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Echolocating bats use sonar to sense their environment and hunt for food in darkness.  

To understand this unusual sensory system from a computational perspective with 

aspirations towards developing high performance electronic implementations, we 

study the bat brain. The midbrain superior colliculus (SC) has been shown (in many 

species) to support multisensory integration and orientation behaviors, namely eye 

saccades and head turns.  Previous computational models of the SC have emphasized 

the behavior typical to monkeys, barn owls, and cats.  Using unique neurobiological 

data for the bat and incorporating knowledge from other species, a computational 

spiking model has been developed to produce both head-movement and sonar 

vocalization.  The model accomplishes this with simple neuron equations and 

synapses, which is promising for implementation on a VLSI chip.  This model can 

serve as a foundation for further developments, using new data from bat experiments, 

and be easily connected to spiking motor and vocalization systems.
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Chapter 1: Introduction 

 

1.1 The Mammalian Superior Colliculus Structure 

The superior colliculus (SC), sometimes referred to as the optic tectum in non-

mammalian species - and heavily studied in the visual domain - is a layered, bilobed 

brain structure.  The superficial and intermediate layers receive raw and processed 

sensory input from the visual, auditory, and other sensory systems, while the deep 

layers project to the brainstem, which have nuclei that connect to motor systems such 

as the eye and neck muscles.  Some of the intermediate layers have more complex 

afferents and efferents, both sensory and motor.  Since several information pathways 

in the brain converge on the SC, it is thought that they are integrated here into a 

common sensorimotor representation and translated into actionable responses, such as 

saccades (quick eye movements) and head and/or pinnae movements.  The SC 

informs behavioral responses in head-centered space.  The layers organize 

topographically, such that a locus or ‘bump’ of activity will elicit a response toward 

the corresponding point in space.  

In species where eye movements are the dominant form of sensor orientation, 

the responses have largely been described from the point of view of the visual system.  

Visually, the map is laid out in retinotopic coordinates and the evoked responses are 
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saccades and head turns.  Some non-mammalian species have relatively larger tecta, 

such as fish and birds. 

 

 

The SC is an evolutionarily old brain structure of the vertebrae midbrain, with 

distinguishing characteristics in different species.  While some aspects of the SC 

remain more consistent – such as the fact that it contains dense optic tract afferents 

and strong inputs to deeper layers − others vary more, such as the total number of 

layers or the types of cells each layer contains.  In vertebrates with a less developed 

cerebral cortex, the tectum may account for a significant portion of the overall brain 

matter. 

1.2 The Bat Superior Colliculus 

While microchiropteran bats are not blind, their vision is relatively low resolution and 

dominated by slowly responding rod photoreceptors.  They rely heavily on 

echolocation (as opposed to vision) for navigation and hunting.  They detect the 

location of objects in their environment by emitting primarily-ultrasonic frequency 

chirps and listening for echoes.  The retinal projection to the SC in echolocating bats 

occupies only a very small zone in the surface layers, and the intermediate layers 

mostly contain large auditory afferents [1].  Efferents to ear, head, and body 

orientation muscles originate in the deep layers, instead of the more superficial eye-

saccade related areas.  In addition, echo timing influences which neurons in each 
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layer activate, and it is thought that the timing of these neuron activations directly 

influences future sonar chirps [2].  These correlations suggest that the SC has the 

same role for auditory behavior in bats as for visual-guided actions in other 

vertebrates.  Figure 1 shows the key areas of the SC that are thought to play a role in 

converting sensory information into signals sent to premotor and motor structures 

controlling head-movements and echolocation calls [1].   

 

Figure 1 (A. Shows the dorsal view of the brain of a species of bat, Eptesicus 

Fuscus. B. A cross-section showing laminar structures of the SC.  Abbreviations: 

PAG = Periaqueductal Grey, MGB = Medial Geniculate Body, IC = Inferior 

Colliculus, CLB = Cerebellum [1]. 
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1.3 Superior Colliculus Tuning in the Echolocating Bat 

As a bat flies and forages for food in darkness, it emits ultrasonic vocal signals and 

listens for the echoes [2].  Differences in arrival time, intensity, and spectrum 

between the ears allow the bat to localize objects and prey, and the time delay 

determines distance [3, 4].  Using extracellular recording techniques, it was shown 

that spatially selective neurons in the superior colliculus of the bat were tuned to a 

target range [5].  In a separate study, over half of the measured neurons in the SC 

were found tuned to have narrow, intermediate, or broad tuning curves, and most 3D 

neurons had response latencies less than 12.5 ms, though the full range of latencies 

was 3.6 to 20 ms [6].  The neurons were also tuned to specific frequencies, and 

minimum thresholds were found to hold within one frequency octave upward and 

downward sweeping FM sonar stimuli (frequencies further than an octave away 

didn’t evoke a response).  They further state that these findings suggest that there is a 

spatial map within the SC, and that its role is primarily in the head’s orientation to a 

sound source.   

 This tuning is not unique to the bat.  Auditory space gets encoded in the SC in 

ferrets, with some neurons tuned to single regions in space [7].  Other neurons were 

either hemifield or bilobed response profiles.  It was also suggested that the brachium 

of the inferior colliculus sends signals to the SC that are already somewhat selective 

for the sound’s azimuth and elevation, which are sharpened in the SC layers.   

 What results is a two-dimensional map of auditory space across the horizontal 

extent of the midbrain nucleus, including the substantia nigra reticula (or SNr) [8, 9, 
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10].  The arrangement of the neurons and layers provides a computationally and 

spatially efficient path for integrating multi-sensory cues and allows head orientation 

using a common premotor pathway [11, 12].     

