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Abstract

In this paper we extend our earlier results on the use of periodic forcing and ayeraging
to solve the constructive controllability problem for drift-free left-invariant sys‘tems on
Lie groups with fewer controls than state variables. In particular, we prove a third-
order averaging theorem applicable to systems evolving on general matrix Lié groups
and show how to use the resulting approximations to construct open loop controls for
complete controllability of systems that require up to depth-two Lie brackets to sat-
isfy the Lie algebra controllability rank condition. The motion control problem for an
autonomous underwater vehicle is modelled as a drift-free left-invariant system on the
matrix Lie group SE(3). In the general case, when only one translational and two an-
gular control inputs are available, this system satisfies the controllability rank condition
using depth-two Lie brackets. We use the third-order averaging result and its geomet-
ric interpretation to construct open loop controls to arbitrarily translate and orient an

autonomous underwater vehicle.

1This research was supported in part by the National Science Foundation’s Engineering Research
Centers Program: NSFD CDR, 8803012, by the AFOSR University Research Initiative Program under
grant AFOSR-90-0105, and by the Army Research Office under Smart Structures URI Contract No.
DAALQ3-92-G-0121.

2Supported in part by the Zonta International Foundation.






1 Introduction

Drift-free systems with fewer controls than state variables arise in a variety of control
problems including motion planning for wheeled robots subject to nonholonomic con-
straints, spacecraft attitude control and the motion control of autonomous underwater
vehicles. The basic state-space model takes the form
m
=) Flz)ui;, z€R", u=(uy,...,um) €ER™, n>m. (1)
i=1
It is well known that if the vector fields F; satisfy a Lie algebra rank condition, then
there exists a control u that drives the system to the origin from any initial state. How-
ever, unlike the linear setting where the controllability Grammian yields constructive
controls, here the rank condition does not lead immediately to an explicit procedure for
constructing controls. As a result, recent research has focused on constructing controls
to achieve complete controllability [1, 2, 3, 4, 5, 6]. In particular, constructive procedures

based on periodically time-varying controls have proven successful [3, 4, 5, 6].

Our interest in this paper is in constructive controllability using periodic forcing of

drift-free left-invariant systems of the form

X =eXU, Ut)=Y Awm(t), (2)
i=1

evolving on matrix Lie groups. Here X(t) is a curvein a matrix Lie group G of dimension

n, U(t) is a curve in the Lie algebra G of G, and {A;,...,An} a basis for G. (For an

introduction to matrix Lie groups and Lie algebras see [7]). The u;(-) are assumed to be

periodic functions of common period T'. € > 0 is a small parameter such that eu;(-) are

interpreted as the small-amplitude periodic controls, although some of the u;(-) may be

identically zero.

Equation (2) describes the kinematics of several types of important systems. For ex-
ample, equation (2) describes rigid spacecraft kinematics if we interpret U(t) as the time-

dependent skew symmetric matrix of spacecraft angular velocity such that X evolves on



G = SO(3), the special orthogonal group, where
SO(n) & {A € R™"ATA = I, det(A) = 1}.

Similarly, equation (2) describes the kinematics of an underwater vehicle if we interpret
U(t) as the time-dependent matrix of vehicle angular and translational velocities such

that X evolves on G = SE(3), the special Euclidean group, where

Ab
SE(n) £ { € RO 4 € 50(n), b € R").
0 1

We state formally the complete constructive controllability problem for system (2)

where u;i(t) =0,i=m+1,...,n:

(P) Given an initial condition X; € G, a final condition X; € G and a time t; > 0, find
u(t) = (u1(t), ..., un(t)), t € [0,t;], such that X(0) = X; and X(¢;) = X;.

Our objective is to prescribe means to solve (P) using small-amplitude periodic controls.
One strategy is to use periodic controls to provide open loop control of the system and
apply intermittent feedback corrections to make finer adjustments in system behavior.
This strategy allows us to take advantage of a priori knowledge of the system and
prescribe eflicient open loop controls to drive the system as desired without sacrificing
accuracy and sensitivity reduction associated with feedback control. We use averaging
theory for systems of the form (2) as a means to specify open loop periodic control.
The goal of averaging in this context is to describe an approximate solution to (2) that
evolves on the matrix group G and remains close to the actual solution, but gives rise

to straightforward procedures for achieving complete constructive controllability.

First and second-order averaging theorems have been proved for systems of the form
(2) [8, 6]. The first-order averaging results reveal the effect of the dc component of
the periodic forcing on the behavior of the system, but are only useful for complete

constructive controllability if none of the controls u;(-) is identically zero. However, the



second-order average approximation provides a formula for achieving complete construc-
tive controllability using fewer than n periodic controls if the controllability Lie algebra
rank condition is satisfied for a system of the form (2) using up to depth-one Lie brack-
ets (i.e., single brackets). In this case the formula solves (P) with O(€?) accuracy which
could be improved with intermittent feedback if desired. Additionally, the second-order
average approximation admits a geometric interpretation as an area rule. This was used
to advantage in the design of open loop controls for the spacecraft attitude control prob-

lem with only two controls available and for the unicycle motion planning problem (c.f.

