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Micro air vehicles (MAVs) are small, unmanned aircraft useful for reconnais-

sance. The small size of MAVs presents unique challenges as they operate at low

Reynolds numbers O(104), and they share a flight regime with insects rather than

conventional aircraft. The low Reynolds number regime is dominated by poor aero-

dynamic characteristics such as low lift-to-drag ratios. To overcome this, birds and

insects utilize unsteady high lift mechanisms to generate sufficient lift. A leading

edge vortex (LEV), one of these unsteady lift mechanism, is thought to be responsi-

ble for the high lift generated by these natural fliers, but the factors which contribute

to the formation, stability, and persistence of LEVs are still unclear.

The objectives of this study are to: 1) qualitatively understand the formation

of the LEV by evaluating the effect of wing acceleration profiles, wing root geometry,

Reynolds number, and unsteady variations of pitch, 2) quantify whether high lift can

be sustained at low Reynolds numbers on a rotary wing in continuous revolution,

and 3) determine the effect of wing flexibility on the unsteady lift coefficient.



Experiments were performed on a rotating wing setup designed to model the

translational phase of the insect wing stroke during hover. Experiments were per-

formed in a water tank at Reynolds numbers between 5,000 and 25,000, and the

flow was investigated using dye flow visualization, as well as lift and drag force

measurements. A rigid wing and a simple one degree-of-freedom flexible wing were

tested.

Dye flow visualization on a rotating wing showed the formation of a coherent

LEV near the wing root. The LEV became less coherent further outboard, and

eventually burst. As the wing continued to rotate, the location where the LEV

burst moved inboard. Dye injection within the burst vortex showed the formation of

multiple small scale shedding vortices that traveled downstream and formed a region

of recirculating flow (i.e., a burst vortex). Parameter variations in this experiment

included velocity profiles, acceleration profiles, and Reynolds numbers.

High lift and drag coefficient peaks were measured during the acceleration

phase of the wing stroke at Reynolds numbers of 15,000 and 25,000. After the

initial peak, the coefficients dropped, increased, and eventually attained a “steady-

state” intermediate value after 5 chord-lengths of travel, which they maintained for

the remainder of the first revolution. When the wing began the second revolution,

both the lift and drag coefficients decreased, and leveled out at a second interme-

diate value. Force measurements on a chordwise flexible wing revealed lower lift

coefficients. For all of the cases tested, high lift was achieved during the accelera-

tion phase and first revolution of the wing stroke, though values dropped during the

second revolution.
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Chapter 1

Background

1.1 Introduction

Over the last decade, advances in micro-technologies such as miniature cam-

eras, infrared sensors, and hazardous substance detectors have increased interest in

highly portable platforms [1]. One such platform is the micro air vehicle (MAV).

Research into MAVs can be traced back to 1997 when the Defense Advanced Re-

search Projects Agency (DARPA) started a program to develop and demonstrate a

new type of small air vehicle. This program was intended to inspire the invention

of small vehicles capable of sustained hover with a maximum dimension of only

15 cm. The goal of this program was to develop and test emerging technologies

that could evolve into a mission-capable flight system for military surveillance and

reconnaissance applications.

A typical MAV has a cruise flight speed near 15 m/s and operates at Reynolds

numbers O(100,000) or lower, sharing a flight regime with birds and insects rather

than conventional aircraft [2]. While the definition of a MAV has now grown to

encompass a variety of small vehicles, enormous scientific interest continues to drive

the development of bird and insect scale autonomous MAVs. Since MAVs are pri-

marily of interest for reconnaissance missions, both endurance and maneuverability

are critical. Keenon and Grasmeyer [3, 4] have argued that very small “insect-sized”
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MAVs could give the modern military significant operational advantages, despite the

currently lower-than-desirable levels of performance of most hover-capable MAVs.

Many scenarios are extremely challenging, requiring the vehicle to operate outdoors

in gusty environments as well as within confined spaces such as buildings or caves.

Possible missions suggested for MAVs are squad-level combat, battle damage

assessment, air or artillery spotting, sensor dispersal, communications relay, and

detection of mines and hazardous substances. MAVs could also be equipped with

small jamming systems to confuse radar or communications equipment at very short

range. MAVs capable of hovering and vertical flight could be used to scout buildings

for urban combat and counter-terrorist operations. A MAV could also be included

in an airman’s survival kit, used by a downed pilot to keep track of approaching

enemy search parties, or relay communications to search and rescue units. To suc-

cessfully execute these missions, MAVs should be capable of efficient hover and also

be extremely maneuverable. At large scales, extreme maneuverability is achieved

through use of rotary wings, but at MAV-size scales, a bio-inspired flapping wing

flight may be desirable. To this end, the present work has examined, under con-

trolled laboratory conditions, some of the unsteady flow phenomenon responsible

for lift generation on a flapping wing in hover.

1.1.1 Comparison of MAV Platforms

Many fixed-wing MAV designs, like the Black Widow MAV (Figure 1.1), have

been successfully developed and flight tested. They are efficient and have an en-

2



Fig. 1.1: Black Widow MAV, from Ref [5].

durance close to 30 minutes [5]. However, these fixed-wing vehicles lack the ability

to hover, and therefore may have difficulty operating in highly constrained environ-

ments such as inside buildings or urban areas. Rotary-wing MAVs, on the other

hand, have the capability to hover, but their efficiency is significantly lower com-

pared to their fixed-wing counterparts [6]. Furthermore rotary-wing MAVs have

limited maneuverability and are less efficient when compared to their larger scale

counterparts [7].

The square-cube law is a basic geometric sizing rule stating that wing area is

proportional to the square of the characteristic dimensions [8]. This law leads to

structural weight becoming a dominant design driver as aircraft get larger. This is

illustrated by most birds not being able to hover, while hummingbirds and fruit flies

have tremendous vertical climb and hover capabilities [4]. This means that geomet-

ric scaling of fixed wings and helicopters may not be ideally suited for operating in
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this completely different aerodynamic regime. Therefore, it is important to investi-

gate alternate solutions by drawing inspiration from nature’s fliers. As McMasters

and Henderson put it, “humans fly commercially or recreationally, but animals fly

professionally” [9]. However, there are two challenges in utilizing the flapping wing

concept for MAVs: emulating their wing kinematics, and understanding the result-

ing complex aerodynamics.

1.2 Low Reynolds Number Flight Regime

MAVs operate in the low Reynolds number regime (103 - 105), which, compared

with large, manned flight vehicles, have unfavorable aerodynamics characteristics in

steady flow, such as high minimum drag coefficients and low lift-to-drag ratios [10].

Figure 1.2 shows that minimum drag coefficients measured for different airfoils are

significantly higher for lower Reynolds numbers.

MAVs’ small geometric dimensions, however, do result in some favorable scal-

ing characteristics, such as reduced stall speed and better structural survivability.

When compared to other rotating-wing MAV systems, it is clear that flapping wings

have thus far achieved relatively low values of hovering efficiencies. However, bio-

inspired flapping wings may still be a viable option as a hovering MAV platform

because of their maneuverability and agility at this scale [12].
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Fig. 1.2: Minimum drag coefficients of different airfoils throughout a range of chord

Reynolds numbers, from Ref [11].

1.3 Flapping Wing Flight

Birds and insects are able to generate lift at angles of attack for which the wings

of conventional aircraft are stalled, thus achieving a higher lift coefficient. Therefore,

an understanding of natural flight will not only help improve aerodynamics, but

ultimately influence design and enable new, more efficient and capable MAVs. The

nature of flapping wing flight introduces several levels of complexity, primarily due to

the unsteady wing kinematics. These unsteady kinematics can lead to the generation

of a large number of unconventional and unsteady flow phenomena, which contribute

significantly to the resultant forces and moments on the wing.
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1.3.1 Avian Versus Insect Flight

In order to further understand flapping wing aerodynamics, it is important

to first understand the difference between the two main modes of flapping flight in

nature: insect and avian (bird) flight. Conventional fixed-wing aircraft rely on the

forward motion relative to the air to produce lift. Biological fliers, on the other hand,

not only move their wings forward relative to the air, but also flap up and down,

plunge, and sweep. Ellington et al. [13] made the general observation that birds

typically operate with attached turbulent flow over their wings and keep the flow

attached while insects, on the other hand, have sharp leading edges and separated

laminar flow over their wings. The difference in structure and kinematics of bird

and insect wings reflect this difference in the flow around their wings.

Birds fly in the Reynolds number range of 103 < Re < 105 while insects fly

in the Reynolds number range of 101 < Re < 103, thus the Reynolds number of

the MAV flight dictates which mechanism is to be adopted. The most significant

and relevant difference is the ability to hover. While most insects can hover, this

capability is restricted to only a few species of birds, such as hummingbirds.

1.3.2 Insect Wing Kinematics

Many insects fly using a reciprocating wing motion [12]. The wing kinematics

of this reciprocating motion feature two translational motions and two rotational

motions. The translational motions are called the downstroke and upstroke, where

the wing sweeps through the air at a relatively large fixed pitch. The two rotational
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Fig. 1.3: Insect wing kinematics, from Ref [17].

motions are called pronation and supination, where the wing rapidly changes its

pitch to reverse the direction of its sweep. Combined, these wing motions result in

an overall stroke trajectory in which the wingtip path forms a closed loop and the

wings are at a positive angle of attack during both translational motions [14].

Figure 1.3 shows a schematic of a representative flapping cycle, which con-

tinuously repeats the process of pronation, downstroke, supination, and upstroke

[15]. Insects can also tilt the reference plane of flapping (the stroke plane), thereby

varying the direction of the net aerodynamic forces. During the downstroke and

upstroke high-lift is produced, in part, by the formation of a leading edge vortex on

the wing [13]. Significant lift is also produced during supination and pronation due

to rotational circulation and wake capture, a phenomenon that occurs as the wing

passes through its own wake created during the previous half-stroke [16].
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1.4 Unsteady Lift Enhancement Mechanisms

Natural fliers utilize unsteady flapping mechanisms to generate lift and thrust.

Steady and quasi-steady aerodynamic theory, experiments, computations, and mod-

eling have not yet fully explained the ability of flapping wing fliers to generate the

required lift to achieve hover and to fly forward at the observed speeds [18]. It is

therefore necessary to look at unsteady effects.

The unsteadiness of a flow is characterized by the ratio between forward ve-

locity and flapping velocity, known as the reduced frequency

k =
ω c

Uref

(1.1)

where ω is the flapping frequency, c is the wing chord, and Uref is the reference linear

velocity. The reduced frequency determines whether either unsteady or quasi-steady

methods can be used. Flow is unsteady if k > 0, but can generally be considered

quasi-steady for a reduced frequency 0 < k < 0.03, where unsteady effects are

not very significant [12]. For 0.03 < k < 0.1, flow can be considered moderately

unsteady, and beyond k = 0.1 flow is considered fully unsteady. k is typically

between 1 and 10 for small insects [12].

The unsteady aerodynamics of insects is characterized by a constant flapping

motion which enables them to hover. Unsteady lift mechanisms are therefore known

to be important, but they are not fully understood. In particular, several unsteady

lift mechanisms on flapping wings have been recognized in previous research (e.g.,

Ref [16, 13, 19]) and have been examined further during the course of the present

research.
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1.4.1 Dynamic Stall

Dynamic stall has been observed on helicopter blades and is known to cause the

formation, shedding, and downstream convection of a strong vortex-like disturbance

rising from near the leading edge [11]. The concept of dynamic stall centers on the

timescale of vortex growth when flow separates from the leading edge. During this

process, the fluid mechanics of stall are usually very different from those obtained on

an airfoil under static conditions [20]. Once the airfoil exceeds the static stall angle,

lift continues to increase despite flow reversal in the boundary layer. As the angle

of attack increases further, flow separates at the leading edge and a vortex forms.

This vortex convects over the surface of the airfoil, causing additional lift and so the

lift curve slope increases [21]. Once the vortex reaches the trailing edge, the flow is

fully separated and there is a sharp drop in lift. The flow does not reattach until

the angle of attack is reduced to below the static stall angle. A similar type of flow

has been observed on insect like flapping wings, resulting in the formation of the

leading edge vortex.

1.4.2 Leading Edge Vortex

The formation of a LEV has been noted during many types of flapping wing

motions. When the angle of attack of a wing is greater than the stall angle, the flow

separates and rolls up into a vortex. This vortex is known as the leading edge vortex

(LEV), and is a result of dynamic stall [22]. In flapping wing flight, the presence

of LEVs is thought to be essential to delay stall and to augment aerodynamic force
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production during translation of flapping wings.

The LEV forms on the upper surface of the wing and can be responsible for

significantly increasing lift on the wing. Van Den Berg et al. showed that the LEV

can supply up to two-thirds of the required lift during the downstroke [22]. A vortex

attached to the leading edge of the wing allows the flow outside of the vortex to

reattach to the wing. There are two theories to explain this increase in lift, but

these are equivalent. The first, the pressure approach, suggests that the presence of

a LEV lowers the local pressure on the upper surface of the wing, thus resulting in an

increase in the overall lift [13]. The second, the circulation approach, suggests that

the net circulation about the wing is increased due to the presence of the leading

edge vortex; the circulation is a measure of the velocity difference above and below

the wing [13].

One of the first studies to investigate vorticity in flapping wing flight was by

Maxworthy [23]. He observed that during a wing stroke, a vortex formed at the

leading edge which then connected to larger vortices at the wingtip. The vortices

remained attached and stable through the entire downstroke, therefore explaining

the increased lift that could not be explained by inviscid models. He also described

a helical structure of the LEV where significant axial flow near the leading edge

transported vorticity from the LEV core to the wingtips.

In another study, Van Den Berg and Ellington visualized flow around a me-

chanical model of the flying hawkmoth, Manduca sexta, and demonstrated a LEV

forming at the base of the wing and spiraling outward to join the tip vortices [22].

Near the base of the wing, the vortex diameter was quite small and grew radially
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Fig. 1.4: Visualization of a helical LEV indicating a strong axial flow, from Ref [22].

along the leading edge until merging with the tip vortex that swept backward. Smoke

visualization indicated a coherent helical vortex starting at the base and stretching

more than two thirds of the wing before the structure broke down and connected to

larger structures near the wingtips. Figure 1.4 shows an increase in LEV size with

distance from the root of the wing. Vortices form as the flow separates over the

sharp leading edges, and are stabilized by an axial flow along the leading edge.

The effects observed by the above mentioned models are similar to the thin

surfaces of certain delta wing aircraft that use axial flow to maintain a stable LEV

for lift production [18, 19]. This flow gives the delta wing a high stall angle of attack,

which can be exploited for takeoff, landing, and maneuvering [24]. The delta wing

owes much of the lift that it is able to generate to the vortex which is initiated

at the leading edge of the wing. This vortex contains a substantial axial velocity

component. At high angles of attack, the vortex on a delta wing breaks down.

Figure 1.5 shows the vortex breakdown of two leading edge vortices at a location

about two-thirds along their length over the top of the wing. The vortex at the

top of the photograph exhibits spiral breakdown, where the diameter of the core
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increases and the axial velocity component is no longer unidirectional. The vortex

at the bottom of the photograph exhibits a bubble-type of vortex breakdown, where

the flow becomes chaotic after vortex bursts. When breakdown occurs, the axial

velocity component decreases and the pressure increases, the wing loses lift, and the

wing stalls [24].

Fig. 1.5: Vortex breakdown over a delta wing, from Ref [25].

LEVs have also been experimentally identified and studied on live insects and

birds, as well as mechanical models, e.g., Ref [16, 13, 26, 27, 28]. The phenomenon

has been further studied numerically using CFD, e.g., Ref [29, 30]. The detailed

characteristics of LEVs, including their formation and shedding processes, have

been the focus of much recent research, e.g., Ref [18, 31, 32]. Given its ability to

augment the lifting performance of a wing, exploiting the aerodynamic benefits of
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LEV generation could be critical in the successful design of MAVs.

