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The central motif of this work is prediction and optimization in presence of mul-

tiple interacting intelligent agents. We use the phrase ‘intelligent agents’ to imply in

some sense, a ‘bounded rationality’, the exact meaning of which varies depending on

the setting. Our agents may not be ‘rational’ in the classical game theoretic sense, in

that they don’t always optimize a global objective. Rather, they rely on heuristics, as is

natural for human agents or even software agents operating in the real-world. Within

this broad framework we study the problem of influence maximization in social net-

works where behavior of agents is myopic, but complication stems from the structure

of interaction networks. In this setting, we generalize two well-known models and

give new algorithms and hardness results for our models. Then we move on to models

where the agents reason strategically but are faced with considerable uncertainty. For

such games, we give a new solution concept and analyze a real-world game using out

techniques. Finally, the richest model we consider is that of Network Cournot Com-

petition which deals with strategic resource allocation in hypergraphs, where agents

reason strategically and their interaction is specified indirectly via player’s utility func-

tions. For this model, we give the first equilibrium computability results. In all of the

above problems, we assume that payoffs for the agents are known. However, for real-

world games, getting the payoffs can be quite challenging. To this end, we also study

the inverse problem of inferring payoffs, given game history. We propose and evaluate

a data analytic framework and we show that it is fast and performant.
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Chapter 1

Introduction

The goal of this work is the analysis and prediction of behavior of multiple interacting

intelligent agents in social and strategic settings. We use the phrase ‘intelligent agents’

to imply in some sense, a ‘bounded rationality’, the exact meaning of which varies

somewhat depending on the setting under consideration. However, we note that our

agents may not be ‘rational’ in the classical game theoretic sense, in that they don’t

always optimize a global objective. Rather, they rely on heuristics, as is natural for

human agents or even software agents operating in the real-world. We propose and

analyze theoretical models for behavior of such agents in social and strategic settings.

In addition, we develop data analytic frameworks for analysis of real-world strategic

games.

Consider the case of a product manufacturer trying to promote a product by leverag-

ing word-of-mouth publicity. It is reasonable to assume that perception of the product

for a person is influenced by reviews from her peers. Thus, the manufacturer wants to

distribute coupons among a community to increase the expected number of users. We

note that the optimal solution involves shaping behavior of intelligent agents whose be-

havior depends not only on the environment, but also on behavior of other agents. This
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theme of interacting agents is common to a great variety of scenarios. In the problems

we study, the models of agents and their interactions vary depending on details of the

problem. In the social network setting, the agents are influenced by their peers. In the

case of markets, the players influence each other by their influence on prices, whereas

in strategic settings, player’s actions have direct influence on payoffs of other players.

Thus, we study the problem of algorithm design for interacting intelligent agents.

1.1 Algorithms for Networked Agents

Social networks are the graph of relationships within a group of individuals. They play

a very important role in diffusion of influence among the interconnected individuals.

In social setting, we study the problem of influence maximization – the problem of

ensuring that an idea or product is adopted by maximum number of individuals, given

limited resources at disposal of the planner. We study two problems related to influence

maximization. They mainly differ in the aspects of diffusion the planner controls. In

the first case the planner can only control the order in which the diffusion happens in

the network and in the second case planner can only control the incentives for nodes to

adopt the product. We study the first and second cases in Chapters 2 and 3 respectively.

In Chapter 2, we study the propagation of influence in a social network with nega-

tive feedback. Adoption or rejection of ideas, products, and technologies in a society is

often governed by simultaneous propagation of positive and negative influences. Con-

sider a planner trying to introduce an idea in different parts of a society at different

times. How should the planner design a schedule considering this fact that positive

reaction to the idea in early areas has a positive impact on probability of success in

later areas, whereas a flopped reaction has exactly the opposite impact? We generalize

a well-known economic model which has been recently used by Chierichetti et al. [28].

In this model the reaction of each area is determined by its initial preference and the

reaction of early areas. We generalize previous works by studying the problem when
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people in different areas have various behaviors.

In Chapter 3, we study the power of fractional allocations of resources to maximize

influence in a network. This work extends in a natural way the well-studied model

by Kempe et al. [75], where a designer selects a (small) seed set of nodes in a social

network to influence directly, this influence cascades when other nodes reach certain

thresholds of neighbor influence, and the goal is to maximize the final number of influ-

enced nodes. Despite extensive study from both practical and theoretical viewpoints,

this model limits the designer to a binary choice for each node, with no way to apply

intermediate levels of influence. This model captures some settings precisely, e.g. ex-

posure to an idea or pathogen, but it fails to capture very relevant concerns in others,

for example, a manufacturer promoting a new product by distributing five “20% off”

coupons instead of giving away one free product.

From the relatively simple models of influence maximization, we move on to a

much richer model – that of strategic decision making in hypergraphs. In this setting,

the agents have a cost associated with resource allocation along hyperedges. In return,

the agents derive a reward from the hyperedges. The interaction among the agents is

implicitly specified by these cost and reward functions. In Chapter 4, We study such a

model, which can be viewed as a generalization of the well-known Cournot model from

economics. We give one of the first positive results on computability of equilibrium in

this setting. Efficient computability is an important prerequisite for solution concepts

[102]. Therefore, it is an important first step in analysis of such models. We give

a convex formulation for the problem. This opens the possibility that that various

dynamics, e.g. best-response, may converge to equilibrium. This is a direction of

further research. We also contribute the first combinatorial algorithm for computing an

equilibrium for the classical Cournot Oligopoly.
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1.2 Real-world Strategic Games

We now move on to conceptually simple but computationally challenging strategic

setting – multiplayer simultaneous games and its application to a real-world strategic

game where interaction between players is explicitly specified by payoff matrices for

the players. Game theory has long been used to study the strategic interactions of ra-

tional players in such games. However, computational frameworks that use real-world

data to make meaningful inferences and predictions about these agents are a relatively

new development in this field. In this area, we make important contributions. In Chap-

ter 5, we develop a framework to analyze equilibria of games with multiple possible

payoff matrices with no priors on these matrices. The use of game theory to model

conflict has been studied by several researchers, spearheaded by Schelling. Most of

these efforts assume a single payoff matrix that captures players’ utilities under differ-

ent assumptions about what the players will do. Our experience in counter-terrorism

applications is that experts disagree on these payoffs. In order to effectively enumer-

ate large numbers of equilibria with payoffs provided by multiple experts, we propose

a novel combination of vector payoffs and well-supported ε-approximate equilibria.

We develop bounds related to computation of these equilibria for some special cases,

and give a quasi-polynomial time approximation scheme (QPTAS) for the general case

when the number of players is small (which is true in many real-world applications).

Leveraging this QPTAS, we give efficient algorithms to find such equilibria and experi-

mental results showing they work well on simulated data. We then present a real-world

application in which there are five parties including four governmental entities and

the terrorist group Lashkar-e-Taiba1. The goal was to understand whether there were

any pure (or mixed) equilibria in which the group’s terrorist acts could be significantly

reduced.
1Lashkar-e-Taiba, translated variously from Urdu into “Army of the Pure” or “Army of the Pious”,

is a prominent south Asian terrorist organization responsible for attacks in India, Kashmir, Pakistan, and
Afghanistan, including the three days of attacks in 2008 in Mumbai, India, that resulted in the deaths of 166
innocent people [122, 124].
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1.3 Payoff Inference

Though, most game theory assumes that payoff functions are provided as input, get-

ting payoff matrices in strategic games (e.g. corporate negotiations, counter-terrorism

operations) has proven difficult. In Chapter 6, We develop a data analytic framework

for learning payoff functions of players from a given game history. The payoffs can

then be analyzed in manner similar to that in Chapter 5. Ng and Russell pioneered

inverse reinforcement learning (IRL) that studies the problem of learning payoffs in a

non-adversarial setting. Recently, Waugh showed how a maximum entropy-based ap-

proach learns a probability distribution function (pdf) over joint actions for each player

under the assumption that players are playing a correlated equilibrium. Unlike past

work, we study the case where histories of past actions are sparse and where players

are not fully rational. We set up a feasible system of inequalities on payoffs using

regret minimization and best response dynamics. Then we evaluate three solution se-

lection methods on this system of inequalities: (i) approximately compute a centroid

of the resulting polytope (ii) soft constraints approach where we penalize violation of

constraints in the objective and (iii) an SVM based approach. To test the effectiveness

of our approach, we run experiments on synthetic and real-world data. We show that

our methods have both good accuracy and runtimes.
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Chapter 2

Scheduling a Cascade

2.1 Introduction

People’s opinions are usually formed by their friends’ opinions. Whenever a new con-

cept is introduced into a society, the high correlation between people’s reactions ini-

tiates an influence propagation. Under this propagation, the problem of promoting a

product or an opinion depends on the problem of directing the flow of influences. As

a result, a planner can develop a new idea by controlling the flow of influences in a

desired way. Although there have been many attempts to understand the behavior of

influence propagation in a social network, the topic is still controversial due to lack of

reliable information and complex behavior of this phenomenon.

For example, one compelling approach is “seeding” which was introduced by the

seminal work of Kempe, Kleinberg, and Trados [75] and is well-studied in the litera-

ture [75, 76, 77, 95]. The idea is to influence a group of people in the initial investment

period and spread the desired opinion in the ultimate exploitation phase. Another ap-

proach is to use time-varying and customer-specific prices to propagate the product

0This is a joint work with Mohammad T. Hajiaghayi and Hamid Mahini. A version of this work appeared
in Symposium on Algorithmic Game Theory ’13 [61].
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(see e.g., [3, 4, 62]). All of these papers investigate the influence propagation problem

when only positive influences spread into the network. However, in many real world

applications people are affected by both positive and negative influences, e.g., when

both consenting and dissenting opinions broadcast simultaneously.

We generalize a well-known economic model introduced by Arthur [9]. This model

has been recently used by Chierichetti, Kleinberg, and Panconesi [28].

As Jon Kleinberg motivated the problem1, assume an organization is going to de-

velop a new idea in a society where the people in the society are grouped into n dif-

ferent areas. Each area consists of people living near each other with almost the same

preferences.

The planner schedules to introduce a new idea in different areas at different times.

Each area may accept or reject the original idea. Since areas are varied and effects of

early decisions boost during the diffusion, a schedule-based strategy affects the spread

of influences.

This framework closely matches to various applications from economics to social

science to public health where the original idea could be a new product, a new technol-

ogy, or a new belief.

Consider the spread of two opposing influences simultaneously. Both positive and

adverse reactions to a single idea originate different flows of influences simultaneously.

In this model, each area has an initial preference of Y or N . The initial preference of

Y (N ) means the area will accept (decline) the original idea when there are no network

externalities. Let ci be a non-negative number indicating how reaction of people in

area i depends on the others’. We call ci the threshold of area i. Assume the planner

introduced the idea in area i at time s. Let mY and mN be the number of areas which

accept or reject the idea before time s. If |mY − mN | ≥ ci the people in area i

decide based on the majority of previous adopters. It means they adopt the idea if

mY −mN ≥ ci and drop it if mN −mY ≥ ci. Otherwise, if |mY −mN | < ci the

1via personal communication.
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people in area i accept or reject the idea if the initial preference of area i is Y or N

respectively. The planner does not know exact initial preferences and has only prior

knowledge about them. Formally speaking, for area i the planner knows the initial

preference of area i will be Y with probability pi and will beN with probability 1−pi.

We call pi the initial acceptance probability of area i.

We consider the problem when the planner classifies different areas into various

types. The classification is based on the planner’s knowledge about the reaction of

people living in each area. Hence, the classification is based on different features,

e.g., preferences, beliefs, education, and age such that people in areas with the same

type react almost the same to the new idea. It means all areas of the same type have the

same threshold ci and the same initial acceptance probability pi. It is worth mentioning

previous works only consider the problem when all areas have the same type, i.e., all

pi’s and ci’s are the same [9, 28].

The planner wants to manage the flow of influences, and her spreading strategy is

a permutation π over different areas. Her goal is to find a spreading strategy π which

maximizes the expected number of adopters.

We consider both adaptive and non-adaptive spreading strategies in this chapter. In

the adaptive spreading strategy, the planner can see results of earlier areas for further

decisions. On the other hand, in the non-adaptive spreading strategy the planner decides

about the permutation in advance.

We show the effect of a spreading strategy on the number of adopters with an

example in Section 2.1.1.

2.1.1 Examples

Example 1. Consider a society with 3 areas and 3 types. The planner prior is as

follows. Initial acceptance probabilities of areas 1, 2, and 3 are 0.2, 0.5, and 0.8

respectively. Thresholds of areas 1, 2, and 3 are 1, 2, and 3 respectively (See Figure

8



p2 = 0.5
c2 = 2

2

p1 = 0.2
c1 = 1

1

p3 = 0.8
c3 = 33

Figure 2.1: A society with 3 areas. The expected number of adopters for spreading
strategy π = (1, 2, 3) is 1.5. The expected number of adopters for spreading strategy
π′ = (3, 1, 2) is 2.4.

2.1). Consider spreading strategy π = (1, 2, 3). People in area 1 accept the idea with

probability p1 = 0.2. Threshold of area 2 is 2. It means people in area 2 decide based

on initial rule and accept the idea with probability p2 = 0.5. Threshold of area 3

is 3. Thus, people in area 3 decide based on initial rule as well and accept the idea

with probability p3 = 0.8. Therefore, the expected number of adopters for spreading

strategy π is p1 + p2 + p3 = 1.5. In order to see the impact of an optimal spreading

strategy consider spreading strategy π′ = (3, 1, 2). People in area 3 accept the idea

with probability p3 = 0.8. Threshold of area 1 is 1. It means the decision of people

in area 1 is correlated to the decision of people in area 3. In other word, people in

area 1 follow the decision of people in area 3. Thus, there are two possible scenarios.

First, both areas 3 and 1 accept the idea. The probability of this scenario is p3 = 0.8.

The second scenario is that both areas 3 and 1 reject the idea. The probability of the

second scenario is 1−p3 = 0.2. In both scenario the threshold of area 2 is hit. Hence,

area 2 will accept the idea with probability p3 = 0.8. Therefore, the expected number

of adopters for spreading schedule π′ is 3p3 = 2.4.

Example 2. At the first glance, it seems a greedy approach leads us to find the best

non-adaptive spreading strategy. The greedy approach is to first schedule a node with

the highest probability of adopting. We find a counter-example for this greedy approach

with a society with 3 areas.

9



p2

c2 = 2

2

p1

c1 = 1

1

p3 = 0
c3 = 23

Figure 2.2: A society with 3 areas. The expected number of adopters for spreading
strategy π = (1, 2, 3) is p1 +p2 +p1p2. The expected number of adopters for spreading
strategy π′ = (2, 1, 3) is 3p2.

Consider a society with 3 areas and 3 types. Area 1 has threshold 1 and areas 2

and 3 have threshold 2. Initial acceptance probabilities are p1 > p2 > p3 = 0 (See

Figure 2.2). The greedy approach leads us to spreading strategy π = (1, 2, 3). Assume

the planner uses spreading strategy π. The probability that people in area 1 accept the

idea is p1. The threshold for area 2 is 2. Hence, they decide based on initial rule. It

means the probability that people in area 2 accept the idea is p2. At last, if both area 1

and 2 accept the idea then people in area 3 accept the idea with probability p1p2 based

on threshold rules . Otherwise, they reject it because p3 = 0, i.e., area 3 has an initial

preference of N for sure. Thus, the expected number of adopter is p1 + p2 + p1p2.

Now, assume the planner uses spreading strategy π′ = (2, 1, 3). Area 2 accepts the

idea with probability p2. The threshold of area 1 is 1. It means area 1 is a follower

of area 2 under spreading strategy π′. Hence, there are two possibilities. Both areas

1 and 2 accept the idea with probability p2 or both areas 1 and 2 reject the idea with

probability 1−p2. In both cases area 3 decides based on the threshold rule. Therefore,

there are 3 adopters with probability p2 or all areas reject the idea with probability

1 − p2. Hence, the expected number of adopter is 3p2 for spreading strategy π′. One

can check spreading strategy π′ is better that π for various probabilities p1 and p2,

e.g., p1 = 0.4 and p2 = 0.3 or p1 = 0.8 and p2 = 0.7.

Example 3. The result of Theorem 2.1.3 leads us to the following conjecture for the
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partial propagation setting.

“Consider an arbitrary non-adaptive spreading strategy in the partial

propagation setting. If all initial acceptance probabilities are greater/less

than 1
2 , then adding an edge to the graph helps/hurts promoting the new

product.".

This conjecture has several consequences, e.g., a complete graph is the best graph

for spreading a new idea when initial acceptance probabilities are greater than 1
2 .

This eventuates directly Theorem 2.1.3. Surprisingly, this conjecture does not hold.

We present an example with the same initial acceptance probabilities of less than 1
2

such that adding a relationship between two areas increases the expected number of

adopters.

Consider a society with 4 areas and only one type. Initial acceptance probabilities

and thresholds for all areas are p and 1 respectively. Consider spreading strategy π =

(1, 2, 3, 4) and a society which is represented by graph G (See Figure 2.3). Areas 1, 2,

and 3 decide about the idea independently and accept it with probability p. Threshold

of area 4 is 1. Hence, people in area 4 accept the idea if there are at least two adopters

so far. Therefore, area 4 accept the idea with probability 3p2(1 − p) + p3 and the

expected number of adopters is 3p+3p2(1−p)+p3. Assume influences also propagate

between area 1 and 2. In this case the society is represented by graph G′ (See Figure

2.3). Threshold of area 2 is 1. Hence, area 2 is a follower of area 1 under spreading

strategy π. Thus, there are two possibilities when area 2 is scheduled. Both area 1 and

2 accept the idea with probability p or both reject it with probability 1 − p. Area 3

decide independently and accept the idea with probability p. Threshold of area 4 is 1.

Thus, area 4 is also a follower of both area 1 and 2. Therefore, the expected number of

adopter is 4p in this case. One can check 3p+3p2(1−p)+p3 is greater than 4p if and

only if 0.5 < p < 1. It means when p < 0.5 (resp., p > 0.5) the number of adopters

increases (resp., decreases) by adding a relation to the society.
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Figure 2.3: This figure represents a partial propagation setting with 4 areas. All Thresh-
olds are equal to 1 and all initial acceptance probabilities are p. The expected number
of adopters for spreading strategy π = (1, 2, 3, 4) is 3p + 3p2(1 − p) + p3 for a soci-
ety which is represented by graph G. The expected number of adopters for spreading
strategy π = (1, 2, 3, 4) is 4p for a society which is represented by graph G′. Note that
3p2(1− p) + p3 is greater than p if and only if 0.5 < p < 1

2.1.2 Related Work

We are motivated by a series of well-known studies in economics and politics literature

in order to model people’s behavior [9, 14, 17, 56]. Arthur first proposed a framework

to analyze people’s behavior in a scenario with two competing products [9]. In this

model people are going to decide about one of two competing products alternatively.

He studied the problem when people are affected by all previous customers, and the

planner has the same prior knowledge about people’s behavior, i.e., people have the

same types. He demonstrated that a cascade of influences is formed when products

have positive network externalities, and early decisions determine the ultimate out-

come of the market. It has been showed the same cascade arises when people look at

earlier decisions, not because of network externalities, but because they have limited

information themselves or even have bounded rationality to process all available data

[14, 17].

Chierichetti, Kleinberg, and Panconesi argued when relations between people form

an arbitrary network, the outcome of an influence propagation highly depends on the

order in which people make their decisions [28]. In this setting, a potential spread-

ing strategy is an ordering of decision makers. They studied the problem of finding

a spreading strategy which maximizes the expected number of adopters when people
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have the same type, i.e., people have the same threshold c and the same initial accep-

tance probability p. They proved for any n-node graph there is an adaptive spreading

strategy with at least O(npc) adopters. They also showed for any n-node graph all

adaptive spreading strategies result in at least (resp. at most) n
2 if initial acceptance

probability is less (resp. greater) than 1
2 . They considered the problem on an arbitrary

graph when nodes have the same type. While we mainly study the problem on a com-

plete graph when nodes have various types, we improve their result in our setting and

show the expected number of adopters for all adaptive spreading strategies is at least

(resp. at most) np if initial acceptance probability is p ≥ 1
2 (resp. p ≤ 1

2 ). We also

show the problem of designing the best spreading strategy is hard on an arbitrary graph

with several types of customers. We prove it is #P -complete to compute the expected

number of adopters for a given spreading strategy.

The problem of designing an appropriate marketing strategy based on network ex-

ternalities has been studied extensively in the computer science literature. For exam-

ple, Kempe, Kleinberg, and Trados [75] studied the following question in their seminal

work: How can we influence a group of people in an investment phase in order to prop-

agate an idea in the exploitation phase? This question was introduced by Domingos

and Richardson [45]. The answer to this question leads to a marketing strategy based

on seeding. There are several papers that study the same problem from an algorith-

mic point of view, e.g., [23, 76, 95]. Hartline, Mirrokni, and Sundararajan [62] also

proposed another marketing strategy based on scheduling for selling a product. Their

marketing strategy is a permutation π over customers and price pi for customer i. The

seller offers the product with price pi to customer i at time t where t = π−1(i). The

goal is to find a marketing strategy which maximizes the profit of the seller. This ap-

proach is followed by several works, e.g., [3, 4, 8]. These papers study the behavior

of an influence propagation when there is only one flow on influences in the network.

In this chapter, we study the problem of designing a spreading strategy when both
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negative and positive influences propagate simultaneously.

The propagation of competitive influences has been studied in the literature (See

[55] and its references). These works studied the influence propagation problem in

the presence of competing influences, i.e., when two or more competing firms try to

propagate their products at the same time. However we study the problem of influ-

ence propagation when there exist both positive and negative reactions to the same

idea. There are also studies which consider the influence propagation problem in the

presence of positive and negative influences [26, 83]. Che et al. [26] use a variant of

the independent cascade model introduced in [75]. They model negative influences by

allowing each person to flips her idea with a given probability q. Li et al. [83] model

the negative influences by negative edges in the graph. Although they study the same

problem, we use different models to capture behavior of people.

2.1.3 Our Results

We analyze an influence propagation phenomenon where two opposing flows of influ-

ences propagate through a social network. As a result, a mistake in the selection of

early areas may result in propagation of negative influences. Therefore a good under-

standing of influence propagation dynamics seems necessary to analyze the properties

of a spreading strategy. Besides the previous papers which have studied the problem

with just one type [9, 28], we consider the scheduling problem with various types.

Also, we mainly study the problem in a full propagation setting as it matches well to

our motivations. In the full propagation setting news and influences propagate between

every two areas. One can imagine how internet, media, and electronic devices broad-

cast news and influences from everywhere to everywhere. In the partial propagation

setting news and influences do not necessarily propagate between every two areas. In

the partial propagation setting the society can be modeled with a graph, where there is

an edge from area i to area j if and only if influences propagate from area i to area j.
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Our main focus is to analyze the problem when the planner chooses a non-adaptive

spreading strategy. Consider an arbitrary non-adaptive spreading strategy when initial

preferences of all areas are p. The expected number of adopters is exactly np if all areas

decide independently. We demonstrate that in the presence of network influences, the

expected number of adopters in greater/less than np if initial acceptance probability p

is greater/less than 1
2 . These results have a bold message: The influence propagation

is an amplifier for an appealing idea and an attenuator for an unappealing idea.

Chierichetti, Kleinberg, and Panconesi [28] studied the problem on an arbitrary graph

with only one type. They proved the number of adopters is greater/less than n
2 if initial

acceptance probability p is greater/less than 1
2 . Theorem 2.1.3 improves their result

from n
2 to np in our setting. Consider an arbitrary non-adaptive spreading strategy

π in the full propagation setting. Assume all initial acceptance probabilities are equal

to p. If p ≥ 1
2 , then the expected number of adopters is at least np. Furthermore, If

p ≤ 1
2 , then the expected number of adopters is at most np.

Chierichetti, Kleinberg, and Panconesi [28] studied the problem of designing an

optimum spreading strategy in the partial propagation setting. They design an approxi-

mation algorithm for the problem when the planner has the same prior knowledge about

all areas, i.e., all areas have the same type. We study the same problem with more than

one type. We first consider the problem in the full propagation setting. One approach

is to consider a non-adaptive spreading strategy with a constant number of switches

between different types. The planner has the same prior knowledge about areas with

the same type. It means areas with the same type are identical for the planner. Thus

any spreading strategy can be specified by types of areas rather than areas themselves.

Let τ(i) be the type of area i and τ(π) be the sequence of types for spreading strategy

π. For a give spreading strategy π a switch is a position k in the sequence such that

τ(π(k)) 6= τ(π(k+ 1)). As an example consider a society with 4 areas. Areas 1 and 2

are of type 1. Areas 3 and 4 are of type 2. Then spreading strategy π1 = (1, 2, 3, 4) with
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τ(π1) = (1, 1, 2, 2) has a switch at position 2 and spreading strategy π2 = (1, 3, 2, 4)

with τ(π2) = (1, 2, 1, 2) has switches at positions 1, 2, and 3. A σ-switch spreading

strategy is a spreading strategy with at most σ switches. For any constant σ, there exists

a society with areas of two types such that no σ-switch spreading strategy is optimal.

We construct a society with n areas with n
2 areas of type 1 and n

2 areas of type 2. We

demonstrate an optimal non-adaptive spreading strategy should switch at least Ω(n)

times. It means no switch-based non-adaptive spreading strategy can be optimal. We

prove Theorem 2.1.3 formally in Section 2.5.

On the positive side, we analyze the problem when thresholds are drawn indepen-

dently from an unknown distribution and initial acceptance probabilities are arbitrary

numbers. We characterize the optimal non-adaptive spreading strategy in this case.

Assume that the planner’s prior knowledge about all values of ci’s is the same, i.e.,

all ci’s are drawn independently from the same but unknown distribution. Let initial

acceptance probabilities be arbitrary numbers. Then, the best non-adaptive spreading

strategy is to order all areas in non-increasing order of their initial acceptance proba-

bilities.

We also study the problem of designing the optimum spreading strategy in the par-

tial propagation setting with more than one types. We show it is hard to determine the

expected number of adopters for a given spreading strategy. Formal speaking, we show

it is #P -complete to compute the expected number of adopters for a given spreading

strategy π in the partial propagation setting with more than one type. This is another

evidence to show the influence propagation is more complicated with more than one

type. We prove Theorem 2.1.3 based on a reduction from a variation of the network

reliability problem in Section 2.6.

In the partial propagation setting, it is #P -complete to compute the expected num-

ber of adopters for a given non-adaptive spreading strategy π.

We also present a polynomial-time algorithm to compute the expected number of
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adopters for a given non-adaptive spreading strategy in a full propagation setting. We

design an algorithm in order to simulate the amount of propagation for a given spread-

ing strategy in Section 2.7. Consider a full propagation setting. The expected number

of adopter can be computed in polynomial time for a given non-adaptive spreading

strategy π.

At last we study the problem of designing the best adaptive spreading strategy.

We overcome the hardness of the problem and design a polynomial-time algorithm

to find the best adaptive marketing strategy in the following theorem. We describe

the algorithm precisely in Section 2.8. A polynomial-time algorithm finds the best

adaptive spreading strategy for a society with a constant number of types.

2.2 Notation and Preliminaries

In this section we define basic concepts and notation used throughout this chapter. We

first formally define the spread of influence through a network as a stochastic process

and then give the intuition behind the formal notation. We are given a graph G =

(V,E) with thresholds, cv ∈ Z>0,∀v ∈ V and initial acceptance probabilities pv ∈

[0, 1],∀v ∈ V . Let |V | = n. Let dv be the degree of vertex v. Let N(v) be the

set of neighboring vertices of v. Let c be the vector (c1, . . . , cn) and p be the vector

(p1, . . . , pn). Given a graph G = (V,E) and a permutation π : V 7→ V , we define a

discrete stochastic process, IS (Influence Spread) as an ordered set of random variables

(X1, X2, . . . , Xn), where Xt ∈ Ω = {−1, 0, 1}n,∀t ∈ {1, . . . , n}. The random

variable Xt
v denotes decision of area v at time t. If it has not yet been scheduled,

Xt
v = 0. If it accepts the idea then Xt

v = 1, and if it rejects the idea then Xt
v = −1.

Note that Xt
v = 0 iff t < pi−1(v). Let D(v) =

∑
u∈N(v)X

π−1(v)
u be the sum of

decision’s of v’s neighbors. For simplicity in notation, we denote Xn
v by Xv .

