivation of the theory [1,6], but the relative angle between the two plates is di�cult

150



(a)

(c)

1

10

100

1000
 '

R/1
F/

d 
(N

 m
- -

2  )

0.1 1
Separation (µm)

v

Tim
e (hr)

25

0

150

-50

H
ei

gh
t (

nm
)

1 μm

(b)

x

y
z

d

10

8

6

4

2

0

x1
0-6

 

1086420
x10-6 

1 μm

Figure 6.1: (a) One gold-coated sphere is held directly above another. (b) AFM
scans are used to position the top sphere directly above the bottom sphere (scan
speed:10 µm/s, 64×64 pixels). (c) During the force measurement, the hydrodynamic
drag is separated from the Casimir force through the phase of the force signal. All
the individual measurements (light) are shown (≈ 20,000 points), as well as 200
point bins (dark). The inset shows the cantilever response to the Casimir (red) and
drag (blue) forces.

to control and limits the precision of such experiments.

Two techniques have emerged to push Casimir force measurements into new

geometries. The �rst begins with a sphere-plate geometry, but textures one or

both surfaces, so that the alignment advantages of the sphere-plate con�guration

are maintained while e�ects beyond the PFA are probed [51, 52, 239]. The second

involves fabricating two interacting surfaces out of a single crystal to ensure the

alignment of the surfaces [13, 14]. However, measurements are limited to materials

for which su�cient nanofabrication techniques exist. Some of the most interesting

geometries, such as the needle-and-hole, for which a repulsive force is predicted [53],

and sphere-sphere (�gure 6.1a), for which a proportionally greater deviation from
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the PFA is expected [26, 240, 241] require in situ alignment. The force between

latex spheres in liquid has been measured by aligning the spheres using their optical

interference pattern so that the horizontal distance between the two sphere centers

was less than 0.1 R′, where R′ = (R−1
1 + R−1

2 )−1 is the e�ective radius of the two

sphere system [242, 243]. The electric double-layer force dominated the measured

force in one of the experiments [243], while in the other the Casimir force was

separated from the electric double-layer force after the measurement through curve

�tting, and a dispersive force was measured out to a separation of ≈30 nm [242].

6.4 Sphere-sphere measurement method

Here we present Casimir force measurements between two gold-coated spheres.

To align the two spheres, The top sphere is attached to an AFM cantilever (Mikro-

masch USA) and is raster-scanned, while oscillating, over the bottom sphere. A

piezoelectric transducer controls the height of the bottom sphere, so that the os-

cillation amplitude of the cantilever, and thus the separation, is maintained while

an image is recorded (�gure 6.1b). A �t to the resulting image allows for lateral

alignment of the two spheres to within 400 nm, or about 0.02 R′. Misalignment

between the two spheres results in three primary e�ects (described further in sec-

tion 6.7): (1) the absolute separation of the two spheres can change by up to 1 nm,

(2) the force sensitivity can change by up to ±0.3%, and (3) a discrepancy on the

order of 0.05 nm may exist between changes to sphere-sphere separation and piezo

displacement. A change in the absolute separation (1) is accounted for by increasing

152



expected separation uncertainty to ±3 nm (section 4.3). Changes to the sensitivity

(2) are taken into account by increasing the calibration uncertainty to ±5.3%. The

uncertainty imparted by (3) is small enough to be ignored. A commerical AFM

(Cypher, Asylum Research) is used, and environment is maintained at 303.15±0.05

K and 14.5±9% relative humidity.

The Casimir force measurement procedure developed for ambient pressures by

de Man et al. [11, 21] is utilized to estimate the separation, to calibrate the spring

constant, and to eliminate hydrodynamic and electrostatic forces from the Casimir

force measurement channel. Measurements are recorded at about ≈400 individual

separations in each direction for each sphere-sphere con�guration from 4 µm to 30

nm as the top sphere approaches and retracts from the bottom sphere. At each

separation, the measurement is split into two steps, each of which take 0.7 s. The

electrostatic measurement is performed �rst to minimize the electrostatic force and

estimate the separation, and the force measurement itself is performed in the second

step.

The electrostatic force is used to estimate the absolute tip sample separation,

d0, and the sensitivity as described in section 4.3. An AC voltage, VAC is applied at

frequency ωA/2π = 77 Hz to the top sphere, while the bottom sphere is grounded.

A second voltage, V0, is applied by feedback to the top sphere in order to minimize

the cantilever oscillation signal at ωA, which in turn minimizes the electrostatic

force, akin to a Kelvin probe feedback loop [21]. Then VAC also generates a signal

at 2ωA, called S2ωA . The magnitude of VAC is controlled by a second feedback loop

in order maintain a constant S2ωA . The absolute separation is estimated by �tting
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capacitance d-gradient for an entire approach/retract sequence of measurements to

the exact sphere-sphere capacitance gradient [244]. While �tting the capacitance

gradient to estimate the height, the bending of the cantilever (< 3 nm) is taken

into account, and a water layer of 1.5±0.75 nm is included, as described in section

4.3.5.3. The water layer increases the Casimir force itself primarily at separations

< 10 nm [48].