1.4 Non-Mammalian Superior Colliculus Specializations 

 In barn owls, the optic tectum contributes largely to the metric and kinetic 

properties of saccadic head movements [13], producing analogous results as previous 

studies on saccadic eye movements in primates and head movements in the cat.  Cats 

have a very limited eye movement range, so head-movements are more prevalent than 

in a primate.  This collicular activity produces a much different result than in a 

monkey, which has much more freedom of eye motion.  Masino and Knudsen also 

demonstrate similar phenomena in the barn owl, stating that there is an abstract code 

underlying movements of the head of the barn owl coded to the retinotopic space 

(neural visual map) in the optic tectum before the motor neuron code for muscle 

tensions, suggesting that the SC provides an intermediate step in the transformation of 

sensation into motor behavior [14]. 

 In amphibians, the optic tectum was shown to play a role in crucial prey-

catching and predator avoidance tasks, but was unable to directly account for the 

stimulus responses (e.g. premotor outputs) [15].  In the rattlesnake optic tectum, 

bimodal neurons that receive sensory input from the retina and infrared-sensing 

neurons created activity in the superior colliculus and oriented toward biologically 

important objects [16].   
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Chapter 2: Biological Data from the Bat Superior Colliculus  

 The previously discussed comparative animal studies suggest that the SC has 

a role in shaping saccadic, smooth pursuit, and vergence head, pinnae, and body 

movements in various species, as well as other orienting, target, and evasion 

behaviors in others.  Using this anatomical background, a few studies have focused 

on extracellular recordings to study the neural activity of an echolocating bat’s 

superior colliculus.  The findings of these studies are key components of the 

computational model presented in chapter 4. 

2.1 Spatially Selective Auditory Responses 

 Valentine and Moss (1997) [5] used single-unit stimulations and implanted 

electrode measurements to test the spatial properties of SC cells from both 

extracellular recordings and free-field auditory stimulation.  From the nearly 100 

neurons measured, two groups of spatially tuned neurons appeared: first, a class that 

seemed tuned to two-dimensional coordinates, selective to azimuth and elevation but 

not echo timing (i.e., not object range) – and a second class that was three-

dimensional, and was thus selective to echo timing, azimuth, and elevation.  Two-

thirds of the neurons were 2D and most of them fired maximally to a small hemifield 

30 degrees laterally of the midline in the contralateral hemifield.  They were also 

responsive to elevations within 18 degrees above and below.   

 Three dimensional neurons, with the additional dimension being time, 

determine the target range of echoes in the neural representation.  In all of the 3D 
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units studied, they were maximally active when the vocalization and delayed echo 

pair were separated by a specific time period.  Figure 2 below shows the results of 

best echo delay pairings and range sensitivity.  The mean delay was 13.5 ms with a 

deviation of 8.1 ms, and 90% of the neurons were tuned between 4 and 20 msec.  

While most of the delays were tuned specifically to a time, some had broader 

responses or bimodal responses.    

 

 

Figure 2. A) shows the overall best delays (BD) for the 3D neurons.  They had 

varying response profiles, with B) being selective, C) being twin-peaked, and D) 

being broadly facilitated.  Each line on those graphs are for individual neurons 

in the experiment [5]. 
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 The results of Valentine’s and Moss’s findings suggest that a 2D map of 

auditory space is not entirely topographic, but rather that most of the neurons are 

tuned to only azimuths in the 30-40 degree span from the center of view.  As the 

directionality of a sonar call is quite narrow, this seems conventional, as echoes from 

ranges outside of the beam would not likely contain much energy from the sonar call 

or information.  The delay-tuning mechanism suggested will also play a role in 

modeling, as the delay of these neurons could serve as a trigger as to when to start 

another vocalization, after the previous information has been received, processed, and 

the head turned.  These 3D neurons help coordinate the timing of when echo 

information is received with the next vocalization, pinna movement, and head 

movement, especially during close-range targeting [17].   

2.2 Head-Movement and Vocalization by Microstimulation 

 In 2002, Valentine, Sinha, and Moss showed that microstimulation to cells in 

the SC can produce orienting and vocalizing behaviors in the bat [18].  Through a 

number of experimental procedures, it was shown that the SC is involved in the 

pathway of controlling vocal signals and head-movements.  The types of responses 

elicited have similar sweep patterns to a bat in free flight as well.   

 A second important finding showed that stronger input current stimulations 

reduced the latency of head movements and vocalizations.  Figure 3 below is an 

illustration from their study showing data points of decreasing latency.  Figure 3A 

specifically shows an important behavior: at any current level, the head movement 
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always has a lower latency than the vocalization, suggesting that there is a mechanism 

in place that prevents a vocalization from occurring before the head movement 

repositions the head for a future vocalization.   

 

Figure 3. Microstimulation response profiles from Valentine, Sinha, and Moss, 

2002 [18].  A) shows the decrease in latency of vocalizations (crosses), head 

movements (triangles), and pinna movements (diamonds).  B) shows the number 

of sonar pulses (open circles) and the delay (filled circles).  C) shows how many 

vocalizations are emitted for a current level of 10 microamps (open squares) and 

13 microamps.  D) shows how many pulses are emitted for a pulse train of 200 

msec. [18] 

While the responses elicited through this microstimulation are consistent with 

other studies, the properties of the head and pinna movements depend on where the 

electrode actually stimulates in the SC (what layer, what location on the layer, etc.).  
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There is some chance that at high current levels, the stimulation may have bled into 

the periaqueductal gray (PAG), and those neurons may have been partially 

responsible for the vocalizations.  However, this possibility is not consistent with 

standard current spread from a probe, and chemical injections used earlier in the study 

isolated that as a concern (control saline injections in the same area did not elicit 

responses, which would have likely been seen if the PAG was causing the activity).   