We now briefly explain the intuition behind the notation. The input graph models

the influence network of areas on which we want to schedule a cascade, with each
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vertex representing an area. There is an edge between two vertices if two corresponding

areas influence each others decision. The influence spread process models the spread

of idea acceptance and rejection for a given spreading strategy. The permutation π

maps a position in spreading strategy to an area in V . For example, π(1) = v implies

that v is the first area to be scheduled. Once the area v is given a chance to accept or

reject the idea at time π−1(v), Xπ−1(v)
v is assigned a value based on v’s decision and

at all times t after π−1(v), Xt
v = X

π−1(v)
v . The random variable Xv denotes whether

an area v accepted or rejected the idea. We note that Xt
v = Xv,∀t ≥ π−1(v). The

random variableXt is complete snapshot of the cascade process at time t. The variable

D(v) is the decision variable for v. It denotes the sum of decisions of v’s neighbors at

the time v is scheduled in the cascade and it determines whether v decides to follow the

majority decision or whether v decides based on its initial acceptance probability. The

random variable It is the sum of decisions of all areas at time t. Thus, In is the variable

we are interested in as it denotes the difference between number of people who accept

the idea and people who reject the idea.

Let v = π(t). Given Xt−1, Xt is defined as follows:

• Every area decides to accept or reject the idea exactly once when it is scheduled

and its decision remains the same at all later times. Therefore ∀i 6= π(t):

– Xt
i = Xt−1

i

• Decision of area v is based on decision of previous areas if its threshold is

reached.

– Xt
v = 1 if D(v) ≥ cv

– Xt
v = −1 if D(v) ≤ −cv

• If threshold of area v is not reached, then it decides to accept the idea with

probability pv , its initial acceptance probability, and decides to reject it with

probability 1− pv .
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In partial propagation setting, we represent such a stochastic process by tuple IS =

(G, c,p, π). For full propagation setting, the underlying graph is a complete graph and

hence we can denote the process by (c,p, π). When c and p are clear from context,

we denote the process simply by spreading strategy, π. We define random variable

It =
∑
v∈V X

t
v . We denote by qv = 1−pv the probability that v rejects the idea based

on initial preference. We denote by Pr(A; IS), the probability of event A occurring

under stochastic process IS. Similarly, we denote by E(z; IS), the expected value of

random variable z under the stochastic process IS.

2.3 A Bound on Spread of Appealing and Unappealing

Ideas

Lets call an idea unappealing if its initial acceptance probability for all areas is p for

some p ≤ 1
2 . We prove in this section, that for such ideas, no strategy can boost

the acceptance probability for any area above p. We note that exactly the opposite

argument can be made when p ≥ 1
2 is the initial acceptance probability of all areas,

i.e., any spreading strategy guarantees that every area accepts the idea with probability

of at least p. Consider an arbitrary non-adaptive spreading strategy π in the full

propagation setting. Assume all initial acceptance probabilities are equal to p. If p ≥ 1
2 ,

then the expected number of adopters is at least np. Furthermore, If p ≤ 1
2 , then the

expected number of adopters is at most np.

Proof. We prove this result for the case when p ≤ 1
2 . The other case (p ≤ 1

2 ) follows

from symmetry.

To avoid confusion, we let p0 = p and use p0 instead of the real number p through-

out this proof. If we prove that any given area accepts the idea with probability of at

most p0, then from linearity of expectation, we are done. Consider an area v scheduled
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at time t+ 1. The probability that the area accepts or rejects the idea is given by:

Pr(Xv = 1) =p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≥ cv)

Pr(Xv = −1) =(1− p0)(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≤ −cv)

Since Pr(Xv = 1) + Pr(Xv = −1) = 1, if we prove that Pr(Xv=1)
Pr(Xv=−1) ≤

p0
1−p0 , then

we have Pr(Xv = 1) ≤ p0. We have:

Pr(Xv = 1)

Pr(Xv = −1)
=

p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≥ cv)
(1− p0)(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≤ −cv)

We have:

p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv))
(1− p0)(1− Pr(It ≥ cv)− Pr(It ≤ −cv))

=
p0

1− p0

We know that for any a, b, c, d, e ∈ R>0, if ab ≤ e and c
d ≤ e, then:

a+ c

b+ d
≤ e (2.1)

Therefore, if we prove that Pr(It≥cv)
Pr(It≤−cv) ≤

p0
1−p0 , we are done. Thus, we can prove this

theorem by proving that Pr(Ik≥x)
Pr(Ik≤−x) ≤

p0
1−p0 for all x ∈ {1 . . . k}, k ∈ {1 . . . n}. We

prove this by induction on number of areas. If there is just one area, then that area

decides to accept with probability p0 (as all initial acceptance probabilities are equal to

p0). Assume if the number of areas is less than or equal to n, then Pr(Ik≥x)
Pr(Ik≤−x) ≤

p0
1−p0

for all x ∈ {1 . . . k}, k ∈ {1 . . . n}. We prove the statement when there are n+1 areas.

Let par(n, x) : N × N 7→ {0, 1} be a function which is 0 if n and x have the same

parity, 1 otherwise. Let v be the area scheduled at time n+ 1. Let ν = par(n, x). We

now consider the following three cases.

Case 1: 1 ≤ x ≤ n − 2. The event In+1 ≥ x + 1 is the union of the following two

disjoint events:
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1. In ≥ x+ 2, and whatever the nth area decides, In+1 is at least x+ 1.

2. In = x+ ν and n+ 1th area decides to accept.

Similarly, the event In+1 ≤ −x − 1 is the union of the event In ≤ −x − 2 and the

event — In = −x−ν and the n+1th area rejects the idea. We note that we require the

par function because only one of the events In = x and In = x + 1 can occur w.p.p.

depending on parities of n and x. Thus:

Pr(In+1 ≥ x+ 1) =Pr(In ≥ x+ 2) + Pr(Xv = 1|In = x+ ν)Pr(In = x+ ν)

Pr(In+1 ≤ −x− 1) =Pr(In ≤ −x− 2) + Pr(Xv = −1|In = −x− ν)Pr(In = −x− ν)

Now, if x+ν ≥ cv , then Pr(Xv = 1|In = x+ν) = Pr(Xv = −1|In = −x−ν) = 1,

otherwise Pr(Xv = 1|In = x + ν) = p0 < 1 − p0 = Pr(Xv = −1|In = −x − ν).

Therefore, Pr(Xv = 1|In = x + ν) ≤ Pr(Xv = −1|In = −x − ν). Let β =

Pr(Xv = −1|In = −x− ν). Using the above, we have:

Pr(In+1 ≥ x+ 1) ≤Pr(In ≥ x+ 2) + βPr(In = x+ ν)

Pr(In+1 ≤ −x− 1) =Pr(In ≤ −x− 2) + βPr(In = −x− ν)

From above, we have:

f(β) =
Pr(In ≥ x+ 2) + βPr(In = x+ ν)

Pr(In ≤ −x− 2) + βPr(In = −x− ν)
≥ Pr(In+1 ≥ x+ 1)

Pr(In+1 ≥ −x− 1)
(2.2)

The function f(β) is either increasing or decreasing and hence has extrema at end

points of its range. The maxima is≤ max{ Pr(In≥x+2)
Pr(In≤−x−2) ,

Pr(In≥x+2)+Pr(In=x+ν)
Pr(In≤−x−2)+Pr(In=−x−ν)}

because β ∈ [0, 1]. Now Pr(In ≥ x + 2) + Pr(In = x + 1) + Pr(In = x) =

Pr(In ≥ x) and Pr(In ≤ −x − 2) + Pr(In = −x − ν) = Pr(In ≤ −x). Thus

f ≤ max{ Pr(In≥x+2)
Pr(In≤−x−2) ,

Pr(In≥x)
Pr(In≤−x)} ≤

p0
1−p0 (from induction hypothesis). From

above and (2.2), Pr(In+1≥x+1)
Pr(In+1≤−x−1) ≤

p0
1−p0 .
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Case 2: x = 0. If n is odd then Pr(In+1 ≥ 1) = Pr(In+1 ≥ 2) and Pr(In+1 ≤

−1) = Pr(In+1 ≤ −2) and this case is same as x = 1 and hence considered above.

Thus, assume that n is even.

Pr(In+1 ≥ 1) = Pr(In ≥ 2) + Pr(Xv = 1|In = 0)Pr(In = 0) (2.3)

Pr(In+1 ≤ −1) = Pr(In ≤ −2) + Pr(Xv = −1|In = 0)Pr(In = 0) (2.4)

Since, if In = 0, then areas decide based on the initial acceptance probability. We have

Pr(Xv = 1|In = 0) = p0 and Pr(Xv = −1|In = 0) = 1 − p0. Using this fact ,by

dividing (2.3) and (2.4), we have:

Pr(In+1 ≥ 1)

Pr(In+1 ≤ −1)
≤ Pr(In ≥ 2) + p0Pr(In = 0)

Pr(In ≤ −2) + (1− p0)Pr(In = 0)

From induction hypothesis, Pr(In≥2)
Pr(In≤−2) ≤

p0
1−p0 . Thus, we conclude Pr(In+1≥1)

Pr(In+1≤−1) ≤
p0

1−p0 based on (2.1).

Case 3: x ∈ {n − 1, n}. In this case Pr(In ≥ x + 2) = 0, since the number of

adopters can never be more than the number of total areas. Also, In+1 cannot be equal

to n because n and n + 1 don’t have the same parity. Therefore, Pr(In+1 ≥ n) =

Pr(In+1 ≥ n + 1) and Pr(In+1 ≤ −n) = Pr(In+1 ≤ −n − 1). Thus, it is enough

to analyze the case x = n. We have:

Pr(In+1 ≥ n+ 1) = Pr(Xv = 1|In = n)Pr(In = n)

Pr(In+1 ≤ n+ 1) = Pr(Xv = −1|In = −n)Pr(In = −n)

Since either both decisions are made based on thresholds with probability 1 or both

are made based on initial probabilities and initial acceptance probability is less than

the initial rejection probability, We know that Pr(Xv = 1|In = n) ≤ Pr(Xv =

−1|In = −n). Therefore Pr(In+1≥n+1)
Pr(In+1≤n+1) ≤

Pr(In=n)
Pr(In=−n) . Now, since Pr(In = n) =
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Pr(In ≥ n) and Pr(In = −n) = Pr(In ≤ −n), from induction hypothesis, we have

Pr(In+1≥n+1)
Pr(In+1≤n+1) ≤

p0
1−p0 and we are done.

2.4 Non-adaptive Marketing Strategy with Random

Thresholds

We consider the problem of designing a non-adaptive spreading strategy when the

thresholds are drawn independently from the same but unknown distribution. We show

the best spreading strategy is to schedule areas in a non-increasing order of initial

acceptance probabilities. We prove the optimality of the algorithm using a coupling ar-

gument. First we state and prove the following lemma which will be useful in proving

Theorem 2.1.3.

Lemma 1. Let π and π′ be two spreading strategies. If ∃k ∈ Z>0, such that π(i) =

π′(i), ∀i ≥ k and Pr(Ik ≥ x;π) ≥ Pr(Ik ≥ x;π′), ∀x ∈ Z, then E(In;π) ≥

E(In;π′).

Proof. We prove this lemma by proving that:

Pr(Ik+t ≥ x;π) ≥ Pr(Ik+t ≥ x;π′), ∀t ∈ {1 . . . n− k} (2.5)

We note that the above implies E(In;π) ≥ E(In;π′). We prove that if Pr(Ik ≥

x;π) ≥ Pr(Ik ≥ x;π′) then Pr(Ik+1 ≥ x;π) ≥ Pr(Ik+1 ≥ x;π′) for all x ∈ Z.

This argument can be successively applied to prove (2.5). Let π(k + 1) = v. Xv will

be 1 iff either Ik ≥ cv and v accepts idea based on threshold rule or −cv < Ik < cv

and v decides to accept the idea based on initial acceptance probability pv . Thus:

Pr(Xv = 1) =Pr(Ik ≥ cv) + Pr(−cv < Ik < cv)pv
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Substituting Pr(−cv < Ik < cv) = Pr(Ik ≥ −cv + 1)− Pr(Ik ≥ cv), we have:

Pr(Xv = 1) =Pr(Ik ≥ cv) + (Pr(Ik ≥ −cv + 1)− Pr(Ik ≥ cv))pv

By rearranging the terms, we get:

Pr(Xv = 1) =Pr(Ik ≥ cv)(1− pv) + Pr(Ik ≥ −cv + 1)pv (2.6)

We are given that Pr(Ik ≥ x;π) ≥ Pr(Ik ≥ x;π′), ∀x ∈ Z. From this and from

(2.6), we have, Pr(Xv = 1;π) ≥ Pr(Xv = 1;π′). Thus, Pr(Ik+1 ≥ x;π) ≥

Pr(Ik+1 ≥ x;π′), ∀x ∈ Z.

Assume that the planner’s prior knowledge about all values of ci’s is the same, i.e.,

all ci’s are drawn independently from the same but unknown distribution. Let initial

acceptance probabilities be arbitrary numbers. Then, the best non-adaptive spreading

strategy is to order all areas in non-increasing order of their initial acceptance proba-

bilities.

Proof. Let π′ be a spreading strategy where areas are scheduled in an order that is not

non-increasing. Thus, there exists k such that pπ′(k) < pπ′(k+1). We prove that if a new

spreading strategy π is created by exchanging position of areas π′(k) and π′(k + 1),

then the expected number of people who accept the idea cannot decrease. It means the

best spreading strategy is non-increasing in the initial acceptance probabilites.

To prove the theorem, we will prove that Pr(Ik+1 ≥ x;π) ≥ Pr(Ik+1 ≥ x;π′)

and the result then follows from Lemma 1. Since, the two spreading strategies are

identical till time k−1 and therefore the random variable Ik−1 has identical distribution

under both the strategies, we can prove the above by proving that Pr(Ik+1 ≥ Ik−1 +

y|Ik−1;π) ≥ Pr(Ik+1 ≥ Ik−1 + y|Ik−1;π′) for all y ∈ Z. We note that the only

feasible values for y are in {−2, 0, 2}. Hence, if y > 2 then both sides of the above
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inequality are equal to 1 and the inequality holds. Similarly, if y <= −2 both sides of

the inequality are equal to 1 and the inequality holds. Thus, we only need to analyze

the values y = 0 and y = 2.

Now we define some notation to help with rest of the proof. Let u = π′(k + 1),

v = π′(k), and qi = 1−pi. It means pv < pu. Let χ(i, j) be the event where i and j are

indicators of decision of areas scheduled at time k and k + 1 respectively, e.g., χ(1, 1)

means that areas scheduled at time k and k + 1 accepted the idea, whereas χ(1,−1)

implies that area scheduled at time k accepted the idea, while the area scheduled at time

k + 1 rejected the idea. Let B(y) be the event Ik+1 ≥ Ik−1 + y|Ik−1 = z for some

arbitrary z ∈ Z. We consider the cases Ik−1 > 0, Ik−1 < 0 and Ik−1 = 0 separately.

Case 1: Ik−1 = z, z > 0. We have, B(0) = χ(1, 1) ∪ χ(1,−1) ∪ χ(−1, 1) =

χ(−1,−1)
c. Since we assume z > 0, the thresholds −cu and −cv cannot be hit.

Thus, χ(−1,−1) occurs only when both areas decide to reject the idea based on their

respective initial acceptance probabilities. Thus, from chain rule of probability, it is the

product of following four terms:

1. Pr(z < cu), i.e, the threshold rule does not apply and u decides based on initial

acceptance probabilities.

2. u rejects the idea based on initial probability of rejection, qu.

3. Pr(z − 1 < cv). Given u rejected the idea, D(v), the decision variable for v

becomes z − 1 and the threshold rule does not apply and v decides based on

initial acceptance probabilities.

4. v rejects the idea based on initial probability of rejection, qv .

Therefore, Pr(χ(−1,−1)) = Pr(z < cu)quPr(z−1 < cv)qv . Thus, Pr(B(0);π) =

1 − Pr(z < cu)quPr(z − 1 < cv)qv . Since, cu and cv are i.i.d random variables, we

can write any probability of form Pr(z R cu) or Pr(z R cv) as Pr(z R x), where x

25



is an independent random variable with the same distribution as cu and cv . Thus,

Pr(B(0);π) = 1− Pr(z < x)quPr(z − 1 < x)qv (2.7)

Now, Pr(χ(1, 1)) = Pr(Xu = 1|Ik−1 = z)Pr(Xv = 1|Ik = z + 1). Event Xu = 1

is the union of following two non-overlapping events:

1. z ≥ cu; u accepts the idea because of the threshold rule.

2. z < cu and u accepts the idea based on initial acceptance probability, pu.

Thus, Pr(Xu = 1|Ik−1 = z) = Pr(z ≥ cu) + Pr(z < cu)pu. Similarly, Pr(Xv =

cv|Ik = z + 1) = Pr(z + 1 ≥ cv) + Pr(z + 1 < cv)pv . Therefore:

Pr(B(2);π) = (Pr(z ≥ x) + Pr(z < x)pu)(Pr(z + 1 ≥ x) + Pr(z + 1 < x)pv)

(2.8)

Where, we have replaced cu and cv by x because they are i.i.d. random variables. We

can obtain corresponding probabilities for process π′ by exchanging pu and pv . Thus,

Pr(B(0);π) = Pr(B(0);π′) = 1 − Pr(z < x)quPr(z − 1 < x)qv . We can write

Pr(B(2);π′) as follows:

Pr(B(2);π′) = (Pr(z ≥ x) + Pr(z < x)pv)(Pr(z + 1 ≥ x) + Pr(z + 1 < x)pu)

(2.9)

On the other hand Pr(z < x) ≥ Pr(z + 1 < x) and Pr(z + 1 ≥ x) ≥ Pr(z ≥ x).

Comparing (2.8) and (2.9) along with these facts that pv < pu and Pr(z < x)Pr(z +

1 ≥ x) ≥ Pr(z ≥ x)Pr(z + 1 < x), we get Pr(B(2);π) ≥ Pr(B(2);π′).

26



Case 2: Ik−1 = −z, z > 0s. By a similar analysis, we have:

Pr(B(2);π) =Pr(z < x)Pr(z − 1 < x)pupv = Pr(B(2);π′) (2.10)

Pr(B(0);π) =1− (Pr(z ≥ x) + Pr(z < x)qu)(Pr(z + 1 ≥ x) + Pr(z + 1 < x)qv)

(2.11)

Pr(B(0);π′) =1− (Pr(z ≥ x) + Pr(z < x)qv)(Pr(z + 1 ≥ x) + Pr(z + 1 < x)qu)

(2.12)

Comparing (2.11) and (2.12), we have Pr(B(0);π) ≥ Pr(B(0);π′).

Case 3: Ik−1 = 0. We have:

Pr(B(2);π) =pu(Pr(x > 1)pv + Pr(x = 1)) (2.13)

Pr(B(0);π) =pu + quPr(x > 1)pv (2.14)

Pr(B(2);π′) =pv(Pr(x > 1)pu + Pr(x = 1)) (2.15)

Pr(B(0);π′) =pv + qvPr(x > 1)pu (2.16)

By comparing (2.13) with (2.15) and (2.14) with (2.16), we see that Pr(B(2);π) ≥

Pr(B(2);π′) and Pr(B(0);π) ≥ Pr(B(0);π′) respectively. Thus, Pr(Ik+1 ≥

Ik−1 + x|Ik−1;π) ≥ Pr(Ik+1 ≥ Ik−1 + x|Ik−1;π′),∀x ∈ Z.

2.5 Type Switching Approach

Consider a society with a constant number of types. One approach that might work

is an algorithm that finds an optimal spreading strategy allowing for only a constant

number of switches between types in a spreading strategy. We note that areas of the

same type are identical from point of view of scheduling a cascade. Thus, any non-

adaptive spreading strategy can be specified by specifying types of areas rather than

the areas themselves. Let τ be the mapping between an area and its type. That is
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τ(i) is the type of area i. Let λ be sequence of types for a given spreading strategy.

Specifically, λ is a vector whose kth component, λ(k) = τ(π(k)). A switch is any

position k in the sequence λ such that λ(k) 6= λ(k + 1). As an example, consider

a society with four areas with two areas of type 1 and two areas of type 2. Then the

type sequence λ = (1, 1, 2, 2) has a switch at position 2 whereas λ2 = (1, 2, 1, 2)

has switches at positions 1, 2 and 3. We define a σ-switch spreading strategy as a

non-adaptive spreading strategy that has at most σ switches, where σ is a constant

independent of input size. We now prove that no algorithm whose output is a σ-switch

spreading strategy can be optimal.

A σ-switch spreading strategy is a spreading strategy with at most σ switches. For

any constant σ, there exists a society with areas of two types such that no σ-switch

spreading strategy is optimal.

Proof. The proof outline is as follows. We construct an instance of problem with 2n

areas with two types, the number of areas of both types being n, for which an optimal

spreading strategy alternates between these types. Lets call this instance S and lets

call this strategy π. We prove that the expected number of adopters achieved by this

optimal strategy is upper bound on number of acceptors for any input instance with

areas of these two types, whatever be the number of areas of both types, given that total

number of areas is 2n, e.g., the number of areas of one type can be n1 and the other

type 2n − n1 for any integer n1 between 0 and 2n and no strategy for this instance

can exceed the expected number of adopters achieved by π for the instance of problem

with n areas of each type. We then show that any σ-switch strategy for instance S

of problem can be improved by changing type of one of the areas. Since, the optimal

value achieved by this new strategy cannot be greater than strategy π on instance S, no

σ-switch strategy can be optimal.

Consider an instance with two types γ1 = (P, 1) and γ2 = (P, 2) where P >

1
2 , the total number of areas is 2n and the number of areas of types γ1 and γ2 is n
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each. Let π be a spreading strategy for which the type sequence of areas is given by

λ = (γ1, γ2, . . . , γ1, γ2), i.e., every area at odd position is of type γ1 and every area

at even position is of type γ2. Let the expected number of areas which accept the idea

for this spreading strategy be α. Now consider an instance where the total number

of areas is the same but the number of areas of type γ1 is n1 and number of areas of

type γ2 is 2n − n1 for some arbitrary natural number n1 such that 0 ≤ n1 ≤ n2. For

this instance, let the expeted number of areas which accept the idea given an optimal

spreading strategy be β. We now prove that α ≥ β. If we have no restriction on the

number of areas of each type, then for any t = 0 mod 2, the areas to be scheduled at

time t+1 and t+2 can be of types (γ1, γ1), (γ1, γ2), (γ2, γ1) or (γ2, γ2). We prove that

α ≥ β by proving that it is better to schedule areas of type γ1 and γ2 at times t+ 1 and

t+ 2 respectively. If |It| ≥ 2, then we are indifferent between all spreading strategies

because in this case all the areas will decide based on the threshold rule. Thus, if we

can prove that (γ1, γ2) is a best choice for types at times t+ 1 and t+ 2 when |It| < 2,

we are done. Since t is even, the only feasible value of |It| ≤ 2 is It = 0. Thus, this

is the only case we need to analyze. Let ρ be the tuple of types of areas scheduled at

times t+1 and t+2. Let χ be the tuple indicating decisions of areas scheduled at times

t + 1 and t + 2. Now we analyze the probabilties with which the four possible values

of χ are realized for each of the four possible values of ρ when It = 0. Let number of

areas to be scheduled after time t be m.

Case 1: ρ = (γ1, γ1) or (γ2, γ1)

In this case, the first area decides based on its initial acceptance probability and the
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second area follows the decision of the first area.

Pr(χ = (1, 1)) = P

Pr(χ = (1,−1)) = 0

Pr(χ = (−1, 1)) = 0

Pr(χ = (−1,−1)) = 1− P

The expected number of areas which accept the idea after time t in this case is mP , as

all areas follow the decision of area scheduled at time t+ 1.

Case 2: ρ = (γ1, γ2) or (γ2, γ2)

In this case, both the areas decide based on their initial acceptance probability.

Pr(χ = (1, 1)) = P 2 (2.17)

Pr(χ = (1,−1)) = P (1− P ) (2.18)

Pr(χ = (−1, 1)) = P (1− P ) (2.19)

Pr(χ = (−1,−1)) = (1− P )2 (2.20)

From (2.17), with probability P 2, all areas after time t will accept the idea. If for

any time t′, we are given that It′ = 0, then we can treat the subsequent areas as the

starting point of a new spreading strategy. Thus, if It+2 = 0, then from Theorem 2.1.3

(given that P > 1
2 ), the expected number of adopters for any future spreading strategy

is at least (m − 2)P . Hence, from (2.18) and (2.19), with probability 2P (1 − P )

the expected number of areas that will accept after time t is at least 1 + (m − 2)P .

Therefore, in this case, the expected number of areas that accept after time t is at least

mP 2 +2P (1−P )(1+(m−2)P ). Thus, we are done if we prove thatmP 2 +2P (1−
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P )(1 + (m− 2)P ) is greater than mP .

mP 2 + 2P (1− P )(1 + (m− 2)P )−mP = P (1− P )(−m+ 2(1 + (m− 2)P ))

Thus, it is enough to prove that 2(1 + (m− 2)P )−m > 0. We have:

2(1 + (m− 2)P )−m = (2P − 1)(m− 2)

Since P > 1
2 , 2P − 1 > 0. Thus, for all m > 2, it is strictly better to schedule an

area of type γ2 at time t+ 2. If an area of type γ2 is scheduled at time t+ 2, then it is

equivalent to schedule an area of either type at time t + 1. Thus, given that there is at

least one more area to follow at time t + 3, it is best to schedule areas of type γ1 and

γ2 respectively at times t+ 1 and t+ 2 at any arbitrary time t = 0 mod 2. Also, such

a schedule is strictly better, all other things begin same, than the schedule where, areas

of type γ1 are scheduled at times t+ 1 and t+ 2. This fact is important as we use this

later in the proof. If there are no more areas to follow, then we are indifferent to all the

four options. Hence, the expected number of adopters achieved by π is an upper bound

on number of acceptors for any input instance with areas of these two types whatever

be the number of areas of both types

The final part of this proof is by contradiction. Let the the number of areas in the

input instance of problem be 2nwith n areas each of types γ1 = (P, 1) and γ2 = (P, 2).

Consider a σ-switch strategy. Choose n ≥ 4(σ + 1). Thus, every σ-switch strategy

will have at least four consecutive areas of type γ1. Let a σ-switch strategy, π′, be

an optimal one. Therefore, there will exist a time t in π′ such that t = 0 mod 2,

τ(π′(t + 1)) = γ1, τ(π′(t + 2)) = γ1 and at least one more area will be scheduled

after time t + 2. As explained earlier, the expected number of adopters in this case is

strictly less than expected number of adopters if we schedule an area of type γ2 at time

t+2, which, as proved above, is at most the expected number of adopters for a strategy
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with type sequence (γ1, γ2, . . . , γ1, γ2). Therefore, strategy π is not optimal. This is a

contradiction and no σ-switch strategy can be optimal for the given instance.

2.6 Hardness Result

We prove that problem of computing expected number of adopters for a given spreading

strategy in the partial propagation setting is #P -complete. This result applies even

when the input graphs are planer with a maximum degree of 3 and have only 4 different

types of vertices. We prove this by reduction from a version of the network reliability

problem that is known to be #P -complete ([110]). In the network reliability problem,

a directed graph G and probability 0 ≤ p ≤ 1 are given. Nodes fail independently

with probability 1− p. Therefore, each node is present in the surviving subgraph with

probability p. We achieve the reduction by simulating the s − t network reliability

problem by designing an instance of cascade scheduling problem where, probability of

an area v accepting an idea is exactly equal to a path existing in the surviving sub-graph

from the source to vertex v. Before proceeding to details of the proof, we give some

definitions below.

Definition 1. Given a directed graph G with source s, terminal t, and a probability

1− p, 0 ≤ p < 1 of nodes failing independently, the (s, t)-connectedness reliability of

G, R(G, s, t; p), is defined as the probability that there is at least one path from s to t

such that none of the vertices falling on the path have failed.

Definition 2. AST is the problem of computing R(G, s, t; p) when G is an acyclic

directed (s, t)-planar graph with each vertex having degree at most three. We denote

an instance of AST on graph G as AST (G, s, t, p).

Definition 3. Given an influence spread process, S = (G, c,p, π) on G with a source

node s and a target node t, IST is the problem of computing Pr(Xt = 1;S) given that

π(1) = s and Pr(Xs = 1) = 1. We denote an instance of IST by IST (G, c,p, π, s, t).
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We will reduce an instance of AST to an instance of IST (Probability of Influence

Spread to T).