The force gradient itself is measured by the amplitude modulation technique

described in section 4.2. The bottom sphere is shaken with an amplitude ∆d at

frequency ωpz/2π = 211 Hz, and a lock-in ampli�er records the response of the

cantilever. We note that in sphere-sphere measurements, the hydrodynamic force is

signi�cantly less than in sphere-plate measurements, and so imparts less error. The

shake amplitude is reduced from 48 to 1 nm on approach, to maximize the sensitivity

at large separations, while also minimizing any artifact from the non-linearity of the

Casimir force [184]. After the force measurements, the sphere again approaches

and retracts from the surface, while electrostatic measurements are made with VAC

= 8 V to calibrate the optical lever sensitivity and the spring constant from the

electrostatic signal at 4ωA.

The topography, force gradient measurement, and calibration cycle is repeated

for about 24 hours for each sphere pair resulting in about 50 force-distance mea-

surements per sphere-sphere experiment. A total of nine sphere-sphere and three

sphere-plate measurements are recorded, with three di�erent top spheres and three

bottom spheres. The sphere radii (hollow glass, Trelleborg SI-100) range from 29-

47±0.3 µm, and are epoxied to either a cantilever or a silicon substrate, and coated
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Figure 6.2: Representative measurements of the Casimir force for both sphere-plate
(blue) and sphere-sphere (red) measurement geometries are compared to the calcu-
lated gold-gold Casimir force with a 4.9 nm RMS perturbative roughness correction
(black). The gray region shows the uncertainy in the roughness correction, due to
the uncertainty in the orientation of the spheres, as discussed in section 4.5.3.

(Denton E-beam) with Cr(3)/SiO2(50)/Cr(3)/Au(100 nm). The silicon plate is

coated with Cr(5)/Au(100 nm). Roughness is estimated from AFM scans on all

surfaces after the deposition.

6.5 Comparing sphere-sphere and sphere-plate data

The data collected from the sphere-sphere measurements are �rst compared

to data from sphere-plate measurements made using the same top sphere. The

force gradient is normalized by R′ to compare the measurements (�gure 6.2). The

Casimir force between the gold surfaces is computed by combining ellipsometry data

over the range 0.74-6.3 eV with reference optical data [213] at higher frequencies

and the Drude model with ωp=8.84 eV and a 42 meV relaxation parameter at the

lowest frequencies (as discussed in section 4.5.1) [227]. The AFM images of the

surface are then used to estimate uncertainty in the roughness correction to the

force gradient [201].

All the sphere-sphere measurements are shown in �gure 6.3, together with the
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Figure 6.3: Casimir force measurements are performed between three bottom spheres
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sented in (d)-(f), where the di�erent marker colors correspond to measurements on
the di�erent bottom spheres. The error bars in (d-f) indicate the uncertainty in
the ambient water layer thickness (x-axis), and the uncertainty from the stray light
e�ect (y-axis).

calculated Casimir force. At the shortest separations, roughness causes the force

measurements to bend sharply upward, and at separations beyond 200 nm, stray

light interference a�ects some of the data. Stray light appears as an artifact that

is partially-periodic with separation, and is proportional to shake amplitude. Even

though a superluminescent diode is used to minimize the stray light e�ect, it is

present in some of the sphere-sphere data up to about 0.5 N m−2 (although it di�ers

between measurements) and at about twice that level in the sphere-plate data due

to increased re�ection o� the plate. Possible reasons that measurements with the

top sphere in �gure 6.3e show a smaller force at separations < 100 nm are that the
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sphere has a deformity not captured by the roughness measurement [202], or that

the slightly smaller k has led to an increase one of separation determination errors

listed in 4.3.

6.6 Bounding corrections to the proximity force approximation

The PFA allows the force gradient between two spheres to be computed ap-

proximately from the force per unit area for parallel plates. However, theory predicts

the presence of deviations from the PFA [27, 234]. To �rst order, the deviation is

proportional to 1/R′. The combination of sphere-sphere and sphere-plate measure-

ments gives e�ective radii (R′) that vary from 13-46 µm. The wide range of R′ values

allows the procedure of Krause et al. [237] to be used to put bounds on deviations

from the PFA of the form:

1

R′
∂F

∂d
= 2πFpp

(
1 +

β′d

R′
+ ...

)
, (6.1)

≈ (2πFppβ
′d)

(
1

R′

)
+ 2πFpp,

= m

(
1

R′

)
+ b, (6.2)

where Fpp is the Casimir force per area between parallel plates, β′ is a parameter

de�ned in [237] to characterize how the force gradient di�ers from the force gradient

predicted by the PFA, m = 2πFppβ
′d is the slope of the line and b = 2πFpp is

its intercept. Corrections to the PFA are expected to have the form of equation

6.1 because calculations of the correction with perfect conductors have shown such
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a correction [234]. Moreover, numerical calculations show that for real materials,

the form of the correction should be the same if β′ is allowed to vary slightly with

distance [27]. Intuitively, the ∝ R′−1 correction originates from the fact that the

PFA is a better approximation for interacting surfaces with a larger R′.

