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Abstract

Suppose two instruments Iy and I; measure the same quantity with the same
resolution, where it is known I is more reliable. The second, I}, is assumed a
distortion of I in some sense. A method is outlined whereby: 1. The information
from both Iy, I; is combined to increase the reliability of I,. 2. The distortion is
quantified. An example is given in terms of ship borne precipitation radar and a
space borne radiometer both measuring rain rate.



1 Introduction

Suppose two instruments Iy and I; measure the same quantity with the same
resolution, where it is known I is more reliable. The second, I;, is assumed a
distortion of I in some sense. A method is outlined whereby: 1. The information
from both Iy, I, is combined to increase the reliability of I. 2. The distortion is
quantified.

The method is general, but to keep things simple, throughout the paper the
quantity of interest is positive rain rate measured over a space-time box by two
instruments.

A particular example is combining a space borne precipitation radar (PR),
Iy, and a space borne radiometer, I;, both measuring rain rate in mm/hr over a
given space-time box, both operating at the same resolution. Another example
is Iy representing a network of rain gauges-ground truth-and I, a PR.

Referring to the PR/Radiometer example, in principle both instruments after
appropriate adjustment give the same information. In practice however they
differ, but in what way and by how much ? The essential idea of the paper
is that the radiometer is a distorted radar, and the question is how to recover
the radar component from the radiometer and combine it with the radar data
to produce more reliable statistics. In other words, a radiometer is a “radar in
disguise” and the goal is to recover the masked radar information buried in the
radiometer and combine it with the “true” radar data for estimation purposes.

The approach is based on a semiparametric model used in statistical case-
control studies where the parametric part quantifies the distortion, and the non-
parametric part refers to the probability distribution of the quantity of interest
as measured by the more reliable instrument.

The first part of the paper—sections 2,3,4—deals with statistical considerations,
the second-section 5-with a real PR/Radiometer data example. The connection
with the Tropical Rainfall Measuring Mission is described in section 5-a.

2 A Semiparametric Model

For clarity consider the PR/Radiometer case. So, given a random rain rate
observation z, it could be a radar measurement or a radiometer measurement.
Let y be the corresponding indicator: y = 0 means x is a radar measurement, and
y = 1l indicates z is a radiometer observation, where P(y = 1) = m. A reasonable




assumption is to model—quite generally-the conditional binary probability by the
logistic form,
exp(e” + Bh(z))

Ply=1e) = {12 oy = V) 1)

for some function h(z), possibly vector valued with coefficient 3 of the same
dimension. Suppose a radar measurement = has a probability density function
(pdf) g(z), and that g;(z) is the pdf if x were a radiometer observation. Then,
upon appealing to Bayes rule, g(z) and g;(z) are related by the equation (see
Kay and Little (1987)),

91(z) = exp(a + Bh(z))g(z) (2)

where a =log(1 — 7)/7 + o*.

An attractive feature of model (2) is that both densities g(z) and g,(z) are
modeled nonparametrically except for an "exponential tilt” used to relate one
density to the other. Therefore, inference based on model (2) should be more
robust than inference based on a full parametric model.

Needless to say, we do not lay claim to full generality, but surprisingly enough,
quite a few familiar distributions give rise to (1) and (2) including the normal,
lognormal, exponential, binomial, and Poisson distributions. The normal and
lognormal cases are discussed in some detail below.

Evidently, by our formulation, the part common to both radar and radiometer
manifests itself by the pdf g(z), and the distortion factor is expressed by the
exponential weight function exp(a + Bh(z)). Clearly, since g(z) is a pdf, the
distortion is really embodied by 3, and when 8 = 0 the two instruments behave
alike.

Suppose now x = (zy, ..., Tn,) is a radar random sample, and z = (zy, ..., 2,,)
is a radiometer random sample. By combining the radar and radiometer we
mean the estimation of g(x) from the combined radar/radiometer rain rate
data t = (T1, ..y Tngy 21y ooy Zny )

Let n = no+n;. Our goal is to estimate the parameters a, 3 and the function
g(z) from the combined data

t =(x,2) = (t1,...,ta)



a. Special Case: Normal Distribution

To demonstrate (1) and (2) are not vacuous, consider two normal distributions
with different means but equal variances, and let y be a binary random variable
with P(y = 1) = w. Suppose that given y = 0, z ~ N(p,0?), and given y = 1,
z ~ N(u1,0?%). Then, as in (2), the ratio of conditional densities is exponential:

a(x)  flzly=1)