1.4.3 Rotational Circulation

Fig. 1.6: Dickinson’s Robofly setup, from Ref [16].

While wing translation with leading edge vorticity is thought to be the pri-

mary source of unsteady aerodynamic force production, rotation of the wing during

supination and pronation can contribute significant lift as well. In fact, force analy-

sis done on Drosphelia kinematics indicated that 35% of total lift production occurs

during wing rotation [33]. Dickinson et al. [16] used their ‘Robofly’ (a dynami-

cally scaled robot that consists of six servo-motors and two coaxial arms, shown in

Figure 1.6) along with various rotational patterns, to investigate the relationship
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between kinematics and lift generation. They identified two lift force peaks at the

end and beginning of each stroke, during pronation and supination. The first force

peak (shown in Figure 1.7) can be explained by rotational circulation. The wing’s

own rotation serves as a source of circulation to generate an upward force [16]. This

mechanism, rotational circulation, is akin to the Magnus effect on a spinning base-

ball [34]. The surface of the rotating ball pulls air within its boundary layer as it

spins, thus serving as a source of circulation. As the ball moves through the air,

this circulation will increase the total flow velocity on one side and decrease it on

the other. During the rotational phase of an insect wing stroke, the direction and

magnitude of this rotational lift force is dependent on the pitch angle variation dur-

ing rotation, the direction of free-stream velocity, and the location of the pitch axis

[16,35].

1.4.4 Wake Capture

The wing kinematics employed by insects consists of a reciprocating flapping

motion, so their wake repeatedly moves through the wake generated by the previous

strokes. This interaction, known as wake capture, may augment the lift force [36].

Wake capture can produce lift by transfer of fluid momentum associated with

large scale vortical flow shed from the previous stroke to the wing at the beginning

of each half stroke [37]. The wing meets the wake created during the previous stroke

after reversing its direction, thus increasing the effective flow speed surrounding the

airfoil, which generates the second force peak (shown in Figure 1.7) as observed
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first peak 

second peak 

Fig. 1.7: Experimental and numerical lift coefficients for a fruit fly wing at a

Reynolds number of 136, showing the two lift peaks at the end of the upstroke

and the beginning of the downstroke, from Ref [30].
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by Dickinson et al [16]. The key difference between wake capture and rotational

circulation is that while rotational circulation manifests as a force transient dur-

ing rotation, wake capture always occurs after rotation and is reflected as a force

transient in the next half stroke.

1.4.5 Wing Flexibility

Although research on flexible wing aerodynamics has been far less extensive

than on rigid wings, membrane airfoils (similar to those observed in nature), are

likely to be used on MAV flight vehicles due to their low weight. Even though

flexible wings add an additional complexity posed by the aeroelasticity, they have

been shown to improve performance at high angles of attack through passive shape

adaptation [38]. In particular, the stall angle of attack has been shown to increase

as much as 20 deg when using a flexible wing versus a rigid wing, while maintaining

comparable lift-to-drag ratios throughout the range of angle of attack [12]. At pre-

stall conditions, rigid and membrane wings demonstrate similar lift characteristics

[39].

Natural insect wings have complex elastic structures with variable stiffness

along several axes. Adding some structural flexibility (as opposed to a rigid wing)

to a flapping wing has been shown to be beneficial for performance as it allows for

the passive control of wing pitch [40]. A two-panel hinged wing serves as a useful

model of the passive deformation of an insect wing. A flexible wing can be modeled

as a rigid anterior section and a rigid posterior portion separated spanwise by a
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Fig. 1.8: Model system consisting of two rigid elliptical sections connected by a

hinge with torsion spring used by Toomey and Eldredge, from Ref [40].

hinge at the mid-chord [41, 42]. This model of a flexible wing (refer to Figure 1.8)

as a linkage of rigid panels has previously been used in computational, modeling,

and experimental work by Eldredge and Toomey [40, 43, 39]. Their wing model

consisted of two rigid sections connected by a hinge with a torsion spring (to model

the insect wing’s structural stiffness). Both experimental and numerical techniques

were used in conjunction to investigate, among other things, the physics behind lift

generation on a flexible wing. Toomey et al. [43] found that the power needed to

flap the wing was reduced for the flexible wing compared to the rigid wing, but that

at large heave amplitudes the effectiveness of the flexible wing was reduced due to

premature detachment of the LEV, reducing lift on the wing.

Hui et al. [44] examined various flexible wing structures (latex, nylon, and

wood) to evaluate their implications on flapping wing aerodynamics. He showed
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that the flexible membrane wings were found to have better overall aerodynamic

performance (i.e., lift-to-drag ratio) than the rigid wing at an angle of attack of

10 deg. The rigid wing (wood) was found to have better lift production performance

for flapping flight in general. The latex wing, which was the most flexible among

the three tested wings, was found to have the best thrust generation performance

for flapping flight because the flapping motion of the rigid wing would induce ad-

ditional drag instead of generating lift. The less flexible nylon wing, which had

the best overall aerodynamic performance, was found to be the worst for flapping

flight applications. Figure 1.9 shows the measured lift coefficients, drag coefficients,

and the lift-to-drag ratio with respect to the orientation angle for the three tested

wings by Hui et al. The orientation angle (OA) is the angle of attack of the tested

wings with respect to the incoming flows. All three wings were found to have very

comparable aerodynamic performances at small orientation angles (OA<10 deg).

The flexible membrane wings were found to have slightly larger lift and drag co-

efficients compared with the rigid wood wing at relatively high orientation angles

(OA>10 deg).

Kim et al. [45] developed a biomimetic flexible flapping wing using micro-fiber

composite actuators and experimentally investigated the aerodynamic performance

of the wing under flapping and non-flapping motions in a wind tunnel. Results

showed that the camber due to wing flexibility could produce positive effects (i.e.,

stall delay, drag reduction, and stabilization of the LEV) on flapping wing aerody-

namics in the quasi-steady and unsteady regions.

Agrawal and Agrawal [46] investigated the benefits of insect wing flexibility on
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(a) Lift coefficient

(b) Drag coefficient

(c) Lift-to-drag ratio

Fig. 1.9: Force measurements for various flexible wings at a Reynolds number of

20,000, from Ref [44].

19



flapping wing aerodynamics based on experiments and numerical simulations. They

compared the performance of two synthetic wings: 1) a flexible wing based on a

bio-inspired design of the hawkmoth (Manduca Sexta) wing, and 2) a rigid wing of

similar geometry. The results demonstrated that more thrust was generated by the

bio-inspired flexible wing compared to the rigid wing in all wing kinematic patterns

considered. This agrees with the results of Hui et al. [44]. They emphasized that

coupled fluid-structure simulations of flexible flapping wings are required to gain a

fundamental understanding of the physics and to guide optimal flapping wing MAV

designs.

1.5 Experimental Models

1.5.1 Insect like Flapping

Experimental and computational investigations of insect-like flapping wing

motions have shown that the flow structures in the wake of low aspect ratio wings

have complex three-dimensional forms, which can be fundamentally different from

their two-dimensional counterparts. Ellington et al. [47, 48, 49] provides a detailed

analysis of wing geometry, kinematics, a discussion on aerodynamic mechanisms, and

information on lift and power requirements of natural fliers. Ellington confirmed that

most hovering animals flap their wings in a horizontal stroke plane and examined

the idea that vorticity generated by separation at the edges of the wing could be

a lifting mechanism for hovering flight. He speculated that the LEV may be the

primary lift generating vortex, and that the induced spanwise flow from root to tip
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may prevent the LEV from shedding throughout each half stroke. Technological

advances during the 1990’s allowed for more advanced experiments to test these

hypotheses.

In a later study by Ellington [13], three-dimensional flow visualization was

performed on an actual hawkmoth flapping in a wind tunnel, shown in Figure 1.10.

He demonstrated that the LEV remains attached to the surface of wing longer than

if flow were purely two-dimensional. Upon performing flow visualization using a

robotic model of a flapping hawkmoth, Ellington et al. [13] observed significant

spanwise flow within the LEV core, which he then attributed to a spanwise pressure

gradient due to higher velocities of the wing tip. He hypothesized that this spanwise

flow drains some of the vorticity of the LEV outboard to the wing tip. This, he

postulated, retards the vorticity accumulation in the LEV, as compared to the two-

dimensional case.

Further tests by Usherwood and Ellington [19] on a mechanical model of a

hawkmoth showed a strong LEV during the downstroke and spanwise flow within

the LEV core from the wing root to the tip. Near the wing tip, the LEV joined

with the tip vortex. It was noted that LEV formation resembled the process of

dynamic stall. They also found that the LEV had a helical structure similar to

that of a delta wing, and Usherwood et al. hypothesized that the spanwise flow was

responsible for this. These results, coupled with the flow visualization done on their

robotic flapping model of the hawkmoth, provided new insight into hovering flight.

Birch and Dickinson [18] used digital particle image velocimetry (DPIV) to

measure the velocity field around a flapping robotic model of a fruit fly. They found
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Fig. 1.10: Flow visualization around a female hawkmoth in a wind tunnel, from

Ref [13].
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only a very small spanwise velocity in the LEV. Additionally, they observed a large

tip vortex attached to the wing, which induced spanwise flow behind the LEV, near

the wing’s trailing edge, as well as a strong downward flow around the wing. The

flow from the previous wing stroke also contributed to this downward flow. Birch

and Dickinson hypothesized that this induced downward flow significantly lowers

the effective angle of attack of the wing, thus retarding the growth of the LEV and

delaying shedding.

To further study the effect of spanwise flow, Birch and Dickinson [18] applied

fences and baffles on the upper surface of the wing (as shown in Figure 1.11) to

inhibit spanwise flow. They demonstrated that despite decreased spanwise flow,

the LEV still did not detach from the wing. These authors emphasized that their

results suggested some dependence upon Reynolds number as it affects the stabil-

ity characteristics of the LEV. This hypothesis is different from those reported by

Ellington [13]. Therefore, there is disagreement over the mechanisms that keep the

LEV attached to a wing.

In another study, Birch and Dickinson [50] made force measurements on the

flapping motion of a dynamically scaled fruit fly wing at two different chord Reynolds

number of 120 and 1,400. They found that the wing showed relatively constant force

generation during its wing stroke. They suggested this could be due to the presence

of a stable LEV. They also noted a higher lift coefficient occurred at higher chord

Reynolds numbers. The maximum lift coefficient at a chord Reynolds number of

120 was 1.7, whereas at a chord Reynolds number of 1,400 they found a maximum

lift coefficient of 2.1 [50].
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Fig. 1.11: Birch and Dickinson’s setup: a) Fences on the leading edge, b) Fences on

the trailing edge, c) Acrylic tip wall. The column on the right shows the presence

of vorticity, from Ref [18].
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More recently, Srygley and Thomas [27] have observed LEVs on butterfly wings

in free flight at Re = O(103)1 and examined the LEV development in various modes

of flight (climb, maneuver, forward flight). During climb, they found that two LEVs

formed on the upper surface of the wings. They postulated that in these particular

flight modes, the insect required more lift and modified its wing kinematics to exploit

lift enhancement from the LEVs. During forward flight, however, the LEVs were not

observed on the wings. Their research also demonstrated that the LEV generated

by the butterfly produced a LEV of approximately constant diameter across the

wing span, as opposed to the spiral LEV structure seen on the hawkmoth [27].

Extensive flow visualization studies were performed by Singh and Chopra [15]

and Ramasamy and Leishman [31] on a MAV scale flapping wings at a Reynolds

number of 15,500. Their work showed the formation of unstable (i.e., shedding)

LEVs. Figure 1.12 shows the LEV shedding process through the downstroke of

the wing motion as taken from Ramasamy and Leishman [31]. Additionally, they

showed that the shedding of the LEV occurred despite a significant spanwise flow

on the upper surface of the wing. They noted that the continuous presence of at

least one vortex over the wing might help to explain the sustained lift generation

shown by flapping wings during stationary hovering flight.

Wilkins and Knowles [51] showed that for an LEV to be stable, the creation

of vorticity at the leading edge must be matched perfectly by the convection and

diffusion of vorticity into the wake, thus creating a stable equilibrium. Spanwise

1An estimate calculated from the free stream velocity and the known dimensions of the Vanessa

atlanta butterfly.
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Fig. 1.12: Chordwise flow visualization images by Ramasamy and Leishman: d)

Start of translational stroke, e) Accelerating wing, f) Midpoint of translational mo-

tion, g) Spilled LEV, h) Formation of new LEV, i) Multiple vortices, from Ref [31].

flow therefore provides a mechanism that stabilizes the LEV, generating sufficient

lift. This agrees with what Ellington and Usherwood determined earlier [52]. Sane

et al. [53] concluded that axial flow through the LEV core stabilized the LEV at the

laminar Reynolds number of insect flight even at large incidence, indefinitely delay-

ing stall. At Reynolds numbers less than 100, the three-dimensional flow around a

flapping wing was remarkably self-stabilizing. At higher Reynolds numbers, the LEV

periodically grew and broke away, limiting the mean value of the lift coefficients.

Sane attributed this instability to the absence of axial flow.

1.5.2 Revolving Models

The propeller-like rotating wing is a popular model of insect-like flapping.

It was designed to isolate the translational phase of the wing stroke. To date,

26



propeller experiments typically involve rotating a wing at a constant angle of attack

in the absence of a free-stream. Usherwood and Ellington experimentally studied

revolving hawkmoth wings at Re O(103). Usherwood et al. showed that the lift

coefficient was found to decrease as Reynolds number increased from 10,000 and

50,000. He postulated that a weaker LEV formed at higher Reynolds number [19,

54]. Usherwood and Ellington also examined the lift and drag production on rotating

wings for a fairly wide range of parameters, including angle of attack, twist, and

camber. At an angle of attack around 41 deg, they showed that wing lift coefficient

can reach as high as 1.75 if a stable LEV is produced over the wing.

At lower Reynolds numbers O(1,000), DeVoria et al. [55] experimentally in-

vestigated the three-dimensional vortex flow of low aspect ratio plates executing

rotational motions from rest at fixed angles of attack. DeVoria employed flow vi-

sualization and DPIV to examine the flow structure on a trapezoidal plate and a

rectangular plate. For the trapezoidal plate at angle of attack of 90 deg, the flow was

found to be dominated by a strong trailing vortex, while the overall flow structure

was a symmetrical ring-like vortex. At high speeds, the ring-like vortex was observed

to shed before the wing motion ended. DPIV results indicated that this was due to a

strong root-to-tip velocity induced by the tip vortices, and a Kelvin-Helmholtz-like

instability in the separated shear layer at the tip. For the rectangular plate at a

fixed angle of attack of 45 deg, flow visualization revealed the presence of a strong

spanwise flow and an attached LEV early in the motion, which then burst over the

outboard half of the wing. The LEV observed on the wing was spiral-shaped and

attached to the wing early in the wing motion. Kelvin-Helmholtz-like instabilities
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were observed in the shear layer, and he postulated that this contributed to the

breakdown of the LEV structure.

In another study, Ozen et al. used PIV to characterize the steady-state flow

structure on a low aspect ratio rotating plate at fixed angles of attack ranging from

30 to 75 degrees in a water tunnel. He observed a stable LEV for a range of Reynolds

numbers between 3,600 and 14,500 [56].