Given an instance of AST, AST (G = (V,E), s, t, p) we now construct an instance

of IST, IST (G′ = (V ′, E′), c,p, π, s, t) for which R(G, s, t; p) = Pr(Xt = 1). Let

dinv be the indegree of v ∈ V inG. For every vertex v ∈ V −{s}, we add three vertices

to graphG′. Lets denote them by bv , the blocking vertex of v, fv , the forwarding vertex

for v and v′, which corresponds to the original vertex v. The rationale for nomenclature

will become apparent later. For every edge (u, v) in E, we add an edge {u′, bv} in E′.

In addition, we add edges {bv, v′} and {fv, v′} to E′. The acceptance probabilities

and thresholds are set as follows: pv′ = 0, pfv = p, pbv = 1 ∀v ∈ V − {s}, ps′ = p.

cv = 2, cbv = dinv ∀v ∈ V − {s}. Threshold cs′ is irrelevant and can be any arbitrary

value greater than 0 since it is the first vertex to be scheduled. Thresholds cfv can also

be any arbitrary value greater than 0 since no neighbor of fv is scheduled before fv .

Let π′ : V 7→ V be any topological ordering on V where, s is the first node and t is the

last node. Then π is constructed as follows:

π−1(s′) =1

π−1(v′) =3π′−1(v)− 2 ∀v ∈ V − {s}

π−1(bv) =3π′−1(v)− 4 ∀v ∈ V − {s}

π−1(fv) =3π′−1(t)− 3 ∀v ∈ V − {s}

The above construction of π can be interpreted as follows. Source remains the first

vertex to be scheduled. A vertex v is split into three vertices — v′, bv and fv . In place

of v, these three vertices are consecutively scheduled in order bv , fv and v′, e.g., if

π′ = (s, v, t), then π = (s′, bv, fv, v
′, bt, ft, t

′).

Let IS be the influence spread process (G′, c,p, π). Now, we prove the following

lemmas which relate the probability of existence of a path of operative vertices between
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Figure 2.4: Reduction from Network Reliability on a DAG to Computing Expected
Number of Influenced Nodes – The diagram on left is a part of DAG with probability
of failure of each node equal to (1 − p). The diagram on right is corresponding part
of graph that represents an influence spread stochastic process the models the given
network reliability problem where pbv = 1, cbv = d, pfv = p,pv′ = 0, and cv′ = 2.

s and v in G and the probability that area v accepts the idea in the influence spread

process IS.

We first prove that computing the expecte number of vertices in graph to which s

has a path with operating vertices is #P -complete. We then use this to prove the main

theorem.

Lemma 2. Consider an instance of AST, AST (G = (V,E), s, t, p). Then computing

the expected number of vertices in graph to which s has a path with operating vertices

is #P -complete.

Proof. Let a(G, s) be the expected number of vertices in the graph to which s has a

path with operating vertices in G. Let b(G, s, t) be probability that there is a path of

operating vertices from s to t in G. We note that t has no outgoing edges. Lets assume

that a(G, s) can be computed in time polynomial in |G|. Let G′ = G − {t}. Deletion

of t does not change probability of survival of any path whose destination is not t.

Therefore a(G′, s) =
∑
u∈V−{t} b(G, s, u). Thus, a(G, s) − a(G′, s) = b(G, s, t).

This is a contradiction because this implies that b(G, s, t) can be computed in time

polynomial in |G|.

The proof of the main theorem of this section is organized as follows. We first
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prove that the probability of an area v′ accepting an idea is exactly equal to probability

of a path existing from s to v. Then, we use this fact along with Lemma 2 to prove

the main result. In the partial propagation setting, it is #P -complete to compute the

expected number of adopters for a given non-adaptive spreading strategy π.

Proof. Let AST (G = (V,E), s, t, p) be an instance of AST problem. Let S(G′ =

(V ′, E′), c,p, π) be an influence spread process withG′, cv, pv and π as defined above.

Then an area v 6= s, t accepts the idea with probability p iff at least one of its prede-

cessors in G also accepts the idea.

Let P (v) be the set of predecessors of v in G. We note that in IS, by construction

of π and G′, vertices in P (v) are exactly the neighbors of bv that are scheduled before

bv . Area bv is immediately followed by fv and fv by v. Also, by construction of G′,

bv and fv are neighbors of v and v has no other neighbors. Area fv’s only neighbor is

v.

If no vertex in P (v) accepts the idea, then D(bv) = −dinv = −cbv and thus,

Pr(bv = −1| no vertex in P (v) accepts the idea ) = 1 and therefore, bv rejects the

idea. Since, threshold of v is cv = 2, v decides based on threshold if and only if both

its neighbors either accept or reject the idea. Therefore if bv rejects the idea, then if fv

accepts the idea, then v does not accept the idea because it decides to reject the idea

based on its initial acceptance probability as pv = 0. If Xfv = −1, then also v does

not accept the idea because it reject the idea based on threshold rule, because both its

neighbors rejected this idea. Thus, if none of the vertices in P (v) accept the idea then

v does not accept the idea.

If any area in P (v) accepts the idea then −cbv = −dinv < D(bv) < dinv = cbv

and bv accepts the idea because its initial acceptance probability, pbv = 1. Now, if fv

accepts the idea then v also accepts because cv = 2 and if fv rejects the idea, then v

does not accept the idea because it decides to reject it on basis of its initial acceptance

probability, pv = 0. Since, no neighbor of fv is scheduled before fv , fv accepts the idea
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independently at random with its initial acceptance probability pfv = p. Therefore,

given that at least one vertex in set P (v) accepts the idea, v accepts the idea with

probability p.

Now, by principal of deferred decisions, process of finding a path of operating ver-

tices from s to t in the network reliability problem, can be simulated as follows. Let π

be any topological ordering on vertices of G. Let L(i) be the ith layer (excluding layer

containing just the source vertex, s) in topologically sorted G. Then probability that a

path to u ∈ L(1) exists is p because we let each vertex in this layer fail independently

with probability 1−p. For vertex v in any subsequent layer, if there exists a path to any

of vertices in P (v), the set of predecessors of v, then we let v fail independently with

probability 1 − p. If no path to any of predecessors of v exists, then no path to v can

exist and it is immaterial whether v fails or not. Thus, we let v fail with probability 1.

As explained above, this is exactly the process simulated by IS(G′, cv, pv, π). Thus,

computing Pr(Xt = 1) is #P -complete.

However, we need to prove hardness of computing Λ =
∑
u∈V ′ Pr(Xu = 1). If

we can prove that from Λ we can compute the expected number of vertices in graph to

which s has a path, say α =
∑
v∈V Pr(Xv′ = 1), then from Lemma 2, we are done.

Since ∀v ∈ V, Pr(Xv′ = 1) = Pr(Xbv = 1) · Pr(Xfv = 1) = Pr(Xbv = 1) · p

and Pr(Xfv ) = p, we have:

Λ =
∑
v∈V

(Pr(Xv′ = 1) + Pr(Xbv = 1) + Pr(Xfv = 1)) =
∑
v∈V

(Pr(Xv′ = 1) +
Pr(Xv′ = 1)

p
+ p)

From above, we can easily compute α. Hence, the claim follows.

We note that AST is #P -complete even when degrees of vertices of the input graph

is constrained to be 3. Thus, indegree of a node (through which a path from s to t

can pass) has to be 1 or 2. If p is the survival probability of a vertex in the AST

problem instance, then the possible types of areas in the corresponding instance of IST
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are in {(1, 1), (1, 2), (p, 1), (0, 2)}, where the first two types correspond to blocking

nodes in G, the forwarding nodes are of type (p, 1) and the vertices corresponding to

original vertices are of type (0, 2). Thus, IST is hard on graphs with maximum degree

constrained to 3 and number of types constrained to 4.

2.7 Computing Expected Number of Adopters

Here we give an algorithm to computeE(In), given a spreading strategy π with thresh-

olds given by vector c and initial probabilities of acceptance given by vector p. Let

Yk be the number of 1 decisions among vertices in {π(1), π(2), . . . , π(k)}. We note

that Ik = 2Yk − k. Since E(In) =
∑
i∈{1...n} xPr(In = x), we are interested

in computing Pr(In = x), ∀x ∈ {−n . . . n}. Consider a full propagation set-

ting. The expected number of adopter can be computed in polynomial time for a

given non-adaptive spreading strategy π. Let A be a n × (2n + 1) matrix where

A[k, x] = Pr(Ik = x), k ∈ {1 . . . n}, x ∈ {−n . . . n}. Let v = π(k). The following

recurrence might be used to arrive at a dynamic programming formulation:

A[k, x]← Pr(Xk
v = 1)A[k − 1, x− 1] + Pr(Xk

v = −1)A[k − 1, x+ 1]

However, one needs to be careful when computing Pr(Xk
v = 1) because it is depen-

dent of Ik−1. Thus, in the correct recurrence we must have Pr(Xk
v = 1|Ik−1 = x−1)

and Pr(Xk
v = −1|Ik+1 = x + 1) instead of Pr(Xk

v = 1) and Pr(Xk
v = −1) re-

spectively. Below we derive the dynamic program keeping this subtelty in mind. Let
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v = π(k + 1). We have:

Pr(Ik+1 = x+ 1|Ik = x) =


pv if − cv < x < cv

1 if x ≥ cv

0 otherwise

Pr(Ik+1 = x− 1|Ik = x) =1− Pr(Ik+1 = x+ 1|Ik = x)

We have:

Pr(Ik+1 = x) =Pr(Ik+1 = x|Ik = x− 1)Pr(Ik = x− 1)

+ Pr(Ik+1 = x|Ik = x+ 1)Pr(Ik = x+ 1)

The above relation suggests a dynamic program for computing E(In). The matrix A

is initialized with A[1, 1] = pπ(1), A[1,−1] = 1 − A[1, 1], A[1, 0] = 0, A[k, x] =

0, ∀x > k,A[k, x] = 0, ∀x < −k. When |x| < n, k > 1, then any A[k, x] depends

on A[k − 1, x+ 1] and A[k − 1, x+ 1] and we get the recurrence:

A[k, x]←Pr(Ik = x|Ik−1 = x− 1)A[k − 1, x− 1]

+ Pr(Ik = x|Ik−1 = x+ 1)A[k − 1, x+ 1]

From A, E(In) can be computed as follows:

E(In) =
∑

i∈{1...n}

xPr(In = x) =
∑

i∈{1...n}

iA[n, i]

2.8 Adaptive Marketing Strategy

In this section we propose a dynamic program for computing best adaptive spreading

strategy and thus, prove Theorem 2.1.3. Here we give dynamic program when there
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are two types of areas. This can be extended to any constant number of types. Let

B(n1, n2, k) be the expected number of areas that adopt the product for a best ordering

where n1 is number of areas of type 1 and n2 is the number of areas of type 2 in the

market k is sum of decisions of vertices that have been scheduled so far. We note

that deployment number k is equal to difference of number of yes decisions and no

decisions. Let thresholds and initial acceptance probabilities for vertices of type i be ci

and pi. At any given time in the strategy, let Bi be the best possible result if an area of

type i is scheduled next. Depending on value of k, we have the following cases (cases

2 and 4 will not occur if c1 = c2):

1. n1 = 0∨n2 = 0: If all areas are of the same type, then all spreading strategies are

equivalent and we can choose any arbitraty spreading strategy for the remaining

areas.

2. c1 ≤ k < c2: In this case, areas of type 1 will accept the idea w.p. 1. Areas

of type 2 will accept the idea with probability p2 and reject it with probability

1− p2.

B1 =1 +B(n1 − 1, n2, k + 1)

B2 =p2 + p2B(n1, n2 − 1, k + 1) + (1− p2)B(n1, n2 − 1, k − 1)

B(n1, n2, k) = max{B1, B2}

3. −c1 < k < c1: In this case, both types of areas will decide to accept or reject

the idea on basis of initial acceptance probabilities. Therefore:

B1 =p1 + p1B(n1 − 1, n2, k + 1) + (1− p1)B(n1 − 1, n2, k − 1)

B2 =p2 + p2B(n1, n2 − 1, k + 1) + (1− p2)B(n1, n2 − 1, k − 1)

B(n1, n2, k) = max{B1, B2}
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4. −c2 < k ≤ −c1: In this case, areas of type 1 will reject the idea with probability

1 and areas of type 2 will accept the idea with probability p2.

B1 =B(n1 − 1, n2, k + 1)

B2 =p2 + p2B(n1, n2 − 1, k + 1) + (1− p2)B(n1, n2 − 1, k − 1)

B(n1, n2, k) = max{B1, B2}

5. k ≤ −c2: In this case, both types of areas will reject the idea. Therefore:

B(n1, n2, k) = 0

6. k ≥ cc2: In this case, both types of areas will reject the idea. Therefore:

B(n1, n2, k) = n1 + n2

This can easily be extended to any constant number of types. The time complexity with

t types is O(nt+1).
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Chapter 3

Influence Maximization with

Partial Incentives

3.1 Introduction

The ideas we are exposed to and the choices we make are significantly affected by our

social context. It has long been studied how social networks – i.e. who we interact with

in a variety of contexts – impact the choices we make, and how ideas and behaviors can

spread through such networks [17, 56, 118, 130]. With the advent of the Internet, and

websites such as Facebook and Google Plus devoted to the forming and maintaining of

social networks, this effect becomes ever more evident. Individuals are linked together

in ways that are more readily apparent and widespread than ever before, and accord-

ingly understanding how social networks affect the behaviors and actions that spread

through a society becomes ever more important.

A key question in this area is understanding how such a behavioral cascade can

start. For example, for a company that wishes to introduce a new product but has

0This is a joint work with E. D. Demaine, M. T. Hajiaghayi, H. Mahini, D. L. Malec, S. Raghavan and
M. Zadimoghadam. A version of this work appeared in WWW ’14 [39].
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a limited promotional budget, it becomes critical to understand how to target their

promotional efforts in order to generate awareness among as many people as possible.

A well-studied model of this is the Influence Maximization problem, as introduced by

Kempe et al. [75]. In the Influence Maximization problem, an optimizer wishes to find

a small set of individuals to influence, such that this influence will cascade and grow

through the social network to the maximum extent possible. For example, if a company

wants to introduce a new piece of software, and believes that friends of users are likely

to become users themselves, how should they allocate free copies of their software in

order to maximize the size of their eventual user base?

Since the introduction of the Influence Maximization problem by Kempe et al. [75],

there has been a great deal of interest and follow up work in the model. A particular

driving force for applying this model has been the growth of large-scale social networks

on the Internet. While Kempe et al. [75] give a greedy algorithm for approximating the

Influence Maximization problem, it requires costly simulation at every step; thus, while

their solution provides a good benchmark, a key area of research has been on finding

practical, fast algorithms that themselves provide good approximations to the greedy

algorithm [18, 23, 24, 25, 82]. The practical, applied nature of the motivating settings

means that even small gains in performance (either runtime or approximation factor)

are critical, especially on large, real-world instances.

We believe that the standard formulation of the Influence Maximization problem,

however, misses a critical aspect of practical applications. In particular, it forces a

binary choice upon the optimizer: when starting a cascade, an optimizer may choose

for each individual whether to apply no influence or maximal influence, but has no

choice in between. While this is reasonable for some settings – e.g. exposure to an idea

or pathogen – it is far less reasonable for others of practical importance. For example,

a company promoting a new product may find that giving away ten free copies is far

less effective than offering a discount of ten percent to a hundred people. We propose a

42



fractional version of the problem where the optimizer has the freedom to split influence

across individuals as they see fit.

To make this concrete, consider the following problem an optimizer might face.

Say that an optimizer feels there is some small, well-connected group whose adoption

of their product is critical to success, but only has enough promotion budget remaining

to influence one third of the group directly. In the original version of Influence Max-

imization, the optimizer is forced to decide which third of the group to focus on. We

believe it is more natural to assume they have the flexibility to try applying uniform

influence to the group, say offering everyone a discount of one third on the price of

their product, or in fact any combination of these two approaches. While our results

are preliminary, we feel our proposed model addresses some very practical and very

real concerns with practical applications of Influence Maximization, and offers many

opportunities for important future research.

3.2 Results

In this work, our main goal is to understand how our proposed fractional version of the

Influence Maximization problem differs from the integral version proposed by Kempe

et al. [75]. We consider this question from both a theoretical and an empirical perspec-

tive. On the theoretical side, we shall see that unlike many problems, the fractional

version of Influence Maximization appears to retain essentially the same hardness as

the fractional version. Furthermore, we give examples where the objective values for

the fractional and integral versions can differ significantly. Nevertheless, we are able

to extend the main positive result for Influence Maximization to the fractional case,

namely submodularity results of Mossel and Roch [95] which give a very general ex-

tension of the results of Kempe et al. [75]. On the empirical side, we simulate the main

algorithms and heuristics on real-world social network data, and find that the computed

solutions are substantially more efficient in the fractional setting.
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Our main theoretical result shows that the positive results of Mossel and Roch

[95] extend to our proposed fractional model. Their result showed that in the integral

case, when influence between agents is submodular, so too is the objective function in

Influence Maximization. We show that for a continuous anolog of submodularity1 the

same results holds for our fractional case. We first consider a discretized version of

the fractional Influence Maximization Problem, where each vertex can be assigned a

weight that is a multiple of some discretization parameter ε = 1
N . Then, we consider

the final influenced set by choosing a weighted seed set S, where the weight of each

element is a multiple of ε. We show the fractional Influence Maximization objection is

a submodular function of S for any N ≥ 1 (Theorem 4). We further extend this result

to the continuous case (Theorem 5). We note that this result does not follow simply by

relating the fractional objective function to the integral one and interpolating or other

similar methods; instead, we need to use a non-trivial reduction to the generalization

of the influence maximization problem given by Mossel and Roch [95]. Not only does

this result show that our problem admits a greedy solution with good approximation

guarantee, it furthermore gives us hope that we can readily adapt the large body of work

on efficient heuristics for the integral case to our problem and achieve good results.

In addition to showing the submodularity of the objective persists from the inte-

gral case to the fractional case, we show that the hardness of the integral case persists

as well. In the case of fixed thresholds, we show that all of the hardness results of

[75] extend readily to the fractional case. In particular, we show that for the fractional

version of linear influence model, even an n1−ε approximation algorithm is NP-hard

to achieve. We first prove NP-hardness of the problem by a reduction from the inde-

pendent set problem (Theorem 8) and then strengthen the result to prove inapproxima-

bility (Corollary 9). In addition, when thresholds are assumed to be independent and

uniformly distributed in [0, 1], we show that it is NP-Hard to achieve any better than

1We note this is neither of the two most common continuous extensions of submodularity, namely the
multinear and Lovász extensions.
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1− 1/e approximation in the Triggering model introduced by Kempe et al. [75]. This

holds even for the simple case where triggering sets are deterministic and have constant

sizes, and shows that even for this simple case the greedy approximation is tight, just

as in the integral case. An important aspect of all of these reductions is that they use

very simple DAGs, with only two layers of vertices.

Our last set of results focus on the special case where the network is a DAG. Here,

we focus on the linear influence model with uniform thresholds. In this case, we see

that we can easily compute the expected influence from any single node via dynamic

programming; this closely resembles a previous result for the integral case [25]. In

the fractional case, this gives us a sort of linearity result. Namely, if we are careful to

avoid interference between the influences we place on nodes, we can conclude that the

objective is essentially linear in the seed set. While the conditions on this theorem seem

strong at first glance, it has a very powerful implication: all of the hardness results we

presented involved choosing optimal seed sets from among the sources in a DAG, and

this theorem says that with uniform thresholds the greedy algorithm finds the optimal

such seed set.

3.3 Related Work

Several works in economics, sociology and political science have studied and modeled

behaviors arising from information and influence cascades in social networks. Some of

the earlist models were proposed by Granovetter [56] and Schelling [118]. Since then

many such models have been studied and proposed in literature [17, 114, 130].

The advent of social networking platforms such as Facebook, Twitter and Flickr

has provided researchers with unprecendented data about social interactions, albeit in a

virtual setting. The question of monetization of this data is critically important for the

entities that provide these platforms and the entities that want to leverage this data to

engineer effective marketing campaigns. The above two factors have generated huge
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interest in algorithmic aspects of these systems.

A question of central importance is to recognize “important individuals” in a social

netowrk. Domingos and Richardson [45, 112] were the first to propose heuristics for

selection of customers on a network for marketing. Both these works focus on evaluat-

ing customers based on their intrinsic and network value. The network value is assumed

to be generated by a customer influencing other customers in her social network to buy

the product. In a seminal paper, Kempe et al. [75] give an approximation algorithm for

selection of influential nodes under the linear threshold (LT) model. Mossel and Roch

[95] generalized the results of Kempe et al. [75] to cases where the activation functions

are monotone and submodular. Gunnec and Raghavan [58] were the first to discuss

fractional incentives (they refer to these as partial incentives/inducements) in the con-

text of a product design problem. They consider a fractional version of the target set

selection problem (i.e., fixed thresholds, fractional incentives, a linear influence model,

with the goal of minimizing the fractional incentives paid out so that all nodes in the

graph are influenced). They provide an integer programming model, and show that

when the neighbors of a node have equal influence on it, the problem is polynomially

solvable via a greedy algorithm [57, 58, 59].

Some recent works have directly tackled the question of revenue maximization

in social networks by leveraging differential pricing to monetize positive externali-

ties arising due to adoption of product by neighbors of a customer [4, 8, 46, 62].

Other works have focused on finding faster algorithms for the target set selection

problem ( [23, 24, 25, 82]). A very recent theoretical result in this direction is an

O( (m+n) log(n)
ε3 ) algorithm giving an approximation guarantee of 1− 1

e − ε [18]. While

Leskovec et al. [82] do not compare their algorithm directly with the greedy algorithm

of Kempe et al. [75], the heuristics in other papers ( [23, 24, 25]) approach the perfor-

mance of the greedy algorithm quite closely. For example, in one of the papers [24], the

proposed heuristic achieves an influence spread of approximately 95% of the influence
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spread achieved by the greedy algorithm. An intersting fact on the flip side is that none

of the heuristics beat the greedy algorithm (which itself is a heuristic) for even a single

dataset.

3.4 Model

Integral Influence Model We begin by describing the model used for propagation

of influence in social networks used in [95]; it captures the model described in [75]

as a special case. Unlike the latter, the edges in this model are given only implicitly.

Here, the graph is given by a vertex set V and an explicit description of how nodes

influence each other. Specifically, for each vertex v ∈ V , we are given a function

fv : 2V → [0, 1] specifying the amount of influence each subset S ⊆ V exerts on v.

We denote the set of all influence functions by F = {fv}v∈V .

Given a graph specified by (V,F), we want to understand how influence propagates

in this graph. The spread of influence is (again) modeled by a process that runs in

stages. In addition to the influence function fv , each vertex v has a threshold θv ∈ [0, 1]

representing how resistant it is to being influenced. If the currently activated set of

vertices is S ⊆ V at a given stage, then each v ∈ V \ S becomes activated in the next

stage if and only if fv(S) ≥ θv . Our goal is to compare the total influence different sets

have on the graph as a whole; we measure this by comparing the results of allowing

the spreading process to run to completion given any pair of sets to use at the initial

activated sets. To represent the fact that some (sets of) vertices may be more important

than others, we define a weight function w : 2V → R+ on subsets of V . We then can

define the value of a set S formally as follows. Given an initial activated set S0, let

SΘ
1 , S

Θ
2 , . . . , S

Θ
n be the activated sets after 1, 2, . . . , n = |V | stages of our spreading

process, when Θ = (θv)v∈V is our vector of thresholds. Then we want to understand

the value of w(SΘ
n ) when we set S0 = S. Note this may depend strongly on Θ; to that

end, we assume that each threshold is independently distributed as θv ∼ U [0, 1]. Then,
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we are interested in understanding the structure of the function σ : 2V → R+ given by

σ(S) = E
Θ

[ w(SΘ
n ) | S0 = S ].

Fractional Influence Model One shortcoming of the model described above is that

it completely separates the effects of directly applied influence from other agents in the

network. In particular, note that every agent in the social network is either explicitly

activated by the optimizer (and influence from other agents is irrelevant), or is activated

by influence from other agents with no (direct) involvement from the optimizer. It

seems natural to suppose, however, that it is possible for agents to become activated by

a mixture of direct influence from the designer and influence from other agents. For

example, if we have chosen to activate a set S of agents, and know that this set strongly

influences some other agent, we should be able to apply some intermediate level of

influence with the assurance that this additional agent will become active eventually.

To this end, we propose the following modification of the model. Rather than selecting

a set S of nodes to activate, the optimizer specifies a vector x ∈ [0, 1]n indexed by

V, where xv indicates the amount of direct influence we apply to v. We assume that

this direct influence is additive with influence from other nodes in the network, and so

a set S causes v to be activated if and only if fv(S) + xv ≥ θv . Here, we assume

that no nodes are initially activated, that is S0 = ∅. Note, however, that even without

contributions from other nodes, our directly-applied influence can cause activations.

For example, it is easy to see that

SΘ
1 = {v ∈ V : xv ≥ θv}.

An important point, however, is that our process is not simply a matter of selecting an

initial activated set at random with marginal probabilities x, since for any node v not

initially activated, our direct influence xv makes it easier for other nodes in the network
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to activate it in later rounds. Lastly, we observe that this model captures the originally

discussed model as a special case, since selecting sets to initially activate corresponds

exactly with choosing x ∈ {0, 1}n, just with a single-round delay in the process. To

this end, hereafter we refer to the original model as the integral influence model, and

this new model as the fractional influence model. As before, we want to understand the

structure of the expected value of the final influenced set as a function of how we apply

influence to nodes in a graph. We extend our function to σ : [0, 1]n → R+ by

σ(x) = E
Θ

[ w(SΘ
n ) | we apply direct influences x ].

Linear Influence Model This is a special case of the fractional influence model. In

the linear variant of the problem, our influence functions are computed as follows. We

are given a digraph G = (V,E) and a weight function w on edges. We use δ
−

(v) and

δ
+

(v) to denote the sets of nodes with edges to and edges from v, respectively. Then,

we denote the influence function fv for v by

fv(S) =
∑

u∈S∩δ− (v)

wuv.

In our model, we assume that
∑
u∈δ− (v) wuv ≤ 1 for every vertex v ∈ V .

non-Stochastic Thresholds In all these models discussed above, we make the

stochastic assumption that the thresholds of nodes are independently distributed as

θv ∼ U [0, 1]. One natural question is whether the same results hold when we are

facing arbitrary thresholds. We answer this question negatively by providing hardness

results in Section 3.8 when the thresholds are given as part of the instance.
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3.5 Reduction

In order to state the main result of [95], we need to define the following properties for

set functions. Given a set N and a function f : 2N → R, we say that:

• f is normalized if f(∅) = 0;

• f is monotone if f(S) ≤ f(T ) for any S ⊆ T ⊆ N ; and

• f is submodular if f(S∪{x})−f(S) ≥ f(T ∪{x})−f(T ) for any S ⊆ T ⊆ N

and x ∈ N \ T .

We say that a collection of functions satisfies the above properties if every function in

the collection does. With the above definitions in hand, we are now ready to state the

following result of [95].

Theorem 3. Let I = (V,F , w) be an instance of our problem. If both w and F are

normalized, monotone, and submodular, then σ is as well.

We want to extend Theorem 3 to the fractional influence model. We show that, for

arbitrarily fine discretizations of [0, 1], any instance of our problem considered on the

discretized space can be reduced to an instance of the original problem. Fix N ∈ Z+,

and let δ = 1/N > 0 be our discretization parameter. Let ∆ = {0, δ, 2δ, . . . , 1}. We

consider the function σ restricted to the domain ∆n. Lastly, let δv be the vector with δ

in the component corresponding to v, and 0 in all other components. Then we can state

our desired properties for σ as follows:

• we say σ is normalized if σ(0) = 0;

• we say σ is monotone if x ≤ y implies σ(x) ≤ σ(y); and

• we say σ is submodular if for any x ≤ y, and any v ∈ V , either yv = 1 or

σ(x + δv)− σ(x) ≥ σ(y + δv)− σ(y),
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where all comparisons and additions between vectors above are componentwise. We

get the following extension of Theorem 3.

Theorem 4. Let I = (V,F , w) be an instance of our problem. If both w and F are

normalized, monotone, and submodular, then for any discretization ∆n of [0, 1]n (as

defined above), σ is normalized, monotone, and submodular on ∆n.

Proof. We prove this by reducing the (discretized) fractional problem for I to an in-

stance of the integral influence problem and then applying Theorem 3. We begin by

modifying I to produce a new instance Î = (V̂ , F̂ , ŵ). Then, we show that F̂ and ŵ

will retain the properties of normalization, monotonicity, and submodularity. Lastly,

we showing a mapping from (discretized) fractional activations for I to integral acti-

vations for Î such that objective values are preserved, and our desired fractional set

function properties for σ correspond exactly to their integral counterparts for the ob-

jective function σ̂ for Î. The result then follows immediately from Theorem 3.

