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Abstract

Combined compression and classification problems are becoming increasingly important in many

applications with large amounts of sensory data and large sets of classes. These applications range

from aided target recognition (ATR), to medical diagnosis, to speech recognition, to fault detection

and identification in manufacturing systems. In this paper, we develop and analyze a learning vector

quantization (LVQ) based algorithm for the combined compression and classification problem. We show

convergence of the algorithm using techniques from stochastic approximation, namely, the ODE method.

We illustrate the performance of our algorithm with some examples.

Index Terms- Learning vector quantization, classification, stochastic approximation, compression,

non-parametric

1 Introduction

Quite often in applications, we are faced with the problem of classifying signals (or objects) from vast

amounts of noisy data. Equally often, the number of different distinct signals (classes) that we have in

the problem may be quite large. If we could compress each observation (observed signal) significantly

without distorting or annihilating the most significant features used for classification, we can achieve

significant advantages in two directions:

(i) We can reduce significantly the memory required for storing both the on-line and class model data;

(ii) We can increase significantly the speed of searching and matching that is essential in any classification

problem.

Furthermore, performing classification on compressed data can result in better classification, due to

the fact that compression (done correctly) can reduce the noise more than the signal [1]. For all these
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reasons, it is important to develop methods and algorithms to perform classification of compressed data,

or to analyze jointly the problem of compression and classification. This area has attracted recently more

interest due to the increased number of applications requiring such algorithms. In [2] and [3], vector

quantization methods have been used for minimizing both the distortion of compressed images and errors

on classifying their pixel blocks.

There is yet another significant advantage in investigating the problem of combined compression

and classification. If such a framework is developed, we can then analyze progressive classification

schemes, which offer significant advantages for both memory savings and for speeding up searching

and matching. Progressive classification uses very compressed representations of the signals at first to

perform many simple (and therefore fast) matching tests, and then progressively perform fewer but more

complex (and therefore slower) matching tests, as needed for classification. Thus, compression becomes

an indispensable component in such schemes, and in particular variable rate (and therefore resolution)

compression. In the last four years, we have analyzed such progressive classification schemes on a

variety of problems with substantial success. The structure of the algorithms we have developed has

remained fairly stable, regardless of the particular application. This structure consists of a multiresolution

preprocessor followed by a tree-structured classifier as the postprocessor. Sometimes a nonlinear feature

extraction component needs to be placed between these two components. Often the postprocessor

incorporates learning.

To date, we have utilized wavelets as the multiresolution preprocessor and Tree-structured-vector-

quantization (TSVQ) as the clustering postprocessor. We have applied the resulting WTSVQ algorithm

to various ATR problems based on radar [4] [5] [6], ISAR and face recognition problems [7]. We have

established similar results on ATR based on FLIR using polygonization of object silhouettes [8] [9] as the

multiresolution preprocessor. Incorporation of compression into these algorithms is part of our current

research.

As a first step towards developing a progressive classification scheme with compression, we need

to develop an algorithm for combined compression and classification at a fixed resolution. As opposed

to the algorithm described in [3] that achieves this with posteriori estimation of the probability models

underlying the different classes of signals, our goal is to develop an algorithm that is nonparametric, in

the sense that it does not use estimates of probability distributions of the underlying sources generating

the data. In this paper, we achieve that goal by using a variation of Learning Vector Quantization (LVQ),

that cleverly takes into account the distortion present. Note that LVQ as described in [10], although

designed to perform classification, automatically achieves some compression as a byproduct since it is

inherently a vector quantization algorithm. However, our algorithm is designed to obtain a systematic

trade-off between its compression and classification performances by minimizing a linear combination

of the compression error (measured by average distortion) and classification error (measured by Bayes

risk) with a variation of LVQ based on a stochastic approximation scheme. The convergence analysis of

this algorithm essentially follows similar techniques as presented in [11] and as used in [12]. However,

our treatment is considerably simpler since to start with, we recognize that the algorithm is a special class
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of the Robbins-Monro algorithm.

In Section 2, we describe the LVQ-based algorithm for combined compression and classification. In

Sections 2.1 and 2.2,we provide analysis and convergence of the algorithm using stochastic approximation

techniques and the so-called ODE method. In Section 3, we provide simulation results of the performance

of the algorithm for some typical problems. Section 4 presents some concluding remarks.

