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RNA-sequencing technologies, which sequence the RNA molecules being 

transcribed in cells, allow us to explore the process of transcription in exquisite detail.  

One of the primary goals of RNA sequencing analysis is to reconstruct the full set of 

transcripts (isoforms) of genes that were present in the original cells.  In addition to 

the transcript structures, experimenters need to estimate the expression levels for all 

transcripts.  The first step in the analysis process is to map the RNA-seq reads against 

the reference genome, which provides the location from which the reads originated.  

In contrast to DNA sequence alignment, RNA-seq mapping algorithms have two 

additional challenges.  First, any RNA-seq alignment program must be able to handle 

gapped alignment (or spliced alignment) with very large gaps due to introns, typically 

from 50-100,000 bases in mammalian genomes.  Second, the presence of processed 

pseudogenes from which introns have been removed may cause many exon-spanning 

reads to map incorrectly. 



  

In order to cope with these problems effectively, I have developed new 

alignment algorithms and implemented them in TopHat2, a second version of TopHat 

(one of the first spliced aligners for RNA-seq reads).  The new TopHat2 program can 

align reads of various lengths produced by the latest sequencing technologies, while 

allowing for variable-length insertions and deletions with respect to the reference 

genome.  TopHat2 combines the ability to discover novel splice sites with direct 

mapping to known transcripts, producing more sensitive and accurate alignments, 

even for highly repetitive genomes or in the presence of processed pseudogenes.  

These new capabilities will contribute to improvements in the quality of downstream 

analysis. 

In addition to its splice junction mapping algorithm, I have developed novel 

algorithms to align reads across fusion break points, which result from the breakage 

and re-joining of two different chromosomes, or from rearrangements within a 

chromosome.  Based on this new fusion alignment algorithm, I have developed 

TransFUSE, one of the first systems for reconstruction and quantification of full-

length fusion gene transcripts.  TransFUSE can be run with or without known gene 

annotations, and it can discover novel fusion transcripts that are transcribed from 

known or unknown genes. 
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Chapter 1: Introduction 

1.1 Background: DNA, RNA, Gene, and Protein 
 

Deoxyribonucleic acid (DNA) encodes and serves as stable storage for the 

genetic programs for all forms of life.  DNA is a very long molecule in which two 

strands intertwine with each other to form a double helix structure.  Each strand 

consists of four nucleotides or bases: adenine (A), cytosine (C), guanine (G), and 

thymine (T).  Segments of both strands, called genes, are translated into proteins that 

are directly involved in virtually all aspects of cellular activity.  The size of known 

genomes so far varies from 138 thousand bases (Candidatus Tremblaya princeps) [1] 

to 670 billion bases (Amoebae dubia) [2], where the human genome is about 3 billion 

bases.  It is estimated that our genome contains ~21,000 protein-coding genes [3]. 

Figure 1.1 shows the steps necessary to decode the genetic information, genes, 

to create functioning units, proteins, in eukaryotic cells, including human cells.  

Genes are read by polymerases, which transcribe them into primary RNA transcripts 

(pre-mRNAs) with both the exons and introns of the genes retained.  The introns from 

the pre-mRNAs are then removed and the remaining exons are stitched together by 

spliceosomes to produce mature RNA transcripts (mRNAs).  During this splicing 

event, some of the exons can often be skipped, a process called alternative splicing, 

which produces different RNA transcripts and therefore adds more diversity to their 

final protein products.  From the experiment conducted by Wang et al. [4], most 

human genes (92~94%) are found to be alternatively spliced.  These mRNAs are 

subsequently exported out of the nucleus into the cytoplasm, where they are 
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translated into proteins by ribosomes.  These proteins cooperate with other proteins in 

a coordinated way to perform all the cell’s functions.  The rate of gene expression 

varies significantly in different types of cells.  The gene expression within an 

individual cell will change to meet the cell’s needs at any given time.  Thus, a further 

qualitative and quantitative understanding of this fundamental activity will provide 

invaluable insights into many biological functions.  One way we can pursue this with 

a high level of precision is by sequencing RNA molecules and employing 

computational approaches in the analysis of the RNA sequencing data. 
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Figure 1.1 The path from DNA to proteins in eukaryotic cells 
The gene shown above includes four exons (e1, e2, e3, e4) separated by three introns.  First, 
the gene is transcribed into primary or precursor messenger RNAs (pre-mRNAs) in which all 
the exons and introns are retained.  Second, these pre-mRNAs are spliced into multiple 
mature RNA transcripts (mRNAs) in a way that all the introns are removed and some of the 
exons are selectively excluded.  Third, these mRNAs are transferred from the nucleus to the 
cytoplasm, where finally ribosomes bind to them and then translate them into proteins. 
 
 

One advantage of RNA-sequencing [5-8] is that, unlike microarray expression 

techniques [9, 10], it does not rely on pre-existing knowledge of gene content, and 

therefore it can detect entirely novel genes and novel splice variants of existing genes.  

Other applications of RNA-sequencing technologies include reconstruction and 

expression estimation of transcripts [11-13], differential expression analysis [14, 15], 

identification of transcript start site [16], discovery of fusion genes [17-19], and so 

on. 

Figure 1.2 (upper panel) shows a simplified form of RNA sequencing process 

showing how mRNAs are sequenced, producing a huge number of reads in a single 

run: tens of millions to hundreds of millions of reads whose read lengths range from 

50 to 400 base pair (bp).  The simplified steps of RNA-sequencing are described as 

follows. 

1. mRNAs are extracted from cells of interest. 

2. The mRNAs are reverse-transcribed into complementary DNAs (cDNAs). 

3. The cDNAs are sheared into smaller fragments, which in turn are size-

selected normally from 200 to 500 bp. 

4. The resulting fragments from the above step are sequenced from both 

ends, generating paired-end reads (or from only one end, generating 

single-end reads). 
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Many vendors provide RNA-sequencing platforms, notably, Illumina 

(http://www.illumina.com), Roche 454 (http://www.454.com), and Life Technologies 

(http://www.lifetechnologies.com).   

 

Figure 1.2 Sequencing and reconstruction of mRNAs 
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The top panel shows sequencing steps, most of which are biochemical processes.  First, 
mRNAs are prepared from cells of interest.  Second, these fragments are reverse-transcribed 
into cDNAs, fragmented, and size-selected.  Third, these cDNAs are sequenced producing a 
huge amount of reads.  The bottom panel shows computational steps to reconstruct mRNAs 
from relatively short RNA-seq reads.  First, the reads are aligned against the reference 
genome to identify where they are likely to originate.  Second, the mapped positions of the 
reads are used to assemble mRNAs.  Details are given in the text. 

 

These RNA-seq reads can be used to reconstruct the full set of mRNA 

transcripts (isoforms) that were present in the original cells using bioinformatics 

approaches as illustrated in Figure 1.2 (lower panel). 

1. Reads are aligned against the reference genome, which provides 

information about their likely genes of origin.  A set of overlapping reads 

in terms of their mapped positions can be clustered into groups, each 

group presumably representing isoforms of the same gene. 

2. For each group of reads, a graph is built whose vertex vi represents a read 

and whose edge (vi, vj) represents “compatibility” relationship between 

two nodes vi and vi.  This graph can be compressed by combining vertices 

into “super” vertices without loss of generality, where the new vertices 

are equivalent to partial or full exons as shown in Figure 1.2 (lower 

panel). 

3.  A minimum set of paths covering the graph can be found using several 

approaches.  For instance, the assembly algorithm of Cufflinks first finds 

mutually incompatible vertices, suggesting there are at least that many 

different transcripts.  It can then reconstruct transcripts by finding paths 

that go through those vertices [20]. 
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1.2 Spliced alignment for RNA-seq reads 
 

Initially, RNA-seq reads are aligned against the reference genome.  The 

results provide the location from which the reads originated.  Assuming that 

sequencing reads are uniformly distributed along a transcript [21], we would expect 

33-38% of 100-bp reads from an RNA-seq experiment to span two or more exons.  

Note that this proportion increases significantly from 19 to 46% as read length 

increases from 50 to 150 bp (see Chapter 2 for more details).  Based on this 

observation, the alignment accuracy of those spliced reads can determine the accuracy 

of downstream steps of the analysis. 

This mapping problem for RNA-seq reads turns out to be more challenging 

compared to that of DNA-seq reads, posing two additional problems.  First, because 

genes in eukaryotic genomes contain introns and because reads sequenced from 

mature mRNA transcripts do not include these introns, any RNA-seq alignment 

program must be able to handle gapped alignment (or spliced alignment) with very 

large gaps.  In mammalian genomes, introns span a very wide range of lengths, 

typically from 50-100,000 bases, which the alignment algorithm must accommodate.  

Second, the presence of processed pseudogenes from which some or all introns have 

been removed may cause many exon-spanning reads to map incorrectly.  This 

problem is particularly acute in the case of genomes like the human genome, which 

contains over 14,000 pseudogenes [22]. 

In Chapter 2, we will discuss TopHat2, a new spliced aligner, in an attempt to 

handle these problems.  TopHat2 employs a two-step procedure similar to that of 

TopHat [23].  First, it detects potential splice sites for introns, but with a much higher 



 

 7 
 
 
 

precision compared to the original algorithm of TopHat.  It then uses these candidate 

splice sites to align multi-exon spanning reads properly in a subsequent step.  In these 

steps, TopHat2 uses Bowtie as its underlying alignment program.  I implemented new 

procedures that align reads with true insertions and deletions (indels) – a feature 

critical for studies assessing the impact of genetic mutations on gene and transcript 

expression.  Indels due to sequencing errors will be discovered by TopHat2’s 

underlying mapping engine, Bowtie2 [24], which can detect short indels very 

efficiently.  The new algorithm also makes powerful use of available gene 

annotations, which prevents it from erroneously mapping reads to pseudogenes and 

improves its overall alignment accuracy.  Annotation also allows TopHat2 to better 

align reads that cover microexons, noncanonical splice sites, and other unusual 

features of eukaryotic transcriptomes.  These new enhancements will provide major 

accuracy improvements over previous versions and other RNA-seq mapping tools. 

Chapter 2 is based on the following work, which is under review. 

 

Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven 

L. Salzberg 

TopHat2: Accurate alignment of transcriptomes in the presence of insertions, 

deletions, and gene fusions.  To appear in Genome Biology 

 

1.3 Discovery of fusion break points using RNA-seq reads 
 

In addition to detection of novel genes, RNA-seq has the potential to discover 

genes created by complex chromosomal rearrangements.  As illustrated in Figure 1.3, 



 

 8 
 
 
 

“fusion” genes formed by the breakage and re-joining of two different chromosomes 

have repeatedly been implicated in the development of cancer, notably the 

BCR/ABL1 gene fusion in chronic myeloid leukemia [17, 25, 26].  Fusion genes can 

also be created by the breakage and rearrangement of a single chromosome, bringing 

together transcribed sequences that are normally separate.  As of November 2012, the 

Mitelman database [27] has documented about 62,000 cases of chromosome 

aberrations and gene fusions in cancer.  1,078 gene fusions have been reported from 

1,309 different genes [28].  Most fusion genes are strongly associated with distinct 

cancerous tumor types, whereas some others are reported even in benign tumor cells 

or normal cells.  As well as from genomic aberrations described above, fusion events 

can take place during the transcription process in which two adjacent genes are 

transcribed as a single pre-RNA molecule, and then spliced into a fusion mRNA.  

Akiva et al. [29] performed a bioinformatics approach using expressed sequence tags 

(ESTs) and cDNAs downloaded from GenBank [30], showing that about 2% of the 

human genes are associated with such read-through transcription.  Fusion transcripts 

can also be formed post-transcriptionally when two different pre-RNA transcripts 

from two genes are spliced together and combined into one single mRNA transcript 

[31] (see Figure 1.3).  This process is called trans-splicing. 
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Figure 1.3 Several pathways leading to the formation of fusion transcripts 
 

Discovering these fusions via RNA-seq has a distinct advantage over whole-

genome sequencing.  This is due to the fact that in the highly rearranged genomes of 

some tumor samples, many rearrangements might be present, although only a fraction 
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might alter transcription.  RNA-seq identifies only those chromosomal fusion events 

that produce transcripts.  It has the further advantage that it allows one to detect 

multiple alternative splice variants that might be produced by a fusion event. 

In Chapter 3, we will describe a fusion detection algorithm, TopHat-Fusion 

[19].  TopHat-Fusion directly detects individual reads and paired reads that span a 

fusion event.  Because it does not rely on annotation, TopHat-Fusion can also find 

events involving novel splice variants and entirely novel genes.  TopHat-Fusion’s 

performance was evaluated using RNA-seq reads from four breast cancer cell lines 

(BT474, SKBR3, KPL4, MCF7).  Edgren et al. [18] initially reported 24 novel and 3 

known fusion genes in this data sample.  Using TopHat-Fusion, 25 of the 27 fusion 

genes were retrieved, in addition to 51 strong candidates for novel fusion genes.  

Approximately one year later, Kangaspeska et al. [32] (including Edgren) 

experimentally verified 9 of those 51 candidates to be genuine fusion genes. 

Fusion-finding software currently faces serious problems, including very high 

false positive rates.  FusionSeq [33] and deFuse [34], found 32,644 and 1,670, 

respectively, for MCF7 cell lines, which harbor three known fusion genes.  Almost all 

of FusionSeq and deFuse’s findings are expected to be false positives.  In contrast to 

other fusion-finding software, TopHat-Fusion demonstrates highly accurate and 

sensitive discovery of fusion transcripts, having reported 3 known fusion genes and 

only 8 strong candidates. 

The following paper in Genome Biology is the basis for Chapter 3. 

 
Daehwan Kim and Steven L. Salzberg 
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TopHat-Fusion: An Algorithm for Discovery of Novel Fusion Transcripts.  Genome 

biology 2011, 12:R72. 

 

1.4 Reconstruction and quantitation of fusion transcripts 

As described in the above section, TopHat-Fusion aligns reads across fusion 

break points and reports the fusion alignments in Sequence Alignment/Map (SAM) 

format [35].  SAM has rapidly become the most popular format for representing read 

alignments.  Read alignments in the SAM format can be used for reconstruction and 

quantification of fusion transcripts as well as normal transcripts.  More specifically, 

based on the read alignments from TopHat-Fusion, those that are aligned near or 

across the break points can be assembled into fusion transcripts, and the expression 

levels of the transcripts can be quantified based on the number of reads they include. 

Two major factors make this problem more difficult: first, eukaryotic 

genomes are highly repetitive [36, 37], meaning the reads can align to many locations 

and second, sequencing errors (e.g., random ligation of two cDNAs) may cause 

chimeric transcripts.  The problem of separating genuine fusion transcripts from these 

spurious fusion-like transcripts, which are much more numerous than true fusions, is 

a major algorithmic challenge.  The problem is made harder by the fact that reads are 

non-uniformly distributed across transcripts, making low-level transcripts difficult to 

detect.  A sensitive and accurate method for identifying fusions should find as much 

evidence as possible that can be used as either positive or negative indicators when 

filtering out potential fusion transcripts. 
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I have developed TransFUSE to address these problems.  TransFUSE is the 

software system designed to reconstruct and quantify full-length fusion gene 

transcripts.  The newly developed algorithm, using TopHat2 and Cufflinks, can be 

run with or without gene annotations.  As a result, it can detect novel fusion 

transcripts from known and unknown genes.  In Chapter 4, we will discuss more 

details about TransFUSE.  Chapter 4 is based on the following work, which is in 

preparation for submission. 

 
 
Daehwan Kim and Steven L. Salzberg 

Reconstruction and Estimation of Fusion Transcripts from RNA-Sequencing reads.  

In preparation 

 

1.5 Summary 
 

RNA-seq technologies deliver a large amount of data within a short period of 

time (a few days) at much lower costs.  These benefits allow us to quickly and 

accurately investigate genetic programs and cellular activity.  Using these new 

sequencing technologies, we can examine transcript structures, expression levels of 

transcripts, and structural variations.  However, the sequencing technologies require 

new computational methods in order to effectively use a large amount of RNA-seq 

reads they produce. 

Most RNA-seq analyses rely on the genomic locations of reads’ origins.  In 

order to find the location information, reads may be aligned against the reference 

genome, if a high-quality reference genome is available and the differences between 
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the reference and the sequenced genome is small, as is the case with the human 

genome.  Mapping accuracy and sensitivity of the alignment determine the quality of 

the downstream analyses.  A significant portion of this thesis is devoted to discussing 

effective solutions to RNA-seq read alignment problems.  As a solution, I have 

developed several novel algorithms and incorporated them into TopHat2, an RNA-

seq alignment system (Chapter 2).  In particular, I designed a new algorithm, in 

collaboration with Cole Trapnell, called “segment-search”, for identifying splice sites 

with high level of precision and sensitivity (see Chapter 2 for more details). I then 

implemented this method in the system.  I also designed a new algorithm that uses 

gene annotations to guide transcriptome mapping, a feature that was not part of 

TopHat before.  I collaborated with Harold Pimentel and Geo Pertea on this design, 

and they also collaborated on the implementation.  One problem I discovered in 

TopHat was that many reads may incorrectly map to processed pseudogenes during 

the first alignment stage (end-to-end genome alignment). In order to fix this mapping 

bias, I have came up with the idea of re-aligning many reads in a subsequent step.  I 

added this “realignment” option to TopHat2’s spliced alignment stage, and as a result 

most of the reads are now correctly aligned.  TopHat2 also includes a novel indel 

alignment algorithm, developed by Ryan Kelley and myself.  I made further 

adjustments to TopHat2 in order to support greater read lengths and to support 

“colorspace” reads from ABI SOLiD.  The colorspace method required substantial 

changes in many parts of TopHat2.  To improve TopHat2's performance, I have 

parallelized most of the steps in its pipeline.  Geo Pertea and I have changed TopHat2 

to use compressed files for intermediate files to considerably reduce the disk 
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requirement. All these changes significantly improve the performance of TopHat2 

and contribute to the success of TopHat2 in the research community. 

RNA-seq also enables us to discover structural variations, including genomic 

rearrangements.  I have developed TopHat-Fusion to detect fusion break points and 

map reads against them (Chapter 3).  In TopHat-Fusion, I have developed novel 

algorithms for finding fusion break points and align reads across the break points.  I 

have also created sophisticated filtering algorithms to eliminate false fusion 

transcripts.  This filtration is based on several factors such as supporting reads and 

pairs, sequence similarity, and transcript coverage.  TopHat-Fusion’s advanced fusion 

alignment algorithm combined with the filtration step enables efficient and sensitive 

discovery of fusion transcripts.  Furthermore, I have enhanced and modified TopHat-

Fusion to allow the assembly and quantification of fusion transcripts.  The enhanced 

pipeline is TransFUSE (Chapter 4).  The new assembly and quantification algorithms 

of TransFUSE are based on Cufflinks, where I have modified almost every aspect of 

the system in addition to creating a novel algorithm to filter out false fusion 

transcripts.  The new information available from these new algorithms such as 

transcript structures and expression levels is used to identify genuine fusion 

transcripts.  I have developed a visualization algorithm to display fusion transcripts in 

html format, which makes it easier to investigate and directly compare fusion 

transcripts. 

However, our software system faces several issues as the sequencing 

technologies provide longer and more numerous reads.  In Chapter 5, we will discuss 
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several related problems that demand some fundamental changes in our pipeline, as 

well as a proposal for a new pipeline to address these challenges. 
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Chapter 2: TopHat2: accurate alignment of transcriptomes in the 

presence of insertions, deletions and gene fusions 

 

Since the initial release of TopHat [23], a spliced aligner for sequences from 

transcriptome sequencing (RNA-seq) experiments, I have made many significant 

enhancements to the program, contributing to improvements in the quality of 

downstream analysis.  The new TopHat2 program can align reads of various lengths 

produced by the latest sequencing technologies, including Illumina, 454 

pyrosequencing, and ABI “colorspace” reads, while allowing for variable-length 

insertions and deletions with respect to the reference genome.  In addition to its de 

novo splice junction mapping algorithm, TopHat2 incorporates an algorithm to align 

reads across fusion break points, which occur after genomic translocations or trans-

splicing (see Chapter 3 for more details).  The new system combines the ability to 

discover novel splice sites with direct mapping to known transcripts, producing more 

sensitive and accurate alignments than previously, even for highly repetitive genomes 

or in the presence of processed pseudogenes.  A new re-alignment procedure 

substantially reduces mis-alignments caused by reads that extend only a few bases 

into an intronic region.  Finally, in order to keep up with dramatically increasing 

sequencing rates, the TopHat2 algorithm includes new parallel code and other 

optimized routines that reduce its run time significantly compared to its predecessor.  
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TopHat2 is free, open-source software available from 

http://genomics.jhu.edu/software/tophat.   

 

2.1 Background 

RNA sequencing technologies [5-7], which sequence the RNA molecules 

being transcribed in cells, allow us to explore the process of transcription in exquisite 

detail.  One of the primary goals of RNA sequencing analysis software is to 

reconstruct the full set of transcripts (isoforms) of genes that were present in the 

original cells.  In addition to the transcript structures, experimenters need to estimate 

the expression levels for all transcripts.  The first step in the analysis process is to 

map the RNA-seq reads against the reference genome, which provides the location 

from which the reads originated.  In contrast to DNA sequence alignment, RNA-seq 

mapping algorithms have two additional challenges.  First, because genes in 

eukaryotic genomes contain introns and because reads sequenced from mature mRNA 

transcripts do not include these introns, any RNA-seq alignment program must be 

able to handle gapped alignment (or spliced alignment) with very large gaps.  In 

mammalian genomes, introns span a very wide range of lengths, typically from 50-

100,000 bases, which the alignment algorithm must accommodate.  Second, the 

presence of processed pseudogenes from which some or all introns have been 

removed may cause many exon-spanning reads to map incorrectly.  This probably is 

particularly acute for the human genome, which contains over 14,000 pseudogenes 

[22]. 
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In the most recent Ensembl GRCh37 gene annotations, the average length of a 

mature mRNA transcript in the human genome is 2,227 bp, and the average exon 

length is 235 bp.  The average number of exons per transcript is 9.5.  Assuming that 

sequencing reads are uniformly distributed along a transcript [21], we would expect 

33-38% of 100-bp reads from an RNA-seq experiment to span two or more exons.  

Note that this proportion increases significantly as read length increases from 50 to 

150 bp (see Supplementary Material for more details). 

More importantly for the alignment problem, ~20% of junction-spanning 

reads extend 10 bp or less into one of the exons they span.  These small “anchors” 

make it extremely difficult for alignment software to map reads accurately, 

particularly if the algorithm relies (as most do) on an initial mapping of fixed-length 

k-mers to the genome.  This initial mapping, using exact matches of k-mers, is critical 

for narrowing down the search space into small local regions where a read is likely to 

align.  If a read only extends a few bases into one of two adjacent exons, then it often 

happens that the read will align equally well, but incorrectly, with the sequence of the 

intervening intron.  For example, as illustrated in Figure 2.1, suppose that read r spans 

exons e1 and e2, extending only 4 bases into e2.  Suppose also that that e2 begins with 

GTXX, and the intervening intron also begins with GTXX.  Then r might align 

perfectly to e1 and the first 4 bases of the intron, and the alignment algorithm will fail 

to find the spliced alignment of r. 

In order to handle this problem, TopHat2 uses a two-step procedure.  First, 

similar to TopHat1 [23], it detects potential splice sites for introns (detailed further in 

Methods).  It then uses these candidate splice sites to align multi-exon spanning reads 
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properly in a subsequent step.  Some RNA-seq aligners, including GSNAP [38], 

RUM [39], and STAR [40], map reads independently of the alignments of other 

reads, which may explain their lower sensitivity for these spliced reads (see Results).  

MapSplice [41] uses a two-step approach similar to TopHat2. 

RNA-seq read alignment is further complicated due to the presence of 

processed pseudogenes in the reference genome.  Pseudogenes often have highly 

similar sequences to functional, intron-containing genes, and in most cases the 

pseudogene versions are not transcribed [42], though this has recently been disputed 

[43].  The critical problem for alignment is that reads spanning multiple exons can be 

mapped perfectly or near-perfectly to the pseudogene version of a functional gene.  

For example, suppose a read r spans two exons of a given gene.  If the aligner tries to 

align the read globally (end-to-end), then it will find an alignment to the pseudogene 

copy (Figure 2.1).  If the spliced alignment phase, which usually occurs later, does 

not attempt to re-align r, then the pseudogene copy will “absorb” all reads spanning 

splice sites for that gene.  TopHat2 can feed r into the spliced alignment phase even 

when r has been aligned end-to-end, allowing it to circumvent this problem (see 

Results and Methods). 
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Figure 2.1 Two possible incorrect alignments of spliced reads 
(1) A read extending a few bases into the flanking exon can be aligned to the intron instead of 
the exon.  (2) A read spanning multiple exons from genes with processed pseudogene copies 
can be aligned to the pseudogene copies instead of the gene from which it originates. 

 

We also note as an aside that, in our analysis of RNA-seq reads from multiple 

human samples [44, 45], genes with processed pseudogenes seem to be expressed at 

higher levels than other genes (see Results).  Although this observation has not been 

explored thoroughly, a plausible explanation is that genes with higher levels of 

expression may, over the course of evolution, have an increased chance of being 

picked up by transposons and re-integrated into the genome, creating pseudogene 

copies. 

For the human genome, where we have relatively comprehensive annotations 

of protein-coding genes, we can use the annotations to map reads more accurately, by 
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aligning reads preferentially to real genes rather than pseudogenes. GSNAP [38] and 

STAR [40] also make use of annotation, although they use it in a more limited 

fashion to detect splice sites.  TopHat2 can use the full-length transcripts defined by 

annotations during its initial mapping phase, which produces significant gains in 

sensitivity and accuracy (see Figures 2.3 - 2.6). 

Transcripts from a target genome may differ substantially from the reference 

genome, possibly containing insertions, deletions, and other structural variations [46, 

47].  For such regions, previous spliced alignment programs (including the original 

TopHat) sometimes fail to find a proper alignment.  In TopHat2, I implemented new 

procedures that align reads with true insertions and deletions (indels).  Indels due to 

sequencing errors will be discovered by TopHat2’s underlying mapping engine, 

Bowtie2 [24], which can detect short indels very efficiently.  Very large deletions, 

inversions on the same chromosome, and translocations involving different 

chromosomes are detected by the TopHat-Fusion algorithms [19], which are now 

incorporated into TopHat2 and available by a simple command-line switch. 