[6])-

In this paper we prove a third-order averaging theorem for systems of the form (2)
and develop the associated geometric interpretation. This facilitates the design of open
loop controls to solve (P) with O(e?) accuracy for systems (2) which require up to
depth-two Lie brackets (i.e., double brackets) to satisfy the controllability Lie algebra
rank condition. We apply this result to the problem of specifying controls to drive an
autonomous underwater vehicle to a desired position and orientation when only three

controls are available (two rotational and one translational).

Autonomous underwater vehicles can potentially be sent into environments too risky
for a manned vehicle and too deep for a tethered vehicle. Thus, they are expected to
play an increasingly larger role in oceanic exploration and exploitation, for example,
in geological surveying, data collection, drill support, construction, maintenance, etc.
[9]. Similarly, there is great potential for their use in other types of hazardous environ-
ments such as in nuclear reactor vessels, e.g., for inspection and maintenance. Further,
with the advent of micro-machining and micro-technologies comes the prospect of using
micro-scale autonomous underwater vehicles for micro-scale underwater tasks such as
in medical applications, for example, to send through blood vessels or arteries for organ

inspection or repair.

To achieve autonomy of the underwater vehiclein each of these settings, the nonlinear

behavior of the vehicle must be controlled. As described above, system (2) models



the motion control problem if we can interpret the vehicle angular and translational
velocities as our control inputs. This interpretation means that we assume that we
can independently actuate these velocities (or at least some of them) as desired. For
example, by controlling a propeller at the back of the vehicle, stern and bow planes on
the sides of the vehicle and rudder planes at the back of the vehicle, the three angular

velocities and one translational velocity can be controlled {10].

In the special case of a micro-scale underwater vehicle or a relatively small vehicle
in a highly viscous fluid, angular and translational velocities can be effected simply
by cyclic body deformations. This special case is the case of low Reynolds number
(Re <« 1) in which frictional forces between the vehicle and the fluid dominate while
inertial forces are negligible. Motion in this context has been studied by physicists
interested in understanding how microorgan‘iéms such as paramecia swim [11, 12, 13, 14].
In imitation of the flagella or cilia used by microorganisms for maneuvering, actuators
such as flapping flexible oars or rotating corkscrews could be used to generate angular

and translational velocities for the vehicle at low Reynolds number.

In [10] a globally stable nonlinear tracking controller was developed using three
angular velocities and one translational velocity as control inputs. For this controller,
the kinematic equation was given by Euler angles and the reference trajectory was
assumed to have a non-zero velocity. In [15] an exponentially convergent stabilizing
control law was presented using again three angular velocities and one translational
velocity as control inputs. In this case the kinematics were modelled as in (2). In this
paper we need only require authority over two angular velocities and one translational
velocity to translate and orient an underwater vehicle as desired. The low number of
controls required to achieve complete constructive controllability provides a measure
of redundancy to the control system. This redundancy can also be interpreted as the
means for the controller to “adapt” to a failure in the system that reduces the control
authority, by continuing to provide complete control over the position and orientation

of the vehicle.



In Section 2 we summarize the results from our work on first-order and second-order
averaging [8, 6, 16]. In Section 3 we discuss the basic ideas behind high-order averaging
and prove a third-order averaging theorem for general matrix Lie groups. Our main
result is an “area-moment rule” (Theorem 5) for systems on groups. We discuss the
geometric interpretation of this rule and the consequences for control illustrating how
to use the averaging result to achieve complete constructive controllability for systems
which meet the controllability rank condition with up to depth-two Lie brackets. In Sec-
tion 4 we examine our main result for the Lie group SE(3) in the context of underwater
vehicle control. An example is given for achieving complete constructive controllability

when only one translational and two angular controls are available.

2 First and Second-()rdéf Averaging

Since there are no explicit global representations of the solution to (2) we make use
of local representations: the product of exponentials representation given by Wei and
Norman [17] and the single exponential representation given by Magnus [18]. The basic
idea which we use for first and second-order averaging as well as for high-order averaging
is to derive classical averaging theory approximations for the local representation and
then transfer such estimates to the group level for solutions to (2). We begin by defining

the Wei-Norman representation and summarizing the associated averaging results.

Lemma 1 (Wei and Norman). Let X(t) be the solution to (2) and X(0) = I. Then
Jto > 0 such that for || < to, X(t) can be expressed in the form

X(t) = eI (A1 92() Az || ogn(t)An (3)
The Wei-Norman parameters g = (¢g1,. . ., gn)7T satisfy
g=€eM(g)u, forlt]<to, (4)

where g(0) = 0 and M(g) is a real analytic matrix-valued function of g. If G is solvable



then there exists a basis of G and an ordering of this basis for which (4) holds globally,
i.e., for all ¢. a

It is customary to refer to components of g as the canonical coordinates of the second
kind for G. Let W be the open neighborhood of 0 € R™ such that Vg € W, M(g) is
well-defined. Let @ : R* — G define the mapping

(I)(g) = eN1A1 9242 ., ogndn (5)

and define V = ®(W) C G. Then, the Wei-Norman formulation provides a local
representation of the solution to (2) for initial condition X(0) € V C G. Now let S
be the largest neighborhood of 0 € R™ contained in W such that ¥ = ®|, : § —» G
is one-to-one. Let Q@ = ¥(S) C V. Then ¥ : § — Q is a diffeomorphism and we can
define a metricd: Q x Q — R+ by

d(Y,2) = d(¥7'(¥),¥7}(2)) (6)
where d : R* x R* — R, is given by

d(e, B) = [l — Bl =§;|a,- Bl (7)

The averaged system associated with (4) is defined as

I

§ = MGz [ wr)r)

eM(§)ug, G(0) = Jo (8)

>

where we assume that M(go) is well-defined. The average solution X (t) associated with

the solution X (%) of (2) is defined as

X = eXUq,u, Ua,u = Z Aiuavi (9)
i=1
where %z, = (Yav1s- - - Uawn)? . Thus,
X(t) = X(0)eVrt, (10)



The first-order averaging theorem can now be stated (c.f. Theorem 2 of [8]).