2.3 Vocal Premotor Activity 

 In 2007, Sinha and Moss [19] explored the vocal premotor activity in the SC, 

and showed that there is consistent neural activity before the production of sonar 

vocalizations and not communication calls, and that the timing between this activity 

and the call has a direct relationship.  Two relationships are most important to the 

development of the computational model, shown in Figure 4 below.  First is the 

relationship between a call’s duration, and the interval between pulses.  From a 

physical standpoint, a longer duration of call would generally contain more power, 

and be directed towards targets further away.  In that sense, a longer pulse interval 

would be required, so as to give the information enough time to travel back from the 

object.  While there is some variability to this graph there is a defined floor on call 

duration and pulse interval – that is, as the pulse interval increases, duration will not 

fall below the ‘line’ of trials that are at the bottom of the group.  This could be the 

physical limit of how long a call takes to emit and echo back to the bat, be processed, 

and reoriented to the next call.   
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The second part of the figure shows the neural activity lead time in relation to 

how long a call lasts.  Shorter calls have shorter lead times.  This phenomenon could 

be a result of a neural integrator circuit being present as part of the SC.  Because 

longer call duration would require more power, the start of neural activity in the SC 

indicates that some process should start integrating more neurons into activity.  Once 

the actual call needs to be made, this built-up activity discharges and contributes to 

the call’s intensity and duration.   

 

 

Figure 4. A) Shows the sonar call duration versus pulse interval for all 1392 trial 

calls on a semilog plot.  B) Shows a linear regression of call duration versus 

activity lead time as an isolated predictor [19]. 
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In accordance with the results of this paper, the change of call length with 

target distance is parallel to the primate and feline control of depth – they use 

vergence eye movement pathways, which are suggested to occur in the rostral pole of 

the SC [20, 21, 22], as well as in cats [23].   

Microstimulation of the various areas in the SC area suggest that it 

participates in the vocal motor control circuit: areas of the auditory cortex and SGN 

(suprageniculate nucleus) project through the frontal cortex, and to the SC in a 

potential gating context, preventing the SC from sending motor commands until it 

receives the appropriate ‘go’ signal [24].   
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Chapter 3: Existing Computational Models of the Superior 

Colliculus 

3.1 Trappenberg et al. (2001) 

 The model developed by Trappenberg et al. in 2001 [25] is one of the first that 

integrates exogenous and endogenous signals to initiate saccades through a superior 

colliculus structure.  Behavior of the model follows biological data from the 

intermediate layers of the SC in monkeys.  Effectively, the information received from 

the inputs is integrated through dynamic competition, with local collicular 

connections.   

 The local connections of the SC are modeled to have a “Mexican-hat” shape 

structure; a unit has excitatory connections to its neighbors, and inhibitory 

connections − or very weak connections − to cells that are further away.   

 The model consists of three neuron types: buildup, burst, and fixation neurons 

(fixation neurons being on the rostral pole of the SC map).   Figure 5, adapted from 

Trappenberg et al., shows the three components and how they fire in a standard task.  

First, the buildup cells (blue) begin to fire more rapidly, suppressing fixation cells 

(green).  Once activity has built up to a certain level, the saccadic burst neurons (red) 

generate a quick spike of activity, at which point the cell resets to the pre-saccade 

state.   
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Figure 5. A) Shows the overview of their model.  The two types of inputs both 

affect the buildup neurons (blue).  The other neurons react from the buildup's 

activity, with fixation cells being green, and burst cells being red.  B) Shows a 

sample saccade task.  Buildup neurons suppress fixation firing, and activate the 

burst neurons once reaching a threshold of activity. From Trappenberg et al., 

2001.  [25] 

 

 Their model is one-dimensional, but can be generalized to two dimensions 

[26].  The model equations implement standard integrate-and-fire neurons, with a 

noise component that models synaptic connection.  The exogenous and endogenous 

inputs are both simple Gaussian spatial inputs, representing the SNR in lieu of a 

separate layer of neurons projecting inhibition on the SC.   

 The interactions within the SC, as mentioned previously, have short-distance 

excitatory and long-distance inhibitory connections laterally within their layer of the 

SC.  
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3.2 Arai and Keller (2005) 

 In 2005, Arai and Keller [27] developed a two-dimensional saccade model for 

the visual system.  Figure 6 shows the hierarchical view of the system.  In this model, 

the SC drives horizontal and vertical motor groups that negatively feed back to the SC 

as motion happens.  The rest of the model is quite similar to Trappenberg’s – this one 

adds a component for driving motor outputs for the eyes, which, while interesting, 

doesn’t explicitly occur in the SC.   
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Figure 6.  System model for an SC generating saccades.  Visual inputs and SNr 

inputs interact with the SC, which has internal excitatory and inhibitory 

connections.  The outputs from the SC are sent to horizontal and vertical eye 

movement controllers (SBGs from the brainstem), which feed back to the SC 

and drive the eye motors. From Arai and Keller, 2005 [27]. 

 

3.3 Proposed Non-Spiking Model 

 The models discussed above, along with the influence of neurophysiological 

and behavioral data have influenced the current model that is being developed, seen 

in Figure 7.  The core components modeled here are the suppressing SNr layer, the 
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two SC layers (buildup and burst), the H (horizontal) and V (vertical) burst 

generators, and their associated interactions with the vocalization-related priming and 

burst neurons.  The function is similar to saccade models discussed earlier, except 

that the motor vectors associated with different positions describe head movement 

rather than eye movements. 