TopHat2 also includes new algorithms to handle more diverse types of 

sequencing data.  This includes the ability to handle reads generated by ABI SOLiD 

technology using its “color space” representation.  To accomplish this, TopHat2 uses 

a reference genome translated entirely into color space in order to take advantage of 

the error-correction capability of that format.  TopHat2 also handles data sets in 

which the reads have variable lengths, allowing the experimenter to merge data sets 

from multiple sequencing runs with different lengths.  
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2.2 Methods 

Given RNA-seq reads as input, TopHat2 begins by mapping reads against the 

known transcriptome, if an annotation file is provided.  This transcriptome mapping 

improves overall mapping sensitivity and accuracy.  It also gives a significant speed 

boost, owing to the much smaller size of the transcriptome compared to that of the 

genome (see Figure 2.2). 

 

Figure 2.2 TopHat2 pipeline 
Details are given in the main text. 

!"#$%&#'()#*+#,'+#-./'

0.#&1.'+#-./'

23)#4$3+56&1.'+#-./'

0.#&1.'+#-./'

789'0.#&1.'):+,#1.#6'

!
!
!

'

'

;.)-'

</&#4'=3&1')##&6)6.-'63)#4$3+564'

>#)##&6)6.-''./&#4'7#&?.:'63)#4$3+5649'

'

'

'

'

'

'

7@AB9';.A):+,#1.#6'&='3.)-4'1+#+1)::C'

&?.3:)55+#,'+#63&#4'

'

'
D#63&#'&3'+#6.3,.#+$'3.,+&#'

7E9'23)#4$3+56&1.'):+,#1.#6'7&5%&#):9'

>#1)55.-'3.)-4'

7@AE9'F.,1.#6'):+,#1.#6'6&',.#&1.'

'

;.)-4'45)##+#,')'4+#,:.'./&#')3.'!"##$%& G":%A./&#'45)##+#,'3.)-4'

)3.''(!"##$%'

'

'

'

'

'

'

'

'

'

'

7@A89'D-.#%H$)%&#'&='45:+$.'4+6.4'

7+#$:"-+#,'+#-.:4')#-'="4+&#'I3.)*'5&+#649'

7@A@9'F.,1.#64'):+,#.-'6&'J"#$%&#'

()#*+#,'4.K".#$.4'

7@AL9'F.,1.#6'):+,#1.#64'4%6$M.-'

6&,.6M.3'6&'=&31'NM&:.'3.)-'):+,#1.#64'

7@9'F5:+$.-'):+,#1.#6'

;.)-4')3.'45:+6'

+#6&'4.,1.#64&
>#1)55.-'4.,1.#6&

'

'

'

'

'

'

'

'

O'()#*+#,'4.K'E& ()#*+#,'4.K'8&

'

'

'

'

'

'

;.)-')3.'):+,#.-'),)+#46'63)#4$3+56&1.P''

;.)-4')3.'):+,#.-'),)+#46',.#&1.P'

;.)-4')3.'45:+6'+#6&'41)::.3'4.,1.#64'

NM+$M')3.'6M.#'):+,#.-'6&'6M.',.#&1.P'

F.,1.#6'1)55+#,4')3.'"4.-'6&'H#-'5&6.#%):'45:+$.'4+6.4'

"4")::C'NM.#'6M.'-+46)#$.'I.6N..#'6M.'1)55.-'5&4+%&#4'

&='6M.':.Q')#-'6M.'3+,M6'4.,1.#64')3.':&#,.3'6M)#'6M.'

:.#,6M'&='6M.'1+--:.'5)36'&=')'3.)-P'

F.K".#$.4'()#*+#,')'45:+$.'4+6.')3.'$&#$)6.#)6.-'

)#-'4.,1.#64')3.'):+,#.-'6&'6M.1P'

G)55.-'4.,1.#64'),)+#46'.+6M.3',.#&1.'&3'()#*+#,'

4.K".#$.4')3.',)6M.3.-'6&'53&-"$.'NM&:.'3.)-'):+,#1.#64P'

0.#&1.'1)55.-'3.)-4'N+6M'):+,#1.#64'./6.#-+#,')'=.N'

I)4.4'+#6&'+#63&#4')3.'3.A):+,#.-'6&'./&#4'+#46.)-P'

;.)-4'

>#1)55.-'4.,1.#64&

'

'



 

 23 
  

After the transcriptome mapping step, some reads remain unmapped because 

they are derived from unknown transcripts not present in the annotation, or because 

they contain many mis-called bases.  In addition, there may be poorly aligned reads 

that have been mapped to the wrong location.  In step 2, TopHat2 aligns these 

unmapped or potentially mis-aligned reads against the genome (Figure 2.2).  Any 

reads contained entirely within exons will be mapped, whereas others spanning 

introns may not be. 

Using unmapped reads from step 2, TopHat2 tries to find novel splice sites 

that are based on known junction signals (GT-AG, GC-AG, and AT-AC).  TopHat2 

also provides an option to allow users to remap some of the mapped reads depending 

on their edit distance values, that is, those reads whose edit distance is greater than or 

equal to a user-provided threshold will be treated as unmapped reads.  To accomplish 

this, the unmapped reads (and previously mapped reads with low alignment scores) 

are split into smaller non-overlapping segments (25-bp each by default) which are 

then aligned against the genome (Figure 2.2, step 3).  Tophat2 examines the cases 

where the left and right segments of the same read are mapped within a user-defined 

maximum intron size (usually between 50 and 100,000 bp).  When this pattern is 

detected, TopHat2 re-aligns the whole read sequence to that genomic region in order 

to identify the most likely locations of the splice sites, as shown in Figure 2.2.  Indels 

and fusion break points are also detected in this step using a similar approach. 

The genomic sequences flanking these splice sites are concatenated and the 

resulting spliced sequences are collected as a set of potential transcript fragments.  
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Any reads not mapped in the previous stages (or mapped very poorly) are then re-

aligned with Bowtie2 [24] against this novel transcriptome. 

After these steps, some of the reads may have been aligned incorrectly by 

extending an exonic alignment a few bases into the adjacent intron (see Figure 2.1 

and Figure 2.2, step 3-5). TopHat2 checks if such alignments extend into the introns 

identified in the split alignment phase, and if so, it can re-align these reads to the 

adjacent exons instead. 

In the final stage, TopHat2 divides reads into those with unique alignments 

and those with multiple alignments.  For the multi-mapped reads, TopHat2 gathers 

statistical information (e.g., the number of supporting reads) about the relevant splice 

junctions, insertions, and deletions, which it uses to recalculate the alignment score 

for each read.  Based on these new alignment scores, TopHat2 reports the most likely 

alignment locations for such multi-mapped reads. 

For paired-end reads, TopHat2 processes the two reads separately through the 

same mapping stages described above.  In the final stage, the independently aligned 

reads are analyzed together to produce paired alignments, taking into consideration 

additional factors including fragment length and orientation. 

For the experiments described in this study, the program version numbers 

were TopHat2 (2.0.8), TopHat1 (1.1.4), GSNAP (2013-01-23), RUM (1.12_01), 

MapSplice (1.15.2), and STAR (2.3.0e).  Specific parameters for each program are 

given in Table 2.16. 
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2.3 Results 

TopHat2 can use either Bowtie [48] or Bowtie2 [24] as its core read alignment 

engine.  TopHat2 has its own indel-finding algorithm, which enhances Bowtie2’s 

indel-finding ability in the context of spliced alignments.  In order to evaluate 

TopHat2 and compare it other methods, we ran multiple computational experiments 

using both real and simulated RNA-seq data. 

For the simulations, we created multiple sets of 40,000,000 paired-end reads, 

100 bp in length, from the entire human genome (release GRCh37).  Instead of trying 

to precisely mimic real RNA-seq experiments, which may not be possible in any 

practical sense, we generated data with relatively simple settings and expression 

levels calculated using a model from the Flux Simulator system [49], as follows.  For 

the first test set, we generated reads from the known transcripts on the entire human 

genome without introducing any mismatches or indels.  We then generated additional 

data sets where we included (a) insertions and deletions into the known transcripts at 

random locations; and (b) insertions and deletions in the reads themselves to mimic 

sequencing errors (see Supplementary Material for details). 

Each of these types of experimental error was introduced to test different 

capabilities of TopHat2 and other RNA-seq aligners.  Following the simulations, we 

evaluated the programs using a recent, real RNA-seq data set.   

Alignment of simulated reads (error-free) 

 
We generated 40,000,000 paired-end reads and performed two sets of 

experiments: (1) using 20,000,000 “left” reads from the paired-end data set, shown in 
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Table 2.1; and (2) using 20,000,000 pairs of reads, shown in Table 2.2.  Reads that 

span multiple exons are called junction reads; our single-end data contain 6,862,278 

such reads (34.3%).  The most challenging alignments are those for which a junction 

read extends 10 bp or less into one of the exons, which we call short-anchored reads; 

1,448,022 of the single-end reads (7.2%) fell into this category.  We report accuracy 

separately for junction reads and short-anchored reads in Tables 2.1-2.2. 

Program	
  
No.	
  of	
  
mapped	
  
reads	
  

Correctly	
  
mapped	
  
reads	
  (%)	
  

Incorrectly	
  
mapped	
  
reads	
  (%)	
  

Unmapped	
  
reads	
  (%)	
  

Correct	
  
junction	
  
reads	
  (%)	
  

Correct	
  
short-­‐

anchored	
  
reads	
  (%)	
  

TopHat2	
  
+Bowtie1	
   19,826,638	
   98.31	
   0.82	
   0.87	
   95.28	
   93.69	
  

TopHat2	
  
+Bowtie2	
   19,826,673	
   98.03	
   1.10	
   0.87	
   94.28	
   89.67	
  

TopHat1.14	
   19,616,874	
   94.64	
   3.45	
   1.91	
   84.44	
   44.08	
  
GSNAP	
   19,997,255	
   94.21	
   5.77	
   0.02	
   83.15	
   26.01	
  
RUM	
   19,555,823	
   88.11	
   9.67	
   2.22	
   65.35	
   8.59	
  
MapSplice	
   19,872,372	
   97.28	
   2.08	
   0.64	
   92.09	
   75.57	
  
STAR	
   19,087,508	
   92.14	
   3.30	
   4.56	
   77.17	
   3.54	
  

Table 2.1 Performance comparisons on 20 million 100 bp single-end reads 
These reads are simulated based on transcripts from the entire human genome.  6,862,278 
reads span one or more splice junctions; the alignment accuracy of junction reads refers to 
this set.  1,448,022 reads extend 10 bp or less into one exon; the alignment accuracy of short-
anchored reads is based on these alignments. The last two columns show alignment accuracy 
for these subsets of the data. 

 

We also tested 20,000,000 read pairs (40,000,000 reads), of which 9,491,394 

(47.5%) have at least one read that spans multiple exons.  2,702,624 of these pairs 

(13.5%) have at least one short-anchored read that extends 10 bp or less into one of 

its exons.  Table 2.2 shows the results of mapping these reads with TopHat2 and other 

programs. 

Program	
  
No.	
  of	
  
mapped	
  
pairs	
  

Correctly	
  
mapped	
  
pairs	
  (%)	
  

Incorrectly	
  
mapped	
  
pairs	
  (%)	
  

Unmapped	
  
pairs	
  (%)	
  

Correct	
  
junction	
  
pairs	
  (%)	
  

Correct	
  
short-­‐

anchored	
  
pairs	
  (%)	
  

TopHat2	
  
+Bowtie1	
   19,683,426	
   96.70	
   1.72	
   1.58	
   93.31	
   90.09	
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TopHat2	
  
+Bowtie2	
   19,686,006	
   96.19	
   2.24	
   1.57	
   92.03	
   85.88	
  

TopHat1.14	
   19,219,055	
   89.57	
   6.53	
   3.90	
   78.36	
   40.39	
  
GSNAP	
   19,999,867	
   88.84	
   11.16	
   0.00	
   76.55	
   22.87	
  
RUM	
   19,869,579	
   79.07	
   20.28	
   0.65	
   56.28	
   8.42	
  
MapSplice	
   19,342,087	
   92.03	
   4.68	
   3.29	
   86.53	
   72.48	
  
STAR	
   19,951,620	
   85.21	
   14.55	
   0.24	
   68.94	
   3.16	
  

 
Table 2.2 Performance comparisons on 20 million pairs of 100 bp reads 
These paired reads are simulated based on transcripts from the entire human genome.  
9,491,394 pairs of reads are junction pairs, and 2,702,624 pairs contain short-anchored reads.  
The last two columns show alignment accuracy for these subsets of the data. 

As shown in Table 2.1, TopHat2 correctly aligns >98% of the reads, more 

than any of the other methods, whose accuracy ranged from 88–97%.  The difference 

is more pronounced for junction reads, where TopHat2 is able to align >94% while 

other methods range in accuracy from 65–92%. 

GSNAP, RUM, and STAR have particular difficulty aligning short-anchored 

reads, only aligning 26%, 8.6%, and 3.5%, respectively.  MapSplice does 

considerably better, aligning 75.6% of these reads.  By contrast, TopHat2 aligns 

93.7% of the short-anchored reads using Bowtie1 as its main aligner (Table 2.1).  

Both TopHat2 and MapSplice use a two-step algorithm, first detecting potential splice 

sites, and then using these sites to map reads.  This two-step method may explain 

their superior performance at mapping reads with short anchors. 

The results for paired reads (Table 2.2) are similar to those for unpaired reads.  

TopHat2 aligns the highest percentage of reads, 96.7%, followed by MapSplice 

(92%) and the other methods (79-88%).  The difference widens again for junction 

reads, with TopHat2 at 93% followed by MapSplice (86%), GSNAP (76%), STAR 

(69%), and RUM (56%).  Most striking of all was the performance on short-anchored 

reads, which most of the methods had great difficulty aligning correctly.  TopHat2 
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aligned 90% of these, MapSplice aligned 72%, and the other methods aligned only 3–

22%. 

Figure 2.9 shows alignment rates for reads, spliced reads, and spliced reads 

with small anchors for a variety of read lengths (50 bp, 100 bp, 150 bp, 200 bp).  

TopHat2 consistently outperformed all the other aligners for each read length.  In 

Tables 2.6 – 2.9, we compare alignment performance for spliced reads and pairs with 

a 1-3 mismatches, where TopHat2 and MapSplice show the highest recall rates.  

 

Alignment of simulated reads with short indels (1-3bp) 

 
Next we tested the spliced alignment programs using reads with small indels, 

using two sets of simulated reads: (1) true indels, in which the transcripts were 

modified by inserting or deleting 1-3 bases at random locations; and (2) indels due to 

sequencing errors, in which indels are randomly inserted into the reads.  As before, 

all transcripts were simulated from known genes from the entire human genome.  We 

used a relatively high rate of indels intentionally, to test the mapping capabilities of 

the programs in the presence of these types of mutations.   

Tables 2.3-2.4 shows the results for these data sets.  For single-end reads, 

RUM, GSNAP, and TopHat2 perform similarly, with 69-82% accuracy (recall) rates 

for true indels and 62-83% for reads with indel sequencing errors.  STAR and 

MapSplice show relatively lower recall rates for both data sets.  Note that when used 

with the original Bowtie program (a non-gapped aligner), TopHat2 is able to map 

“true” indel reads using its own indel finding algorithms. 
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Program	
  

Reads	
  with	
  true	
  indels	
  
(1,428,499)	
  

Reads	
  with	
  sequencing-­‐error	
  
indels	
  (1,525,657)	
  

Accuracy	
  (%)	
  

Accuracy	
  on	
  
351,465	
  reads	
  
with	
  boundary	
  
indels	
  (%)	
  

Accuracy	
  (%)	
  

Accuracy	
  on	
  
357,334	
  reads	
  
with	
  boundary	
  
indels	
  (%)	
  

TopHat2	
  
+Bowtie1	
   70.9	
   16.8	
   12.1	
   2.8	
  

TopHat2	
  
+Bowtie2	
   63.7	
   25.2	
   62.6	
   21.2	
  

GSNAP	
   82.7	
   71.9	
   83.1	
   71.8	
  
RUM	
   69.4	
   43.0	
   70.3	
   45.4	
  

MapSplice	
   27.3	
   3.7	
   27.5	
   3.8	
  
STAR	
   46.6	
   16.9	
   47.7	
   17.1	
  

Table 2.3 Performance comparisons on single-end reads containing indels 
The indels are 1-3bp.  The number of reads containing each type of error is indicated in the 
column header.  Boundary indels occur within 25 bp of an exon boundary.  Percentages refer 
only to the reads of each type, not to the entire data set. 

 

Program	
  

Pairs	
  with	
  true	
  indels	
  
(2,754,313)	
  

Pairs	
  with	
  sequencing-­‐error	
  
indels	
  (2,934,043)	
  

Accuracy	
  (%)	
  

Accuracy	
  on	
  
685,937	
  pairs	
  
with	
  boundary	
  
indels	
  (%)	
  

Accuracy	
  (%)	
  

Accuracy	
  on	
  
695,771	
  pairs	
  
with	
  boundary	
  
indels	
  (%)	
  

TopHat2	
  
+Bowtie1	
   69.8	
   16.3	
   14.0	
   3.1	
  

TopHat2	
  
+Bowtie2	
   62.3	
   24.0	
   60.8	
   19.8	
  

GSNAP	
   77.0	
   63.8	
   77.8	
   64.8	
  
RUM	
   60.3	
   34.3	
   61.3	
   36.0	
  

MapSplice	
   25.5	
   3.4	
   25.0	
   3.2	
  
STAR	
   53.4	
   19.2	
   54.9	
   21.4	
  

Table 2.4 Performance comparisons on paired reads containing indels 
The indels are 1-3bp.  The number of pairs containing each type of error is indicated in the 
column header.  Boundary indels occur within 25 bp of an exon boundary.  Percentages refer 
only to the pairs of each type, not to the entire data set. 

 

For paired-end reads with indels, GSNAP has the highest rate of correct 

alignments (77%), followed by TopHat2 (60-69%), RUM (60-61%), and STAR (53-

54%).  MapSplice shows the lowest accuracy for both single-end and paired-end 

reads. 
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We defined boundary indels as those within 25 bp of a splice site.  We 

separately computed the accuracy on reads with boundary indels, shown in Tables 

2.3-2.4.  

 

Alignment of a large set of real RNA-seq reads 

 
Any test of alignment algorithms should use real data to provide a measure of 

likely performance in practice.  For these experiments, we used a recently released set 

of RNA-seq reads gathered across a time course experiment reported by Chen et al. 

[44] (GEO accession number GSM818582).  This data includes 130,705,578 million 

paired-end reads in 65,352,789 pairs.  All reads are 101 bp in length. 

Because we do not know the true alignments for this RNA-seq data set, we 

used the following objective criteria to evaluate each program: 

1. The cumulative number of alignments with edit distances of 0, 1, 2, and 3 for 

each read. 

2. The cumulative number of spliced alignments that agree with the annotation 

for the corresponding human genes, taken from the Ensembl GRCh37 release 

of the human genome. 

For each program, we aligned the paired-end reads with and without the 

known gene annotations, where possible.  RUM requires annotations and cannot be 

run without them, while MapSplice maps strictly without them.  We then evaluated 

the mapping results in terms of the number of read or paired-read mappings. 

TopHat2 consists of three mapping steps: (1) transcriptome mapping, used 

only when annotation is provided; (2) genome mapping; and (3) spliced mapping (see 
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Methods for details).  TopHat2 uses a remapping edit distance threshold t, specified 

by the user, as follows.  If a read aligns to the transcriptome in step (1) with an edit 

distance less than t, TopHat2 will not remap the read in subsequent steps.  Otherwise, 

TopHat2 will try to re-align the read in steps (2) and (3), and then depending on the 

resulting edit distance, it will use the read to detect novel splice sites.  A setting of t=0 

means that TopHat2 will re-align every read in all three steps.  When we used t=0 

(“TopHat2 realignment 0” in Figure 2.3) on the real data, we consistently obtained 

better mapping results in terms of edit distance and the number of alignments that 

correspond to known splice sites, as shown in Figures 2.3-2.6 for read and pair 

alignments, respectively (see also Tables 10-13 for the actual numbers of the 

alignments). 
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Figure 2.3 The number of read alignments  
TopHat2, GSNAP, RUM, MapSplice, STAR are tested for the RNA-seq reads are from Chen 
et al. [44].  TopHat2 was run without realignment and with realignment (realignment edit 
distance of 0).  TopHat2, GSNAP, and STAR were run in both de novo and gene mapping 
modes, while MapSplice and RUM were run only in de novo and gene mapping modes, 
respectively.  The number of alignments at each edit distance is cumulative.  For instance, the 
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number of alignments at edit distance of 2 includes all the alignments with edit distance of 0, 
1, 2. 
 

Figure 2.3 shows the alignment performance for each program both with and 

without using annotations, where all the programs were configured to report 

alignments with edit distances of up to 3 (and more in some programs).  We 

compared the de novo alignments of reads for edit distances of 0, 1, 2, and 3.  As 

expected, all programs find more alignments as the maximum permissible edit 

distance increases.  For edit distance 0 (which only allows perfect matches), TopHat2 

without its new realignment function maps noticeably fewer reads than it does with 

the function.  This occurs because TopHat2 first aligns reads end-to-end (with 

Bowtie2) before trying spliced alignments.  Thus if a read is aligned end-to-end with, 

for example, 1-3 mismatches, then without the realignment function, TopHat2 accepts 

that alignment and may miss a spliced alignment with fewer mismatches. 

On the other hand, TopHat2 with t=0 mapped the largest number of reads for 

all edit distances, followed in most cases by GSNAP.  Note that for alignments with 

an edit distance up to 3, TopHat2 without realignment discovered almost as many 

alignments as GSNAP. 

When alignment methods are run with the assistance of gene annotations 

(Figure 2.3, right panel), the results are somewhat better than the de novo alignments.  

TopHat2 with or without realignment produced the highest number of mappings, 

followed by GSNAP, RUM, and STAR.  The realignment procedure gives a much 

small advantage to TopHat2 in these experiments. 

One way to estimate the accuracy of mappings is to compare alignments to 

known splice sites.  We compared all aligners on only those reads that required 



 

 34 
  

splitting, counting how many known (Figure 2.4, left) and known plus novel (Figure 

2.4, right) splice sites they identified.  For de novo alignment, TopHat2 with 

realignment has the highest sensitivity, followed by MapSplice.  Consistent with our 

tests on simulated reads, GSNAP and STAR show relatively lower alignment rates.  

When using annotation, TopHat2 without realignment shows the highest mapping 

rate, slightly outperforming TopHat2 with realignment.  GSNAP and STAR, which 

do less well, map reads against substrings containing splice sites rather than whole 

transcripts.  Direct mapping against whole transcripts, as done by TopHat2, works 

well especially when mapping reads spanning small exons, where a single read might 

span more than two exons. 
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Figure 2.4 The number of spliced read alignments 
TopHat2, GSNAP, RUM, MapSplice, STAR are tested for the RNA-seq reads are from Chen 
et al. [44].  TopHat2, GSNAP, and STAR were run in both de novo and gene mapping modes.  
MapSplice and RUM were run in gene and de novo mapping modes, respectively.  For each 
mapping mode, the left two panels show the number of spliced alignments whose splice sites 
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are found in the gene annotations and the right two panels show the number of all spliced 
alignments including novel splice sites. 
 

Based on these results, we would suggest two alternative strategies for 

alignment with TopHat2.  First, if gene annotations are available, as they are for the 

human genome and some model organisms, then these annotations should be used 

with TopHat2, even without realignment.  Alternatively, if annotations are 

unavailable or incomplete, then we recommend using TopHat2 with its realignment 

algorithm to produce the most complete set of alignments. 

The runtime and the peak memory usage varied greatly among the programs 

used in this study. We compared performance on all programs using the Chen et al. 

data [44], 130 million reads, and results are shown in Table 2.15.  Overall, STAR is 

much faster (32 minutes) than the other programs, which required from 8 to 55 hours.  

However, STAR requires a large amount of real memory, at least 28 GB, while most 

other programs required less than 8 GB. 
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Figure 2.5 The number of pair alignments 
TopHat2, GSNAP, RUM, MapSplice, STAR are tested for the RNA-seq reads are from Chen 
et al. [44]. 
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Figure 2.6 The number of spliced pair alignments 
TopHat2, GSNAP, RUM, MapSplice, STAR are tested for the RNA-seq reads are from Chen 
et al. [44]. 
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The impact of pseudogenes on RNA-seq mapping 

 

The Ensembl gene annotations (release 66) contain 32,439 genes, including 

non-coding RNA genes, and over 14,000 pseudogenes.  Of the real genes, we found 

that 872 (2.7%) genes have pseudogene copies; i.e., at least one transcript (or 

isoform) can be aligned to a pseudogene with at least 80% identity across the full 

length of the transcript.  Using data from the Chen et al. study [44] and from the 

Illumina Body Map project [45], we found that genes with pseudogene copies appear 

to have higher expression levels than those without pseudogene copies.  Table 2.5 

shows what proportion of reads map to genes with pseudogenes, using both the raw 

count and a normalized count divided by the length of the transcript.  Although only 

2.7% of genes have pseudogene copies, these genes account for 22.5% (un-

normalized) or 26.9% (normalized) of the RNA-seq reads in the Chen et al. data.  In 

the RNA-seq experiments from the Illumina Body Map (the white blood sample 

only), we see a 19.1% (normalized) of reads mapping to genes with pseudogenes 

(Table 2.17).  From both RNA-seq experiments, we note that genes with multiple 

pseudogene copies are more abundantly expressed than those with a single 

pseudogene copy.  We ran a similar analysis looking only at the 20,417 protein-

coding genes in Ensembl, with similar results:  22% of read pairs, 26 times more than 

expected, were mapped to genes with processed pseudogenes (Table 2.18). 

Number	
  of	
  
pseudogene	
  
copies	
  

Gene	
  with	
  
pseudogene	
  

Pair	
  
	
  Count	
  (%)	
   Ratio	
   Normalized	
  

count	
  (%)	
  
Normalized	
  

ratio	
  

1	
   553	
  (1.7%)	
   6.85	
   x	
  4.02	
   9.37	
   x	
  5.49	
  
2	
   113	
  (0.4%)	
   5.15	
   x	
  14.79	
   5.20	
   x	
  14.93	
  
3	
   49	
  (0.2%)	
   1.27	
   x	
  8.38	
   1.96	
   x	
  12.99	
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4	
   27	
  (0.1%)	
   2.27	
   x	
  27.32	
   2.28	
   x	
  27.35	
  
≥5	
   130	
  (0.4%)	
   6.91	
   x	
  17.24	
   8.08	
   x	
  20.16	
  

Total	
  (≥1)	
 872/32,439	
  
(2.7%)	
   22.45	
   x	
  8.35	
   26.88	
   x	
  10.00	
  

Table 2.5 The expression levels of genes with pseudogene copies 
Using Bowtie2, we aligned RNA-seq paired-end reads (Chen et al. [44]) to 32,439 annotated 
genes.  The first column shows the number of pseudogene copies a gene has.  The first row 
shows genes that have just one pseudogene, followed by rows for genes with 2, 3, 4, and at 
least 5 pseudogene copies.  Column 2 (“Gene with pseudogene”) is the number of genes with 
the specified number of pseudogene copies; e.g., 553 genes (1.7% of all genes) have one 
pseudogene copy.  Column 3 shows the percentage of read pairs that were mapped to genes 
with pseudogene copies.  Column 4 contains the ratio of columns 3 and 2.  The last two 
columns are similarly defined using a normalized count, where the number of reads mapping 
to each gene was normalized to account for gene length. 