Theorem 1. Let € > 0 be a small parameter. Let D = {g € ®" | |lg]| < r} C S.
Assume that u(t) € R" is periodic in ¢ with period 7' > 0 and has continuous derivatives
up to second order for ¢t € [0,00). Let X(t) be the solution to (2) represented by (3)
where g(t, €) is the solution to (4) with ¥(g(0,¢)) = X(0) and ¢(0,¢) € D. Let X(¢) be
the solution to (9) and let g(¢, €) be the solution to (8) with ¥(g(0,¢€)) = X(0).

If g(t,e) € D, Vte[0,b/e] and |lg(0,€) —g(0,¢€)]l = O(e)

then d(X(t),X(t)) = O(e), Vte[0,b/¢. O

Next we show the form of the second-order average approximation X (t) to the so-
lution X (¢) of (2). Let g = (Gyy-++,9,)7 be the second-order average approximation of
the solution ¢(t) to (4). We define the second-order approximation X on the group level

as

X(t) = 04 B0 . Fa(D4n (11)

which is well-defined for g(t) well-defined. To isolate the second-order effect we assume

that u,, = 0. We define @ = (@,...,14,)T by

ait)= | Cwi(r)dr. (12)

So u = @ and i is periodic in ¢ with common period T. Let U = ¥% , @;A;. Next we
define Area;;(T) to be the area bounded by the closed curve described by ; and @; over

one period, i.e., from t = 0 to ¢t = T'. By Green’s Theorem we can express this area as

Areay(T) = 3 [ (@(0)ii(0) — 55(0)i(o))do: (13)

This area can be interpreted as the projection onto the i-j plane of the area enclosed
by the curve (@i,...,%,) in one period. Finally, we define the structure constants I‘fj

associated with the basis {A;y,..., A,} for the Lie algebra G of G by

[AiaAj] = erjAka Li=1,...,n (14)
k=1



where [+, ] is the Lie bracket on G defined by [A, B] = AB — BA.
The second-order averaging theorem can now be stated (c.f. Theorem 2 of [6]).

Theorem 2 (Area Rule). Let € > 0 be a small parameter. Let D = {g € ®" | ||g]] <
r} C S. Assume that u(t) € R is periodic in ¢ with period T' > 0 and has continuous
derivatives up to third order for ¢ € [0,00). Suppose that u,, = 0. Let X (t) be the
solution to (2) represented by (3) where g(t, €) is the solution to (4) with g(0,¢) = go € D
such that ¥(go) = X(0) and ||gol| = O(€). Define

2t n
Zk(t,€) = T Z Area,](T)F,J, k=1,...,n, (15)
1.7—'1 z<J
G=zdeitg, )
X (t) = 1041 a4z . Fal)An )

where ||go — Goll = O(€?). If (2(t,€) + o) € D, Vit € [0,b/€] then

d(X(t),X(t)) = 0(?), Vte[0,b/g. O

We can state analogous first and second-order averaging results based on the single
exponential local representation of solutions to (2). By Theorem III of [18], assuming a
certain convergence criterion is met, the solution to (2) with X(0) = I can be expressed

X(t) = eZ® (18)

where Z(t) € G is given by the infinite series (we show terms up to O(€?)):
20) = ¢ / Wirar + / 0r), U
r / / U(o)ldo, U(r)ldr + - / ), [0(7), U(r)]ldr + ... (19)

Satisfying the convergence criterion means limiting the duration of validity of the single
exponential representation (see [16] for details). Assuming the convergence requirement

is met, then Z(t) is the solution to

Z=eU+— 5 [U U] + E?'[/t[ﬁ(f),U(T)]dT, Ul + -1%[(7,[(7, Ull+..., Z(0)=0. (20)



Let & : G — G define the mapping
d(Z) = 2. (21)

Let S be the largest neighborhood of 0 € G such that ¥ = 9 gt S — @ is one-to-one.
Let = \iJ(S') C G. Then ¥ : § — @ is a diffeomorphism and we can define a metric
d: Q x Q) — Ry by

d(X,Y) = d(¥(X), ¥ 1Y) (22)

where d is given by (6).

The second-order averaging theorem based on the single exponential representation
is given below (c.f. Theorem 4 [16]). The first-order averaging theorem using this

representation gives the same result as Theorem 1.