 

 

Figure 7. In this model, a 2D SNr field suppresses the natural buildup of activity 

in the SC buildup layer.  If the SNr inhibition is released, the SC will build 

activity, then cause the burst neurons to drive the horizontal and vertical head-

movement motors, which feed back to the SC buildup and burst layers, restoring 

the previous state.  The vocalization priming neuron is triggered by a certain 

level of activity in the SC, where a signal will build up until it is allowed to 

discharge through the vocalization burst neuron. 

 

 In the mean-rate, or non-spiking model, the SNr inhibition and dis-inhibition 

is modeled by a continuous variable representing the mean firing rate of a population 
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of spiking neurons.  Normally, the inhibition projected by the SNr strongly suppresses 

the layers beneath it, preventing buildup activity and thus burst activity.  As with Arai 

and Keller’s model, a Gaussian input inhibits the SNr, which allows the SC buildup to 

begin.  The end result of each can be seen in Figure 8. 

 

 

Figure 8.  SNr and SC activity some time after a dis-inhibition of an SNr area.  

The laterally connected SC area directly connected to the SNr has a peak of 

buildup activity. 

 The above plots are activity levels after the SC has built up – that is, some 

time has elapsed (100-150 ms) following the disinhibition while the SC neurons fired 

and recurrently excite each other.  Once this SC buildup has reached a threshold level, 

the burst neuron is triggered.  This can be seen in Figure 9.  Once the burst is 

triggered, the SNr is returned back to its pre-movement state (fully firing), and the SC 

buildup dies from the restored inhibition.   
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Figure 9. Buildup activity rises to a certain rate of activity, which drives the 

burst neurons to the horizontal and vertical outputs for head motion.  The burst 

activity feeds back and shuts down the SC buildup and burst firing. 

  

In this version of the model, the mechanisms behind the vocalization and head 

movement are based on mean-rate variables as well. The SC burst neurons trigger 

synchronized vertical and horizontal head motion.  While the head motion occurs, 

vocalization is suppressed.  Once motion stops, the vocalization can occur.    In 

Figure 10, the resulting vertical and horizontal motions (from the activity vector in 

Figure 8) are shown.  The motor commands (black and blue lines) begin when the 

burst neurons do, and shut down as the burst stops again.  Once the motor signals fall 

to rest, the vocalization burst neuron fires. 
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Figure 10. The burst neurons activate the vertical and horizontal motion, as well 

as the vocalization priming neuron in the background.  Head motion suppresses 

vocalization - once the motion is complete, the vocalization burst begins. 

 This model differs from the others in that it suggests that there is a mechanism 

in the SC that coordinates vocalization timing.  Previous models have emphasized  

the eye / saccadic system, of non-bat species where vocalizations are not integral to 

the sensing process.   Beyond simple coordination, however,  the SC is likely to 

actively participate in defining the vocalization magnitude/duration due to its 

sensitivity to object range and other pre-vocalization signals that have been found that 

correlate with duration ( Sinha and Moss, discussed in Chapter 2.) 

 The model of the bat superior colliculus is novel in this sense.  It is, however, 

desirable to develop the model further and translate parts of this model into a spiking 

domain, instead of using only mean-rate firing variables.  The next chapter discusses 
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a spiking neuron version of the SNr, the SC, and the neural integration (which 

motivates the change in vocalization behavior relative to head-movement in the 

spike-based model).   
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Chapter 4: A Spike-Based Model of the Bat Superior Colliculus 

 The core components of the spiking model are the SC buildup layer, the SNr 

inhibition layer, and the neural integrator that builds up vocal activity between the 

start and end of the head motion.  The mean-rate neural model of the motor system is 

incorporated, but not yet in a spiking manner, as they are not components directly in 

the SC, and the basic results of this part of the model remains the same.  The  

vocalization component, however, in this spiking model is unique.  The neural 

integrator component controls the duration and amplitude of the vocalization.  

Motivated by the long-lead latency burst seen by Sinha and Moss [19], the magnitude 

of the vocalization is controlled by the relative timing of two separate signals.  The 

starting trigger of vocalization occurs when the integrator start neuron activates.  

There is a separate post-integration trigger that allows the vocalization to occur.  

Once the integrator stop neuron activates, the vocalization may occur.  The model 

diagram shown in Figure 11 shows this component.  The vocalization burst neuron 

will discharge the neural integrator activity. 
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Figure 11. Spiking model of the SC.  The main difference between this and the 

non-spiking model is in the vocalization through a neural integrator.  Two 

signals, the integrator start and stop, control the integrator’s time to start 

building activity and stop building activity, respectively.  The vocalization burst 

neuron does not become active from the integrator activity until the integrator 

has completed building up.  Once the integrator finishes building, it discharges 

activity to the burst neuron.  SC_burst, horizontal and vertical burst generators, 

and their feedback are not yet modeled in this spiking version.   

4.1 Neuron Model Equations 

 The SNr neurons in the current model play the role of controlling the 

inhibition to the SC.  This layer is a two-dimensional square array, each controlled by 

simple integrate-and-fire equations.  They are tonically active – that is, in the absence 

of external input, they will fire at a regular rate. 
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Where  is the time constant of the neuron, 𝑉 is the membrane voltage, 𝑅𝑚 is the 

membrane resistance, and 𝐼𝑒𝑥𝑡 is the external current, if any.  