Other experiments on a rotating wing model accelerating to similarly high

Reynolds numbers focused on the wing startup and revealed the development of an

unstable LEV that forms and sheds early in the wing stroke, resulting in high-lift

transients. Jones and Babinsky [57, 58, 59] studied the fluid dynamics associated

with a three-dimensional 2.5% thick waving flat plate. The flow development around

a waving wing at Re = O(104) was studied using PIV to capture the unsteady ve-

locity field. Vorticity field computations and a vortex identification scheme revealed

the structure of the three-dimensional flow-field, characterized by strong leading

edge vortices. A transient high-lift peak approximately 1.5 times the quasi-steady

value occurred in the first chord-length of travel, caused by the formation of a strong

attached leading edge vortex. This vortex then separated from the leading edge, re-

sulting in a sharp drop in lift. As weaker leading edge vortices continued to form

and shed, lift values recovered to an intermediate value. They also reported that

the wing kinematics had only a small effect on the aerodynamic forces produced by

the waving wing if the acceleration is sufficiently high.
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1.5.3 Computational Studies

In addition to the experimental studies, numerous studies have been conducted

using computational fluid dynamics (CFD). Computations on flapping wings have

specifically examined the aerodynamic characteristics of hawkmoth and fruit fly

wing shapes. Liu et al. [60] conducted numerical simulations of the flow around

a hawkmoth in order to study the unsteady aerodynamics of hovering flight. The

LEV and the spiral axial flow during translation in their results are consistent with

those reported by Ellington. Shyy and Liu [29] performed CFD on flapping wings

for a range of Reynolds numbers, and specifically examined the hawkmoth and fruit

fly wing geometries used in previous research. They found a much more pronounced

spanwise flow through the core of the LEV on the hawkmoth wing compared to the

fruit fly, which was consistent with previous findings by Usherwood and Ellington

[19]. In their evaluation of the stability of the LEV, the results showed that the

fruit fly wing maintained a stable LEV throughout its translational stroke, whereas

on the hawkmoth model, the LEV was shed during the downstroke.

Bush et al. [61] successfully reproduced LEV behavior at low and moderate

Reynolds numbers in terms of LEV stability and spanwise flow as observed by Birch

and Dickinson [62], using an immersed boundary solver. The computed drag during

translational flapping, agreed with the experimental data of Sane and Dickinson

[63].

In another study, Blondeaux et al. [64] and Dong et al. [65] characterized

the features of vortical structures and their interaction in the near-wakes of an
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elliptical planform undergoing periodic flapping motion. They presented a basis for

comparison with selected features of the aforementioned force measurements and

visualization studies. Taira and Colonius [66] computed the wake structure from

various configurations of impulsively translating plates and characterized the strong

interaction between the tip and trailing edge vortex systems. Brunton et al. [67]

used the same computational approach used by Taria to define the wake structure

of a pitching plate.

1.6 Summary

MAVs are likely to benefit by mimicking some features of insect flight kine-

matics. Although conventional fixed wings can perform well in the laminar flow

regime, at very low Reynolds numbers, it is possible to generate higher lift forces

using a flapping wing configuration by exploiting unsteady aerodynamic mecha-

nisms. Various lift enhancement mechanisms that are employed by insects were

discussed, including LEVs, rotational circulation, and wake capture. Experimental

and computational studies on both real and mechanical insects have identified the

LEV as an important high lift mechanism that accounts for some of the additional

lift produced by flapping insect wings when compared to fixed or rotary wings.

However, there remains considerable uncertainty about the factors that control the

stability of the LEV. Therefore, understanding the LEV characteristics, such as the

formation, persistence and shedding, may be important for the design of a successful

MAV.
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1.7 Objective of Present Work

The objectives of the present work are:

1. To qualitatively understand the formation, stability, persistence, and impor-

tance of the leading edge vortex in the generation of lift on insect-like flapping

wings by evaluating the effect of:

• Wing acceleration profiles

• Wing root geometry

• Reynolds number

2. To characterize the flow structure on a pitching-and-rotating wing and thereby

understand the effect of unsteady variations of pitch on the three-dimensional

flow structures.

3. To determine whether LEVs can provide high lift at low Reynolds numbers

on a rotary wing in continuous revolution.

4. To quantify the effect of wing flexibility on the lift and drag coefficients on a

rotating wing and determine whether there are advantages over a rigid wing.

To this end, the work presented in this thesis employs a new three-dimensional

model for the insect-like wing stroke, combining both wing rotation and unsteady

pitch changes. This setup combines unsteady wing rotation (including starting/stopping,

acceleration profiles, and continuous revolution) and unsteady variations in pitch.

Dye flow visualization is used to qualitatively understand the evolution of unsteady
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flow structures on a rotating wing. Force measurements are used to investigate the

lift and drag produced on a rotating wing at a fixed angle of attack. Finally the

flow structures on a pitching-and-rotating wing were qualitatively characterized.

1.8 Outline of Thesis

The present work explores the development of the LEV and the role it plays

in generating lift on flapping wings. The motivation behind MAV development and

the fundamentals of flapping wing aerodynamics have been discussed in this chap-

ter. A review of past research on unsteady lift mechanisms, especially the LEV, and

comparisons between rigid and flexible wings has also been presented. Chapter 2

gives a comprehensive description of the experimental techniques that were utilized

to characterize the LEVs and to measure the aerodynamic forces, including dye flow

visualization and force measurements. The fundamental principles, equipment used,

and challenges unique to each experimental technique are explained. Chapters 3 and

4 document the results in terms of qualitative (flow visualization) and quantitative

(force measurements) results for rigid and flexible wings at different Reynolds num-

bers, velocity profiles, and acceleration profiles. Chapter 5 concludes the thesis by

discussing the significance of the findings and suggesting future experiments towards

a better understanding of flapping wings for MAV applications.
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Chapter 2

Methodology

2.1 Overview

Dye flow visualization and force measurement experiments were performed

to gain new insight into hovering aerodynamics and help understand the complex

flow field generated by a rotating wing. This chapter provides a description of the

experimental setups, the equipment used, and the challenges in performing such

experiments.

2.2 Experimental Setup

Experiments were performed in a 4 ft×4 ft×4 ft (1.2 m×1.2 m×1.2 m) water

tank (shown in Figure 2.1) at the Low Reynolds Number Aerodynamics Labora-

tory (LRAL) at the University of Maryland, College Park. The target Reynolds

number range for these experiments is 5,000 to 25,000, selected to provide data for

comparison with results available at Reynolds numbers between 1,000 and 50,000.

Water was used as the working fluid so that measurable lift and drag forces

could be obtained without the need for high rotation speeds. For example, the

Reynolds number is defined as

Re =
Uref c

ν
(2.1)
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Fig. 2.1: The pitching and rotating wing setup.

where Uref is the local velocity at the three-quarter span reference plane (shown in

Figure 2.2(a)), c is the wing chord, and ν is the kinematic viscosity of the working

fluid. Rearranging to solve for Uref ,

Uref =
Re ν

c
. (2.2)

The kinematic viscosity of water is 1.052×10−5 ft2 s−1 and the kinematic viscosity

of air is 1.640×10−4 ft2 s−1. Keeping the chord of the wing constant at 0.25 ft (3 in)

and a picking reference Reynolds number of 15,000,

for water : Uref =
15, 000 × 1.052 × 10−5

3
= 0.63 ft s−1 (2.3)

for air : Uref =
15, 000 × 1.640 × 10−4

3
= 9.84 ft s−1 (2.4)

therefore, operating in water allows for approximately 93% slower rotational speeds

than air. It is easier to capture flow structures at slower rotational speeds for dye flow
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(a) U-bracket assembly (b) Wing dimensions

Fig. 2.2: The pitching-and-rotating wing on the U-bracket assembly and wing di-

mensions.

visualization experiments as there is enough time for the dye to fill the structures

completely, making them easier to see.

Figure 2.1 shows the pitching-and-rotating wing setup. The wing rotation was

driven by a stepper motor above water and pitch by a submerged servo motor. Above

the tank, an aluminum structure (80/20) supported the rig and stepper motor. A

0.5 in diameter stainless steel rod extended down into the tank and was inserted

into a bearing on the tank floor. The top of this rod was connected to a belt drive

system consisting of toothed pulleys (1:5), a rubber toothed belt, a stepper motor

with a maximum torque of 265 oz-in, a driver, and an encoder to record position

data. The stepper motor was controlled via LabVIEW through a NI USB X-Series

6341 DAQ card.

The experimental rig was designed such that, depending on the type of testing
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Fig. 2.3: L-bracket assembly with flexible wing and force balance.

(rotating-only or pitching-and-rotating), the rig can be modified to handle either

a submersible servo motor for pitch control (Figure 2.2(a)) or a force transducer

(Figure 2.3). The submersible servo motor was used to vary the angle of attack of

the wing, and the force transducer was used to measure the forces acting on the

rotating-only wing. For the pitching-and-rotating wing setup, a Traxxas waterproof

servo motor (max torque 84 oz-in) was mounted near the wing root, on a Delrin U-

bracket. The motor can drive ± 45 deg pitch changes about the leading edge via a

tygon shaft as shown in Figure 2.2(a). The Delrin U-bracket was then mounted

on the long stainless steel shaft. The distance between the wing root and the

axis of rotation was 0.65c. A schematic of the setup with dimensions is shown

in Figure 2.2(b). For the rotating-only wing setup, a force transducer (discussed

further in Section 2.5.2) was mounted near the wing root on a Delrin L-bracket.

A rectangular wing with a chord of 3 in and an aspect ratio 2 was machined

from a 4.5% thick fiberglass flat plate. The chord of the wing was sized to allow five

chord-lengths of space between the wing tip and the walls of the tank to avoid wall
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effects. Tip vortices are typically about one and a half times the chord of the wing

[24], therefore a distance of five chord-lengths was chosen to aviod interference from

the walls of the tank.

Natural fliers employ flexible wings, therefore, a “flexible-wing” free-to-pivot

about the half chord was also machined from the 4.5% thick fiberglass flat plate.

The aspect ratio 2 flexible wing shown in Figure 2.3 was hinged at the half chord by

a 6 in nylon rod and dismantled chain links. This design was adopted from Eldredge

and Medina [39]. However, unlike the wing developed by Eldredge et al., the flexible

wing used in this experiment was not given structural stiffness by the use of a spring,

and the gap between the panels was not covered or filled in (except by the nylon

rod). Since the trailing half chord of the flexible wing was free-to-pivot, it hung down

vertically (at a 90 deg angle of attack) before the wing motion began, as illustrated

in Figure 2.4. The anterior portion of the wing was held at a fixed angle of attack

of 45 deg. Once the wing began rotating, the trailing half of the wing deflected

upwards to a “steady-state” position.

2.3 Wing Kinematics

Experiments were performed at a local Reynolds number ranging from 5,000

to 25,000 at the three-quarter span reference plane. The stroke angle, θ, is defined

as the angle through which the wing rotates from rest to the point of interest. It

is given by the encoder, which is mounted to the bottom of the stepper motor that

drives wing rotation. Figure 2.5 shows the top-down view of the wing rotation in
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Fig. 2.4: Flexible wing at rest.

the tank. The non-dimensional distance traveled at the three-quarter span reference

plane is s/c (Equation 2.5), where s is the arc length traveled by the three-quarter

span reference plan normalized by c, the wing chord, and θ is the stroke angle in

radians.

s

c
= 2.15 θ. (2.5)

In Equation 2.5, the 2.15c is the distance from the axis of rotation to the three-

quarter span reference plan.

2.3.1 Rotation Only

The wing was set at a fixed angle of attack and accelerated linearly from rest

over distances of 0.25, 0.50, 0.75, and 1.0 chord-lengths of travel at the reference

plane as shown in Figure 2.6. The distance over which the wing accelerated is defined

as sa and is normalized by the wing chord c. This ratio is expressed as sa/c. The

acceleration phase of the wing stroke was programmed using two different velocity
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Fig. 2.5: Top-down view schematic of the rotating-only wing setup.

profiles, linear and smoothed. The linear velocity profile is given by

ω(t) =
ωmax

t1
t (2.6)

where ω(t) is the angular velocity, ωmax is the prescribed steady-state rotational

velocity to be reached at a time t1, and t is time. t1 is the time over which the wing

accelerates from rest to constant angular velocity. ωmax was determined based on

the required three-quarter span Reynolds number (Re3/4), using

Uref = rref ωmax (2.7)

where Uref is the reference velocity at the three-quarter span reference plane and

rref is the distance from the axis of rotation to the three-quarter span reference

plane, equal to 2.15c. Therefore,

U3/4 = 2.15 c ωmax. (2.8)

Substituting Equation 2.8 into Equation 2.1,

Re3/4 =
2.15 ωmax c

2

ν
. (2.9)
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Fig. 2.6: Rotating wing kinematics for a wing accelerating linearly in time, over 0.25,

0.50, 0.75 and 1.0 chord-length of travel at a three-quarter span Reynolds number

of 5,000.

Figure 2.7 shows ωmax and t1 for a wing with constant acceleration over 0.50 chord-

lengths of travel.

The abrupt starting and stopping that occurs during the linear velocity profile

can cause vibrations during testing. To mitigate this, the beginning and end of the

wing stroke was smoothed as illustrated in Figure 2.12. Moreover, this more closely

resembles the kinematics of a natural flier [12].

A hyperbolic cosine function for smoothing flapping wing kinematics was orig-

inally developed by Eldredge et al. [68] for a pitch-up, hold, and pitch-down kine-

matic study. The function smooths the higher derivatives of the motion to minimize

acceleration effects, and was defined as

G(t) = ln

[
cosh(aU1(t− t1)/c) cosh(aU1(t− t4)/c)

cosh(aU1(t− t2)/c) cosh(aU1(t− t3)/c)

]
(2.10)

α(t) = αmax

[
G(t)

max(G(t))

]
(2.11)
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Fig. 2.7: Commanded linear wing kinematics as a function of time for wing accel-

erating and decelerating over 0.50 chord-length of travel at a three-quarter span

Reynolds number of 15,000. Angular velocity is given by black solid lines and ac-

celeration by red dashed lines. The blue dashed-dot line indicates ωmax.

where G(t) smooths the transition from rest to a constant velocity. In the process of

smoothing the function, G(t) also changes the scaling, therefore α(t) (Equation 2.11)

was used to scale the smoothed function (G(t)) to the required angle of attack, as

illustrated in Figure 2.8. In Equations 2.10 and 2.11, c is the wing chord, α is the

angle of attack for the wing as a function of time, αmax is the maximum angle of

attack, and a is a user-defined value that controls the sharpness of the function.

The value of a must be greater than 1 and is typically less than 200. A low value of

a (a = 50) results in a very smooth transition, whereas a large value of a (a = 100)

results in a sharp transition. Figure 2.9 shows the angle of attack as a function of

time for two a values.

The time constants t1 through t4 are characteristic times chosen by the user to
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Fig. 2.10: Characteristic times, as defined by Eldredge et al. [68].

fit the prescribed motion in Eldredge’s equation. t1 is the beginning of the pitch-up

motion, t2 is the time at the end of the pitch-up and the beginning of the hold, t3 is

the time at the beginning of the pitch-down and the end of the hold, and t4 is the

end of the motion. In Figure 2.9, t1 = 2 s, t2 = 3 s, t3 = 7 s, and t4 = 8 s and these

times are shown by the vertical black lines.

Figure 2.10 is a schematic showing the characteristic times as defined by El-

dredge et al. [68], as well as the three phases of the wing stroke as they relate to the

rotating wing: the acceleration phase, the constant velocity phase, and the deceler-

ation phase. The three phases are analogous to the phases defined by Eldredge et

al. The accelerating phase is analogous to his pitch-up phase, the constant velocity

phase is analogous to his hold phase, and the decelerating phase is analogous to his

pitch-down phase.

Adjustments were made to Equation 2.10 to apply it to a fixed-pitch rotating
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wing stroke. Here, the modified smoothing function is R(t) given in Equation 2.12.

H(t) (Equation 2.13) is a scaling function used to scale R(t) such that R(t)max is

equal to ωmax in a manner similar to Equation 2.11. H(t) is stretched using B (Equa-

tion 2.14) such that the function ranges from 0 to ωmax. Finally, ω(t) is the angular

velocity where ωmax is the maximum angular velocity, given by Equation 2.15.

In rotating wing experiment the wing starts from rest, i.e., t1 = 0, but the

smoothing function is not defined for t1 = 0 since the natural log of hyperbolic

cosine is undefined at zero. Therefore, t1 was arbitrarily set to 30% of t2 and the

value of t2 was unchanged. Thus the value of t1 determines the wing’s acceleration1.