We begin by constructing the instance Î. The key idea is that we can simulate

fractional activation with integral activation by adding a set of dummy activator nodes

for each original node; each activator node applies an incremental amount of pressure

on its associated original node. Then, for each original node we just need to add the

influence from activator node to that from other original nodes, and truncate the sum

to one. Fortunately, both of the aforementioned operations preserve the desired prop-

erties. Lastly, in order to avoid the activator nodes interfering with objective values,

we simply need to give them weight zero. With this intuition in mind, we now define

Î = (V̂ , F̂ , ŵ) formally.

First, we construct V̂ . For each node v ∈ V , create a set Av = {v1, v2, . . . , v1/δ}

of activator nodes for v. Our node set in the new instance is

V̂ = V ∪

(⋃
v∈V

Av

)
.

51



We now proceed to define the functions f̂v̂ for each v̂ ∈ V̂ . If v̂ is an activator node for

some v ∈ V , we simply set f̂v̂ ≡ 0; otherwise, v̂ ∈ V and we set

f̂v̂(S) = min (fv̂(S ∩ V ) + δ|S ∩Av̂|, 1)

for each S ⊆ V̂ . Lastly, we set

ŵ(S) = w(S ∩ V )

for all S ⊆ V̂ . Together, these make up our modified instance Î.

We now show that since w and F are normalized, monotone, and submodular, ŵ

and F̂ will be as well. We begin with ŵ, since it is the simpler of the two. Now, ŵ is

clearly normalized since ŵ(∅) = w(∅). Similarly, for any S ⊆ T ⊆ V̂ , we have that

S ∩ V ⊆ T ∩ V , and so

ŵ(S) = w(S ∩ V ) ≤ w(T ∩ V ) = ŵ(T ),

by the submodularity of w. Lastly, let û ∈ V̂ \ T . If û ∈ V , then

ŵ(S ∪ {û})− ŵ(S) = w((S ∩ V ) ∪ {û})− ŵ(S ∩ V )

≥ w((T ∩ V ) ∪ {û})− ŵ(T ∩ V )

= ŵ(T ∪ {û})− ŵ(T ),

since w is submodular. On the other hand, if û /∈ V , we immediately get that

ŵ(S ∪ {û})− ŵ(S) = 0 = ŵ(T ∪ {û})− ŵ(T ).

Thus, we can see that ŵ is normalized, monotone, and submodular.

Next, we show that F̂ is normalized, monotone, and submodular. For v̂ ∈ V̂ \V , it
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follows trivially since F̂ is identically 0. In the case that V̂ ∈ V , it is less immediate,

and we consider each of the properties below.

• f̂v̂ normalized. This follows by computing that

f̂v̂(∅) = min (fv̂(V ∩ ∅) + δ|Av̂ ∩ ∅|, 1)

= min (fv̂(∅) + δ|∅|, 1) = 0,

since fv̂ is normalized.

• f̂v̂ monotone. Let S ⊆ T ⊆ V̂ . Then we have both S ∩ V ⊆ T ∩ V and

S ∩Av̂ ⊆ T ∩Av̂ . Thus, we can see that

fv̂(V ∩ S) ≤ fv̂(V ∩ T )

|Av̂ ∩ S| ≤ |Av̂ ∩ T |,

where the former follows by the monotonicity of fv̂ . Combining these, we get

that

fv̂(V ∩ S) + δ|Av̂ ∩ S| ≤ fv̂(V ∩ T ) + δ|Av̂ ∩ T |.

Thus, we may conclude that f̂v̂(S) ≤ f̂v̂(T ), since it follows from the above

inequality that

fv̂(V ∩ S) + δ|Av̂ ∩ S| > min (fv̂(V ∩ T ) + δ|Av̂ ∩ T |, 1)

implies

min (fv̂(V ∩ S) + δ|Av̂ ∩ S|, 1) = 1

= min (fv̂(V ∩ T ) + δ|Av̂ ∩ T |, 1) .
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• f̂v̂ submodular. Let S ⊆ T ⊆ V̂ , and û ∈ V̂ \ T . Now, we have three cases,

depending on the choice of û. If û ∈ V , we have that û /∈ Av̂ , and so

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|)− (fv̂(S)− δ|S ∩Av̂|)

= fv̂(S ∪ {û})− fv̂(S);

and

(fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|)− (fv̂(T )− δ|T ∩Av̂|)

= fv̂(T ∪ {û})− fv̂(T ).

Thus, the submodularity of fv̂ implies the former is greater than or equal to the

latter. On the other hand, if û ∈ Av̂ , then û /∈ V , and we can see that

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|) = δ =

= (fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|) .

Lastly, if û /∈ V ∪Av̂ , we can immediately see that

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|) = 0 =

= (fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|) .

Thus, in every case, we may conclude that

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|) ≥

≥ (fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|) ,

54



and hence (by the same reasoning as for monotonicity) we may conclude that

f̂v̂(S ∪ {û})− f̂v̂(S) ≥ f̂v̂(T ∪ {û})− f̂v̂(T ).

Thus, we can see that F̂ is normalized, monotone, and submodular on V̂ , exactly as

desired.

As such, we can apply Theorem 3 to our function and get that for our modified in-

stance Î = (V̂ , F̂ , ŵ), the corresponding function σ̂ must normalized, monotone, and

submodular. All that remains is to demonstrate our claimed mapping from (discretized)

fractional activations for I to integral activations for Î.

We do so as follows. For each v ∈ V and each d ∈ ∆, let Adv = {v1, v2, . . . , vd}.

Then, given the vector x ∈ ∆n, we set

Sx =
⋃
v∈V

Axv
v ,

where xv is the component of x corresponding to the node v.

We first show that under this definition we have that σ(x) = σ̂(Sx). In fact, as we

will see the sets influenced will be the same not just in expectation, but for every set

of thresholds Θ for the vertices V . Note that in the modified setting Î we also have

thresholds for each vertex in V̂ \V ; however, since we chose f̂v̂ ≡ 0 for all v̂ ∈ V̂ \V ,

and thresholds are independent draws from U [0, 1], we can see that with probability 1

we have f̂v̂(S) < θv̂ for all S and all v̂ ∈ V̂ \ V . Thus, in the following discussion

we do not bother to fix these thresholds, as their precise values have no effect on the

spread of influence.

Fix some vector Θ of thresholds for the vertices in V . Let SΘ
1 , . . . , S

Θ
n and

ŜΘ
1 , . . . , Ŝ

Θ
n be the influenced sets in each round in the setting I with influence vector

x and in the setting Î with influence set Sx, respectively. We show by induction that

for all i = 0, 1, . . . , n, ŜΘ
i ∩V = SΘ

i . By the definition of ŵ, this immediately implies
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that w(SΘ
n ) = ŵ(ŜΘ

n ), and the claim follows. We prove our claim by induction. For

i = 0, the equality follows simply by our definitions of the processes, since S0 = ∅

and Ŝ0 = Sx. Now, assuming the claim holds for i− 1, we need to show that it holds

for i. By our definition of the processes, we know that

SΘ
i = SΘ

i−1 ∪ {v ∈ V \ SΘ
i−1 : fv(S

Θ
i−1) + xv ≥ θv};

similarly, we have that

ŜΘ
i = ŜΘ

i−1 ∪ {v̂ ∈ V̂ \ ŜΘ
i−1 : f̂v̂(Ŝ

Θ
i−1) ≥ θv̂}.

Recall, however, that for all v̂ ∈ V̂ \ V , we have that f̂v̂ ≡ 0, and it follows that

ŜΘ
i \ V = Sx for all i. Thus, we can rewrite the second equality above as

ŜΘ
i = ŜΘ

i−1 ∪ {v ∈ V \ ŜΘ
i−1 : f̂v(Ŝ

Θ
i−1) ≥ θv}.

Consider an arbitrary v ∈ V \ SΘ
i−1 = V \ ŜΘ

i−1. Now, we know that v ∈ ŜΘ
i if and

only if

θv ≤ f̂v(ŜΘ
i−1) = min(fv(Ŝ

Θ
i−1 ∩ V ) + δ|ŜΘ

i−1 ∩Av|, 1)

Recall, however, that ŜΘ
i−1 ∩ V = SΘ

i−1 by assumption. Furthermore, we can compute

that

|ŜΘ
i−1 ∩Av| = |Sx ∩Av| = |Axv

v | = |{v1, . . . , vxv}| = xv/δ.

Thus, since we know that θv ≤ 1 always, we can conclude that v ∈ ŜΘ
i ∩V if and only

if

θv ≤ fv(SΘ
i−1) + xv,

which is precisely the condition for including v in SΘ
i . Thus, we can conclude that
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ŜΘ
i ∩ V = SΘ

i .

We have now shown that for all vectors of thresholds Θ for vertices in V , with

probability 1 we have that ŜΘ
i ∩ V = SΘ

i for i = 0, 1, . . . , n. In particular, note that

ŜΘ
n ∩ V = SΘ

n , and so ŵ(ŜΘ
n ) = w(SΘ

n ). Thus, we may conclude that σ̂(Sx) = σ(x).

Lastly, we need to show that for our given mapping from (discretized) fractional

activation vectors x to set Sx, we have that the desired properties for σ are satisfied if

the corresponding properties are satisfied for σ̂. So we assume that σ̂ is normalized,

monotone, and submodular (as, in fact, it must be by the above argument and Theo-

rem 3), and show that σ is as well. First, note that x = 0 implies Sx = ∅, and so

σ(x) = σ̂(∅) = 0. Second, let x,y ∈ ∆n such that x ≤ y componentwise. Then we

can see that Sx ⊆ Sy and so

σ(x) = σ̂(Sx) ≤ σ̂(Sy) = σ(y).

Finally, pick some v ∈ V such that yv < 1. Recall our definition of f̂v̂; by inspection,

we can see that we have f̂v̂(S) = f̂v̂(T ) any time both S∩V = T ∩V and |S ∩Av| =

|T ∩Av|, for any S, T ∈ V̂ . Thus, we can see that Sx+δi = Sx ∪ {vxv+1} and

Sy = Sy ∪ {vyv+1}. So we have

σ(x + δi)− σ(x) = σ̂(Sx ∪ {vxv+1})− σ̂(Sx)

= σ̂(Sx ∪ {vyv+1})− σ̂(Sx)

≥ σ̂(Sy ∪ {vyv+1})− σ̂(Sy)

= σ(y + δi)− σ(y).

Thus, σ has exactly the claimed properties on ∆n, and the theorem follows.

In fact, we can use the same technique as achieve the following extension to fully

continuous versions of our properties. We define the following properties for σ on the

57



continuous domain [0, 1]n:

• we say σ is normalized if σ(0) = 0;

• we say σ is monotone if x ≤ y implies σ(x) ≤ σ(y); and

• we say σ is submodular if for any x ≤ y, any v ∈ V , and for any ε > 0 such

that yv + ε ≤ 1, we have that σ(x + εv)− σ(x) ≥ σ(y + εv)− σ(y),

where εv is the vector with a value of ε in the coordinate corresponding to v and a value

of 0 in all other coordinates. As before, all comparisons and additions between vectors

above are componentwise. The same techniques immediately give us the following

theorem.

Theorem 5. Let I = (V,F , w) be an instance of our problem. If both w and F are

normalized, monotone, and submodular, then σ is normalized, monotone, and submod-

ular on [0, 1]n.

Proof. We use the exact same technique as in the proof of Theorem 4. The only differ-

ence is how we define the activator nodes in our modified instance Î. Here, rather than

trying to model the entire domain, we simply focus on the points we want to verify our

properties on. To that end, fix some x ≤ y, as well as an ε > 0 and some v ∈ V . We

will only define three activator nodes here: ax, ax−ys, and aε. The first two contributes

amounts of xv′ and (yv′−xv′) ≥ 0, respectively, to the modified influence function for

vertex v′ ∈ V . The last contributes an amount of ε to the influence function for vertex

v, and makes no contribution to any other influence functions. As before, all influence

functions get capped at one. Our modified weight function is defined exactly as before,

and it is easy to see that exactly the same argument will imply that the modified weight

and influence functions will be normalized, monotone, and submodular, allowing us to

apply Theorem 3.

Thus, all that remains is to relate the function values between the original and

modified instances. Note, however, that here it is even simpler than in the discretized
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case. If σ̂ is the objective for σ, it clear to see that:

σ(0) = σ̂(∅)

σ(x) = σ̂({ax})

σ(y) = σ̂({ax, ay−x})

σ(x + εV ) = σ̂({ax, aε})

σ(y + εv) = σ̂({ax, ay−x, aε})

The above equalities make it clear that the desired qualities for σ will follow immedi-

ately from their discrete counterparts for σ̂.

Theorem 6. Let I = (V,F , w) be an instance of our problem. Then for any discretiza-

tion ∆n of [0, 1]n (as defined above), if σ is normalized, monotone, and submodular

on ∆n, we have that

max
x∈∆n:
‖x‖1≤K

σ(x) ≥ (1− δn) max
x∈[0,1]n:
‖x‖1≤K

σ(x),

for any K.

Proof. Let x∗ be an optimal solution to our problem on [0, 1]n, i.e. we have

argmax
x∈[0,1]n:‖x‖1≤K

σ(x).

Let x̄∗ be the result of rounding x∗ up componentwise to the nearest element of ∆n.

Formally, we define x̄∗ by x̄∗v = min{d ∈ ∆ : d ≥ x∗}. Note that by monotonicity, we

must have that σ(x̄∗) ≥ σ(x∗); we also have that ‖x̄∗‖1 ≤ ‖x∗‖1 +δn. Now, consider

constructing x̄∗ greedily by adding δ to a single coordinate in each step. Formally, set
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x0 = 0, and for each i = 1, 2, . . . , ‖x̄∗‖1/δ set

xi = xi−1 + δv for some v ∈ argmax
v: xi−1

v <1

(σ(xi−1 + δv) = σ(xi−1)),

where (as before) δv is a vector with δ in the component corresponding to v and 0 in

all other components. Note that the submodularity of σ implies that σ(xi) − σ(xi−1)

is decreasing in i. An immediate consequence of this is that, for any i, we have that

σ(xi) ≥ i

‖x̄∗‖1
σ(x̄∗).

Invoking the above for i = K/δ we get that

σ(xK/δ) ≥ K/δ

‖x̄∗‖1
σ(x̄∗) ≥ K

K + δn
σ(x̄∗) ≥ (1− δn)σ(x̄∗).

We observe that ‖xK/δ‖1 = K, and xK/δ ∈ ∆n, and so the desired theorem follows.

3.6 DAGs

In this section, we focus on the case of linear influences, and argue that some aspects

of the problem become simpler on DAGs. Similar to the fractional influence model,

our goal is to pick an influence vector x ∈ [0, 1]|V | indexed by V to maximize

σ(x) = E
Θ

[ |SΘ
n | | we apply direct influences x ],

where SΘ
1 , . . . , S

Θ
n is the sequence of sets of nodes activated under thresholds Θ and

direct influence x. We sometimes abuse notation and use σ(S) to denote obj applied

to the characteristic vector of the set S ∈ 2V .

Given a DAG G = (V,E) and a fractional influence vector x ∈ [0, 1]|V | indexed
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by V , we define the sets

I(x) = {v ∈ V : xv > 0}, and

S(x) = {v ∈ V : xv +
∑
u∈δ− (v) wuv > 1},

as the sets of nodes influenced by x and (over-)saturated by x. Note that S(x) ⊆ I(x).

We get the following theorem.

Theorem 7. Given a DAG G and influence vector x, if G contains no path from an

element of I(x) to any element of S(x), then we have that

σ(x) =
∑
v∈V xvσ(1v).

Proof. We prove this by induction on the number of vertices. In the case that V con-

tains only a single vertex, the claim is trivial. Otherwise, let G = (V,E) and x satisfy

our assumptions, with |V | = n > 1, and assume out claim holds for any DAG with

(n−1) or fewer nodes. Let s ∈ V be a source vertex (i.e. have in-degree 0) inG. Now,

if s /∈ I(x), we know that s is never activated. Let σ̂ and x̂ be σ onG restricted to V \s

and x restricted to V \ s, respectively, and observe that we may apply our induction

hypothesis to σ̂(x̂) since removing s from G cannot cause any of the requirements for

our theorem to become violated. Thus, we can see that

σ(x) = σ̂(x̂) =
∑
v∈V \s

xvσ̂(1v) =
∑
v∈V

xvσ(1v),

since xs = 0.

Now, assume that s ∈ I(x). Recall that by our conditions on G, therefore, we

know that G contains no path from s to any elements of S(x). One critical implication

of this is that none of the nodes in δ
+

(s) have paths to elements of S(x) either, and so

we made apply influence to them without violating the assumptions of our inductive
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hypothesis, as long as we are careful not to add so much weight that they become

saturated.

In order to prove our claim, we focus on G restricted to V \ {s}, call it Ĝ. Let

σ̂ be σ over Ĝ, and consider the following two influence vectors for Ĝ. Define x̂ to

simply be the restriction of x to Ĝ; define ŷ by yv = wsv if v ∈ δ+

(s) and 0 otherwise.

Letting Î and ˆSat be I and S, respectively, restricted to Ĝ, we can see that

Î(x̂), Î(ŷ), Î(x̂ + ŷ) ⊆ I(x) ∪ δ
+

(s), and

Ŝ(x̂), Ŝ(ŷ), Ŝ(x̂ + ŷ) ⊆ S(x).

 (3.1)

The observation that gives the above is that, compared to x, the only vertices with

increased influence applied to them are the elements of δ
+

(s), and the amounts of

these increases are precisely balanced by the removal of s (and its outgoing edges)

from Ĝ. In particular, note that for any v ∈ V \ {s}, by our definition of ˆ]ys we have

that

xv +
∑

u∈δ− (v)

wuv = x̂v + ŷv +
∑

u∈δ
−

(v)
u6=s

wuv.

As previously noted G contains no paths from an element of δ
+

(s) to any element

of S(x); this combined with (3.1) allows us to conclude that we may apply our induc-

tion hypothesis to Ĝ with any of x̂, ŷ, or x̂ + ŷ. We proceed by showing that for any

vector Θ of thresholds for G (and its restriction to Ĝ), we have that the set activated

under x in G always corresponds closely to one of the sets activated by x̂ or (x̂ + ŷ)

in Ĝ. To that end, fix any vector Θ. We consider the cases where xs ≥ θs and xs < θs

separately.

We begin with the case where xs < θs, since it is the simpler of the two. Let

SΘ
0 , . . . , S

Θ
n and ŜΘ

0 , . . . , Ŝ
Θ
n denote the sets activated in G under x and in Ĝ under x̂,

respectively, in stages 0, . . . , n. Note that since s is a source, and xs < θs, we know

that s /∈ SΘ
i for all i. However, this means that every node in V \ {s} has both the
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same direct influence applied to it under x and x̂, and the same amount of influence

applied by any activated set in both G and Ĝ. So we can immediately see that since

SΘ
0 = ∅ = ŜΘ

0 , by induction we will have that SΘ
i = ŜΘ

i for all i, and in particular for

i = n.

The case where xs ≥ θs requires more care. Let SΘ
0 , . . . , S

Θ
n and ŜΘ

0 , . . . , Ŝ
Θ
n

denote the sets activated in G under x and in Ĝ under x̂ + ŷ, respectively, in stages

0, . . . , n. Note that our assumption implies that s will be activated by our direct in-

fluence in the first round, and so we have s ∈ ŜΘ
i for all i ≥ 1. Fix some v ∈ V ,

v 6= s, and let fv(S) and f̂v(S) denote the total influence – both direct and cascading

– applied to in G and Ĝ, respectively, when the current active set is S. Then, we can

see that for any S ⊆ V \ {s} we have that

f̂v(S) = x̂v + ŷv +
∑

u∈δ
−

(v)
u∈S

wuv = xv +
∑

u∈δ
−

(v)
u∈S∪{s}

wuv = fv(S ∪ {s}). (3.2)

Furthermore, note that both fv and f̂v are always monotone nondecreasing. While

we cannot show that SΘ
i = ŜΘ

i for all i in this case, we will instead show that SΘ
i \

{s} ⊆ ŜΘ
i ⊆ SΘ

i+1 \ {s} for all i = 0, . . . , n − 1. Recall that the propagation of

influence converges by n steps. That is, if we continued the process for an additional

step to produce activated sets SΘ
n+1 and ŜΘ

n+1, we would have that SΘ
n+1 = SΘ

n and

ŜΘ
n+1 = ŜΘ

n . However, our claim would extend to this extra stage as well, and so we

conclude that we must have that SΘ
n = ŜΘ

n ∪{s}. We prove our claim inductively. First,

observe that it holds trivially for i = 0, since we have SΘ
0 = ŜΘ

0 = ∅, and previously

observed that s ∈ SΘ
1 . Now, the claim holds for some i. Note, however, that by (3.2)

and monotonicity we must have that for all v ∈ V , v 6= s

fv(S
Θ
i ) = f̂v(S

Θ
i \ {s}) ≤ f̂v(ŜΘ

i )

≤ f̂v(S
Θ
i+1 \ {s}) = fv(S

Θ
i+1).
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But from the above, we can see that Si+1 \ {s} ⊆ ŜΘ
i+1 ⊆ SΘ

i+2 \ {s} since such a

v in included in each of the above sets if and only if fv(SΘ
i ), f̂v(ŜΘ

i ), or fv(SΘ
i+1),

respectively, exceeds θv .

Thus, by observing that θs is an independent draw from U [0, 1], we can see that

taking expectations over Θ and conditioning on which of θs and xs is larger, gives us

that

σ(x) = (1− xs)σ̂(x̂) + xs(1 + σ̂(x̂ + ŷ))

=
∑
v∈V
v 6=s

xvσ(1v) + xs(1 + σ̂(ŷ)).

We complete our proof by observing that, in fact, σ(1s) is precisely equal to 1 +

σ̂(ŷ). We can see this by once again coupling the activated sets under any vector Θ

of thresholds. In particular, let SΘ
0 , . . . , S

Θ
n and ŜΘ

0 , . . . , Ŝ
Θ
n denote the sets activated

in G under 1s and in Ĝ under ŷ, respectively, in stages 0, . . . , n. Arguments identical

to those made above allow us to conclude that for all i, we have that SΘ
i+1 = ŜΘ

i ∪

{s}. Thus, by again noting that influence cascades converge after n steps we see that

SΘ
n = ŜΘ

n ∪ {s}, and taking expectations with respect to Θ gives precisely the desired

equality.

We may also express our optimization problem on DAGs in the integral case as the
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following MIP:

maximize
∑
v

(Xv + Yv) subject to

Xv + Yv ≤ 1 ∀v

Yv −
∑

u∈δ− (v)

wuv(Yu +Xu) ≤ 0 ∀v

∑
v

Xv ≤ K

Xv ∈ {0, 1} ∀v

Yv ∈ [0, 1] ∀v

3.7 Examples

Example 4. Consider solving our problem on a directed graph consisting of a single

(one-directional) cycle with n vertices. Assume that every edge has weight 1 −K/n,

and that thresholds on nodes are drawn from U [0, 1]. We consider the optimal integral

and fractional influence to apply.

In the fractional case, consider applying influence of exactly K/n to every node.

Note that for any node, the amount of influence we apply directly plus the weight on

its sole incoming edge sum to 1. Thus, any time a node’s predecessor on the cycle is

becomes activated, the node will becomes activated as well. Inductively, we can then

see that any time at least one node is activated in the cycle, every node will eventually

become activated. This means that the expected number of activated nodes under this
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strategy is precisely

n · Pr[At least one node activates]

= n(1− Pr[No nodes activate])

= n(1− Pr[Every node’s threshold is above K/n])

= n(1− (1−K/n)n).

In the integral case, however, we cannot spread our influence as evenly. Note that

each node we activate has some chance to activate the nodes following it in the cycle;

however, any cascade must stop once we reach the next node we directly activated. If

we have an interval of length ` between directly activated nodes (including the initial

node we activate directly in the length), we can see that the expected number of nodes

activated in the interval is

∑̀
i=1

Pr[Node i in the interval is activated]

=
∑̀
i=1

Pr[Nodes 2, 3, . . . , i have thresholds below 1−K/n]

= 1 + (1−K/n) + (1−K/n)2 + · · ·+ (1−K/n)(`−1)

=
1− (1−K/n)`

K/n
.

While this tells us the expected value for a single interval, we want to know the expected

value summed over all intervals. Observing from the sum form that the benefit of

adding another node to an interval is strictly decreasing in the length of the interval,

we can see that we should always make the lengths of the intervals as close to equal

as possible. Noting that the lengths of the intervals always sum to n, then, we can see
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that the total number of nodes activated in expectation is bounded by

K
1− (1−K/n)n/K

K/n
= n(1− (1−K/n))n/K .

Note, however, that if we choose K ≈ lnn, we get that

1− (1−K/n)n/K

1− (1−K/n)n
≈ 1− 1/e.

3.8 Harndess

In this section, we present NP-Hardness and inapproximability results in the linear

influence model. We assume that thresholds are not chosen from a distribution, and

they are fixed and given as part of the input. We note that this is the main assumption

that makes our problem intractable, and to achieve reasonable algorithms, one has to

make some stochastic (distributional) assumptions on the thresholds. In Section 3.4, we

introduced the linear influence model as a special case of fractional influence model,

but it makes sense to define it as a special case of integral influence model as well.

In the fractional linear influence model, we are allowed to apply any influence vector

x ∈ [0, 1]n on nodes. By restricting the influence vector x to be in {0, 1}n (a binary

vector), we achieve the integral version of linear influence model. Our hardness results

in Theorem 8, and Corollary 9 work for both fractional and integral versions of linear

influence model. We start by proving that the linear influence model is NP-Hard with

a reduction from independent set problem in Theorem 8. We strengthen this hardness

result in Corollary 9 by showing that an n1−ε approximation algorithm for the linear

influence problem yields an exact algorithm for it as well for any constant ε > 0, and

therefore even an n1−ε approximation algorithm is NP-Hard to achieve. At the end,

we show the that it is NP-Hard to achieve any better than 1 − 1/e approximation in

the Triggering model which is introduced in [75]. We will elaborate on the Triggering
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Model and this hardness result at the end of this section.

Theorem 8. If we allow arbitrary, fixed thresholds, it is NP-Hard to compute for a

given instance of the integral linear influence problem (G, k, T ) (graph G, budget

k, and a target goal T ) whether or not there exists a set S of k vertices in G such

that σ(S) ≥ T . Furthermore, the same holds in the factional version of the problem

(instead of a set S of size k, we should look for a influence vector with `1 norm equal

to k in the fractional case).

Proof. We show hardness by reducing from Independent Set. Given a problem instance

(G, k) of IS, we construct a two-layer DAG as follows. Let G = (V,E) denote the

vertices and (undirected) edges ofG. The first layer L1 consists of one vertex for every

vertex v ∈ V ; we abuse notation and refer to the vertex in L1 corresponding to v ∈ V

as v as well. The second layer contains vertices based on the edges in E. For each

unordered pair of vertices {u, v} in V , we add vertices to the second layer L2 based on

whether {u, v} is an edge in G: if {u, v} ∈ E, then we add a single vertex to L2 with

(directed) edges from each of u, v ∈ L1 to it; if {u, v} /∈ E, then we add two vertices

to L2, and add (directed) edges going from u ∈ L1 to the first of these and from v ∈ L1

to the second of these. We set all activation thresholds and all edge weights in our new

DAG to 1/2. We claim that there exists a set S ⊆ L1 ∪ L2 satisfying |S| ≤ k and

σ(S) ≥ kn if and only if G has an independent set of size k.

First, we note that in our constructed DAG, sets S ⊆ L1 always dominate sets

containing elements outside of L1, in the sense that for any T ⊆ L1 ∪ L2 there always

exists a set S ⊆ L1 such that |S| ≤ |T | and σ(S) ≥ σ(T ). Consider an arbitrary

such T . Now, consider any vertex v ∈ T ∩ L2. By construction, there exists some

u ∈ L1 such that (u, v) is an edge in our DAG. Note that |T \ {v} ∪ {u}| ≤ |T | and

σ(T \ {v} ∪ {u}) ≥ σ(T ). Thus, if we repeatedly replace T with T \ {v} ∪ {u} for

each such v, we eventually with have the desired set S.