 

Figure 12.  Visual representation of the 2D SNR layer.  Each dot represents a 

neuron, and in this case, the array is 25x25.  The SC layers (buildup and burst) 

have the same layout.  The output layer (burst) neurons, representing different 

2D head movements, project to the horizontal and vertical head plants with a 

trigonometric relationship corresponding to the movement direction. 
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Each neuron in the SNr layer has a inhibitory synapse to the SC buildup layer 

beneath it, which is also a two-dimensional square of neurons.  Both layers are the 

same size, and they are connected in a one-to-one fashion.  The SC layer also uses a 

similar set of equations.  To justify the level of detail in the neuron, it was important 

to determine what characteristics needed to be captured.  The goal of this layer is to 

recurrently excite neighboring neurons with a Gaussian-shaped projective field, and 

to produce a ‘hill’ of activity, as seen in Figure 8 (above).  The most important feature 

to correctly model is the 2D recurrent connection matrix.  Three levels of neuron 

complexity were considered for the choice of the SC neuron model: full-scale 

Hodgkin-Huxley equation representation, Izhikevich-style neurons, and a simple 

integrate-and-fire with synaptic current as part of the external input.  The first, 

Hodgkin-Huxley, proved too computationally intense to scale to networks of 25x25 

neurons and beyond, using excessive time and memory.  The complex differential 

equations did not provide more information than simpler models, and the Izhikevich 

model produced the same results, with fewer calculations.  In the end, however, the 

same spiking behavior was realized with a simple integrate-and-fire model.  Because 

the primary mode of operation of the model is using mean-rate activity, the detailed 

spike timing becomes less important –implementing the simplest model that can 

produce the behavior seen in Figure 8 is desirable, which the integrate-and-fire model 

does adequately.  The same equation used for SNr on page 19 holds for this layer of 

neurons, but the time constant and membrane resistance were altered to provide 

different firing rates. 
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 In contrast, the neural integrator requires a more in-depth model to produce 

the desired integrate-and-hold behavior.  The neural integrator must accept a triggered 

input from the SC, signaling the onset of activity build.  The timing of this signal 

relative to the vocalization is important, as it determines how long and loud the 

vocalization must be.  Once the SC onset is triggered, neurons begin to build up 

activity through excitatory network pulses.  The output of the neural integrator lies in 

the total activity of the network – the longer the network has to integrate, the more 

activity is sent to the vocalization premotor neurons.  The buildup of activity in this 

integrator continues until the vocalization burst neuron shuts off the buildup, and 

prepares the network for discharge.  Once both the vocalization burst neuron trigger 

and vertical and horizontal burst neurons are non-active, the neural integrator begins 

to discharge activity through inhibitory pulses that are feedback from the vocalization 

burst neuron.  The inspiration for the basic setup comes from a paper by Koulakov 

and colleagues [28].  Neural integrators have been successfully modeled in the past, 

with the caveat that they required extremely precise tuning –synaptic strengths 

needed to be within 1% of working values [36].  The basic structure of a unit in the 

recurrent network is shown in Figure 13.  Each neuron in a unit connects to the other 

units in the group, and provides excitatory connections to neighboring units in a 1D 

line.  Based on the weights and equations that define these neurons and synapses, 

input pulses can start a unit into recurrent activity, and a negative current pulse can 

shut a unit off.   
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Figure 13. Network connections for the integrator.  There are three neurons in 

each group (the red triangles), with recurrent excitatory connections within the 

group.  Each group also has excitatory connections to other groups in the 

network, which have the same structure. A global excitatory and inhibitory 

input (red and blue, respectively) also connects to all groups.  These connections 

are all weak, such that any single input is not sufficient to turn a group on, but 

inputs from a few, or rapid inputs, may be enough to turn them on.  Adapted 

from Koulakov et al., 2002 [28].     

 A neural integrator using the same structure but with Izhikevich [29] resonator 

neurons was built, using a decaying synaptic current connection as described in 

Figure 13.  The result is shown in Figure 14.  From left to right, the top three plots are 

the membrane voltages of each unit.  The bottom three plots show the membrane 

current present in each cell.  The equations that describe each neuron are as follows: 

𝑑𝑉𝑚

𝑑𝑡
= 0.04 ∗ 𝑉𝑚

2 + 5 ∗ 𝑉𝑚 + 140 − 𝑤 + 𝐼 + 𝐼𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 + 𝐼𝑓𝑙𝑎𝑡 

𝑑𝑤

𝑑𝑡
= 𝑎 ∗ (𝑏 ∗ 𝑉𝑚 −𝑤) 

𝑑𝐼

𝑑𝑡
= −

𝐼

20
 

𝑑𝐼𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘
𝑑𝑡

= −
𝐼𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

30
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The first two equations are characteristic Izhikevich equations, where a, b, and w are 

constants, and Vm is the membrane voltage 𝐼𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is the recurrent feedback 

current, 𝐼𝑓𝑙𝑎𝑡 is tonic excitation provided to all neurons in the system, and 𝐼 is the 

excitation provided by excitatory/inhibitory pulses and current from other units.  

At 50 ms, an excitatory pulse generated externally drives the first group to 

start spiking.  The second group doesn’t get enough activity to start firing, since it 

doesn’t have support from its neighbor.  When another excitatory pulse comes at 250 

ms, the second group begins spiking.  Group three still does not reach threshold.  