Increasing the value of t1 while keeping the value of t2 the same reduces the time over

which the wing accelerates, which in turn increases the jerk. The new smoothing

profile is a piecewise function for the three phases of the wing stroke: acceleration,

constant velocity, and deceleration. Each phase is now explained in detail:

1. Acceleration Region (t1 ≤ t ≤ t2) In the acceleration phase of the wing

stroke,

R(t) = ln

[
cosh(aUref (t− t1)/c)

cosh(aUref (t− t2)/c)

]
(2.12)

H(t) = ωmax

[
R(t)

max(R(t))

]
(2.13)

B =
ωmax

[ωmax − min(H(t))]
(2.14)

ω(t) = B[H(t) − min(H(t))] (2.15)

1By setting t1 = 30% of t2 the wing is forced to accelerate from rest to a constant velocity only

over 70% of the original time. This increases the value of the wing’s acceleration and therefore the

kinematics are not strictly comparable to the linear velocity profile. This is discussed in further

detail in Section 3.4 and Section 4.3.
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Fig. 2.11: Angular velocity as a function of time for various values of a.

where R(t) smooths the transition from accelerating to constant velocity, and

H(t) scales R(t) to achieve the required value of ωmax. B (Equation 2.14) is

a stretching parameter used to stretch the scaled smoothing function (Equa-

tion 2.13), and ω(t) is the wing’s angular velocity as a function of time. In

the above equations, Uref is the linear velocity at three-quarter span reference

plane on the wing and ωmax is the maximum angular velocity. a is a user-

defined value that controls the sharpness of the function and has to be greater

than 1. The value of a typically ranges from 1 to 200. Past 200 the function

does not change much. (This is similar to the sharpness controller defined by

Eldredge et al.). Lower values of a lead to smoother transitions and higher

values of a lead to sharper transitions. Figure 2.11 shows the angular velocity

as a function of time during the acceleration phase for different a values.

The value of a was set to either 30 (heavily smoothed) or 75 (lightly smoothed)
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for all the results discussed in this thesis. Figure 2.13 shows the velocity

profiles for the two values of a used. It should be noted that, for these wing

kinematics, since the desired wing angular velocity increases with Reynolds

number so does the value of the wing’s acceleration. Therefore, the value of

the wing’s acceleration depends both on the Reynolds number and the distance

over which the wing accelerates from rest to constant angular velocity.

2. Constant Velocity Region (t2 < t < t3)

ω(t) = ωmax (2.16)

In this region the angular velocity is constant and equal to ωmax as the wing is

not accelerating. The value of ωmax is determined based on the required three-

quarter span Reynolds number and can be found by rearranging Equation 2.9

such that

ωmax =
ν Re3/4
2.15 c2

(2.17)

where ν is the kinematic viscosity of water and c is the wing chord.

3. Deceleration Region (t3 ≤ t ≤ t4)

In order to have a symmetric velocity profile, it was required that the wing

decelerate in the same manner that it accelerates. Therefore, the velocity

profile for the deceleration phase is the velocity profile from the acceleration

phase mirrored and shifted by a value t3. Equations 2.12 to 2.14 remain

unchanged and Equation 2.15 becomes

ω(t) = −B[H(t) − min(H(t))] (2.18)
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Fig. 2.12: Commanded wing kinematics for wing accelerating over 0.50 chord-lengths

to a Reynolds number of 15,000.

Figure 2.12 shows the smoothed wing kinematics for a wing accelerating over 0.50

chord-lengths of travel. The angular velocity (ω) is shown by the solid black curve,

angular acceleration is shown by the dashed red curve, and jerk is shown by the

solid blue curve as a function of time. The velocity profile was heavily smoothed

(a = 30). Figure 2.13 compares the two smoothing profiles used. The heavily

smoothed (a = 30) curve is shown in solid red, and lightly smoothed curve (a = 75)

is shown in dashed blue.

2.3.2 Pitch and Rotation

Previous rotary wing experiments have neglected pitch variations [40, 56], but

pitch variations can have a substantial effect on the flow field and lift production.

The unique pitching and rotating model described here was designed to bridge the

gap between two current models: transient and quasi-steady revolving wings, and
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Fig. 2.13: Rotating wing kinematics for a wing accelerating over 0.50 chord-length

of travel at a three-quarter span Reynolds number of 5,000 for different values of a.

pitching and plunging wings. This is achieved by including both propeller-like wing

rotation about the root and pitch variations about the leading edge.

The wing was driven in both pitch (via the submergible servo motor) and

rotation (via the stepper motor) simultaneously. The angle of attack was varied from

0 deg to 45 deg over 1.3 chord-lengths of travel in wing rotation. The commanded

wing kinematics are shown schematically in Figure 2.14. The solid red lines indicate

wing pitch and the green dashed-dot line indicates wing rotation. The time t1c

represents the time required for the three-quarter span reference location of the wing

to travel 1.3 chord-lengths, and the wing’s angle of attack to change from 0 deg to

45 deg. Wing rotation was initiated when the angle of attack was at its minimum,

α = 0 deg. The wing was then linearly accelerated to its maximum rotational

velocity over 0.25 chord-lengths of travel. The reduced frequency (a measure of the

unsteadiness of the flow, defined in Section 1.4) of this motion is k = 0.59. Like the
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Fig. 2.14: Pitching-and rotating wing kinematics. The stroke angle θ is indicated

by the dashed-dot green line and the pitch angle α by the solid red line.

rotating-only wing, the wing was accelerated to an angular velocity corresponding

to a Reynolds number of 5,000, in this case over 0.25 chord-lengths of travel.

2.4 Test Matrix

The test matrix is divided into qualitative and quantitative studies. Parame-

ters that were varied for the qualitative rotating wing experiment include angle of

attack, angular velocity profile, Reynolds number, wing root geometry (discussed in

Section 3.5), and point of dye injection. The experiments described here used the

values of these properties given in Table 2.1. Parameters that were varied for the

quantitative rotating wing experiments include angular velocity profile, Reynolds

number, and wing flexibility. The experiments described here used the values of

these properties given in Table 2.2. The parameters that remained unchanged

throughout this thesis are:
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Table 2.1: Parameter variations for qualitative tests.

Angle of attack 15 deg, 45 deg, 0 to 45 deg3

3/4 span Reynolds number 5,000, 10,000

Accelerating over 0.25, 0.50, 0.75, 1.0

Velocity profile linear, heavily smoothed

Wing root geometry open root, closed root

Point of dye injection half span, wing root

Table 2.2: Parameter variations for quantitative tests.

3/4 span Reynolds Number 10,000, 15,000, 25,000

Accelerating over 0.25c, 0.50c, 1.0c

Velocity profile linear, heavily smoothed, lightly smoothed

Wing flexibility rigid, half chord flexible

1. Planform shape and thickness

2. Aspect ratio 2

3. Distance from the axis of rotation to the wing root

2Except for Section 3.5.
3Pitching-and-rotating wing case.
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2.5 Experimental Methods

Qualitative dye flow visualization and quantitative force measurements were

performed on a rotating-only and a pitching-and-rotating wing. Each of the methods

are described in this section.

2.5.1 Dye Flow Visualization

Dye flow visualization was performed to gain a qualitative understanding of

the three-dimensional LEV structures that form on a rotating-only and pitching-

and-rotating wing. A mixture of 60% blue food coloring, 20% ethanol, and 20%

milk was injected into the flow. When mixed correctly, the dye attains a state of

neutral buoyancy and neither sinks nor rises in the quiescent water. A stainless steel

hypodermic needle was fixed along the chord of the upper surface of the wing at the

root and half span (in separate experiments), injecting dye normal to the leading

edge. The flow rate was controlled using a NE-300 syringe pump. The still images

shown here were taken from videos, recorded using a Nikon D7000 (HD video at

23 fps). Illumination was provided by a pair of 1000 W halogen lamps. The dye

flow rate was balanced between providing sufficient dye to properly visualize the

flow structures and preventing an influence on the flow. The best flow rate was

determined by a trial and error process. There was a 10 minute wait time between

each test to allow the water to settle.
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2.5.2 Force Measurements

A submersible ATI Nano17i force transducer capable of measuring three force

components up to 25 N with a resolution of at least 1/160 N, and three torque

components up to 250 N-mm with a resolution of at least 1/32 N-mm was used for

all the force measurements. The force transducer was powered by a low-noise power

supply by BK Precision (model number: XLN10014). Force data was acquired

using a LabVIEW X-Series 6341 DAQ card at a sampling frequency of 10,000 Hz

and exported to MATLAB for analysis. Each test case was repeated five times and

the forces were averaged over all runs. The averaged raw force measurements were

filtered using a 4th order Butterworth low-pass filter at 30 Hz. Several experiments

were performed in order to reduce/improve the signal-to-noise ratio. One of the

factors that played a big role in reducing the noise was the power supply used to

operate the stepper motor. Figure 2.15 shows the fast fourier transforms (FFT) of

the lift force for the two different power supplies tested (noisy and low-noise). Peaks

that remained the same regardless of the power supply were at frequencies less than

25 Hz. This indicated that the peaks at higher frequencies were a result of the noise

in the power supply. Therefore, a 30 Hz cutoff frequency was chosen for the filter.

The raw and filtered lift coefficient is shown in Figure 2.16.

The force measurements collected were reported as wing lift and drag coeffi-

cients. The measured lift is acting on the entire wing, so was integrated along the

span to account for the span-varying wing velocity. The lift force on the wing is
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Fig. 2.15: Fast fourier transforms of the lift force for two power supplies.

given by

L =

∫ rt

rr

CLρU
2
maxc

2
dr (2.19)

where the velocity is

Umax = ωmax r (2.20)

and rt and rr are the distances between the axis of rotation and wingtip and axis of

rotation and root, respectively. Substituting for Umax,

L =

∫ rt

rr

CLρω
2
maxr

2c

2
dr (2.21)

L =
CLρcω

2
max

2

∫ rt

rr

r2 dr (2.22)

L =
CLρcω

2
max

2

[
r3

3

]rt
rr

(2.23)

L =
CLρcω

2
max

6
(r3t − r3r), (2.24)

and rearranging to solve for CL,

CL =
6L

ρω2
maxc(r

3
t − r3r)

. (2.25)

53



0 2 4 6 8 10

−2

−1

0

1

2

3

4

time (sec)

C
L

 

 

Raw c
L

30Hz filtered c
L

w/ 0.03 sec moving average

Fig. 2.16: Unfiltered lift coefficient data is shown in blue, low-pass filtered data is

shown in red, and the moving averaged data is shown in green for a rigid wing at a

Re = 15,000.

Similarly, the drag coefficient is given by

CD =
6D

ρω2
maxc(r

3
t − r3r)

(2.26)

where L is the lift, D is the drag, ρ is the density of water, ωmax is the maximum

angular velocity, and rt and rr are the distances between the axis of rotation and

wingtip and axis of rotation and root, respectively.

After the Butterworth filter was applied to remove the electrical noise, a 0.03

second moving average was applied to the filtered data. A plot of the unfiltered,

filtered, and moving average data for one case (rigid wing at Re = 15,000) is shown

in Figure 2.16 as an example.
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Table 2.3: RMS error for lift and drag force measurements for the rigid wing.

Re sa/c Velocity Profiles ±CL RMS error ±CD RMS error

10,000 0.50 heavily smoothed 0.91 0.69

15,000

heavily smoothed 0.28 0.49

0.25 lightly smoothed 0.27 0.33

linear 0.46 0.39

heavily smoothed 0.20 0.32

0.50 lightly smoothed 0.29 0.42

linear 0.23 0.32

heavily smoothed 0.40 0.40

1.0 lightly smoothed 0.25 0.30

linear 0.17 0.41

25,000 0.50 heavily smoothed 0.13 0.14

Table 2.4: RMS error for lift and drag force measurements for the flexible wing.

Re sa/c Velocity Profile ±CL RMS error ±CD RMS error

15,000 0.50 heavily smoothed 0.17 0.27

25,000 0.50 heavily smoothed 0.08 0.08
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Noise in the force measurements was attributed to several factors, such as

vibrations in the experimental rig and electrical signal interference due to the power

supply. The force transducer was very sensitive and even picked up vibrations of

doors closing, people walking, as well as other equipment being used in the lab.

Therefore, it was crucial to acquire data only when surrounding environment was

quiet. Another factor that introduced noise was the movement of water in the tank,

therefore it was important to wait for at least fifteen minutes for the water to settle

between tests. The wait time was determined by examining the water and measuring

the time it took for the water to settle down completely.

To quantify the error in the force transducer measurements, the RMS error

was calculated. RMS error is defined as the square root of the variance and is defined

as

RMS error =

√∑n
i=1(raw1,i − filtered1,i)

2

n
. (2.27)

The RMS error for the various cases tested is summarized in Table 2.3 for the rigid

wing and in Table 2.4 for the flexible wing. Heavily smoothed refers to a = 30,

and lightly smoothed refers to a = 75 in the kinematics Equations 2.12 - 2.15. For

the Re = 10,000 case, the signal-to-noise ratio is very low and the RMS is much

higher than the other cases, therefore, none of the data for this case is shown in

the following chapters. An example that demonstrates the bounds of RMS error for

lift and drag coefficients for a rigid wing at Re = 15,000 is shown in Figure 2.17.

The red curves are ± the RMS error and imply that 70% of the raw data lie within

them.
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Fig. 2.17: The lift and drag coefficients are shown in blue for a rigid wing at

Re = 15,000, and the upper and lower bounds of the RMS error are shown in

red. The wing is accelerating over 0.50 chord-lengths of travel and the velocity

profile is heavily smoothed (a = 30).

2.6 Summary

Two experimental setups are described here, the rotating-only wing model

and the pitching-and-rotating wing model. The rotational motion is controlled by

a stepper motor mounted above the water tank. The stepper motor is computer

controlled and can be programmed to perform various kinematics. The rotating

wing experiment was designed to model the translational phase of the insect wing

stroke during hover with a simple set of kinematics. The wing is started from

rest and rotates about the root in a propeller-like manner. A submersible servo

motor is used to control the angle of attack. For the rotating-only wing model the

wing is fixed at a constant angle of attack, whereas for the pitching-and-rotating

wing model, the angle of attack was varied from 0 deg to 45 deg. This rig allows
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for variation of a wide range of parameters including wing root geometry, angle of

attack, Reynolds number, acceleration profiles, velocity profiles, and wing flexibility.

Qualitative analysis was performed using dye flow visualization at the wing root and

half span. Lift and drag forces were measured using a six-component submersible

force transducer. Flow visualization results on the rotating wing described here

are presented in Chapter 3, and the force measurement results are presented in

Chapter 4.
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Chapter 3

Flow Visualization Results

3.1 Overview

Dye flow visualization was used to qualitatively study the evolution of unsteady

flow structures on the rotating wing. Several parameters including dye injection

location, angle of attack, wing root geometry, velocity profiles, acceleration profiles,

Reynolds number, and unsteady variations in pitch were varied to gain insight into

their influence on the development of the flow and the leading edge vortex (LEV).

Dye flow visualization is a relatively simple and inexpensive method that can

be used to gain a qualitative understanding of three-dimensional flow structures.

The experiments discussed here were performed on both a rotating wing at a fixed

angle of attack and a pitching-and-rotating wing. Dye was injected at two locations

on the wing, at the wing root and the half span. Dye injection at the wing root

revealed the presence of a coherent LEV along the leading edge that burst at some

location along the wing span. In a separate set of experiments to get a better

understanding of the flow structures post-LEV-burst, dye was injected at the half

span location on the wing. Dye injection at the half span revealed the presence of

a recirculating region form post-LEV-burst.
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3.2 Baseline Case

The rotating wing was fixed at an angle of attack of 45 deg. Figure 3.1 shows

chordwise views of the wing at multiple points in the wing stroke at a three-quarter

span Reynolds number of 5,000. In each of these images, the wing is rotating from

left to right in a tank of quiescent water such that the leading edge of the wing

appears near the top of the image and the trailing edge near the bottom. A leading

edge vortex (LEV) is observed to form as soon as the wing motion begins. A LEV

forms when the flow around the leading edge begins to flow from the bottom of the

wing to the top, and does so by curling up at the leading edge, forming a vortex.