Figure 2.7 shows various mapping results from TopHat2 with and without 

realignments at various edit distances.  As we allow TopHat2 to realign more reads, it 

finds the spliced alignments that were otherwise hidden by pseudogene alignments.  

This in turn substantially increases its mapping rates for known splice sites. 
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Figure 2.7 The number of read and spliced read alignments 
TopHat2 is run using different realignment edit distances of 0, 1, 2 and no-realignment.  As 
TopHat2 allows more realignment from no-realignment to 2 to 1 to 0, the number of read 
alignments and spliced read alignments increases, where the differences in the numbers of 
read alignments from TopHat run with different realignment edit distance are mostly 
explained by the increase in the number of spliced read alignments. 
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The differences in the numbers of alignments at edit distance of 0 are 
 mostly explained by the differences in the numbers of spliced alignments at edit distance of 0

because many spliced reads are incorrectly aligned to processed pseudogenes with a few mismatches.
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The completeness of human gene annotations 

 

Using the de novo mapping mode in TopHat2, GSNAP, MapSplice, and 

STAR, we looked at how many spliced alignments are found in the Ensembl 

annotations.  As shown in Figure 2.8, the proportions of spliced mappings to known 

splice sites are 97%, 96%, 88-90%, and 83-93% in GSNAP, STAR, TopHat2, and 

MapSplice, respectively.  Although our analysis only considered RNA-seq data from 

Chen et al. [44], the TopHat2 result suggests that many additional spliced alignments, 

up to 12%, might remain to be discovered.  Most of the novel splicing events in these 

alignments are supported by ≥10 reads that extend for ≥50 bases on each side. 
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Figure 2.8 The number of spliced read alignments 
TopHat2, GSNAP, STAR, and MapSplice are tested without using gene 
annotation for  
The number of read alignments whose splice sites are found in the gene annotations are 
shown in brown color.  The number of all spliced read alignments including novel splice sites 
are shown in green color. 
 

2.4 Conclusions 

Discovery of new genes and transcripts is a major objective in many RNA-seq 

experiments.  Deep RNA-seq experiments continue to uncover previously unseen 

elements of the transcriptome even in well-studied organisms.  Mapping reads to the 
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genome is a core step in such screens, and the accuracy of mapping software can 

determine the accuracy of downstream steps such as gene and transcript discovery or 

expression quantitation. 

I have described TopHat2, which provides major accuracy improvements over 

previous versions and other RNA-seq mapping tools.  Because TopHat2 is built 

around Bowtie2, it can now align reads across small indels with high accuracy – a 

feature critical for studies assessing the impact of genetic mutations on gene and 

transcript expression.  I have engineered TopHat2 to work well with a wide range of 

RNA-seq experimental designs, and it is optimized for the widely available long, 

paired-end reads.  These reads pose new challenges because they can span multiple 

splice sites rather than just one or two – we estimate that nearly half of reads 150-bp 

long would span more than two human exons.  The algorithmic improvements in 

TopHat2 address this challenge, maintaining both accuracy and speed.  Other 

refinements to the algorithm increase accuracy for reads that span a junction with 

only a small (≤10 bp) overhang, reducing errors in downstream transcript assembly 

using tools such as Cufflinks.  TopHat2 also makes powerful use of available gene 

annotations, which allow it to avoid erroneously mapping reads to pseudogenes and 

generally improve its overall alignment accuracy.  Annotation also allows TopHat2 to 

better align reads that cover microexons, noncanonical splice sites, and other 

“unusual” features of eukaryotic transcriptomes. 

TopHat2 has proved to perform well over a wide range of read lengths, 

making it a good fit for most RNA-seq experimental designs.  This scalability 

suggests that as read lengths grow, TopHat2 will continue to report accurate, sensitive 
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alignment results and allow for robust downstream analysis.  We argue that TopHat2 

reports more accurate alignments than competing tools using fewer computational 

resources.  RNA-seq experiments are becoming increasingly common and are now 

routinely used by many biologists.  We expect that TopHat2 will provide these 

scientists with accurate results for use with expression analysis, gene discovery, and 

many other applications. 

2.5 Supplementary Material 

Alignments of simulated reads with up to 3 mismatches 

We generated single-end and paired-end reads with 0 to 3 mismatches and 

without indels as shown in Tables 2.6 and 2.8.  TopHat2 and MapSplice show the 

highest mapping sensitivity in read/pair and spliced read/pair alignments for both true 

mismatches (SNPs) and sequencing-error mismatches (Tables 2.7 and 2.9). 

Type	
   No.	
  of	
  total	
  
reads	
  

No.	
  of	
  reads	
  
without	
  

mismatches	
  
(junction)	
  

No.	
  of	
  reads	
  
with	
  1	
  

mismatch	
  
(junction)	
  

No.	
  of	
  reads	
  
with	
  2	
  

mismatches	
  
(junction)	
  

No.	
  of	
  reads	
  
with	
  3	
  

mismatches	
  
(junction)	
  

True	
  
mismatches	
   20,000,000	
   10,860,864	
  

(4,654,864)	
  
7,579,737	
  

(2,289,006)	
  
1,396,742	
  
(428,136)	
  

162,657	
  
(46,185)	
  

Sequencing-­‐
error	
  

mismatches	
  
20,000,000	
   11,258,169	
  

(4,010,662)	
  
7,298,699	
  

(2,610,246)	
  
1,297,051	
  
(462,717)	
  

146,081	
  
(52,481)	
  

Table 2.6 The number of reads and spliced reads with up to 3 mismatches 

Program	
   True	
  mismatches	
   Sequencing-­‐error	
  mismatches	
  
M0	
   M1	
   M2	
   M3	
   J0	
   J1	
   J2	
   J3	
   M0	
   M1	
   M2	
   M3	
   J0	
   J1	
   J2	
   J3	
  

TopHat2	
  
+Bowtie1	
   98.14	
   98.71	
   98.83	
   97.57	
   95.81	
   95.86	
   96.45	
   91.52	
   98.37	
   98.60	
   98.79	
   97.19	
   95.67	
   96.23	
   96.71	
   92.23	
  

TopHat2	
  
+Bowtie2	
  

97.85	
   98.70	
   95.08	
   86.72	
   95.00	
   95.75	
   84.59	
   55.21	
   98.08	
   98.54	
   93.87	
   84.98	
   94.61	
   95.95	
   83.16	
   58.69	
  

GSNAP	
   92.85	
   89.08	
   83.50	
   78.33	
   83.33	
   77.49	
   74.19	
   70.27	
   93.95	
   88.19	
   83.09	
   77.66	
   83.03	
   77.61	
   74.29	
   69.35	
  

RUM	
   85.10	
   83.45	
   77.58	
   73.82	
   65.25	
   54.29	
   45.82	
   37.93	
   87.58	
   81.43	
   75.37	
   69.57	
   65.13	
   55.16	
   45.55	
   36.63	
  

MapSplice	
   96.77	
   98.25	
   97.96	
   93.94	
   92.47	
   94.25	
   96.98	
   96.95	
   96.85	
   97.77	
   97.78	
   94.63	
   91.16	
   93.79	
   95.94	
   95.82	
  

STAR	
   90.39	
   87.84	
   82.15	
   78.52	
   77.65	
   68.96	
   61.18	
   55.10	
   91.82	
   86.35	
   80.68	
   75.39	
   77.17	
   69.07	
   60.72	
   53.36	
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Table 2.7 The recall rates of read and spliced read alignments for true 
mismatches (SNPs) and sequencing-error mismatches 
M0 is the sensitivity of read alignments with zero mismatches.  M1 is the sensitivity of 
alignments with one mismatch.  M2 and M3 are similarly defined.  J0 is the sensitivity of 
spliced alignments with no mismatches.  J1, J2, and J3 are similarly defined with mismatches 
of 1, 2, and 3, respectively, for spliced alignments.  M0, M1, M2, and M3 also include spliced 
alignments as well as non-gapped alignments.  Note that TopHat2 with Bowtie2 suffers a 
drop in performance compared to Bowtie1 when a single read has 3 mismatches (column J3).  
This occurs because TopHat2 splits reads into very short segments, 25 bp, when attempting to 
align across splice sites.  TopHat2 then calls Bowtie1/2 to align these short segments.  
Bowtie2’s default parameters are not designed for such short segments; however these can 
easily be modified by changing the parameters used to call Bowtie2 within TopHat2. 
 

Type	
   No.	
  of	
  total	
  
pairs	
  

No.	
  of	
  pairs	
  
without	
  

mismatches	
  
(junction)	
  

No.	
  of	
  pairs	
  
with	
  1	
  

mismatch	
  
(junction)	
  

No.	
  of	
  pairs	
  
with	
  2	
  

mismatches	
  
(junction)	
  

No.	
  of	
  pairs	
  
with	
  ≥	
  3	
  

mismatches	
  
(junction)	
  

True	
  
mismatches	
   20,000,000	
   5,703,884	
  

(3,809,739)	
  
8,547,831	
  

(4,031,062)	
  
4,345,589	
  

(1,779,403)	
  
1,402,696	
  
(557,825)	
  

Sequencing-­‐
error	
  

mismatches	
  
20,000,000	
   5,747,299	
  

(2,818,790)	
  
9,201,311	
  

(4,553,143)	
  
3,897,205	
  

(1,923,580)	
  
1,154,185	
  
(568,559)	
  

Table 2.8 The number of pairs and spliced pairs with mismatches of 0 to 3 
The two types of pair reads are simulated: true mismatches (SNPs) and sequencing-error 
mismatches.  Note that each read can contain up to 3 mismatches, it is possible that a pair can 
have more than 3 mismatches. 
 
 

Program	
   True	
  mismatches	
   Sequencing-­‐error	
  mismatches	
  
M0	
   M1	
   M2	
   M≥3	
   J0	
   J1	
   J2	
   J≥3	
   M0	
   M1	
   M2	
   M≥3	
   J0	
   J1	
   J2	
   J≥3	
  

TopHat2	
  
+Bowtie1	
   95.69	
   96.96	
   97.47	
   97.45	
   93.03	
   93.14	
   93.64	
   93.12	
   96.72	
   96.98	
   97.19	
   96.91	
   93.19	
   93.78	
   94.15	
   93.51	
  

TopHat2	
  
+Bowtie2	
  

95.06	
   96.77	
   96.01	
   91.94	
   91.90	
   92.52	
   89.40	
   78.18	
   96.10	
   96.59	
   94.92	
   89.86	
   91.46	
   92.60	
   89.33	
   78.12	
  

GSNAP	
   84.03	
   83.95	
   79.29	
   72.72	
   74.03	
   69.83	
   64.84	
   58.95	
   88.34	
   83.20	
   77.52	
   70.99	
   73.84	
   69.76	
   64.84	
   59.17	
  

RUM	
   69.86	
   73.97	
   72.22	
   67.81	
   51.85	
   45.42	
   39.32	
   33.22	
   78.40	
   72.92	
   68.09	
   63.08	
   52.57	
   46.43	
   40.03	
   33.66	
  

MapSplice	
   90.53	
   92.59	
   93.33	
   92.47	
   84.70	
   84.88	
   85.59	
   85.98	
   91.90	
   91.77	
   91.97	
   91.48	
   83.57	
   83.67	
   84.23	
   84.73	
  

STAR	
   79.41	
   81.17	
   78.07	
   60.80	
   66.65	
   61.01	
   55.04	
   41.48	
   85.05	
   80.12	
   75.03	
   58.85	
   66.64	
   61.25	
   55.01	
   41.49	
  

Table 2.9 The recall rates of pair and spliced pair alignments for true 
mismatches (SNPs) and sequencing-error mismatches 
M0 is the sensitivity of read alignments with zero mismatches.  M1 is the sensitivity of 
alignments with one mismatch.  M2 and M3 are similarly defined with mismatches of 1, 2, 
and ≥3, respectively.  J0 is the sensitivity of spliced alignments with zero mismatches.  J1, J2, 
and J≥3 are similarly defined for spliced alignments. 
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Corresponding tables for Figures 2.3-2.7 

	
   Program	
   0	
   1	
   2	
   3	
  

De	
  novo	
  
alignment	
  

TopHat2	
  
realignment	
   54,956,129	
   77,364,055	
   87,355,369	
   93,265,424	
  

TopHat	
   50,422,413	
   73,228,140	
   84,633,702	
   92,396,448	
  
GSNAP	
   52,255,865	
   74,247,781	
   84,946,229	
   91,598,102	
  

MapSplice	
   48,896,741	
   70,032,327	
   81,847,468	
   90,360,661	
  
STAR	
   50,986,666	
   71,782,717	
   81,074,505	
   86,235,516	
  

	
  
Alignment	
  
using	
  

annotation	
  

TopHat2	
  
realignment	
   55,634,580	
   77,988,848	
   88,370,540	
   94,752,200	
  

TopHat	
   55,225,852	
   77,447,497	
   87,992,406	
   94,596,600	
  
GSNAP	
   54,666,282	
   76,642,607	
   86,835,392	
   93,005,273	
  
RUM	
   54,949,609	
   76,963,699	
   87,157,875	
   93,352,293	
  
STAR	
   54,326,036	
   75,730,313	
   84,957,399	
   89,844,775	
  

Table 2.10 Table for Figure 2.3. 

Type	
   Program	
   0	
   1	
   2	
   3	
  

Alignments	
  
whose	
  

splice	
  sites	
  
correspon
d	
  to	
  gene	
  
annotation	
  

De	
  novo	
  
alignment	
  

TopHat2	
  
realignmen

t	
  

15,804,62
5	
  

21,406,11
5	
  

23,524,83
9	
  

24,436,60
0	
  

TopHat	
   9,799,757	
   13,586,45
3	
  

15,104,33
9	
  

15,798,04
5	
  

GSNAP	
   13,549,59
1	
  

18,438,73
6	
  

20,759,43
3	
  

22,175,18
2	
  

MapSplice	
   14,792,70
7	
  

20,264,39
4	
  

22,961,08
3	
  

24,704,51
4	
  

STAR	
   11,568,52
9	
  

15,338,93
0	
  

16,918,02
4	
  

17,714,91
3	
  

Alignment	
  
using	
  

annotatio
n	
  

TopHat2	
  
realignmen

t	
  

17,372,91
0	
  

23,531,96
0	
  

26,340,12
0	
  

27,982,78
0	
  

TopHat	
   17,368,85
3	
  

23,530,36
5	
  

26,353,41
3	
  

28,018,28
4	
  

GSNAP	
   16,801,71
6	
  

22,812,95
3	
  

25,598,49
6	
  

27,259,09
0	
  

RUM	
   16,516,78
6	
  

22,263,59
4	
  

24,839,63
6	
  

26,331,30
6	
  

STAR	
   16,526,67
3	
  

22,195,93
6	
  

24,558,09
1	
  

25,693,88
5	
  

All	
  spliced	
  
alignments	
  
including	
  
novel	
  

splice	
  sites	
  

De	
  novo	
  
alignment	
  

TopHat2	
  
realignmen

t	
  

17,516,56
5	
  

24,088,22
4	
  

26,632,21
5	
  

27,754,23
3	
  

TopHat	
   10,238,96
8	
  

14,232,39
1	
  

15,847,92
9	
  

16,601,80
4	
  

GSNAP	
   13,864,31
9	
  

18,899,65
4	
  

21,302,99
9	
  

22,777,30
8	
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MapSplice	
   15,863,18
1	
  

22,638,51
4	
  

26,692,55
6	
  

29,630,04
8	
  

STAR	
   11,994,23
6	
  

15,936,86
6	
  

17,600,13
4	
  

18,445,15
3	
  

Alignment	
  
using	
  

annotatio
n	
  

TopHat2	
  
realignmen

t	
  

18,932,11
4	
  

25,985,17
8	
  

29,191,69
2	
  

31,039,09
1	
  

TopHat	
   17,779,75
3	
  

24,112,60
5	
  

27,019,28
1	
  

28,752,18
2	
  

GSNAP	
   17,117,37
4	
  

23,272,08
1	
  

26,138,91
5	
  

27,858,11
2	
  

RUM	
   16,823,90
9	
  

22,716,67
8	
  

25,399,66
1	
  

27,009,13
8	
  

STAR	
   16,895,36
7	
  

22,725,02
9	
  

25,170,51
2	
  

26,352,38
2	
  

Table 2.11 Table for Figure 2.4. 

 

	
   Program	
   0	
   1	
   2	
   3	
  

De	
  novo	
  
alignment	
  

TopHat2	
  
realignment	
   16,696,682	
   27,353,265	
   33,139,753	
   36,839,143	
  

TopHat	
   14,344,271	
   24,456,802	
   30,630,922	
   35,199,608	
  
GSNAP	
   15,546,886	
   25,853,039	
   31,925,593	
   36,108,336	
  

MapSplice	
   13,835,185	
   22,781,288	
   28,568,799	
   32,999,167	
  
STAR	
   14,847,145	
   24,598,381	
   30,235,116	
   34,057,210	
  

	
  
Alignment	
  
using	
  

annotation	
  

TopHat2	
  
realignment	
   17,091,131	
   27,818,953	
   33,766,156	
   37,699,996	
  

TopHat	
   16,985,383	
   27,661,740	
   33,579,775	
   37,494,323	
  
GSNAP	
   16,890,487	
   27,569,140	
   33,566,349	
   37,503,456	
  
RUM	
   16,923,302	
   27,536,281	
   33,397,563	
   37,208,206	
  
STAR	
   16,815,984	
   27,361,365	
   33,191,954	
   36,933,241	
  

Table 2.12 Table for Figure 2.5. 

 
Type	
   Program	
   0	
   1	
   2	
   3	
  

Alignments	
  
whose	
  

splice	
  sites	
  
correspond	
  
to	
  gene	
  

annotation	
  

De	
  novo	
  
alignment	
  

TopHat2	
  
realignment	
  

6,670,997	
   10,434,104	
   12,349,897	
   13,496,341	
  

TopHat	
   3,816,460	
   6,195,116	
   7,628,348	
   8,708,508	
  

GSNAP	
   5,507,359	
   8,787,161	
   10,773,698	
   12,226,898	
  

MapSplice	
   5,438,391	
   8,701,358	
   10,775,190	
   12,389,538	
  

STAR	
   4,543,781	
   7,106,244	
   8,610,236	
   9,685,835	
  

Alignment	
  
using	
  

annotation	
  

TopHat2	
  
realignment	
  

7,357,496	
   11,476,154	
   13,743,868	
   15,276,373	
  

TopHat	
   7,346,821	
   11,464,534	
   13,733,001	
   15,272,369	
  

GSNAP	
   7,121,858	
   11,156,844	
   13,436,485	
   15,009,697	
  

RUM	
   7,088,842	
   11,048,936	
   13,233,486	
   14,714,367	
  

STAR	
   7,021,511	
   10,975,663	
   13,147,910	
   14,561,264	
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All	
  spliced	
  
alignments	
  
including	
  
novel	
  

splice	
  sites	
  

De	
  novo	
  
alignment	
  

TopHat2	
  
realignment	
  

7,193,604	
   11,468,318	
   13,694,621	
   15,045,756	
  

TopHat	
   3,988,139	
   6,523,309	
   8,072,162	
   9,282,468	
  

GSNAP	
   5,630,093	
   9,002,188	
   11,049,842	
   12,550,023	
  

MapSplice	
   5,710,435	
   9,395,612	
   11,990,324	
   14,137,678	
  

STAR	
   4,692,109	
   7,355,651	
   8,922,567	
   10,048,254	
  

Alignment	
  
using	
  

annotation	
  

TopHat2	
  
realignment	
  

7,868,376	
   12,481,943	
   15,047,081	
   16,764,777	
  

TopHat	
   7,511,707	
   11,740,351	
   14,073,199	
   15,656,508	
  

GSNAP	
   7,245,286	
   11,371,551	
   13,710,608	
   15,328,468	
  

RUM	
   7,195,805	
   11,231,525	
   13,463,953	
   14,983,419	
  

STAR	
   7,169,487	
   11,224,944	
   13,458,212	
   14,917,855	
  

Table 2.13 Table for Figure 2.6. 

 
	
   Type	
   0	
   1	
   2	
   3	
  

Read	
  
alignments	
  

Realignment	
  
0	
   54,956,129	
   77,364,055	
   87,355,369	
   93,265,424	
  

Realignment	
  
1	
  

54,508,641	
   77,227,362	
   87,334,380	
   93,272,963	
  

Realignment	
  
2	
  

53,007,141	
   76,631,857	
   87,168,673	
   93,244,130	
  

No	
  
Realignment	
   50,422,413	
   73,228,140	
   84,633,702	
   92,396,448	
  

Spliced	
  
read	
  

alignments	
  

Realignment	
  
0	
   17,516,565	
   24,088,224	
   26,632,215	
   27,754,233	
  

Realignment	
  
1	
  

14,179,269	
   19,895,371	
   22,278,929	
   23,389,758	
  

Realignment	
  
2	
  

12,755,976	
   17,578,938	
   19,577,384	
   20,558,593	
  

No	
  
Realignment	
   10,238,968	
   14,232,391	
   15,847,929	
   16,601,804	
  

Table 2.14 Table for Figure 2.7. 

 

Alignment rates for reads of different lengths (error-free) 

 
In addition to 100 bp simulated reads in the main text we also generated single 

and paired-end reads of different lengths (50, 150, 200 bp), in order to check how 

TopHat2 works compared to the other alignment software.  We used different 
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fragment lengths 200, 250, 350, 450 bp for read lengths 50, 100, 150, 200 bp, 

respectively.  Figure 2.9 shows TopHat2 performs better than the other programs for 

different read lengths. TopHat2 also outputs much more accurate alignments for 

spliced reads and spliced reads with small anchors.  These results suggest that 

TopHat2 may be the better choice for longer reads (≥150 bp) that will likely become 

prevalent in the near future, as well as for currently available reads (50 ~ 100 bp). 

 
Figure 2.9 Mapping accuracy in different read lengths 
Using simulated reads (20 million reads and 20 million pairs), the figure shows the ratio of 
correctly aligned reads (bottom) or pairs (top) for read alignment (the left column), spliced 
read alignment (the middle column), and spliced read alignment with small anchors (the right 
column). 

Simulation of reads with indels and mismatches 

We used the transcript expression model from the Flux simulator [49] to 

generate RNA-seq reads from the protein coding genes found in the Ensembl human 

gene annotation, release 66.  First, the transcripts from the protein coding genes are 

randomly ranked.  Then, the expression levels of the transcripts are modeled as 
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follows.  The expression level ! of a transcript is defined as ! = !
!!

!
!!

!
!!

! !
!!

!

, 

where ! is the rank number of a transcript, !! = 5  ×  10!, !! = 9500, and ! =   −0.6. 

Reads are simulated for the purpose of testing the alignment programs instead 

of trying to precisely mimic real RNA-seq experiments.  When generating reads with 

true indels, we include at most one indel per exon in a way that if the length of an 

exon L is greater than or equal to 1000 bp, we place either an insertion (50%) or a 

deletion (50%) into the exon at a random location, otherwise an indel is introduced 

into a random location of the transcript with the chance of !
!"""

.  Reads are generated 

from these transcripts so that they share the same changes. For reads with true 

mismatches we change the nucleotides of each transcript in such a way that the 

average distance between two nearby mismatches is 150.5 bp and the distribution of 

the distance is uniform (1 to 300).  Reads are then generated from these modified 

transcripts.  Reads with either indels or mismatches from sequencing errors are 

simulated in the same way except the transcript being used is changed every time a 

read is generated. 

Figure 2.10 shows the proportions of reads spanning multiple exons, which 

increase approximately from 19% to 46% as the length of reads increases from 50 to 

150 bp.  On the other hand, as we may expect, the fragment length does not affect the 

proportions of spliced reads. 
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Figure 2.10 Proportions of spliced reads (various read and fragment lengths) 
This figure shows proportions of spliced reads from different read lengths (50 to 150 bp) and 
fragment lengths (200 to 300 bp).  For each fragment length (200, 220, 240, 260, 280, 300 
bp), a whisker box plot shows 100 simulation results (the percentage of spliced reads) for 
each read length. 
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Runtime and memory usage 

 
With ~130 million paired-end reads from Chen et al. [44], we ran each 

program using 8 threads on a Linux machine with memory of 256GB and 48 AMD 

processors (2.1GHz).  Runtime (or wall time) and peak memory usage were measured 

using the GNU time program as shown in Table 2.15. 

Program	
   Runtime	
  
(wall	
  time)	
  

Peak	
  
memory	
  
(GB)	
  

Parameters	
  

TopHat2	
  2.0.8	
  
(Transcriptome	
  only	
  mapping)	
   8h	
  29m	
   4.9	
  

-­‐G	
  
-­‐-­‐transcriptome-­‐only	
  
-­‐-­‐read-­‐mismatches	
  3	
  
-­‐-­‐read-­‐gap-­‐length	
  3	
  
-­‐-­‐read-­‐edit-­‐dist	
  3	
  
-­‐-­‐mate-­‐inner-­‐dist	
  60	
  
-­‐-­‐mate-­‐std-­‐dev	
  60	
  

TopHat2	
  2.0.8	
  
(Default:	
  genome	
  and	
  spliced	
  

mapping)	
  
17h	
  1m	
   5.4	
  

-­‐-­‐read-­‐mismatches	
  3	
  
-­‐-­‐read-­‐gap-­‐length	
  3	
  
-­‐-­‐read-­‐edit-­‐dist	
  3	
  
-­‐-­‐mate-­‐inner-­‐dist	
  60	
  
-­‐-­‐mate-­‐std-­‐dev	
  60	
  

TopHat2	
  2.0.8	
  
(With	
  transcriptome	
  mapping)	
   17h	
  31m	
   5.2	
  

-­‐G	
  
-­‐-­‐read-­‐mismatches	
  3	
  
-­‐-­‐read-­‐gap-­‐length	
  3	
  
-­‐-­‐read-­‐edit-­‐dist	
  3	
  
-­‐-­‐mate-­‐inner-­‐dist	
  60	
  
-­‐-­‐mate-­‐std-­‐dev	
  60	
  

TopHat2	
  2.0.8	
  
(Realignment	
  with	
  

realignment	
  edit	
  distance	
  of	
  0)	
  
29h	
  55m	
   5.6	
  

-­‐-­‐read-­‐mismatches	
  3	
  
-­‐-­‐read-­‐gap-­‐length	
  3	
  
-­‐-­‐read-­‐edit-­‐dist	
  3	
  
-­‐-­‐mate-­‐inner-­‐dist	
  60	
  
-­‐-­‐mate-­‐std-­‐dev	
  60	
  
-­‐-­‐read-­‐realign-­‐edit-­‐dist	
  0	
  

GSNAP	
  2013-­‐01-­‐23	
   55h	
  26m	
   7.6	
   -­‐-­‐max-­‐mismatches=3	
  	
  -­‐N	
  1	
  
RUM	
  1.12_01	
   26h	
  34m	
   *36.4	
  	
   	
  

MapSplice	
  1.15.2	
   44h	
  50m	
   3.7	
   min_missed_seg	
  =	
  0	
  

STAR	
  2.3.0e	
   32m	
   27.8	
  
-­‐-­‐outFilterMatchNmin	
  97	
  	
  
-­‐-­‐outFilterScoreMin	
  90	
  	
  
-­‐-­‐outFilterMismatchNmax	
  3	
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Table 2.15 Runtime and memory usage of RNA-seq alignment software  
Note the last column “Parameters” shows specific parameters for each program to allow a 
read to be aligned with edit distance of 0, 1, 2, and 3.  Parameters for specifying genome, 
gene annotation, RNA-seq read files, and the number of threads are not shown.  The version 
of each program is shown in blue color in the first column.  *Note that RUM uses separate 
processes, each of which consisted of Bowtie (2394MB) and BLAT (4660MB), requiring a 
total of 36.4GB memory when using 8 threads. 