With the above observation in hand, we can be assured that there exists set S of k
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vertices in our constructed DAG such that σ(S) ≥ nk if and only if there exists such an

S ⊆ L1. Recall how we constructed the second layer of our DAG: each vertex v ∈ L1

has precisely (n − 1) neighbors; and two vertices u, v ∈ L1 share a neighbor if and

only if they are neighbors in the original graph G, in which case they have exactly one

shared neighbor. Thus, we can see that for any set of vertices S ⊆ L1, we have that

σ(S) = n|S| − |{{u, v} ∈ E : u, v ∈ S}|.

Thus, we can see that for any set S ⊆ L1, we have σ(S) ≥ n|S| if and only if

{u, v} /∈ E for any u, v ∈ S, i.e. S is an independent set in G. The main claim

follows.

Furthermore, recall that in our constructed DAG, every edge weight and threshold

was exactly equal to 1/2. It is not hard to see, therefore, that in the fractional case

it is never optimal to place an amount of influence on a vertex other than 0 or 1/2.

It follows, therefore, that there is a 1 − 1 correspondence between optimal optimal

solutions in the integral case with budget k and in the fractional case with budget k/2.

Thus, as claimed, the hardness extends to the fractional case.

Corollary 9. If we allow arbitrary, fixed thresholds, it is NP-Hard to approximate the

linear influence problem to within a factor of n1−ε for any ε > 0. Furthermore, the

same holds for the fractional version of our problem.

Proof. We show that given an instance (G, k) of Target Set Selection, and a target T ,

we can construct a new instance (G′, k), such that if we can approximate the optimal

solution for the new instance (G′, k) to within a factor of n1−ε, then we can tell whether

the original instance (G, k) had a solution with objective value at least T . The claim

then follows by applying Theorem 8.

Fix some δ > 0. Let n be the number of vertices in G. Note that we must have

that 0 < k < T ≤ n, since if any one of these inequalities fails to hold, the question
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of whether or not (G, k) has a solution with objective value at least T can be answered

trivially. Let N = d(2n2)1/δe; we construct G′ from G by adding N identical new

vertices to it. Let v be one of our new vertices. For every vertex u that was present in

G, we add an edge from u to v in G′, with weight 1/n. We set the threshold of v to be

precisely T/n.

Consider what the optimal objective value in (G, k) implies about the optimal ob-

jective value in (G′, k). If there exists some solution to the former providing objective

value at least T , then we can see that the same solution will activate every one of the

new vertices in G′ as well, and so produce an objective value of at least T + N . On

the other hand, assume every solution to G has objective value strictly less than T .

Note that in the case of fixed thresholds, the activation process is deterministic, and

so we may conclude that every solution has objective value at most T − 1. Now, this

means that no matter what choices we make in G′ about the vertices inherited from

G, every one of the new vertices will require at least 1/n additional influence to be-

come activated. Thus, no solution for (G′, k) can achieve objective value greater than

(T − 1) + kn, in either the integral or fractional case. By our choice of N , however,

we can then conclude that the optimal solution for (G′, k) has value at least

T +N > N ≥ (2n2)1/δ > (T − 1 + kn)1/δ,

the value of the optimal solution for (G′, k) in the latter case raised to the power of

1/δ. Thus, for any fixed ε > 0, we can choose an appropriate δ > 0 such the new

instance (G′, k) has increased in size only polynomially from (G, k), but applying an

n1−ε approximation to (G′, k) will allow us to distinguish whether or not (G, k) had a

solution with objective value at least T , exactly as desired.

Before stating Theorem 10, we should define the triggering model introduced in

[75]. In this model, each node v independently chooses a random triggering set Tv

70



according to some distribution over subsets of its neighbors. To start the process, we

target a set A for initial activation. After this initial iteration, an inactive node v be-

comes active in step t if it has a neighor in its chosen triggering set Tv that is active at

time t− 1. For our purposes, the distributions of triggering sets have support size one

(deterministic triggering sets). We also show that our hardness result even holds when

the size of these sets is two.

Theorem 10. It is NP-Hard to approximate linear influence problem to within any

factor better than 1−1/e, even in the Triggering model where triggering sets have size

at most 2.

Proof. We prove this by reducing from the Max Coverage problem, which is NP-Hard

to approximate within any factor better than 1− 1/e. Let (S, k) be an instance of Max

Coverage, where S = {S1, . . . , Sm} and Sj ⊆ [n] for each j = 1, . . . ,m. We begin

by showing a reduction to an instance of Target Set Selection in the Triggering model;

later, we argue that we can do so while ensuring that triggering sets have size at most

2.

We construct a two layer DAG instance of Target Set Selection as follows. First,

fix a large integer N ; we will pick the exact value of N later. The first layer L1 will

contain m vertices, each corresponding to one of the sets in S . The second layer L2

contains nN vertices, N of which correspond to each i ∈ [n]. We add directed edges

from the vertex in L1 corresponding to Sj to all N vertices in L2 corresponding to i

for each i ∈ Sj . We set all thresholds and weights in the DAG to 1. Note that this

corresponds exactly to the triggering model, where each vertex in the first layer has an

empty triggering set and each vertex in the second layer has a triggering set consisting

of exactly the nodes in L1 corresponding to Sj that contain it. This completes the

description of the reduction.

Now, we consider the maximal influence we can achieve by selecting k vertices in

our constructed DAG. First, we note that we may assume without loss of generality
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that we only consider choosing vertices from L1. This is because we can only improve

the number of activated sets by replacing any vertex from L2 with a vertex that has an

edge to it; if we have already selected all such vertices, then we can simply replacing it

with an arbitrary vertex from L1 and be no worse off. Note, however, that if we select

some set W ⊆ L1 of vertices to activate, we will have that

σ(W ) = |W |+N |∪j∈WSj |.

LetW ∗ ∈ argmaxW⊂L1:|W |≤k σ(W ). Now, if we have an α-approximation algorithm

for Target Set Selection, we can find some W ⊆ L1 such that |W | ≤ k and σ(W ) ≥

ασ(W ∗). But this means that

|W |+N |∪j∈WSj | ≥ α (|W ∗|+N |∪j∈W∗Sj |) ,

which implies that

|∪j∈WSj | ≥ α|∪j∈W∗Sj | −m/N. (3.3)

Thus, for any ε > 0, by picking N = dm/εe we can use our α-approximation algo-

rithm for Target Set Selection to produce an α-approximation for Max Coverage with

an additive loss of ε. Since the objective value for our problem is integral, we may

therefore conclude it is NP-Hard to approximate Target Set Selection within a factor of

1− 1/e.

In the above reduction, our targeting sets could be as large as m. We know show

that we can, in fact, ensure that no targeting set has size greater than 2. In particular,

the key insight is that activation effectively functions as an OR-gate over the targeting

set. We can easily replace an OR-gate with fan-in of f by a tree of at most log(f)

OR-gates, each with fan-in 2. It is easy to see that if we add such trees of OR-gates
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before L2, we increase the loss term in Equation (3.3) to at most m log(m)/N . We

can easily offset this by increasing N appropriately, and so retain our conclusion even

when targeting sets have size at most 2.

Example 5. The following example shows that when thresholds are fixed, the optimal

objective values in the fractional and integral cases can differ by as much as a factor of

n, where n is the number of vertices in the graph. The instance we consider is a DAG

consisting of a single, directed path of n vertices. Each edge in the path has weight

1/(n + 1), and every vertex on the path has threshold 2/(n + 1). Note that since

thresholds are strictly greater than edge weights, and every vertex, being on a simple

path, has in degree at most one, it is impossible for a vertex to be activated without

some direct influence being applied to it.

Consider our problem on the above graph with budget 1. In the integral case, we

cannot activate more than a single vertex – as previously observed, no vertex can be

activated without direct application of influence, and with a budget of 1 we can only

affect on vertex directly. On the other hand, in the fractional case the following strategy

guarantees that all vertices are activated. Apply 2/(n + 1) influence to the earliest

vertex, and 1/(n+1) influence to the remaining (n−1) vertices. Now, this is sufficient

to activate the earliest vertex directly; furthermore, every other vertex has sufficient

direct influence that it will activate as long as the vertex before it on the path does.

Thus, a simple induction proves the claim, and we can see that the optimal integral and

fractional solutions differ in objective value by a factor of n.

3.9 Experimental Results

Datasets. We use the following real-world networks for evaluating our claims. The

statistical information regarding these real-world networks are in Table 3.1.

• NetHEPT: This is an academic collaboration network. NetHEPT is based on
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Networks # of nodes # of edges Ave. deg. Directed
NetHEPT 15233 58891 7.73 No
NetPHY 37154 231584 12.46 No

Facebook 4039 88234 21.84 No
Amazon 262111 1234877 4.71 Yes

Table 3.1: real-world networks

“High Energy Physics - Theory" section of the e-print arXiv2 with papers from

1991 to 2003. In this network, nodes represent authors and edges represent

co-authorship relations. This network is available at http://research.

microsoft.com/en-us/people/weic/graphdata.zip.

• NetPHY: This is another academic collaboration network. NetPHY is taken

from the full “Physics" section of the e-print arXiv. In this network, nodes

represent authors and edges represent co-authorship relations. Graph is avail-

able at http://research.microsoft.com/en-us/people/weic/

graphdata.zip.

• Facebook: This network represents friend list (circle) from Facebook. The data

is available on http://snap.stanford.edu/data/egonets-Facebook.

html.

• Amazon: This network is produced by crawling Amazon website based on

the following observation: customers who bought product i also bought product

j. In this network, nodes represent products and there is a direct edge from

node i to node j if product i is frequently co-purchased with product j. This

network is based on Amazon data in March 2003. The data is available at http:

//snap.stanford.edu/data/amazon0302.html.

Algorithms. We compare the following algorithms in this study. The first three

algorithms are for the integral influence model, and the last three algorithms work for

2http://www.arXiv.org

74

http://research.microsoft.com/en-us/people/weic/graphdata.zip
http://research.microsoft.com/en-us/people/weic/graphdata.zip
http://research.microsoft.com/en-us/people/weic/graphdata.zip
http://research.microsoft.com/en-us/people/weic/graphdata.zip
http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/amazon0302.html
http://snap.stanford.edu/data/amazon0302.html
http://www.arXiv.org


the fractional influence model. Note that we need efficient algorithms which are fast

enough so we can run them on a real-world network.

• DegreeInt: A simple greedy algorithm which selects nodes with the largest

degrees. This method has been used in [23, 75] as well.

• DiscountInt: This is a variant of DegreeInt. This algorithm selects node uwith

the highest degree in each step. Moreover, after adding node u to the seed set,

the algorithm decreases the degrees of neighbors of u by one. This method was

also evaluated in [23].

• RandomInt: This algorithm just randomly adds B nodes to the seed set, i.e.,

by spending 1 on each of them. We use this algorithm as a baseline in our

comparisons which is also used in [23, 24, 75]

• DegreeFrac: This algorithm selects each node fractionally proportional to its

degree. In particular, this algorithm spends min{Bd
−
i

m , 1} on node i where B is

the budget, d−i is the out-degree of node i, and m is the total number of edges3.

• DiscountFrac: A heuristic for the fractional case according to Algorithm 1. Let

Γ−v (A) be the total sum of the weight of edges from node v to set A, and Γ+
v (A)

be the total sum of the weight of edges from set A to node v. This algorithm

starts with an empty seed set S, and in each step it adds node v 6∈ S with the

maximum Γ−v (V − S) to seed set S by spending max{0, 1 − Γ+
v (S)} on node

v. Note that in each step the total influence from the current seed set S to node v

is Γ+
v (S), and it is enough to spend 1− Γ+

v (S) for adding node v to the current

seed set S. Note that no node would pay a positive amount, and the algorithm

spends max{0, 1− Γ+
v (S)} on node v.

• UniformFrac: This algorithm distributes the budget equally among all nodes.

We use this algorithm as another baseline in our comparisons.
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Algorithm 1 DiscountFrac
Input: Graph G = (V,E) and budget B
Output: Influencing vector x

1: S ← 0
2: b← B
3: x← 0
4: while b > 0 do
5: u← argmaxv∈V−S{Γ−v (V − S)}
6: xu ← min{b,max{0, 1− Γ+

u (S)}}
7: b← b− xu
8: S ← S ∪ {u}
9: end while

10: return x

All these heuristic algorithms are fast and are designed for running on large real-

world networks. In particular, algorithms DegreeInt and DegreeFrac only need the

degree nodes. The running time of algorithms DiscountInt and DiscountFrac are

O(n log n + m) using a heap. Algorithm DiscountInt was proposed as an efficient

algorithm for the integral influence model in [23].At last we note that algorithms Ran-

domInt and UniformFrac are linear-time algorithms. It also has been shown that the

performance of DiscountInt almost matches the performance of the greedy algorithm

which maximizes a submodular function [23]. Hence, it seems DiscountInt is an ap-

propriate candidate for evaluating the power of the integral influence model.

Results. We have implemented all algorithms in C++ and run all experiments on

a server with two 6-core/12-thread 3.46 GHz Intex Xeon X5690 CPUs, with 48 GB 1.3

GHz RAM. We run all of the aforementioned algorithms for finding the activation vec-

tor/set, and compute the performance of each algorithm by running 10000 simulations

and taking the average of the number of adopters.

We first examine the performance of a fractional activation vector in the weighted

cascade model. In the weighted cascade model the weight of the edge from u to v is

1
d−v

, where d−v is the in-degree of node v. Note that in the weighted cascade model the

3If the graph is undirected we should use 2m instead of m
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total sum of weight of incoming edges of each node is
∑
uv wuv =

∑
uv

1
d−v

= 1. This

model was proposed by Kempe, Kleinberg, and Tardos [75], and it has been used in the

literature, e.g., see [23, 24, 25]. We run all algorithms on aforementioned real-world

networks, and compare their performance with various budget in Figure 3.1.

(a) Facebook (b) NetHEPT

(c) NetPHY (d) Amazon

Figure 3.1: Performance of different algorithms on Facebook, NetHEPT, NetPHY,
and Amazon. The weights of edges are defined based on the weighted cascade model.

We then compare the performance of various algorithms when the weight of edges

are determined by TRIVALENCY model. In the TRIVALENCY model the weight of

each edge is chosen uniformly at random from the set {0.001, 0.01, 0.1}, where 0.001,

0.01, and 0.1 represent low, medium, and high influences. Note that in this model

the total sum of the weights of incoming edges of each node may be greater than

1. This model and its variants have been used in [23, 24, 75]. We run all proposed

algorithms on real-world networks when their weights are defined by TRIVALENCY

model. Results are shown in Figure 3.2.

Discussion. In most of the plots, algorithms for the fractional influence model do
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(a) Facebook (b) NetHEPT

(c) NetPHY (d) Amazon

Figure 3.2: Performance of different algorithms on Facebook, NetHEPT, NetPHY,
and Amazon. The weights of edges are defined based on the TRIVALENCY model.

substantially better than algorithms for the integral influence model. Overall, for most

datasets, DiscountFrac is the best algorithm, with the only exception being the

Facebook dataset. As a simple metric of the power of the fractional model versus the

integral model, we consider the pointwise performance gain of fractional model algo-

rithms versus the integral model algorithms. i.e., for a given budget, we compute the

ratio of expected number of adopters for the fractional model with the most adopters

and the expected number of adopters for the integral model algorithm with the most

adopters. Depending on the dataset, we get a mean pointwise performace gain be-

tween 3.4% (Facebook dataset, TRIVALENCY model) and 142.7 % (Amazon dataset,

weighted cascade model) with the mean being 31.5% and the median being 15.7 %

over all the datasets and both models (weighted cascade and TRIVALENCY). Among

the heuristics presented for the integral model, DiscountInt is probably the best. If

we compare just it to its fractional adaptation, DiscountFrac ,we get a similar pic-
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ture: the range of average performace gain is between 9.1 % (Facebook, TRIVALENT

model) and 397.6 % (Amazon, weighted cascade model) with a mean of 64.1 % and a

median of 15.6 %.

In summary, the experimental results clearly demonstrate that the fractional model

leads to a significantly higher number of adopters across a wide range of budgets on

diverse datasets.
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Chapter 4

Network Cournot Competition

4.1 Introduction

In this chapter we study selling a utility with a distribution network, e.g., natural gas,

water and electricity, in several markets when the clearing price of each market is

determined by its supply and demand. The distribution network fragments the market

into different regional markets with their own prices. Therefore, the relations between

suppliers and submarkets form a complex network [36, 37, 49, 53, 69, 98, 131]. For

example, a market with access to only one supplier suffers a monopolistic price, while

a market having access to multiple suppliers enjoys a lower price as a result of the price

competition.

Antoine Augustin Cournot introduced the first model for studying the duopoly com-

petition in 1838. He proposed a model where two individuals own different springs of

water, and sell it independently. Each individual decides on the amount of water to

supply, and then the aggregate water supply determines the market price through an

inverse demand function. Cournot characterizes the unique equilibrium outcome of

0This is a joint work with M. Abolhassani, M. H. Bateni, M. T. Hajiaghayi and H. Mahini. A version of
this work appeared in WINE ’15 [1].
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the market when both suppliers have the same marginal costs of production, and the

inverse demand function is linear. He argued that in the unique equilibrium outcome,

the market price is above the marginal cost.

Joseph Bertrand 1883 criticized the Cournot model, where the strategy of each

player is the quantity to supply, and in turn suggested to consider prices, rather than

quantities, as strategies. In the Bertrand model each firm chooses a price for a homoge-

neous good, and the firm announcing the lowest price gets all the market share. Since

the firm with the lowest price receives all the demand, each firm has incentive to price

below the current market price unless the market price matches its cost. Therefore,

in an equilibrium outcome of the Bertrand model, assuming all marginal costs are the

same and there are at least two competitors in the market, the market price will be equal

to the marginal cost.

The Cournot and Bertrand models are two basic tools for investigating the competi-

tive market price, and have attracted much interest for modeling real markets; see, e.g.,

[36, 37, 53, 131]. While these are two extreme models for analyzing the price com-

petition, it is hard to say which one is essentially better than the other. In particular,

the predictive power of each strongly depends on the nature of the market, and varies

from application to application. For example, the Bertrand model explains the situation

where firms literally set prices, e.g., the cellphone market, the laptop market, and the

TV market. On the other hand, Cournot’s approach would be suitable for modeling

markets like those of crude oil, natural gas, and electricity, where firms decide about

quantities rather than prices.

There are several attempts to find equilibrium outcomes of the Cournot or Bertrand

competitions in the oligopolistic setting, where a small number of firms compete in

only one market; see, e.g., [60, 64, 80, 105, 121, 132]. Nevertheless, it is not entirely

clear what equilibrium outcomes of these games are when firms compete over more

than one market. In this chapter, we investigate the problem of finding equilibrium out-
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comes of the Cournot competition in a network setting where there are several markets

for a homogeneous good and each market is accessible to a subset of firms.

4.1.1 Example

We start with the following warm-up example. This is a basic example for the Cournot

competition in the network setting. It consists of three scenarios. We assume firm

i ∈ {A,B} produces quantity qij of the good in market j ∈ {1, 2}. Let q be the vector

of all quantities.

Scenario 1 Consider the Cournot competition in an oligopolistic setting with two firms

and one market (see Figure 4.1). Let p(q) = 1− qA1 − qB1 be the market price

(the inverse demand function), and ci(q) = 1
2q

2
i1 be the cost of production for

firm i ∈ {A,B}. The profit of a firm is what it gets by selling all the quantities of

good it produces in all markets minus its cost of production. Therefore, the profit

of firm i denoted by πi(q) is qi1(1−qA1−qB1)− 1
2q

2
i1. In a Nash equilibrium of

the game, each firm maximizes its profit assuming its opponent does not change

its strategy. Hence, the unique Nash equilibrium of the game can be found by

solving the set of equations ∂πA

∂qA1
= ∂πB

∂qB1
= 0. So qA1 = qB1 = 1

4 is the unique

Nash equilibrium where p(q) = 1
2 , and πA(q) = πB(q) = 0.9375.

Scenario 2 We construct the second scenario by splitting the market in the previous

scenario into two identical markets such that both firms have access to both mar-

kets (see Figure 4.1). Since the demand is divided between two identical markets,

the price for market j would be pj(q) = 1−2qAj−2qBj , i.e., the clearance price

of each market is the same as the clearance price of the market in Scenario 1,

when the supply is half of the supply of the market in Scenario 1. In this scenario,

the profit of firm i ∈ {A,B} is πi(q) =
∑
j qij(1−2qAj−2qBj)− 1

2 (qi1+qi2)2.

Any Nash equilibrium of this game satisfies the set of equations ∂πA

∂qA1
= ∂πA

∂qA2
=

∂πB

∂qB1
= ∂πB

∂qB2
= 0. By finding the unique solution to this set of equations, one
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A

πA=0.0938

B

πB=0.0938

1

p1= 1
2

qA1 qB1

First Scenario

A

πA=0.0938

B

πB=0.0938

1

p1= 1
2

2

p2= 1
2

qA1 qB2

Second Scenario

qA2 qB1

A

πA=0.124

B

πB=0.064

1

p1=0.64

2

p2=0.48

qA1 qA2 qB2

Third Scenario

Figure 4.1: This figure represents the three scenarios of our example. Vector q =
( 1

4 ,
1
4 ) represents the unique equilibrium in the first scenario. Vector q = (1

8 ,
1
8 ,

1
8 ,

1
8 )

is the unique equilibrium of the second scenario. Finally, Vector q = (0.18, 0.1, 0.16)
is the unique equilibrium in the third scenario.

can verify that q = ( 1
8 ,

1
8 ,

1
8 ,

1
8 ) is the unique equilibrium of the game where

p1(q) = p2(q) = 1
2 , and πA(q) = πB(q) = 0.09375. Since we artificially split

the market into two identical markets, this equilibrium is, not surprisingly, the

same as the equilibrium in the previous scenario.

Scenario 3 Consider the previous scenario, and suppose firm 2 has no access to the

first market (see Figure 4.1). Let the demand functions and the cost functions be

the same as the previous scenario. The profits of firms 1 and 2 can be written as

follows:

πA(q) = qA1(1− 2qA1) + qA2(1− 2qA2 − 2qB2)− 1

2
(qA1 + qA2)2,

πB(q) = qB2(1− 2qA2 − 2qB2)− 1

2
q2
B2.

The unique equilibrium outcome of the game is found by solving the set of

equations ∂πA

∂qA1
= ∂πA

∂qA2
= ∂πB

∂qB2
= 0. One can verify that vector q =

(qA1, qA2, qB2) = (0.18, 0.1, 0.16) is the unique equilibrium outcome of the

game where p1(q) = 0.64, p2(q) = 0.48, πA(q) = 0.124, and πB(q) = 0.064.
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The following are a few observations worth mentioning.

• Firm A has more power in this scenario due to having a captive market1.

• The equilibrium price of market 1 is higher than the equilibrium price in

the previous scenarios.

• The position of firm B affects its profit. Since it has no access to market 1,

it is not as powerful as firm A.

• The equilibrium price of market 2 is smaller than the equilibrium price in

the previous scenarios.

4.1.2 Related Work

There are several papers that investigate the Cournot competition in an oligopolistic

setting (see, e.g., [60, 64, 80, 121, 132]). In spite of these works, little is known about

the Cournot competition in a network. Ilkılıç [66] studies the Cournot competition in a

network setting, and considers a network of firms and markets where each firm chooses

a quantity to supply in each accessible market. He studies the competition when the

inverse demand functions are linear and the cost functions are quadratic (functions of

the total production). In this study, we consider the same model when the cost func-

tions and the demand functions may have quite general forms. We show the game with

linear inverse demand functions is a potential game and therefore has a unique equilib-

rium outcome. Furthermore, we present two polynomial-time algorithms for finding an

equilibrium outcome for a wide range of cost functions and demand functions. While

we investigate the Cournot competition in networks, there is a recent paper which con-

siders the Bertrand competition in network setting [13], albeit in a much more restricted

case of only two firms competing in each market.

The final price of each market in the Cournot competition is a market clearing

price; i.e, the final price is set such that the market becomes clear. Finding a market
1A captive market is one in which consumers have limited options and the seller has a monopoly power.
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clearance equilibrium is a well-established problem, and there are several papers which

propose polynomial-time algorithms for computing equilibriums of markets in which

the price of each good is defined as the price in which the market clears. Examples

of such markets include Arrow-Debreu market and its special case Fisher market (see

related work on these markets [40, 41, 42, 47, 54, 68, 104]). Devanur and Vazirani [41]

design an approximation scheme which computes the market clearing prices for the

Arrow-Debreu market, and Ghiyasvand and Orlin [54] improve the running time of the

algorithm. The first polynomial-time algorithm for finding an Arrow-Debreu market

equilibrium is proposed by Jain [68] for a special case with linear utilities. The Fisher

market, a special case of the Arrow-Debreu market, attracted a lot of attention as well.

Eisenberg and Gale [47] present the first polynomial-time algorithm by transferring the

problem to a concave cost maximization problem. Devanur et al. [42] design the first

combinatorial algorithm which runs in polynomial time and finds the market clearance

equilibrium when the utility functions are linear. This result is later improved by Orlin

[104].

For the sake of completeness, we refer to recent works in the computer science lit-

erature [51, 67], which investigate the Cournot competition in an oligopolistic setting.

Immorlica et al. [67] study a coalition formation game in a Cournot oligopoly. In this

setting, firms form coalitions, and the utility of each coalition, which is equally divided

between its members, is determined by the equilibrium of a Cournot competition be-

tween coalitions. They prove the price of anarchy, which is the ratio between the social

welfare of the worse stable partition and the social optimum, is Θ(n2/5) where n is the

number of firms. Fiat et al. [51] consider a Cournot competition where agents may de-

cide to be non-myopic. In particular, they define two principal strategies to maximize

revenue and profit (revenue minus cost) respectively. Note that in the classic Cournot

competition all agents want to maximize their profit. However, in their study each

agent first chooses its principal strategy and then acts accordingly. The authors prove
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Table 4.1: Summary of Results

Cost functions Inverse demand func-
tions

Running time Technique

Convex Linear O(E3) Convex optimization, for-
mulation as an ordinal po-
tential game

Convex Strongly monotone
marginal revenue func-
tion2

poly(E)
Reduction to a nonlinear
complementarity problem

Convex, separable Concave O(n log2Qmax) Supermodular optimiza-
tion, nested binary search

this game has a pure Nash equilibrium and the best response dynamics will converge

to an equilibrium. They also show the equilibrium price in this game is lower than the

equilibrium price in the standard Cournot competition.

4.1.3 Results and techniques

We consider the problem of Cournot competition on a network of markets and firms for

different classes of cost and inverse demand functions. Adding these two dimensions

to the classical Cournot competition which only involves a single market and basic

cost and inverse demand functions yields an engaging but complicated problem which

needs advanced techniques for analyzing. For simplicity of notation we model the

competition by a bipartite graph rather than a hypergraph: vertices on one side denote

the firms, and vertices on the other side denote the markets. An edge between a firm

and a market demonstrates willingness of the firm to compete in that specific market.

The complexity of finding the equilibrium, in addition to the number of markets and

firms, depends on the classes that inverse demand and production cost functions belong

to.

We summarize our results in Table 4.1.

In the above table, E denotes the number of edges of the bipartite graph, n de-

2Marginal revenue function is the vector function which maps production quantities for an edge to
marginal revenue along that edge.
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notes the number of firms, and Qmax denotes the maximum possible total quantity in

the oligopoly network at any equilibrium. In our results we assume the inverse de-

mand functions are nonincreasing functions of total production in the market. This is

the basic assumption in the classical Cournot Competition model: As the price in the

market increases, it is reasonable to believe that the buyers drop out of the market and

demand for the product decreases. The classical Cournot Competition model as well

as many previous works on Cournot Competition model assumes linearity of the in-

verse demand function [66, 67]. In fact there is little work on generalizing the inverse

demand function in this model. The second and third row of the above table shows we

have developed efficient algorithms for more general inverse demand functions satis-

fying concavity rather than linearity. This can be accounted as a big achievement. The

assumption of monotonicity of the inverse demand function is a standard assumption

in Economics [6, 7, 93]. We assume cost functions to be convex which is the case in

many works related to both Cournot Competition and Bertrand Network [81, 135]. In a

previous work [66], the author considered Cournot Competition on a network of firms

and markets; however, assumed that inverse demand functions are linear and all the

cost functions are quadratic function of the total production by the firm in all markets

which is quite restrictive. Most of the results in other related works in Cournot Com-

petition and Bertrand Network require linearity of the cost functions [13, 67]. A brief

summary of our results presented in three sections is given below.