The presence of spanwise flow is revealed by the motion of the dye from the

injection point at the wing root to the wing tip. Figure 3.1 shows four images from

early in the wing stroke, illustrating the formation of the LEV and the existence

of spanwise flow. (Some dye blobs are also visible, a result of starting the dye

injection before the wing motion). The leading edge vortex begins to form almost

immediately when the wing begins to rotate, and is already visible by s/c = 0.64 as

in Figure 3.1(a). Slightly later in the wing stroke (Figure 3.1(b)), a distinctive LEV

is observed. Spanwise flow becomes visible along the leading edge as the dye moves

from the wing root towards the wing tip. As the wing continues to rotate, the dye

continues to convect through the LEV core due to spanwise flow. In Figure 3.1(d)

at s/c = 2.3, a coherent LEV is observed along the leading edge of the wing near the

root. This LEV becomes less well-defined and “bursts” at the quarter span location

on the wing (indicated by the black dotted line).
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(a) s/c = 0.64 (b) s/c = 0.78

(c) s/c = 1.0 (d) s/c = 2.3

Fig. 3.1: Dye injection at wing root. Flow visualization for Re = 5,000 near the

beginning of the wing stroke. The velocity profile is linear in time, accelerating over

0.5 chord-lengths of travel.
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(a) s/c = 3.9, b1/c = 0.70

(b) s/c = 18.6, b2/c = 0.47

(c) s/c = 32.3, b3/c = 0.30

Fig. 3.2: Dye injection at wing root. Flow visualization for Re = 5,000 for three

revolutions.
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In order to examine the persistence of this LEV structure, the wing was rotated

for three revolutions (θ = 1,080 deg and s/c = 40.53). Figure 3.2 shows spanwise

views of the wing at a fixed angle of attack of 45 deg for three revolutions at a

Reynolds number of 5,000. A coherent LEV was observed to persist near the wing

root for all revolutions. The dye injected at the wing root enters the core of the

LEV as it forms and travels through the vortex core towards the wing tip. At

some point along the wing span, the LEV becomes less coherent and the line of

dye becomes less well-defined. When this occurs, the vortex is said to have burst

(similar to the formation seen on delta wings, as described in Section 1.4.2). Vortex

breakdown occurs when a single LEV is unable to contain all the vorticity present

in the flow. The burst point moves inboard as the wing continues to rotate. The

distance from the wing root to the point where the LEV burst is defined as b and is

then non-dimensionalized by the chord. This ratio is then referred to as bx/c, where

x corresponds to the revolution the wing is in.

In Figure 3.2(a), the wing is in the first revolution, corresponding to a s/c= 3.9.

Here the vortex preserves its structure and remains coherent for a b1/c = 0.70. As

the wing continues to rotate (see Figure 3.2(b) and 3.2(c)), the location at which

the vortex bursts moves towards the wing root. This happens because the vorticity

increases as the wing continues to rotate for multiple revolutions, and the coherent

portion of the LEV is unable to contain the vorticity within itself. The length of the

coherent part of the vortex has reduced by ≈ 57% of its original length at s/c = 32.3.

After the vortex bursts, the flow becomes chaotic and loses the organization it had,

though it does retain some circulation.

63



3.3 Variation of Reynolds Number

All of the qualitative results described in the previous section were obtained

at Re = 5,000. In an effort to begin to understand how Reynolds number affects the

leading edge vortex, the Reynolds number was increased from 5,000 to 10,000 and

the flow visualization is repeated. Figure 3.3 shows the flow visualization images for

three revolutions at a three-quarter span Reynolds number of 10,000. A LEV is still

present along the leading edge of the wing, but appears lighter in color as the dye

diffuses more quickly when the wing velocity is increased. Similar to the previous

case, a coherent LEV is formed which then bursts at some location along the span.

However, at this higher Reynolds number, the LEV appears to burst slightly closer

to the root. To avoid confusion from the previous case (at Re = 5,000), the distance

from the root to the point of vortex burst is now indicated by e and, similar to

the previous case, it is then non-dimensionalized by the wing chord, c. In this case

e1/c = 0.55, e2/c = 0.39, and e3/c = 0.28. The length of the coherent part of the

LEV is reduced by ≈ 49% of its original length at a s/c = 32.2. This reduction in

the length of the orderly portion of the LEV is smaller than the Re = 5,000 case.

Since the wing is operating at a higher Reynolds number, the vorticity that forms at

the leading edge is higher than the Re = 5,000 case. The LEV is unable to contain

all the vorticity in a single vortex and then bursts forming several small scale vortex

structures. This agrees with the findings by Lentink and Dickinson [69].
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(a) s/c = 3.2, e1/c = 0.55

(b) s/c = 18.5, e2/c = 0.39

(c) s/c = 32.2, e3/c = 0.28

Fig. 3.3: Dye injection at wing root. Flow visualization for Re = 10,000 for three

revolutions.
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Fig. 3.4: Comparison of the linear and heavily smoothed (a = 30) velocity profiles.

Wing is accelerating over 0.50 chord-lengths of travel at Re = 5,000.

3.4 Variation of Velocity Profiles

Another parameter that was varied in this series of rotating wing experiments

was the velocity profile. As explained earlier in Section 2.3.1, the smoothed velocity

profile has two advantages over the linear profile: 1) it reduces vibrations that may

be caused due to instantaneously starting and stopping the wing motion, and 2)

it more closely resembles the kinematics of an insect’s wing stroke. This set of

experiments was performed to determine whether smoothing the velocity profile

influenced the LEV development in any way.

For all the cases presented earlier, the wing’s velocity was increased linearly

(i.e., with a constant acceleration) from rest to a constant velocity. Before com-

paring the flow structures of the linear profile to that of the smoothed profile, it

is important to compare the acceleration profiles for each case. The wing was ac-
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celerated over 0.50 chord-lengths of travel with different accelerations1. Figure 3.4

shows the two velocity profiles (linear and heavily smoothed) at Re = 5,000. It can

be seen that the slope for the smoothed profile is much steeper than that of the

linear profile. The difference in acceleration is a result of setting t1 = 30% of t2 (see

Section 2.3.1), thus decreasing the time allowed for the wing to reach its constant

velocity, and therefore increasing its acceleration. As a result, the acceleration dur-

ing the constant acceleration portion of the wing stroke for the linear and smoothed

profile is 0.58 rad/s2 and 0.86 rad/s2 respectively, which resulted in a difference of

approximately 33% between the two cases. Some of the effects of increasing accel-

eration, i.e., larger vortices and faster shedding vortices (discussed in more detail in

Section 3.6.1), are therefore expected.

Figure 3.5 shows chordwise views of the rigid wing accelerating over 0.50 chord-

lengths of travel. As soon as the wing begins to rotate, a LEV begins to form at the

leading edge as seen at s/c = 0.19 in Figure 3.5(a). Soon after, the LEV grows and

dye can be seen convecting through the core of the LEV. Similar to the other case

described in Section 3.2, spanwise flow is observed from the root to the tip of the

wing. Finally, at a later time s/c = 1.9 as seen in Figure 3.5(d), a coherent LEV is

observed along the leading edge of the wing. This LEV then bursts near the quarter

span location on the wing.

The basic structure of the flow is the same as discussed previously and shown

in Figure 3.1. The one observable difference between tests with the linear and

1This is true for the linear case, however, for the heavily smoothed case the distance over which

the wing accelerates was reduced by 30% of the original distance.
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(a) s/c = 0.19 (b) s/c = 0.28

(c) s/c = 0.54 (d) s/c = 1.9

Fig. 3.5: Dye injection at wing root. Flow visualization for Re = 5,000 near the

beginning of the wing stroke. The velocity profile is heavily smoothed (a = 30),

accelerating over 0.5 chord-lengths of travel.
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(a) Linear velocity profile (b) Heavily smoothed velocity profile

Fig. 3.6: Comparison of the linear and smoothed velocity profiles at s/c = 1.9.

smoothed velocity profiles is that the entire LEV formation process begins much

earlier in the wing stroke for the smoothed case (s/c = 0.19) when compared to

that of the linear case (s/c = 0.64). Since the wing is accelerating much faster for

the smoothed case, vorticity begins to form earlier and causes the flow to roll into a

vortex sooner in the wing stroke. Figure 3.6 compares the linear velocity profile to

the smoothed velocity profile at the same point in the wing stroke, s/c = 1.9. For

the linear case shown in Figure 3.6(a), only a dye blob is present, whereas for the

smoothed case, shown in Figure 3.6(b), the LEV has begun to form. The LEV bursts

at the quarter-span location for both cases, at s/c = 1.9 for the heavily smoothed

case, and at s/c = 2.3 for the linear case. However, these differences observed maybe

due to the higher acceleration rather than the smoothed velocity profile. This set of

experiments should be repeated after the acceleration of the two cases are matched.
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Fig. 3.7: Closed wing root configuration.

3.5 Variation of Wing Root Geometry

The goal of this portion of the study was to qualitatively understand the effect

of the wing root geometry on the development and persistence of LEVs in unsteady

(early in the wing stroke) and quasi-steady (after multiple revolutions) conditions.

The root of the wing was covered in an attempt to study the influence of the root

vortices on the LEV. In order to reduce their effect, the wing root was “closed”

using book laminate. The book laminate was fixed onto the root of the wing using

electrical tape. This removed the gap between the wing and the shaft, as seen in

Figure 3.7. The dimensions of this plastic piece were 3 in × 1.8 in. It is important to

note that by covering the wing root, the effective aspect ratio (span/chord) increased

from 2 to 2.6. In addition to the change in aspect ratio, the radial location of the

wing root also shifts. As a result, dye injection shown here was not performed at

the “true” wing root, but in the same location as in previously shown results. The

location where the dye is injected will be referred to as the “original” wing root for

all the results discussed in this section.
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(a) s/c = 0.67 (b) s/c = 0.71

(c) s/c = 0.90 (d) s/c = 2.2

Fig. 3.8: Closed root configuration. Dye injection at wing root. Flow visualization

for Re = 5,000 near the beginning of the wing stroke. The velocity profile is linear,

accelerating over 0.5 chord-lengths of travel.
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Figure 3.8 shows chordwise views of the wing at a three-quarter span Reynolds

number of 5,000. Images were taken at approximately the same s/c as that of the

open root case (see Figure 3.1). The formation of a leading edge vortex is once again

observed at s/c = 0.67, similar to Figure 3.1(a). The LEV begins to grow, and

draws the initial dye blob that was present on the wing into its core (Figure 3.8(b)).

Figure 3.8(c) shows the presence of spanwise flow on the surface of the wing. Dye

begins to convect through the core of the vortex and moves towards the tip of the

wing. Finally, at a s/c = 2.2, a coherent LEV is observed along the leading edge,

which bursts at approximately 1/5 of the original span. Here the burst appears to

take place a little earlier than the open root configuration, where the vortex burst

at approximately 1/4 span (shown in Figure 3.1(d)). However, if the book laminate

was accounted for, the burst location is approximately a third of the new span, so

its difficult to draw any conclusions at this time.

The next step was to determine how long this LEV persisted and whether or

not the location where the vortex bursts moved inward as it did on the open-root

configuration. Figure 3.9(a) shows the presence of a coherent LEV along the leading

edge. The LEV then loses its orderly nature and bursts at f/c = 0.64 (measurements

based on original span). At a later time, s/c = 4.5 (Figure 3.9(b)), the coherent

portion of the LEV does not appear to be present. Finally, at a s/c = 5.0 shown

in Figure 3.9(c), the dye appears to have dissipated almost completely and a LEV

is no longer visible. Unlike the open-root configuration, a coherent LEV did not

persist for multiple revolutions. This could be a result of closing the root of the

wing. Perhaps the vortices at the wing root played a role in preserving the LEV at
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(a) s/c = 2.8, f/c = 0.64

(b) s/c = 4.5

(c) s/c = 5.0

Fig. 3.9: Closed root configuration. Dye injection at wing root. Flow visualization

for Re = 5,000.
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the leading edge. This could also be a result of not injecting the dye at the true

wing root. Perhaps the burst location has moved inboard prior to the dye injection

location.

In order to better understand the effect of wing root geometry on the rotating

wing, these experiment should be repeated by physically reducing the length of the

tygon shaft (refer to Section 2.2) and therefore moving the actual wing root to the

central shaft instead of using book laminate. In this manner, the aspect ratio of the

wing would remain the same and a direct comparison could be made. Unfortunately,

this test could not be completed with the current model since the steel flanged collar

prevents mounting the wing close to the shaft at an angle of attack of 45 deg (see

Figure 3.7).

3.6 Flow Structures Post-LEV-Burst

For this set of experiments, dye was injected at the half span location to

discern the flow structures within the burst LEV. All the images shown here focus

on the region outboard of the half span and do not capture the coherent vortex at

wing root described earlier. The wing was rotated about the root at a three-quarter

span Reynolds number of 5,000. It was accelerated from rest to a constant velocity

over 0.50, 0.75, and 1.0 chord-lengths of travel (linear velocity profile) and the flow

structures at the three different acceleration profiles are compared.
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3.6.1 Variation of Acceleration Profiles

The goal of this study was to determine the effect of wing acceleration on the

flow structures within the burst LEV. Figure 3.10 shows chordwise views of the wing

corresponding to approximately equal points in the wing stroke (s/c) for different

wing accelerations (sa/c). The three columns represent three different accelerations,

sa/c = 0.5, 0.75, and 1.0, and the rows represent the progression in time, given by

the number of chord-lengths traveled at three-quarter span, s/c. It is important

to note that when the value of s/c is less than sa/c, the image was captured while

the wing was accelerating. When s/c is greater than sa/c, the image was captured

while the wing was rotating at a constant velocity. (I.e., Figures 3.10(a-c,e,f) were

captured during the acceleration phase, while the rest were captured during the

constant velocity phase).

In all of the cases shown here, the development of the flow on the rotating

wing appears to follow a progression—the formation of a vortex at the leading edge,

the pairing of shed vortices, and finally, a region of recirculating separated flow,

referred to as the burst vortex in Section 3.2. The first row in Figure 3.10 shows

the formation of the initial vortex for the three wing acceleration cases. This initial

vortex forms at s/c ≈ 0.3 in all three cases, but the vortices appear to be larger for

larger sa/c or lower wing acceleration values. When the wing is accelerating faster

(Figure 3.10(a)) the oncoming flow has to negotiate a sharp turn more quickly,

whereas for a lower wing acceleration (Figure 3.10(c)) the flow can make a more

gradual turn, therefore resulting in larger vortices for lower wing accelerations. The
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Fig. 3.10: Dye flow visualization of a rotating wing at a fixed angle of attack of

45 deg.

diameter of the initial vortex is defined as d and is then non-dimensionalized by

the wing chord. This ratio is then referred to as dxc/c, where x corresponds to the

column the wing is in (i.e., the distance over which the wing is accelerated). The

physical size of the vortex in the third column, d3c/c ≈ 0.21, is greater than that in

the first column, d1c/c ≈ 0.16.

In the second row of Figure 3.10, the first vortex has shed and a second vor-

tex has also formed and shed. As the third vortex forms, the first and second

shed vortices pair and begin rotating about a common point. The images taken

at s/c ≈ 0.6 (Figure 3.10(d-f)) illustrate this process, though the flow appears

to be at a slightly different stage for each acceleration case. In Figures 3.10(d,e)

(sa/c = 0.50 and 0.75), the first and second vortices have paired. In Figure 3.10(f)

(sa/c = 1.0), these vortices are about to pair, but have not done so yet. Note that

Figure 3.10(d) was captured during the constant velocity phase and Figures 3.10(e,f)

were captured while the wing was accelerating.