2 Combined compression and classification with learning vector quan-

tization

Learning vector quantization (LVQ) introduced in [13] is a nonparametric method of pattern classifica-

tion. As opposed to the parametric methods, this method does not attempt to obtain a-posteriori estimates

of the underlying probability models of the different patterns that generate the data to be classified. It

simply uses a set of training data for which the classes are known in a supervised learning algorithm to

divide the data space into a number of Voronoi cells represented by the corresponding Voronoi vectors and

their associated class decisions. Using the training vectors, these Voronoi vectors are updated iteratively

until they converge. The algorithm involves three main steps:

1. Find out which Voronoi cell a given training vector belongs to by the nearest-neighbor rule.

2. If the decision of the training vector coincides with that of the Voronoi vector of this particular cell,

move the Voronoi vector towards the training vector, else, move it away from the training vector.

All the other Voronoi vectors are not changed.

3. Obtain the next training vector and perform the first two steps.

This process is usually carried out in multiple passes of the finite set of the training vectors. A

detailed description of this algorithm with a preliminary analysis of its convergence properties using

stochastic approximation techniques of [11] has been given in [12]. It has also been indicated in [12] that

as the number of training vectors goes to infinity, the classification error achieved by the LVQ algorithm

approaches the optimal Bayes’ error. Although its primary goal is to classify the data into different

patterns, the LVQ algorithm compresses the data in the process into a codebook of the size equal to the

number of the Voronoi cells where each Voronoi vector represents the code for all the vectors belonging

to that cell.

In what follows, we present a simple variation of the LVQ algorithm in [12], that achieves a task

of combined compression and classification. We present a convergence analysis of this algorithm much

along the lines of [12]. However, we present a simpler analysis by recognizing that the algorithm is a

special case of the Robbins Monro algorithm. Also, simulation results show that as a certain parameter

is increased, the compression error gradually decreases compared to the error achieved by the standard

LVQ (represented by the value zero of this parameter).

In the next subsection, we introduce the notations and describe the algorithm.
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Algorithm for combined compression and classification

Consider a complete probability space (Ω;F ; P ). Let Xl 2 IRd; l = 1; 2; : : : ; N represent the training

vectors defined on this space, generated by either of the two patterns 1 or 2. The a priori probabilities of

the two patterns are �1 and �2 respectively and the corresponding pattern densities are p1(x) and p2(x)

respectively such that

P (Xl 2 B) = �1

Z
B

p1(x)dx + �2

Z
B

p2(x)dx (1)

We also assume that Xl is independent of Xj ; j 6= l.

The Voronoi vectors are represented by �i 2 IRd; i = 1; 2; : : : ;K and the corresponding Voronoi

cells are represented by V�i . Let the decision associated with the training vector Xl be represented by

dXl
and that of the cell V�i by d�i , where dXl

; d�i 2 f1; 2g.

Consider a non-increasing sequence of positive real numbers �n; n = 1; 2; : : :, such that

Assumption 2.1
P1

n=1 �n =1

Consider also a distance function �(�; x) which satisfies the following assumptions:

Assumption 2.2 �(�; x) is a twice continuously differentiable function of � and x and for every fixed

x 2 IRd, it is a convex function of �.

Assumption 2.3 For any fixed x, if �(k)!1, as k !1, then �(�(k); x)!1.

Assumption 2.4 For every compact Q 2 IRd, there exist constants C1 and q1 such that for all � 2 Q,

j r��(�; x) j< C1(1 + j x jq1) (2)

An example of a function which satisfies the properties above is �(�; x) = jj��xjj2 where jj:jj is the

Eucledian distance between two vectors. In our implementation of the algorithm, we use this distance

function although for the sake of generality in the analysis, we would refer to it in its general form �(�; x).

Define further the following quantities:

Definition 2.1


(dXn+1 ; d�i(n); Xn+1;Θ(n)) = �1Xn+12V�i(n)(1dXn+1=d�i(n)
� 1dXn+1 6=d�i(n)) (3)

where Θ(n) = (�1(n); : : : ; �K(n))0 and �i(n) is the n-th iterate of �i, n � 0. Also 1A is the indicator

function that takes the value 1 if A is true and 0 otherwise.

Definition 2.2

gi(Θ(n);N) = 1 if
1
N

NX
j=1

1Xj2V�i(n)1dXj
=1 >

1
N

NX
j=1

1Xj2V�i(n)1dXj
=2

= 2 otherwise (4)
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Remark 2.1 Note that gi(Θ(n);N) above denotes the decision associated with the i-th cell according

to the majority vote rule.