All twelve measurements are combined to put bounds on β′. For each mea-

surement, the data are binned at several separations, with bin widths that are 2%

of the separation, e.g. one bin is 100±1 nm. All twelve force gradient measurements

at one separation are then plotted versus 1/R′ (�gure 6.4). A line in the form of

equation 6.2 is �t to the force gradients at each separation. Then β′ is calculated

from the �ts:

β′ =
m

bd
, (6.3)

where m and b are determined from the line �t.

Of the the possible techniques to search for corrections to the PFA, the esti-

mate of β′ is more robust to several types of error than a direct comparison to the

calculated Casimir force gradient. First of all, systematic uncertainty in the separa-

tion (due to, for example, a water layer) leads to a relatively smaller error than direct

comparison of the force to theory, because the β′ varies less with separation than

the force itself [27]. Second, the phase and amplitude of the stray light, which leads

to a systematic artifact in any one single measurement con�guration, are e�ectively

random between con�gurations, and so the total error stay light imparts is reduced.

Finally, any overall systematic o�set in the calibration common to all 12 sets of data
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does not a�ect the estimate of β′. The error in β′ for each separation is propagated

from the error in each individual force measurement, which is in turn calculated

from: uncertainty in the separation, uncertainty from roughness, uncertainty from

calibration, uncertainty in the amount of the hydrodynamic force coupled into the

Casimir force signal channel, uncertainty in V0, and uncertainty in the interference

e�ect as described in section 4.4.

To put our bounds on β′ in the same form as Krause et al., we �nd that

β′ = −6 ± 27 is within 2-σ con�dence interval of the calculated β′ at all of the

measured separations. Recent theoretical work has shown that calculating β′ for real

materials at �nite temperature causes β′ to be dependent on separation, contrary

to the 0 K, perfect conductor limit [27], and so a separate estimate of β′ is also

shown for each separation (�gure 6.4b). Stronger bounds on β′ will be possible by

extending the range of radii used in the measurement. The largest possible radius

that can be used is limited by the ability to separate the hydrodynamic force from the

Casimir force (the former scales as R2, the latter as R). The smallest possible radius

must still be large enough to contribute much more of the Casimir force gradient

than the cantilever used to support it. Combining sphere-sphere and sphere-plate

measurements to bound β′ increases the range of the required line �t and should,

all else being equal, increase the strength of the bound. If a large enough range

of radii were used, it should also be possible to look for higher-order corrections to

equation 6.1. As discussed above, the measurement of β′ is less strongly a�ected

by systematic errors than direct measurements of the Casimir force, and so should

facilitate comparison between experiment and theory. Because β′ is more sensitive
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Figure 6.4: (a) For each separation, a line is �t to the measured forces gradients
versus 1/R′, where R′ is the e�ective radius. Then, in equation 6.2, the slope of
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measurements on the left and sphere-sphere measurements on the right (shaded).
(b) A value of β′ is calculated from each line �t, and limits are placed on β′ (grey
box), chosen so that any β′ within falls within the 2-σ con�dence interval of the β′

estimate at every separation.

to temperature and low-frequency conductivity that the Casimir force itself, in the

range that is possible to measure with an AFM, it permits a second test in addition to

direct force measurement to probe experimental oddities reported in the literature.

By combining topographical alignment with Casimir force measurements, the

Casimir force between two spheres has been measured in the range 30-400 nm. The

alignment method can be used to align any objects that may present interesting

geometries for Casimir force measurements in air. The method can be adapted to

liquid and should also be able to be adapted to vacuum conditions, though care will
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be necessary to keep the spheres from contacting one another when drag is minimal.

Once the objects are aligned any type of force can be measured: critical Casimir,

hydrodynamic, thermal, etc. Even though the bounds on β′ are signi�cantly weaker

than those set with the sphere-plate geometry, the ambient conditions in which

these new bounds have been set indicate that it will be possible to incorporate

geometrically controlled Casimir forces into MEMS devices.

6.7 Quantifying errors unique to the sphere-sphere geometry

A few sources of error not present in sphere-plate measurements (chapter 4)

appear in sphere-sphere measurements due to lateral displacement the two spheres.

The simplest way to describe the e�ect of lateral displacement between the two

spheres is to consider the triangle outlined in �gure 6.5a, which is described by:

[R1 +R2 + d′]2 = [R1 +R2 + d]2 + L 2, (6.4)

where R1 and R2 are the radii of the top and bottom spheres, L is the displacement

of the bottom sphere relative to the top sphere, d = dpz−d0 is the shortest separation

between the spheres when aligned along the ẑ-axis, d′ is the separation between the

two spheres when displaced by distance L , dpz is the piezo extension relative to its

initial position, and d0 is the piezo extension when the spheres are aligned and in

contact. When the spheres are aligned, changes to dpz directly change the separation

between the spheres, but when they are misaligned, that is not longer the case. For

the misaligned case, d′0 is de�ned to be the piezo extension for which the spheres
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come into contact. In calculations below, R = 40 µm is used for both spheres.