Linear Inverse Demand Functions

In case inverse demand functions are linear and production costs are convex, we present

a fast and efficient algorithm to obtain the equilibrium. This approach works by show-

ing that Network Cournot Competition belongs to a class of games called ordinal po-

tential games. In such games, the collective strategy of the independent players is to

maximize a single potential function. The potential function is carefully designed in
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such a way that changes made by one player reflects in the same way in the poten-

tial function as in their own utility function. We design a potential function for the

game, which depends on the network structure, and show how it captures this property.

Moreover, in the case where the cost functions are convex, we prove concavity of this

designed potential function (Theorem 16) concluding convex optimization methods can

be employed to find the optimum and hence, the equilibrium of the original Cournot

competition. We also discuss uniqueness of equilibria in case the cost functions are

strictly concave. Our result in this section is specifically interesting since we find the

unique equilibrium of the game. We prove the following theorems in Section 4.3.

Theorem 11. The Network Cournot Competition with linear inverse demand functions

forms an ordinal potential game.

Theorem 12. Our designed potential function for the Network Cournot Competition

with linear inverse demand functions is concave provided that the cost functions are

convex. Furthermore, the potential function is strictly concave if the cost functions

are strictly convex, and hence the equilibria for the game is unique. In addition, a

polynomial-time algorithm finds the optimum of the potential function which describes

the market clearance prices.

The general case

Since the above approach does not work for nonlinear inverse demand functions, we

design another interesting but more involved algorithm to capture more general forms

of inverse demand functions. We show that an equilibrium of the game can be com-

puted in polynomial time if the production cost functions are convex and the revenue

function is monotone. Moreover, we show under strict monotonicity of the revenue

function, the solution is unqiue, and therefore our results in this section is structural;

i.e. we find the one and only equilibria. For convergence guarantee we also need

Lipschitz condition on derivatives of inverse demand and cost functions. We start the
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section by modeling our problem as a complementarity problem. Then we prove how

holding the aforementioned conditions for cost and revenue functions yields satisfying

Scaled Lipschitz Condition (SLC) and semidefiniteness for matrices of derivatives of

the profit function. SLC is a standard condition widely used in convergence analysis for

scalar and vector optimization [142]. Finally , we present our algorithm, and show how

meeting these new conditions by inverse demand and cost functions helps us to guar-

antee polynomial running time of our algorithm. We also give examples of classes of

inverse demand functions satisfying the above conditions. These include many families

of inverse demand functions including quadratic functions, cubic functions and entropy

functions. The following theorem is the main result of Section 4.4 which summarizes

the performance of our algorithm.

Theorem 13. A solution to the Network Cournot Competition can be found in polyno-

mial number of iterations under the following conditions:

1. The cost functions are (strongly) convex.

2. The marginal revenue function is (strongly3) monotone.

3. Ther first derivative of cost functions and inverse demand functions and the

second derivative of inverse demand functions are Lipschitz continuous.

Furthermore, the solution is unique assuming only the first condition. Therefore,

our algorithm finds the unique equilibrium of NCC.

Cournot oligopoly

Another reasonable model for considering cost functions of the firms is the case where

the cost of production in a market depends only on the quantity produced by the firm

in that specific market (and not on quantities produced by this firm in other markets).

3For at least one of the first two conditions, strong version of condition should be satisfied, i.e., either
cost functions should be strongly convex or the marginal revenue function should be strongly monotone.
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In other words, the firms have completely independent sections for producing different

goods in various markets, and there is no correlation between cost of production in

separate markets. Interestingly, in this case the competitions are separable; i.e. equi-

librium for Network Cournot Competition can be found by finding the quantities at

equilibrium for each market individually. This motivates us for considering Cournot

game where the firms compete over a single market. We present a new algorithm for

computing equilibrium quantities produced by firms in a Cournot oligopoly, i.e., when

the firms compete over a single market. Cournot Oligopoly is a well-known model

in Economics, and computation of its Cournot Equilibrium has been subject to a lot

of attention. It has been considered in many works including [21, 78, 91, 103, 127]

to name a few. The earlier attempts for calculating equilibrium for a general class of

inverse demand and cost functions are mainly based on solving a Linear Complemen-

tarity Problem or a Variational Inequality. These settings can be then turned into convex

optimization problems of size O(n) where n is the number of firms. This means the

runtime of the earlier works cannot be better thanO(n3) which is the best performance

for convex optimization [20]. We give a novel combinatorial algorithm for this impor-

tant problem when the quantities produced are integral. We limit our search to integral

quantities for two reasons. First, in real-world all commodities and products are traded

in integral units. Second, this algorithm can easily be adapted to compute approximate

Cournot-Nash equilibrium for the continuous case and since the quantities at equilib-

rium may not be rational numbers, this is the best we can hope for. Our algorithm runs

in time O(n log2(Qmax)) where Qmax is an upper bound on total quantity produced

at equilibrium. Our approach relies on the fact that profit functions are supermodular

when the inverse demand function is nonincreasing and the cost functions are convex.

We leverage the supermodularity of inverse demand functions and Topkis’ Monotonic-

ity Theorem [128] to design a nested binary search algorithm. The following is the

main result of Section 4.5.
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Theorem 14. A polynomial-time algorithm successfully computes the quantities pro-

duced by each firm at an equilibrium of the Cournot oligopoly if the inverse demand

function is non-increasing, and the cost functions are convex. In addition, the algo-

rithm runs in O(n log2(Qmax)) where Qmax is the maximum possible total quantity in

the oligopoly network at any equilibrium.

4.2 Notations

Suppose we have a set of n firms denoted by F and a set of m markets denoted by

M. A single good is produced in each of these markets. Each firm might or might

not be able to supply a particular market. A bipartite graph is used to demonstrate

these relations. In this graph, the markets are denoted by the numbers 1, 2, . . . ,m on

one side, and the firms are denoted by the numbers 1, 2, . . . , n on the other side. For

simplicity, throughout the chapter we use the notation i ∈ M meaning the market

i, and j ∈ F meaning firm j. For firm j ∈ F and market i ∈ M there exists an

edge between the corresponding vertices in the bipartite graph if and only if firm j is

able to produce the good in market i. This edge will be denoted (i, j). The set of

edges of the graph is denoted by E , and the number of edges in the graph is shown

by E. For each market i ∈ M, the set of vertices NM(i) is the set of firms that this

market is connected to in the graph. Similarly, NF (j) denotes the set of neighbors of

firms j among markets. The edges in E are sorted and numbered 1, . . . , E, first based

on the number of their corresponding market and then based on the number of their

corresponding firm. More formally, edge (i, j) ∈ E is ranked above edge (l, k) ∈ E

if i < l or i = l and j < k. The quantity of the good that firm j produces in market

i is denoted by qij . The vector q is an E × 1 vector that contains all the quantities

produced over the edges of the graph in the same order that the edges are numbered.

The demand for good i, denoted Di, is the sum of the total quantity of this good

produced by all firms, i.e., Di =
∑
j∈NM(i) qij . The price of good i, denoted by the
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function Pi(Di), is only a decreasing function of total demand for this good and not the

individual quantities produced by each firm in this market. For a firm j, the vector ~sj

denotes the strategy of firm j, which is the vector of all quantites produced by this firm

in the markets NF (j). Firm j ∈ F has a cost function related to its strategy denoted

by cj(~sj). The profit that firm j makes is equal to the total money that it obtains by

selling its production minus its cost of production. More formally, the profit of firm j,

denoted by πj , is

πj =
∑

i∈NF (j)

Pi(Di)qij − cj(~sj). (4.1)

4.3 Cournot competition and potential games

In this section, we design an efficient algorithm for the case where the price functions

are linear. More specifically, we design an innovative potential function that captures

the changes of all the utility functions simultaneously, and therefore, show how finding

the quantities at the equilibrium would be equivalent to finding the set of quantities

that maximizes this function. We use the notion of potential games as introduced

in Monderer and Shapley [94]. In that paper, the authors introduce ordinal potential

games as the set of games for which there exists a potential function P ∗ such that the

pure strategy equilibrium set of the game coincides with the pure strategy equilibrium

set of a game where every party’s utility function is P ∗.

In this section, we design a function for the Network Cournot Competition and

show how this function is a potenial function for the problem if the price functions

are linear. Interestingly, this holds for any cost function meaning Network Cournot

Competition with arbitrary cost functions is an ordinal potential game as long as the

price functions are linear. Furthermore, we show when the cost functions are convex,

our designed potential function is concave, and hence any convex optimization method

can find the equilibrium of such a Network Cournot Competition. In case cost functions

are strictly convex, the potential function is strictly concave. We restate a well known
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theorem in this section to conclude that the convex optimization in this case has a

unique solution, and therefore the equilibria that we find in this case is the one and

only equilibria of the game.

Definition 4. A game is said to be an ordinal potential game if the incentive of all

players to change their strategy can be expressed using a single global function called

the potential function. More formally, a game with n players and utility function ui for

player i ∈ {1, . . . , n} is called ordinal potential with potential function P ∗ if for all

the strategy profiles q ∈ Rn and every strategy xi of player i the following holds:

ui(xi, q−i)− ui(qi, q−i) > 0 iff P ∗(xi, q−i)− P ∗(qi, q−i) > 0.

An equivalent definition of an ordinal potential game is a game for which a poten-

tial funciton P ∗ exists such that the following holds for all strategy profiles q ∈ Rn and

for each player i.

∂ui
∂qi

=
∂P ∗

∂qi
.

In other words, for each strategy profile q, any change in the strategy of player i has

the same impact on its utility function as on the game’s potential function.

The pure strategy equilibrium set of any ordinal potential game coincides with the

pure strategy equilibrium set of a game with the potential function P ∗ as all parties’

utility function.

Theorem 15. The Network Cournot Competition with linear price functions is an or-

dinal potential game.

Proof. Let Pi(Di) = αi − βiDi be the linear price function for market i ∈ M where

αi ≥ 0 and βi ≥ 0 are constants determined by the properties of market i. Note that

this function is decreasing with respect to Di. Here we want to introduce a potential
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function P ∗, and show that ∂πj

∂qij
= ∂P∗

∂qij
holds ∀(i, j) ∈ E . The utility function of firm

j is

πj =
∑

i∈NF (j)

(
αi − βi

∑
k∈NF (j)

qkj

)
qij − cj(~sj),

and taking partial derivative with respect to qij yields

∂πj
∂qij

= αi − βi
∑

k∈NF (j)

qkj − βiqij −
∂cj(~sj)

∂qij
.

We define P ∗ to be

P ∗ =
∑
i∈M

[
αi

∑
j∈NM(i)

qij − βi
∑

j∈NM(i)

q2
ij − βi

∑
k≤j

k,j∈NM(i)

qijqik −
∑

j∈NM(i)

cj(~sj)

|NF (j)|

]
,

whose partial derivative with respect to qij is

∂P ∗

∂qij
= αi − 2βiqij −

∂

∂qij

βi ∑
l≤m

l,m∈NM(i)

qilqim

− ∂cj(~sj)

∂qij

= αi − 2βiqij − βi(Di − qij)−
∂cj(~sj)

∂qij

=
∂πj
∂qij

.

Since this holds for each i ∈M and each j ∈ F , the Network Cournot Competition

is an ordinal potential game.

We can efficiently compute the equilibrium of the game if the potential function P ∗

is easy to optimize. Below we prove that this function is concave.

Theorem 16. The potential function P ∗ from the previous theorem is concave provided

that the cost functions of the firms are convex. Moreover, if the cost functions are strictly

convex then the potential function is strictly concave.
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Proof. The proof goes by decomposing P ∗ into pieces that are concave. We first define

f for one specific market i as

f =
∑

j∈NM(i)

q2
ij +

∑
k≤j

k,j∈NM(i)

qijqik,

and prove that it is convex.

Recall that q is an E × 1 vector of all the quantities of good produced over the

existing edges of the graph. We can write f = qTMq where M is an E × E matrix

with all elements on its diagonal equal to 1 and all other elements equal to 1√
2

:

M =



1 1√
2
· · · 1√

2

1√
2

1 · · · 1√
2

...
...

. . .
...

1√
2

1√
2
· · · 1


.

To show that f is convex, it suffices to prove that M is positive semidefinite, by

finding a matrix R such that M = RTR. Consider the following (E + 1)×E matrix:

R =



c c · · · c

a 0 · · · 0

0 a · · · 0

...
...

. . .
...

0 0 · · · a


,

where a, c are set below. Let Ri be the i-th column of R. We have Ri · Ri = a2 + c2

and Ri ·Rj = c2 for i 6= j.

Setting c = 2−
1
4 and a =

√
1− c yields M = RTR, showing that M is positive

semidefinite, hence the convexity of f .

The following expression for a fixed market i ∈ M, sum of three concave func-
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tions, is also concave.

αi
∑

j∈NM(i)

qij − βi
( ∑
j∈NM(i)

q2
ij +

∑
k≤j

k,j∈NM(i)

qijqik

)
−

∑
j∈NM(i)

cj(~sj)

|NF (j)|
.

Summing over all markets proves concavity of P ∗. Note that if a function is the

sum of a concave function and a strictly concave function, then it is strictly concave

itself. Therefore, since f is concave, we can conclude strictly concavity of P ∗ under

the assumption that the cost functions are strictly convex.

The following well-known theorem discusses the uniqueness of the solution to a

convex optimization problem.

Theorem 17. Let F : K → Rn be a strictly concave and continuous function for some

finite convex space K ∈ Rn. Then the following convex optimization problem has a

unique solution.

max f(x) s.t. x ∈ K. (4.2)

By Theorem 16, if the cost functions are strictly convex then the potential function

is strictly concave and hence, by Theorem 17 the equilibrium of the game is unique.

Let ConvexP (E , (α1, . . . , αm), (β1, . . . , βm), (c1, . . . , cn)) be the following con-

vex optimization program:

min −
∑
i∈M

[
αi
∑

j∈NM(i)

qij − βi
∑

j∈NM(i)

q2
ij − βi

∑
k≤j

k,j∈NM(i)

qijqik −
∑

j∈NM(i)

cj(~sj)

|NF (j)|

]
(4.3)

subject to qij ≥ 0 ∀(i, j) ∈ E .

Note that in this optimization program we are trying to maximize P ∗ for a bipartite

graph with set of edges E , linear price functions characterized by the pair (αi, βi) for

each market i ∈M, and cost functions cj for each firm j ∈ F .
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Algorithm 2 Compute quantities at equilibrium for the Network Cournot Competition.

procedure COURNOT-POTENTIAL(E , cj , (αi, βi)) . Set of edges, cost

functions and price functions

Use a convex optimization algorithm to solve

ConvexP (E , (α1, . . . , αm), (β1, . . . , βm), (c1, . . . , cn)).

and return the vector q of equilibrium quantities.

end procedure

The above algorithm has a time complexity equal to the time complexity of a con-

vex optimization algorithm with E variables. The best such algorithm has a running

time O(E3)[20].

4.4 Finding equilibrium for cournot game with general

cost and inverse demand functions

In this section, we formulate an algorithm for a much more general class of price and

cost functions. Our algorithm is based on reduction of Network Cournot Competition

(NCC) to a polynomial time solvable class of Non-linear Complementarity Problem

(NLCP). First in Subsection 4.4.1, we introduce our marginal profit function as the

vector of partial derivatives of all firms with respect to the quantities that they pro-

duce. Then in Subsection 4.4.2, we show how this marginal profit function can help

us to reduce NCC to a general NLCP. We also discuss uniqueness of equilibrium in

this situation which yields the fact that solving NLCP would give us the one and only

equilibrium of this problem. Unfortunately, in its most general form, NLCP is com-

putationally intractable. However, for a large class of functions, these problems are

polynomial time solvable. Most of the rest of this section is dedicated to proving the
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fact that NCC is polytime solvable on vast and important array of price and cost func-

tions. In Subsection 4.4.3, we rigorously define the conditions under which NLCP is

polynomial time solvable. We present our algorithm in this subsection along with a

theorem which shows it converges in polynomial number of steps. To show the con-

ditions that we introduce for convergence of our algorithm in polynomial time are not

restrictive, we give a discussion in Subsection 4.4.4 on the functions satisfying these

conditions, and show they hold for a wide range of price functions.

Assumptions Throughout the rest of this section we assume that the price functions

are decreasing and concave and the cost functions are strongly convex (The notion of

strongly convex is to be defined later). We also assume that for each firm there is a

finite quantity at which extra production ceases to be profitable even if that is the only

firm operating in the market. Thus, all production quantities and consequently quanti-

ties supplied to markets by firms are finite. In addition, we assume Lipschitz continuity

and finiteness of the first and the second derivatives of price and cost functions. We

note that these Lipschitz continuity assumptions are very common for convergence

analysis in convex optimization [20] and finiteness assumptions are implied by Lips-

chitz continuity. In addition, they are not very restrictive as we don’t expect unbounded

fluctuation in costs and prices with change in supply. For sake of brevity, we use the

terms inverse demand function and price function interchangeably.

4.4.1 Marginal profit function

For the rest of this section, we assume that Pi and ci are twice differentiable functions

of quantities. We define fij for a firm j and a market i such that (i, j) ∈ E as follows.

fij = − ∂πj
∂qij

= −Pi(Di)−
∂Pi(Di)

∂qij
qij +

∂cj
∂qij

. (4.4)
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Recall that the price function of a market is only a function of the total production

in that market and not the individual quantities produced by individual firms. Thus

∂Pi(Di)
∂qij

= ∂Pi(Di)
∂qik

∀j, k ∈ NM(i). Therefore, we replace these terms by P ′i (Di).

fij = −Pi(Di)− P ′i (Di)qij +
∂cj
∂qij

. (4.5)

Let vector F be the vector of all fij’s corresponding to the edges of the graph in

the same format that we defined the vector q. That is fij corresponding to (i, j) ∈ E

appears above flk corresponding to edge (l, k) ∈ E iff i < l or i = l and j < k. Note

that F is a function of q.

Moreover, we separate the part representing marginal revenue from the part repre-

senting marginal cost in function F . More formally, we split F into two functions R

and S such that F = R + S, and the element corresponding to the edge (i, j) ∈ E in

the marginal revenue fuction R(q) is:

rij = − ∂πj
∂qij

= −Pi(Di)− P ′(Di)qij ,

whereas for the marginal cost function S(q), it is:

sij =
∂cj
∂qij

.

4.4.2 Non-linear complementarity problem

In this subsection we formally define the non-linear complementarity problem (NLCP),

and prove our problem is a NLCP.

Definition 5. Let F : Rn → Rn be a continuously differentiable function on Rn+.

The complementarity problem seeks a vector x ∈ Rn that satisfies the following con-
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straints:

x, F (x) ≥ 0,

xTF (x) = 0.

(4.6)

Theorem 18. The problem of finding the vector q at equilibrium in the Cournot game

is a complementarity problem.

Proof. Let q∗ be the vector of the quantities at equilibrium. All quantities must be non-

negative at all times; i.e., q∗ ≥ 0. It suffices to show F (q∗) ≥ 0 and q∗TF (q∗) = 0. At

equilibrium, no party benefits from changing its strategy, in particular, its production

quantities. For each edge (i, j) ∈ E , if the corresponding quantity q∗ij is positive, then

q∗ij is a local maxima for πj ; i.e., fij(q∗) = − ∂πj

∂qij

∣∣∣
q∗

= 0. On the other hand, if

q∗ij = 0, then ∂πj

∂qij

∣∣∣
q∗

cannot be positive, since, if it is, firm j would benefit by increas-

ing the quantity qij to a small amount ε. Therefore, ∂π
∂qij

∣∣∣
q∗

is always nonpositive or

equivalently fij(q∗) ≥ 0, i.e., F (q∗) ≥ 0. Also, as we mentioned above, a nonzero

q∗ij is a local maximum for πj ; i.e., fij(q∗) = − ∂π
∂qij

∣∣∣
q∗

= 0. Hence, either q∗ij = 0

or fij(q∗) = 0; thus, q∗ijfij(q
∗) = 0. This yields

∑
(i,j)∈E q

∗
ijfij(q

∗) = q∗TF (q∗) =

0.

Definition 6. F : K → Rn is said to be strictly monotone at x∗ if

〈(F (x)− F (x∗))T , x− x∗〉 ≥ 0,∀x ∈ K. (4.7)

F is said to be strictly monotone if it is monotone at any x∗ ∈ K. Equivalently, F

is strictly monotone if the jacobian matrix is positive definite.

The following theorem is a well known theorem for Complementarity Problems.

Theorem 19. Let F : K → Rn be a continuous and strictly monotone function with a

point x ∈ K such that F (x) ≥ 0 (i.e. there exists a potential solution to the CP). Then
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the Complementarity Problem introduced in (4.6) characterized by function F has a

unique solution.

Hence, the Complementarity Problem characterized by function F introduced el-

ement by element in (4.4) has a unique solution under the assumption that the rev-

enue function is strongly monotone (special case of strictly monotone). Note that the

marginal profit function or F in our case is non-negative in at least one point. Other-

wise, no firm has any incentive to produce in any market and the equilibrium is when

all production quantities are equal to zero. In the next subsection, we aim to find this

unique equilibrium of the NCC problem.

4.4.3 Designing a polynomial-time algorithm

In this subsection, we introduce Algorithm 3 for finding equilibrium of NCC, and show

it converges in polynomial time by Theorem 27. This theorem requires the marginal

profit function to satisfy Scaled Lipschitz Condition(SLC) and monotonicity. We first

introduce SLC, and show how the marginal profit function satisfies SLC and monton-

icty by Lemmas 20 to 26. We argue the conditions that the cost and price functions

should have in order for the marginal profit function to satisfy SLC and monotonic-

ity in Lemma 26. Finally, in Theorem 27, we show convergence of our algorithm in

polynomial time.

Before introducing the next theorem, we explain what the Jacobians ∇R, ∇S, and

∇F are for the Cournot game. First note that these are E ×E matrices. Let (i, j) ∈ E

and (l, k) ∈ E be two edges of the graph. Let e1 denote the index of edge (i, j), and e2

denote the index of edge (l, k) in the graph as we discussed in the first section. Then the

element in row e1 and column e2 of matrix∇R, denoted∇Re1e2 , is equal to ∂rij
∂qlk

. We

name the corresponding elements in∇F and∇S similarly. We have∇F = ∇R+∇S

as F = R+ S.

Definition 7 (Scaled Lipschitz Condition (SLC)). A function G : D 7→ Rn, D ⊆ Rn
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is said to satisfy Scaled Lipschitz Condition (SLC) if there exists a scalar λ > 0 such

that ∀ h ∈ Rn,∀ x ∈ D, such that ‖X−1h‖ ≤ 1, we have:

‖X[G(x+ h)−G(x)−∇G(x)h]‖∞ ≤ λ|hT∇G(x)h|, (4.8)

where X is a diagonal matrix with diagonal entries equal to elements of the vector x

in the same order, i.e., Xii = xi for all i ∈M.

Satisfying SLC and monotonicity are essential for marginal profit function in The-

orem 27. In Lemma 26 we discuss the assumptions for cost and revenue function under

which these conditions hold for our marginal profit function. We use Lemmas 20 to 26

to show F satisfies SLC. More specifically, we demonstrate in Lemma 20, if we can

derive an upperbound for LHS of SLC for R and S, then we can derive an upperbound

for LHS of SLC for F = R + S too. Then in Lemma 21 and Lemma 22 we show

LHS of S and R in SLC definition can be upperbounded. Afterwards, we show mono-

tonicity of S in Lemma 25. In Lemma 26 we aim to prove F satifies SLC under some

assumptions for cost and revenue functions. We use the fact that LHS of SLC for F can

be upperbounded using Lemma 22 and Lemma 21 combined with Lemma 20. Then

we use the fact that RHS of SLC can be upperbounded using strong monotonicity of R

and Lemma 25. Using these two facts, we conclude F satisfies SLC in Lemma 26.

Lemma 20. Let F,R, S be three Rn → Rn functions such that F (q) = R(q) +

S(q), ∀q ∈ Rn. Let R and S satisfy the following inequalities for some C > 0 and

∀ h such that ‖X−1h‖ ≤ 1:

‖X[R(q + h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2,

‖X[S(q + h)− S(q)−∇S(q)h]‖∞ ≤ C‖h‖2,
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where X is the diagonal matrix with Xii = qi. Then we have:

‖X[F (q + h)− F (q)−∇F (q)h]‖∞ ≤ 2C‖h‖2.

Proof. Definition of function F implies

‖X[F (q + h)− F (q)−∇F (q)h]‖∞ =‖X[R(q + h)−R(q)−∇R(q)h]

+X[S(q + h)− S(q)−∇S(q)h]‖∞

applying triangle inequality gives

‖X[F (q + h)− F (q)−∇F (q)h]‖∞ ≤‖X[R(q + h)−R(q)−∇R(q)h]‖∞

+ ‖X[S(q + h)− S(q)−∇S(q)h]‖∞

Combining with assumptions of the lemma, we have the required inequality.

The following lemmas give upper bounds for LHS of the SLC for S and R respec-

tively.

Lemma 21. AssumeX is the diagonal matrix withXii = qi. ∀ h such that ‖X−1h‖ ≤

1, there exists a constant C > 0 satisfying: ‖X[S(q + h) − S(q) − ∇S(q)h]‖∞ ≤

C‖h‖2.

Proof. Let mij = ∂ci
∂qij

. The element of vector X(S(q + h) − S(q) − h∇S) corre-

sponding to edge (i, j) is given by:

qij(mij(q + h) +mij(q)− h∇ci(q))

Let 2L3 be an upper bound of Lipschitz constants for derivates of ci’s. Then, from
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Theorem 23 and upper bound Q on production quantities, we have:

|qij(mij(q + h) +mij(q)− h∇ci(q))| ≤ QL3‖h‖2

Lemma 22. AssumeX is the diagonal matrix withXii = qi. ∀ h such that ‖X−1h‖ ≤

1, ∃C > 0 such that‖X[R(q + h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2.

Proof. Before we proceed, we state the following theorem from analysis and Lemma

24.

Theorem 23. [20] Let f : Rn 7→ R be a continuously differentiable function with

Lipschitz gradient, i.e., for some scaler c > 0,

‖∇f(x)−∇f(y)‖ ≤ c‖x− y‖ ∀ x, y ∈ Rn.

Then, we have ∀ x, y ∈ Rn,

f(y) ≤ f(x) +∇f(x)T (x− y) +
c

2
‖y − x‖2 (4.9)

Lemma 24. For any vector x ∈ Rn and an arbitrary S ⊆ [n], letX =
∑
i∈S xi. Then

we have
√
n‖x‖ ≥ X

Proof. Let Y =
∑
i∈[n] |xi|. Clearly, |Y | ≥ |X|.

Y 2 =
∑
i,j∈[n]

|xixj | =
∑
i<j

2|xixj |+ ‖x‖2

Since, s2 + t2 ≥ 2st ∀ s, t ∈ R, we have

X2 ≤ Y 2 ≤
∑
i<j

(x2
i + x2

j ) + ‖x‖2 = n‖x‖2
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Now we are ready to prove Lemma 22. First note thatR(q+h)−R(q)−∇R(q)h is

an E× 1 vector. Let Hi =
∑
j∈NM(i) hij . The element corresponding to edge (i, j) ∈

E in vectorR(q+h) isPi(Di+Hi)+P
′
i (Di+Hi)(qij+hij). Similarly, the element cor-

responding to edge (i, j) ∈ E inR(q) is Pi(Di)+P
′
i (Di)qij whereas the corresponding

element in∇R(q)h is
∑
k∈NM hik

∂rij
∂qik

= −
∑
k∈NM(i) hik(P ′i (Di) + P ′′i (Di)qij))+

hijP
′
i (Di). Therefore, the element corresponding to edge (i, j) ∈ E in vector

R(q + h)−R(q)−∇R(q)h is:

−Pi(Di +Hi)−P ′i (Di +Hi)(qij − hij)− Pi(Di)− P ′i (Di)qij

+
∑

k∈NM(i)

hik(P ′i (Di) + P ′′i (Di)qij) + hijP
′
i (Di).