With the above definitions and assumptions, we can now write the following multi-pass combined

compression and classification algorithm for � � 0,

1. Initialization: The algorithm is initialized with Θ(0) usually found by running a vector quantization

algorithm, e.g., LBG [14] algorithm over the set of training vectors.

2. n = 0.

3. Assigning the training vectors to their respective cells: Find il = argminm jj�m(n) �Xljj
2; l =

1; 2; : : : ; N , then Xl belongs to V�il (n).

4. Cell decisions: Calculate gi(Θ(n);N); i = 1; 2; : : : ;K.

5. Updating the Voronoi vectors: For i 2 f1; 2; : : : ;Kg,

�i(n+1) = �i(n)+�n+1(��1Xn+12V�i(n)+
(dXn+1 ; gi(Θ(n);N); Xn+1;Θ(n)))r��(�;Xn+1) j�=�i(n)

(5)

6. n n+ 1.

7. If n < N , repeat Steps 3-6. If n = N , repeat Steps 3-4.

The above algorithm can be executed for multiple passes over the same training set (in case the size of

the training set is small) by using the values Θ(N) from the m-th pass to initialize the algorithm for pass

= m+ 1 until m = M where M is the maximum number of passes.

Remark 2.2 Note that Step 5, i.e., updating of the Voronoi vectors can be written in the following

simplified manner:

If Xn+1 2 V�i(n), then

�i(n+ 1) = �i(n) + �n+1(��� 1)r��(�;Xn+1) j�=�i(n) if dXn+1 = gi(Θ(n);N)

= �i(n) + �n+1(��+ 1)r��(�;Xn+1) j�=�i(n) if dXn+1 6= gi(Θ(n);N) (6)

For j 6= i, �j(n+ 1) = �j(n).

Remark 2.3 Note that for � = 0, the above algorithm becomes the modified LVQ algorithm resulting

in better convergence properties as reported in [12].

2.1 Analysis of the combined compression and classification algorithm

In this subsection, we present the analysis of the above algorithm using the “mean ODE” method of [11].

Denote the vectors

h(Θ(n)) = (h1(Θ(n)); : : : ; hK(Θ(n))0

and

H(Θ(n); Xn+1) = (H1(Θ(n); Xn+1); : : : ; HK(Θ(n); Xn+1))
0
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where

Hi(Θ(n); Xn+1) = (��1Xn+12V�i(n) + 
(dXn+1 ; gi(Θ(n);N); Xn+1;Θ(n)))r��(�;Xn+1) j�=�i(n)

(7)

and hi(Θ(n)); i = 1; 2; : : : ;K is defined in Definition 2.4. Note that one can write the above algorithm

(5) in the following manner:

Θ(n+ 1) = Θ(n) + �n+1H(Θ(n); Xn+1); n � 0 (8)

Note that this is a special case of the general stochastic approximation algorithm of [11], quoted in

Section 2, [12].

Define

p(x) = p1(x)�1 + p2(x)�2

q(x) = p2(x)�2 � p1(x)�1 (9)

Due to the assumption that fXlg; l = 1; 2; : : : ; is a sequence of i.i.d. random vectors and the

fact that they are distributed independently of Θ(l), the transition probability function ΠΘ(n)(A;Xn)
4
=

P (Xn+1 2 A j Fn) is given by �(A) =
R
A p(x)dx, where Fn

4
= �fΘ(0); X0; : : : ;Θ(n); Xng. This

makes the above algorithm a special case of the Robbins-Monro algorithm with the transition probability

function being independent of Θ(n).

Now, we introduce the following definitions:

Definition 2.3


̄i(Θ(n);N) = sign

0
@ 1
N

NX
j=1

1Xj2V�i(n)(1dXj
=2 � 1dXj

=1)

1
A (10)

Remark 2.4 Note that 
i(Θ(n);N) = 1 if gi(Θ(n);N) = 2 and �1 otherwise.

Definition 2.4

hi(Θ) = �

Z
V�i

[
̄i(Θ;N)q(x) + �p(x)]r��(�; x)j�=�idx; i = 1; 2; : : : ;K (11)

One can now prove the following Lemma:

Lemma 2.1

Hi(Θ(n); Xn+1) = hi(Θ(n)) + �i(n); i = 1; 2; : : : ;K (12)

where f�i(n)g is a Fn-adapted martingale difference sequence such that

hi(Θ(n)) = Ea[Hi(Θ(n); Xn+1) j Fn]; 8i (13)
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Here,Ea denotes expectation underPawherePa denotes the probability distribution forfXn;Θ(n)g; n �

0 where Θ(0) = a. Note that since fXng is a sequence of i.i.d. random vectors, Pa is independent of

X0 = x.