When an inhibitory pulse occurs at around 600 ms, the second group is shut off, since 

it does not have excitatory support from group three.  Group one does not shut off 

because it has support from group two and the group that is not shown (background, 

starter of the chain). Another inhibitory pulse finally shuts off group one. 
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Figure 14.  Membrane potentials from a three neuron example of the proposed 

neural integrator.  Neuron #1 is connected to neuron #2, #2 is connected to both 

#1 and #3 and #3 is connected to #2.  Neuron #1 also has an additional excitatory 

input not shown, to “seed” the integrator.  The top row shows the membrane 

voltage of each cell, the middle row shows the total current that are injected into 

each neuron, and the bottom row shows the global input with excitatory and 

inhibitory pulses, intended to turn on and turn off the groups. “At 50 ms, an 

excitatory pulse to the system latches on neuron #1.  At 250 ms, a second 

excitatory pulse activates neuron #2.  Later, two inhibitory pulses at 600ms and 

750ms sequentially turn the neurons off.  This creates a staircase-like network.  

A raster of a larger staircase is shown in Figure 13. 

 The process used to connect these three groups is easily extended to as many 

groups as necessary.  Figure 15 below shows an eight-component neural integrator, 

with five steps up and four steps down.  All code used in this work is included in the 

appendix. 
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Figure 15. Larger network spike raster.  Each group of 3 neurons starts spiking 

on each excitatory pulse, and one shuts down on an inhibitory pulse.  There are 

five steps up, and then 4 steps down, denoted by the blue arrows.  Each step up 

and step down was separated by approximately 200 ms.  

4.2 Connecting the Components 

 To see how well the model works, it was compared to the non-spiking model 

discussed at the end of Chapter 3.  After configuring the SNr layer neurons to spike at 

50 Hz, it suppresses the firing of a small group centered at neuron index (9,9) in the 

SC.  Figure 16 shows the resulting firing rate after being inhibited.  Following this 

disinhibition, the SC layer should have a similar (but inverted) pattern of activity in 

the same location.  The firing rate increases dramatically compared to the low base 

firing rate of the rest of the neurons, as seen in Figure 16 in the right panel.   
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Figure 16. Firing rate results of the spiking model for the SNr and SC buildup 

neurons.  These figures are analogous to those in figure 8.  In this simulation, the 

layer of cells is only 25x25 rather than 150 by 150. 

  

 This illustration shows that the connectivity between layers is functioning 

properly.  At locations where the SNr is strongly firing spikes, the SC is completely 

shut down and does not even reach spiking threshold, whereas at locations where the 

SNr is suppressed, the SC neurons reach a firing rate of almost 25 Hz.   

Once the SC buildup reaches a rate over 20 Hz, the same cascade of events 

that drive a head movement and vocalization as described in Figure 7 begins.  Here, 

the vocalization integration trigger starts the neural integrator, which determines the 

magnitude and length of the vocalization (analogous to the red line in Figure 10).  

Using the SC spikes, and translating it to a mean rate activity output, using the non-

spiking model’s horizontal and burst.  

When the integration start neuron activates, the neural integrator starts to build 

activity, in the staircase fashion seen above in Figure 15.  The integrator stop neuron 

will stop the neural integration, and will start the discharge of the integrator into the 
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vocalization burst neuron.  The activity strength in the neural integrator at the start of 

discharge determines the strength and length of the call.  The longer the neural 

integrator has to build activity, both the longer and louder the vocalization will be.  

The output of the neural integrator is the amount of activity that was built up. 

The signal start and stop neurons are not locally defined at a specific area of 

the SC yet.  To this point, there exists no direct biological data that would pinpoint 

these signals in a specific area.  One hypothesis is that the signals are embedded in 

the pause neurons in the rostral pole. 

The spiking model for the SNr, SC, and neural integrator parts of this model 

successfully implement the desired behavior of this system.  Relatively simple 

neurons work together to create spiking network behavior that has been seen in 

biological experiments.   

4.3 VLSI Considerations 

 The SNr and SC integrate-and-fire model networks have been implemented 

numerous times in silicon [30, 31, 32, 33].  Some possible characteristics that could 

be implemented to make the model more biophysical, such as probabilistic synapses 

and synaptic plasticity, also have some versions of silicon fabrication [34].    

Since the neural integrator is modeled as a network of Izhikevich neurons, it 

would necessitate different VLSI units [35].  The chip developed by Rangan and 

Sundeep [35] models simple Izhikevich units, but the basic structure could be 

repeated and combined with the previously discussed VLSI synapses to allow for 
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plasticity in synaptic strengths and probabilistic synapses.  VLSI circuits will also not 

have an issue simulating large neuron arrays.  The units are small enough that 

realistically sized networks can be implemented.  

  

Chapter 5:  Future Work 

Although this model of the bat superior colliculus is still in its infancy, it 

provides a foundation for defining and incorporating the role it plays in echolocation 

behavior.  Further development of the model could be biophysical, incorporating 

larger neuron groups and probabilistic synapses with noise, and additional spiking 

components, such as the horizontal and vertical burst neurons that drive the head 

movement. 

First, almost all biological systems need to adapt to sources of noise, whether 

they come from motor, sensory, or internal (e.g., neural) sources.  It would be 

beneficial to develop a model for different noise sources and inject them 

appropriately into the network.  