Besides, X is the diagonal matrix of size E × E with diagonal entries equal to

elements of q in the same order. Therefore, X[R(q + h) − R(q) − ∇R(q)h] is an

E × 1 vector where the element corresponding to edge (i, j) ∈ E is qij multiplied by

the element corresponding to edge (i, j) in vector R(q + h)−R(q)−∇R(q)h:

− qij

(
Pi(Di +Hi) + P ′i (Di +Hi)(qij + hij)− Pi(Di)− P ′i (Di)qij

−
∑

k∈NM(i)

hik(P ′i (Di) + P ′′i (Di)qij)− hijP ′i (Di)

)

=− qij

(
[Pi(Di +Hi)− Pi(Di)−HiP

′
i (Di)]

+ [P ′i (Di +Hi)− P ′i (Di)−HiP
′′
i (Di)] (qij + hij) + hijHiP

′′
i (Di)

)

≤qij

(
|Pi(Di +Hi)− Pi(Di)−HiP

′
i (Di)|

+ |P ′i (Di +Hi)− P ′i (Di)−HiP
′′
i (Di)||(qij + hij)|+ |hijHiP

′′
i (Di)|

)
.
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Let P ′ and P ′′ be Lipschitz continuous functions with Lipschitz constants 2L1 and

2L2 respectively. To bound the last expression, we use Theorem 23 and Lemma 24

|Pi(Di +Hi)− Pi(Di)−HiP
′
i (Di)| ≤ L1H

2
i ≤ L1E‖h‖2

|P ′i (Di +Hi)− P ′i (Di)−HiP
′′
i (Di)| ≤ L2H

2
i ≤ L2E‖h‖2

|hijHiP
′′
i (Di)| ≤ E‖h‖2P ′′i (Di)

Then, from finiteness of derivatives, we have:

|hijHiP
′′
i (Di)| ≤ EM2‖h‖2

Thus, the LHS is bound from above by:

qijE‖h‖2(L1 + L2(qij + hij) +M2)

Let Q be an upper bound on maximum profitable quantity for any producer in any

market. Then the LHS is bound above by C‖h‖2, where:

C = QE(L1 + 2QL2 +M2) (4.10)

If R is assumed to be strongly monotone, we immediately have a lower bound on

RHS of the SLC for R. The following lemma gives a lower bound on RHS of the SLC

for S.

Lemma 25. If cost functions are (strongly) convex S is (strongly) monotone4,5,6,7.
4A matrix M ∈ Rn×n is strongly positive definite iff ∀ x ∈ Rn and some α > 0 xTMx ≥ α‖x‖2.
5A differentiable function f : D 7→ Rn is monotone iff its Jacobian ∇f is positive semidefinite over

its domain D.
6A differentiable function f : D 7→ Rn is strongly monotone iff its Jacobian ∇f is strongly positive

definite over its domain, D.
7A twice differentiable function f : D 7→ R is strongly convex iff its Hessian∇2f is strongly positive
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The following lemma combines the results of Lemma 21 and Lemma 22 using

Lemma 20 to derive an upper bound for LHS of the SLC for F . We bound RHS of the

SLC from below by using strong montonicity of R and Lemma 25.

Lemma 26. F satisfies SLC and is monotone if:

1. Cost functions are convex.

2. Marginal revenue function is monotone.

3. Cost functions are strongly convex or marginal revenue function is strongly

monotone.

Proof. From lemmas 22, 21 and 20, RHS of SLC for F is O(E‖h‖2). If cost func-

tions are strongly convex or marginal revenue function is strongly monotone, then from

Lemma 25 and definition of strong monotonicity, the LHS of SLC for F is Ω(‖h‖2).

Thus, F satisfies SLC. We note that F is a sum of two monotone functions and hence

is monotone.

We wrap up with the following theorem, which summarizes the main result of this

section. Lemma 26 guarantees that our problem satisfies the two conditions mentioned

in Zhao and Han 1999. Therefore, we can prove the following theorem.

Theorem 27. Algorithm 3 converges to an equilibrium of Network Cournot Competi-

tion in time O
(
E2 log(µ0/ε)

)
under the following assumptions:

1. The cost functions are strongly convex.

2. The marginal revenue function is strongly monotone.

3. The first derivative of cost functions and price functions and the second

derivative of price functions are Lipschitz continuous.

definite over its domain, D.
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This algorithm outputs an approximate solution (F (q∗), q∗) satisfying (q∗)TF (q∗)/n ≤

ε where µ0 = (q0)TF (q0)/n, and (F (q0), q0) is the initial feasible point 8.

Algorithm 3 Compute quantities at equilibrium for the Cournot game.

1: procedure NETWORK-COURNOT(Pi, cj , ε) . The price function Pi for
each market i ∈ M, the cost function cj for each firm j ∈ F , and ε as the desired
tolerance

2: Calculate vector F of length E as defined in (4.4).
3: Find the initial feasible9solution (F (x0), x0) for the complementarity problem.

This solution should satisfy x0 ≥ 0 and F (x0) ≥ 0.
4: Run Algorithm 3.1 from [142] to find the solution (F (x∗), x∗) to the CP char-

acterized by F .
5: return x∗ . The vector q of quantities produced by firms at equilibrium
6: end procedure

4.4.4 Price Functions for Monotone Marginal Revenue Function

This section will be incomplete without a discussion of price functions that satisfy the

convergence conditions for Algorithm 3. We will prove that a wide variety of price

functions preserve monotonicity of the marginal revenue function. To this end, we

prove the following lemma.

Lemma 28. ∇R(q) is a positive semidefinite matrix ∀ q ≥ 0, i.e., R is monotone,

provided that for all markets |P ′i (Di)| ≥ |P
′′
i (Di)|Di

2 .

Proof. Let e1 be the index of the edge (i, j) and e2 be the index of edge (l, k). The

elements of∇R are as follows.

∇Re1e1 =


∂rij
∂qij

= −2P ′i (Di)− P ′′i (Di)qij if e1 = e2

∂rij
∂qik

= −P ′i (Di)− P ′′i (Di)qij if i = l, j 6= k

∂rij
∂qlk

= 0 if i 6= l, j 6= k.

8Initial feasible solution can be trivially found. E.g., it can be the same production quantity along each
edge, large enough to ensure losses for all firms. Such quantity can easily be found by binary search between
[0, Q].
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We note that since price functions are functions only of the total production in their

corresponding markets and not the individual quantities produced by firms, ∂P
′
i (Di)
∂qij

=

∂P ′i (Di)
∂qik

. Therefore, we have replaced the partial derivatives by P ′′i (Di).

We must show xT∇R(Di)x is nonnegative ∀x ∈ RE and ∀Di ≥ 0.

xT (∇R(Di))x =
∑

(i,j)∈E

∑
(k,l)∈E

xijxlk
∂rij
∂xlk

=
∑
i∈M

∑
j,k∈NM(i)

xijxik
∂rij
∂xik

=
∑
i∈M

 ∑
j∈NM(i)

x2
ij [−2P ′i (Di)− P ′′i (Di)xij ]

+
∑

j,k∈NM(i),j 6=k

xijxik [−P ′i (Di)− P ′′i (Di)qij ]


= −

∑
i∈M

 ∑
j∈NM(i)

x2
ijP
′
i (Di) +

∑
j,k∈NM(i)

xijxik(P ′i (Di) + P ′′i (Di)qij)


= −

∑
i∈M

P ′i (Di)
∑

j∈NM(i)

x2
ij + P ′i (Di)

∑
j,k∈NM(i)

xijxik + P ′′i (Di)
∑

j,k∈NM(i)

xijqijxik


≥ −

∑
i∈M

P ′i (Di)
∑

j∈NM(i)

x2
ij + P ′i (Di)

∑
j,k∈NM(i)

xijxik − |P ′′i (Di)||q||x||
∑

j∈NM(i)

xij |


≥
∑
i∈M

−P ′i (Di)|x|2 − P ′i (Di)

 ∑
j∈NM(i)

xij

2

+ |P ′′i (Di)|Di|x||
∑

j∈NM(i)

xij |


Since Pi’s are decreasing functions, we have , P ′i (Di) ≤ 0, ∀i ∈ M. Thus, over

domain of Pi’s (Di ≥ 0), the above expression is non-negative if |P ′′i (Di)|Di ≤

2|P ′i (Di)| Hence, xT (∇R(Di))x ≥ 0 equivalently ∇R(Di) is positive semidefinite.

While the above condition may seem somewhat restrictive, they allow the problem

to be solved on a wide range of price functions. Intuitively, the condition implies

that linear and quadratic terms dominate higher order terms. We present the following
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corollaries as examples of classes of functions that satisfy the above condition.

Corollary 29. All decreasing concave quadratic price functions satisfy Lemma 28.

Corollary 30. All decreasing concave cubic price functions satisfy Lemma 28.

Corollary 31. Let ai ∈ Rn≥0 for i ∈ {1 . . . k} be arbitrary positive vectors. Let

f : Rn≥0 7→ R be the following function: f(x) =
∑
i∈{1...k}(a

T
i x) log(aTi x). Then f

(and −f ) satisfies Lemma 28.

4.5 Algorithm for Cournot Oligopoly

In this section we present a new algorithm for computing equilibrium quantities pro-

duced by firms in a Cournot oligopoly, i.e., when the firms compete over a single mar-

ket. Cournot Oligopoly is a standard model in Economics and computation of Cournot

Equilibrium is an important problem in its own right. A considerable body of litera-

ture has been dedicated to this problem [21, 78, 91, 103, 127]. All of the earlier works

that compute Cournot equilibrium for a general class of price and cost functions rely on

solving a Linear Complementarity Problem or a Variational Inequality which in turn are

set up as convex optimization problems of size O(n) where n is the number of firms in

oligopoly. Thus, the runtime guarantee of the earlier works is O(n3) at best. We give a

novel combinatorial algorithm for this important problem when the quantities produced

are integral. Our algorithm runs in time n log2(Qmax) where Qmax is an upper bound

on total quantity produced at equilibrium. We note that, for two reasons, the restriction

to integral quantities is practically no restriction at all. Firstly, in real-world all com-

modities and products are traded in integral units. Secondly, this algorithm can easily

be adapted to compute approximate Cournot-Nash equilibrium for the continuous case

and since the quantities at equilibrium may not be rational numbers, this is the best we

can hope for.

As we have only a single market rather than a set of markets, we make a few
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changes to the notation. Let [n] = {1, . . . , n} be the set of firms competing over

the single market. Let q = (q1, q2, . . . , qn) be the set of all quantities produced by

the firms. Note that in this case, each firm is associated with only one quantity. Let

Q =
∑
i∈[n] qi be the sum of the total quantity of good produced in the market. In

this case, there is only a single inverse demand function P : Z 7→ R≥0, which maps

total supply, Q, to market price. We assume that price decreases as the total quantity

produced by the firms increases, i.e., P is a decreasing function of Q. For each firm

i ∈ [n], the function ci : Z 7→ R≥0 denotes the cost to this firm when it produces

quantity qi of the good in the market. The profit of firm i ∈ [n] as a function of qi andQ,

denoted πi(qi, Q), is P (Q)qi−ci(qi). Also let fi(qi, Q) = πi(qi+1, Q+1)−πi(qi, Q)

be the marginal profit for firm i ∈ [n] of producing one extra unit of product. Although

the quantities are nonnegative integers, for simplicity we assume the functions ci, P , πi

and fi are zero whenever any of their inputs are negative. Also, we refer to the forward

difference P (Q+ 1)− P (Q) by P ′(Q).

4.5.1 Polynomial time algorithm

We leverage the supermodularity of price functions and Topkis’ Monotonicity Theorem

[128] (Theorem 35) to design a nested binary search algorithm which finds the equi-

librium quantity vector q when the price function is a decreasing function of Q and the

cost functions of the firms are convex. Intuitively the algorithm works as follows. At

each point we guess Q′ to be the total quantity of good produced by all the firms. Then

we check how good this guess is by computing for each firm the set of quantites that it

can produce at equilibrium if we assume the total quantity is the fixed integer Q′. We

prove that the set of possible quantities for each firm at equilibrium, assuming a fixed

total production, is a consecutive set of integers. Let Ii = {qli, qli + 1, . . . , qui − 1, qui }

be the range of all possible quantities for firm i ∈ [n] assuming Q′ is the total quantity

produced in the market. We can conclude Q′ was too low a guess if
∑
i∈[n] q

l
i > Q′.
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This implies our search should continue among total quantities above Q′. Similarly, if∑
i∈[n] q

u
i < Q′, we can conclude our guess was too high, and the search should contin-

ues among total quantities belowQ′. If neither case happens, then for each firm i ∈ [n],

there exists a q′i ∈ Ii such that Q′ =
∑
i∈[n] q

′
i and firm i has no incentive to change

this quantity if the total quantity isQ′. This means that the set q′ = {q′1, . . . , q′n} forms

an equilibrium of the game and the search is over.

Algorithm 4 Compute quantities produced by firms in a Cournot oligopoly.
1: procedure COURNOT-OLIGOPOLY(P, ci) . The market price function P , the

cost functions ci for each firm i ∈ [n]
2: Let Qmin := 1
3: Let Q∗i be the optimal quantity that is produced by a firm when it is the only

firm in the market
4: Let Qmax :=

∑
i∈[n]Q

∗
i

5: while Qmin ≤ Qmax do
6: Q′ := bQmin+Qmax

2 c
7: for all i ∈ [n] do
8: Binary search to find the minimum nonnegative integer qli satisfying
9: fi(q

l
i, Q
′) = πi(q

l
i + 1, Q′ + 1)− πi(qli, Q′) ≤ 0

10: Binary search to find the maximum integer qui ≤ Q′ + 1 satisfying
11: fi(q

u
i − 1, Q′ − 1) = πi(q

u
i , Q

′)− πi(qui − 1, Q′ − 1) ≥ 0
12: Let Ii = {qli, . . . , qui } be the set of all integers between qli and qui .
13: end for
14: if Σi∈[n]q

l
i > Q′ then

15: Qmin := Q′ + 1
16: else if Σi∈[n]q

u
i < Q′ then

17: Qmax := Q′ − 1
18: else
19: Find a vector of quantities q = (q1, . . . , qn) such that qi ∈ Ii and∑

i∈[n] qi = Q′

20: return q
21: end if
22: end while
23: end procedure

The pseudocode for the algorithm is provided in Algorithm 4, whose correctness

we prove next. The rest of this section is dedicated to proving Theorem 39. Here, we

present a brief outline of the proof. To help with the proof we define the functions Fi

andGi as follows. Let Fi(qi, Q) = P (Q+1)qi+
P ′(Q)

2 (qi− 1
2 )2−c(qi). We note that
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the first difference of F (qi, Q) is the marginal profit for firm i for producing one more

quantity given that the total production quantity is Q and firm i is producing qi. Let

Gi(qi, Q) = Fi(qi, Q − 1). The first difference of Gi(qi, Q) is the marginal loss for

firm i for producing one less quantity given that the total production quantity is Q and

firm i is producing qi. Maximizers of these functions are closely related to equilibrium

quantities a firm can produce given that the total quantity in market is Q. We make this

connection precise and prove the validity of binary search in Lines 8-12 of Algorithm 4

in Lemma 32. In Lemma 33, we prove that Fi and Gi are supermodular functions of

qi and −Q. In lemmas 34 and 36, we use Topkis’ Monotonicity Theorem to prove the

monotonicity of maximizers of Fi and Gi. This, along with lemmas 37 and 38 leads

to the conclusion that the outer loop for finding total quatity at equilibrium is valid as

well and hence the algorithm is correct.

4.5.2 Proof of correctness

Throughout this section we assume that the price function is decreasing and concave

and the cost functions are convex.

Lemma 32. Let q∗i (Q) = {qli . . . qui } , where qli = min argmaxqi∈{0...Qmax}Fi(qi, Q)

and qui = max argmaxqi∈{0...Qmax}Gi(qi, Q). Then q∗i (Q) is the set of consecutive

integers Ii given by binary search in lines 8-12 of Algorithm 4. This is the set of

quantities firm i can produce at equilibrium given that the total quantity produced is

Q.

Proof. Again let P ′(Q) = P (Q + 1) − P (Q) be the forward difference of the price

function, and let c′i(qi) = ci(qi + 1) − ci(qi). From definition of profit function πi

and fi, we have fi(qi, Q) = P (Q + 1) + P ′(Q)qi − c′i(qi). Assume Q is fixed.

Suppose we have qi < q̃i. The marginal profit of firm at production quantity qi is

P (Q+ 1) + P ′(Q)qi − c′i(qi) whereas the marginal profit at production quantity q̃i is

P (Q+1)+P ′(Q)q̃i−c′i(q̃i). Thus, P (Q+1)+P ′(Q)qi > P (Q+1)+P ′(Q)q̃i since
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P ′(Q) is negative (from concavity of P ) and qi < q̃i. As the discrete cost functions

are convex, we have c′i(qi) < c′i(q̃i). This implies fi(qi, Q) > fi(q̃i, Q) when qi < q̃i.

Thus, for a fixed Q, fi(qi, Q) is a non-increasing function of qi. Similarly, we can see

that fi(qi, Q) is a non-increasing function of Q. From definitions of Fi and Gi, we

have:

Fi(qi + 1, Q)− Fi(qi, Q) = fi(qi, Q) (4.11)

Gi(qi + 1, Q)−Gi(qi, Q) = Fi(qi + 1, Q− 1)− Fi(qi, Q− 1) = fi(qi, Q− 1)

(4.12)

For a fixed Q, Let ql be the minimum maximizer of Fi(qi, Q). Then fi(ql− 1, Q) > 0.

Let qu be the maximum maximizer of Gi(qi, Q). Because fi is non-increasing, we

have fi(ql − 1, Q− 1) ≥ fi(ql − 1, Q) > 0. Thus, any number smaller than ql cannot

be a maximizer of Gi and we have ql ≤ qu. Let q ∈ {ql . . . qu}. Then, because q ≥ ql

we have fi(q,Q) ≤ 0 and from q ≤ qu, we have fi(q − 1, Q − 1) ≥ 0. Thus, q is an

equilibrium quantity when total production quantity is Q. If q < ql, then fi(q,Q) > 0

and if q > qu then fi(q − 1, Q − 1) > 0. Thus {ql . . . qu} is the set of equilibrium

quantities. In Line 9 of Algorithm 4, we are searching for the minimum maximizer of

Fi and in Line 11 we are searching for maximum maximizer of Gi. Binary search for

these quantities is valid because first differences for both functions (equations 4.11 and

4.12) are decreasing.

Lemma 33. Let F−i (qi,−Q) = Fi(qi, Q) and G−i = Gi(qi,−Q). Then F−i and G−i

are supermodular functions.

Proof. We use the following definition from submodular optimization in the lemma.

Definition 8. Given lattices (X1,≥) and (X2,≥), f : X1×X2 7→ R is supermodular

iff for any x1, y1 ∈ X1;x2, y2 ∈ X2 such that x1 ≥ y1 and x2 ≥ y2, the following
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holds:

f(x1, y2)− f(x1, x2) ≥ f(y1, y2)− f(y1, x2)

We have, Fi(qi, Q) = P (Q + 1)qi + P ′(Q)
2 (qi − 1

2 )2 − ci(qi). Let −Q1 > −Q2.

Let q′i > qi. Then, we have:

Fi(qi, Q1)− Fi(qi, Q2) = (P (Q1 + 1)− P (Q2 + 1))qi +
P ′(Q1)− P ′(Q2)

2
(qi −

1

2
)2

Fi(q
′
i, Q1)− Fi(q′i, Q2) = (P (Q1 + 1)− P (Q2 + 1))q′i +

P ′(Q1)− P ′(Q2)

2
(q′i −

1

2
)2

Since P and P ′ are a decreasing functions, we have P (Q1) ≥ P (Q2) and P ′(Q1) ≥

P ′(Q2). From this and the fact that q′i > qi, we have:

Fi(q
′
i, Q1)− Fi(q′i, Q2) ≥ Fi(qi, Q1)− Fi(qi, Q2)

Therefore F−i is a supermodular function. Since Gi(qi, Q) = Fi(qi, Q − 1), may a

similar argument we can conclude that G−i is supermodular.

Lemma 34. Let I = {qli, . . . , qui } = qFi (Q) = argmaxqi∈{1...Qmax}Fi(qi, Q) and

I ′ = {q′li , . . . , q
′u
i } = qFi (Q′) = argmaxqi∈{1...Qmax}Fi(qi, Q

′). Let Q > Q′. Then

q
′l
i ≥ qli and q

′u
i ≥ qui .

Proof. We need the following definition and Topkis’ Monotonicity Theorem for prov-

ing the lemma.

Definition 9. Given a lattice (X,≥), we define Strong Set Ordering over A,B ⊆ X .

We say A ≥s B iff ∀a ∈ A,∀b ∈ B,max{a, b} ∈ A ∧min{a, b} ∈ B.

We note that the strong set ordering induces a natural ordering on sets of consecu-

tive integers. Let I1 = {l1, . . . , u1}. Let I2 = {l2, . . . , u2}. Then I1 ≥s I2 iff l1 ≥ l2

and u1 ≥ u2.
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Theorem 35 (Topkis’ Monotonicity Theorem[128]). For any lattices (X,≥) and

(T,≥), let f : X × T 7→ R be a supermodular function and let x∗(t) =

argmaxx∈Xf(x, t). If t ≥ t′, then x∗(t) ≥s x∗(t′), i.e., x∗(t) is non-decreasing

in t.

We note that in the theorem above, strong set ordering is used over x∗ because

argmax returns a set of values from lattice X .

Now we are ready to prove Lemma 34. From Lemma 33, F−i (qi,−Q) is a su-

permodular function. Thus, from Theorem 35, qFi (Q) = argmaxFi(qi, Q) is a

non-decreasing function of −Q, i.e., qFi is a non-increasing function of Q. Thus

Q > Q′ =⇒ I ′ ≥s I . As noted above, strong set ordering on a set of consecu-

tive integers implies that q
′l
i ≥ qli and q

′u
i ≥ qui .

Lemma 36. Let I = {qli, . . . , qui } = qGi (Q) = argmaxqi∈{1...Qmax}Gi(qi, Q) and

I ′ = {q′li , . . . , q
′u
i } = qGi (Q′) = argmaxqi∈{1...Qmax}Fi(qi, Q

′). Let Q > Q′. Then

q
′l
i ≥ qli and q

′u
i ≥ qui .

Proof. From Lemma 33, G−i (qi,−Q) is a supermodular function. Thus, from Theo-

rem 35, qGi (Q) = argmaxFi(qi, Q) is a non-decreasing function of −Q, i.e., qGi is a

non-increasing function of Q. Thus Q > Q′ =⇒ I ′ ≥s I . As noted above, strong set

ordering on a set of consecutive integers implies that q
′l
i ≥ qli and q

′u
i ≥ qui .

Lemma 37. Let Q be total production quantity guessed by Algorithm 4 at a step of

outer binary search. Let I = (I1, . . . , In), where Ii = {qli, . . . , qui }, be the set of best

reponse ranges of all firms if the total quantity is a fixed integerQ. Then, if
∑n
i=1 q

u
i <

Q, there does not exist any equilibrium for which the total produced quantity is greater

than or equal to Q.

Proof. Assume for contradiction that such an equilibrium exists for total quantityQ′ >

Q. From Lemma 36, we have qGi (Q) ≥s qGi (Q′) = {q′li . . . q
′u
i }. Thus, we have
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qui ≥ q
′u
i . SinceQ′ is an equilibrium quantity,

∑n
i=1 q

′u
i ≥ Q′. Thus, we have Q′ < Q

and this is a contradiction.

Lemma 38. Let Q be total production quantity guessed by Algorithm 4 at a step of

outer binary search. Let I = (I1, . . . , In), where Ii = {qli, . . . , qui }, be the set of best

reponse ranges of all firms if the total quantity is a fixed integer Q. Then, if
∑n
i=1 q

l
i >

Q, there does not exist any equilibrium for which the total produced quantity is less

than or equal to Q.

Proof. Assume for contradiction that such an equilibrium exists for total quantityQ′ <

Q. From Lemma 34, we have qFi (Q) ≤s qFi (Q′) = {q′li . . . q
′u
i }. Thus, we have

qli ≤ q
′l
i . Since Q′ is an equilibrium quantity,

∑n
i=1 q

′l
i leqQ

′. Thus, we have Q′ > Q

and this is a contradiction.

Finally, the results of this section culiminate in the following theorem.

Theorem 39. Algorithm 4 successfully computes the vector q = (q1, q2, . . . , qn) of

quantities at one equilibrium of the Cournot oligopoly if the price function is decreas-

ing and concave and the cost function is convex. In addition, the algorithm runs in time

O(n log2(Qmax)) where Qmax is the maximum possible total quantity in the oligopoly

network at any equilibrium.

Proof. Lemma 32 guarantees that the inner binary search successfully finds the best

response range for all firms. Lemmas 37 and 38 ensure that the algorithm always

continues its search for the total quantity at equilibrium in the segment where all the

equilibria are. Thus, when the search is over, it must be at an equilibrium of the game

if one exists. If an equilibrium does not exist, then the algorithm will stop when it

has eliminated all quantities in {1 . . . Qmax} as possible total equilibrium production

quantities. Let Qmax be the maximum total quantity possible at any equilibrium of

the oligopoly network. Our algorithm performs a binary search over all possible quan-

tities in [1, Qmax], and at each step finds a range of quantities for each firm i ∈ [n]
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using another binary search. This means the algorithm runs in time O(n log2(Qmax)).

We can find an upper bound for Qmax, noting that Qmax is at most the sum of the

production quantites of the firms when they are the only producer in the market; i.e,

Qmax ≤
∑
i∈[n]Q

∗
i where Q∗i = q∗i (qi) is the optimal quantity to be produced by firm

i when there is no other firms to compete with.
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Chapter 5

Couter-Terrorism Policies with

Vector Equilibria

5.1 Introduction

The research reported in this chapter was motivated by a concrete application: how can

countries trying to rein in the terrorist group Lashkar-e-Taiba1 (LeT for short) come up

with policies against them, especially if these policies need to be coordinated? In the

case of a five-player game we formulated for LeT (presented later), there were wide

variations of opinion amongst experts on what to do about LeT with respect to, for

instance, whether India should carry out covert action, carry out coercive diplomacy,

propose peace talks, or just keep the status quo. Likewise, the US has historically

had multiple opposing viewpoints on whether to continue financial (development and

military aid) to Pakistan, whether to carry out covert action against LeT, or do nothing.

0This is a joint work with J. P. Dickerson, M. T. Hajiaghayi and V. S. Subrahmanian. A version of this
work appeared in ACM-TIST [116].

1Lashkar-e-Taiba (LeT), translated variously from Urdu into “Army of the Pure” or “Army of the Pious”,
is a prominent south Asian terrorist organization responsible for attacks in India, Kashmir, Pakistan, and
Afghanistan, including the three days of attacks in 2008 in Mumbai, India, that resulted in the deaths of 166
innocent people [122, 124].

119



Analyzing the benefits of these actions even in the case of a single actor (e.g., only

India or only the US) has proven challenging. The main contribution of this chapter is

a multi-player, game-theoretic framework in which this specific problem can be solved.

However, we wanted to come up with a general solution, one that is applicable to

many different settings. For instance, there are many applications where the “payoff

matrices”, usually one of the very first things needed in any game-theoretic framework,

cannot be specified with accuracy. When asked about payoffs, multiple experts might

express substantial disagreements. This is what happened with our LeT application.

Here are some applications where multiple payoff matrices have been considered in a

wide variety of settings.

1. Socio-Cultural Behavior Modeling. Woodley et al. 2008 propose a “Cultur-

ally Aware Response” (or CAR) framework in conjunction with the well-known

World Values Survey to assess the results of different types of interactions be-

tween culturally different groups. They use multiple payoff matrices in their

framework which vary based on the historical behaviors of different groups, e.g.,

one payoff matrix may indicate situations where a player responds in kind to

responses of other players, while another payoff matrix may reflect situations

where the player is largely non-violent.

2. Open Source Software Releases. Asundi et al. 2012 analyze the circumstances

that are optimal for companies to release software. They argue that by open-

sourcing a “crimped” version of their product, a company can hurt competitors,

while enabling sales of a more sophisticated pay version of their product. To

build their model, the authors utilize four different payoff matrices, correspond-

ing to different regions of the parameter space that defines their model.

3. International Climate Change Negotiations. Pittel and Rübbelke 2012 develop

a game-theoretic model of climate change negotiations building upon the well-

known chicken game and the iterated prisoner’s dilemma. The two games are
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combined into a 3×3 game and studied under different payoff scenarios.

4. Telecommunications. Karami and Glisic 2010 define asymmetric matrix games

(AMG) with which they model routing and network coding using conflict-free

scheduling mechanisms. In their framework, multiple payoff matrices are de-

fined, with one payoff matrix corresponding to each of a set of different partial

possible network topologies.