Specific program parameters 

Test Program Reference 
genome 

Gene 
annotation 

Specific parameters 

Alignments 
of simulated 
reads (error-

free) 

TopHat2 
+Bowtie1 

Whole human 
genome 

No 

--mate-inner-dist 50 
--mate-std-dev 40 
--bowtie1 

TopHat2 
+Bowtie2 

--mate-inner-dist 50 
--mate-std-dev 40 

TopHat1.1.4 
--mate-inner-dist 50 
--mate-std-dev 40 

GSNAP -N 1 

RUM Yes  

MapSplice 

No 

min_missed_seg = 0 

STAR 

--outFilterMatchNmin 
97  
--outFilterScoreMin 90  
--outFilterMismatchNmax 3 

Alignments 
of simulated 
reads with 

short indels 
(1-3 bp) 

TopHat2 
+Bowtie1 

--mate-inner-dist 50 
--mate-std-dev 40 
--read-mismatches 3 
--read-gap-length 3 
--read-edit-dist 3  
--bowtie1 

TopHat2 
+Bowtie2 

--mate-inner-dist 50 
--mate-std-dev 40 
--read-mismatches 3 
--read-gap-length 3 
--read-edit-dist 3 

GSNAP 
--max-mismatches=3 
--indel-penalty=1  
-N 1 

RUM Yes  
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MapSplice 

No 

min_missed_seg = 0 

STAR 

--outFilterMatchNmin 
97  
--outFilterScoreMin 90  
--outFilterMismatchNmax 3 

Alignments 
of simulated 
reads with up 

to 3 
mismatches  

TopHat2 
+Bowtie1 

--mate-inner-dist 50 
--mate-std-dev 40 
--read-mismatches 3 
--read-gap-length 3 
--read-edit-dist 3  
--bowtie1 

TopHat2 
+Bowtie2 

--mate-inner-dist 50 
--mate-std-dev 40 
--read-mismatches 3 
--read-gap-length 3 
--read-edit-dist 3 

TopHat1.1.4 
--mate-inner-dist 50 
--mate-std-dev 40 

GSNAP --max-mismatches=3 
-N 1 

RUM Yes  

MapSplice 

No 

min_missed_seg = 0 

STAR 

--outFilterMatchNmin 
97  
--outFilterScoreMin 90  
--outFilterMismatchNmax 3 
  

Alignments 
of a large set 
of real RNA-

seq reads 
(Chen et al. 

[44]) 

TopHat2 

Whole human 
genome 

Yes/No 

--read-mismatches 3 
--read-gap-length 3 
--read-edit-dist 3 
--mate-inner-dist 60 
--mate-std-dev 60 

TopHat2 
realignment 0 

Yes/No 

--read-mismatches 3 
--read-gap-length 3 
--read-edit-dist 3 
--mate-inner-dist 60 
--mate-std-dev 60 
--read-realign-edit-dist 
0 

GSNAP Yes/No --max-mismatches=3  
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-N 1 
RUM Yes  

MapSplice No min_missed_seg = 0 

STAR Yes/No 
--outFilterMatchNmin 
97  
--outFilterScoreMin 90  
--outFilterMismatchNmax 3 

Table 2.16 Specific program parameters 
Program parameters to specify genome, gene annotation, and RNA-seq read files are given in 
the table (the number of threads is not shown).  Note that for simulation data set, a TopHat 
option “--read-realign-edit-dist” can be used to realign reads in the spliced alignment phase 
that are mapped against either transcriptome or genome. 
 
 
Number of 
pseudogene 

copies 

Gene with 
pseudogene 

Pair  
Count (%) Ratio Normalized 

count (%) 
Normalized 

ratio 

1 553 (1.7%) 4.66 x 2.73 7.33 x 4.30 
2 113 (0.4%) 3.51 x 10.08 3.97 x 11.39 
3 49 (0.2%) 0.62 x 4.13 1.05 x 6.96 
4 27 (0.1%) 1.32 x 15.82 1.52 x 18.30 
≥5 130 (0.4%) 3.61 x 9.01 5.23 x 13.04 

Total (≥1)	
 872/32,439 
(2.7%) 13.72 x 5.11 19.10 x 7.11 

Table 2.17 The expression levels of genes with pseudogene copies 
llumina Body Map 2.0 data [45] is used.  Columns are defined as in Table 2.5. 
 
 

Number of 
pseudogene 

copies 

Protein-coding 
gene with 
processed 

pseudogene 

Pair Count 
(%) Ratio Normalized 

count (%) 
Normalized 

ratio 

1 267 (1.31%) 6.88 x 5.26 9.55 x 7.30 
2 47 (0.23%) 6.31 x 27.42 6.07 x 26.39 
3 21 (0.10%) 1.27 x 12.38 1.97 x 19.15 
4 16 (0.08%) 0.84 x 10.73 1.02 x 13.02 
≥5 40 (0.20%) 6.73 x 34.33 7.92 x 40.45 

Total (≥1)	
 391/20,417 
(1.92%) 22.03 x 11.50 26.54 x 13.86 

Table 2.18 The expression levels of protein-coding genes with processed 
pseudogene copies 
The RNA-seq data from Chen et al. [44] is used.  Columns are defined as in Table 2.5. 
 
 



 

 57 
  

Chapter 3: TopHat-Fusion: an algorithm for discovery of novel 

fusion transcripts 

 

I have developed novel algorithms and them into TopHat-Fusion in order to 

discover transcripts representing fusion gene products, which result from the 

breakage and re-joining of two different chromosomes, or from rearrangements 

within a chromosome.  TopHat-Fusion is a part of TopHat2 with the simple command 

line switch, an efficient program that aligns RNA-seq reads without relying on 

existing annotation.  Because it is independent of gene annotation, TopHat-Fusion 

can discover fusion products deriving from known genes, unknown genes and 

unannotated splice variants of known genes.  Using RNA-seq data from breast and 

prostate cancer cell lines, we detected both previously reported and novel fusions 

with solid supporting evidence.  TopHat-Fusion is available at 

http://genomics.jhu.edu/software/tophat/fusion_index.html. 

 

3.1 Background 

Direct sequencing of messenger RNA transcripts using the RNA-seq protocol 

[5-7] is rapidly becoming the method of choice for detecting and quantifying all the 

genes being expressed in a cell.  One advantage of RNA-seq is that, unlike microarray 

expression techniques, it does not rely on pre-existing knowledge of gene content, 

and therefore it can detect entirely novel genes and novel splice variants of existing 

genes.  In order to detect novel genes, however, the software used to analyze RNA-
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seq experiments must be able to align the transcript sequences anywhere on the 

genome, without relying on existing annotation.  TopHat [23] was one of the first 

spliced alignment programs able to perform such ab initio spliced alignment, and in 

combination with the Cufflinks program [20], it is part of a software analysis suite 

that can detect and quantify the complete set of genes captured by an RNA-seq 

experiment. 

In addition to detection of novel genes, RNA-seq has the potential to discover 

genes created by complex chromosomal rearrangements.  ‘Fusion’ genes formed by 

the breakage and re-joining of two different chromosomes have repeatedly been 

implicated in the development of cancer, notably the BCR/ABL1 gene fusion in 

chronic myeloid leukemia [17, 25, 26].  Fusion genes can also be created by the 

breakage and rearrangement of a single chromosome, bringing together transcribed 

sequences that are normally separate.  As of November 2012, the Mitelman database 

[27] documented nearly 62,000 cases of chromosome aberrations and gene fusions in 

cancer.  Discovering these fusions via RNA-seq has a distinct advantage over whole-

genome sequencing, due to the fact that in the highly rearranged genomes of some 

tumor samples, many rearrangements might be present although only a fraction might 

alter transcription.  RNA-seq identifies only those chromosomal fusion events that 

produce transcripts.  It has the further advantage that it allows one to detect multiple 

alternative splice variants that might be produced by a fusion event.  However, if a 

fusion involves only a non-transcribed promoter element, RNA-seq will not detect it. 

In order to detect such fusion events, special purpose software is needed for 

aligning the relatively short reads from next-generation sequencers.  In this chapter, 



 

 59 
  

we describe a new method, TopHat-Fusion, designed to capture these events.  We 

demonstrate its effectiveness on six different cancer cell lines, in each of which it 

found multiple gene fusion events, including both known and novel fusions.  

Although other algorithms for detecting gene fusions have been described recently 

[18, 50], these methods use unspliced alignment software (for example, Bowtie [48] 

and ELAND [51]) and rely on finding paired reads that map to either side of a fusion 

boundary.  They also rely on known annotation, searching known exons for possible 

fusion boundaries.  In contrast, TopHat-Fusion directly detects individual reads (as 

well as paired reads) that span a fusion event, and because it does not rely on 

annotation, it finds events involving novel splice variants and entirely novel genes. 

Other recent computational methods that have been developed to find fusion 

genes include SplitSeek [52], a spliced aligner that maps the two non-overlapping 

ends of a read (using 21 to 24 base anchors) independently to locate fusion events.  

This is similar to TopHat-Fusion, which splits each read into several pieces, but 

SplitSeek supports only SOLiD reads.  A different strategy is used by Trans-ABySS 

[53], a de novo transcript assembler, which first uses ABySS [54] to assemble RNA-

seq reads into full-length transcripts.  After the assembly step, it then uses BLAT [55] 

to map the assembled transcripts to detect any that discordantly map across fusion 

points.  This is a very time-consuming process: it took 350 CPU hours to assemble 

147 million reads and >130 hours for the subsequent mapping step. ShortFuse [56] is 

similar to TopHat in that it first uses Bowtie to map the reads, but like other tools it 

depends on read pairs that map to discordant positions.  FusionSeq [33] uses a 
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different alignment program for its initial alignments, but is similar to TopHat-Fusion 

in employing a series of sophisticated filters to remove false positives. 

TopHat-Fusion is incorporated into TopHat2 with the simple command line 

switch and the filtering step of TopHat-Fusion is also included in TopHat2 package.  

The tutorial can be found at 

http://genomics.jhu.edu/software/tophat/fusion_index.html.  

 

3.2 Methods 

The first step in analysis of an RNA-seq data set is to align (map) the reads to 

the genome, which is complicated by the presence of introns.  Because introns can be 

very long, particularly in mammalian genomes, the alignment program must be 

capable of aligning a read in two or more pieces that can be widely separated on a 

chromosome.  The size of RNA-seq data sets, numbering in the tens of millions or 

even hundreds of millions of reads, demands that spliced alignment programs also be 

very efficient.  The TopHat program achieves efficiency primarily through the use of 

the Bowtie aligner [48], an extremely fast and memory-efficient program for aligning 

unspliced reads to the genome.  TopHat uses Bowtie to find all reads that align 

entirely within exons, and creates a set of partial exons from these alignments.  It then 

creates hypothetical intron boundaries between the partial exons, and uses Bowtie to 

re-align the initially unmapped (IUM) reads and find those that define introns. 

TopHat-Fusion implements several major changes to the original TopHat 

algorithm, all designed to enable discovery of fusion transcripts (Figure 3.1).  After 

identifying the set of IUM reads, it splits each read into multiple 25-bp pieces, with 
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the final segment being 25 bp or longer; for example, an 80-bp read will be split into 

three segments of length 25, 25, and 30 (Figure 3.2). 

 

Figure 3.1 TopHat-Fusion pipeline 
TopHat-Fusion consists of two main modules: (1) finding candidate fusions and aligning 
reads across them; and (2) filtering out false fusions using a series of post-processing 
routines. 
 

The algorithm then uses Bowtie to map the 25-bp segments to the genome.  

For normal transcripts, the TopHat algorithm requires that segments must align in a 

pattern consistent with introns; that is, the segments may be separated by a user-

defined maximum intron length, and they must align in the same orientation along the 

TopHat-Fusion

Initial read mapping, where each end of
paired reads is mapped independently

Segment mapping of unmapped reads

Identifying candidate fusions using segment and read mappings

Constructing and indexing spliced fusion con-
tigs, and then remapping segments against them

Stitching segments to produce full read alignments

Selecting the best read and mate pair alignments,
and reporting fusions supported by those alignments

single or paired-end reads

mappings of reads

unmapped reads, which are split into segments

mappings of segments from unmapped reads

intermediate fusions

mappings of segments against fusions

mappings of reads initially unmapped (by stitching)

Post-processing steps

Filtering fusions based on the number of
reads and mate pairs that support fusions

Sorting fusions based on scores of read distributions around them

Read alignments

Fusions with statistics (# of reads and
mate pairs that support fusions)
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same chromosome.  For fusion transcripts, TopHat-Fusion relaxes both these 

constraints, allowing it to detect fusions across chromosomes as well as fusions 

caused by inversions. 

 

Figure 3.2 Aligning a read that spans a fusion point 
(a) An initially unmapped read of 75 bp is split into three segments of 25 bp, each of which is 
mapped separately. As shown here, the left (red) and right (blue) segments are mapped to two 
different chromosomes, i and j. (b) The unmapped green segment is used to find the precise 
fusion point between i and j. This is done by aligning the green segment to the sequences just 
to the right of the red segment on chromosome i and just to the left of the blue segment on 
chromosome j. 
 

Following the mapping step, we filter out candidate fusion events involving 

multi-copy genes or other repetitive sequences, on the assumption that these 

sequences cause mapping artifacts.  However, some multi-mapped reads (reads that 

align to multiple locations) might correspond to genuine fusions: for example, in 

Kinsella et al. [56], the known fusion genes HOMEZ-MYH6 and KIAA1267-ARL17A 

IUM read (75bp)

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTACGGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

segment 1 (25bp) segment 2 (25bp) segment 3 (25bp)

TTAACACTATCTAAAATCAATTTTC AATGATAGCGACGACTGCGTCATAG

chr i GAATTTCCTG TTAACACTATCTAAAATCAATTTTC TTTTACAGGTACATTGTAGTTTTAT GAATATGGCTCCGGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG TCAGTGAATC chr j

135223330 135223354 287237735 287237711 (genomic coordinate)

(a) mapping segments on chr i and chr j

TTTTACAGGTAC GGTCAACAGTAAC

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

chr i GAATTTCCTG TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC ATTGTAGTTTTAT GAATATGGCTCC GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG TCAGTGAATC chr j

135223366 287237748

chr i GAATTTCCTG TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG TCAGTGAATC chr j

a break point

(b) finding a break point between chr i and chr j
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were supported by 2 and 11 multi-mapped read pairs, respectively. Therefore, instead 

of eliminating all multi-mapped reads, we impose an upper bound M (default M = 2) 

on the number of mappings per read. If a read or a pair of reads has M or fewer multi-

mappings, then all mappings for that read are considered.  Reads with >M mappings 

are discarded. 

To further reduce the likelihood of false positives, we require that each read 

mapping across a fusion point have at least 13 bases matching on both sides of the 

fusion, with no more than two mismatches.  We consider alignments to be fusion 

candidates when the two ‘sides’ of the event either (a) reside on different 

chromosomes or (b) reside on the same chromosome and are separated by at least 

100,000 bp.  The latter are the results of intra-chromosomal rearrangements or 

possibly read-through transcription events.  We chose the 100,000-bp minimum 

distance as a compromise that allows TopHat-Fusion to detect intra-chromosomal 

rearrangements while excluding most but not all read-through transcripts.  Intra-

chromosomal fusions may also include inversions. 

As shown in Figure 3.2a, after splitting an IUM read into three segments, the 

first and last segments might be mapped to two different chromosomes.  Once this 

pattern of alignment is detected, the algorithm uses the three segments from the IUM 

read to find the fusion point.  After finding the precise location, the segments are re-

aligned, moving inward from the left and right boundaries of the original DNA 

fragment.  The resulting mappings are combined together to give full read alignments. 

For this re-mapping step, TopHat-Fusion extracts 22 bp immediately flanking each 

fusion point and concatenates them to create 44-bp ‘spliced fusion contigs’ (Figure 
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3.3).  It then creates a Bowtie index (using the bowtie-build program [48]) from the 

spliced contigs.  Using this index, it runs Bowtie to align all the segments of all IUM 

reads against the spliced fusion contigs.  For a 25-bp segment to be mapped to a 44-

bp contig, it has to span the fusion point by at least 3 bp.  

 

Figure 3.3 Mapping against fusion points 
Bowtie is used to align all segments from the initially unmapped (IUM) reads against spliced 
fusion contigs, shown in gray on the right. For example, the brown read on the top left aligns 
to the first spliced fusion contig on the top right. 
 

In addition to finding fusion points using three (or more) segments as 

illustrated in Figure 3.2, TopHat-Fusion is able to identify fusions using two segments 

(the minimum number of segments required), and paired-end alignments are used to 

make this searching process more sensitive (Figure 3.4).  By allowing a few 

mismatches when TopHat uses Bowtie to map segments from the initially unmapped 

(IUM) reads, it is possible that a segment will be mapped a few bases past a fusion 

point.  This allows TopHat-Fusion to identify fusions with just two segments by 

realigning them to two chromosomes, or two different parts of a chromosome.  

Although this variation on the algorithm is less sensitive than the three (or more) 

segments

TTGTGACTTAATCGTAGATTACGGG

ACAACTGCACTTGGCACGGCCCTGA

TTGATTGGCCAGCAAGCCCTTAACT

CTACAACTGCACTTGGCACGGCCCT

AGCAAGCCCTTAACTTCAGTTCTGC

TTTTACAGGTACGGTCAACAGTAAC

ATCCATGGTTTGGTTGTGACTTAAT

AGTTAAGGGCTTGCTGGCCAATCAA

CTCAATCCCTCTTTACTCATTGGTG

GTCTGCGTTGGAATCAGGGCCGTGC

spliced fusion contigs

ATTCCCGTAATCTACGATTAAG TCACAACCAAACCATGGATTAC

GGTCTGCGTTGGAATCAGGGCC GTGCCAAGTGCAGTTGTAGTGC

ATCAATTTTCTTTTACAGGTAC GGTCAACAGTAACAATGATAGC

AGACGCCCACCAATGAGTAAAG AGGGATTGAGCGCGACTTCTCT

GCCATATTGATTGGCCAGCAAG CCCTTAACTTCAGTTCTGCTAG

(a) mapping segments against spliced fusion contigs

IUM read 1

chr i:3250752 TGTCCTTAGAATAATCAAAGATCTTCCCAGAATCGCCATTTAAGTGGGCGCAACTCGGTCCCCTTCCGGGAAAAG chr i:3250826

chr j:542385472 TGTCCTTAGAATAATCAAAG ATCTTCCCAGAATCGCCATTTAAGTGGGCGCAACTCGGTCCCCTTCCGGGAAAAG

intron
chr j:542383833

chr m:113583953 TGTCCTTAGAATAATCAAAGATCTTCCCAGAATCGCCATTTAAGTGGGCGCAACTCG

fusion

GTCCCCTTCCGGGAAAAG chr n:113584027

IUM read 2

chr i:135223330 TTAACACTATCTAAAATCAATTTTCTTTTACAGGTAC

fusion

GGTCAACAGTAACAATGATAGCGACGACTGCGTCATAG chr j:287237711

chr k:6543735 TTAACACTAT CTAAAATCAATTTTCTTTTACAGGTACGGTCAACAGTAACAATGATAGCGACGACTGCGTCATAG

deletion (3bp)

chr k:6543762

mismatch

(b) picking the best alignment among multiple mappings
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segment approach, which allows middle segments to span a fusion point as well as a 

few boundary base pairs of the first and third segments, it turns out that this approach 

is quite effective considering the very deep coverage often available in RNA-seq data 

sets.  As shown in Figure 3.4b, the alignment of a partner read is also used to identify 

a possible small range in which a fusion point may lie. 

 

Figure 3.4 Finding fusions using two segments and partner reads 
(a) TopHat allows one to three mismatches when mapping segments using Bowtie, which 
enables segments to be mapped even if a few bases cross a fusion point (the last two bases of 
the red segment, GG). These two segments, mapped to two different chromosomes, are used 
to identify a fusion point. (b) For paired-end reads, the mapped position of the partner read is 
used to narrow down the range of a fusion point. The second segment (shown in green) 
cannot be mapped because it spans a fusion point. Here, its partner read is mapped and the 

IUM read (50bp)

AATCAATTTTCTTTTACAGGTACGG TCAACAGTAACAATGATAGCGACGA

segment 1 (25bp) segment 2 (25bp)

AATCAATTTTCTTTTACAGGTACGG TCAACAGTAACAATGATAGCGACGA

chr i CACTATCTAA AATCAATTTTCTTTTACAGGTACAT TGTAGTTTTATTATTTGCCCAATGG GCTGAAATGGAGAATATGGCTCCGG TCAACAGTAACAATGATAGCGACGA CTGCGTCATA chr j

two mismatches

135223344 135223368 287237746 287237722 (genomic coordinate)

chr i CACTATCTAA AATCAATTTTCTTTTACAGGTAC GG TCAACAGTAACAATGATAGCGACGA CTGCGTCATA chr j

a break point

(a) finding a fusion in case of two segments

IUM read (50bp) partner read (50bp)

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTACGGTCAACAGTAAC

segment 1 (25bp) segment 2 (25bp)
CTATGTAA...TTTAACTGA

read

(1) TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC (3) (2) GGTCAACAGTAAC CTATGTAA...TTTAACTGA (1)

chr i GAATTTCCTG TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC ATTGTAGTTTTAT GAATATGGCTCC GGTCAACAGTAAC AATGATAGCG...CTAG CTATGTAA...TTTAACTGA chr j

135223330 135223354 287237748 287237685

chr i GAATTTCCTG TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC GGTCAACAGTAAC AATGATAGCG...CTAG CTATGTAA...TTTAACTGA chr j

a break point

(b) finding a fusion using paired-end reads
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fusion point is likely to be located within the inner mate distance ± standard deviation of the 
left genomic coordinate of the partner read. TopHat-Fusion is able to use this relatively small 
range to efficiently map the right part of the second segment to the right side of a fusion (case 
2). The left part of the second segment is aligned to the right side of the mapped first segment 
(case 3). 
 

After identifying fusion points in the above step, and mapping segments 

against such fusions, it is necessary to connect the mapped segments to make a full 

read alignment, which is one of the most complicated processes in TopHat-Fusion.  

Given the mappings of the segments comprising a read, TopHat-Fusion stitches them 

together to produce full-length read alignments according to the following rules 

(illustrated in Figure 3.5).  (1) Two consecutive segments of a read are aligned on the 

same chromosome with the same orientation, and the right genomic coordinate of a 

segment corresponds to the left coordinate of its subsequent segment or there is a 

junction or a deletion to fill the gap between two consecutive subsequences.  (2) 

There is a fusion that connects the segments available.  This stitching process is done 

by depth first search; i.e., given a first segment, TopHat-Fusion examines every 

second segment to check if any of them can be glued to the first one, and if there is 

such a second segment, it searches all the third segments.  During the search process, 

an alignment of a segment may be reversed to have the same orientation with its 

preceding segment. 
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Figure 3.5 Stitching segments to produce a full read alignment 
(a) The segment in the third row for segment 1 and the one in the first row for segment 2 are 
connected because they are on the same chromosome (i) in the forward direction and with 
adjacent coordinates. These are then matched to the second row in segment 3 and glued 

segment 1 segment 2 segment 3

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC

fusion

GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

TTAACACT ATCTAAAATCAATTTTC

intron
TTTTACAGGTACGGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

TTAACACTATCTAAAATCAATTTTC AATGAT

fusion

AGCGACGACTGCGTCATAG

chr k:87555622 chr k:87555598 chr i:135223355 chr j:287237736 chr k:87553622 chr k:87553596

chr m:314555662 chr m:314553638 chr k:87555597 chr k:87555573 chr j:287237735 chr j:287237711

chr i:135223330 chr i:135223354 chr k:104555622 chr k:124955863

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC

fusion

GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

chr i:135223330 chr j:287237711

(a) a successful read alignment

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC

fusion

GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

TTAACACT ATCTAAAATCAATTTTC

intron
TTTTACAGGTACGGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

TTAACACTATCTAAAATCAATTTTC AATGAT

fusion

AGCGACGACTGCGTCATAG

chr k:87555622 chr k:87555598 chr i:135223355 chr j:287237736 chr k:87553622 chr k:87553596

chr m:314555662 chr m:314553638 chr k:87555597 chr k:87555573 chr j:287237735 chr j:287237711

chr i:135223330 chr i:135223354 chr k:104555622 chr k:124955863

(1)
X

(2)
X

(b) A failure to connect first and second segments

TTAACACTATCTAAAATCAATTTTC TTTTACAGGTAC

fusion

GGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

TTAACACT ATCTAAAATCAATTTTC

intron
TTTTACAGGTACGGTCAACAGTAAC AATGATAGCGACGACTGCGTCATAG

TTAACACTATCTAAAATCAATTTTC AATGAT

fusion

AGCGACGACTGCGTCATAG

chr k:87555622 chr k:87555598 chr i:135223355 chr j:287237736 chr k:87553622 chr k:87553596

chr m:314555662 chr m:314553638 chr k:87555597 chr k:87555573 chr j:287237735 chr j:287237711

chr i:135223330 chr i:135223354 chr k:104555622 chr k:124955863

(3)
X

(4)
X

(5)
X

(c) A failure to connect second and third segments
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together, producing the full-length read alignment at the bottom. (b) TopHat-Fusion tries to 
connect the segment in the second row for segment 1 with segments in the first and second 
rows for segment 2, but neither succeeds. Case 1 would require two fusion points in the same 
read, and case 2 cannot be fused with consistent coordinates. (c) Attempts to connect the 
segment in the second row for segment 2 with the one in the first row in segment 3: in case 3, 
there is no intron available, there is no fusion in case 4, and case 5 would require more than 
one fusion. 
 