Theorem 3 (Single Exponential Area Rule). Let ¢ > 0 be a small parameter. Let
D={Zegl|Z|<r}C $. Assume that u(t) € R" is periodic in ¢ with period T > 0
and has continuous derivatives up to third order for ¢ € [0,00). Suppose u,, = 0. Let
b > 0 be such that the convergence requirement for (19) is met Vt € [0,b/¢]. Let X(¢)
be the solution to (2), with X(0) = I, represented by the single exponential (18) where
Z(t,€) € G is the solution to (20). Define

- 2t n n
Z(t,e)==5( S Areay(T)T%)Ax, (23)
T k=1 1,j=1;i<J ’
Xs(t) = eZ+0. (24)

If Z(t,€) € D, Vt € [0,b/¢] then

d(X(t), Xs(t)) = O(e*) on [0,b/¢]. O

It is clear from equation (9) that the first-order approximation X (t) describes the
effect of the dc component of the control input v on the system (2). Thus, the approx-
imation provides a formula for complete constructive controllability only if none of the
controls u;(-) is identically zero. On the other hand, the second-order average approxi-

mation provides a formula for complete controllability even when some of the controls

10



are identically zero. Specifically, the second-order average approximation X (t) given by
equations (15) - (17) (or similarly X5 given by (23) and (24)), in providing more infor-
mation about the actual solution to (2), captures the effect of the group level version

of depth-one Lie brackets. This effect is stated in the next theorem (c.f. Theorem 3 of

[6])-

Theorem 4. Suppose that system (2) satisfies the Lie algebra controllability rank con-
dition with up to depth-one Lie brackets. Then the complete constructive controllability
problem (P) can be solved with O(¢?) accuracy using the formula for X (t) given by (15)
- (17) or the formula for X g(¢) given by (23) and (24). o

Basically, this theorem tells us that in the formula (17) for X (and analogously for
X s), each g, will be the linear combination of terms like @ and terms like Area;;(T)
and no g, will be identically zero (or constant). It is then easy to see how to construct
open loop controls since we know the geometric meaning of the terms Area;;(7), i.e.,
that Area;;(T) is the area bounded by the closed curve described by @; and ; over
one period. In particular, if we choose #; and %; to be sinusoids that are in phase then
Area;;(T) = 0. Alternatively, if they are chosen out of phase then Area;;(T) # 0 can
be computed based on the signal magnitudes and their phase difference. An algorithm

can then be derived based on this geometric reasoning.

The spacecraft attitude control problem, where it is assumed that two angular veloc-
ities are available as control inputs (e.g., in the case where there are two reaction wheels
and no external torque is applied), can be modelled as (2) with n = 3 and uz(-) = 0.
It can be shown that this system satisfies the hypothesis of Theorem 4 and with the
appropriate choice of basis elements {A;, A, A3}, X takes the form

)__((t) = ehhigdada G34s

= elcitTo)As g(cln+i0z) Az o (T Areass (T)+0s)As (25)

Similarly, the unicycle motion planning problem can be modelled by (2) with G = SE(2),
n = 3 and uz(-) = 0. This system also satisfies the hypothesis of Theorem 4 and X

11



again takes the form (25). Details on an algorithm that was derived for these systems

as well as corresponding simulation results can be found in [6].

3 Third-Order Averaging

Higher-order average approximations to the solution to (2) naturally provide successively
more information about the actual solution, X (t). The nature of this information can be
gleaned from the infinite series expansion of Z(t) in (19), where it is noted that by (18)
Z(t) is the logarithm of X(¢). The O(€?) term in (19) is a depth-one Lie bracket and
as verified in Theorem 4 of the previous section the O(€?) approximation completely
captures the effect of the depth-one Lie brackets in the context of controllability. It
is expected that the O(€?) approximation for p > 2 of X(¢) will completely capture
the effect of depth-(p — 1) Lie brackets in the context of controllability. (Note that
a depth-(p — 1) Lie bracket is defined as (p — 1) iterated brackets, e.g., a depth-two
bracket is of the form [A,[B,C]], a depth-three bracket is of the form [A4,[B,[C, D]}],
A,B,C,D € G, etc.) In this section we prove this result for p = 3. Additionally,
we show that the third-order approximation has a geometric interpretation based on
a higher-order geometric object which can be described as a first moment. The first
moment plays a role analogous to the role played by area in the second-order average

approximation.

As in the case of second-order averaging in Theorem 3, we use the single exponential
representation (18) of solutions to (2) with the associated differential equation for Z(t)
given by (20) as a means to do third-order averaging. As in the case of second-order

averaging we assume that u,, = 0. Let @ be as defined by (12). Define

ai(t) = 5 [ (is(0)is(0) — 15(0)iu(0))do. (26)

N

Then a;;(t) is of the form
Area;: (Tt
aij(t) = ——-1—1(—)— + f(2),

12



where f(t+T) = f(t), f(0) =0, T is the period of the control u and Area;;(T) is given
by (13). So, in particular,
a:j(¢T) = qArea;(T) (27)

where ¢ is a positive integer. Let

mik(T) = 2 [ (as(0)iii(0) — 3(0)iis(0)) (o) do. (28)
3 Jo

Now consider the closed curve C defined by #;(¢), @;(t) and (t) over one period, i.e.,

from ¢t = 0 to t = T'. From (28) we get that

1 - ge o o~ e
m;jk(T) = § ]guiukduj - ujukdu,'. (29)

Let A be any oriented surface with boundary 0A = C. Then by Stokes’ Theorem,
1
m;]‘k(T) = g/A —ﬂidﬁjdﬁk — ﬁjdﬁkdﬂ; -+ Qﬂkdﬂ,‘d'&j. (30)

So m;jx(T) as described by (30) can be interpreted as the first moment, i.e., a linear
combination of #; integrated over the area of the projection of A onto the j-k plane, u;
integrated over the area of the projection of A onto the k-i plane and 4, integrated over

the area of the projection of A onto the i-j plane.