Another interesting feature seen in Figure 3.10(d) is an S-shaped structure.
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Fig. 3.11: S-shaped flow structure observed in all three acceleration cases soon

after the end of the wing’s acceleration phase. d1s/c ≈ 0.26, d2s/c ≈ 0.31, and

d3s/c ≈ 0.43.

This structure appears soon after the wing reaches the constant velocity phase for

all three acceleration cases, as shown in Figure 3.11. For the sa/c = 0.50 case, the

S-shaped structure consists of the first and second shed vortices, which will soon

pair (see Figure 3.10(d)), and a newly-formed third vortex. The length of the S

appears to increase as the wing acceleration decreases. The value of d3s/c ≈ 0.43

for sa/c = 1.0, while d1s/c ≈ 0.26 for sa/c = 0.50. Just past this point in the wing

stroke, the vortices at the bottom of this structure begin to recirculate, causing

them to move along the surface of the wing towards the leading edge.

Returning to Figure 3.10, rows 3 and 4 (corresponding to s/c ≈ 1.1 and 1.4),

illustrate the path taken by the shed vortices. The vortices that formed at the

leading edge initially traveled downstream over the wing, but eventually reverse

direction and move along the upper surface of the wing towards the leading edge,

forming a region of recirculating flow over the upstream half-chord. This counter-
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clockwise motion is indicated by the arrows in row 4. Vortices are shed off the leading

edge and travel approximately half-way down the chord, where they contact the wing

surface. It can be seen that the precise distance traveled prior to impact depends on

the acceleration. For sa/c = 0.50 shown in Figure 3.10(g), the shed vortices impact

the wing upstream of mid-chord, but at sa/c = 1.0 shown in Figure 3.10(i) they

impact just downstream of mid-chord. When these shed vortices collide with the

wing, they deform. Interaction with the solid boundary causes these now-deformed

vortices to move along the wing towards the leading edge, thus forming a region of

recirculating flow.

Figure 3.12(a) shows the flow structures visible when dye is injected at the

wing root, and Figure 3.12(b) shows a chordwise view of the flow structure at the

half span, indicated by the solid yellow line in Figure 3.12(a). Both images are

from different s/c but the flow structure does not change significantly after the LEV

bursts. Figure 3.12(b) indicates that after the vortex bursts at some location along

the span, it lost its coherent structure but retained some recirculation, and forms a

recirculating separated region. This recirculating region contains vortices that were

previously shed, as well as new vortices that continue to shed as the wing rotates.

Later in the wing stroke, when s/c ≈ 2.1 (row 5 of Figure 3.10), the flow is

fully-separated with a large recirculating region. The size of the recirculating region

increases with sa/c. When sa/c = 0.50 (Figure 3.10(m)), the recirculating region

covers approximately 75% the wing chord and has not quite reached the trailing

edge. When sa/c = 0.75 (Figure 3.10(n)), the recirculating flow extends to the

trailing edge. For sa/c = 1.0 (Figure 3.10(o)), the recirculating region is past the
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(a) s/c = 3.9 (b) s/c = 1.4

Fig. 3.12: Comparison of flow structures.

trailing edge. This recirulating region, i.e., the burst vortex, covers the outboard

portion of the wing as seen in Figure 3.1.

3.6.2 Variation of Angle of Attack

The experiment described in Section 3.6.1, was repeated with a fixed angle of

attack of 15 deg. Figure 3.13 shows the chordwise views of flow visualization images

for the different wing accelerations (columns) throughout the wing stroke (rows).

The first row in Figure 3.13(a-c) shows the first shed vortex at the half span, and

the second vortex starting to form. Very little dye is entrained in the first vortex

at sa/c = 0.50 (Figure 3.13(a)), but this vortex is more visible in the image taken

at sa/c = 0.75 (Figure 3.13(b)). In Figure 3.13(c) a dye blob is visible in addition

to the initial vortex. This blob is a result of injection of some dye before the start

of the wing motion. Overall, it appears that the vortices formed at α = 15 deg are

smaller than those that form at α = 45 deg, and travel downstream over the surface

of the wing rather than lifting off the wing’s surface as they do at α = 45 deg.
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Fig. 3.13: Dye flow visualization of a rotating wing at a fixed angle of attack of

15 deg.

In Figures 3.13(d-f)), at s/c ≈ 1.2, all three cases show different development

stages of the flow structures on the wing. In each case, the first vortex has shed

and traveled to a different location, xc, downstream over the surface of the wing.

At this point in the wing stroke, the shed vortex has moved more than half the

chord-length downstream in Figure 3.13(d) at sa/c = 0.50, but only about one-third

of a chord-length in Figure 3.13(f). Furthermore, the development of the next few

vortices vary amongst the acceleration cases.

Figure 3.13(d) (sa/c = 0.50, s/c = 1.2), shows the first vortex at x1c/c ≈ 0.55,

while the subsequent vortices have shed and merged with each other. In the second

acceleration case, sa/c = 0.75 (Figure 3.13(e)), the initial vortex has traveled to
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x2c/c ≈ 0.49 and the next few vortices have formed, but have not yet merged. In

the third case where sa/c = 1.0 shown in Figure 3.13(f), the first vortex has traveled

a distance x3c/c ≈ 0.32, and the next vortex has begun to form. The differences in

the development and migration of the vortices observed here suggest that the wing

acceleration can affect the timing of vortex formation and shedding on a rotating

wing at a 15 deg angle of attack.

Later in the wing stroke, at s/c ≈ 1.6 (shown in Figures 3.13(g-i)), the first

vortex has moved further along the wing in each of the three acceleration cases.

This shed vortex appears to move downstream faster for slower wing accelerations.

The velocities (relative to the wing itself) at which the vortex travels downstream

between 1.2 and 1.6 chord-lengths of wing travel are approximately 0.039 m s−1,

0.030 m s−1, and 0.014 m s−1 for acceleration over 0.50, 0.75, and 1.0 chord-lengths

of travel, respectively. At s/c ≈ 1.6, the locations of the initial vortices are x1c/c ≈

0.77, x2c/c ≈ 0.64, and x3c/c ≈ 0.43. Unlike the 45 deg angle of attack case, there

does not appear to be an obvious recirculating region present.

The fourth row of Figure 3.13(j-l) illustrates the flow structure for the three

different acceleration cases much later in the wing stroke, at s/c ≈ 2.7. In all three

cases, there is a trail of shed vortices extending along the surface of the wing from

the leading edge to the trailing edge without forming a recirculating region.
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3.7 Pitching and Rotating Wing

The rotating wing experiment was extended to include unsteady variations in

pitch at a Reynolds number of 5,000. The angle of attack of the wing was varied from

0 deg to 45 deg over 1.3 chord-lengths of travel at the three-quarter reference plane

in wing rotation, using the underwater servo motor as described in Section 2.3.2.

The dye was injected at the half span location. As seen from the rotating wing

experiments, a coherent LEV is present along the leading edge but bursts prior to

reaching the half span location on the wing. All the images in this section show the

flow structures on the outboard half of the wing.

Results of dye flow visualization for the pitching and rotating wing case are

given in Figure 3.14. In this figure, the ‘+’ superscript on α denotes that the

wing’s angle of attack is increasing. The ‘-’ superscript denotes a decreasing angle

of attack. The angle of attack given here was calculated by correlating the known

pitch kinematics with the stoke angle obtained from the encoder.

Figure 3.14(a) shows the wing pitching up near the beginning of the wing

stroke. The wing executed one pitch stroke (0 to 45 to 0 deg) before wing rotation

began, resulting in excess dye present in the background and a dye blob on the

wing. At this point in time, the flow looks much like it did near the start of the

α = 15 deg rotating-only wing stroke, as shown in Figure 3.13(d-f). Flow is largely

along the surface of the wing, and contains vortices that move downstream towards

the trailing edge.

In Figure 3.14(b), the wing stroke has progressed to α ≈ 18 deg, s/c = 0.34.
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Fig. 3.14: Dye flow visualization of a pitching and rotating wing.

Flow has continued along the surface of the wing and curves towards the wing root

on the downstream half of the chord. The surface of the wing has a white line

from leading to trailing edge at half span. This physical mark is highlighted by the

dashed white line in Figure 3.14(a-c) to illustrate the extent of spanwise flow. Near

the leading edge, vortices have formed, and a region of recirculating flow begins to

form around them. Later in the wing stroke, at s/c = 0.53, this recirculating region

has grown larger and flow along the trailing half of the wing has continued towards

the trailing edge and root.
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In Figure 3.14(d), the recirculating region has grown further and is now more

well defined. In this view, the white line on the wing is more obvious, and it is clear

that dye has moved toward the wing tip at the leading edge and towards the wing

root at the trailing edge. As the wing stroke progresses, dye near the leading edge

continues to move towards the tip. The distance of the dye along the leading edge

from the half span location is defined as dSF . In Figure 3.14(e), the distance dSF

has increased, and continues to do so in Figure 3.14(f). It also becomes clear that

the dye at the trailing edge is now moving towards the wing tip.

Figure 3.14(e) shows the flow at α ≈ 42 deg, near the maximum angle of attack.

It was previously noted that on a rotating-only wing at α = 45 deg, the flow is fully

separated from the wing and recirculates in a burst vortex. In the pitching and

rotating setup, the recirculating region near the leading edge is on the surface of the

wing and the flow along the back half of the wing remains intact. For the pitching

and rotating wing, however, α does not remain constant, but decreases immediately

upon reaching αmax = 45 deg. When the wing begins to pitch down, the structure

of the flow begins to break up, and the recirculating region is less defined as shown

in Figure 3.14(f).

The images in Figure 3.14(f-h) were taken as the wing pitched down. As α

decreased, the trailing edge of the wing rose, and the region of recirculating flow

near the leading edge was ejected from the wing’s surface. In Figure 3.14(g), any

organization that the recirculating region might have previously had has largely

vanished, and by Figure 3.14(h) only a cloud of dye remains well above the wing.

It is interesting to note that this cloud of dye has moved vertically off of the wing
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rather than downstream towards the trailing edge. Additionally, the newly injected

dye has also risen off of the wing’s surface.

Finally, Figure 3.14(i) shows the flow much later in the wing stroke and at

α ≈ 35 deg. There is less dye in the flow and thus the large-scale structures are not

visible. At this point, a new vortex has formed and flow has reattached to wing’s

surface downstream of this new vortex.

3.8 Summary

This chapter presented results for dye flow visualization experiments performed

on a rotating-only wing and a pitching-and-rotating wing, with a focus on the three-

dimensional flow structures that formed on a fixed-pitch rotating wing. When dye

was injected at the wing root, a coherent LEV was observed along the leading edge

which then burst at the quarter span location along the wing, very similar to the

LEV seen on delta wings. As the wing continues to rotate, the location where

this LEV becomes less well-defined and the burst point moves inboard. When the

LEV burst, the flow became chaotic and recirculating flow covered the remaining

outboard portion of the wing. The small scale flow structures in burst vortex were

not clearly visible when dye was injected at the wing root. In order to get a better

understanding of the flow structures within the burst LEV, dye was then injected

at the half span location.

Dye flow visualization on the rotating-only wing at half span was performed

at two fixed angles of attack of 45 deg and 15 deg. The distance over which the
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wing was accelerated was varied and the flow structures were compared for three

different acceleration values. At a fixed angle of attack of 45 deg, the value of the

wing’s acceleration affected vortex size. Lower acceleration values resulted in larger

vortices. Vortices shed and formed a recirculating region, which provided new insight

into the flow structures post-LEV-bust. At a fixed angle of attack of 15 deg, the

acceleration affected the speed of which vortices were shed rather than vortex size

and a recirculation region was absent.

Unsteady variations of pitch were introduced to the rotating-only wing. Dye

flow visualization was performed at the half span location on the wing. At low angles

of attack, the flow structures were similar to those observed on the rotating-only

wing at an angle of attack of 15 deg. At high angles of attack, however, a large

recirculation region near the leading edge was observed, with attached flow behind

it.
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Chapter 4

Force Measurements Results

4.1 Overview

This chapter presents quantitative results from investigating the lift and drag

produced on a rotating-only wing at a fixed angle of attack of 45 deg. Force measure-

ments were used to quantify the aerodynamic forces produced by the flow structures

discussed in the previous chapter. Unsteady force measurements were acquired for

a 720 degree wing stroke. As previously described, the six-axis force transducer has

a capacity of 25 N in the x, y and z directions with a rated resolution of 1/160 N, as

well as a torque capacity of 250 N-mm with a rated resolution of 1/32 N-mm. The

measured forces were normalized using

CL =
6L

ρω2
maxc(r

3
t − r3r)

(4.1)

CD =
6D

ρω2
maxc(r

3
t − r3r)

(4.2)

as described in Section 2.5.2, where ωmax is the maximum angular velocity, and rt

and rr are the distances between the axis of rotation and wingtip and axis of rotation

and root, respectively. As described in Section 2.5.2, the lift and drag signals were

filtered and a 0.03 second moving average was applied. Several parameters including

velocity profiles, acceleration profiles, Reynolds number, and wing flexibility were

varied.
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4.2 Baseline Case

To better understand the force history of the rotating wing, a baseline case is

first discussed in detail. Figure 4.1 shows the coefficients of lift and drag with respect

to the stroke-to-chord ratio (s/c) for a wing accelerating over 0.50 chord-lengths of

travel at a three-quarter span Reynolds number of 15,0001. The velocity profile was

heavily smoothed (a = 30), and is shown in Figure 4.2. In both Figures 4.1 and 4.2

the first vertical black line corresponds to the transition to constant velocity, the

second vertical line marks the end of the first rotation, and the third line represents

the beginning of deceleration.

The coefficients of lift and drag initially overshoot, then undershoot, increase

again, and eventually level off to an intermediate value for the remainder of the

first revolution. After the wing enters the second revolution, the coefficients begin

to decrease again before leveling out to a second value until the wing begins to

decelerate. The acceleration region and the constant velocity region are explained

in further detail to better understand the behavior of the force coefficients.

4.2.1 Acceleration Phase

Figure 4.3 shows the lift and drag coefficients early in the wing stroke, i.e.,

the acceleration phase of Figure 4.1. The vertical black line indicates the end of the

acceleration phase and the beginning of the constant velocity phase. During this

1The Reynolds number for the baseline case described here is much higher than the baseline case

described in the previous chapter. This is because at low Reynolds numbers, the signal-to-noise

ratio of the force transducer was very low.
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Fig. 4.1: Lift and drag coefficients for a rotating wing at a fixed angle of attack of

45 deg accelerating over 0.50 chord-lengths of travel at a three-quarter span reference

Reynolds number of 15,000.
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Fig. 4.2: Heavily smoothed velocity profile: angular velocity with respect to s/c at

a Reynolds number of 15,000.

acceleration region, the value of CL peaks at approximately 3.04 and CD peaks at a

value near 2.92. The initial peak observed in Figure 4.3 is a result of a combination

of the inertial force and added mass. The wing was rotated in air to measure the

inertial forces, the forces measured were very small and were within the noise of the

force transducer. Since the inertial forces on the wing were small it can be concluded

that a majority of the initial peak is a result of added mass.