After stitching together the segment mappings to produce full alignments, we 

collect those reads that have at least one alignment spanning the entire read.  We then 

choose the best alignment for each read using a heuristic scoring function, defined 

below.  We assign penalties for alignments that span introns (-2), indels (-4), or 

fusions (-4). For each potential fusion, we require that spanning reads have at least 13 

bp aligned on both sides of the fusion point (this requirement alone eliminates many 

false positives).  After applying the penalties, if a read has more than one alignment 

with the same minimum penalty score, then the read with the fewest mismatches is 

selected.  For example, in Figure 3.6, IUM read 1 (in blue) is aligned to three 

different locations: (1) chromosome i with no gap, (2) chromosome j where it spans 

an intron, and (3) a fusion contig formed between chromosome m and chromosome n.  

Our scoring function prefers (1), followed by (2), and by (3). For IUM read 2 (Figure 

3.6, in green), we have two alignments: (1) a fusion formed between chromosome i 

and chromosome j, and (2) an alignment to chromosome k with a small deletion.  

These two alignments both incur the same penalty, but we select (1) because it has 

fewer mismatches. 
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Figure 3.6 Selecting best read alignments 
IUM reads 1 and 2 each have multiple alignments. Read 1 has a gap-free alignment, shown in 
dark blue, which is preferred over the other two alignments shown in lighter shades of blue. 
The gap-free alignment with three mismatches is preferred over the fusion alignment with 
one mismatch. If all alignments have gaps and mismatches, then the algorithm prefers those 
with fewer mismatches, as shown by the dark green alignment for IUM read 2. Full details of 
the scoring function that determines these preferences are described in the Materials and 
methods. 
 

We imposed further filters for each data set: (1) in the breast cancer cell lines 

(BT474, SKBR3, KPL4, MCF7), we required two supporting pairs and the sum of 

spanning reads and supporting pairs to be at least 5; (2) in the VCaP paired-end reads, 

we required the sum of spanning reads and supporting pairs to be at least 10; (3) in 

the UHR paired-end reads, we required (i) three spanning reads and two supporting 

pairs or (ii) the sum of spanning reads and supporting pairs to be at least 10; and (4) 

in the UHR single-end reads, we required two spanning reads.  These numbers were 

determined empirically using known fusions as a quality control.  All candidates that 

fail to satisfy these filters were eliminated. 

segments

TTGTGACTTAATCGTAGATTACGGG

ACAACTGCACTTGGCACGGCCCTGA

TTGATTGGCCAGCAAGCCCTTAACT

CTACAACTGCACTTGGCACGGCCCT

AGCAAGCCCTTAACTTCAGTTCTGC

TTTTACAGGTACGGTCAACAGTAAC

ATCCATGGTTTGGTTGTGACTTAAT

AGTTAAGGGCTTGCTGGCCAATCAA

CTCAATCCCTCTTTACTCATTGGTG

GTCTGCGTTGGAATCAGGGCCGTGC

spliced fusion contigs

ATTCCCGTAATCTACGATTAAG TCACAACCAAACCATGGATTAC

GGTCTGCGTTGGAATCAGGGCC GTGCCAAGTGCAGTTGTAGTGC

ATCAATTTTCTTTTACAGGTAC GGTCAACAGTAACAATGATAGC

AGACGCCCACCAATGAGTAAAG AGGGATTGAGCGCGACTTCTCT

GCCATATTGATTGGCCAGCAAG CCCTTAACTTCAGTTCTGCTAG

(a) mapping segments against spliced fusion contigs

IUM read 1

chr i:3250752 TGTCCTTAGAATAATCAAAGATCTTCCCAGAATCGCCATTTAAGTGGGCGCAACTCGGTCCCCTTCCGGGAAAAG chr i:3250826

chr j:542385472 TGTCCTTAGAATAATCAAAG ATCTTCCCAGAATCGCCATTTAAGTGGGCGCAACTCGGTCCCCTTCCGGGAAAAG

intron
chr j:542383833

chr m:113583953 TGTCCTTAGAATAATCAAAGATCTTCCCAGAATCGCCATTTAAGTGGGCGCAACTCG

fusion

GTCCCCTTCCGGGAAAAG chr n:113584027

IUM read 2

chr i:135223330 TTAACACTATCTAAAATCAATTTTCTTTTACAGGTAC

fusion

GGTCAACAGTAACAATGATAGCGACGACTGCGTCATAG chr j:287237711

chr k:6543735 TTAACACTAT CTAAAATCAATTTTCTTTTACAGGTACGGTCAACAGTAACAATGATAGCGACGACTGCGTCATAG

deletion (3bp)

chr k:6543762

mismatch

(b) picking the best alignment among multiple mappings
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In order to remove false positive fusions caused by repeats, we extract the two 

23-base sequences spanning each fusion point and then map them against the entire 

human genome.  We convert the resulting alignments into a list of pairs (chromosome 

name, genomic coordinate - for example, chr14:374384).  For each 23-mer adjacent 

to a fusion point, we test to determine if the other 23-mer occurs within 100,000 bp 

on the same chromosome.  If so, then it is likely a repeat and we eliminate the fusion 

candidate.  We further require that at least one side of a fusion contains an annotated 

gene (based on known genes from RefSeq), otherwise the fusion is filtered out.  

These steps alone reduced the number of fusion candidates in our experiments from 

105 to just a few hundred. 
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Figure 3.7 Supporting and contradicting evidence for fusion transcripts 
(a) Given a fusion point and the chromosomes (gray) spanning it, single-end and paired-end 
reads (blue) support the fusion. Other reads (red) contradict the fusion by mapping entirely to 
either of the two chromosomes. (b) TopHat-Fusion prefers reads that uniformly cover a 600-
bp window centered in any fusion point. On the upper left, blue reads cover the entire 
window. On the lower left, red reads cover only a narrow window around the fusion. On the 
lower right, reads do not cover part of the 600-bp window. The cases shown in orange will be 
rejected by TopHat-Fusion. 
 

(a) supporting reads in blue and contradicting reads in red

intron

uncovered

(b) read distribution around a fusion
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As reported in Edgren et al. [18], true fusion transcripts have reads mapping 

uniformly in a wide window across the fusion point, whereas false positive fusions 

are narrowly covered.  Using this idea, TopHat-Fusion examines a 600-bp window 

around each fusion (300-bp each side), and rejects fusion candidates for which the 

reads fail to cover this window (Figure 3.7b).  The final process is to sort fusions 

based on how well-distributed the reads are (Figure 3.8).  The scoring scheme prefers 

alignments that have no gaps (or small gaps) and uniform depth. 

 

Figure 3.8 TopHat-Fusion’s scoring scheme of read distributions 
A scoring scheme of how well distributed reads are around a fusion point; these result scores 
are used to sort the list of candidate fusions. Variables are defined in the main text. 
 

Even with strict parameters for the initial alignment, many of the segments 

will map to multiple locations, which can make it appear that a read spans two 

chromosomes.  Thus the algorithm may find large numbers of false positives, 

primarily due to the presence of millions of repetitive sequences in the human 

genome.  Even after filtering to choose the best alignment per read, the experiments 

reported here yielded initial sets of about 400,000 and 135,000 fusion gene candidates 

from the breast cancer (BT474, SKBR3, KPL4, MCF7) and prostate cancer (VCaP) 

cell lines, respectively.  The additional filtering steps eliminated the vast majority of 

300bp chr i 1 1 chr j 300bp

lavg

ravg
lder

rder

lcount rcount

rgap
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these false positives, reducing the output to 76 and 19 fusion candidates, respectively, 

all of which have strong supporting evidence (Tables 3.2 and 3.3). 

The scoring function used to rank fusion candidates uses the number of paired 

reads in which the reads map on either side of the fusion point in a consistent 

orientation (Figure 3.7a) as well as the number of reads in conflict with the fusion 

point.  Conflicting reads align entirely to either of the two chromosomes and span the 

point at which the chromosome break should occur (Figure 3.7b). 

The overall fusion score is computed as: 

!"#$% = !"#$%& + !"#$%& +min !"#_!"#, !"#$ +min !"#_!"#, !"#$
− !"#$%& − !"#$%& −min !"#_!"#, !"#$ − !"#$
− !"#$ + !"#$ − !"#$ + !"#! ∗!"# _!"# + !"#$
−min 1000,!"#!    

 

where lcount is the number of bases covered in a 300-bp window on the left 

(Figure 3.8), lavg is the average read coverage on the left, max_avg is 300, lgap is the 

length of any gap on the left, rate is the ratio between the number of supporting mate 

pairs and the number of contradicting reads, |lavg - ravg| is a penalty for expression 

differences on either side of the fusion, and dist is the sum of distances between each 

end of a pair and a fusion.  For single-end reads, the rate uses spanning reads rather 

than mate pairs.  The variance in coverage lder is: 

!"#$ =   
!"#$!!"#$%!!

!"#$

!

!"#$%&"
!"#$%&"
!!!   ,  where lwindow is the size of the left 

window (300 bp). 
 

TopHat-Fusion outputs alignments of singleton reads and paired-end reads 

mapped across fusion points in SAM format [35], enabling further downstream 
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analyses [57], such as transcript assembly and differential gene expression.  The 

parameters in the filtering steps can be changed as needed for a particular data set. 

3.3 Results 

We tested TopHat-Fusion on RNA-seq data from two recent studies of fusion 

genes: (1) four breast cancer cell lines (BT474, SKBR3, KPL4, MCF7) described by 

Edgren et al. [18] and available from the NCBI Sequence Read Archive 

[SRA:SRP003186]; and (2) the VCaP prostate cancer cell line and the Universal 

Human Reference (UHR) cell line, both from Maher et al. [50].  The data sets 

contained >240 million reads, including both paired-end and single-end reads (Table 

3.1).  We mapped all reads to the human genome (UCSC hg19) with TopHat-Fusion, 

and we identified the genes involved in each fusion using the RefSeq and Ensembl 

human annotations. 

 
Data source Sample 

ID 
Read 
Type 

Fragment 
length 

Read 
length 

Number of 
fragments (or 

reads) 
Edgren et al. [18] BT474 Paired 100, 200 50 21,423,697 
Edgren et al. [18] SKBR3 Paired 100, 200 50 18,140,246 
Edgren et al. [18] KPL4 Paired 100 50 6,796,443 
Edgren et al. [18] MCF7 Paired 100 50 8,409,785 
Maher et al. [50] VCaP Paired 300 50 16,894,522 
Maher et al. [50] UHR Paired 300 50 25,294,164 
Maher et al. [50] UHR Single  100 56,129,471 
Table 3.1 RNA-seq data used to test TopHat-Fusion 
The data came from two studies, and included four samples from breast cancer cells (BT474, 
SKBR3, KPL4, MCF7), one prostate cancer cell line (VCaP), and two samples from the 
Universal Human Reference (UHR) cell line.  For paired-end data, two reads were generated 
from each fragment; thus the total number of reads is twice the number of fragments. 

One of the biggest computational challenges in finding fusion gene products is 

the huge number of false positives that result from a straightforward alignment 

procedure.  This is caused by the numerous repetitive sequences in the genome, 
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which allow many reads to align to multiple locations on the genome.  To address this 

problem, we developed strict filtering routines to eliminate the vast majority of 

spurious alignments (see Materials and methods).  These filters allowed us to reduce 

the number of fusions reported by the algorithm from >100,000 to just a few dozen, 

all of which had strong support from multiple reads. 

Overall, TopHat-Fusion found 76 fusion genes in the four breast cancer cell 

lines (Table 3.2; the TopHat-Fusion paper [19], additional file 1) and 19 in the 

prostate cancer (VCaP) cell line (Table 3.3; the TopHat-Fusion paper [19], additional 

file 2).  In the breast cancer data, TopHat-Fusion found 25 out of the 27 previously 

reported fusions [18].  Of the two fusions TopHat-Fusion missed (DHX35-ITCH, 

NFS1-PREX1), DHX35-ITCH was included in the initial output, but was filtered out 

because it was supported by only one singleton read and one mate pair.  The 

remaining 51 fusion genes were not previously reported. In the VCaP data, TopHat-

Fusion found 9 of the 11 fusions reported previously [50] plus 10 novel fusions.  One 

of the missing fusions involved two overlapping genes, ZNF577 and ZNF649 on 

chromosome 19, which appears to be read-through transcription rather than a true 

gene fusion. 

 
SAMPLE	
  

ID	
  
Fusion	
  genes	
  (left-­‐right)	
   Chromosomes	
  

(left-­‐right)	
  
5'	
  position	
   3'	
  position	
   Spanning	
  

reads	
  
Spanning	
  
pairs	
  

BT474	
   TRPC4AP-­‐MRPL45	
   20-­‐17	
   33665850	
   36476499	
   2	
   9	
  
BT474	
   TOB1-­‐SYNRG	
   17-­‐17	
   48943418	
   35880750	
   26	
   47	
  
SKBR3	
   TATDN1-­‐GSDMB	
   8-­‐17	
   125551264	
   38066175	
   311	
   555	
  
BT474	
   THRA-­‐SKAP1	
   17-­‐17	
   38243102	
   46384689	
   28	
   46	
  
MCF7	
   BCAS4-­‐BCAS3	
   20-­‐17	
   49411707	
   59445685	
   105	
   284	
  
BT474	
   ACACA-­‐STAC2	
   17-­‐17	
   35479452	
   37374425	
   57	
   59	
  
BT474	
   STX16-­‐RAE1	
   20-­‐20	
   57227142	
   55929087	
   6	
   24	
  
BT474	
   MED1-­‐ACSF2	
   17-­‐17	
   37595419	
   48548386	
   10	
   12	
  
MCF7	
   ENSG00000254868-­‐FOXA1	
   14-­‐14	
   38184710	
   38061534	
   2	
   22	
  
SKBR3	
   ANKHD1-­‐PCDH1	
   5-­‐5	
   139825557	
   141234002	
   4	
   15	
  
BT474	
   ZMYND8-­‐CEP250	
   20-­‐20	
   45852972	
   34078459	
   10	
   53	
  
BT474	
   AHCTF1-­‐NAAA	
   1-­‐4	
   247094879	
   76846963	
   10	
   42	
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SKBR3	
   SUMF1-­‐LRRFIP2	
   3-­‐3	
   4418012	
   37170638	
   3	
   12	
  
KPL4	
   BSG-­‐NFIX	
   19-­‐19	
   580779	
   13135832	
   12	
   27	
  
BT474	
   VAPB-­‐IKZF3	
   20-­‐17	
   56964574	
   37922743	
   4	
   14	
  
BT474	
   DLG2-­‐HFM1	
   11-­‐1	
   85195025	
   91853144	
   2	
   10	
  
SKBR3	
   CSE1L-­‐ENSG00000236127	
   20-­‐20	
   47688988	
   47956855	
   13	
   31	
  
MCF7	
   RSBN1-­‐AP4B1	
   1-­‐1	
   114354329	
   114442495	
   6	
   7	
  
BT474	
   MED13-­‐BCAS3	
   17-­‐17	
   60129899	
   59469335	
   3	
   14	
  
MCF7	
   ARFGEF2-­‐SULF2	
   20-­‐20	
   47538545	
   46365686	
   17	
   20	
  
BT474	
   HFM1-­‐ENSG00000225630	
   1-­‐1	
   91853144	
   565937	
   2	
   43	
  
KPL4	
   MUC20-­‐ENSG00000249796	
   3-­‐3	
   195456606	
   195352198	
   13	
   46	
  
KPL4	
   MUC20-­‐ENSG00000236833	
   3-­‐3	
   195456612	
   197391649	
   8	
   15	
  
MCF7	
   RPS6KB1-­‐TMEM49	
   17-­‐17	
   57992061	
   57917126	
   4	
   3	
  
SKBR3	
   WDR67-­‐ZNF704	
   8-­‐8	
   124096577	
   81733851	
   3	
   3	
  
BT474	
   CPNE1-­‐PI3	
   20-­‐20	
   34243123	
   43804501	
   2	
   6	
  
BT474	
   ENSG00000229344-­‐RYR2	
   1-­‐1	
   568361	
   237766339	
   1	
   19	
  
BT474	
   LAMP1-­‐MCF2L	
   13-­‐13	
   113951808	
   113718616	
   2	
   6	
  
MCF7	
   SULF2-­‐ZNF217	
   20-­‐20	
   46415146	
   52210647	
   11	
   32	
  
BT474	
   WBSCR17-­‐FBXL20	
   7-­‐17	
   70958325	
   37557612	
   2	
   8	
  
MCF7	
   ENSG00000224738-­‐TMEM49	
   17-­‐17	
   57184949	
   57915653	
   5	
   6	
  
MCF7	
   ANKRD30BL-­‐RPS23	
   2-­‐5	
   133012791	
   81574161	
   2	
   6	
  
BT474	
   ENSG00000251948-­‐SLCO5A1	
   19-­‐8	
   24184149	
   70602608	
   2	
   6	
  
BT474	
   GLB1-­‐CMTM7	
   3-­‐3	
   33055545	
   32483333	
   2	
   6	
  
KPL4	
   EEF1DP3-­‐FRY	
   13-­‐13	
   32520314	
   32652967	
   2	
   4	
  
MCF7	
   PAPOLA-­‐AK7	
   14-­‐14	
   96968936	
   96904171	
   3	
   3	
  
BT474	
   ZNF185-­‐GABRA3	
   X-­‐X	
   152114004	
   151468336	
   2	
   3	
  
KPL4	
   PPP1R12A-­‐SEPT10	
   12-­‐2	
   80211173	
   110343414	
   3	
   8	
  
BT474	
   SKA2-­‐MYO19	
   17-­‐17	
   57232490	
   34863349	
   5	
   12	
  
MCF7	
   LRP1B-­‐PLXDC1	
   2-­‐17	
   142237963	
   37265642	
   2	
   5	
  
BT474	
   NDUFB8-­‐TUBD1	
   10-­‐17	
   102289117	
   57962592	
   1	
   49	
  
BT474	
   ENSG00000225630-­‐

NOTCH2NL	
  
1-­‐1	
   565870	
   145277319	
   1	
   18	
  

SKBR3	
   CYTH1-­‐EIF3H	
   17-­‐8	
   76778283	
   117768257	
   18	
   37	
  
BT474	
   PSMD3-­‐ENSG00000237973	
   17-­‐1	
   38151673	
   566925	
   1	
   12	
  
BT474	
   STARD3-­‐DOK5	
   17-­‐20	
   37793479	
   53259992	
   2	
   10	
  
BT474	
   DIDO1-­‐TTI1	
   20-­‐20	
   61569147	
   36634798	
   1	
   10	
  
BT474	
   RAB22A-­‐MYO9B	
   20-­‐19	
   56886176	
   17256205	
   8	
   20	
  
KPL4	
   PCBD2-­‐ENSG00000240967	
   5-­‐5	
   134259840	
   99382129	
   1	
   32	
  
SKBR3	
   RARA-­‐PKIA	
   17-­‐8	
   38465535	
   79510590	
   1	
   5	
  
BT474	
   MED1-­‐STXBP4	
   17-­‐17	
   37607288	
   53218672	
   13	
   11	
  
KPL4	
   C1orf151-­‐ENSG00000224237	
   1-­‐3	
   19923605	
   27256479	
   1	
   5	
  
SKBR3	
   RNF6-­‐FOXO1	
   13-­‐13	
   26795971	
   41192773	
   2	
   13	
  
SKBR3	
   BAT1-­‐ENSG00000254406	
   6-­‐11	
   31499072	
   119692419	
   2	
   30	
  
BT474	
   KIAA0825-­‐PCBD2	
   5-­‐5	
   93904985	
   134259811	
   1	
   19	
  
SKBR3	
   PCBD2-­‐ANKRD30BL	
   5-­‐2	
   134263179	
   133012790	
   1	
   5	
  
BT474	
   ENSG00000225630-­‐

MTRNR2L8	
  
1-­‐11	
   565457	
   10530147	
   1	
   35	
  

BT474	
   PCBD2-­‐ENSG00000251948	
   5-­‐19	
   134260431	
   24184146	
   2	
   6	
  
BT474	
   ANKRD30BL-­‐

ENSG00000237973	
  
2-­‐1	
   133012085	
   567103	
   2	
   8	
  

KPL4	
   ENSG00000225972-­‐
HSP90AB1	
  

1-­‐6	
   564639	
   44220780	
   1	
   7	
  

BT474	
   MTIF2-­‐ENSG00000228826	
   2-­‐1	
   55470625	
   121244943	
   1	
   11	
  
BT474	
   ENSG00000224905-­‐PCBD2	
   21-­‐5	
   15457432	
   134263223	
   2	
   7	
  
BT474	
   RPS6KB1-­‐SNF8	
   17-­‐17	
   57970686	
   47021335	
   48	
   57	
  
BT474	
   MTRNR2L8-­‐PCBD2	
   11-­‐5	
   10530146	
   134263156	
   1	
   6	
  
BT474	
   RPL23-­‐ENSG00000225630	
   17-­‐1	
   37009355	
   565697	
   3	
   19	
  
BT474	
   MTRNR2L2-­‐PCBD2	
   5-­‐5	
   79946288	
   134259832	
   1	
   5	
  
SKBR3	
   ENSG00000240409-­‐PCBD2	
   1-­‐5	
   569005	
   134260124	
   2	
   4	
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SKBR3	
   PCBD2-­‐ENSG00000239776	
   5-­‐12	
   134263289	
   127650986	
   2	
   3	
  
BT474	
   ENSG00000239776-­‐

MTRNR2L2	
  
12-­‐5	
   127650981	
   79946277	
   2	
   3	
  

BT474	
   JAK2-­‐TCF3	
   9-­‐19	
   5112849	
   1610500	
   1	
   46	
  
KPL4	
   NOTCH1-­‐NUP214	
   9-­‐9	
   139438475	
   134062675	
   3	
   5	
  
BT474	
   MTRNR2L8-­‐TRBV25OR92	
   11-­‐9	
   10530594	
   33657801	
   4	
   4	
  
BT474	
   MTRNR2L8-­‐AKAP6	
   11-­‐14	
   10530179	
   32953468	
   1	
   5	
  
BT474	
   ENSG00000230916-­‐PCBD2	
   X-­‐5	
   125606246	
   134263219	
   1	
   5	
  
MCF7	
   ENSG00000226505-­‐MRPL36	
   2-­‐5	
   70329650	
   1799907	
   5	
   20	
  
SKBR3	
   CCDC85C-­‐SETD3	
   14-­‐14	
   100002351	
   99880270	
   5	
   6	
  
BT474	
   RPL23-­‐ENSG00000230406	
   17-­‐2	
   37009955	
   222457168	
   109	
   5	
  

Table 3.2 76 candidate fusions in breast cancer samples 
The 76 candidate fusion genes found by TopHat-Fusion in four breast cancer cell lines 
(BT474, SKBR3, KPL4, MCF7), with previously reported fusions [18] shown in boldface.  
The remaining 51 fusion genes are novel. The fusions are sorted by the scoring scheme 
described in Methods. 

 
Fusion	
  genes	
  (left-­‐right)	
   Chromosomes	
  

(left-­‐right)	
  
5'	
  position	
   3'	
  position	
   Spanning	
  

reads	
  
Spanning	
  
pairs	
  

ZDHHC7-­‐ABCB9	
   16-­‐12	
   85023908	
   123444867	
   13	
   69	
  
TMPRSS2-­‐ERG	
   21-­‐21	
   42879875	
   39817542	
   7	
   285	
  
HJURP-­‐EIF4E2	
   2-­‐2	
   234749254	
   233421125	
   3	
   9	
  
VWA2-­‐PRKCH	
   10-­‐14	
   116008521	
   61909826	
   1	
   10	
  
RGS3-­‐PRKAR1B	
   9-­‐7	
   116299195	
   699055	
   3	
   11	
  
SPOCK1-­‐TBC1D9B	
   5-­‐5	
   136397966	
   179305324	
   9	
   31	
  
LRP4-­‐FBXL20	
   11-­‐17	
   46911864	
   37557613	
   5	
   9	
  
INPP4A-­‐HJURP	
   2-­‐2	
   99193605	
   234746297	
   6	
   12	
  
C16orf70-­‐C16orf48	
   16-­‐16	
   67144140	
   67700168	
   2	
   19	
  
NDUFV2-­‐ENSG00000188699	
   18-­‐19	
   9102729	
   53727808	
   1	
   35	
  
NEAT1-­‐ENSG00000229344	
   11-­‐1	
   65190281	
   568419	
   1	
   17	
  
ENSG00000011405-­‐TEAD1	
   11-­‐11	
   17229396	
   12883794	
   7	
   9	
  
USP10-­‐ZDHHC7	
   16-­‐16	
   84733713	
   85024243	
   1	
   22	
  
LMAN2-­‐AP3S1	
   5-­‐5	
   176778452	
   115202366	
   15	
   2	
  
WDR45L-­‐ENSG00000224737	
   17-­‐17	
   80579516	
   30439195	
   1	
   33	
  
RC3H2-­‐RGS3	
   9-­‐9	
   125622198	
   116299072	
   3	
   11	
  
CTNNA1-­‐ENSG00000249026	
   5-­‐5	
   138145895	
   114727795	
   1	
   12	
  
IMMTP1-­‐IMMT	
   21-­‐2	
   46097128	
   86389185	
   1	
   50	
  
ENSG00000214009-­‐PCNA	
   X-­‐20	
   45918367	
   5098168	
   1	
   24	
  

Table 3.3 19 candidate fusions in prostate cancer samples 
19 candidate fusions found by TopHat-Fusion in the VCaP prostate cell line, with previously 
reported fusions [50] indicated in boldface.  Fusion genes are sorted according to the scoring 
scheme described in Methods. 

Figure 3.9 illustrates two of the fusion genes identified by TopHat-Fusion. 