6.7.1 E�ective spring constant

The most consequential new source of error comes from changes to the e�ec-

tive spring constant (�gure 6.5b). Because the Casimir force detection occurs at

a frequency much below the resonant frequency of the cantilever, the cantilever's

response to a force is approximated as a simple harmonic oscillator, with an e�ective

162



spring constant k for forces perpendicular to the sphere trajectory (equation 3.4).

1 Because de�ection of the cantilever is detected, and because the bending mode

is much more sensitive than the torsional mode, the torsional spring constant is

neglected. However, the force applied to the bottom of the sphere is in a di�erent

direction than the sphere trajectory, so an e�ective sensitivity, B′, is de�ned. One

of the bene�ts of calibrating the measurement with the electrostatic force is that it

is collinear with the Casimir force, and so no overall correction needs to be applied

to the spring constant. However, when measuring the force between spheres, it is

possible that the sensitivity changes over the course of a measurement if the spheres

become misaligned.

To estimate the size of the misalignment e�ect, we treat the cantilever-sphere

probe with a rigid-arm model. The cantilever has length L, is tilted by the holder

to angle θholder, and the top sphere is e�ectively a `tip' with height 2R1, so that the

position of the bottom of the sphere relative to the base of the cantilever is (�gure

6.5b):

~xbot = L cos(θholder)x̂− (L sin(θholder) + 2R1)ẑ. (6.5)

The motion of the bottom of the top sphere is then perpendicular to this direction,

1The spring constants of higher eigenmodes are neglected because they are much greater than
k and so minimally a�ect the response of the cantilever (equation 3.4).
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so that the angle of the sphere's motion relative to the vertical is:

θbot = arctan

(
L sin(θholder) + 2R1

L cos(θholder)

)
, (6.6)

and displacements will be along the vector ~rbot:

r̂bot = sin(θbot)x̂+ cos(θbot)ẑ. (6.7)

The cantilever's response to a force in direction F̂ is then ∝ |F̂ · r̂bot|. Because

the signal is generated by shaking the bottom sphere along the ẑ-axis, the force

that drives the cantilever from the piezo shake ∆d is ∝ |F̂ · ẑ|. The ratio of the

sensitivity of the displaced probe, B′( ~L ) to its aligned sensitivity is calculated in

order to determine the percent change in sensitivity:

B′( ~L )

B
=
|F̂ · r̂bot||F̂ · ẑ|
|ẑ · r̂bot|

. (6.8)

The percent change in the sensitivity is calculated from the above ratio. The other

sources of error depend only on the magnitude of displacement, not its direction, so

the magnitude L is used to characterize displacement again.

6.7.2 Separation o�set

The change in the position of contact due to lateral displacement leads to a

second source of sphere-sphere error (�gure 6.5c). The piezo extension, dpz, at which
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the spheres are in contact changes by the amount d′0−d0 when the bottom sphere is

displaced laterally by L . Using equation 6.4, the change in the position of contact

can be found:

d′0 − d0 ≈
1

2

L 2

R1 +R2

. (6.9)

Thus, a lateral displacement causes the top sphere to seem further from the bottom

sphere, and the dependence is quadratic in L . The separation o�set is plotted in

red in �gure 6.5d. The lateral displacement leads to a separation that is up to ±1

nm, which is about 3% of the separation at closest approach.

6.7.3 E�ective piezo displacement

The third source of sphere-sphere error originates from the di�erence between

d and d′. When L = 0, the position of the bottom sphere, controlled by the

piezoelectric transducer, changes at the same rate as the separation between the two

spheres. However, when L 6= 0, the separation between the two spheres d′ changes

more slowly than the position of the piezo. To quantify the rate of approach, ∂d′

∂d
,

we take the derivative of d′ with respect to d, using equation 6.4:

∂d′

∂dpz
=

d′

R1+R2
+
√

1− ( L
R1+R2

)2√(
d′

R1+R2
+
√

1− ( L
R1+R2

)

)2

+ ( L
R1+R2

)2

. (6.10)

In the d′

R1+R2
� 1 limit, the e�ective piezo displacement becomes a constant,
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∂d′/∂dpz ≈
√

1− ( L
R1+R2

)2. The di�erence of the e�ective piezo displacement from

one, 1 − ∂d′/∂dpz, is plotted in �gure 6.5e. For 400 nm misalignment, the most

extreme value expected in the measurements, 1−∂d′/∂dpz ≈ 0.001%, which amounts

to about a 0.05 nm o�set over the whole electrostatic measurement range (≈ 5 µm).
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Chapter 7: Epilogue

In the preceding chapters of this thesis, the e�ects of geometry and patch

potentials on Casimir force measurements have been tested. The �rst two chapters

characterize and develop KFPM, which is used later to measure patch potentials

in Casimir force measurements. In Chapter 2, the spatial, temporal, and voltage

resolution of heterodyne Kelvin probe force microscopy technique (H-KPFM) is

measured and compared to earlier implementations of KPFM. H-KPFM is shown

to achieve a spatial resolution of ≈ 40 nm, a voltage contrast of ≈ 20 mV with a 200

Hz detection bandwidth, and scan speed of up to 32 µm/s. H-KPFM is also found

to avoid a number of artifacts, which a�ict AM-KPFM. Chapter 3 discusses how

cantilever dynamics can be utilized to improve H-KPFM. The �rst section discusses

how the tip-trajectory of an AFM cantilever a�ects the KPFM signal and can even

change its sign, and how judicious choice of the cantilever can mitigate its e�ect.