Added mass is the enhanced and/or altered inertia of an object that is caused

by motion of a fluid around the object [70]. When a flapping wing accelerates

through a fluid, it forces some fluid to accelerate with it and the inertial resistance

of this fluid creates a reaction force on the wing [71]. Knowledge of added mass

is very crucial to understand the performance of objects (in this case, a flat plate)
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Fig. 4.3: The acceleration phase for a rotating wing at a fixed angle of attack of

45 deg accelerating over 0.50 chord-lengths of travel at a three-quarter span reference

Reynolds number of 15,000.
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underwater. The drag added mass of a flat plate at a fixed angle of attack can be

theoretically modeled as a cylinder with a diameter d as shown in Figure 4.4, where

the diameter is defined as

d = c sin(α) (4.3)

where c is the wing chord and α is the angle of attack. For a cylinder accelerating

in a stationary fluid, Jones et al. [71] found the pressure force in the x-direction per

unit length of a cylinder to be

F
′

p = −1

4
ρd2π

du

dt
(4.4)

where ρ is the density of the fluid, d is the diameter of the cylinder, and du/dt is the

linear acceleration. In this case, the pressure force is acting in the same direction

as the drag and can therefore account for the added mass phenomenon in the drag

force. The total drag force acting on the cylinder is therefore

Fd =

∫ rt

rr

1

4
ρd2π

du

dt
dr (4.5)

where rt and rr are the distances between the axis of rotation and wingtip and axis

of rotation and root, respectively. The linear acceleration can be converted to the

angular acceleration using:

u = rω (4.6)

du

dt
= r

dω

dt
(4.7)

where r is the radius. Substituting Equation 4.7 into 4.5

Fd =

∫ rt

rr

1

4
ρd2πr

dω

dt
dr. (4.8)
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Integrating Equation 4.8,

Fd =
1

8
ρd2π

dω

dt

[
r2t − r2r

]
. (4.9)

Substituting Equation 4.3 into 4.9,

Fd =
1

8
ρc2 sin2(α)π

dω

dt

[
r2t − r2r

]
. (4.10)

Substituting Equation 4.10 into 4.2,

CDaddedmass =
(3/4)π c sin2(α)(dω/dt)(r2t − r2r)

ω2
max(r3t − r3r)

. (4.11)

The maximum value of added mass of a rotating wing is thus

CDpeak = max

[
(3/4)π c sin2(α)(dω/dt)(r2t − r2r)

ω2
max(r3t − r3r)

]
(4.12)

where α is the angle of attack, c is the wing chord, dω/dt is the angular acceleration

of the wing, ωmax is the maximum angular velocity, and rt and rr are the distances

between the axis of rotation and wingtip and axis of rotation and root, respectively.

It should be noted that the added mass is proportional to the angular acceleration of

the wing, therefore, increasing the acceleration should result in a larger added mass

peak. The theoretical drag coefficient added mass peak at s/c ≈ 0.02 (calculated

using Equation 4.12) was found to be 2.28, suggesting that the peak observed in the

experimental data (shown in Figure 4.3) is indeed due to added mass.

4.2.2 Constant Velocity Phase

Figure 4.5(a) focuses on the constant velocity region of Figure 4.1(a), and

the axes have been adjusted to provide clarity. After the wing enters the constant
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Fig. 4.4: A flat plate at a fixed angle of attack can be modeled as a cylinder with a

diameter d.

velocity phase, the lift and drag coefficients level out to an intermediate value for

the remainder of the first revolution. This “steady-state” is achieved after about

1.4 s (5 chord-lengths of travel and approximately 133 deg stroke angle). The value

of CL and CD appear to be essentially constant for about 2.8 s (≈ 8.5 chord-lengths

and approximately 227 deg stroke angle). The “steady-state” mean for this region

of the first revolution was found to be 1.85 for the coefficient of lift and 1.55 for

the coefficient of drag. After the wing enters the second revolution, the coefficients

begin to decrease before leveling out to a second intermediate value. The coefficient

of lift and drag averaged over 8.5 chord-lengths of travel (to remain consistent with

the previous revolution results) during the second revolution are 1.44 and 1.21,

respectively. A 22% reduction of CL and CD was observed from the first revolution.

It is postulated that this is a result of the wing interacting with the wake from its

previous stroke.

The aerodynamic efficiency, quantified by L/D, is shown in Figure 4.6. Similar
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Fig. 4.5: Constant velocity phase lift and drag coefficients for a rigid rotating wing

at a fixed angle of attack of 45 deg accelerating over 0.50 chord-lengths of travel at

a three-quarter span reference Reynolds number of 15,000.
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Fig. 4.6: Lift-to-drag ratio versus s/c for the rotating wing at Re = 15,000 acceler-

ated over 0.50 chord-lengths of travel.

to previous figures, the black vertical line (s/c = 13.5) marks the end of the first

revolution and the beginning of the second revolution. The lift-to-drag ratio ap-

pears to remain roughly constant through out the two revolutions. This is because

reduction of CL for the second revolution is proportional to the reduction in CD (ap-

proximately 22%). This leads to an averaged (over each revolution) lift-to-drag ratio

of 1.19 for the first revolution and 1.17 for the second revolution. The difference is

so small that it is within experimental error.
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Table 4.1: Maximum angular acceleration at Re = 15,000.

Accelerating over Velocity profile Maximum angular acceleration (rad/s2)2

0.25c
smoothed (both) 15.5

linear 6.2

0.50c
smoothed (both) 7.8

linear 3.1

1.0c
smoothed (both) 3.9

linear 1.6

4.3 Variation of Velocity Profiles

As described in Chapter 2, the wing stroke was programmed using three differ-

ent velocity profiles: linear in time, heavily smoothed (a = 30), and lightly smoothed

(a = 75). The wing was accelerated such that it reached its maximum angular veloc-

ity after 0.25, 0.50, or 1.0 chord-lengths of travel at the three-quarter span reference

plane (plots shown in Section 2.3). For each case, the wing stroke was symmetric

such that the wing acceleration and deceleration phases were equal and opposite.

The wing reached a maximum stroke angle (θ) of 720 deg, corresponding to s/c = 27.

The maximum angular acceleration for all the tested velocity profiles is given in Ta-

ble 4.1.

The goal of this set of experiments was to determine the effect of the velocity

2The maximum angular acceleration is the same for both of the smoothed cases, however, the

instantaneous acceleration values during transition are higher for the lightly smoothed case.
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profile on the lift force generated by the wing. In order to compare the difference be-

tween the smoothed and the linear velocity profiles, it was important that the value

of the accelerations were same. However, during the acceleration and deceleration

phase of the wing stroke mentioned in Section 3.4, the acceleration of the smoothed

and the linear cases were different. This difference in the acceleration values was

a result of setting t1 = 30% of t2 as explained in Section 2.3.1. As a result, the

accelerations for the smoothed cases were ≈ 60% (see Table 4.1) greater than that

of the linear case. Therefore, the transients observed during the acceleration and

deceleration phase for the smoothed and unsmoothed velocity profiles cannot be di-

rectly compared. A slightly better comparison can be made with the linear velocity

profile accelerating over 0.25 chord-lengths of travel, though the acceleration still

differes by approximately 20%.

Figure 4.7 shows the coefficients of lift and drag with respect to the stroke-to-

chord ratio for the three different velocity profiles at Re = 15,000. The coefficient

curves for the smoothed cases correspond to sa/c = 0.50 and the coefficient curves

for the linear case correspond to sa/c = 0.25. The three lines, blue, red and green

correspond to the linear, heavily smoothed, and lightly smoothed velocity profiles,

respectively. The three vertical lines indicate the end of acceleration phase, the end

of the first and beginning of second revolution, and the beginning of the deceleration

phase. Regardless of the velocity profile, an initial transient peak is observed. The

coefficients then undershoot, overshoot again, and eventually achieve a relatively

constant value after 5 chord-lengths of travel. As previously seen in Section 4.2, the

coefficients decrease when the wing enters the second revolution. Another transient
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Fig. 4.7: Comparison of three different velocity profiles for a rotating wing at

Re = 15,000.
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Fig. 4.8: Comparison of the acceleration phase for three different velocity profiles

for a rotating wing at Re = 15,000.
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Fig. 4.9: Acceleration and jerk with respect to time for the two smoothed profiles,

heavily smoothed (blue) and lightly smoothed (red) for a wing accelerating over 0.50

chord-lengths of travel.

trough is observed when the wing decelerates. This is in agreement with the results

seen in Figure 4.7. Only the shape of the transients during the acceleration and

deceleration phase are affected by smoothing the velocity profile (see Figure 4.8).

Even though the maximum angular acceleration of the two smoothed cases

are the same, the heavily smoothed case has a much lower jerk when compared to

the lightly smoothed case. Figure 4.9 compares the acceleration and jerk for a wing

accelerating over 0.50 chord-lengths of travel at a Reynolds number of 15,000. The

higher jerk in Figure 4.9(b) for the lightly smoothed case compared to the heavily

smoothed case is a result of sharper transitions during acceleration. Therefore a

higher jerk implies a higher instantaneous value of acceleration which results in a

larger added mass. If the added mass is higher, the peak in the force coefficients

will be higher as well. This agrees with the coefficients in Figure 4.8.
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Figure 4.8 focuses on the early wing stroke to highlight the transients of CL

and CD that occur during the wing’s acceleration. The lightly smoothed case has

a greater transient peak than the heavily smoothed case. A phase shift between

the two cases is also observed. Figure 4.10(a) shows the raw and filtered data for

the linear velocity profile early in the wing stroke. In this a phase shift is observed,

which is a result of filtering. However, Figure 4.10(b) shows the raw data for all

three profiles to show that the phase shift observed between the two smoothed cases

is not a result of filtering. Both velocity profiles result in the same overall shape

regardless of the value of the transient or the phase shift. Once the wing completes

the acceleration phase, the coefficients converge to similar values and trends.

The transient peak for the linear case is very sharp and abrupt, unlike the two

smoothed cases. This sharp and abrupt nature of the linear profile coefficients is

a result of the jump in the acceleration of the wing as shown in Figure 2.7. The

value of the linear profile peak is lower than the two smoothed cases. This is likely

because the acceleration for the linear profile is 20% lower than that of the smoothed

cases. This was verified using Equation 4.12. The theoretical added mass for both

the smoothed cases is 2.28, whereas the added mass for the linear case is 1.82, which

is ≈ 20% less than 2.28. This agrees with the experimental results.

4.4 Variation of Acceleration Profiles

For this set of experiments, the heavily smoothed velocity profile and three-

quarter span reference Reynolds number of 15,000 were used, and the distance over
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Fig. 4.10: Raw and filtered lift coefficients for three different velocity profiles for a

rotating wing at Re = 15,000.
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which the wing accelerated (and thus the value of the wing’s acceleration) was

varied. The wing was accelerated from rest to constant velocity over 0.25, 0.50 and

1.0 chord-lengths of travel at the three-quarter span reference span. The distance

over which the wing accelerated is denoted as sa and is non-dimensionalized using

the wing’s chord. This ratio is expressed as sa/c. Table 4.1 shows the value of the

wing’s acceleration for each of the three cases. Figure 4.11 shows the lift and drag

coefficient curves for different values of sa/c. As in previous figures, the vertical

black line indicates the end of the first revolution and the beginning of the second.

The vertical line indicating the end of the acceleration phase is not shown as it varies

for the three cases. As in the baseline case described in Section 4.2.1, a transient

peak is observed as soon as the wing beings to accelerate. The maximum angular

acceleration determines the magnitude of the peak (refer to Equation 4.12). For all

values of sa/c, the “steady-state” lift and drag coefficients (past 1 chord-length of

travel since the largest distance over which the wing accelerates is 1 chord-length)

are the same for all acceleration profiles.

Figure 4.12 shows the acceleration phase of the wing stroke for each of the three

cases. The dashed blue, red, and green vertical lines mark the end of acceleration for

the sa/c = 0.25, 0.50 and 1.0 cases, respectively. Since sa/c = 0.25 has the greatest

acceleration, it was expected to have the greatest peak as shown in Table 4.2. The

added mass values were calculated using Equation 4.12. At sa/c = 0.25, a high

peak is observed in both the lift and drag coefficients with a max CL ≈ 4.5 and max

CD ≈ 4.0. The max coefficients of lift and drag were both approximately 3.0 for

sa/c = 0.50 and the coefficients were both approximately 1.75 for sa/c = 1.0. In all
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Fig. 4.11: Constant velocity phase lift and drag coefficients. Comparison of three

different sa/c for a rotating wing at Re = 15,000.
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Fig. 4.12: Comparison of the acceleration phase for three different accelerations for

a rotating wing at Re = 15,000. The dashed blue, red and green lines indicate the

transition from acceleration to constant velocity for the respective sa/c values.
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Fig. 4.13: Raw lift coefficients for the acceleration portion of the wing stroke.

three cases, a high added mass peak is observed for the lift and drag coefficients,

the peaks then undershoot, rise again, and eventually level out after 5 chord-lengths

of travel. The raw lift coefficients for this portion of the wing stroke are shown in

Figure 4.13.

4.5 Variation of Reynolds Number

All the quantitative results presented thus far have been at a Reynolds number

of 15,000. To investigate the effect of Reynolds number on the rotating wing, differ-

ent Reynolds numbers were achieved by rotating the same wing at different angular

velocities. The other Reynolds numbers tested were 10,000 and 25,000. This range

of Reynolds numbers were chosen due to the limitations of the force transducer.

Unfortunately the data collected at a Reynolds number of 10,000 is not shown as
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Table 4.2: Theoretical added mass peak values at Re = 15,000.

Accelerating over

Maximum angular

acceleration

(rad/s2)

Theoretical added

mass max(CD)
Measured max(CD)

0.25c 15.5 4.54 3.98

0.50c 7.8 2.28 2.92

1.0c 3.9 1.14 1.74

the signal to noise ratio was very poor and this resulted in very high RMS error

values, as shown previously in Table 2.3.

Figure 4.14 compares the lift and drag coefficients for two Reynolds numbers

of 15,000 and 25,000. The wing travels faster for the higher Reynolds number, but

by plotting the force coefficients with respect to s/c (instead of time) the forces

can be compared as the stroke angle varies. An initial added mass peak is seen for

both cases. After the initial peak, the coefficients fall, rise again, and eventually

settle into a “steady-state” value. After the wing finishes the first revolution, there

is a drop in both the lift and the drag coefficient curves regardless of the Reynolds

number. These are the same trends which have were discussed in earlier sections.

Increasing the Reynolds number from 15,000 to 25,000 does not appear to

affect the force coefficients. In Figure 4.14(a), the curves lay near each other, and

both curves follow the same trends previously described. For 1 ≤ s/c ≤ 5, there

109



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

s/c

C
L

 

 

Re = 15,000
Re = 25,000

end of acceleration start of deceleration

first revolution second revolution

(a) Lift Coefficient

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

s/c

C
D

 

 

Re = 15,000
Re = 25,000

(b) Drag Coefficient

Fig. 4.14: Lift and drag coefficients. Comparison of different Reynolds numbers for

a rotating wing accelerating over 0.50 chord-lengths of travel.
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is a small difference in how the two curves increase, but the difference is within

experimental error (error bars shown in Figure 4.14(a)). Figure 4.14(b) shows the

drag coefficient curves for the two Reynolds numbers. Unlike the lift curves, there is

a small noticeable difference in the values. The drag coefficient is consistently slightly

higher for Re = 25,000 when compared to Re = 15,000 case. However, the difference

is very small and is within experimental error so a definitive conclusion cannot be

drawn. Overall, lift and drag coefficients do not appear to change significantly in

the Reynolds number range tested.

4.6 Wing Flexibility

All the experiments described to this point used a rigid wing. Since natural

fliers employ flexible wings, further experiments were performed to investigate and

compare a “flexible wing” to its rigid counterpart. The flexible wing was modeled

with two segments configured to allow passive deformation about the half chord as

described by Eldredge [40, 43, 39] and in Section 1.4.5. The anterior section of the

wing was fixed at a constant angle of attack of 45 deg, and the posterior section was

allowed to passively deform. Since the trailing half-chord of the flexible wing was

free-to-pivot, it hung down vertically (at a 90 deg angle of attack) before the wing

motion began.

Figure 4.16(a) shows the coefficient of lift for the two wings at a Reynolds

number of 15,000. The schematic of the flexible wing in Figure 4.15(a), shows

the wing’s steady-state position at a Reynolds number of 15,000. The passively
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Fig. 4.15: Steady-state flexible wing positions.

deforming trailing half of the flexible wing deflects by an angle of 35 deg during

steady-state, resulting in an effective angle of attack of ≈ 50 deg. The effective

angle of attack of 50 deg is close to the angle of attack of the rigid wing (45 deg).