Currently, the neuron groups in the simulated model consist of single neurons 

or small neuron groups.  In the biological system, the neurons are probably 

functionally members of overlapping groups.  Instead, individual nodes could be 

multi-neuron units with connections that are perhaps dense or sparse, depending on 

the size.   
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Appendix A: Python Code (BRIAN script for defining the 

network) 

 

''' 

Last Modified on Apr 24, 2013 

 

@author: Matt 

''' 

from brian import * 

import csv 

import math 

#Neuron model parameters 

Vr_SCBuildup = -65*mV 

Vt_SCBuildup = -55*mV 

El_SCBuildup = -50 * mvolt 

 

Vr_SNR = -70*mV 

Vt_SNR = -55*mV 

El_SNR = -30*mV #Natural spiking 

 

Vr_input = -70*mV 

Vt_input = -55*mV 

El_input = -30*mV  #Natural Spiking 

 

Vr_test = -65*mV 

Vt_test = -55*mV 

El_test = -30*mV 

 

tau = 10 * msecond 

 

weight = 1.86 * mV 

 

square=25 

 

 

SCBuildup_Eqs = Equations(''' 

              dV/dt = -( V - El_SCBuildup)/(3.3*tau) + If*25 : volt 

              dIf/dt = -If/(.3*tau) : mvolt/ms 

              ''') 
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test_Eqs = Equations(''' 

              dV/dt = -(V-El_test)/(.1*tau) : volt 

              ''') 

SNR_Eqs = Equations(''' 

              dV/dt = -(V-El_SNR)/(1.4*tau) : volt 

               

              ''') 

 

SNR = NeuronGroup(N=square*square, model=SNR_Eqs, 

threshold=Vt_SNR,reset=Vr_SNR,refractory=1*ms) 

 

SCBuildup = NeuronGroup(N=square*square, model=SCBuildup_Eqs, 

threshold=Vt_SCBuildup,reset=Vr_SCBuildup,refractory=1*ms) 

 

test_input = NeuronGroup(N=1, model=test_Eqs, 

threshold=Vt_test,reset=Vr_test,refractory=1*ms) 

 

SCBuildup_sub = [SCBuildup.subgroup(1) for i in range(square*square)] 

SNR_sub = [SNR.subgroup(1) for i in range(square*square)] 

 

C_SCBuildup = Connection(SCBuildup,SCBuildup,'If') 

 

C_SNR_SC = Connection(SNR,SCBuildup,'If') 

 

C_SNR_SC.connect_one_to_one(SNR,SCBuildup,-weight*15) 

 

#all connections       

for i in range(1,square*square): 

    index = i-1 

    row = math.floor(index/square) 

    column = index%(square) 

    for j in range(1,square*square): 

        if(j!=i): 

            row2 = math.floor((j-1)/square) 

            column2 = (j-1)%(square) 

            weight2=15*weight*math.exp(-math.sqrt((row2-row)*(row2-row)+(column2-

column)*(column2-column))) 

            C_SCBuildup.connect(SCBuildup_sub[index],SCBuildup_sub[j-1],weight2) 

 

 

 

C_test = Connection(test_input,SNR,'V'); 

#Center cross 
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C_test.connect(test_input,SNR_sub[square*square/2],-weight*4) 

C_test.connect(test_input,SNR_sub[square*square/2-1],-weight*1.3) 

C_test.connect(test_input,SNR_sub[square*square/2+1],-weight*1.3) 

C_test.connect(test_input,SNR_sub[square*square/2+square],-weight*1.3) 

C_test.connect(test_input,SNR_sub[square*square/2-square],-weight*1.3) 

#Center diagonals 

C_test.connect(test_input,SNR_sub[square*square/2+square+1],-weight*1.1) 

C_test.connect(test_input,SNR_sub[square*square/2-square+1],-weight*1.1) 

C_test.connect(test_input,SNR_sub[square*square/2+square-1],-weight*1.1) 

C_test.connect(test_input,SNR_sub[square*square/2-square-1],-weight*1.1) 

#Added cross 

C_test.connect(test_input,SNR_sub[square*square/2+square+square],-weight*1.1) 

C_test.connect(test_input,SNR_sub[square*square/2-square-square],-weight*1.1) 

C_test.connect(test_input,SNR_sub[square*square/2+2],-weight*1.1) 

C_test.connect(test_input,SNR_sub[square*square/2-2],-weight*1.1) 

 

#For the scatterplot display 

x = [] 

y = [] 

y1 = [] 

for i in range(1,square+1): 

    x1 = [i] 

    x2 = [] 

    y2 = [i] 

    for i in range(1,square+1): 

        x2.extend(x1) 

    x.extend(x2) 

    y1.extend(y2) 

 

for i in range(1,square+1): 

    y.extend(y1) 

 

 

 

 

SCBuildup.V = Vr_SCBuildup + rand(len(SCBuildup)) * (Vt_SCBuildup-

Vr_SCBuildup) 

SNR.V = Vr_SNR + rand(len(SNR)) * (Vt_SNR-Vr_SNR) 

 

counter_SNR = SpikeCounter(SNR) 

spike_SNR = SpikeMonitor(SNR) 

counter_SCBuildup = SpikeCounter(SCBuildup) 

spike_SCBuildup = SpikeMonitor(SCBuildup) 
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state_test = StateMonitor(test_input,'V',record=True) 

state_SCBuildup = StateMonitor(SCBuildup,'V',record=True) 

 

run(300*ms, report='stderr') 

     

center = square*square/2 

 

figure(1) 

subplot(211) 

title("SNR Layer") 

scatter(x,y,s=5*counter_SNR.count) 

subplot(212) 

title("SC Layer") 

scatter(x,y,s=5*counter_SCBuildup.count) 

figure(2) 

subplot(211) 

title("SNR Raster") 

raster_plot(spike_SNR) 

subplot(212) 

title("SC Buildup Raster") 

raster_plot(spike_SCBuildup) 

figure(3) 

subplot(311) 

plot(state_SCBuildup.times,state_SCBuildup[312]) 

subplot(312) 

plot(state_SCBuildup.times,state_SCBuildup[312+1]) 

subplot(313) 

plot(state_SCBuildup.times,state_SCBuildup[312+square+2]) 

