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D-modules and exponential polynomials

Carlos A. Berenstein!

One of the fundamental problems of harmonic analysis in C*°(R") (or

D’'(R™)) is to decide effectively whether a given homogeneous system of con-
volution equations

R M

with p; € £(R"), has solutions or not, and more generally finding all the
possible solutions f € C®(R"™)(f € D'(R")). For n = 1 the procedure is
“easy”, just consider the analytic variety

V = V(:ala"'a:&T) = {Cecn: ﬂJ(C) =0,5 = 1,-",7'}, (2)

where f1;(¢) = < p;(z),exp(—iz - () > are the Fourier transforms of the p;,
and the Schwartz spectral synthesis theorem says that

(i) There is a non-trivial solution to (1) if and only if V # ¢

(ii) A polynomial exponential f(z) = p(z) e***, polynomial solves (1) if and
onlyifa € V.

(iii) Every solution f of (1) can be represented as a possibly infinite linear
combination of polynomial exponential solutions.

For n > 1, statement (ii) is easily seen to be correct but (i), and hence
(iii), fail for n > 2 due to an example of Gurevich. On the other hand, for
r = 1, the three statements are correct. For r > 2 the situation is very
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hard although there is a large class of systems, slowly decreasing systems, for
which one can still prove (i), (ii) and (iii). (We also say that (f,..., &, ) form
a s.d. system). We refer to the survey paper [BS] for references. We also
recall that for systems of linear partial differential equations with constant
coeflicients, i.e., fiq,..., fl, are polynomials, the statements (i), (ii) and (ii1)
hold due to the Fundamental Principle of Ehrenpreis (see [BS]).

The difficulty in verifying a given system is slowly decreasing is that
among other conditions it imposes that the number of equations r coincide
with codim V. In particular, for r = n, it requires that either V be discrete
or empty. In [BKS| we show how to weaken this condition slightly, for codim
V > n (weallow V = ¢), we can allow r > n. In any case, it seems reasonable
to conjecture that when codim V' > n if the system (1) is reasonably simple
then it should be slowly decreasing. The natural systems to consider are
those where y; are difference-differential operators with integral steps:

py * flz) = > p(D) flz— k) (3)
keZn

where the sum is finite and the p;z(D) are differential operators with constant
coefficients. In fact, it was proved in [BTY] that for r = n = 2, the condition
codim V > 2 implies the system is slowly decreasing. For n > 3 the last
statement does not hold. The reason is a priori surprising. The arithmetic
nature of the coefficients plays a role [BY1]. Recall that difference-differential
operators y; have Fourier transforms that are exponential polynomials, that
is, entire functions in C" of the form

f(z) = Zk: pi(z) € (4)

where to simplify we consider only frequencies k¥ € Z" (the work in [BY1]
is more general). One has thus the following natural conjecture. (Here Q
denotes the field of algebraic numbers.)

Conjecture Assume fi,..., f, is a system of exponential polynomials in C™
with integral frequencies and polynomial coefficients p; € Q2] is such that

the dim(V(fi,...,fa)) < 0. Then the system must be slowly decreasing.

One of the properties of a slowly decreasing system is that the ideal
generated by fy,..., f, localizes. Recall that this means the following. Let



£'(R™) be the space of Fourier transforms of distributions with compact
support, then

E'(R") = {peH(C") : JA > 0 such that

lo(2)] < A1+ |2))* exp(A |Im 2|) ¥V z € C"}

We denote by I = I(f1,. .., fm) the ideal generated by the functions fy,..., fr
in &(R™), I its closure, and [, the local ideal, i.e.,

e = {cpeg'(R”) :V z€ C" U open,z € U,p; € H(U),
so that ¢ = Y f; ¢; in U}
J

An ideal I C g’(Rn) localizes if T = I,,,.

The evidence of [BY1] and [BY2] points out that the last conjecture is
related to the following conjecture of Ehrenpreis:

Let ¢ be an exponential sum of a single variable with coefficients and
frequencies that are algebraic, more precisely, let

p(z) = Y ¢ €%, ¢ eQaeQNR. (5)
7

Then, its zeros are it well-separated.

The last statement means the following, let {(;} denote the sequence
of distinct zeros of ¢, then they are well-separated if there are constants
€ > 0,N > 0 such that for every j # k

I — ¢l > m (6)

There are examples showing that the conditions on coefficients and frequen-
cies are both necessary for the conjecture to hold [BY2].