Next we define depth-two structure constants ()fjk associated with basis {A,..., An}
for the Lie algebra G in terms of the structure constants I'}; defined by (14) as
JAN e 1
0% = Y TiTh. (31)
=1
This definition comes from the computation of structure constants for depth-two Lie

brackets as follows:

n n

[[Ai, Aj), Al = DT AL A =Y TH[AL A =D Y TLThA, =Y 68,4, (32)
=1 =1 p=1

p=1[=1

Theorem 5 (Area-Moment Rule). Let € > 0 be a small parameter. Let D = {Z €
Gl1Zll < r} C 8. Assume that u(t) € R™ is periodic in ¢ with period T' > 0 and has

continuous derivatives up to fourth order for ¢t € [0,00). Let b > 0 be such that the

13



convergence requirement for (19) is met Vi € [0,b/¢]. Let X(t) be the solution to (2),
with X(0) = I, represented by the single exponential (18) where Z(t,e) € G is the
solution to (20). Define

Z(S)(t, 6) = E(eﬁp(t) + 62 Z a,-j(t)I‘?j —_ Z Z m”k 1]k)AP7 (33)
p=1 1,7=15<7 k=1 1,7=1;i<j
XO(t) = 200, (34)

If ZG)(t,e) € D, Vt € [0,b/¢],

d(X (1), X®(t)) = O(e®), Vt € [0,b/e].

Proof. Let s = et. Then from (20),

% - U+ g[f}, U]+ 67:-[/03[(7(7"), U(r)dr, U] + f—;-[ff, (0,01 +
2 f(s,e) (35)
Let Zo(s,€), Zu(s,€) and Za(s, ) be the solutions, respectively, to
i?ﬂ = f(5,0) = U(s), Zo(0,€) =0, (36)
.“%_ - %’2(3,0) - %{0, Ul(s), Z:(0,6)=0, (37)
s _ 9 (6,0) = 1[0, UGN, V) + 3510, 0.006), 20,9 =0. (39

Then by standard perturbation theory (c.f. Theorem 7.1 [19]), if Zo(s,€) € D, Vs € [0, 8],
then Je* > 0 such that V]e| < € (35) has the unique solution Z(s,¢) defined on [0, b]
such that

1Z(s,€) = (Zo(s,€) + €Z1(s,€) + € Za(s,€))|| = O(*), Vs € [0,8]-
This implies that

1Z(t,€) = (Zo(t, €) + €Zu(t,€) + € Za(t, )| = O(e*), V€ [0,8/¢], (39)
where by (36) - (38) and since ds = edt,

Zo = eU(t), Zo(0,¢) =0, (40)

14



2y = 310,U1t), Z1(0,6) =0, (41)
I = <[ 00, Ul U@ + 510,10,000), 20,9 =0.  (42)
Now let Y 2 €*Z,. Then

|Z = (Zo+ €Z1 + Y)|| = O(®), Vt€[0,b/e] and (43)

Y = %[ /0 10(r), U(r)dr, U @) + 1‘—2[(7, [T,U1)(t), Y(0,¢)=0. (44)
Let Y(t €) be the solution to

—_— 3 -~ ~ —
Y= / [ [0(0), Ulo)do, U(r)ldr + 1o [ (), [0(r), U(m)ldr, ¥(0,¢) =0.
(45)
By classical averaging (c.f. Theorem 7.4 [19]),if Y € D, Vt € [0,b/¢] and ¢ is small
enough then |[Y(¢,€)—Y(t,¢€)|| = O(¢®) on [0,b/€]. So by (43) and the triangle inequality

1Z(t,€) — ZO(t,e)]| = O(®), Vt e [0,b/e, (46)
where
ZO(te) & Zo(t, e)+eZ1(t e) + Y (t, e)
- eUt)—l— <[00+ ok 1] 1006,V Ul
+ o= / [0(r), [0(r), U()]}dr (47)

by (40), (41) and (45). Thus, by (46) and the definition of d, d(X(t), X®)()) = O(¢®),
Vt € [0,b/€], where X®) is defined by (34).

The proof is complete if we show that Z® defined by (47) agrees with (33). By
definition, we have that e[J(t) = Y €iiy(t)Ap. Next we show that the second term on
the right side of (47) is equivalent to the second term on the right side of (33).

C [wver = & /t[ia,-(a)Af,‘;ma)AAdo
- 2/ — i) (o) [Ai, Ajldo

1,7=1; 1<]

= Z(e Z ai;()T%) Ay, (48)

p=1 §,j=1;1<j

15



where we have used the fact that [A;, Aj] = —[A;, Ai] and the definitions of a;;(¢) and
Te.
ij*

Next we examine the third term on the right side of (47).
T T .
(1] 100),U(0)do, U(m)ar
3
t
= 7 / Eu,(o)Al,Zu] 0)A;ldo, Z ug(7)Ax)dr

= ZZ / ([ (@t — iy (0)do)u(r)dr) [ A, A7, A
_ 236 tk >3 103 / (@(r)ii(r) — 5(7) (7)) (7)dr 0% A,
- SGFL X k(T A (49)

where we have used (32), integration by parts and the definition of m;(T).