 

show() 

 

 

 

# Neural Integrator Code 

''' 

Updated April 10, 2013 

 

@author: Matt 

''' 

from brian import * 

from brian.library.IF import * 

import time 
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a=0.1/ms 

b=0.25/ms 

 

num = 3; 

 

eqs = Equations('''  

            dvm/dt=(0.04/ms/mV)*vm**2+(5/ms)*vm+140*mV/ms-w+I+Ifeedback+Iflat 

: volt  

            dw/dt=a*(b*vm-w) : volt/second  

            dI/dt=-I/20/ms : volt/second 

            dIfeedback/dt = -Ifeedback/30/ms : volt/second 

            Iflat : volt/second 

            Itotal = Ifeedback + I + Iflat:volt/second 

            ''') 

 

eqsRS = Izhikevich(a=0.1/ms,b=0.26/ms) 

resetRS = AdaptiveReset(Vr=-65*mV,b=2.0*nA) 

 

group = NeuronGroup(N=num,model=eqs,threshold=-30*mV,reset=resetRS) 

group2 = NeuronGroup(N=num,model=eqs,threshold=-30*mV,reset=resetRS) 

group3 = NeuronGroup(N=num,model=eqs,threshold=-30*mV,reset=resetRS) 

 

#Pinput = PulsePacket(t=90*ms,n=1,sigma=0*ms) 

spiketimes = [(0,90*ms), (0,300*ms)] 

spiketimes2 = [(0,589*ms), (0,750*ms)] 

Pinput = SpikeGeneratorGroup(1,spiketimes); 

 

#Pinput2 = PulsePacket(t=589*ms,n=1,sigma=0*ms) 

Pinput2 = SpikeGeneratorGroup(1,spiketimes2); 

 

PinitialInput = PulsePacket(t=80*ms,n=1,sigma=0*ms) 

 

#Connect input *full* to everything 

C = Connection(Pinput,group,'I'); 

C2 = Connection(Pinput,group2,'I'); 

C3 = Connection(Pinput,group3,'I'); 

 

Cinitial = Connection(PinitialInput,group,'I'); 

Cin2to1 = Connection(Pinput2,group,'I'); 

Cin2to2 = Connection(Pinput2,group2,'I'); 

Cin2to3 = Connection(Pinput2,group3,'I'); 

Cfeedback = Connection(group,group,'Ifeedback'); 
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Cfeedback2 = Connection(group2,group2,'Ifeedback'); 

 

C1to2 = Connection(group,group2,'Ifeedback'); 

C2to1 = Connection(group2,group,'Ifeedback'); 

C2to3 = Connection(group2,group3,'Ifeedback'); 

 

C.connect_full(weight=0.2*mV/ms); 

C2.connect_full(weight=0.2*mV/ms); 

C3.connect_full(weight=0.2*mV/ms); 

 

Cinitial.connect_full(weight=0.2*mV/ms); 

Cin2to1.connect_full(weight=-0.2*mV/ms); 

Cin2to2.connect_full(weight=-0.2*mV/ms); 

Cin2to3.connect_full(weight=-0.2*mV/ms); 

 

Cfeedback.connect_full(weight=(0.2/num + 0.2/10)*mV/ms); 

Cfeedback2.connect_full(weight=0.2/num*mV/ms); 

C1to2.connect_full(weight=0.2/10*mV/ms); 

C2to1.connect_full(weight=0.2/10*mV/ms); 

C2to3.connect_full(weight=0.2/10*mV/ms); 

 

M = StateMonitor(group,'vm',record=True) 

N = StateMonitor(group,'Itotal',record=True) 

O = [SpikeMonitor(group)] 

M2 = StateMonitor(group2,'vm',record=True) 

N2 = StateMonitor(group2,'Itotal',record=True) 

O2 = [SpikeMonitor(group2)] 

M3 = StateMonitor(group3,'vm',record=True) 

N3 = StateMonitor(group3,'Itotal',record=True) 

O3 = [SpikeMonitor(group3)] 

 

Mpp= [SpikeMonitor(Pinput)] 

 

group.vm=-63*mV 

group.w=-14*mV/ms 

group.Iflat=.70*mV/ms 

group2.vm=-63*mV 

group2.w=-14*mV/ms 

group2.Iflat=.70*mV/ms 

group3.vm=-63*mV 

group3.w=-14*mV/ms 

group3.Iflat=.70*mV/ms 

run(1000*ms) 
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figure(1) 

subplot(231) 

plot(M.times/ms,M[0]) 

ylabel('Voltage (V)') 

title('Unit One') 

subplot(234) 

plot(N.times/ms,N[0]) 

ylabel('Voltage (V)') 

xlabel('time (ms)') 

#subplot(337) 

#raster_plot(*O) 

subplot(232) 

plot(M.times/ms,M2[0]) 

title('Unit Two') 

subplot(235) 

plot(N.times/ms,N2[0]) 

xlabel('time (ms)') 

#subplot(338) 

#raster_plot(*O2) 

subplot(233) 

plot(M.times/ms,M3[0]) 

title('Unit Three') 

subplot(236) 

plot(N.times/ms,N3[0]) 

xlabel('time (ms)') 

#subplot(339) 

#raster_plot(*O3) 

 

#figure(2) 

#raster_plot(*Mpp) 

show() 
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