The second section discusses how spatial resolution can be controlled by using higher

derivatives of the tip-sample force to amplify the KPFM signal.

The subsequent chapters discuss measurements of the Casimir force. The force

measurement method is introduced and characterized in Chapter 4. The technique

is shown to have a 2 pN force sensitivity when all the current sources of error (opti-
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cal interference, the hydrodynamic force, etc) are present, and could feasibly reach

a 10 fN sensitivity if all the sources of uncertainty except thermal noise are elimi-

nated. KPFM is used measure patch potentials and investigate their preparation-

dependence in Chapter 5. Patch potentials are measured on both the sphere and the

plate in order to characterize the total electrostatic force in the measurements. The

patch potential force is found to be nearly two orders of magnitude smaller than the

Casimir force. Chapter 6 presents measurements of the Casimir force between two

spheres and uses the measurements to bound deviations from the proximity force

approximation to β′ = −6 ± 27. Finally, this chapter summarizes the content of

the thesis and discusses several additional ideas and extensions of the current work

which could be explored in the future.

7.1 Future Work

Here a few additional ideas and extensions of the current work are discussed.

Future experiments that relate directly to the work in one of the chapters are dis-

cussed therein, but some ideas did not �t neatly in any of them and are discussed

here. These concepts include arti�cial patch potential forces and imaging defection

motion on graphite.

7.1.1 Switchable Casimir force

The discovery of a material that can be used to switch the Casimir force at

100 Hz or more would have many uses in MEMS technology, for example, as an
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actuator or a switch. Early attempts to measure a change in the Casimir force

between a hydrogen switchable mirror and a gold plate reported that the change

in force was below the noise level [245], possibly because of a Pd capping layer

[246]. One group reported a successful in situ force modulation through charge-

carrier density modulation using laser illumination [49], although questions remain

about additional electrostatic contributions [32]. A more robust measurement of a

switchable Casimir force has been performed between Au and Ag-In-Sb-Te (AIST)

[50], but the switching is slow because the sample must be annealed. A promising

route would be to measure the Casimir force between VO2 and another surface,

because its phase transition can be driven with an electric �eld [247], and occurs

over sub-picosecond timescales [248], which is certainly fast enough to actuate MEMs

devices.

An actively switchable Casimir force would also open up the possibility of

new measurement techniques. For example, the method developed in chapter 4

measures how the Casimir force changes with separation by oscillating the plate.

With a switchable force, it is not necessary to modulate the plate's separation,

because the dielectric properties of one of the material could be modulated instead.

Thus a force gradient measurement could be changed into a force measurement,

but unlike de�ection force measurements, the signal could still be measured with a

lock-in ampli�er. Because the force follows a more gradual separation dependence

than its gradient, measuring it should expand the range of possible measurements.

A basic form of this technique is used in [49], but care would need to be taken to

exclude any artifacts that appear from driving the phase transition. Moreover, if
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the material used to switch the Casimir force were built into an AFM probe, the

TSR technique discussed in section 3.2 could be used to image variations in the

Casimir/vdW forces across a surface.

7.1.2 Arti�cial patch potentials

In contrast to the Casimir foce, which only a few experiments report altering

by 50% or more [10, 11], the force from patch potentials should, in principle, be

controllable by over an order of magnitude at any one separation. To model the force

from patch potentials, the quasi-local model (QLM) is used [15]. In the simplest

case, two materials are randomly distributed on the plate to form metapatches, so

that the potential di�erence between them is ∆V , they both have a characteristic

diameter l, and the relative proportion of the �rst material is x. Then the patch

potential pressure calculated from the quasilocal model is:

P (d) = ε0x(1− x)∆V 2

∫ ∞
0

kdk

[
J0(kl

2
)

sinh kd

]2

, (7.1)

where J1 is a Bessel function, and P has been separated out from the rest of the

patch potential pressure by assuming that the metapatches are not correlated with

the intrinsic patches. The magnitude of the pressure is calculated assuming the two

materials are Pt and Au, because both are relatively stable in air, even though their

orientation-averaged work function di�erence is small (0.24 eV), and the character-

istic patch diameter, l, is varied from 1 to 1000 nm (�gure 7.1).

Metapatches could be fabricated a number of ways, from conductive polymers
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Figure 7.1: The pressure from Au-Pt metapatches is calculated for patch radii
ranging from 1 to 1000 nm. At any one height, the pressure can be controlled by
about two orders of magnitude, but forces less than the plasma-Drude di�erence
could not plausibly be measured.