= = exp(a + Bz
o) ~ flaly=0) P
with .
_Fto—H #1 #0 —
R R e N TORT:
This implies the Iogistic regression model (1) because upon defining o* by the
equation a = log =T + o”, Bayes rule gives
Py = 1|z) .
—— = =exp(a* + fz
Ply=0jz) ~ %)

and since P(y = 0]z) =1 — P(y = 1),

exp(a” + Bh(z)) _ _exp(a” + fz)
1 +exp(a* + Bh(z)) 1+ exp(a* + Bz)

P(y=1|z) =

Conditioning normal by a binary variable leads to logistic regression!
When in addition to different means also o2 # o2, the same argument holds
with vectors 3, h(z),

91(z) = exp(a + frz + B2z?)g(z)

where h(z) = (z,?) and

2
oo , M 4 po 1 1

o = log — +2000 212a = (B1,5) = (;‘5——5,——2‘—-2?)
b. Special Case: Lognormal Distribution
In the lognormal case a, 3 are the same as in the corresponding normal case but
z is replaced by logz. So, when o2 = o? = o? then h(z) = logz, and when
0% # a? then h(z) = (log z,log? z).



3 Maximum Likelihood Estimation

The pdf g(z) is estimated through the cumulative distribution function (cdf)
G(z). So, let G(z) be the cdf of z. A maximum likelihood estimator of G(x)
can be obtained by maximizing the likelihood over the class of step cdf's with
jumps at the observed values t4,...,t,. Accordingly, if p; = dG(t;), i = 1,..,n,
the likelihood becomes, '

C(e,8,G) = [T pi [ expla + Bh(z;)

i=1  j=1

and to find the maximum likelihood estimators ﬁi,&,B, the likelihood is maxi-
mized with respect to the p;’s, a and 3, subject to the constraints

il’i =1, ipelexp(a + Bh(t:)) - 1] =0

Then following Qin and Lawless (1994), and Qin and Zhang (1996) who assume
h(t) = t, and with p = ny/ng, it can be shown
1 1

P o1+ pexp(a + Bh(t)) ®)

and &,B are the roots of the system of equations,

_ 2": pexp(a + Bh(t:))

& T4 pexpla+ ph(t) 7™ =0 (4)

3Tt el g * ) =0 ®

To find the variability of the estimates, it primarily requires the covariance matrix
of &,0.
For k =0,1,2, define,




and,
_ [ Ao Ay
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¥ [A _( U

Then under some regularity conditions and regardless of i(z) the estimators are
asymptotically normally distributed,

\/ﬁ(&““"):'N(o,z) (6)

and,

B - o

where oy, 3o are the true parameters.

Thus, for example, 3 is approximately normally distributed with variance 1/n
times the second diagonal element of X, a fact from which a confidence interval
for By can be constructed.

a. Mean Estimation

The mean of g(x) can be estimated from the combined data using the esti-
mator 3.7, t;p;. Interestingly, equation (5) with h(t) = t implies Y, t.p; = Z.
That is, the combined mean estimate is actually the same as the average of
Z1,...,Tn. However, the “combined” distribution as estimated by the p; is dif-
ferent than the empirical distribution from the z data only. This is illustrated in
the data analysis in section 5.

In general (5) gives,

n R 1 2o
S h(t)f = = 3 (e
i=1 0 =1

4 Some Simulation Results

a. Example of a Uniform Case

To demonstrate the preceding analysis, consider the case where z is uniformly
distributed in [0,1], so that g(z) = 1,0 < 2 < 1, and g(z) = 0 otherwise.
Assume p =1, @ = 8 =0, and h(z) = z, and observe that with a = 3 = 0 the



two instruments are identical. As n — oo, the asymptotic covariance matrix X
can be obtained exactly from

!t exp(a+ ft) I
A = d = =
=, [T pexpla A0 C ) = 31y F= 02
so that / /
1/2 1/4
A= ( 1/4 1/6 )
and

_ltpf o _[14p 0] _( 12 24
= 00)|=\-24 48

Thus, for example with ng = n; = 500, n = 1000, we have approximately:

Var(d) = 12/1000 = 0.012, Var(3) = 48/1000 = 0.048, Cov(a,f) =
~24/1000 = —0.024, or

Var( é ) AR ( 0.012 —0.024)
B 1000 —0.024  0.048

A simulation—under the above uniform assumption and p =1, a = 8 =0,
h(z) = z-was conducted to verify the last result. It generated 100 independent
pairs (&, ) with ng = n; = 500, n = ng + n; = 1000, giving an estimated
(from the sample of 100 pairs (&, 3)) covariance matrix in good agreement with
the theoretical one:

1 & 0.0112 —0.0223
1000~ ~ \ —0.0223  0.0445

A

Our first pair was (&, 3) = (0.0425, —0.0860). Therefore, the corresponding
estimated standard errors are (0.1058,0.2109). The theoretical standard errors
are approximately (0.1095,0.2191).

a. More Simulation Results

Table 1 summarizes further results from various simulations under different
conditions where, as above, each simulation generated 100 pairs (&, 3) under the
indicated conditions. The last column is the average from 100 cases together
with the corresponding estimated standard errors. Recall that g(z), gi(z) =
exp(a + Bh(z))g(z) represent the two instruments.
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The first two rows refer to uniform samples, the third to a normal sample,
and the last to a lognormal sample. The first 3 rows are with h(x) = z; the last
with h(z) = log z. For the third row p = 2, otherwise p = 1.

