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Abstract

This paper compares two gradient estimation methods that can be used for estimating the

sensitivities of output metrics with respect to the input parameters of a stochastic manufacturing

system. A brief description of the methods used currently is followed by a description of the

two methods: the �nite di�erence method and the simultaneous perturbation method. While

the �nite di�erence method has been in use for a long time, simultaneous perturbation is a

relatively new method which has been applied with stochastic approximation for optimization

with good results. The methods described are used to analyze a stochastic manufacturing

system and estimate gradients. The results are compared to the gradients calculated from

analytical queueing system models. These gradient methods are of signi�cant use in complex

manufacturing systems like semiconductor manufacturing systems where we have a large number

of input parameters which a�ect the average total cycle time. These gradient estimation methods

can estimate the impact that these input parameters have and identify the parameters that have

the maximum impact on system performance.
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1 Introduction to gradient estimation

Gradient estimation is an important technique that can be utilized to estimate the impact of change

in input parameters on output metrics in stochastic processes. If the response of the output metrics

with respect to the input parameters is continuous in nature, then the gradient of the output metric

is obtained as a partial derivative of the response function. Gradient estimation for applications

like optimization and sensitivity analysis can be done through a number of methods [1, 3, 8].

Section 2 describes some of the methods for gradient estimation and introduces the two methods

used to estimate the gradients. Section 3 describes the problem that is considered here for sensitivity

analysis and an example manufacturing system. Section 4 describes the application of the �nite

di�erence method to the example. Section 5 shows how the simultaneous perturbation method

has been applied to the example. Section 6 compares the results to those from an exact queueing

system model. Section 7 concludes the paper.

2 Introduction to gradient estimation methods

Some of the methods for gradient estimation are �nite di�erence method, perturbation analysis,

likelihood ratio method, frequency domain methods, and simultaneous perturbation method. While

some methods like the perturbation analysis method require knowledge of the system being sim-

ulated which requires obtaining output or change in the input when the simulation is in progress,

other methods like the �nite di�erence methods take a black-box type approach to the simulation

system for estimating the gradient.

Perturbation Analysis [5] is further classi�ed into many submethods like the In�nitesimal Per-

turbation Analysis (IPA) and Smoothed Perturbation Analysis (SPA). IPA [13] reformulates the

problem of estimating gradient with respect to the input parameters as the problem of estimating

the gradient of an expected value involving a random variable whose distribution does not depend

on the input vector, �. The likelihood ratio method is described in more detail in [4]. The frequency

domain method [6] involves oscillating the value of the input parameter in a sinusoidal fashion dur-

ing a single run which will give an output function, a superposition function of the di�erent inputs.

This output function can be used for gradient estimation. The two methods that are presented

here are the �nite di�erence (FD) method and the simultaneous perturbation (SP) method.

Let us consider a stochastic process that has a certain number of input parameters and output

metrics, which help us determine the performance of the process. The output metrics are obtained

either through experiments, simulation or some other process as depicted in Figure 1.

The sensitivity of the output metrics to the input processes is very helpful in determining the

impact of the input parameters on the output processes. The output metric can be shown as a

function of the input parameters.

f = f(�1; �2:::�n) (1)
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Figure 1: Simulation box

where f is the output metric written as a function of �i; i = 1; 2:::n, the input parameters.

The aim is to estimate the estimate g, the gradient, which is the partial derivative of the output

metric.

gi(�) =
@f(�)

@�i
(2)

gives the gradient of f with respect to the ith input parameter.

2.1 Introduction to �nite di�erence method

In a one dimensional case, the derivative of a function f by �rst principles is given by

g(�) = lim
c!0

f(� + c)� f(� � c)

2c
(3)

When c, the step size is small, we can reasonably estimate the gradient by estimating the function

f at � + c and � � c.

The �nite de�erence (FD) method of estimating the gradient is given by

ĝi(�) =
f̂(� + ciei)� f̂(� � ciei)

2ci
(4)

where

ci = step size.

ei = unit vector in the ith direction.

Thus we can estimate the gradient by conducting one simulation with input parameter � + ciei and

obtain an estimate of f(� + ciei) and conduct another simulation at � � ciei and obtain an estimate

of f(� � ciei). Equation 4 gives the gradient with respect to one input parameter. The gradient

can be estimated for i = 1; 2:::p parameters by 2p simulations with step size ci and unit vector ei

for i = 1; 2:::p. One of the problems with the �nite di�erence estimator is that when the step size

is small, the variance of the estimators becomes large and when the step size increases, the bias of

the estimate increases. So choice of the simulation parameters like number of replications and the

choice of the estimator parameters like step size should be done carefully.