The last term on the right side of (47) can be similarly expanded.

et [T . >
5 [ 0,100, U()er
- Sl Ak,[zu, A Y d5(r) A ldr
k=1 J=1
_ _tg;l ; / (1)l (r) — G5(7)a(r))in(r)drlAw, [Ai, 4]
= %,; _Z m1]k T)[Aka[AuA]]
- -”ki z mit(T)[[As, A7), Al

A!:T'—‘ 1l
Sz
0 &
M=
3

( ) 1Jk)AP7 (50)

Therefore, substituting (48), (49) and (50) into (47) yields the expression for Z®) given
by (33). o.

The terms of Z®)(¢) (33) can be characterized as follows. The first term on the

right side of (33) is an O(¢) periodic term. The second term is a secular term (linear in
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t) with an O(e?) periodic term superimposed. The secular term is proportional to the
areas Area;;(T') and the structure constants I'}; associated with the choice of basis for
G. The third term of (33) is purely a secular term proportional to the first moments
mi;x(T') and the depth-two structure constants 67, associated with choice of basis for

G. This interpretation makes Theorem 5 an area-moment rule.

It should be noted that the formula of Theorem 5 is clearly basis independent.
Additionally, because system (2) is left-invariant, Theorem 5 actually gives the formula
for the third-order approximation X®)(t) to the solution X(t) of (2) for any initial
condition X(0) € G. Let X (t) and X!¥ () correspond to the actual and approximate
solutions, respectively, of (2) with X;(0) = I € G. By left-invariance of (2), X(¢) =
X(0)X(t) and XC)(t) = X(O)X(a)( t) is an O(€®) approximation of X (¢) on an O(1/e)

time interval.

As discussed earlier, X®)(t) captures the effect of depth-two Lie brackets. This effect

in the context of controllability is summarized in the next theorem.

Theorem 6. Suppose that system (2) satisfies the Lie algebra controllability rank con-
dition with up to depth-two Lie brackets. Then the complete constructive controllability
problem (P) can be solved with O(e®) accuracy using the formula for X®)(¢) given by
(33) and (34).

Proof. Consider a system of the form (2) with up,41(:) = ... = u,(-) = 0, m < n.
Without loss of generality we can assume that X; = I € G and X; € Q C G is such
that Z; = ¥~1(X;) = O(¢?). This is possible due to the left-invariance of the system

and the fact that Theorem 5 can be applied repeatedly. Let
C={C|C=A4,0r C=][A;A)], or C=[[Ai Aj], A}, p,3, 5,k =1,...,m}.
By hypothesis,

G = spanC = {Z cpAp + Z cij{Ai, Aj] + 2 cije[[As, Aj], Axl, cp, cij, cije € R}

1,J=1 1,5,k=1
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{Z Ay +Z( Z T+ Y i) Ay, cp i ciir € R)

p=1 1,j=1;i<J k=11,j=1;i<y
Therefore, since Z; € G, 3c,, ¢ij,ci51 € R, p,i,5,k =1,...,m such that
m m
Z5 = ZcpA FYCY @i+ > anth)d, (51)
p=1 i,j=1i<j k=114,j=15i<j

Also, from (33) and the assumption that u;(-) =0 for i = m 4 1,...,n we have that

m m 3t
ZO(t,€) Z €lip(t)A, + Z E a;( )% — Z E E—m,-jk(T)ijk)Ap. (52)

p=1 i,j=1;1<] k=1145=1<j T

So if we choose u,(t), t € [0,%4], p=1,...,m such that
€ly(ts) = ¢,y p=1,...,m, (53)
a;;(ts) = cij, i,]:'ﬂ:: 1,...,m, and (54)
€3t ..

— _j_"imijk(T) = C,'jk, 2,],k = 1,...,m, (55)

then from (51) and (52) Z®)(t;) = Z;. This implies that X®)(t;) = ¥ (2O (¢)) =
¥(Z;) = X4. So, by Theorem 5, || X (¢) — X/|| = O(€3).

It remains to show that (53) - (55) can be met. This becomes clear by recognizing
the geometric meaning of the terms a;;(t) and m;;x(T). For ¢ an integer, a;;(¢T) =
qArea;;(T) and Area;;(T) is the area bounded by the closed curve described by %; and
ii; over one period. In particular, if we choose %; and %; to be sinusoids that are in phase
then Area;j(T) = 0. Alternatively, if they are chosen out of phase then Area;;(T) # 0
is a function of the product of the signal magnitudes and phase difference. The terms
mijr(T") are first moments as described above. In particular, if we choose @; and #; to
be sinusoids that are in phase then m;;(T) = 0. Only when #; and @; are nonzero
and out of phase and @y is also nonzero will myjx # 0. In this case m;(T) will be
proportional to the product of the signal magnitudes. Based on this reasoning the final
values of each of these terms can be matched independently, i.e., (53) - (55) can be met.
The timing can be controlled by choosing the frequency and amplitudes of the sinusoids

appropriately. a
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4 TUnderwater Vehicle Control