5 Combining Real Radar/Radiometer Data

a. Connection With TRMM

Perhaps the most promising method for obtaining rainfall totals on a global
scale is through the use of measurements made by satellite receivers. This is
because satellites can cover vast areas of the globe-such as over the oceans—
where it is impractical to obtain adequate coverage by surface based radars and
rain gauges. The Tropical Rainfall Measuring Mission (TRMM) (Simpson et al.
(1988)) satellite will be launched in late 1997, and is the first space mission dedi-
cated to measuring rainfall over the tropics and subtropics. The TRMM satellite
will carry a microwave radiometer (TRMM Microwave Imager, or TMI) and the
first space borne radar (Precipitation Radar, or PR), among other instruments.
These types of instruments infer rainfall amounts by converting measured ener-
gies to rainfall rates. However, the conversion from reflectivity and microwave
temperature to rain rate suffers from several problems including saturation and
limited dynamic range. This motivates the idea of combining instruments to
improve observation reliability and precision of rainfall estimates. Because it is
generally agreed the PR provides more accurate information, the method out-
lined in the previous sections is applicable to PR/Radiometer combination. An-
other PR/Radiometer statistical “combined” algorithm for TRMM-based on a
Bayesian approach—has been studied in Haddad et al. (1996).

Our semiparametric approach provides a way for comparing instruments in
general and in particular several of the TRMM instruments. Because the tem-
poral and spatial resolutions usually differ among devices, it can be very difficult
to compare rainfall quantities obtained from several measurement sources. The
present study will hopefully allow researchers to make more meaningful the com-
parisons of rainfall quantities obtained from various instruments; for example,
between radar and rain guage, or between radar and radiometer.

b. Description of the Data
This section uses space-time collocated radar- and radiometer- derived pos-
itive rain rate samples as input to the model described previously. The region



under consideration is that used for the Third Algorithm Intercomparison Project
(AIP-3) (Ebert 1995), which used data collected during the Tropical Ocean
Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA
COARE) (Webster and Lukas 1992). TOGA COARE took place in the western
equatorial Pacific during the period November 1992 - February 1993, and the
area under investigation for AIP-3 was within the TOGA COARE region and
bounded by 1 deg N - 4 deg S and 153 deg - 158 deg E.

Microwave radiometer data for AIP-3 was collected by the F10 and F11
Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/
Imager (SSM/1) (Hollinger et al. 1990) satellites. The F10 satellite passed over
the AIP-3 region at approximately 1100 and 2300 UTC, and the F11 satellite
viewed the region at about 0700 and 1900 UTC. The best spatial resolution for
the DMSP SSM/! radiometers are for the 85 GHz channel, having a field-of-
view diameter of about 12.5 km. For the current study, microwave brightness
temperatures measured by the F10 and F11 for the AIP-3 study are converted
to 12.5 km resolution surface rain rates using the algorithm of Kummerow et al.
(1996).

Radar data during AlP-3 was obtained from two ship borne Doppler radars
that were positioned at approximately 2 deg S, 154 deg E and 2 deg S, 156 deg
E. The spatial resolution of the radar data is 2 km and the temporal sampling
resolution is 10 min. The radar reflectivities measured by the radars is converted
to rain rate using an adaptation of the formulation presented by Tokay and Short
(1996).

Because the two satellites passed over the AlP-3 region a total of no more
than four times per day, there are only about 400 radar- radiometer coincident
scenes available for comparison of the rainfall quantities derived by the radar and
radiometer. Furthermore, for many of these coincident scenes, no appreciable
rain event took place. The particular event chosen for this section is one in which
rainfall was present, namely, that occurring on 22 December 1992 at approxi-
mately 2221 UTC, for which data are available from the F11 SSM/I, as well
as the two TOGA COARE radars within the AIP-3 domain. The radar-derived
rainfall rates are spatially averaged to a 12.5 km resolution to match the SSM/I-
derived rain rates. This is done by summing all radar rain rates within 12.5 km
of the center of an SSM/I pixel and dividing by the total number of radar rain
rates contributing to the sum. The resulting data set consists of the quadruplet
(lat, lon, Rsat, Rrain) where lat and lon are the latitude and longitude of the
center of the SSM/I pixel, Rsat is the SSM/I-derived rain rate, and Rrain is the
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radar-derived rain rate. After discarding all quadruplets for which Rsat or Rrain
was equal to 0, 81 quadruplets remained for which to use as input to the model.