We write the mean ODE associated with (8) as

Θ̇ = h(Θ); Θ(0) = a (14)

where

hi(Θ) = lim
n!1

Ea[Hi(Θ; Xn+1)jFn] =

Z
Hi(Θ; x)p(x)dx (15)

since in this case fXng is a sequence of i.i.d. random variables whereP (Xn+1 2 A j Fn) is independent

of Θ(k); k � n.

It is hard to establish a convergence result for general h(Θ) and often it is assumed that (14) has

an attractor Θ�, whose domain of attraction is given by D�. If Q is a compact subset of D� and

Θ(0) = a 2 Q, one can show that for any � > 0,

Pfmax
n
jjΘ(n)�Θ(a; tn)jj > �g < C(�;Q)

X
n

��n (16)

where tn =
Pn

i=1 �i and Θ(a; tn) is the solution to (14) for t = tn, and C(�;Q) is a constant dependent

on � and Q (see Theorem 4, page 45, [11]). Here, obviously, we have assumed Assumption 2.1.

One could also derive the following corollary (see Corollary 6, page 46, [11]), which says that under

the assumptions (16) is true, for the set of trajectories fΘ(n)g that visit Q infinitely often, we have

Θ(n)! Θ�; Pa � a:s: (17)

Pflim sup
n!1

jjΘ(n)�Θ(a; tn)jj > �g = 0 (18)

However, there is no general theory which gives conditions under which

P (Θ(n) 2 Q infinitely often ) = 1 is satisfied [11].

Note that for a complete theory, it is essential to prove that the desired points of convergence �� are

indeed the stable equilibrium points of (14). One way to do this is to find a potential function J(Θ), if it

exists, such that hi(Θ) = �r�iJ(Θ). Then one can apply results from Lyapunov stability to establish

results for stable equilibrium by studying the local minima of J(:) and their domains of attraction.

Although, we refrain from such pursuits for the time being, we do notice that (see [12]) as N ! 1,


̄i(Θ;N)! sign(
R
V�i

q(x)dx) and using the mean value theorem when the size of each Voronoi cell is

small, one can write that hi(Θ) is approximately equal to

h̄i(Θ) � �

Z
V�i

r��(�; x)j�=�i (jq(x)j + �p(x))dx (19)

which is the negative gradient of the cost function

J̄(Θ) =

KX
i=1

Z
V�i

�(�i; x)(jq(x)j + �p(x))dx (20)

For those readers who are more oriented towards intuitive reasoning, we comment here that this

was indeed the inspiration of obtaining the combined compression and classification algorithm given
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above. The reason for this intuition is that as indicated in [12], for the LVQ algorithm, the first part of

the integrand in (20) converges to the optimal Bayes cost when the number of Voronoi vectors tends to

infinity. Details of this analysis can be found in [10]. The second part is clearly the average distortion.

2.2 Convergence analysis of the combined compression and classification algo-

rithm

The convergence analysis for a class of learning vector quantization algorithm was presented in [12]

following the analysis in [11] (see Part II- Chapter 1). However, as we noted before that the algorithm

under investigation is a special case of the Robbins-Monro algorithm, where the transition probability

function is independent of Θ, we can simplify the set of assumptions needed greatly. In particular, the

assumptions described as A.4 in [11], pp. 216, become trivial and follow from the single assumption

that h(Θ) is locally Lipschitz. In this subsection, we obtain an upper bound on the Lq estimate of a

“fluctuation” term to be introduced shortly, for q > 2. We will provide a simpler local bound later on for

q = 2.

Consider again the algorithm:

Θ(n+ 1) = Θ(n) + �n+1H(Θ(n); Xn+1); n � 0 (21)

Before we introduce the set of assumptions needed for the analysis of our algorithm, for the purpose

of this section, let us introduce the following notations:

Notation 2.1 1. D is an open subset of IRd. Q is a compact subset of D.