Figure 3.9a shows the reads spanning a fusion between the BCAS3 (breast carcinoma 

amplified sequence 3) gene on chromosome 17 (17q23) and the BCAS4 gene on 

chromosome 20 (20q13), originally found in the MCF7 cell line in 2002 [58]. As 

illustrated in the figure, many reads clearly span the boundary of the fusion between 
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chromosomes 20 and 17, illustrating the single-base precision enabled by TopHat-

Fusion.  Figure 3.9b shows a novel intra-chromosomal fusion product with similarly 

strong alignment evidence that TopHat-Fusion found in BT474 cells.  This fusion 

merges two genes that are 13 megabases apart on chromosome 17: TOB1 (transducer 

of ERBB2, ENSG00000141232) at approximately 48.9 Mb; and SYNRG (synergin 

gamma) at approximately 35.9 Mb. 
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Figure 3.9 Read distributions around two fusions 

chr20 chr17

CGCCAGCCGGACCCCGTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCA

CAGCCGGACCCCGTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCC

CCGGACCCCGTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGG

GACCCCGTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCC

CCCGTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCGA

GTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCG

GCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAG

CTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGG

CTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGC

ATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGCGCG

CTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGCGCGCGA

CTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGCGCGCGAGCT

GTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGCGCGCGAGCTCGC

GACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGCGCGCGAGCTCGCGCT

GCTGATCAGCCGGAGCCCATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTT

GATCAGCCGGAGCCCATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCT

CAGCCGGAGCCCATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCTGAC

CCGGAGCCCATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCTGACCCC

GAGCCCATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCTGACCCCCGG

CCCATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCTGACCCCCGATCC

ATGCGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCTGACCCCCGATCCTGG

CGCAGCGGGGCGCGCGAGCTCGCGCTCTTCCTGACCCCCGATCCTGGGGC

AGCGGGGCGCGCGAGCTCGCGCTCTTCCTGACCCCCGATCCTGGGGCCGA

GGGCGCGCGAGCTCGCGCTCTTCCTGACCCCCGATCCTGGGGCCGAGGTA

CGCGCGAGCTCGCGCTCTTCCTGACCCCCGATCCTGGGGCCG AGGTACCT

GCGAGCTCGCGCTCTTCCTGACCCCCGATCCTGGGGCCG AGGTACCTTTG

AGCTCGCGCTCTTCCTGACCCCCGATCCTGGGGCCG AGGTACCTTTGACG

TCGCGCTCTTCCTGACCCCCGATCCTGGGGCCG AGGTACCTTTGACAGGA

CGCTCTTCCTGACCCCCGATCCTGGGGCCG AGGTACCTTTGACAGGAGCG

CTTCCTGACCCCCGATCCTGGGGCCG AGGTACCTTTGACAGGAGCGTGAC

CCTGACCCCCGATCCTGGGGCCG AGGTACCTTTGACAGGAGCGTGACCCT

GACCCCCGATCCTGGGGCCG AGGTACCTTTGACAGGAGCGTGACCCTGCA

CCCCGATCCTGGGGCCG AGGTACCTTTGACAGGAGCGTGACCCTGCTGGA

CGATCCTGGGGCCG AGGTACCTTTGACAGGAGCGTGACCCTGCTGGAGGT

TCCTGGGGCCG AGGTACCTTTGACAGGAGCGTGACCCTGCTGGAGGTGTG

TGGGGCCG AGGTACCTTTGACAGGAGCGTGACCCTGCTGGAGGTGTGCGG

GGCCG AGGTACCTTTGACAGGAGCGTGACCCTGCTGGAGGTGTGCGGGAG

CCGAGGTACCTTTGACAGGAGCGTGACCCTGCTGGAGGTGTGCGGGAGCT

AGGTACCTTTGACAGGAGCGTGACCCTGCTGGAGGTGTGCGGGAGCTGGC

ACCTTTGACAGGAGCGTGACCCTGCTGGAGGTGTGCGGGAGCTGGCCTGA

GTTGACAGGAGCGTGACCCTGCTGGAGGTGTGCGGGAGCTGGCCTGAGGG

GACAGGAGCGTGACCCTGCTGGAGGTGTGCGGGAGCTGGCCTGAGGGCTT

AGGAGCGTGAACCTGCTGGAGGTGTGCGGGAGCTGGCCTGAGGGCTTCGG

AGCGTGACCCTGCTGGAGGTGTGCGGGAGCTGGCCTGAGGGCTTCGGGCC

GTGACCCTGCTGGAGGTGTGCGGGAGCTGGCCTGAGGGCTTCGGGCTGCG

ACCCTGCTGGAGGTGTGCGGGAGCTGGCCTGAGGGCTTCGGGCTGCGGCA

CTGCTGGAGATGTGCGGGAGCTGGCCTGAGGGCTTCGGGCTGCGGCACAT

CTGGAGGTGTGCGGGAGCTGGCCTGAGGGCTTCGGGCTGCGGCACATGTC

AGGTGTGCGGGAGCTGGCCTGAGGGCTTCGGGCTGCGGCACATGTCCTCC

TGTGCGGGAGCTGGCCTGAGGGCTTCGGGCTGCGGCACATGTCCTCCATG

GCGGGAGCTGGCCTGAGGGCTTCGGGCTGCGGCACATGTCCTCCATGGAG

GGAGCTGGCCTGAGGGCTTCGGGCTGCGGCACATGTCCTCGATGGAGCAC

GCTGGCCTGAGGGCTTCGGGCTGCGGCACATGTCCTCCATGGAGCACACG

CGCCTCAGGGCTTCGGGCTGCGGCACATGTCCTCCATGGAGCACACGGAG

CTGAGGGCTTCGGGCTGCGGCACATGTCCTCCATGGAGCACACGGAGGAG

AGGGCTTCGGGCTGCGGCACATGTCCTCCATGGAGCACACGGAGGAGGGC

GCTTCGGGCTGCGGCACATGTCCTCCATGGAGCACACGGAGGAGGGCCTC

TCGGGCTGCGGCACATGTCCTCCATGGAGCACACGGAGGAGGGCCTCCGG

GGCTGCGGCACATGTCCTCCATGGAGCACACGGAGGAGGGCCTCCGGGAG

chr20 chr17

(a) BCAS4-BCAS3 in MCF7

chr17 chr17

CTCTGTCCTCAGCCCCGCAGCGGCAACGTCTTGCACTCGGCGAGCTCGCC

TGTCCTCGGCCCCGCAGCGGCAACGTCTTGCACTCGGCGAGCTCGCCGCT

CCACAGCCCCGCAGCGGCAACGTCTTGCACTCGGCGAGCTCGCCGCTCCC

CAGCCCCGCAGCGGCAACGTCTTGCACTCGGTGAGCTCGCCGCTCCCGAC

CCCCGCAGCGGCAACGTCTTGCACTCGGCGAGCTCGCCGCTCCCGACCCC

CGCAGCGGCAACGTCTTGCACTCGGCGAGCTCGCCGCTCCCGACCCTCCG

AGCGGCAACGTCTTGCACTCGGCGAGCTCGCCGCTCCCGACCCTCCCGCT

GGCAACGTCTTGCACTCGGCGAGCTCGCCGCTCCCGACCCTCCCGCGCCC

AACGTCTTGCACTCGGCGAGCTCGCCGCTCCCGACCCTCCCGCGCCCCCG

GTCTTGCACTCGGCGAGCTCGCCGCTCCCGACCCTCCCGCGCCCCCGCCC

TTGCACTCGGCGAGCTCGCCGCTCCCGACCCTCCCGCGCCCCCGCCCTGC

CACTCGGCGAGCTCGCCGCTCCCGACCCTCCCGCGCCCCCGCCCTGCCGC

TCGGCGAGCTCGCCGCTCCCGACCCTCCCGCGCCCCCGCCCTGCCGCGCA

GCGAGCTCGCCGCTCCCGNCCCTCCCGCGCCCCCGCCCTGCCGCGCTGCT

AGCTCGCCGCTCCCGACCCGCCCGCGCCCCCGCCCTGCCGCGCTGCTCCC

TCGCCGCTCCCGACCCTCCCGCGCCCCCGCCCTGCCGCGCTGCTCCCCAG

CGCTCCCGACCCTCCCGCGCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAG

TCCCGACCCTCCCGCGCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCG

CGACCCTCCCGCGCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGG

CCCTCCCGCGCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGGGTG

TCCCGCGCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGGGTCTGT

CGCGCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGGGTCTGTGGT

GCCCCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGGGTCTGTGGTCCA

CCCGCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGGGTCTGTGGTCCAAGC

GCCCTGCCGCGCTGCTCCCCGCCCAGCCGCGGGTCTGTGGTCCAAGCCGC

CTGCCGCGCTTCTCCCCGCCCAGCCGCGGGTCTGAGGTCCAAGCCGCCCC

CCGCGCTGCTCCCCGCCCAGCCGCGGGTCTGTGGTCCAAGCCGCCCCGAA

CGCTGCTCCCCGCCCAGCCGCGGGTCTGTGGTCCAAGCCGCCCCGGAGCA

TGCTCCCCGCCCAGCCGCGGGTCTGTGGTCCAAGCCGCCCCGAAGCAGCC

TCCCCGCCCAGCCGCGGGTCTGTGGTCCAAGCCGCCCCGAAGCAGCCCCC

CCGCCCAGCCGCGGGTCTGTGGCNCAAGCCGCCCCGAAGCAGCCC CCAGA

GCGGGTCTGTGGTCCAAGCCGCCCCGAAGCAGCCC CCAGATGAAAACTCG

GGTCTGTGGTCCAAGCCGCCCCGAAGCAGCCC CCAGATGAAAACTCGCTG

GTCCAAGCCGCCCCGAAGCAGCCC CCAGATGAAAACTCGCTGGATTTTTC

AAGCCGCCCCGAAGCAGCCC CCAGATGAAAACTCGCTGGATTTTTCCTCC

CCGCCCCGAAGCAGCCC CCAGATGAAAACTCGCTGGATTTTTCCTCCTGT

CCCCGAAGCAGCCC CCAGATGAAAACTCGCTGGATTTTTCCTCCTGTCTG

CGAAGCAGCCC CCAGATGAAAACTCGCTGGATTTTTCCTCCTGTATGTTA

AGCAGCCC CCAGATGAAAACTCGCTGGATTTTTCCTCCTGTATGTTACGG

AGCCC CCAGATGAAAACTCGCTGGATTTTTCCTCCTGTATGTTACGGCCG

CCTCACAGCCAGATGAAAACTCGCTGGATTTTTCCTCCTGTATGTTACGG

CCCAGATGAAAACTCGCTGGATTTTTCCTCCTGTATGTTACGGCCTGGGA

ATGAAAACTCGCTGGATTTTTCCTCCTGTATGTTACGGCCTGGGATTAAA

AAAACTCGCTGGATTTTTCCTCCTGTATGTTACGGCCTGGGATTAAAAAT

ACTCGCTGGATTTTTCCTCCTGTATGTTACGGCCTGGGATTAAAAATGCT

CGCTGGATTTTTCCTCCCGTATGTTACGGCCTGGGATTAAAAATGCTCAG

TGGATTTTTCCTCCTGTATGTTACGGCCTGGGATTAAAAATGCTCAGGAG

ATTTTTCCTCCTGTATGTTACGGCCTGGGATTAAAAATGCTCAGGAGCTT

TCCTCCTGTATGTTACGGCCTGGGATTAAAAATGCTCAGGAGCTTGCCTG

TCCTGTATGTTACGGCCTGGGATTAAAAATGCTCAGGAGCTTGCCTGTGG

TGTATGTTACGGCCTGGGATTAAAAATGCTCAGGAGCTTGCCTGTGGAGC

TGTTACGGCCTGGGATTAAAAATGCTCAGGAGCTTGCCTGTGGAGTGTGC

TACGGCCTGGGATTAAAAATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTC

GGCCTGGGATTAAAAATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTG

CTGGGATTAAAAATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTGAAT

GGATTAAAAATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTGAATGTG

TTAAAAATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTGAATGTGGAC

AAAATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTGAATGTGGACTCG

ATGCTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTGAATGTGGACTCGAGG

CTCAGGAGCTTGCCTGTGGAGTGTGCCTCTTGAATGTGGACTCGAGGAGC

AGGAGCTTGCCTGTGGAGTGTGCCTCTTGAATGTGGACTCGAGGAGCCGG

AGCTTGCCTGTGGAGTGTGCCTCTTGAATGTGGACTCGAGGAGCCGGGCA

TTGCCTGTGGAGTGTGCCTCTTGAATGTGGACTCGAGGAGCCGG

CCTGTGGAGTGTGCCTCTTGAATGTGGACTCGATGAGCCGG

GTGGAGTGTGCCTCTTGAATGTGGACTCGAGGAGCCGG

GAGTGTGCCTCTTGAATGTGGACTCGAGGAGCCGG

TGTGCCTCTTGAATGTGGACTCGAGGAGCCGG

GCCTCTTGAATGTGGACTCGAGGAGCCGG

TCTTGAATGTGGACTCGAGGAGCCGG

chr17 chr17

(b) TOB1-SYNRG in BT474
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(a) 60 reads aligned by TopHat-Fusion that identify a fusion product formed by the BCAS4 
gene on chromosome 20 and the BCAS3 gene on chromosome 17.  The data contained more 
reads than shown; they are collapsed to illustrate how well they are distributed.  The inset 
figures show the coverage depth in 600-bp windows around each fusion.  (b) 
TOB1(ENSG00000141232)-SYNRG is a novel fusion gene found by TopHat-Fusion, shown 
here with 70 reads mapping across the fusion point.  Note that some of the reads in green 
span an intron (indicated by thin horizontal lines extending to the right), a feature that can be 
detected by TopHat’s spliced alignment procedure. 
 

Single versus paired-end reads  

Using four known fusion genes (GAS6-RASA3, BCR-ABL1, ARFGEF2-

SULF2, and BCAS4-BCAS3), we compared TopHat-Fusion's results using single and 

paired-end reads from the UHR data set (Table 3.4).  All four fusions were detected 

using either type of input data.  Although Maher et al. [50] reported much greater 

sensitivity using paired reads, we found that the ability to detect fusions using single-

end reads, when used with TopHat-Fusion, was sometimes nearly as good as with 

paired reads.  For example, the reads aligning to the BCR-ABL1 fusion provided 

similar support using either single or paired-end data (the TopHat-Fusion paper [19], 

additional file 3).  Among the top 20 fusion genes in the UHR data, 3 had more 

support from single-end reads and 9 had better support from paired-end reads (the 

TopHat-Fusion paper [19], additional file 4).  Note that longer reads might be more 

effective for detecting gene fusions from unpaired reads: Zhao et al. [59] found 4 

inter-chromosomal and 3 intra-chromosomal fusions in a breast cancer cell line 

(HCC1954), using 510,703 relatively long reads (average 254 bp) sequenced using 

454 pyrosequencing technology.  Very recently, the FusionMap system [60] was 

reported to achieve better results, using simulated 75-bp reads, on single-end versus 

paired-end reads when the inner mate distance is short. 
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Read	
  
type	
  

Fusion	
  genes	
  
(left-­‐right)	
  

Chromosomes	
  
(left-­‐right)	
  

5'	
  position	
   3'	
  position	
   Spanning	
  
reads	
  (RPM)	
  

Spanning	
  
pairs	
  

Single	
   GAS6-­‐RASA3	
   13-­‐13	
   114529968	
   114751268	
   15	
  (0.267)	
   	
  
Paired	
   GAS6-­‐RASA3	
   13-­‐13	
   114529968	
   114751268	
   10	
  (0.198)	
   43	
  
Single	
   BCR-­‐ABL1	
   22-­‐9	
   23632599	
   133655755	
   6	
  (0.107)	
   	
  
Single	
   BCR-­‐ABL1	
   22-­‐9	
   23632599	
   133729450	
   3	
  (0.053)	
   	
  
Paired	
   BCR-­‐ABL1	
   22-­‐9	
   23632599	
   133655755	
   2	
  (0.040)	
   7	
  
Paired	
   BCR-­‐ABL1	
   22-­‐9	
   23632599	
   133729450	
   3	
  (0.059)	
   10	
  
Single	
   ARFGEF2-­‐SULF2	
   20-­‐20	
   47538548	
   46365683	
   17	
  (0.302)	
   	
  
Paired	
   ARFGEF2-­‐SULF2	
   20-­‐20	
   47538545	
   46365686	
   10	
  (0.198)	
   30	
  
Single	
   BCAS4-­‐BCAS3	
   20-­‐17	
   49411707	
   59445685	
   25	
  (0.445)	
   	
  
Paired	
   BCAS4-­‐BCAS3	
   20-­‐17	
   49411707	
   59445685	
   13	
  (0.257)	
   145	
  

Table 3.4 Comparisons: single-end and paired-end reads for finding fusions. 
Comparisons of single-end and paired-end reads as evidence for gene fusions in the Universal 
Human Reference (UHR) cell line (a mixture of multiple cancer cell lines), using the known 
fusions GAS6-RASA3, BCR-ABL1, ARFGEF2-SULF2, and BCAS4-BCAS3.  With 
TopHat-Fusion’s ability to align a read across a fusion, the single-end approach is 
competitive with the paired-end based approach.  RPM is the number of reads that span a 
fusion per millon reads sequenced.  For instance, the RPM of single-end reads in GAS6-
RASA3 is 0.267, which is slightly better than the RPM for paired-end reads.  Single-end 
reads may show higher RPM values than paired-ends in part because single-end reads are 
longer (100 bp) than paired-end reads (50 bp) in these data, and therefore they are more likely 
to span fusions. 

Estimate of the false positive rate 

In order to estimate the false positive rate of TopHat-Fusion, we ran it on 

RNA-seq data from normal human tissue, in which fusion transcripts should be 

absent.  Using paired-end RNA-seq reads from two tissue samples (testes and 

thyroid) from the Illumina Body Map 2.0 data [ENA: ERP000546] (see [45] for the 

download web page), the system reported just one and nine fusion transcripts in the 

two samples, respectively.  Considering that each sample comprised approximately 

163 million reads, and assuming that all reported fusions are false positives, the false 

positive rate would be approximately 1 per 32 million reads.  Some of the reported 

fusions may in fact be chimeric sequences due to ligation of cDNA fragments [61], 

which would make the false positive rate even lower.  For this experiment, we 

required five spanning reads and five supporting mate pairs because the number of 

reads is much higher than those of our other test samples.  When the filtering 
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parameters are changed to one read and two mate pairs, TopHat-Fusion predicts 4 and 

43 fusion transcripts in the two samples, respectively (the TopHat-Fusion paper [19], 

additional file 5). 

Because it is also a standalone fusion detection system, we ran FusionSeq 

(0.7.0) [33] on one of our data sets to compare its performance to TopHat-Fusion. 

FusionSeq consists of two main steps: (1) identifying potential fusions based on 

paired-end mappings; and (2) filtering out fusions with a sophisticated filtration 

cascade containing more than ten filters.  Using the breast cancer cell line MCF7, in 

which three true fusions (BCAS4-BCAS3, ARFGEF2-SULF2, RPS6KB1-TMEM49) 

were previously reported, we ran FusionSeq with mappings from Bowtie that 

included discordantly mapped mate pairs.  Note that FusionSeq was designed to use 

the commercial ELAND aligner, but we used the open-source Bowtie instead.  To do 

this, we aligned each end of every mate pair separately, allowing them to be aligned 

to at most two places, and then combined and converted them to the input format 

required by FusionSeq. 

When we required at least two supporting mate pairs for a fusion (the same 

requirement as for our TopHat-Fusion analysis), FusionSeq missed one true fusion 

(RPS6KB1-TMEM49) because it was supported by only one mate pair.  In contrast, 

TopHat-Fusion found this fusion because it was supported by three mate pairs from 

TopHat-Fusion's alignment algorithm: one mate pair contains a read that spans a 

splice junction, and the other contains a read that spans a fusion point.  These spliced 

alignments are not found by Bowtie or ELAND.  With this spliced mapping 

capability, TopHat-Fusion will be expected to have higher sensitivity than those 
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based on non-gapped aligners.  When the minimum number of mate pairs is reduced 

to 1, FusionSeq found all three known fusions at the expense of increased running 

time (9 hours versus just over 2 hours) and a large increase in the number of 

candidate fusions reported (32,646 versus 5,649). 

Next, we ran all of FusionSeq's filters except two (PCR filter and annotation 

consistency filter) that would otherwise eliminate two of the true fusions. FusionSeq 

reported 14,510 gene fusions (the TopHat-Fusion paper [19], additional file 6), 

compared to just 14 fusions reported by TopHat-Fusion (the TopHat-Fusion paper 

[19], additional file 7), where both found the three known fusions. 

Among those fusions reported by FusionSeq, 13,631 and 276 were classified 

as inter-chromosomal and intra-chromosomal, respectively.  When we used all of 

FusionSeq's filters, it reported 763 candidate fusions that include only one of the three 

known fusions. 

FusionSeq reports three scores for each transcript: SPER (normalized number 

of inter-transcript paired-end reads), DASPER (difference between observed and 

expected SPER), and RESPER (ratio of observed SPER to the average of all SPERs). 

Because RESPER is proportional to SPER in the same data, we used SPER and 

DASPER to control the number of fusion candidates: ARFGEF2-SULF2 (SPER, 

1.289452; DASPER, 1.279144), BCAS4-BCAS3 (0.483544, 0.482379), and 

RPS6KB1-TMEM49 (0.161181, 0.133692).  First, we used SPER of 0.161181 and 

DASPER of 0.133692 to find the minimum set of fusion candidates that include the 

three known gene fusions.  This reduced the number of candidates from 14,510 to 
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11,774.  Second, we used the SPER and DASPER values from ARFGEF2-SULF2 

and BCAS4-BCAS3, which resulted in 1,269 and 512 predicted fusions, respectively. 

We next compared TopHat-Fusion with deFuse (0.4.2) [34]. deFuse maps 

read pairs against the genome and against cDNA sequences using Bo wtie, and then 

uses discordantly mapped mate pairs to find candidate regions where fusion break 

points may lie.  This allows detection of break points at base-pair resolution, similar 

to TopHat-Fusion.  After collecting sequences around fusion points, it maps them 

against the genome, cDNAs, and expressed sequence tags using BLAT; this step 

dominates the run time. 

Using two data sets - MCF7 and SKBR3 - we ran both TopHat-Fusion and 

deFuse using the following matched parameters: one minimum spanning read, two 

supporting mate pairs, and 13 bp as the anchor length.  For the MCF7 cell line, both 

programs found the three known fusion transcripts.  For the SKBR3 cell line, both 

programs found the same seven fusions out of nine previously reported fusion 

transcripts (one known fusion, CSE1L-ENSG00000236127, was not considered 

because ENSG00000236127 has been removed from the recent Ensembl database).  

Both programs missed two fusion transcripts: DHX35-ITCH and NFS1-PREX1.  

However, TopHat-Fusion had far fewer false positives: it predicted 42 fusions in 

total, while deFuse predicted 1,670 (the TopHat-Fusion paper [19], additional files 7, 

8 and 9). 

Table 3.5 shows the number of spanning reads and supporting pairs detected 

by TopHat-Fusion and deFuse, respectively, for ten known fusions in SKBR3 and 

MCF7.  The numbers are similar in both programs for the known fusion transcripts.  
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Considering the fact TopHat-Fusion's mapping step does not use annotations while 

deFuse does, this result illustrates that TopHat-Fusion can be highly sensitive without 

relying on annotations.  Finally, we noted that TopHat-Fusion was approximately 

three times faster: for the SKBR3 cell line, it took 7 hours, while deFuse took 22 

hours, both using the same eight-core computer. 

 
SAMPLE	
  

ID	
  
Fusion	
  genes	
  	
  	
  
(left-­‐right)	
  

Chromosomes	
  
(left-­‐right)	
  

TopHat-­‐Fusion	
   deFuse	
  
Spanning	
  
reads	
  

Spanning	
  
pairs	
  

Spanning	
  
reads	
  

Spanning	
  
pairs	
  

SKBR3	
   TATDN1-­‐GSDMB	
   8-­‐17	
   311	
   555	
   322	
   95	
  
SKBR3	
   RARA-­‐PKIA	
   17-­‐8	
   1	
   5	
   1	
   4	
  
SKBR3	
   ANKHD1-­‐PCDH1	
   5-­‐5	
   4	
   15	
   5	
   11	
  
SKBR3	
   CCDC85C-­‐SETD3	
   14-­‐14	
   5	
   6	
   6	
   3	
  
SKBR3	
   SUMF1-­‐LRRFIP2	
   3-­‐3	
   3	
   12	
   5	
   12	
  
SKBR3	
   WDR67-­‐ZNF704	
   8-­‐8	
   3	
   3	
   3	
   2	
  
SKBR3	
   CYTH1-­‐EIF3H	
   17-­‐8	
   18	
   37	
   16	
   27	
  
MCF7	
   BCAS4-­‐BCAS3	
   20-­‐17	
   105	
   284	
   106	
   105	
  
MCF7	
   ARFGEF2-­‐SULF2	
   20-­‐20	
   17	
   20	
   17	
   12	
  
MCF7	
   RPS6KB1-­‐TMEM49	
   17-­‐17	
   4	
   3	
   6	
   2	
  

Table 3.5 Comparisons of TopHat-Fusion and deFuse 
Comparisons of the number of spanning reads and mate pairs reported by TopHat-Fusion and 
deFuse for 10 previously reported fusion transcripts in the SKBR3 and MCF7 sample data. 

 

Unlike FusionSeq and deFuse (as well as other fusion-finding programs), one 

of the most powerful features in TopHat-Fusion is its ability to map reads across 

introns, indels, and fusion points in an efficient way and report the alignments in a 

modified SAM (Sequence Alignment/Map) format [35]. 

 
 

3.4 Conclusions 

Unlike previous approaches based on discordantly mapping paired reads and 

known gene annotations, TopHat-Fusion can find either individual or paired reads 

that span gene fusions, and it runs independently of known genes.  These capabilities 
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increase its sensitivity and allow it to find fusions that include novel genes and novel 

splice variants of known genes.  In experiments using multiple cell lines from 

previous studies, TopHat-Fusion identified 34 of 38 previously known fusions. It also 

found 61 fusion genes not previously reported in those data, each of which had solid 

support from multiple reads or pairs of reads. 
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Chapter 4: Reconstruction and Estimation of Fusion Transcripts 

from RNA-Sequencing reads 

 

Fusion transcripts, in which two distinct genes are fused into a single 

messenger RNA, can be created by several mechanisms: (1) chromosomal 

translocations followed by transcription; (2) read-through transcription of two 

adjacent genes; and (3) trans-splicing of two pre-messenger RNA molecules.  One 

very effective way to detect these fusion events is through the use of RNA sequencing 

reads, in which fusion breakpoints can be detected by aligning them back to a normal 

genome.  Reads surrounding and spanning the breakpoints can be assembled into 

fusion transcripts, and the number of reads can be used to estimate expression 

levels.  Two major factors contrive to make this problem more difficult: first, 

eukaryotic genomes are highly repetitive, meaning the reads can align to many 

places; and second, sequencing errors (e.g., random ligation of two cDNAs) can give 

rise to chimeric transcripts.  The problem of separating genuine fusion transcripts 

from these spurious fusion-like transcripts, which are much more numerous than true 

fusions, is a major algorithmic challenge.  The problem is made harder by the fact 

that reads are non-uniformly distributed across transcripts, making low expression 

level transcripts difficult to detect.  A sensitive and accurate method for identifying 

authentic fusions should be able to utilize as much evidence as possible that serves as 

either positive or negative indicators when filtering out potential fusion 

transcripts.  To address these challenges, we have developed TransFUSE, one of the 
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first software systems that can successfully reconstruct and quantify full-length fusion 

gene transcripts.  The newly developed algorithm, which is built on the TopHat2 and 

Cufflinks systems, can be run with or without known gene annotations, and it can 

discover novel fusion isoforms that are transcribed from known or unknown genes. 