3



2.2 Introduction to simultaneous perturbation method

The simultaneous perturbation (SP) gradient estimation method uses just two simulations for

estimating all the gradients.The SP gradient estimator for a process with p input parameters and

one output metric, f is given as follows

ĝi(�) =
f̂(� + C�)� f̂(� � C�)

ci�i
(5)

where

� = a random p-dimensional perturbation vector.

C = A diagonal matrix with step sizes for the input parameters in the diagonal row. The

reasoning behind the representation of the step size as a diagonal matrix is explained with the help

of equation (6). ci is the i-th diagonal element in C.

f̂(� + C�) = f̂

0
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2
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�2

::

�n

3
777775+

2
666664

c1 0 0 :: 0
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777775
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�2

::

�n
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777775
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CCCCCA = f̂

0
BBBBB@

2
666664

�1 + c1�1

�2 + c2�2

::

�n + cn�n

3
777775

1
CCCCCA (6)

Each element of � is independently generated from a probability distribution with mean zero.

The second inverse moment of � should be not be in�nite which means that � cannot be taken

from an uniform or normal distribution. The rationale behind proper choice of � is explained

in detail in [12]. The method di�ers from the FD method in that all the input parameters are

simultaneously perturbed during a single simulation. In the two simulation runs which are needed

to estimate the gradient using the SP method, the perturbation in parameters for one simulation

run will be exactly vice versa compared to the other simulation run. Hence for gradient estimates

for di�erent input parameters, only the denominator of the above formula will be varying as �

varies while the numerator will remain the same. Also here ci, the step size, may remain the

same for di�erent input parameters or may be scaled for di�erent input parameters, if the input

parameters vary greatly in magnitude.

3 Problem statement

We consider the problem of estimating the sensitivity of the steady state average total cycle time

(CT) to the processing times (PT) of each operation in the manufacturing system. The manu-

facturing system is a 
ow shop with no reentrant 
ow. The manufacturing system produces just

one product. This problem is important is because the impact of processing times on total aver-

age cycle time will give the people who manage the system information on the importance of the

process parameters. The manufacturing system has seven workstations. The seven workstations

are Coater, Stepper, Developer, Exposer, Printer, Reader and Writer. Table 1 gives the number
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Tool Group Number of tools Processing Time
(in Hrs)

Coater 2 5

Stepper 1 1

Developer 2 5

Exposer 2 6

Printer 1 3

Reader 1 2

Writer 2 7

Table 1: Toolgroups in the model and their parameters

of tools at each workstation and the mean processing time of that operation at that workstation.

The processing times at each workstation are exponentially distributed.

The product is a wafer, which enters the factory in lots of one unit each. The lots enter with an

average interarrival time of four hours. The interarrival times are exponentially distributed. The

example is depicted in Figure 2. We will use the Factory Explorer simulation tool [14] to simulate

the system and obtain estimates of the average total cycle time.

4 Gradient estimate using �nite di�erence method

Gradient measurement using FD method can be done through several sub-methods like the forward

di�erence, backward di�erence and central di�erence methods. We will use the central di�erence

method because the gradient estimate from the central di�erence method will usually have less bias

than the forward or backward di�erence. The FD estimator follows:

(ĝi(�))N =
1

N

NX
j=1

 
f̂j(� + ciei)� f̂j(� � ciei)

2ci

!
(7)

Where

ĝi = Estimate of the ith component of the gradient vector.

f̂j = jth estimate of the function, which is obtained from simulation.

ci = Step size for the ith parameter. Here ci = �i=100

� = Vector of baseline input parameters.

N = Number of replications.

ei = Unit vector in direction i.

The simulation tool used for conducting simulations considers the time duration for which the

system is simulated rather than the number of customers, so we simulate the system for 87,600

hours (10 years). To obtain reasonable accuracy, we perform N = 20 replications. The cycle time

and gradient estimates for one parameter over 20 replications are given in Table 4. Since the model

5



&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

? ?

?

? ?

? ?

?

?

? ?

?

?

? ?

? ?

?

Coater

Stepper

Exposer

Printer

Reader

Writer

Developer

Figure 2: Input model - manufacturing system
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has seven input parameters we need a total of 280 simulation runs.

An important parameter in the FD method is the step size. In the FD method, a large step size

yields estimates with high bias, but a small step size yields estimates with high variances. For this

model, we consider a step size ci = (0:01)�i. This step size is relatively small but using a higher

number of replications can reduce the variance.