2. � is a C2 function from IRd to IR with bounded second derivatives, where

M0(Q) = sup
Θ2Q
j�(Θ)j

M1(Q) = sup
Θ2Q
j�0(Θ)j

M2(Q) = sup
Θ2Q
j�00(Θ)j

M2 = sup
Θ2IRd

j�00(Θ)j (22)

3. There exists a R(�;Θ;Θp) such that

R(�;Θ;Θ0) = �(Θ0)� �(Θ)� h(Θ0 �Θ); �0(Θ)i

jR(�;Θ;Θ0)j � M2jΘ0 �Θj2; 8Θ; Θ0 2 IRd (23)

4.

en(�) = �(Θ(n+ 1))� �(Θ(n)) � �n+1h�
0(Θ(n)); h(Θ(n))i (24)

5. For " > 0,

�(Q) = inf(n; Θ(n) 2= Q)

�(") = inf(n � 1; jΘ(n)�Θ(n� 1)j > �)

�(";Q) = inf(�(Q); �(�)) (25)
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6. With t0 = 0; tn =
Pn

i=1 �i, we define m(n; T )
4
= inffk : k � n;

Pk
i=n �i+1 � Tg

Suppose Assumption 2.1 holds. Also, let us make the following additional assumptions that will be

sufficient for our analysis:

Assumption 2.5 For any compact subset Q of D, there exist constants C̄1; r1 such that

jH(Θ; x)j � C̄1(1 + jxjr1) (26)

Remark 2.5 Note that for our choice of H(Θ; x) described in the previous section, (26) is satisfied from

Assumption 2.3.

Assumption 2.6 h(Θ)
4
= (h1(Θ); : : : ; hk(Θ))0 where hi(Θ) given by (13) is locally Lipschitz.

Remark 2.6 Note that this assumption itself is enough in our analysis and we do not need the assumptions

made in [12] following [11] (Assumption (A.4), pp. 216) since they trivially follow from Assumption

2.6.

Assumption 2.7 For any q � 1, 9 a constant M <1 such that

sup
n
EfjXnj

qI(n � �(";Q))g �M (27)

Remark 2.7 Since fXng is a sequence of i.i.d. random vectors, one can simply write (27) as

Z
IRd
jxjq�(dx)dx �M (28)

Remark 2.8 One can in fact deduce from Assumptions 2.5 and 2.7 that under certain other restrictions

on the distribution function �(dx), that Assumption 2.6 holds, since in this case �(dx) is independent of

Θ (see Section 2.2.6, pp. 264-265 of [11]).

We can now present the following theorem:

Theorem 2.1 Consider the update equation (21). Consider also (24), (25). Suppose Assumptions 2.1,

2.5, 2.6, 2.7 hold. Then, for any regular function � with bounded second derivatives satisfying (22), any

compact subsetQ of D, and for all q > 2 there exist constantsB(q), M4, "0 > 0 such that for all " < "0,

T > 0, a 2 D, we have

Eaf sup
n<k�m(n;T )

I(k � �(";Q))j

k�1X
i=n

ei(�)j
qg � B(q)M1(Q)T

q

2�1
m(n;T )X
i=n+1

�
1+ q

2
i+1 +M4(q)T

q�1
m(n;T )X
i=n+1

�1+q
i+1

(29)
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Proof: In this proof, C1(q); C2(q); C3(q); C4(q); B(q);M4(q) denote constants dependent only on q.

From (24), (23) and (21), one can write

ek(�) = �k+1h�
0(Θ(k)); (H(Θ(k); Xk+1)� h(Θ(k)))i+R(�;Θ(k);Θ(k + 1))

= e
(1)
k + e

(2)
k (30)

where

e
(1)
k = �k+1h�

0(Θ(k)); (H(Θ(k); Xk+1)� h(Θ(k)))i

e
(2)
k = R(�;Θ(k);Θ(k + 1))

Note that we have

j

k�1X
i=n

ei(�)j
q = j

k�1X
i=n

e
(1)
i +

k�1X
i=n

e
(2)
i j

q

� [j

k�1X
i=n

e
(1)
i j+ j

k�1X
i=n

e
(2)
i j]

q

� 2q�1[j

k�1X
i=n

e
(1)
i j

q + j

k�1X
i=n

e
(2)
i j

q] (31)

From now on, we write m for m(n; T ) and � for �(";Q) for notational simplicity. We write S1 =

Efsupn<k�m I(k � �)j
Pk�1

i=n e
(1)
i j]

qg = Efsupn<k�m j
Pk�1

i=n Uij
qg where

Ui = �i+1h�
0(Θ(i)); (H(Θ(i); Xi+1)� h(Θ(i)))iI(i+ 1 � �)

Denoting Vi = h�0(Θ(i)); (H(Θ(i); Xi+1)� h(Θ(i)))iI(i+ 1 � �), we have Ui = �i+1Vi.