 

4.1 Background 

RNA-sequencing technologies [5, 6, 14, 24] enable us to accurately and 

precisely assemble and quantify isoforms of genes being expressed in cells.  In 

addition to addressing this fundamental question, RNA-seq data is used to detect 

fusion genes [17-19].  Fusion genes can be formed at the genomic level when two 

different chromosomes break and rejoin as illustrated in the first example of Figure 

1.3.  Fusion genes may also emerge as a result of the breakage and rearrangement of a 

single chromosome, in which two originally separate sequences are brought together.  

Most fusion genes have a strong association with distinct types of cancerous tumors, 

although a few others have been reported in normal cells [25, 26].  As of November 

2012, the Mitelman database [27] documented about 62,000 cases of chromosome 

aberrations and gene fusions in cancer.  1,078 gene fusions have been reported with 

1309 participating genes.  In addition to these genomic aberrations, fusion events can 

occur during the transcription process known as read-through transcription, when two 

adjacent genes are transcribed into a single pre-RNA molecule, which is then spliced 

into a fusion mRNA.  This is illustrated in the second example of Figure 1.3.  Akiva 

et al. [29] applied a bioinformatics approach using expressed sequence tags (ESTs) 

and cDNAs downloaded from GenBank [30].  Their results showed that about 2% of 
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human genes are associated with such read-through transcription.  Fusion transcripts 

may be formed post-transcriptionally when two different pre-RNA transcripts from 

two genes are spliced together, forming one single mRNA transcript [31].  This 

process, called trans-splicing, is shown in the third example of Figure 1.3. 

Discovering these fusions via RNA-seq has a distinct advantage over whole-

genome sequencing.  This is due to the fact that in the highly rearranged genomes of 

some tumor samples, many rearrangements might be present, although only a fraction 

might alter transcription.  RNA-seq identifies only those chromosomal fusion events 

that produce transcripts.  It has the further advantage that it allows one to detect 

multiple alternative splice variants that might be produced by a fusion event. 

Because it does not rely on annotation, it can find events involving novel splice 

variants and entirely novel genes. 

Previously we developed a fusion-finding program, TopHat-Fusion, which is 

now a part of TopHat2 with a simple command line switch.  It discovers fusion break 

points and it can also align reads across them.  After its filtration step, TopHat-Fusion 

generates highly sensitive and accurate results.  Using RNA-seq reads from four 

breast cancer cell lines (BT474, SKBR3, KPL4, MCF7).  Edgren et al. [18] initially 

reported 24 novel and 3 known fusion genes in this data sample.  When we applied 

TopHat-Fusion to the same data set, 25 of the 27 fusion genes were retrieved, in 

addition to 51 strong candidates for novel fusion genes.  Approximately one year later, 

Kangaspeska et al. [32] (including Edgren as a coauthor) experimentally verified 13 

additional fusion genes.  TopHat-Fusion’s results already included 9 out of them (see 

Table 4.4). 
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In addition to detection of fusion break points by TopHat-Fusion, we have 

developed Cufflinks-Fusion, a special purpose program of Cufflinks in order to 

reconstruct and quantify isoforms of a fusion gene.  In diploid cells, we have two 

copies of each gene.  For instance, genes a and b have their homologous copies a’ and 

b’, respectively.  A fusion gene may be formed combining genes a and b, while genes 

a’ and b’ remain intact (not involved).  As a result, several transcripts may be 

comprised of fusion transcripts from the fusion gene as well as normal transcripts 

from the intact genes.  The splicing patterns of fusion genes and their relative 

expression levels may be important to understanding underlying causes of some 

diseases.  Expression levels of fusion genes may also be compared with those of 

normal transcripts from intact genes to provide additional insight.  As described 

previously, TopHat-Fusion provides a list of fusion candidates with high sensitivity 

and low false positive rates.  With more evidence available from Cufflinks-Fusion, 

including multiple isoforms of fusion genes and their abundance levels, we can put 

fusion candidates in order, those with more evidence first and those with less 

evidence after.  This will help biologists quickly interpret the data and decide which 

fusions to address first. 

4.2 Methods 

We have developed TransFUSE, a new pipeline, in order to discover fusion 

transcripts using RNA-seq reads.  TransFUSE was built based on TopHat2 and 

Cufflinks-Fusion and consists of three core steps: (1) fusion alignment of reads 

against the reference genome; (2) assembly and quantification of fusion transcript 

based on the alignments from step (1); (3) identification of potential fusion transcripts 
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using the evidence collected from the previous steps.  Figure 4.1 illustrates these main 

steps. 

Fusion alignment step 

As illustrated in part 1 of Figure 2, RNA-seq reads are aligned against the 

reference genome, where most of the reads fall into two categories.  The reads either 

lie entirely within an exon or span two or more exons of normal transcripts.  TopHat2 

effectively handles these cases as follows.  Those reads from one exon are aligned by 

TopHat2’s underlying alignment engine Bowtie.  However, multi-exon spanning 

reads need to be aligned across huge gaps due to introns whose length ranges from 50 

to 100,000 base pairs in mammalian cells.  TopHat2 employs a two-step approach to 

align these types of reads.  First, it identifies splice sites of introns.  Second, it stitches 

together the flanking sequences of introns and then maps reads against the spliced 

sequences using Bowtie.  In contrast to this normal alignment, in RNA-seq samples 

from abnormal cells, we need to align reads that originate from “fusion” transcripts 

because fusion transcripts may comprise sequences from two chromosomes, inverted 

sequences from the same chromosome, or two adjacent sequences that were originally 

far from each other on the same chromosome.  TopHat-Fusion algorithm allows reads 

to map across fusion break points, which is now incorporated into TopHat2 with a 

simple command line switch.  TopHat2 reports these normal and fusion alignments in 

Sequence Alignment/Map (SAM) format [35].  SAM is the most popular format that 

many analysis pipelines use as input.  The following steps of TransFUSE also use the 

SAM file as input. 
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Assembly and quantification of fusion transcripts 

Fusion transcripts can be reconstructed and quantified, using these fusion 

alignments as input.  We have modified Cufflinks [20] to assemble and quantify 

fusion transcripts based on such mapping information.  We will briefly describe the 

following three steps and then elaborate on the assembly and the quantification steps 

(see the Cufflinks paper for more details).  (i) It goes through the SAM file produced 

from TopHat2 and identifies groups of overlapping alignments into bundles, where 

each bundle is likely to represent reads from a normal gene or a fusion gene (see the 

first part of Figure 4.1).  Once it encounters fusion alignments, it stores the fusion 

break points along with the file offset of the bundle to which the break points belong.  

(ii) It assembles fusion transcripts using a set of bundles of overlapping reads and 

fusion break points collected from the above.  Because fusions usually involve two 

distant genomic locations, it is necessary to examine several bundles at the same time 

and combine them into a fusion bundle group.  There may be several conflicting 

fusion points in the same bundle group.  For instance, one fusion break point may 

involve chromosomes 1 and 7 and another chromosomes 1 and 8.  In this case, the 

fusion point supported by most evidence (e.g. # of fusion reads and # of supporting 

pairs) is chosen while the others being discarded.  This strategy can be used as a 

filtering step for false positive fusions.  (iii) It assesses the abundance level of fusion 

transcripts based on the number of reads and pairs belonging to them.   

 

(ii) Assembly algorithm: for each bundle, single or paired alignments are sorted based 

on their mapped locations, which are then represented as vertex in a directed acyclic 
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graph.  If two alignments overlap with each other and they are “compatible” (e.g., 

sharing the same intron or the same break fusion point), then an edge is defined 

between those two vertices.  Based on the graph, Cufflinks finds the minimum 

number of paths covering the graph.  We have extended Cufflinks to handle fusion 

alignments and define new compatibility relationships between several alignment 

types such as non-gapped alignment, spliced alignment, and fusion alignment as 

illustrated in the second part of Figure 4.1. 

 

(iii) Quantification algorithm: Cufflinks-Fusion counts the number of reads or pairs 

by remapping them against each assembled transcript from the above step.  Since 

some transcripts often share some exons of a gene, it is likely that some reads or pairs 

are aligned onto several transcripts.  In order to disambiguate these conflicting cases, 

Cufflinks defines the likelihood of observed data (alignments) given abundance of 

each transcript as parameters.  Cufflinks finds the abundance values that maximize 

the likelihood using EM method.  Cufflinks-Fusion (and therefore TransFUSE) 

reports the expression levels of transcripts using FPKM values.  It also provides row 

counts such as the number of reads and pairs being mapped to each transcript. 
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Figure 4.1 TransFUSE pipeline 
This pipeline comprises of two underlying software: (1) TopHat2 (with fusion alignment 
option) allows reads to be aligned across fusion break points; (2) Cufflinks-Fusion (an 
enhanced version based of Cufflinks v1.3.1) allows assembly and quantification of isoforms 
of a fusion gene and its wild type genes.  
 

Identification of potential fusion transcripts 

At the fusion alignment step, we usually observe hundreds of thousands fusion 

break points for each sample.  Almost all of these fusion break points are false 

positives; they can be attributed to several factors.  For instance, the human genome is 
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highly repetitive, with many sequences that are nearly identical to the combined 

sequences of two distant sequences.  This can be problematic because we usually 

allow a few mismatches in the alignment step to compensate for genomic differences 

between the reference and the sequenced genomes.  This problem can be further 

complicated when we use short reads, which are likely to be aligned to more locations 

of the genome.  False fusion discovery may also arise due to artifacts in sequencing 

steps.  For instance, accidental ligation of two cDNAs results in chimeric sequences 

[62]. 

In order to sort though such an enormous number of fusions, we have defined 

some positive and negative evidence that can be used to identify fusions.  Using the 

evidence, TransFUSE eliminates most of the false positive fusions and orders the 

remaining fusions according to the strength of the evidence.  Such evidence includes: 

(1) the number of reads and pairs that support fusion points; (2) sequence similarity; 

(3) longer transcripts with high and uniform coverage by reads; and (4) alternative 

splicing around a fusion break point (involving different flanking exons) and different 

transcript structures on either side or both sides of a fusion gene, which seems to 

happen even when they share the same flanking exons. 

First, our program requires a certain number of reads and pairs that directly 

support a given fusion break point (e.g., 2 reads and 3 pairs).  The more sequenced 

reads we use, the higher number of reads and pairs can be used to filter out fusions.  

Second, the flanking sequences around fusion break points are combined, and they 

are searched against known gene sequences.  If matching with high similarity (e.g. 

>90%) is found, they may not be real, but just instead due to just sequence similarity.  
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As reported in Edgren et al. [18], true fusion transcripts have reads mapping 

uniformly in a wide window across the fusion point, whereas false positive fusions 

are narrowly covered.  Our scoring scheme prefers fusions whose window has no 

gaps (or small gaps), has uniform depth, and is highly covered by reads.  These 

filtration steps usually reduce the number to tens of fusions for a single sample. 

During the assembly step of Cufflinks-Fusion, there may be many fusions in 

the same bundle and conflicting with one another.  Instead of trying to assemble 

every possible fusion, Cufflinks-Fusion chooses just a few of them with the most 

evidence such as the number of supporting reads and pairs, and assembles the 

selected fusions.  Thus, if there are no assembly results for some fusions, it is mostly 

the case that there are some other fusions with better supports.  Put another way, the 

very existence of assemblies can be used as positive evidence: therefore we add some 

positive scores to fusions with assembled transcripts.  In addition, some of real 

fusions may have alternatively spliced transcripts around fusion break points, that is, 

having different exons flanking the break points.  We prefer fusions with such 

evidence by adding some positive scores.  Similarly, if a fusion gene has several 

transcripts with the same exons flanking the same fusion break point, but different 

sets of exons on either side or both sides of the break point, we also add some positive 

scores to those cases.  The structural difference among the transcripts may not be 

direct evidence for true fusions, but it may be worth paying more attention than those 

without such transcripts. 
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4.3 Results 

In order to evaluate the performance of TransFUSE system, we used two data 
sets: 
(1) Edgren et al. [18] and (2) Seo, Ju, Lee et al. [63] as shown in Table 4.1. 
 
 
Data source Sample 

ID 
Read 
type 

Fragment 
length 

Read 
Length 

Number of 
fragments  

Edgren et al.  BT474 Paired 100, 200 50 21,423,697 
Edgren et al.  SKBR3 Paired 100, 200 50 18,140,246 
Edgren et al.  KPL4 Paired 100 50 6,796,443 
Edgren et al.  MCF7 Paired 100 50 8,409,785 
Seo, Ju, Lee et al.  LC_S42 Paired 250 101 41045273 
Table 4.1 RNA-seq data used to evaluate TransFUSE. 
The data came from two studies, and included four samples from breast cancer cells (BT474, 
SKBR3, KPL4, MCF7) and one sample (LC_S42) from lung cancer cells.  For paired-end 
data, two reads were generated from each fragment; thus the total number of reads is twice 
the number of fragments. 

We mapped all reads to the human genome (UCSC hg19) with TopHat2 

(v2.0.7) with fusion alignment enabled.  Based on the alignments, we assembled and 

quantified fusion transcripts using Cuffliks-Fusion.  We subsequently applied 

TopHat-Fusion’s filtering algorithm (implemented in “tophat-fusion-post,” which is a 

part of TopHat2) to identify the genes involved in each fusion using the RefSeq and 

Ensembl human annotations (see Methods for detailed description).  63 fusions from 

Edgren et al. are present in Table2, 34 of which are true fusions. 

 
 

SAMPLE	
  
ID	
  

Fusion	
  genes	
  (left-­‐right)	
   Chromosomes	
  
(left-­‐right)	
  

5'	
  position	
   3'	
  position	
   Spanning	
  
reads	
  

Spanning	
  
pairs	
  

Transcripts	
  
assembled?	
  

SKBR3	
   TATDN1-­‐GSDMB	
   8-­‐17	
   125551265	
   38066176	
   324	
   485	
   Yes	
  
BT474	
   THRA-­‐SKAP1	
   17-­‐17	
   38243105	
   46384692	
   25	
   53	
   Yes	
  
BT474	
   SNF8-­‐RPS6KB1	
   17-­‐17	
   47021336	
   57970685	
   57	
   81	
   Yes	
  
BT474	
   MRPL45-­‐TRPC4AP	
   17-­‐20	
   36476501	
   33665848	
   3	
   11	
   Yes	
  
MCF7	
   USP32-­‐PPM1D	
   17-­‐17	
   58342772	
   58679978	
   2	
   5	
   Yes	
  
BT474	
   MYO19-­‐SKA2	
   17-­‐17	
   34863350	
   57232491	
   5	
   14	
   Yes	
  
MCF7	
   BCAS3-­‐BCAS4	
   17-­‐20	
   59445687	
   49411709	
   103	
   286	
   Yes	
  
BT474	
   SYNRG-­‐TOB1	
   17-­‐17	
   35880750	
   48943418	
   28	
   87	
   Yes	
  
BT474	
   IKZF3-­‐VAPB	
   17-­‐20	
   37934019	
   56964572	
   19	
   51	
   Yes	
  
BT474	
   ENSG00000248527-­‐GNAS	
   1-­‐20	
   569609	
   57484588	
   1	
   6	
   No	
  
KPL4	
   NUP214-­‐NOTCH1	
   9-­‐9	
   134062675	
   139438475	
   3	
   8	
   Yes	
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BT474	
   MED1-­‐ACSF2	
   17-­‐17	
   37595417	
   48548388	
   10	
   20	
   Yes	
  
SKBR3	
   SUMF1-­‐LRRFIP2	
   3-­‐3	
   4418013	
   37170639	
   5	
   7	
   Yes	
  
SKBR3	
   SSH2-­‐EFCAB5	
   17-­‐17	
   28030079	
   28256955	
   1	
   6	
   Yes	
  
BT474	
   ENSG00000248527-­‐PCBD2	
   1-­‐5	
   569609	
   134263267	
   3	
   5	
   No	
  
BT474	
   BCAS3-­‐MED13	
   17-­‐17	
   59469337	
   60129897	
   3	
   14	
   Yes	
  
BT474	
   RAE1-­‐STX16	
   20-­‐20	
   55929087	
   57227142	
   6	
   35	
   Yes	
  
BT474	
   ACACA-­‐STAC2	
   17-­‐17	
   35479452	
   37374425	
   66	
   100	
   Yes	
  
SKBR3	
   ZNF704-­‐WDR67	
   8-­‐8	
   81733849	
   124096579	
   3	
   6	
   Yes	
  
BT474	
   CPNE1-­‐PI3	
   20-­‐20	
   34243123	
   43804501	
   2	
   6	
   Yes	
  
KPL4	
   BSG-­‐NFIX	
   19-­‐19	
   580781	
   13135834	
   12	
   39	
   Yes	
  
BT474	
   AHCTF1-­‐NAAA	
   1-­‐4	
   247094879	
   76846963	
   12	
   41	
   Yes	
  
MCF7	
   TMEM49-­‐RPS6KB1	
   17-­‐17	
   57917128	
   57992063	
   6	
   8	
   Yes	
  
SKBR3	
   CSE1L-­‐ENSG00000236127	
   20-­‐20	
   47688989	
   47956856	
   12	
   38	
   Yes	
  
MCF7	
   SULF2-­‐ZNF217	
   20-­‐20	
   46415148	
   52210645	
   12	
   33	
   Yes	
  
SKBR3	
   MRPS28-­‐TPD52	
   8-­‐8	
   80831382	
   80954854	
   3	
   4	
   Yes	
  
SKBR3	
   ANKHD1-­‐PCDH1	
   5-­‐5	
   139825559	
   14123400	
   5	
   22	
   Yes	
  
KPL4	
   PARP1-­‐ENSG00000227105	
   1-­‐13	
   226579911	
   111589382	
   1	
   36	
   No	
  
MCF7	
   FOXA1-­‐ENSG00000254868	
   14-­‐14	
   38061534	
   38184710	
   4	
   50	
   Yes	
  
SKBR3	
   SETD3-­‐CCDC85C	
   14-­‐14	
   99880270	
   99880270	
   5	
   5	
   Yes	
  
BT474	
   CEP250-­‐ZMYND8	
   20-­‐20	
   34078462	
   45852969	
   8	
   58	
   Yes	
  
SKBR3	
   SNTB1-­‐KLHDC2	
   8-­‐14	
   121561197	
   50249311	
   2	
   5	
   Yes	
  
BT474	
   ENSG00000229344-­‐ERBB2	
   1-­‐17	
   568761	
   37880978	
   2	
   21	
   No	
  
BT474	
   TTI1-­‐DIDO1	
   20-­‐20	
   36634798	
   61569147	
   1	
   11	
   Yes	
  
MCF7	
   RSBN1-­‐AP4B1	
   1-­‐1	
   114354329	
   114442495	
   6	
   9	
   Yes	
  
BT474	
   MCF2L-­‐LAMP1	
   13-­‐13	
   113718617	
   113951809	
   2	
   6	
   Yes	
  
KPL4	
   MUC20-­‐ENSG00000236833	
   3-­‐3	
   195456609	
   197391652	
   7	
   12	
   Yes	
  
BT474	
   GABRA3-­‐	
  ZNF185	
   X-­‐X	
   151468339	
   152114007	
   1	
   6	
   Yes	
  
SKBR3	
   DIO2-­‐ENSG00000249517	
   14-­‐14	
   80669630	
   80854020	
   2	
   4	
   Yes	
  
MCF7	
   SULF2-­‐ARFGEF2	
   20-­‐20	
   46365685	
   47538546	
   21	
   40	
   Yes	
  
BT474	
   ENSG00000198744-­‐ATP5B	
   1-­‐12	
   569880	
   57038738	
   1	
   13	
   No	
  
SKBR3	
   EIF3H-­‐	
  CYTH1	
   8-­‐17	
   117768257	
   76778283	
   19	
   33	
   Yes	
  
SKBR3	
   DHFR-­‐H19	
   5-­‐11	
   79946842	
   2017318	
   1	
   6	
   No	
  
BT474	
   WBSCR17-­‐FBXL20	
   7-­‐17	
   70958326	
   37557613	
   2	
   7	
   Yes	
  
BT474	
   ENSG00000225630-­‐HFM1	
   1-­‐1	
   570103	
   91853140	
   12	
   42	
   No	
  
BT474	
   HFM1-­‐DLG2	
   1-­‐11	
   91853144	
   85195025	
   2	
   9	
   No	
  
KPL4	
   EEF1DP3-­‐FRY	
   13-­‐13	
   32520314	
   32652967	
   2	
   8	
   Yes	
  
BT474	
   CMTM7-­‐GLB1	
   3-­‐3	
   32483331	
   33055547	
   2	
   8	
   Yes	
  
MCF7	
   ENSG00000224738-­‐TMEM49	
   17-­‐17	
   57184951	
   57915655	
   4	
   9	
   No	
  
MCF7	
   LRP1B-­‐PLXDC1	
   2-­‐17	
   142237963	
   37265642	
   2	
   5	
   Yes	
  
KPL4	
   ENSG00000249796-­‐MUC20	
   3-­‐3	
   195352201	
   195456609	
   7	
   267	
   No	
  
MCF7	
   PRRC2A-­‐ENSG00000224067	
   6-­‐9	
   31604384	
   114565349	
   2	
   5	
   No	
  
KPL4	
   SEPT10-­‐PPP1R12A	
   2-­‐12	
   110343414	
   80211173	
   4	
   6	
   Yes	
  
MCF7	
   CARM1-­‐SMARCA4	
   19-­‐19	
   11015626	
   11097268	
   2	
   4	
   Yes	
  
BT474	
   STARD3-­‐DOK5	
   17-­‐20	
   37793483	
   53259996	
   6	
   10	
   Yes	
  
BT474	
   MYO9B-­‐RAB22A	
   19-­‐20	
   17256206	
   56886177	
   8	
   22	
   Yes	
  
SKBR3	
   ENSG00000243185-­‐KRT18	
   4-­‐12	
   70296743	
   53342904	
   3	
   14	
   No	
  
BT474	
   PPP6R3-­‐SHANK2	
   11-­‐11	
   68228294	
   70803333	
   4	
   12	
   Yes	
  
BT474	
   MED1-­‐STXBP4	
   17-­‐17	
   37607290	
   53218670	
   13	
   16	
   Yes	
  
MCF7	
   ENSG00000233459-­‐ ZNF207	
   2-­‐17	
   204499953	
   30692348	
   1	
   49	
   No	
  
KPL4	
   BAG4-­‐ENSG00000255107	
   8-­‐8	
   38066752	
   70771975	
   1	
   8	
   No	
  
SKBR3	
   PKIA-­‐RARA	
   8-­‐17	
   79510592	
   38465537	
   1	
   6	
   Yes	
  
BT474	
   PCBD2-­‐UBB	
   5-­‐17	
   134259838	
   16284410	
   1	
   5	
   No	
  

Table 4.2 TransFUSE detected 63 fusions, 34 of which are genuine fusions. 
Using four breast cancer cell lines (BT474, SKBR3, KPL4, MCF7), Edgren et al. [18] 
initially discovered 27 true fusion genes.  Later, the same research group (Kangaspeska et al. 
[32]) improved their bioinformatics pipeline, leading to the discovery of an additional 13 
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fusion genes.  The results include 34 out of the 40 true fusion genes.  The 25 fusions verified 
by Edgren et al. are shown in boldface, whereas the 9 fusions by Kangaspeska et al. shown in 
boldface and red. 

 

Figure 4.2 shows one example from TransFUSE’s output, a set of fusion and 

normal transcripts.  These transcripts presumably arise from the known fusion gene 

MRPL45-TRPC4AP and its wild type genes in the BT474 sample.  TransFUSE’s 

output includes depth coverage across the transcripts, the coordinates of the exons in 

each transcript, and the number of reads and pairs that map to each transcript.  

TransFUSE also provides a FPKM value, which represents the abundance of each 

transcript (FPKM stands for Fragments Per Kilobase of transcript per Million mapped 

fragments).  FPKM takes into consideration the length of a transcript in calculating 

the expression level of the transcript. 

Some of the fusion genes appear to be alternatively spliced.  For instance, 

SUMF1-LRRFIP2 from the SKBR3 sample has 3 fusion transcripts as illustrated in 

the first example of Figure 4.3.  The fusion transcripts #3 and #4 appear to have the 

same exons flanking of the fusion break point.  However, they have different 

transcript structures: #4 has one additional exon, #11, on the right partner gene 

TRPC4AP.  The fusion transcript #2 includes a left flanking exon different from those 

of #3 and #4.  It also involves a different splicing pattern on the right partner gene.  It 

is noteworthy that a fusion gene is expressed, while one or both of the two wild type 

genes may not be expressed.  For instance, the fusion gene IKZF3-VAPB (shown in 

the second example of Figure 4.3) produces three different fusion transcripts.  In 

contrast to the three normal transcripts expressed from a wild type gene VAPB, the 

other wild type IKZF3 may be expressed at a very low level, or not expressed at all. 
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Cufflinks-Fusion is able to assemble 33 fusions of the 34 known fusions in the 

four breast cancer samples.  A total of 17 fusions in the list are not assembled mostly 

because they do not have enough mapped reads or pairs to reconstruct transcripts.  

There may be too many other fusion break points nearby that conflict with the 

genuine one.  In this case, the assembly algorithm often chooses just a few of them 

that may not include the true fusion. 

 
 
 

 
Figure 4.2 A set of fusion and normal transcripts from a known fusion gene 
(MRPL45-TRPC4AP) and its wild type genes, generated by TransFUSE using a 
breast cancer cell sample (BT474). 