Based on the chosen values that de�ne the logistics of the simulation and input parameters,

the gradients for the average total cycle time with respect to the mean processing parameters are

estimated. The con�dence intervals are built for a con�dence of 99%. The con�dence interval

is obtained by the following methodology. The standard error which is given by equation (8) is

calculated �rst. Then the half width of the con�dence interval is calculated as per equation (9).

S =

sPN
i=1X

2

i �N �X2

N � 1
(8)

where

Xi = Gradient estimate at replication i.

�X = Mean gradient estimate over N replications.( �X = (
PN

i=1X=N))

h = tN�1;1��=2
Sp
N

(9)

where

t = a constant which is obtained from statistical tables depending on � and N .

� = 0.01, if 99% is the con�dence needed in the estimate.

The con�dence interval is given by ( �X � h; �X + h). Table 4 gives the summary data for the FD

method including the cycle time and gradient estimates. Figure 3 gives a graphical representation

of the gradient results compared with the gradients from the analytical method.

An important conclusion which can be obtained from the �nite di�erence method is that the

changes in average cycle times of the machines whose mean processing times are varied consist of

almost the total change in the average cycle time of the manufacturing system. This is facilitated

by the �nite di�erence method where we estimate the average cycle time on a per-parameter basis.

This is re
ected in the data in Table 4.

5 Gradient Estimate using Simultaneous Perturbation

The second method being discussed here is the SP method. Here the gradient is estimated for the

i-th parameter as follows. g is the p-dimensional vector of gradients.

(ĝi(�))N =
1

N

NX
j=1

 
f̂j(� + C�j)� f̂j(� �C�j)

2ci�ji

!
(10)
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Replication Average cycle Average cycle Gradient
time-lower time-higher

1 81.164 81.539 3.75

2 77.400 77.779 3.79

3 78.186 78.566 3.80

4 83.612 83.938 3.26

5 74.415 74.898 4.83

6 77.952 78.677 7.25

7 77.179 77.394 2.15

8 78.973 80.158 11.85

9 79.944 80.447 5.03

10 76.042 76.326 2.84

11 78.114 79.271 11.57

12 77.876 77.857 -0.19

13 73.183 73.015 -1.68

14 79.941 79.987 0.46

15 78.657 79.044 3.87

16 75.986 77.418 14.32

17 78.534 78.605 0.71

18 76.034 76.623 5.89

19 75.508 75.391 -1.17

20 76.261 76.851 5.90

Average 4.411

Standard error 0.955

Half width of con�dence interval 2.415

Con�dence interval (1.986,6.837)

Table 2: Table showing cycle time and gradient estimates estimated by �nite di�erence method for
the process coater

where

ĝi = Estimate of the gradient for the ith input parameter

p = number of input parameters

N = number of replications

� = vector of baseline mean processing times

�j = a random p-dimensional perturbation vector, which changes at each replication.

C = the diagonal matrix of step sizes

ci = step size for the ith input parameter. Here ci = �i=100.

The implementation of the gradient estimator has been studied in depth in [11] as part of a

study on stochastic optimization using simultaneous perturbation stochastic approximation. The

gradient for all input parameters for one replication can be calculated with only two simulations.
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Figure 3: Distribution of the gradient obtained from Finite Di�erence method and comparison with
the gradient obtained by analytical method for each workstation

Tool Coater Stepper Developer Exposer Printer Reader Writer

Number 2 1 2 2 1 1 2
of tools

Mean processing 5 1 5 6 3 2 7
time-baseline

Processing 4.95 0.99 4.95 5.94 2.97 1.98 6.93
time-lower

Average cycle 77.748 77.990 77.795 77.538 77.558 77.926 76.015
time-lower

Mean processing 5.05 1.01 5.05 6.06 3.03 2.02 7.07
time-upper

Average cycle 78.189 78.026 78.171 78.504 78.482 78.091 80.300
time - upper

Gradient 4.411 1.840 3.762 8.052 15.398 4.109 30.602

Con�dence (1.986, (1.753, (3.262, (6.447, (13.312, (3.852, (26.121,
Interval 6.837) 1.927) 4.262) 9.657) 17.483) 4.365) 35.083)

Table 3: Summary Data for Finite Di�erence method
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Tool Change in average Change in total Di�erence
cycle time at tool average cycle time

Coater 0.381 0.441 0.060

Stepper 0.036 0.037 0.001

Developer 0.379 0.376 -0.002

Exposer 0.913 0.966 0.053

Printer 0.982 0.924 -0.058

Reader 0.161 0.164 0.003

Writer 4.285 4.284 0.000

Table 4: Table comparing the Change in CT at a tool and the change in total CT when the PT
for that tool is varied between the upper and lower levels