We notice that from (13), E(Ui+1jGi) = 0.

We also observe that from (22)

EjVij
q � M1(Q)C1(q)[EjH(Θ(i); Xi+1)j

q +Ejh(Θ(i))jq ]

� M1(Q)C2(q)EjH(Θ(i); Xi+1)j
q (32)

The last inequality follows from Jensen’s inequality and (13).

One can now use Assumption 2.5 and Assumption 2.7 to obtain the following upper bound:

EjVij
q �M1(Q)C3(q) (33)

One can now apply Burkholder’s inequality (see Lemma 6, pp. 294, [11]) to obtain

S1 � C4(q)E(
m�1X
i=n

�2
i+1V

2
i )

q=2 (34)

For q > 2, one can further apply a result based on Holder’s inequality (see Lemma 7, pp. 294, [11]) to

obtain

S1 � C4(q)(

m�1X
i=n

�i+1)
q

2�1
m�1X
i=n

�
1+ q

2
i+1 EjVij

q

� B(q)M1(Q)T
q

2�1
m�1X
i=n

�
1+ q

2
i+1 (35)
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We prove the following bound on S2 = Ef
Pm�1

i=n je
(2)
i jI(i+ 1 � �)gq using (23),(26) and Assumption

2.7:

S2 �M4(q)T
q�1

m�1X
i=n

�1+q
i+1 (36)

Combining (35), (36), we obtain (29) from (31). 2

Next, we present a theorem that gives an upper bound on the Lq norm of the distance between the actual

iterate Θ(n) and Θ(a; tn) which is the solution to (14) for t = tn. In other words, this result gives an

upper bound on the quality of approximation by the mean trajectory represented by (14). We do not

provide the proof since the result holds under the same set of assumptions as the previous theorem and

the proof can be found in [11], pp. 301.

Theorem 2.2 Consider the update equation (21) and (14). Suppose Assumptions 2.1, 2.5, 2.6, 2.7 hold.

Suppose Q1 � Q2 are compact subsets of D, and q > 2. Then there exist constants B1(q); L̄2 (L̄2 is the

Lipschitz constant for h in Q2), such that for all T > 0 (that satisfy the condition that for all a 2 Q1, all

t � T , d(Θ(a; t); Qc
2) � �0 > 0), all � < �0, all a 2 Q1,

Paf sup
n�m(0;T )

jΘ(n)� Θ(a; tn)j
q � �g �

B1(q)

�q
(1 + T )q�1 exp(qL̄2T )

m(0;T )X
i=1

�
1+ q

2
i (37)

We now present an asymptotic result without proof that states that Θ(n) asymptotically converges to

a compact subset of D, based on the assumption that the mean ODE has a point of asymptotic stability

Θ� in D with domain of attraction D. We make more precise statements later. First, we introduce the

following additional assumptions and notations:

Assumption 2.8 There exists � such that
P

��n <1.

Assumption 2.9 There exists a positive function U of class C2 on D such that U(Θ) ! C � 1 if

Θ! @D or jΘj ! 1 and U(Θ) < C for Θ 2 D satisfying

hU 0(Θ); h(Θ)i � 0; 8Θ 2 D (38)

Remark 2.9 Note that if there is such a point Θ� in D which is a point of asymptotic stability for the

mean ODE (14) with domain of attraction D, this means that any solution of (14) for a 2 D indefinitely

remains in D and converges to Θ� as t ! 1. It can then be shown that (see [15], Th. 5.3, p.31) there

exists a function U(Θ) which satisfies the conditions mentioned in Assumption 2.9.

Notation 2.2

K(c) = fΘ; U(Θ) � cg

�(c) = inf(n; Θ(n) 2= K(c))

q0(�) = sup(2; 2(�� 1)) (39)

11



With these notations and assumptions, we can present the following theorem (for a proof see [11],

pp. 301-304):

Theorem 2.3 Consider (21). Suppose Assumptions 2.1, 2.5, 2.6, 2.7, 2.8, 2.9 hold and suppose that F

is a compact set such that

F = fΘ; U(Θ) � c0g � fΘ; U 0(Θ):h(Θ) = 0g

for some c0 < C where C is defined in Assumption 2.9. Then, for any compact subset Q of D, and

q � q0(�), there exists a constant B2(q) such that for all a 2 Q:

Pa(Θ(n) converges to F ) � 1�B2(q)
X
i�1

�
1+ q

2
i (40)

In the next subsection, we provide a simpler local bound for q = 2 following the analysis given in

Section 5.1 of Part-II [11].