 

 101 
 

TransFUSE generates output in html format.  The figure is a part of the output.  There are 
four transcripts;  a transcript number is given on the left side of each transcript.  The first two 
of them are normal transcripts, most likely coming from a wild type MRPL45 (shown in red).  
The third one is a fusion transcript, and the last one is from a wild type TRPC4AP (shown in 
blue).  Red- and blue-colored boxes represent exons from MRPL45 and TRPC4AP, 
respectively.  Introns are indicated by thin black lines.  Coverage depths are shown in green.  
Exons, introns, and coverage depths are scaled to fit into the smaller display of the output.  
The order of exons in their respective transcripts is indicated by the small numbers below the 
bottom left corner of the exons.  These numbers facilitate reference to the genomic 
coordinates of the transcripts or exons in the table at the bottom (note that this number is not 
equal to the exon number).  The table also shows the number of pairs and reads that map to 
each transcript along with FPKM value. 
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Figure 4.3 Two known fusion genes SUMF1-LRRFIP2 in SKBR3 sample and 
IKZF3-VAPB in BT474 sample are shown. 
The upper example shows six transcripts.  Three of them are normal transcripts, most likely 
coming from either wild type gene SUMF1 or LRRFIP2.  The others are fusion transcripts.  
The fusion transcripts #3 and #4 appear to have the same flanking exons in common, but it 
has different transcript structures where #4 transcript has one additional exon, #11.  The 
fusion transcript #1 includes a left flanking exon different from those of #3 and #4.  The 
fusion gene IKZF3-VAPB at the bottom produces three different fusion transcripts.  While 
three normal transcripts are made from a wild type gene VAPB, the other wild type IKZF3 
may not be expressed or expressed at low level if at all. 
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For the lung cancer cell sample (LC_S42), we found 8 fusion candidates in 

addition to a known fusion gene KIF5B-RET [63] (see Table 4.3). 

 
 

SAMPLE	
  
ID	
  

Fusion	
  genes	
  (left-­‐right)	
   Chromosomes	
  
(left-­‐right)	
  

5'	
  position	
   3'	
  position	
   Spanning	
  
reads	
  

Spanning	
  
pairs	
  

Transcripts	
  
assembled?	
  

LC_S42	
   HEBP2-­‐VTA1	
   6-­‐6	
   138734016	
   142525201	
   118	
   52	
   Yes	
  
LC_S42	
   KIF5B-­‐RET	
   10-­‐10	
   32317355	
   43612031	
   57	
   13	
   Yes	
  
LC_S42	
   ENSG00000211653-­‐IGLL5	
   22-­‐22	
   22764609	
   23235959	
   15	
   32	
   Yes	
  
LC_S42	
   CCT2-­‐LGR5	
   12-­‐12	
   69987392	
   71835366	
   131	
   28	
   Yes	
  
LC_S42	
   NMBR-­‐CPM	
   6-­‐12	
   142400039	
   69326457	
   23	
   14	
   Yes	
  
LC_S42	
   HECA-­‐CPM	
   6-­‐12	
   139491700	
   69326457	
   62	
   50	
   Yes	
  
LC_S42	
   OVCH2-­‐LOC283299	
   11-­‐11	
   7726220	
   7900553	
   2	
   4	
   Yes	
  
LC_S42	
   INS-­‐COIL	
   11-­‐17	
   2153283	
   55015815	
   2	
   2	
   Yes	
  
LC_S42	
   KIF5B-­‐RET	
   10-­‐10	
   32311963	
   43610099	
   6	
   3	
   Yes	
  

Table 4.3 Fusions found by TransFUSE using one lung cancer cell sample 
(LC_S42). 
Seo, Ju, Lee et al. [63] previously reported one fusion gene KIF5B-RET (shown in boldface).  
Note that there is another fusion gene candidate KIF5B-RET at the 9th row.  This fusion gene 
is different from the one at the 2nd row in terms of the location of a fusion break point and in 
that different strands of the two genes are combined forming the fusion gene. 
 

4.4 Conclusions 

TransFUSE augments our previous fusion-finding program, TopHat-Fusion 

(now a part of TopHat2) with additional functionalities such as assembling and 

quantifying fusion and normal transcripts that together comprise isoforms of a fusion 

gene and its wild type genes.  Previous results from TopHat-Fusion [19] 

demonstrated it is highly sensitive and its false positive rate is relatively low.  With 

more evidence available from TransFUSE, such as several isoforms of a fusion gene 

and the expression levels of transcripts, we can sort fusion candidates in a fashion that 

fusions with more evidence appear before those with less evidence.  This can help 

biologists quickly interpret the data and decide which fusions to address first.  Unlike 

previous approaches that simply provide a list of candidate fusions (genomic 
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locations of break points), TransFUSE provides detailed information about full-length 

fusion transcripts.  These capabilities enable one to infer the potential function of a 

fusion gene by examining the participating exons of the transcripts and their splicing 

patterns and perhaps to identify a basis for the underlying causes of diseases.  

Expression levels of fusion genes may also be compared with those of normal 

transcripts from wild type genes to provide additional insight. 

 

4.5 Supplementary Material 

 

SAMPLE	
  
ID	
  

Fusion	
  genes	
  (left-­‐right)	
   Chromosomes	
  
(left-­‐right)	
  

5'	
  position	
   3'	
  position	
   Spanning	
  
reads	
  

Spanning	
  
pairs	
  

BT474	
   TRPC4AP-­‐MRPL45	
   20-­‐17	
   33665850	
   36476499	
   2	
   9	
  
BT474	
   TOB1-­‐SYNRG	
   17-­‐17	
   48943418	
   35880750	
   26	
   47	
  
SKBR3	
   TATDN1-­‐GSDMB	
   8-­‐17	
   125551264	
   38066175	
   311	
   555	
  
BT474	
   THRA-­‐SKAP1	
   17-­‐17	
   38243102	
   46384689	
   28	
   46	
  
MCF7	
   BCAS4-­‐BCAS3	
   20-­‐17	
   49411707	
   59445685	
   105	
   284	
  
BT474	
   ACACA-­‐STAC2	
   17-­‐17	
   35479452	
   37374425	
   57	
   59	
  
BT474	
   STX16-­‐RAE1	
   20-­‐20	
   57227142	
   55929087	
   6	
   24	
  
BT474	
   MED1-­‐ACSF2	
   17-­‐17	
   37595419	
   48548386	
   10	
   12	
  
MCF7	
   ENSG00000254868-­‐FOXA1	
   14-­‐14	
   38184710	
   38061534	
   2	
   22	
  
SKBR3	
   ANKHD1-­‐PCDH1	
   5-­‐5	
   139825557	
   141234002	
   4	
   15	
  
BT474	
   ZMYND8-­‐CEP250	
   20-­‐20	
   45852972	
   34078459	
   10	
   53	
  
BT474	
   AHCTF1-­‐NAAA	
   1-­‐4	
   247094879	
   76846963	
   10	
   42	
  
SKBR3	
   SUMF1-­‐LRRFIP2	
   3-­‐3	
   4418012	
   37170638	
   3	
   12	
  
KPL4	
   BSG-­‐NFIX	
   19-­‐19	
   580779	
   13135832	
   12	
   27	
  
BT474	
   VAPB-­‐IKZF3	
   20-­‐17	
   56964574	
   37922743	
   4	
   14	
  
BT474	
   DLG2-­‐HFM1	
   11-­‐1	
   85195025	
   91853144	
   2	
   10	
  
SKBR3	
   CSE1L-­‐ENSG00000236127	
   20-­‐20	
   47688988	
   47956855	
   13	
   31	
  
MCF7	
   RSBN1-­‐AP4B1	
   1-­‐1	
   114354329	
   114442495	
   6	
   7	
  
BT474	
   MED13-­‐BCAS3	
   17-­‐17	
   60129899	
   59469335	
   3	
   14	
  
MCF7	
   ARFGEF2-­‐SULF2	
   20-­‐20	
   47538545	
   46365686	
   17	
   20	
  
BT474	
   HFM1-­‐ENSG00000225630	
   1-­‐1	
   91853144	
   565937	
   2	
   43	
  
KPL4	
   MUC20-­‐ENSG00000249796	
   3-­‐3	
   195456606	
   195352198	
   13	
   46	
  
KPL4	
   MUC20-­‐ENSG00000236833	
   3-­‐3	
   195456612	
   197391649	
   8	
   15	
  
MCF7	
   RPS6KB1-­‐TMEM49	
   17-­‐17	
   57992061	
   57917126	
   4	
   3	
  
SKBR3	
   WDR67-­‐ZNF704	
   8-­‐8	
   124096577	
   81733851	
   3	
   3	
  
BT474	
   CPNE1-­‐PI3	
   20-­‐20	
   34243123	
   43804501	
   2	
   6	
  
BT474	
   ENSG00000229344-­‐RYR2	
   1-­‐1	
   568361	
   237766339	
   1	
   19	
  
BT474	
   LAMP1-­‐MCF2L	
   13-­‐13	
   113951808	
   113718616	
   2	
   6	
  
MCF7	
   SULF2-­‐ZNF217	
   20-­‐20	
   46415146	
   52210647	
   11	
   32	
  
BT474	
   WBSCR17-­‐FBXL20	
   7-­‐17	
   70958325	
   37557612	
   2	
   8	
  
MCF7	
   ENSG00000224738-­‐TMEM49	
   17-­‐17	
   57184949	
   57915653	
   5	
   6	
  
MCF7	
   ANKRD30BL-­‐RPS23	
   2-­‐5	
   133012791	
   81574161	
   2	
   6	
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BT474	
   ENSG00000251948-­‐SLCO5A1	
   19-­‐8	
   24184149	
   70602608	
   2	
   6	
  
BT474	
   GLB1-­‐CMTM7	
   3-­‐3	
   33055545	
   32483333	
   2	
   6	
  
KPL4	
   EEF1DP3-­‐FRY	
   13-­‐13	
   32520314	
   32652967	
   2	
   4	
  
MCF7	
   PAPOLA-­‐AK7	
   14-­‐14	
   96968936	
   96904171	
   3	
   3	
  
BT474	
   ZNF185-­‐GABRA3	
   X-­‐X	
   152114004	
   151468336	
   2	
   3	
  
KPL4	
   PPP1R12A-­‐SEPT10	
   12-­‐2	
   80211173	
   110343414	
   3	
   8	
  
BT474	
   SKA2-­‐MYO19	
   17-­‐17	
   57232490	
   34863349	
   5	
   12	
  
MCF7	
   LRP1B-­‐PLXDC1	
   2-­‐17	
   142237963	
   37265642	
   2	
   5	
  
BT474	
   NDUFB8-­‐TUBD1	
   10-­‐17	
   102289117	
   57962592	
   1	
   49	
  
BT474	
   ENSG00000225630-­‐

NOTCH2NL	
  
1-­‐1	
   565870	
   145277319	
   1	
   18	
  

SKBR3	
   CYTH1-­‐EIF3H	
   17-­‐8	
   76778283	
   117768257	
   18	
   37	
  
BT474	
   PSMD3-­‐ENSG00000237973	
   17-­‐1	
   38151673	
   566925	
   1	
   12	
  
BT474	
   STARD3-­‐DOK5	
   17-­‐20	
   37793479	
   53259992	
   2	
   10	
  
BT474	
   DIDO1-­‐TTI1	
   20-­‐20	
   61569147	
   36634798	
   1	
   10	
  
BT474	
   RAB22A-­‐MYO9B	
   20-­‐19	
   56886176	
   17256205	
   8	
   20	
  
KPL4	
   PCBD2-­‐ENSG00000240967	
   5-­‐5	
   134259840	
   99382129	
   1	
   32	
  
SKBR3	
   RARA-­‐PKIA	
   17-­‐8	
   38465535	
   79510590	
   1	
   5	
  
BT474	
   MED1-­‐STXBP4	
   17-­‐17	
   37607288	
   53218672	
   13	
   11	
  
KPL4	
   C1orf151-­‐ENSG00000224237	
   1-­‐3	
   19923605	
   27256479	
   1	
   5	
  
SKBR3	
   RNF6-­‐FOXO1	
   13-­‐13	
   26795971	
   41192773	
   2	
   13	
  
SKBR3	
   BAT1-­‐ENSG00000254406	
   6-­‐11	
   31499072	
   119692419	
   2	
   30	
  
BT474	
   KIAA0825-­‐PCBD2	
   5-­‐5	
   93904985	
   134259811	
   1	
   19	
  
SKBR3	
   PCBD2-­‐ANKRD30BL	
   5-­‐2	
   134263179	
   133012790	
   1	
   5	
  
BT474	
   ENSG00000225630-­‐

MTRNR2L8	
  
1-­‐11	
   565457	
   10530147	
   1	
   35	
  

BT474	
   PCBD2-­‐ENSG00000251948	
   5-­‐19	
   134260431	
   24184146	
   2	
   6	
  
BT474	
   ANKRD30BL-­‐

ENSG00000237973	
  
2-­‐1	
   133012085	
   567103	
   2	
   8	
  

KPL4	
   ENSG00000225972-­‐
HSP90AB1	
  

1-­‐6	
   564639	
   44220780	
   1	
   7	
  

BT474	
   MTIF2-­‐ENSG00000228826	
   2-­‐1	
   55470625	
   121244943	
   1	
   11	
  
BT474	
   ENSG00000224905-­‐PCBD2	
   21-­‐5	
   15457432	
   134263223	
   2	
   7	
  
BT474	
   RPS6KB1-­‐SNF8	
   17-­‐17	
   57970686	
   47021335	
   48	
   57	
  
BT474	
   MTRNR2L8-­‐PCBD2	
   11-­‐5	
   10530146	
   134263156	
   1	
   6	
  
BT474	
   RPL23-­‐ENSG00000225630	
   17-­‐1	
   37009355	
   565697	
   3	
   19	
  
BT474	
   MTRNR2L2-­‐PCBD2	
   5-­‐5	
   79946288	
   134259832	
   1	
   5	
  
SKBR3	
   ENSG00000240409-­‐PCBD2	
   1-­‐5	
   569005	
   134260124	
   2	
   4	
  
SKBR3	
   PCBD2-­‐ENSG00000239776	
   5-­‐12	
   134263289	
   127650986	
   2	
   3	
  
BT474	
   ENSG00000239776-­‐

MTRNR2L2	
  
12-­‐5	
   127650981	
   79946277	
   2	
   3	
  

BT474	
   JAK2-­‐TCF3	
   9-­‐19	
   5112849	
   1610500	
   1	
   46	
  
KPL4	
   NOTCH1-­‐NUP214	
   9-­‐9	
   139438475	
   134062675	
   3	
   5	
  
BT474	
   MTRNR2L8-­‐TRBV25OR92	
   11-­‐9	
   10530594	
   33657801	
   4	
   4	
  
BT474	
   MTRNR2L8-­‐AKAP6	
   11-­‐14	
   10530179	
   32953468	
   1	
   5	
  
BT474	
   ENSG00000230916-­‐PCBD2	
   X-­‐5	
   125606246	
   134263219	
   1	
   5	
  
MCF7	
   ENSG00000226505-­‐MRPL36	
   2-­‐5	
   70329650	
   1799907	
   5	
   20	
  
SKBR3	
   CCDC85C-­‐SETD3	
   14-­‐14	
   100002351	
   99880270	
   5	
   6	
  
BT474	
   RPL23-­‐ENSG00000230406	
   17-­‐2	
   37009955	
   222457168	
   109	
   5	
  

Table 4.4 76 fusions initially identified by TopHat-Fusion. 
This table was excerpted from the TopHat-Fusion paper [19], Table 2 and modified as 
follows.  This is a list of 76 of fusion gene previously predicted by TopHat-Fusion at which 
time 24 of them were known to be true (shown in boldface).  Additional 9 new fusion genes 
validated by Kangaspeska et al. [32] are shown in boldface and red. 
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Chapter 5:  A proposal for a new RNA-seq alignment pipeline 
 

5.1 Limitations of current approaches to the problem of RNA-seq alignment 

Chapter 2 covered two popular methods of aligning RNA-seq reads against 

the reference genome.  Many alignment programs employ a one-step approach in 

which a read is aligned independently of other reads.  Most aligners rely on k-mer 

(usually with k >10 bp) mapping to initially identify potential read origin locations in 

the genome.  Some of the reads are easily aligned with this approach when they have 

enough bases (>= k) around splicing events or indels.  For such reads, we can 

effectively narrow down the range where events lie, as reads' k-mer mapping allows 

us to identify the left and right boundaries between which these events fall.  However, 

other reads that have few bases on either side of such events are extremely hard or 

inefficient to align due to the short anchors.  Thus, this approach tends to misalign or 

fail to align those short-anchored reads.  This is a nontrivial issue for RNA-seq 

alignment, considering a significant portion of reads (e.g., about 20% of 100-bp 

reads) is estimated to have at most a 10-bp anchor on either side of the introns.  In 

contrast, some other aligners such as TopHat and MapSplice use a two-step approach.  

First, they find and collect splice sites using reads that have a sufficient amount of 

bases around them.  The sequences flanking the splice sites then are glued together, 

producing spliced sequences.  Second, reads lacking sufficiently long anchors are 

aligned against the spliced sequences, and then their “transcriptomic” coordinates are 

converted into the corresponding genomic coordinates.  This two-step approach 

provides a highly sensitive and accurate alignment compared to the one-step method.  
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However, this is at the cost of much more I/O processing and time due to the two 

alignment steps: initial alignments of the reads and subsequent alignments of those 

initially unmapped reads. 

 

Figure 5.1 Limitations of TopHat2 pipeline 
Details are given in the text. 
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In addition to these inherent limitations of the two-step approach, TopHat2 

has its own specific issues this suggests room for further improvement.  First, it is 

hard to detect indels near splice sites.  TopHat2 works well for simpler cases in which 

reads include just one event.  With a high coverage of reads, we can expect reads with 

enough anchors around such an event.  TopHat2 splits the reads into several small 

non-overlapping segments with a default length of 25 bp.  Then, by mapping 

segments, TopHat2 can identify the small range where the event is located.  It can 

also use the unmapped segments of the reads to pinpoint the precise location of the 

event (see Chapter 2 for more details).  However, this is no longer the case when 

reads span two exons with an indel close to the splice site between them.  For the sake 

of the discussion, it is inconsequential whether the indel is an insertion or a deletion 

for the sake of the discussion.  As mentioned previously, TopHat2 requires at least 

two segments of reads  to be aligned, where one segment is on the left side of the 

event and the other on the right.  However, if an insertion or a deletion is <= 25 bp 

away from a splice site, it is unlikely in most cases that we have the requisite two left 

and right segments to be aligned.  To provide a more concrete understanding, let us 

consider a read (shown in read) consisting of three segments (left, middle, and right) 

in Figure 5.1 (1).  This read is initially unmappable because it involves two exons, 

and the right exon contains an indel.  The read is subsequently split into three 

segments, and only one of them is mapped.  This mapping does not satisfy the two-

segment mapping condition; therefore, TopHat2 is not able to detect the splicing 

event or the indel.  This prohibits the read from aligning.  It is also hard to find small 

exons, called micro-exons, for the same reasoning.  Second, as illustrated in Figure 
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5.1 (2), TopHat2 aligns segments independently, without using information other 

segments’ mapped locations.  Short segments can map to too many locations; in a 

highly repetitive genome like the human genome, segments can map to hundreds or 

even thousands of locations.  TopHat 2 imposes a certain limit on the number of 

locations a segment can map to, in order to prevent itself from producing large 

intermediate files for the segment alignment and consuming too much time searching 

for all possible alignments.  As a result of the limit, reads containing such repetitive 

segments may not be aligned by TopHat2.  On the other hand, the segment mapping 

would be more efficient if we make use of other segments’ alignment location.  For 

instance, if we know some segments of reads are perfectly or nearly perfectly aligned 

to only a few locations, we may narrow down the search space for the other segments 

near these locations.  This will likely to make it easier and more efficient to find the 

correct locations for segments and pinpoint the events that reads contain. 

 

5.2 A new pipeline for RNA-seq alignment 

In the previous section, we mentioned the limitations of TopHat2; primarily, 

its segment mapping.  First, in case of reads containing more than one event (e.g. one 

splice site with one insertion close), TopHat2 may not be able to locate the events.  

Even if two segments are mapped, it may involve a very slow search to identify these 

events, possibly using dynamic programming algorithm such as Needleman-Wunsch 

[64] and Smith-Waterman [65].   However, implementing this algorithm is nontrivial.  

We realized that Bowtie2 includes a very efficient implementation of such an 

algorithm as part of its engine.  It makes use of single-instruction multiple-data 
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(SIMD) parallel processing, which is significantly faster and is available on modern 

CPUs [66, 67].  Second, TopHat2 aligns segments independently, without using 

information other segments’ mapped locations.  The segment mapping would be more 

efficient if we make use of other segments’ alignment location.  For instance, if we 

know some segments of reads are perfectly or nearly perfectly aligned to only a few 

locations, we may narrow down the search space for the other segments near these 

locations. 
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Figure 5.2 Three main steps of a new RNA-seq alignment pipeline 
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Here, we suggest a new pipeline for RNA-seq alignment, which would 

incorporate TopHat2’s segment alignment and detection of splicing events, indels, 

and fusions into Bowtie2.  As we have discussed previously, Bowtie 2 has already 

implemented some algorithms that can be modified to efficiently handle these issues. 

There are three core steps at the heart of the new pipeline, as illustrated in Figure 5.2.  

As the first step of the new pipeline, Bowtie 2 can be modified and enhanced to 

identify splice sites and indels.  Then, it will report the events with some evidence, 

such as the number of reads supporting those events (see Figure 5.2 (1)).  These 

events can be used to reconstruct transcripts being observed in samples sequenced.  

Unlike the problem of the reconstruction of full-length transcripts, we only need to 

reconstruct partial transcripts as long as a read that is supposed to map to a full-length 

transcript is mapped to at least one partial transcript that is part of the full-length 

transcript as illustrated in Figure 5.2 (2).  While reconstructing full-length transcripts 

involves exponential combinations of splicing events, partial transcripts involve 

dramatically fewer combinations.  Similarly, we can create partial transcripts that 

include indels as well as fusion transcripts.  As shown in Figure 5.2 (3), in contrast to 

the genome alignment, this transcriptome alignment will make Bowtie2 to focus on 

just base-level mismatches or indels introduced in the sequencing steps.  A further 

advantage is this alignment step is likely very fast because this transcriptome is 

usually expected to comprise just a small percentage of the whole genome.  Finally, 

the transcriptomic coordinates of read alignments are converted into the 

corresponding genomic coordinates, and the final alignment is reported in SAM 

format. 
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Figure 5.3 Two core algorithms of the new pipeline 
Details are given in the text. 
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Here, we elaborate on two main ideas: (1) Bowtie2 enhancements to identify 

splicing events, indels, and fusion break points and (2) reconstruction of partial 

transcripts using the events.  As illustrated in Figure 5.3 (1), the left read of the 

fragment shown in red involves two events, one splicing event with one indel being 

close.  In order to find these events, Bowtie2 can split the read into segments (or 

“seeds” in the Bowtie terminology) with shorter length (between 10 and 20 bp), 

where segments can overlap with some others.  Unlike TopHat2’s segment mapping 

(longer segment – 25 bp and non-overlapping segments), this will increase chance to 

anchor more segments near these events.  Once we detect some discrepancies 

between two segments, that is, the genomic distance between their mapped locations 

is different from that distance between their positions in the read, we can apply a 

modified version of Bowtie2’s SIMD-accelerated dynamic algorithm using to identify 

those events.  The results from this algorithm are a list of events with some evidence 

such as the number of reads supporting them.  Based on the list, we can reconstruct 

partial transcripts instead of trying to build full-length ones.  We need to ensure that a 

read that was supposed to map to a full-length transcript is mapped to one partial 

transcript, which is a part of the full-length transcript.  For instance, shown in Figure 

5.3 (2), instead of producing a four-exon transcript (e1-e2-e3-e4), we can generate 

two partial transcripts: e1-e2-e3 and e2-e3-e4.  For the alternative splicing event 

between e1 and either e2 or e3, we can produce an additional transcript, e1-e3-e4.  

For the indel event, two additional transcripts are constructed: e1-e2’-e3 and e2’-e3-

e4, where e2’ is the identical copy of the exon e2 except the indel.  Constructing 

fusion transcripts can be done in a similar way.  While reconstructing full-length 
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transcripts involves exponential combination of splicing events, indels, and fusion 

break points, building partial transcripts would involve a dramatically less number of 

such combinations. 
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Chapter 6: Conclusions 

 

RNA-seq technologies provide us with tremendous opportunities to 

investigate the structure and abundance of transcripts, differential expression, 

structural variations, and more.  It also delivers high throughput data within just a few 

days at progressively lower costs.  This enables us to investigate genetic programs 

and cellular activities with precision, accuracy, and speed.  However, in order to 

effectively use RNA-seq reads they generate, the sequencing technologies require 

new computational methods.  In this thesis, I have designed novel algorithms and 

implemented several software systems to tackle these new challenges. 

First, mapping reads to the genome is an essential step in RNA-seq analyses; 

the accuracy of mapping software can determine the accuracy of downstream steps 

such as gene and transcript discovery or expression quantification.  I have developed 

TopHat2, which provides major improvements in accuracy over previous versions of 

TopHat and other RNA-seq mapping tools.  In order to find the location information, 

reads may be aligned against the reference genome.  However, RNA-seq reads pose 

new challenges because they may span multiple splice sites rather than just one or 

two.  We estimate that nearly half of reads 150-bp long would span two or more 

human exons.  The algorithmic improvements in TopHat2 address this challenge, 

maintaining both accuracy and speed.  TopHat2 also avoids erroneously mapping 

reads to pseudogenes by making effective use of available gene annotations.  This 

improves its overall alignment accuracy. 
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RNA-seq also enables us to discover structural variations, including genomic 

rearrangements.  I have developed TopHat-Fusion, which detects fusion break points 

and map reads against them.  Unlike previous approaches based on discordantly 

mapping paired reads and known gene annotations, TopHat-Fusion can find either 

individual or paired reads that span gene fusions, and it runs independently of known 

genes.  This improves its sensitivity and enables it to find fusions including novel 

genes and novel splice variants of known genes.  I have developed TransFUSE to 

further expand the analysis of fusion events by allowing the reconstruction and 

expression estimation of fusion transcripts.  TransFUSE makes available more 

evidence, such as isoforms of fusion genes and estimates of their expression levels.  

As a result, we can put fusion candidates in order, those with more evidence first and 

those with less evidence after.  This can help biologists quickly interpret the data and 

decide which fusions to address first.  In contrast to previous approaches that simply 

provide a list of candidate fusions (genomic locations of break points), TransFUSE 

provides detailed information about full-length fusion transcripts such as exons, 

introns, and fusion break points.  These capabilities enable one to infer the potential 

function of a fusion gene by examining the participating exons of the transcripts and 

their splicing patterns.  Such analysis will help scientists identify the genetic basis of 

diseases.  Expression levels of fusion genes may also provide additional insight when 

compared with those of normal transcripts from wild type genes. 

I have shown that TopHat2, TopHat-Fusion, and TransFUSE perform well 

over a wide range of read lengths.  This ability makes these programs a good fit for 

most RNA-seq experimental designs.  As RNA-seq experiments are now widely used 
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by many biologists, we expect that such experiments, in conjunction with these 

software systems, will provide scientists with accurate results for use with expression 

analysis, gene discovery, and a multitude of other applications. 
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