[100] to uneven semiconductor doping. One possible way to ensure that the plate is

�at, even though it consists of two materials, is to fabricate the surface by template

stripping [249]. Gold nanoparticles would �rst be fabricated on mica by annealing a

thin �lm [250], and would then be back-�lled with platinum (�gure 7.2). When the

metallic surface is stripped from the mica, a random distribution of metapatches

would be exposed. Depending on the size of the patches, it may be possible to

measure the patch force via the method described in chapter 4.

7.1.3 Defect motion on highly ordered pyrolytic graphite

One of the most interesting phenomena that appeared while evaluating the res-

olution of H-KPFM is the motion of a defect on a highly ordered pyrolytic graphite

(HOPG) surface (�gure 7.3). The defect is observed to move around near a bound-

ary on a newly cleaved HOPG surface. The defect is only about 150 pm deep, but

grows up to several 100 nm across and constantly changes its shape. The defect
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Figure 7.2: To fabricate metapatches, a thin gold �lm is deposited on mica (a).
Annealing the �lm creates nanoparticles (b). The nanoparticles are back�lled with
Pt (c). An atomic force microscope could be used to measure the patch force (d).

is suspected to either be due to adsorbates, or the absence of adsorbates, but the

chemical identity of it is not known.

Defect motion has been observed before with AFM [251], but investigating

it is pertinent to the work discussed in the previous chapters of this thesis for

three reasons: (1) measuring the �uctuating potentials should help illuminate the

origin and stability of patch potentials generally, including those on gold, (2) using

H-KPFM to simultaneously measure both the defect's potential and position will

help to understand the energy landscape that the defect is moving though, and (3)

if it were possible to image the motion of two nearby defects, or a defect and a

wall, su�ciently long, it should be possible to determine the in-plane force between

them. Fluctuation-induced forces, such as the Casimir force, are likely to be a major

constituent of the total force1 in the > 1 nm separation regime, just as they are for

three dimensional objects.

1The force could possibly be between a defect and another defect, between a defect and a wall,
between a defect and grain boundary, or between a defect and any other structure on the surface.
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Figure 7.3: A defect is imaged on an HOPG surface at a scan rate of 13 s/scan
(a-c). The defect is seen to change in size and position. A larger H-KPFM scan
shows that its potential is about ≈40 mV greater than its surroundings (d,e).

7.1.4 Additional geometries

Many more geometries are possible for Casimir force measurements beyond

those explored in chapter 6. The most prominent new geometry discussed in that

chapter is the needle-and-hole geometry, which has been predicted to give repulsion

[53]. The interplay of materials and geometry poses some questions that cannot be

clearly answered yet. Both magnetic and topological materials have been predicted

to give a repulsive force under certain conditions [252�256], and it is not clear what

will happen when those materials are combined with a geometry that would give

repulsion between metals. Further, earlier measurements with gratings observed

very di�erent behavior for semiconductors than for metals [51, 52].
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Appendix A: Programming and user interfaces

I designed user interfaces to facilitate accessibility and reproducibility for the

Casimir force and Kelvin probe experiments, because they simplify operation and

enables other user to perform similar experiments. Here I describe a bit about how

to use the interfaces, and a basic description of how each program works. Because

the experimental techniques are described in the main text, I will refer the reader

back to the text for information on the measurement technique, and here focus on

the particulars of implementation and usage.

The �rst thing that other students of physics will notice is that none of this

code is written in Labview. For that, I have Asylum Research to thank, for their use

of a non-standard, but much more logical and useful programming language (Igor

Pro). Still, Igor Pro has its own oddities, the most prominent of which is that it

stores data in what it calls `waves', which are 1-4 dimensional arrays in which the

data on the arrays are evenly spaced to enhance the speed of some procedures, such

as Fourier transforms, autocorrelation, etc. Igor Pro 6.37 is used for all the coding

and the work done in this thesis, as the Cypher AFM is only compatible with that

version (at this time). More information about the Igor Pro programming language

can be found in the Igor Pro User Manual, particularly in chapters 4 & 5 [257].
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Because Kelvin probe force microscopy and Casimir force measurements re-

quire many of the same operations, much of the code is reused (with slight variation)

in all the programs. Because of this, and because of the quirks of the Igor program-

ming language, each of the codes described in the three following sections must be

used separately from the code in the other two sections.1

To satisfy the competing interests of simplicity and clarity, I use bold text to

refer to buttons or other components of a panel and italic text to refer to waves.

Functions, the third component of Igor programming, are already demarcated with

parentheses.

In the interest of space, the code itself is not reproduced here, as each program

would probably be a few hundred pages. Instead, the code is available on the

MundayLab drive. On the MundayLab Cypher computer, the Kelvin probe and

Casimir force codes can be loaded from the Programming → Load User Func...

menu on the top navigation toolbar, after the Asylum Research software has already

been launched.

A.1 Kelvin probe force microscopy panels

Kelvin probe force microscopy (KPFM) is discussed �rst in the main body of

the thesis text (chapter 2), because it is the simplest of the techniques, and because

variations of it are used in the Casimir force measurement as well. For the same

reasons, we discuss the KPFM panels �rst here as well.