In the case where f1,..., f,, are polynomials, we have already mentioned
that the Fundamental Principle implies the localization. In fact, we can
now prove it in some cases, as well as “harder” problems as the effective
Nullstellensatz via the study of the behavior of the distribution valued map

A— |fi... ful® (ReX >>0) (7)
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(See [BGVY] and references, therein). One of the key points for polynomials
is the Bernstein-Sato functional equation [Bj]

Q(:E,/\,ax) |fl-'-fm|2()\+1) = b(}) |f1---fm|2)‘ (8)

where Q(z, A, 0;) is a linear partial differential operator in the z variables and
polynomial coeflicients in ¢ and A. Moreover, b is a monic polynomial. One
of the first consequences of this identity is that |fi ... f,|** has an analytic
continuation as a distribution-valued menomorphic function to the whole A
plane. The existence of (8) follows from the fact that the Weyl algebra A, (k)
of differential operators with polynomial coefficients is holonomic in the sense
of [Bj]. In the case of exponential polynomials the Weyl algebra needs to be
replaced by another algebra F, oK) [BY3]. Here we write an exponential
polynomial f in C" as follows

f(z) = E Po(2) 7

where the sum is finite over the elements o in a lattice I' C C" and the
coefficients p, € K[z]. We let £ to be the rank of I'. Then E, ,(K) is the
algebra of operators on K{zy,...,Zn,y1,-..,Ye] generated by X;, D;(1 <i <
n) and Y;(1 < j <) such that

Xp(z,y) = zp(z,y),

Yip(z,y) = yp(e,y)
DXy = b
Diy; = biy;
(to simplify we assume ¢ < n). Note that a model is y, = e*». Note that
E.o(K) = A,(K). In general E, ,(K) is not holonomic in the sense of
[Bj]. Moreover, there are simple examples in F,, ;(K ) where the holonomicity
depends on the arithmetic nature of K. So one does not expect the existence

of a functional equation like (8). Nevertheless, one can find in some cases
variations of the Bernstein-Sato functional equation of the following type in

E,1(K) [BY3]



Q1(A,z, e, e, ;) AT = by(z, ) f
{ Q2N ,€7,e77,0,) fM = by(e™, \) f2 )
where b; are polynomials and @), differential polynomials. Note that this
equation does not allow us to conclude that A — |f|** has an analytic con-
tinuation to the whole A-plane, but this can be bypassed by using Hironaka’s
resolution of singularities. Nevertheless, there is enough information in (9) to
prove a number of results about ideals generated by exponential polynomials
in E,,(C) [BY3].
From now on we only consider fi,..., f, € E,;(C), i.e., finite sums of
the form

fi(z) = 3 piw(z) € (10)

keZ

They belong to the algebra Ag,®(2) = log(2 + |z]) + |Re 2], of entire
functions f such that

3C>0 |f(2)] <exp (CP(2)) VzeC™

The definition of the local ideal I}, is similar to the one given earlier, we
also recall that the radical /T and the local integral closure ] are given by

VI :={F € Ay : F* €I for some k € N}
I :={F € Ap : Vz € C"3U, neighborhood of z and C, > 0 such that
[F(w)] < C(Z £ (w)|?)? Yw € U, }

We always have

ICI

N

Iloc

N

rciw)

(V)
where I(V) = {F € Ay : F|V = 0},V = V(fi,...,f,). In general,
Ii,e # I(V) because of multiplicities.

In [BY3] we show that using (9) and the methods from [BGVY] one can
prove the following:

Theorem 1 If f1,..., f, € E,1(C) define a complete intersection variety V,
then I is localizable in Ag.



Theorem 2 Let I = I(fy,..., f,) (with no conditions on V), f; € E,,(C),
then /T = I(v).

There is also a variation of the theorem of Briangon-Skoda.
Theorem 3 Let I be as in Theorem 2, m = min{p + 1,n}, then I*™ C I.

When p = n denote by J the Jacobian of fi,..., f,. We refer to [BT2] for
the fact that on discrete interpolation varieties we have good lower bounds
on J.

Theorem 4 Assume p = n,dimV =0, and J is never zero on V. Then V is
an interpolation variety for Aeg.

We can also use the arithmetic nature of the coefficients and frequencies
as follows.

Theorem 5 Let o € Q\Q, fi,..., [, polynomials in ¥ €™, 2y, ..., 2, with
coefficients in Q,dimV =n — p. Then I = I),..

Theorem 6 Let fi ... f, be as in the last theorem (with no conditions on V')
then /I = I(V) and I*™ C 1.

Theorem 7 Let fy ... f, be the same as in Theorem 5, assume further V is
discrete and all points are simple (or more generally, assume V' is a manifold)
then V' is an interpolation variety.

- As a corollary of the above one can prove the following theorem about
difference-differential systems. Let P;(D) represent a differential operator
with time lag 7' > 0

Pi(D)g(t,z) = 3 pixe Dt — kT, ) (11)
where the sum is finite, p;r, € C,D = (%, ;—z, e 'a—i;)' The corresponding

symbols are the exponential polynomials

Fi(Q) = 30 piwe (—iQ)" 17, (12)
where { = (7,¢),7 € C,£ € C™.

Theorem 8 Let V be the variety in C*t! defined by fi,..., fay1 as in (12).
Assume V is discrete and all its points are simple (i.e., J # 0 on V). Then,



every solution ¢ € C®(R™?') (or ¢ € D'(R"1)) of the overdetermined
system of differential equations with time lags

P(D)p = -+ = Popa(D)p = 0 (13)

can be represented in a unique way in the form of a series of exponential
solutions of the system (18), namely,

tp(t,:z:) — Z ¢ ei(t1-+:c.5)
CeV

The series is convergent in the topology of C°(R™*!) (resp. D'(R"1)).
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