2.3 A simpler local bound for q = 2

Consider again the algorithm:

Θ(n+ 1) = Θ(n) + �n+1H(Θ(n); Xn+1); n � 0 (41)

Since Xn; n � 0 are distributed independently of Θ(n) and also fXng; n � 0 is a sequence of i.i.d.

random variables, we have the main or so-called Robbins-Monro assumption satisfied, namely,

E[g(Θ(n); Xn+1) j Fn] =

Z
IRd

g(Θ(n); x)p(x)dx (42)

Note that we have already observed before in Lemma 2.1 that

h(Θ(n)) = Ea[H(Θ(n); Xn+1)jFn] =

Z
IRd

H(Θ(n); x)p(x)dx (43)

Next, we introduce the two main assumptions of this section:

Assumption 2.10 For all Θ(0) = a 2 IRd,

Ea[jH(Θ(n); Xn+1)j
2 j Fn] � C̃1(1 + jΘ(n)j2) (44)

for some suitable constant C̃1.

Remark 2.10 Note that this assumption guarantees the existence of h(Θ(n)).

Assumption 2.11 9Θ� (which is a point of asymptotic stability of (14) such that for all Θ, 9 a constant

� > 0 such that

(Θ�Θ�)0h(Θ) � ��jΘ�Θ�j2 (45)

with, for some � � 1,

lim inf
n!1

2�
��n
�n+1

+
��n+1 � ��n
�2
n+1

> 0 (46)
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Remark 2.11 Note that if �n = A1
n�+A2

; 0 � � � 1, then (46) holds for all � < 1. It is true for � = 1

if 2� > �
A1

.

We can now present the following theorem which gives a simple local bound for the expected distance

between Θ(n) and Θ�:

Theorem 2.4 Consider (41). Suppose Assumptions 2.10, 2.11 hold. Then,

Ea(jΘ(n)�Θ�j2) � B5(a)�
�
n (47)

for some suitable constant B5(a).

Proof: It is sufficient to show that for some suitable n0, there exists aB5(a; n0) such that for all n � n0,

Ea(jΘ(n)�Θ�j2) � B5(a; n0)�
�
n (48)

Writing Jn
4
= Θ(n)�Θ�, we have

Ea(jJn+1j
2 j Fn) = jJnj

2 + 2�n+1hJn; h(Θ(n)i+ �2
n+1Ea[jH(Θ(n); Xn+1)j

2 j Fn] (49)

Suppose that n is sufficiently large such that 1 � 2�n+1�. Then, by taking expectations, we have

EajJn+1j
2 � (1� 2�n+1� + Ĉ1�

2
n+1)EajJnj

2 + Ĉ1�
2
n+1 (50)

where Ĉ1 is a constant such that

C̃1(1 + jΘj2) � Ĉ1(1 + jΘ�Θ�j2) (51)

Now, one can use the following result which can be proved directly from (46). There exists B0 and n0

such that for all B5 � B0 and n � n0, the sequence un = B5�
�
n satisfies

un+1 � (1� 2�n+1� + Ĉ1�
2
n+1)un + Ĉ1�

2
n+1 (52)

Choose B5(a; n0) � B0 such that

EajJn0 j
2 � B5(a; n0)�

�
n0

It follows immediately by induction on n that the sequence un = B5(a; n0)�
�
n; n � n0 satisfies

EajJnj
2 � un from which (47) follows. 2

3 Simulation Studies

In this section, we present some simulation results illustrating the compression performance of our

algorithm while a trade-off is obtained with respect to its classification performance. We consider two

examples, one with computer simulated data distributed according to either of two bimodal Gaussian

densities and the other with “mel-cepstral” coefficients of two female speakers obtained from their speech.