1An ambitious student could perhaps remedy my programming redundancies and bring all the
code back under one roof, but the bene�ts of such an action are not readily apparent to me.
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Figure A.1: The Parameter Sweep panel.

There are three KPFM panels: a parameter sweeping panel, a KPFM oper-

ation panel, and a voltage feedback panel. They are displayed automatically after

the KPFM code is initialized from KPFManalyser.ipf.

A.1.1 Parameter sweeping panel

The parameters sweeping panel allows the AFM user to select an internal

parameter or two to sweep, to set up to 6 channels (limited by Cypher hardware)

for data acquisition, and to set the duration of the data acquisition (�gure A.1). It is

particularly useful for investigating the e�ect of a parameter upon data acquisition.

The panel is divided into three by horizontal lines. Several options are available to

sweep, but the three most useful are voltage, frequency, and general. Voltage is a

special case of general, but is separated because it is the most common parameter

to sweep. Frequency is a separate option because the way the Cypher AFM changes

frequency is somewhat di�erent than the way that other parameters are changed2.

2If the frequencies are changed slowly, it is easier to use the General option.
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To choose one of these options, go to the popup menu3 under the words 1st Variable

and select an option. Note that it is possible to sweep two parameters at once, by

also selecting a term from the 2nd Variable popup menu. To sweep only one

variable, set the 2nd Variable popup menu to `none'.

For voltage, the center voltage (typically 0), voltage width, and# of Volt-

ages must be chosen. For frequency, the min and max frequency must be chosen.

To sweep any other parameter, use the general option and write the name of the

parameter in the General Out 1 box (if it is the �rst variable) or General Out 2

if it is the second variable. For each of these min, max, and num must be chosen.

Furthermore, if the exponential? box is checked, then the parameter values to

be swept through are exponentially, instead of linearly, spaced. The exponential?

option is particularly useful for mapping out transfer functions, when a over an

order of magnitude of values must be tested. To select which 6 data channels are

collected during the sweep, write the name of the data to collect in the In boxes

at the bottom of the panel. Each input (0, 1, or 2) can read in two data streams

(a or b) from the ARC controller. Note that the inputs must come from the ARC

controller, not from the Cypher itself. To extract a signal from the Cypher, it must

�rst be connected to the pipe which connects the Cypher to the ARC controller

(�gure A.2).

After the parameters to sweep and the data to measure are chosen, Advance

starts the measurement. The default duration for each setting of the parameter

sweep is 1 second and it can be changed with Duration box. To plot the acquired

3Yes, that is the technical term used in the Igor Pro manual [257].
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Figure A.2: The Cypher internal parameters includes PipeHack, which can be
used to move signals from the Cypher to the ARC controller, so they can be recorded
by the computer. The large red arrow is pointing to PipeHack.

data press plot. The �rst parameters are plotted on the x-axis and the second

parameters are plotted by varying the color (dark→light). Other plotting styles can

be used by plotting from the Igor command line. Each time Advance is pressed, it

overwrites the previously recorded data, unless that data is saved in a new wave.
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(a) Choose parameters to 
sweep and data to record

(b) Setup parameter sweep
varprep()

(c) Start parameter sweep
KV_advance()

(d) Set nth parameters
change1var(), change2var()

(f ) Record data nth time
gen_datasave()

(e) Start nth measurement
setupmeasurement()

Figure A.3: To use the parameter sweeping panel, (a) select the parameters to
sweep, and set the range of values to sweep. The parameters to be swept are set
in voltages, frequencies, general1, or general2. (b) To setup the parameter sweep,
run varprep(). (c) Then, if no error message appears, running KV_advance() starts
the measurement. Pressing the Advance button is equivalent to steps (b) and (c).
Once KV_advance() is called, the main measurement loop starts. (d) First, the
parameters for the one measurement are set. (e) Next, the data channels are setup
and the measurement is started. (f) After the measurement is �nished, the data
are stored. If one variable is being used, the averaged data is stored in prelims, and
the raw data is stored in alldata (table A.1). Unless a sensitivity vs. noise analysis
is necessary, the data in prelims is typically su�cient. If both variables are swept,
then the averaged and raw data will be stored in prelims2nd and all2, respectively.
The sequence (d)→(e)→(f) is repeated until all measurements have been made for
all the input parameters.
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Table A.1: Key data waves in Parameter Sweep panel
Wave Name Description

prelims, prelims2nd The time-averaged data, for one or two swept parameters

alldata, all2 The raw data (sampled at 5 kHz), can be useful for noise analysis

voltages The voltages to be swept through

frequencies The frequencies to be swept through

General1, general2 The values that the parameters are set to during the sweep

vars The record of which parameter settings are currently set

to_measure The six data streams that are recorded

output The two parameters that are swept with the General options
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Table A.2: Key commands of Parameter Sweep panel
Command Description

varprep() Sets up a parameter sweep, outputs total number of points in alldata

kv_advance() Starts parameter sweep

setupmeasurement() Sets up and runs a single measurement

gen_datasave() Saves data recorded with the General options
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Figure A.4: The voltage feedback panel.