Number Mean processing Con�dence
Tools of Tools time (Hours) Gradient Interval

Lower Upper

Coater 2 4.95 5 5.05 5.574 (-4.780,15.928)

Stepper 1 0.99 1 1.01 -22.743 (-74.512,29.027)

Developer 2 4.95 5 5.05 3.809 (-6.545,14.162)

Exposer 2 5.94 6 6.06 11.631 (3.003,20.259)

Printer 1 2.97 3 3.03 13.664 (-3.592,30.921)

Reader 1 1.98 2 2.02 11.146 (-14.738,37.031)

Writer 2 6.93 7 7.07 34.979 (27.583,42.374)

Table 5: Summary Data for simultaneous perturbation method

The � vector considered here is obtained from a Bernoulli distribution. It consists of p i.i.d

symmetric Bernoulli random variables Xi. PfXi = 1g = 0:5. PfXi = �1g = 0:5. The step size

considered here is ci = (0.01)�. Setting ci as a function of �i takes care of the di�erences in the

magnitudes of the processing times. Table 5 gives the summary data for the SP method including

the cycle time and gradient estimates.

The SP gradient estimation is done for N = 140 replications. This facilitates comparison

between SP and FD. In the FD method, the gradient is estimated by changing the numerator and

keeping the denominator constant. But in the SP method, the numerator is kept constant and

the denominator is changed for calculating the gradients of di�erent parameters. Hence while SP

method requires two simulations to estimate the gradient for seven parameters, the FD method

needs 14 simulations. Hence when we have N = 20 replications for the �nite di�erence method, we

can have N = 140 replications for the SP method.

Figure 4 gives a graphical representation of the gradient results compared with the gradients

from the analytical method.
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Figure 4: Plot showing the distribution of the gradient obtained from Simultaneous Perturbation

method for each workstation and comparison with the gradient obtained by analytical methods

6 Analytical veri�cation

The gradients obtained by the FD and SP methods were compared to the partial derivatives

calculated exactly from queueing system models. In the example considered, we have workstations

with one or two tools each. Each station acts as an M/M/1 or M/M/2 queueing system, since

the interarrival times and processing times are exponentially distributed. The cycle times at each

tool can be calculated using exact models for M/M/1 and M/M/2 systems. Expressions for the

utilization, average cycle time and gradient for the M/M/1 and M/M/2 queueing systems are given

below [2, 10].

For the M/M/1 system:

ui = rati (11)

CTi =
ti

(1� ui)
(12)

Partialderivative =
@(CTi)

@(ti)
=

1

(1� ui)2
(13)

where

u = Utilization of the tool at workstation i

ra = Arrival rate = (1/mean interarrival time)

ti = Mean processing time at workstation i
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Arrival Rate Number Mean Average Partial
Tool (Jobs/Hour) of tools Processing Utilization Cycle time Derivative

Time(Hours) (Hours)

Coater 0.25 2 5 62.5 8.205 3.745

Stepper 0.25 1 1 25.0 1.333 1.778

Developer 0.25 2 5 62.5 8.205 3.745

Exposer 0.25 2 6 75.0 13.714 8.163

Printer 0.25 1 3 75.0 12.000 16.000

Reader 0.25 1 2 50.0 4.000 4.000

Writer 0.25 2 7 87.5 29.867 32.142

Table 6: Summary Data for Analytical Method

For the M/M/2 system:

ui =
rati
2

(14)

CTi =
ti

(1� u2i )
(15)

Partialderivative =
@(CTi)

@(ti)
=

(1 + u2i )

(1� u2i )
2

(16)

where

u = Utilization of the tool

ra = Arrival rate = (1/mean interarrival time)

ti = Mean processing time at workstation i

Table 6 lists the exact average cycle times and gradients.

7 Summary

The FD method provided reasonably good estimates for the gradient of average total cycle time

with respect to the mean processing times while the SP method could not perform as well as the

FD method. It gave poor con�dence limits for the gradients though the mean gradient was quite

accurate for some of the parameters. This could be due to the fact that the estimate for one

value depends on the way in which one variable a�ects the others during cycle time estimation,

which results in the high noise levels in the measurements of the gradients. When we compare the

gradient estimates of both the methods against the exact method we can see that, the FD method

has signi�cantly performed better than SP.

These gradient methods are of signi�cant use in complex manufacturing systems like semicon-

ductor manufacturing systems where we have a large number of input parameters which a�ect the

average total cycle time. These gradient estimation methods can estimate the impact that these

12



input parameters have and identify the parameters that have the maximum impact on system

performance.
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