13



Bimodal Gaussian data

This part of the simulation study is carried out with computer generated random numbers distributed

according to either of two two-dimensional bimodal Gaussian distributions. The first pattern is generated

from the bimodal Gaussian density 0:5N([1:0 1:0]0; I) + 0:5N([�1:0 � 1:0]0; I) where N([m1 m2]
0;Σ)

is the two-dimensional normal distribution function with the mean vector [m1m2]
0 and covariance matrix

Σ. The second pattern is generated from the density 0:4N([0:0 0:0]0; 4I) + 0:6N([0:5 0:5]0; 4I). The

training set was formed by 500 vectors from each pattern (meaning �1 = �2 = 0:5). This set was

used to train the Voronoi vectors in multiple passes the total number of passes being 20. The number

of Voronoi vectors that would result in a good classification performance was found by increasing the

number of Voronoi vectors by one until the classification performance (for a given size of test data set)

reached a floor. Thus 16 Voronoi cells were chosen and their centroids initialized by the output of an

LBG algorithm processing the training data. Each test data set had a size of 1000 each containing vectors

from pattern 1 and pattern 2 such that the a priori probabilities were satisfied. The learning rate �n was

kept fixed over one pass such that �p = �1p
p where p denotes the number of the pass, and �1 = 0:01. The

compression performance averaged over 10 test data sets for a range of � 2 [0:0; 5:0] is given in Figure

1. The compression error was measured by the minimum mean square error that is the average of the

squared distances between the test vectors and their representative Voronoi vectors and normalized with

respect to the compression error achieved by the pure LVQ algorithm (� = 0:0). It is seen that as �

increases up to 5:0, there is a reduction of approximately 3:5% in the normalized compression error.

The classification performance measured by the percentage of misclassified data did not change very

much with increasing value of � and tended to hover around 30% in the range of � as mentioned above.

Hence we did not include a separate plot for the classification performance.

Mel-Cepstral coefficients of 2 speakers

This example is based on “mel-cepstrum” coefficients of two female speakers. “Mel-cepstrum” features

based on the nonlinear human perception of the frequency of sounds have been well studied and suc-

cessfully applied to speaker identification problems. These studies have shown that the mel-cepstrum

can effectively extract the vocal tract shape information of the speakers and yield good distinguishing

performance [16] [17]. In our example, the labeled phonetic speech data of the two female speakers are

extracted from the TIMIT database for dialect region 2. The speech waveform is segmented into 16 ms

frames overlapped by 8 ms and parameterized to a 14 dimensional mel-cepstrum vectors to establish the

feature space.

Since the performance of an LVQ type algorithm depends critically on the number of Voronoi vectors

and the number of training vectors per Voronoi cell, to achieve a trade-off with the computational time

required, the following parameters were chosen. The training set was randomly chosen to have 500 data

vectors from each speaker. The number of Voronoi cells was chosen to be 20. The training set was used

to update the Voronoi vectors in multiple passes, the total number of passes being 30. The learning rate

14



�n was taken to be constant over one pass where �p = �1p
p where p denotes the number of passes with

�1 = 0:04. The Voronoi vectors were initialized by passing the training set through an LBG algorithm.

Once the training was completed, 5 sets of test data, each containing 250 vectors taken randomly from

the database for both speakers, were used to obtain the compression and classification performances

of our algorithm. Figures 2 and 3 illustrate the results averaged over 5 test data sets, for a range of

� 2 [0:0; 5:0]. As expected, the compression error (measured by the mean square distance between the

data and its representative Voronoi vector), which was normalized with respect to the error obtained by

the pure LVQ algorithm (� = 0:0), decreases by approximately 7%, whereas the classification error goes

up by 4:5%. We would like to comment here that the classification error can be further reduced by a

choice of larger number Voronoi cells which would obviously require larger number of training vectors.

4 Conclusions and future research

We have developed an algorithm based on learning vector quantization (LVQ) for combined compression

and classification. We have shown convergence of the algorithm, under reasonable conditions, using the

ODE method of stochastic approximation. We have also illustrated the performance of the algorithm

with some examples. The sensitivity of the performance of the algorithm with respect to the weight

parameter � indicates that the compression error decreases with increasing � whereas the increase in

classification error is relatively insignificant.

An important future research problem that we are currently working on is the extension of the

algorithm when the VQ is replaced by TSVQ. In this extension, we use and extend the methods and

analysis of [18]. With this extension, we will be able to treat the performance of the WTSVQ algorithm

of [4] [5] [6], [7] analytically including compression of the wavelet coefficients.
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Figure 1: Compression error perfomance of the combined LVQ algorithm for bimodal Gaussian patterns
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Figure 2: Compression error performance of the combined LVQ algorithm for “mel-cepstrum” features of

female speakers
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Figure 3: Classification error performance of the combined LVQ algorithm for “mel-cepstrum” features of

female speakers
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