A.1.2 Voltage feedback panel

The small voltage feedback panel controls the voltage feedback loop. The

listed and adjustable I Gain and P Gain, are set when Set Loop is pressed, and

are adjustable even after Start Loop has been used to start the voltage feedback

loop. The panel is small because keeping it visible is useful, as I Gain and are two

of the most commonly adjusted parameters. For H-KPFM, I Gain≈50,000 and P

Gain≈100. For FM- and AM-, the gains should be a little lower.

A.1.3 Operate KPFMs panel

The Operate KPFMs panel is used to setup and run the KPFM scanning

(�gure A.5). The panel allows the user to choose the KPFM Mode, sets up the

Cypher's Crosspoint, and tunes the phase of the many KPFM signals. The KPFM

technique is discussed in depth in chapter 2, and so here the focus is on how,

operationally, can a Cypher user go about setting up KPFM.

To begin KPFM operation, it is necessary to �rst set up Amplitude Modulation

AFM topography scanning, which is explained in the Cypher user guide [258]. Once

topographical feedback is set up to maintain tip position, setting up the KPFM loop

can begin:
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Figure A.5: The KPFM operation panel.

1. Choose which mode of KPFM to use.

2. Set frequency fA or fD, for FM- or H-KPFM, respectively

3. Pick the positive or negative fD or fA, for FM- or H-KPFM, respectively

4. Choose what Vac should be applied to the probe

5. Check Tuning/nolift

6. Press Set H/FM-KPFM crosspoint

7. Set nH to 1 (H-), 0 (AM-), or >1 (TSR-KPFM)

8. Press Set frequencies, and engage the surface (if not already)

9. While engaged, press Calibrate Lockin A Phase and wait ≈ 30 seconds

10. (only FM-) Open up the Main Cypher control panel, and the Tune tab

11. (only FM-) Check the Dual AC Mode box
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12. (only FM-) Press Calibrate 2f phase and wait ≈ 30 seconds

13. (for lift mode) Uncheck Tuning/nolift

14. (for lift mode) Open Nap Mode

15. (for lift mode) Press Set H/FM-KPFM crosspoint again

16. (for closed loop) Press Set Voltage Loop and Start Voltage Loop

17. Start a scan, and adjust the I Gain and P Gain for a clear KPFM signal

During this procedure, the Show prelims can be pressed to display the details of

the tuning operations4

The Cypher has three channels that the user can set to collect data through

the Hack panel: UserIn0, UserIn1, and UserIn2. Here, UserIn1 is the mea-

sured VK, UserIn2 is the signal the feedback loop acts on, and UserIn0 is the

quadrature signal. If the KPFM loop is working properly, the contrast should be

entirely in the UserIn1 channel, while UserIn0 and UserIn2 are mostly noise.

In addition, in FM-KPFM, the 2f signal (proportional to V 2
AC) is also recorded, in

the Amplitude2 channel, but must be normalized by dividing by the internal opti-

cal lever sensitivity value5. The Open Loop estimate of VK is calculated by dividing

UserIn2 by Amplitude2 with an appropriate normalization constant. Beware,

however, that in Open Loop thermal noise can often be quite large compared to

4Yes, it is the same prelims as before. This panel is actually calling the code underlying the
parameter sweep panel to do the tuning!

5This is one of the quirks of data collection on the Cypher.
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typical KPFM. However, even in closed loop operation, the 2f signal can be useful

to look for sample heterogeneity or topographic coupling.

The Cypher's LockinA is used for the KPFMmeasurement, because it contains

a notch �lter that blocks (some of) the signal originating from the topographical

feedback, and LockinB is used to control the topography. The tuning procedure

that sets the phase between these LIAs is discussed in more detail in chapter 2.

A.2 Casimir force measurement panel

As described in the text above, the Casimir force measurement is performed

at a series of separate heights, in several steps at each height. This appendix will

provide a brief overview of the code, and some of the di�erent types of measurements

it can run. Casimir force measurements are run from the Approach_panel.

A particular force measurement is organized using the The_Schema, which is

a series of measurements to be performed in order. For example, for the sphere-

sphere measurements Setup_for_scan() is called �rst in order to align the upper

sphere with the lower sphere, then meas_schema_setup() is called to run one ap-

proach/retract cycle and �nally cal_schema_setup() is called to run a calibration

approach/retract cycle. Each of functions ending in _schema_setup() starts by call-

ing the KPFM code (discussed above) to set the reference phases for the electrostatic

force. Then the measurement cycle begins:

1. Set height

FM_advanceauto_P() starts the whole measurement sequence.
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prepscan() starts the individual measurements.

2. Setup data collection

Setup_am_meas2() sets up the data collection.

3. Collect data

The data are collected by the Cypher.

4. Record data

A callback is used to initiate the function gen_datasave().

5. Repeat

The setup/collect/record sequence is repeated twice at each height for

typical operation, and seven times if extradata is used.

6. Estimate sphere-plate separation and move

If the closest approach (or furthest retraction) is reached, the movement

changes direction.

The di�erent channels are controlled automatically through the use of several

multiplexer-style waves that connect signal input and signal output.
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