¢. Data Analysis

The data consist of ng = 500 radar- and n; = 700 radiometer- derived
positive rain rate observations, summarized in histogram form in Figure 1-a and
1-b. Hence p = 1.4,n = 1200. With h(z) = =z, the maximum likelihood

estimates are )
o\ _ —0.5726
g/ 0.5018
with covariance matrix,

Var[ &)oL g_( 0003319 —0.003163
T\ 4 ) T 12007 = | -0.003163  0.003324

For ,é = 0.5018 with variance of 0.003324 (standard error 0.057654), the PR
and radiometer are quite different.
The maximum likelihood estimate of p; = dG(¢;) is,
, 1 1
Pi= 500 T + 1.4exp(—0.5726 + 0.5018¢;)

This gives a mean of 120°¢,5; = 0.7914, which is the same as 7 since h(z) = z.
Figure 1-c, the “combined” histogram, was derived by summing over the p;
corresponding to each class,

Zﬁil(ti € Cj)a .7 = 1)" 'a15,
=1

where I(t; € C;) denotes the indicator of the event (t; € C;), and C; denotes
the class.

Evidently, as seen from Figure 1-c, the estimated “combined” distribution is
a hybrid of the PR and radiometer empirical distributions. To illustrate the dif-
ference between the PR empirical distribution from the radar data only and the
“combined” distribution from the combined data-both estimate g(z)-the vari-
ance of the first is 3.1713, and of the second 0.8257. The “combined” distribu-
tion has a much smaller variance. It follows that an approximate “combined”
95% confidence interval for the mean of positive rain rate is

z + 1.96,/0.8257/500 = (0.7118,0.8710)
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From the PR data alone, the 95% interval is wider,

z +1.964/3.1713/500 = (0.6353,0.9475)

6 Remark Concerning Probability Matching

The so called probability matching method (PMM) is a method that approxi-
mates a Z — R relationship by finding a relation between the quantiles of the
corresponding probability distributions. Treating Z, R as monotonically related
random variables, the method actually connects quantiles corresponding to the
same “matched” probability. See Krajewski and Smith (1991) for a critical review
of the method, and Rosenfeld et al. (1994) for a recent application.

The semiparametric approach can be applied in the estimation of quantiles
of Z (radar reflectivity) as well, for example by combining several radars. This
problem has not been studied before, and it is mentioned here only as a possibility
for further research.

7 Summary

The problem of combining two instruments was cast in terms of a distribution
g(z) and its exponential shift exp(a + Bh(z))g(x), where g() is unspecified.
Combining the instruments means the semiparametric estimation of the common
factor g(z) through the corresponding cdf G(z) from data—positive rain rate in
our case—obtained from both devices—data fusion—a novel feature of this paper.
The estimation of a, 3, again from the combined data, provides a measure of
bias or difference between the instruments. Since the “combined” method uses
more data-data from both devices-it provides more precise estimates of g(z)
and its mean than can be obtained from a single instrument.

The choice of h(z) depends on the problem at hand, but h(z) = z is a
reasonable first guess. For normal (lognormal) samples with equal variances
h(z) = z (h(z) = logz), and h(z) = (z,2?) (h(z) = (logz,log®z)) for
unequal variances.

The method makes no assumption about g(z), it is not tied to any geometry
and/or coregistration, and it can be easily extended to any finite number of
instruments. The extension and its mathematical underpinning will be published
elsewhere.
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Table 1: Each row corresponds to a simulation that generated 100 pairs (6, 5i).
The last column gives & = 1% 4;/100, 8 = 1% 3;/100.

Sample Sizes | Parameters | Estimated Parameters
Instrument _ 3

g m « ,3 (84 :8
9(@) ~ U0, 1) 0.0026  -0.0047
a@) ~U@,1) |20 200 00 1 501774) (0.03555)
9(@) ~U(0, 1) -0.0098 _ 0.0196
qi(z) ~U(0,1) |00 500 | 0 0 | 50106) (0.0211)
(@) ~ N(0, 1) ~45566  3.0495
gi(c) ~ N(3,1) |00 400 1-45 3 1 606303) (0.04288)
9(z) ~IN(0, 1) 47072 3.1335
gi(c) ~ LN(3,1) | 200 200 |45 3 | 005804) (0.03721)
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Figure 1: (a) Histogram of the radar data. (b) Histogram of the radiometer
data. (c) Histogram from p; = dG(t;), the combined PR/Radiometer estimator.
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