Consider an autonomous underwater vehicle and let (r1,rz,r3) be coordinates fixed on

the vehicle. Let (by,bz,bs) be inertial coordinates. Then we define X(t) € SE(3)

where
;
X(t) = Xr(t) .‘”T(t) . Xr(t) € SO@3), z7(t) € ¥,
000 1 |
such that
X(t) n | _ | Xr(®) ‘ zr(t) } E _ | Xr()ri+or(t) } _ { b; } '
1 000 ' 1 I 1 1 1

That is, X () describes the orientation and position of the vehicle at time ¢. Let e; =
(1,0,0)T, e; = (0,1,0)7 and e3 = (0,0,1)T." Define ": R* — so(3) where s0(3) is the

space of skew symmetric matrices and = = (1, 73, z3)T, by

0 —-—I3 )
z= T3 0 —T1
—I2 Ty 0
Let i
e 10 _
— 1=1,2,3
0001}0
Ai g < -
0 |e-s )
] i=4,5,6.
| [ 000 0

Then {Ay,...,As} defines a basis for G = se(3), the Lie algebra associated with SE(3).
Now let Q = (Q1,Q2,03)7 define the angular velocity of the vehicle and v = (vy,v2,v3)7

the vehicle translational velocity all with respect to (ry1,rz,rs). Then X(t) satisfies

X = X(i Qu(t)A; + fj vi(t)A;). (56)

1=1 1=4

Based on the discussion in the introduction, we assume that we can interpret Q1)

and v(t) as controls such that (56) is of the form (2). Specifically, suppose that we
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have four controls available, i.e., eu;(t) = Qi(t), ¢ = 1,2,3 and euq(t) = vy(t). Let
Fi(X)=XA;, 1=1,...,4, then

X = eX(ij Aw) = eij Fi( X )u;. (57)
i=1 i=1

Now, the Lie bracket of left-invariant vector fields on a matrix Lie group can be ex-
pressed in terms of the Lie bracket on the associated Lie algebra as [F;(X), F;(X)] =
[XAi, XAj] = X[A;, Aj]. Thus, since [As, Ag] = As and [A4, Ag] = Ag, the system is
completely controllable with the Lie algebra rank condition requiring only depth-one Lie
brackets. However, if only three controls were available, e.g., if one of the controls failed,
then the controllability situation changes. Certainly, if the translational control ug4 is
lost then position control is lost. However, if one of the rotational controls is lost the
system 1s still controllable. Specifically, if u; is lost then the system still satisfies the Lie
algebra rank condition with depth-one brackets. On the other hand, if uy or ug is lost,
depth-two Lie brackets are needed to satisfy the Lie algebra rank condition. For exam-
ple, suppose u1, us and u4 are the controls available. Then [A;, A2] = Az, [A4, A2] = A6
and [[A;, A3], A4] = As show the system is controllable using one depth-two Lie bracket.
Thus, in the general case where one translational and two angular controls are available,
the third-order average formula (and not the second-order average formula) provides a

means to derive controls for complete control of the vehicle.

In effect, one can think of the third-order average formula as providing an “adaptive”
control law for translating and orienting an autonomous underwater vehicle. Specifically,
under normal conditions with four controls available, the control algorithm could be
based on the second-order average formula. In the event of a failure that reduces control
authority to three controls, the control algorithm could be switched to one based on the
third-order average formula. In this scenario the controller would adapt to the failure

and continue to effect complete control over the vehicle’s position and orientation.

We now illustrate how to use the third-order average formula (i.e., the area-moment
rule) to construct controls to solve problem (P), i.e., to translate and orient an underwa-

ter vehicle as desired, in the general case when one translational and two angular controls
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are available. Specifically, we focus on system (57) where us(-) = 0, i.e., u;, u; and u4
are the controls available, as in the example above. From Theorem 5 we can write down

the formula for the third-order approkima,tion X©@)(t) to the solution X(t) € SE(3) as

6
XO(t) = 2V, ZO1) = 3 d, (1) A,,

r=1

di(t) = iz (t) — Smaa(T), da(t) = eilg(t) ~ Smaaa(T),

da(t) = eitg(t) — Smian(T), ds(t) = =St (maa(T) + man(T)), (58)
da(t) = aya(t), de(t) = ag(t).

Now suppose without loss of generality that X (0) = I and it is desired that X (t) = Xy
such that Z; = U~1(X;) = O(€?) (see the proof of Theorem 6). Let Xg, and zry be the
corresponding desired rotational and translational parts of Xy. To solve the problem
(P) with O(€?) accuracy, we derive an algé)fithm such that X®)(t;) = X, and apply

Theorem 5.

To simplify our task, we solve the translational part of the problem first and then

the rotational part. Recall that X(t) = exp(Z(t)) where we can express Z(t) =

6
p=1

dp(t)A,. Similarly, Xy = exp(Z;) where we can express Zg = 3 o_; dg,Ap. Thus,
the translational part of the problem is to specify controls such that d,(t;) = da,, p =
4,5,6, and the rotational part of the problem is to specify controls such that d,(¢;) =
di,, p=1,2,3. It can be seen from (58) that we need the third-order (O(¢?)) averaging
formula of Theorem 5 to solve the translational part of the problem (otherwise, ds(t)
would be identically zero). However, we only need the second-order (O(€?)) averaging
formula to solve the rotational part of the problem where we take € = €¥/2. In fact, for
the rotational problem we can use an algorithm similar to the one used for the attitude
control problem of [6] which uses Theorem 2 and the Wei-Norman parametrization.