Since the effective angle of attack of the flexible wing is very similar to the angle of

attack of the rigid wing, the forces generated by both wings should be about equal.

Figure 4.16(a) shows that the two wings do generate similar amounts of lift. Like

the rigid wing, the lift coefficient decreases from the first to the second revolution.

It is also important to note that during the acceleration and deceleration

phases, the peak lift coefficient of the rigid wing is much greater than the corre-

sponding peak for the flexible wing (shown in Figure 4.17). It is postulated that the

force the fluid exerted on the flexible wing was less than the force exerted on the

rigid wing, since the passive half of the flexible wing was free to deform during the

acceleration and deceleration phases.

Figure 4.16(b) shows the drag coefficient for the two wings at Reynolds number
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Fig. 4.16: Coefficient of lift and drag for a rigid and half chord flexible wing at

Re = 15,000.
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Fig. 4.17: Comparison of the acceleration phase for the coefficient of lift and drag

for a rigid and half chord flexible wing at Re = 15,000.
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Fig. 4.18: Coefficient of lift and drag for a rigid and half chord flexible wing at

Re = 25,000.
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of 15,000. One prominent feature of the plot is the relatively large peak coefficient of

drag for the half chord flexible wing as compared to the peak coefficient of drag for

the rigid wing (see Figure 4.17(b)). The passive portion of the flexible wing hangs

vertically when the wing is at rest. When the wing begins to accelerate, the forces

pushing this portion of the wing to its steady-state position (see Figure 4.15(a))

oppose the wing motion. Initially, the passive portion of the wing acts like a wall to

the oncoming flow, and therefore most of the forces on the section are drag forces. As

the flow continues to push the wing to its steady-state position, the drag decreases

since the flow encountered a smaller frontal area. Once in “steady-state”, the rigid

wing and flexible wing had similar values of drag coefficient. During the second

revolution, however, the drag of the rigid wing decreased considerably as compared

to the flexible wing. This might have been due to the flexible wing deflecting in a

way that kept the drag coefficient at a high value when the wing moved through its

wake from the first rotation. Figure 4.16 shows that the lift and drag coefficients in

the constant velocity region for both wings were very similar.

The experiment was repeated for Re = 25,000 to study the effect of Reynolds

number on performance. The unsteady lift peaks during the acceleration and decel-

eration portions of the wing motion can again be seen in Figure 4.18. “Steady-state”

is achieved after ≈ 1.4 s (5 chord-lengths of travel) for the rigid wing, but after only

about 0.7 s (2 chord-lengths of travel) for the flexible wing. This could be a result

of the flexible wing’s ability to deform, which causes variations of the effective angle

of attack. This may allow the overall flexible wing circulation to achieve a stable

value in a shorter time.
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Table 4.3: Steady-state lift coefficient average values.

Steady State Region Re = 15,000 Re = 25,000

First Rotation CLflex
= 1.79 CLflex

= 1.37

CLrigid
= 1.86 CLrigid

= 1.90

Second Rotation CLflex
= 1.41 CLflex

= 1.20

CLrigid
= 1.44 CLrigid

= 1.46

Table 4.4: Steady-state drag coefficient average values.

Steady State Region Re = 15,000 Re = 25,000

First Rotation CDflex
= 1.57 CDflex

= 1.04

CDrigid
= 1.55 CDrigid

= 1.64

Second Rotation CDflex
= 1.39 CDflex

= 1.01

CDrigid
= 1.21 CDrigid

= 1.30
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The “steady-state” mean of the lift coefficient over 8.5 chord-lengths of travel,

for the rigid wing and flexible wing are given in Table 4.3. The first rotation average

on the rigid wing at Re = 15,000 was CL = 1.86 and the second rotation average

was CL = 1.44. These averages are similar to the corresponding flexible wing values

for Re = 15,000. However, at a Re = 15,000, the flexible wing lift coefficients are

higher than the corresponding flexible wing values at Re = 25,000. This is because

an increase of Reynolds number to 25,000 caused the deflection angle of the passive

half of the flexible wing to increase to approximately 66 deg, which was greater than

the 45 deg angle of attack of the anterior section of the wing (refer to Figure 4.15(b)).

This resulted in an effective angle of attack of approximately 35 deg for the flexible

wing, reduced from 50 deg at Re = 15,000. This decreased effective angle of attack

accounts for the lower lift coefficients measured for the flexible wing at Re = 25,000.

The aerodynamic efficiency, quantified by L/D, of both wings is shown for

Reynolds numbers 15,000 and 25,000 in Figure 4.19(a) and 4.19(b). Comparing

the performance of the two different wings reveals that the efficiency of the rigid

wing was higher throughout both rotations at a Reynolds number of 15,000. At

Re = 25,000, the efficiency of the flexible wing was higher than the rigid wing

during the first rotation. However, efficiency of the flexible wing approached the

efficiency of the rigid wing during the second rotation. The “steady-state” L/D

values for both Reynolds numbers can be found in Table 4.5. It can be seen that

the performance of the flexible wing at Re = 25,000 was generally better than at

Re = 15,000. This improved performance persisted though the second revolution

as well. It is postulated that the angle by which the posterior section flexible wing
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Fig. 4.19: Lift-to-drag ratio for the rigid and flexible wing.
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Table 4.5: Steady-state lift-to-drag ratio averages.

Steady State Region Re = 15,000 Re = 25,000

First Rotation L/Dflex = 1.11 L/Dflex = 1.30

L/Drigid = 1.19 L/Drigid = 1.16

Second Rotation L/Dflex = 1.02 L/Dflex = 1.18

L/Drigid = 1.17 L/Drigid = 1.12

deflects changes during the second revolution, resulting in a lower effective angle of

attack. Further experimentation is required to confirm this hypothesis.

4.7 Summary

This chapter presented and discussed force measurements for a rigid and chord-

wise flexible rotating wing at a fixed angle of attack of 45 deg. As the wing accel-

erated, a peak is observed in the lift and drag coefficients. This peak is largely due

to added mass. The added mass was theoretically calculated for the drag force and

agreed with the peaks observed from the experimentation. After the initial peak,

the coefficients undershoot, increase again and eventually attain a “steady-state”

after 5 chord-lengths of travel (approximately 133 deg of rotation). The coefficients

remain at this intermediate value for the remainder of the first revolution. When

the wing begins the second revolution, both the lift and drag coefficients begin to

decrease again and level out at a second intermediate value until the wing begins

to decelerate. The lift and drag coefficients values decrease by approximately 22%
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from the first to the second revolution.

Other parameters that were varied include velocity profiles, acceleration pro-

files, Reynolds number and wing flexibility. Varying the velocity and acceleration

profiles only affected the acceleration phase of the lift and drag coefficients. Higher

accelerations resulted in a higher added mass and peak value of the coefficients.

Increasing the Reynolds number from 15,000 to 25,000 did not have an effect on

the rigid wing, but significant difference was observed on the flexible wing. This

difference in the coefficients observed on the flexible wing is a result of the ability

of wing’s ability to passively deform. At a Re = 15,000, the the angle of attack

(chord line from leading edge to trailing edge) was 50 deg, and at Re = 25,000 the

angle of attack was 35 deg. For all cases tested, a high lift was achieved during

the acceleration phase and in the first revolution, though values dropped off in the

second revolution.
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Chapter 5

Concluding Remarks

5.1 Overview

The work presented in this thesis examined the flow and forces acting on a

model of a hovering insect wing stroke. The wing stroke was modeled as a fixed angle

of attack rectangular flat plate of aspect ratio 2 rotating about the root. Dye flow

visualization was performed at Reynolds numbers of 5,000 and 10,000 to identify

the flow features that formed on the wing. A force balance was used to quantify the

aerodynamic forces produced by these flow structures. Due to the limitations of the

submersible force transducer used, the force acting on the wing were measured at

higher Reynolds numbers of 15,000 and 25,000. Several parameters were varied in

each set of experiments. Additionally, a new model that introduced unsteady pitch

variation on the rotating wing was developed. Preliminary dye flow visualization

was performed on the pitching-and-rotating wing to begin to characterize the effect

of unsteady pitch variations on the structure of the flow.

122



5.2 Conclusions of the Study

5.2.1 Flow Visualization on the Rotating Wing

1. Dye injection at the wing root at a Reynolds number of 5,000 indicated the

formation of a coherent leading edge vortex (LEV) near the wing root, as

shown in Figure 3.1. Further outboard, the leading edge vortex became less

coherent and eventually burst. As the wing continued to rotate for multiple

revolutions, the spanwise location where the leading edge vortex burst moved

inboard towards the wing root (Figure 3.2).

2. The flow structures at a Reynolds number of 10,000 were similar to those

observed on the Re = 5,000 case. The location along the wing span where the

leading edge vortex burst moved inboard towards the wing root at the higher

Reynolds number. The length of the coherent portion of the leading edge

vortex appeared to be smaller than for the Re = 5,000 case. It is hypothesized

that increasing the Reynolds number induces vortex bursting earlier. This is

in agreement with previous findings by Lentink and Dickinson [69].

3. Closing the gap between the wing root and the axis of rotation caused the

leading edge vortex to burst nearer to the wing root, and no coherent leading

edge vortex was observed for multiple revolutions (see Figures 3.8 and 3.9).

However, in this setup the dye was not injected at the true wing root, so it is

possible that a coherent leading edge vortex exists inboard the dye injection

location.
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4. Dye injection performed in the burst vortex revealed several small scale vor-

tices forming and shedding at the leading edge. Shed vortices traveled down-

stream over the wing and began recirculating about a point. As time pro-

gressed, this recirculation region grew and a large scale recirculating region

(i.e., the burst leading edge vortex) was observed, extending from the leading

edge to the trailing edge.

5. Regardless of the wing’s acceleration, a recirculation region formed when the

wing’s angle of attack was 45 deg. At lower acceleration rates, larger vortices

formed on the rotating wing. At higher acceleration rates the vortices shed

with at a higher frequency.

6. At a fixed angle of attack of 15 deg, unlike the 45 deg case, no recirculation

region was present (see Figure 3.13), suggesting that there is no attached

leading edge vortex present on the wing at this incidence.

5.2.2 Flow Visualization on the Pitching-and-Rotating Wing

1. A new pitching-and-rotating wing model was designed and constructed to

introduce unsteady pitch variations on the rotating wing. Wing rotation was

driven by a stepper motor above the water line and unsteady pitch variations

by a submergible servo motor.

2. At low angles of attack, the flow structures on the pitching-and-rotating wing

were similar to the flow structures observed on the rotating-only wing at an

angle of attack of 15 deg.
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3. At high angles of attack, a large recirculating region formed near the leading

edge with attached flow behind it. As the wing pitched down, the recirculating

region was ejected off the wing vertically instead of shedding downstream as

in the fixed angle of attack case. These flow structures appeared to reestablish

for the subsequent pitch cycles.

5.2.3 Force Measurements on the Rotating Wing

1. During the acceleration phase of the rotating wing stroke, a high peak in

the lift and drag coefficients was observed. This peak is attributed to the

added mass of the wing due to the unsteady motion. The added mass was

calculated analytically for the drag force and agreed with the peaks observed

experimentally.

2. During the constant velocity phase of the wing stroke, the force coefficients

decreased. They briefly undershot but eventually increased, and after 5 chord-

lengths of travel leveled out at an intermediate value for the remainder of the

first revolution. See Figure 4.5(a) for an example.

3. During the second revolution of the constant velocity phase of the wing stroke,

both the lift and drag coefficients decreased again and leveled out at a second,

lower, intermediate value until the wing begins to decelerate. The residual

velocity present in water from the previous wing stoke, induced a downwash

on the wing. This downwash reduced the effective angle of attack of the wing

resulted in lower coefficients.
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4. Varying the distance over which the wing accelerated, and thus the wing ac-

celeration, only affected the force coefficients during the acceleration phase of

the wing stroke (see Figure 4.12).

5. The shape of the lift curve for the flexible wing was similar to that of the rigid

wing. The initial peak observed on the flexible wing was much smaller than

that observed on the rigid wing.

6. At a Reynolds number of 15,000, the rigid and flexible wings had approxi-

mately the same force coefficients, likely because the steady-state deflection

angle of the flexible wing resulted in an effective angle of attack near that of

the rigid wing. At Re = 25,000, the trailing half of the wing deflected upwards,

resulting in a angle of attack that was much lower than the angle of attack of

the rigid wing, and lower lift and drag coefficients.

5.3 Remarks for Future Work

The current work revealed a coherent leading edge vortex near the root of a

rotating wing and began investigating a wide variety of possible parameter vari-

ations. This experimental setup developed here could be used as-is to provide a

more complete understanding of the many factors that may affect the stability of

the leading edge vortex. Some suggestions for near-term future work are as follows:

1. Dye flow visualization on the rotating wing at a fixed angle of attack showed

the LEV burst at the quarter span location on the wing. However, when the
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wing was further rotated, the length of the coherent portion of the LEV grew

and burst further outboard. Similarly, when the forces were measured, after

the initial peak the coefficients undershot, overshot and eventually settled at

an intermediate value for the remainder of the first revolution. It is unclear as

to what causes this initially burst LEV to grow or why the force coefficients

fluctuate. This region of the wing stroke should be studied more closely to

understand the behavior of the LEV within 5 chord-lengths of travel.

2. To fully understand the effect of smoothing the wing’s velocity profile, the

acceleration of the linear and smoothed cases should be matched and force

measurements and dye flow visualization repeated for these cases. This will

help understand if there is any merit in smoothing the velocity profile, and

what the effect of doing so is on the flow on the wing and the forces produced.

3. To better understand the effect of the wing root geometry, the gap between

the wing root and the axis of rotation should be eliminated by reducing the

length of the tygon shaft rather than filling it in as was done in the current

work. This would maintain the aspect ratio of the wing (though it would alter

the radius of gyration). Dye flow visualization should then be performed at

the true wing root. This will help determine whether a coherent leading edge

vortex is present for multiple revolutions very near the wing root.

4. For the flexible wing, a spring could be incorporated in an attempt to increase

lift and/or L/D while keeping the benefits of a hinged wing’s ability to deform.

Additional force measurements could also be performed on both the flexible
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wing used in this experiment, and also another configuration of an aspect

ratio 2 wing that is free to rotate about the leading edge. This test case

would isolate the passively deforming portion of the wing and would help

to better understand the aerodynamic forces that act on passively deforming

wings. Flow visualization could be done on all of the wings described above.

Finally, high speed videos could be taken of the accelerating portion of the wing

stroke. This data, combined with force measurements, will help to illuminate

the mechanisms that occur during the accelerating phase of the rotation.

5. The pitching-and-rotating wing model developed in this work is a new and

unique model. This uniqueness should be exploited in an attempt to under-

stand the benefits of introducing unsteady variations in pitch on the rotating-

only wing model. Flow visualization should be performed by injecting dye

at the wing root. This will help determine the effect of pitch on the coher-

ent leading edge vortex near the wing root. After qualitatively understanding

the behavior of the flow structures, particle image velocimetry should be per-

formed on the pitching-and-rotating wing. A crucial parameter that was not

varied in this work is the reduced frequency (k). The reduced frequency can

be easily varied by increasing or decreasing the rate of change of pitch by

programing the servo motor appropriately. An understanding of the effects of

the reduced frequency could prove to be very crucial to be able to successfully

exploit unsteady mechanism which will help design a flapping wing micro air

vehicle.
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The research presented in this thesis has provided a well-rounded qualitative

understanding of the flow structures near the leading edge of a rotating wing. How-

ever, several quantitative properties such as the vorticity, circulation, and strength

of the leading edge vortex are still unknown. A quantitative method such as parti-

cle image velocimetry is required to measure these properties of the flow structures.

The behavior of these quantities along with the results presented in this work will

provide a complete understanding of the aerodynamics of a rotating wing.
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