This is because of our choice of basis {4;,...,A,}. The Wei-Norman equations for

G = SE(3) with our chosen basis are
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. . a -
a0 secgacosgs  —secgasings 0 0 0 O Uy
g2 sings cosgs 0 00 O Usg
d3 —tangycosgs tangssings 1 0 0 0 u3
= , (59)
94 0 —ds g 1 0 0 Uy
s Je 0 —g4 0 1 0 Us

| g6 | | —3gs g4 0 00 1 ]| us]

and it can be seen that the parameters g;, g3, g3, which parametrize the orientation
of the vehicle, correspond to the three parameters in the attitude control problem.
The parameters g4, g5, gs parametrize the position of the vehicle, and it is easy to
show that d; = ¢;, 1 = 4,5,6. So the desired orientation Xpg, is expressed in Wei-
Norman parameters (gq4,, 945, gd3) and the desired position z7, is expressed identically
in Wei-Norman and single-exponential parafneters (9da> 9ds, 9as) = (day, das, dag). It is
additionally assumed that it is desired that u;, i = 1,2,4 be continuous and u;(0) =

u;(tf) = 0, 1= 1,2,4.

The following algorithm uses sinusoidal controls and has been derived according to
the geometric reasoning outlined in the proof of Theorem 6 (for the translational part of
the problem) and the proof of Theorem 4 [6] (for the rotational part of the problem). The
time interval [0, ] is divided into subintervals [t;, ¢;] such that t; = = = £, t, = ¢, +4T,
ta=to+rT, ty =3+ 04T, b5 = t4+%, te = t5+%, ty = ts‘l‘%, ty = t7+sT, tg = ts+%
tio =t =tg+ 12: where ¢,r,s and A4 are described below. The algorithm defines the

controls as follows:

0 0<t<t
eu1(t) = { —aqwsin(w(t—t)) t1 <t <t
0 2 <t <ty

—aqwsin(w(t —t7)) 7 <t <tg
Eul(t) = 0 ts <t <ty
Lggwsin(w(t —t9)) 1o <t <ty
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0 0<t<t
awsin(w(t —t1)) 1 <t <t

euz(t) = 4
azwsin(w(t —tz)) t2 <t <3
{ 0 i3 <t <ltg
gawsin(w(t — tg)) te <t<ty
EUz(t) =

—2gawsin(w(t —tg)) to <t <tio

f dygwsin(wt) 0<t<ty
(dagweos(wWALT))cos(w(t — t4)) ty <t<ts

t) =
euy(t) = —3(dagwecos(wALT))sin(w(t — t5)) ts <t <ts

0 e <t <ty

\

Positive integers ¢,r and s and a4, az, a3, a4 € R are selected according to the following

rules:
Gaag = d‘ﬁ; (60)
asr = diiir — asq. (61)
alq+air=6< % (62)
ags = 243 (63)
TGgdy

Then Ay, the period of oscillation T and the frequency w can be computed as

sin~ Y —n(a2q + air)}

A4::: 27!' )
_ ts

T (gtrHs+A4+2)]
2w

As an example, we use this algorithm to translate and orient an autonomous under-
water vehicle to a desired position corresponding to dgy = 0.2, dgs = 0.05 and dy4q = 0.2

and a desired orientation corresponding to g4; = 0.05 radians, g4, = 0.05 radians and
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Figure 1: Vehicle in (a) Initial and (b) Desired Position and Orientation.

g4z = 0.04 radians in t; = 29.2 units of time. Figure 1(a) shows the vehicle in its initial
position and orientation (at the identity of SE(3)), and Figure 1(b) shows the vehicle
in its desired position and orientation. In each of these figures, the vehicle is shown
together with its projected image on the z-z plane (at y = 0.7) and on the y-z plane
(at z = 0.7). The * symbols indicate the desired position of the center of the vehicle

projected onto the z-z and y-z planes.

This example is intended to represent one step in a multi-step maneuver. As dis-
cussed earlier feedback could be used between steps to improve accuracy. We also note
that in using the algorithm above, there is a great deal of flexibility in choosing the
constants according to the rules (60) - (63). In this example, the constants were chosen
to keep the frequency of the control signals, w, relatively low. In particular, we used
g=4, r=4, s =4, a; ~ 0.11, ay = 0.18, a3 = —0.10, and a4 = 0.06 such that
Ay =T7/12, T =2 and w = 7. Additionally, ¢ = 0.2 and € = €%/ 2 0.09.

Figure 2 shows the three controls u;, uz amd uy, as a function of time. Figure 3 shows
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Figure 2: Control Input Signals for Example.

a simulation of the response of the system (solid lines). The simulation was produced by
numerically solving the Wei-Norman equations (59) using MATLABZ. The orientation
of the vehicle is given in Figures 3(a), 3(b) and 3(c) which show plots of g1, g2, ¢,
respectively. The position of the vehicle is given in Figures 3(d), 3(e) and 3(f) which
show plots of dy, ds, dg, respectively. The dashed lines represent the corresponding
average values of the parameters as a function of time computed directly from the
average formula. It is clear, by comparing the solid lines to the dashed lines in Figure
3, that at the end of the simulation || X(¢;) — X4l = O(€®), i.e., the vehicle has been

moved and oriented as desired with O(€®) accuracy.
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