Other applications include international negotiations [79] where the precise payoffs

for the nations involved are viewed through different lenses by different experts. They

can also include applications where there are different views on the payoffs different

corporations get for taking different types of actions (e.g., raise wages for striking

workers vs. shut down a factory vs. take legal action). Even a seemingly simple

action such as “take legal action” can lead to a diversity of views about costs/payoffs

as different views may exist on, e.g., how long the litigation will take (and hence how

much it will cost). This chapter has two parts:

• Approximate Equilibria for Multi-Player Games with Vector Payoffs. Games

with multiple payoffs were introduced by Shapley 1959. Shapley called them

vector valued games and they have been extensively studied under various other

names such as multicriteria games and multi-objective games. Unfortunately,

for real-world applications such as the LeT application motivating this research,

the computational cost of these past methods is too high. In order to address

this, we introduce a novel combination of vector valued games and approximate

equilibria and define new types of approximate equilibria for games with multi-

ple players and multiple payoff matrices. We design algorithms for computing

such equilibria for zero-sum games and games of low rank. For the case of rank 1

games, we give a structural result and use it to design a simple algorithm for such

games. For general games we give an extension of Althöfer’s Approximation

Lemma 1994 for simultaneous games with multiple payoff functions (SGMs)
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Table 5.1: The actions that different players can take.

Player Action Abbrv.

Lashkar-
e-Taiba
(LeT)

Launch major attacks attack
Eliminate armed wing eaw
Hold attacks hold
Do nothing none

Pakistan’s
Gov-
ernment
(PakG)

Prosecute LeT pros
Endorse LeT endorse
Do nothing none

Pakistan’s
Military
(PakM)

Crackdown on LeT crack
Cut support to LeT cut
Increase support to LeT support
Do nothing none

India

Covert action against LeT covert
Coercive diplomacy against PakG coerce
Propose peace initiative to PakG peace
Do nothing none

U.S.

Covert action against LeT covert
Cut aid to PakG cut
Expand aid to PakG expand
Do nothing none

and use it to design a quasi-polynomial time approximation scheme (QPTAS)

when the number of players in a game is constant (which is the case for our LeT

game).

• Application of PREVE to Generate Policies to Reduce Terror Acts by LeT. Build-

ing on work by Dickerson et al. 2011, 2013, we then present a real-world appli-

cation in which there are five parties including four governmental entities and the

terrorist group Lashkar-e-Taiba (LeT). The goal was to understand whether there

were any pure (or mixed) equilibria in which the group’s terrorist acts could be

significantly reduced. The five players considered are: the US, India, the Pak-

istani military, the Pakistani civilian government, and the terrorist group LeT.

Table 5.1 shows the actions the players were allowed to take.

When it comes to the application of game-theoretic reasoning to international

strategic elements [117] with both state and non-state actors, the situation be-
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comes much more complex because identifying the payoffs for different players

is an enormous challenge and experts vary widely on what these payoffs are.

To address this application, we asked three internationally acknowledged world

experts to give us payoff matrices—and we received three payoff matrices with

substantial differences between them. Leveraging the theoretical constructs and

results described above, we built the PREVE (Policy Recommendation Engine

based on Vector Equilibria) software suite, and used it to identify approximate

equilibria in the multiple payoff game induced by the three expert payoff matri-

ces. We present key results produced by PREVE, and analyze their strengths and

weaknesses from a policy perspective.

This chapter begins with Section 5.2 introducing our LeT example briefly. As the

LeT example is quite complex, a small toy example is also introduced. This toy ex-

ample is used throughout the chapter in order to illustrate the various definitions and

algorithms we introduce. Section 5.3, our first formal section, consists of prelimi-

naries which cover basic game-theoretic concepts. Section 5.5 formally defines our

equilibrium concepts and presents bounds on computing them under various assump-

tions. Section 5.6 presents a QPTAS for the general case, when the number of players

is constant. Building on this QPTAS, it gives efficient algorithms for computing such

equilibria and experimentally validates them on simulated data. Section 5.7 gives a

brief description of the computational system we built, called PREVE, and applies it to

a real-world experimental five-player game used to model LeT. Section 5.7 also sum-

marizes results from computing equilibria from three payoff matrices (created by area

experts using open source data) and presents key policy results. Section 5.8 describes

related work on game-theoretic models of terrorist group behavior as well as past policy

recommendations on how the US and India should deal with LeT.
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5.2 Motivating Examples

In this section, we briefly describe the LeT application motivating this research. We

also introduce a toy example that will be used throughout the chapter to illustrate defi-

nitions, as the full LeT example can be too complex for that.

5.2.1 Reducing Terror Attacks by LeT

Lashkar-e-Taiba (LeT) is a terrorist group primarily funded by the Pakistani intelli-

gence agency, the Inter-Services Intelligence [137]. Created in 1990, the group has

carried out numerous terrorist attacks, the most spectacular of which was the Novem-

ber 2008 terrorist attack in Mumbai that targeted several sites including the iconic Taj

Mahal hotel, killing 166 innocent civilians (as well as nine terrorists, while a tenth ter-

rorist was captured). LeT has strong links to various other terrorist groups including

Al-Qaeda, Indian Mujahideen, Jaish-e-Mohammed, Jabhat-al-Nusra in Syria, groups

in Chechnya, Jemaa Islamiyah, as well as organized crime groups such as Dawood

Ibrahim’s D-Company. For instance, Al-Qaeda leader Khalid Sheikh Mohammed was

captured in an LeT safehouse in Pakistan. Given its technical sophistication and the

support of a sophisticated intelligence agency, LeT is viewed as a major threat by both

the US and India—both in terms of operations they might carry out themselves and in

terms of training and logistics support they might provide to other groups that carry out

such attacks.

In order to reduce terror attacks by LeT, we developed a five-player game. The

players considered are the United States (US), India, Pakistan’s government, Pakistan’s

military, and Lashkar-e-Taiba (LeT). We recall that Table 5.1, presented earlier, gives

actions each player can take, and that—in addition to the actions below—each player

can take the action none, which corresponds to doing nothing. We describe the other

actions in depth here.

US Actions. The US can take three actions (and none).
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1. The first is covert action against LeT. While we do not suggest specific oper-

ations, this action could be implemented in many ways including covert actions

to undermine LeT’s leaders or covert actions to target LeT training camps. It is

clear that the US is capable of such covert action as evidenced by recent events

involving a CIA contractor called Raymond Davis who was arrested by the Pak-

istanis after a shootout in Lahore.

2. The US could also cut military and/or development support currently being

given to Pakistan. According to the Congressional Research Service, the US

provided $1.727 billion in economic aid to Pakistan in FY2010.2 In 2012, the

US asked Congress for permission to ship almost $3 billion to Pakistan with

over half being military aid.3 Cutting some of this aid is an option the US has

long considered, especially in view of US Admiral Mike Mullen’s assertions in

2011 about Pakistan’s ISI controlling the Haqqani terrorist network which in turn

attacked the US embassy in Kabul.4

3. The US could also expand financial support for Pakistan. Pakistan’s educa-

tional system and economy are both in shambles and some have argued that

additional development assistance would wean young people away from radical

elements.

India’s Actions. As with the US, we study three actions (and none) that India might

take. Similarly, there are many ways in which India could tactically implement these

actions.

1. Like the US, India can also take different forms of covert action against LeT

using methods similar to those listed above for the US.

2See “Pakistan-U.S. Relations: A Summary,” by K. Alan Kronstadt of the Congressional Research
Service, May 16, 2011.

3http://www.foxnews.com/topics/us-aid-to-pakistan-fy2012-request.htm
4http://www.nytimes.com/2011/09/23/world/asia/mullen-asserts-pakistani-role-in-attack-on-us-embassy.

html?pagewanted=all&_r=0
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2. India can also use coercive diplomacy in which diplomatic moves are

used to coerce Pakistan. For instance, a credible threat can be used to warn Pak-

istan of the consequences of carrying out certain actions. For coercive diplomacy

to be effective, the threat must be made publicly and must be credible [117].

Credible threats could include withholding water by diverting the headwaters of

the Indus or by troop movements or simply by ramping up military spending

which would place pressure on other parts of the Pakistani economy.

3. A third option we consider is one where India proposes some kind of peace

initiative to Pakistan, e.g., granting some additional rights for back and forth

movement between India and Pakistan, unifying families in Kashmir who were

split up by the partition of Kashmir, and so forth.

Pakistan Military Actions. We study three possible actions for the Pakistani military,

all related to their support for LeT.

1. The Pakistani military could implement a crackdown on LeT by arresting LeT

members and/or closing down LeT’s training camps, shutting down the logistical

support for LeT operations in Jammu and Kashmir, and taking steps to interdict

LeT-allied organizations like Jamaat-ud-Dawa. Pakistani security has, at times,

cracked down on LeT, e.g., after the December 2001 parliament attack and the

November 2008 attacks in Mumbai.

2. The Pakistani military could cut support to LeT by, e.g., arresting military of-

ficers who are illicitly supporting LeT and stopping military training of LeT

personnel.

3. The Pakistani military could also expand support for LeT, e.g., by increasing

its logistical and materiel support as well as financial support.

Pakistan Government Actions. We consider just two possible actions (in addition to

none) by the civilian side of the Pakistani government (excluding the military side).
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1. The Pakistani government could prosecute and arrest LeT personnel, as they

have done periodically (though the leaders are usually released shortly there-

after).

2. The Pakistani government could choose to endorse LeT’s social services pro-

gram by routing government services through them. LeT runs many social ser-

vices in Pakistan ranging from ambulances to hospitals, schools, and disaster

relief programs.

Lashkar-e-Taiba’s Actions. In the case of LeT, we considered three actions (in addi-

tion to the none action).

1. LeT could launch a major attack. We already know from the November 2008

Mumbai siege that they have the capability and logistical support to execute such

attacks.

2. LeT could hold attacks (but not major ones), similar to those periodically car-

ried out by them in Kashmir where military and civilian personnel are frequently

targeted.

3. LeT could do something dramatic like eliminate its armed wing, give up its

weapons, and publicly renounce violence. Though extremely unlikely, this is

still worth listing as a possible action.

5.2.2 A Toy Example

We now introduce a small example that will be used to illustrate formal concepts and

definitions as they are introduced later in the chapter. Consider a very simple game con-

sisting of two players, a terrorist group T and a government G. Suppose the terrorist

group can carry out two actions (terror-attack and peace) and the government

can carry out two actions (CT-ops and peace). Here, CT-actions denotes some
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traditional counter-terror operations such as killing and arresting group members. Ex-

perts are divided on the values of these actions to each player and thus provide two

payoff matrices, PM 1 and PM 2.

CT-ops peace

terror-attack (−5,−5) (3,−10)

peace (−8, 6) (0, 0)

CT-ops peace

terror-attack (−5, 6) (3, 3)

peace (−5,−5) (−5, 2)

PM 1 PM 2

Much of our analysis is for games with payoffs in [0, 1]. Note that a scaled and

translated version of the above matrices that does not alter equilibria of the game can

be constructed. The modified payoff matrices (rounded to hundredths) are given below.

CT-ops peace

terror-attack (0.31, 0.31) (0.81, 0)

peace (0.12, 1) (0.62, 0.62)

CT-ops peace

terror-attack (0, 1) (0.73, 0.73)

peace (0, 0) (0, 0.64)

Scaled PM 1 Scaled PM 2

In each of these tables, the rows show terror group T ’s actions and the columns

show the government G’s actions. For example, the entry (3,−10) in PM 1 says that

the payoff to the terror group is 3 and the payoff to the government is −10 when the

terror group performs terror-attack and the government proposes peace.

We will use this simple motivating example to illustrate various concepts in this

chapter.

5.3 Technical Preliminaries: Approximate Equilibria

In this section, we first review common game-theoretic models and equilibrium con-

cepts (§5.3.1), then build on them to define approximate equilibria in games with mul-

tiple payoff functions (§5.4).
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5.3.1 Approximate Equilibria in Games with a Single Payoff Func-

tion

We consider simultaneous multiplayer games. Let [n] = {1, 2, . . . , n} be the set of

players and [m] = {1, 2, . . . ,m} be the set of actions for each player. Let ∆m be the

simplex {(x1, x2, . . . , xm)|
∑
i∈[m] xi = 1, xi ≥ 0,∀i ∈ [m]}.

For any player j, any σj ∈ ∆m is a probability distribution over the set of actions

[m]; thus, σj is called a strategy for player j. If σj = (x1, x2, . . . , xm), then xi is

the probability that player j will perform action i. When all but one of the xi’s in σj

are 0, σj is called a pure strategy; otherwise, it is called a mixed strategy. In mixed

strategies, a player probabilistically chooses which action to take. Note that we will

calculate these mixed strategies from the multiple payoff matrices provided by experts.

They are not inputs to our algorithms (and so experts do not have to provide them);

they are outputs generated by our system.

We use ∆ to denote the set Πn
j=1∆m. Any σ ∈ ∆ is called a strategy profile for a

game a. If σ = (σ1, . . . , σn) ∈ ∆, then σj denotes the strategy of the player j. For

convenience, we can represent a strategy profile σ as (σj , σ−j), where σj represents

the strategy of player j and σ−j represents strategies for the rest of the players.

Example 6. Consider the toy example given in Section 5.2.2. An example pure strategy

for the government G is to play action CT-ops. Similarly, a pure strategy for the

terror group T is to play action terror-attack. An example of a mixed strategy

for G is to play action CT-ops and action peace with probabilities of 1
3 and 2

3 ,

respectively. Similarly, T could play action terror-attack and action peacewith

probabilities 1
2 and 1

2 , respectively. The above mixed stategies for G and T together

form a stategy profile for the game.

The payoff for a player j is a function uj : ∆ 7→ [0, 1]. In this section, we assume

(without loss of generality) that all payoffs are in the unit interval [0, 1]. We now define

a basic building block of game theory, the Nash equilibrium.
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Definition 10. A strategy profile σ is a Nash equilibrium iff:

uj(σ
j′, σ−j) ≤ uj(σ) ∀σj′ ∈ ∆m, j ∈ [n]

Thus, a strategy profile is a Nash equilibrium if no player has incentive to deviate

from his strategy, assuming all other players play their respective strategies. Classical

game theory assumes that players are rational. Hence, players can reason about one

another and identify the Nash equilibria that are possible and then typically play actions

consistent with one such Nash equilibrium. As Schelling 1980 observes, a good amount

of work may also be invested by players in “prepping” the game so that certain strategy

profiles are excluded from being equilibria.

Example 7. Consider the mixed strategy given in Example 6. G plays action CT-ops

and action peace with probabilities 1
3 and 2

3 , respectively. Similarly, T plays action

terror-attack and action peace with probabilities 1
2 and 1

2 , respectively. In

this case, as per the payoff matrix PM 1 (defined in Section 5.2.2), the payoff for G is

−5 ∗ 1
3 ∗

1
2 +−10 ∗ 2

3 ∗
1
2 + 6 ∗ 1

3 ∗
1
2 + 0 ∗ 2

3 ∗
1
2 = − 19

6 . We note that the payoff for

a given strategy profile is the expected payoff given players draw actions independenty

at random according to their respective strategies. A Nash equilibrium for the same

game is forG to play CT-ops with probability 1 and for T to play terror-attack

with probability 1, resulting in a payoff of −5 for both players.

Since Nash equilibria are notoriously difficult to compute [27, 34], recent work has

focused on finding approximate Nash equilibria. We use a well-known notion of an

approximate Nash equilibria.

Definition 11. A strategy profile σ is an ε-approximate Nash equilibrium for some

0 ≤ ε ≤ 1 iff:

uj(σ
j′, σ−j) ≤ uj(σ) + ε,∀σj′ ∈ ∆m, j ∈ [n]. (5.1)
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A stricter notion of an approximate Nash equilibrium is the well-supported approx-

imate Nash equilibrium. Let S(σ), the support of a strategy σ ∈ ∆m, be the set

S(σ) = {i | σi > 0}. Intuitively, the support of σ is the set of actions that are exe-

cuted with nonzero probability. Daskalakis, Goldberg, and Papadimitriou 2006 define

a well-supported approximate Nash equilibrium as follows.

Definition 12. Suppose 0 ≤ ε ≤ 1 is a real number. A strategy profile σ is a well-

supported ε-approximate Nash equilibrium iff:

uj(ei, σ
−j) ≤ uj(el, σ−j) + ε ∀σj′ ∈ ∆m, i ∈ [m],

l ∈ S(σj), j ∈ [n]

In other words, for a strategy to be a well-supported ε-approximate Nash equilib-

rium, every player’s incentive to deviate from his equilibrium strategy is very small

(less than a utility of ε).

Definition 11 and Definition 12 both define approximate Nash equilibria that are

additive in nature (due to the +ε term in the right side of the definition). A multiplica-

tive (relative) approximation can be defined as follows, due to [34].

Definition 13. A strategy profile σ is a well-supported relative ε-approximate Nash

equilibrium for 0 ≤ ε ≤ 1 iff ∀j ∈ [n], i ∈ [m]:

(1− ε)uj(ei, σ−j) ≤ uj(el, σ−j),∀l ∈ S(σj) (5.2)

The following example illustrates these different notions of approximate equilibria.

Example 8. Consider the strategy profile from Example 6. G plays action CT-ops

and action peace with probabilities 1
3 and 2

3 , respectively. Similarly, T plays action

terror-attack and action peace with probabilities 1
2 and 1

2 , respectively. For T ,

this is an ε-approximate Nash equilibrium with ε = 1.5 since the expected payoff for T
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is −1.17 and deviation to action terror-attack leads to a payoff of 0.33. This is

a well-supported ε-approximate Nash equilibrium for T with ε = 3 because the payoff

for action peace, which is in the support of T ’s strategy, is −2.67 and deviation to

terror-attack leads to a payoff of 0.33—a gain of 3.00.

5.4 Approximate Equilibria in Games with Multiple

Payoff Functions

In this section, we merge together the ideas of (well-supported) approximate Nash

equilibria and Shapley’s vector payoffs in an effort to combine multiple conflicting

experts’ knowledge of payoffs.

Definition 14. A simultaneous game with multiple payoff functions (SGM) is a triple

G = (n,m,U) where [n] is a set of players, [m] is the set of actions for each player

in [n], and U = (U1, U2, . . . , Uf ) consists of f ordered sets of payoff functions Uk =

(uk1 , u
k
2 , . . . , u

k
n),∀k ∈ [f ].

Intuitively, an SGM G can be viewed as f different games specified over a set

of players, over the same strategy space, with payoff functions for players given by

Uk, k ∈ [f ]. We refer to these f individual simultaneous games as constituent games

of G. Throughout this chapter, we use the variable f to denote the number of payoff

matrices considered—which is also equal to the number of constituent games in a SGM

or a ZSGM (a zero-sum version of an SGM defined later in Section 5.5.1).

For instance, in our toy example, the game G consists of two different constituent

games, one corresponding to each of the two payoff matrices.

We now merge the idea of an approximate Nash equilibrium (Definition 11) with

that of Shapley’s vector payoffs.

Definition 15. A strategy profile σ is a multiple ε-approximate Nash equilibrium of an

SGM (n,m,U), iff it is an ε-approximate Nash equilibrium for each of its constituent
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games. Specifically, for all k ∈ [f ]:

ukj (σj′, σ−j) ≤ ukj (σ) + ε, ∀σj′ ∈ ∆m, j ∈ [n] (5.3)

Building on Definition 15, we also combine well-supported approximate Nash

equilibria (Definition 12) with vector payoffs.

Definition 16. A strategy profile σ is a well-supported multiple ε-approximate Nash

equilibrium of an SGM (n,m,U), iff it is a well-supported ε-approximate Nash equi-

librium for each of its constituent games. That is, for all k ∈ [f ]:

ukj (ei, σ
−j) ≤ ukj (el, σ

−j) + ε ∀σj′ ∈ ∆m, i ∈ [m],

l ∈ S(σj), j ∈ [n]

Finally, we can define the multiplicative version of Definition 16 as well.

Definition 17. A strategy profile σ is a well-supported multiple relative ε-approximate

Nash equilibrium of an SGM (n,m,U) iff it is a well-supported relative ε-approximate

Nash equilibrium for each of its constituent games. Thus, for all k ∈ [f ], j ∈ [n], i ∈

[m]:

(1− ε)ukj (ei, σ
−j) ≤ ukj (el, σ

−j), ∀l ∈ S(σj) (5.4)

We now provide an example of a well-supported multiple ε-approximate Nash equi-

librium in the context of our toy game.

Example 9. For the game defined in Section 5.2.2, consider the strategy profile where

T plays action terror-attack with probability 1 and G plays action CT-ops

with probability 1. For both the payoff matrices, PM 1 and PM 2, this is a Nash equi-

librium. Therefore, the given staregy profile is a well-supported multiple ε-approximate

Nash equilibrium with ε = 0. Consider another strategy profile, where G plays action
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CT-ops and action peacewith probabilities 1
3 and 2

3 , respectively. Similarly, T plays

action terror-attack and action peace with probabilities 1
2 and 1

2 , respectively.

This is a well-supported multiple ε-approximate Nash equilibrium with ε = 5.5. This is

because in one of the payoff matrices, PM 1, the payoff G receives from action peace

in support is −5 and deviating to action CT-ops leads to a payoff of 0.5 leading to a

gain of ε = 5.5.

A well-supported multiple ε-approximate Nash equilibrium is “close” in payoff for

each player to a (Nash or approximate Nash) equilibrium in the constituent game corre-

sponding to each payoff matrix in the SGM. A well-supported multiple ε-approximate

Nash equilibrium closely approximates equilibrium situations irrespective of which of

the several experts’ payoff matrices is used—it is a robust.

For notational convenience, in the experimental section of this chapter, we will refer

to well-supported multiple ε-approximate Nash equilibria computed using only U ′ ⊆

U payoff functions as (ε, k)-equilibria, where |U ′| = k. Such equilibria computed

with the full set U are simply written as ε-equilibria.

5.5 Approximate Equilibria in Simultaneous Games

with Multiple Payoff Functions

We begin by analyzing two fairly constrained cases, zero-sum games (§5.5.1) and

rank 1 games (§5.5.2). We then relax these assumptions, providing results for low-

rank games (§5.5.3), which will later lead into results on general games where the

number of players is constant (§5.6.2).

5.5.1 Zero-sum Games with Multiple Payoffs

We begin by extending the well-known linear program (LP) for computation of an

exact Nash equilibrium in zero-sum games to the computation of an approximate Nash
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equilibrium, and subsequently use it to design an algorithm to compute multiple payoff

equilibria in such games. We will focus on the zero-sum equivalent of a simultaneous

game with multiple payoff functions, as defined by Definition 18.

Definition 18. A zero-sum simultaneous game with multiple payoff functions (for

two players) (ZSGM) is an SGM (2,m,U), with ordered set of payoff functions

U = (u1, u2, . . . , uf ) such that uk (−uk) is the payoff function for player 1 (player 2)

∀k ∈ [f ]. For convenience, we denote such games G = (m,U).

Note that ZSGMs are limited to just two players.

Let (m,U), where U = (u1, u2, .., uf ), be a ZSGM. Let P = (r1, r2, . . . , rf ),

ri ∈ [0, 1],∀i ∈ [f ]. Consider the following LP:

LPf (U,P, ε)

∑
i∈[m]

σ1
i = 1

σ1
i ≥ 0, ∀i ∈ [m]∑

i∈[m]

σ2
i = 1

σ2
i ≥ 0, ∀i ∈ [m]∑

i∈[m]

σ1
i u

k(ei, ej) ≥ rk − ε, ∀j ∈ [m], k ∈ [f ] (5.5)

∑
i∈[m]

σ2
i u

k(ei, ej) ≤ rk + ε, ∀j ∈ [m], k ∈ [f ] (5.6)

Here, the first four equations are required because σ1 and σ2 are distributions over

actions of players 1 and 2 respectively. Equations (5.5) and (5.6) are required because

we want players to play strategies that are approximate best responses to each of the

constituent games of the ZSGM.

For f = 1, this LP applies to a zero-sum game with scalar payoff function u = u1.

For this special case, we call this LP, LP1(u, r, ε). Lemma 40 and Lemma 41 show
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that for the single payoff function case, the linear program LP1 computes approximate

Nash equilibria for zero-sum games. Thus, our framework neatly extends approximate

Nash equilibria to the case when there are vector-valued payoffs. The next result states

that any solution to the linear program given above yields a Nash equilibrium.

Lemma 40. Any feasible solution to LP1(u, r, ε) is a 2ε-approximate Nash Equilib-

rium for a zero-sum game with u as payoff function for player 1.

The following result says that every ε-approximate Nash equilibrium is a solution

of the linear program LP given above.

Lemma 41. Any ε-approximate Nash equilibrium strategy profile (σ1, σ2) for zero-

sum game with payoff function u for player 1 such that payoff for player 1 is in [r −

ε, r + ε], ε ≥ 0 is a feasible solution to LP1(u, r, 2ε).

Lemma 42 and Lemma 43 below extend the above results (which apply when f =

1, i.e., when there is only one payoff function) to the case of zero-sum games with

multiple payoff functions. The first result, analogous to Lemma 40, states that solutions

of the above LP are multiple payoff ε-approximate equilibria.

Lemma 42. Any feasible solution to LPf (U,P, ε2 ) is a multiple payoff ε-approximate

equilibrium for the ZSGM (m,U).

The next result, analogous to Lemma 41 states that for every multiple payoff ε-

approximate equilibrium, there is a corresponding solution of the above LP.

Lemma 43. Let σ = (σ1, σ2) be a strategy profile that is a multiple payoff ε-

approximate equilibrium for the ZSGM (m,U). Let P = (r1, r2, . . . , rf ) be the

vector of payoffs for player 1 for each of the constituent games of the ZSGM. Let

P ′ = (r′1, r
′
2, . . . , r

′
f ) be a vector such that |ri − r′i| ≤ ε,∀i ∈ [f ]. Then σ is a

feasible solution to LPf (U,P, 2ε).

Thus,LP f (U,P, ε) precisely captures the entire set of multiple payoff ε-approximate

equilibria of our zero sum game.
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Algorithm 5 presents a method to compute the set of all approximate ε-equilibria

in the multiple payoff case. The algorithm uses an input k in order to regulate the

approximation error factor, ε.

Algorithm 5 Approximate Multiple Payoff ε-Equilibrium in Zero-sum Games
Input:k, set of payoff functions U = (u1, u2, . . . , uf )
Output:A set of LPs (see Theorem 44 for details)

S ← { 0
k ,

1
k , . . . , 1}

Payoffs ←×f

i=1
S . Cardinality: (k + 1)f

LP_Set ← ∅
for P ∈ Payoffs do

LP_Set ← LP_Set ∪ LPf (U,P, 1
k )

end for
return LP_Set

The result below shows that Algorithm 5 computes certain types of multiple-payoff

approximate equilibria.

Theorem 44. Algorithm 5 runs in time O((k + 1)f (2mf + 2m + 2)) and outputs a

set of LPs. Let S be the union of feasible regions of all LPs in the set returned by the

algorithm. Then S satisfies the following conditions:

1. All strategy profiles in S are approximate multiple payoff ε-equilibria with ε = 2
k .

2. All multiple payoff ε-equilibria with ε = 1
2k are in S.

5.5.2 Multiplayer Games of Rank 1

We now deal with the problem of finding equilibria in low-rank multiplayer games

with multiple payoffs. Our real-world LeT application is one example of a low rank

multiplayer game.

The definition of rank that we use is equivalent to one given by Kalyanaraman and

Umans 2007. As is evident from recent papers (e.g., [2, 71, 73, 87, 126]), games of

low rank have generated considerable interest.

137



In this section, we first define multiplayer games of rank K. We then give a com-

plete characterization of Nash equilibria for these games when K = 1 and use this

characterization to compute well-supported relative ε-approximate Nash equilibria.

Definition 19. A multiplayer game of rank K is a game where the payoff function

for each player is specified by K n-tuples of vectors, each of length m. Let αj,k =

(α1,j,k, α2,j,k, . . . , αn,j,k) be the tuple specifying the payoff function for player j. Let

ρ = (ea1 , ea2 , .., ean) be a strategy profile with only pure strategies for each player,

where ai is the action for player i. Then, the payoff for player j is defined as:

uj(ea1 , ea2 , .., ean) =
∑
k∈[K]

∏
i∈[n]

αi,j,kai (5.7)

For a strategy profile, σ = (σ1, σ2, .., σn), payoffs are defined as usual. Let A =

[m]× [m]× ..× [m]︸ ︷︷ ︸
n times

be the set of all possible combinations of actions of all players.

Then, payoffs are given by:

uj(σ) =
∑
a∈A

∏
i∈[n]

σiaiuj(ea1 , ea2 , .., ean) (5.8)

=
∑
a∈A

∏
i∈[n]

σiai

∑
k∈[K]

∏
l∈[n]

αl,j,kal
(5.9)

We note that each payoff matrix is of rank at most K and it is input as a rank-K

decomposition. As can be seen from Equation 5.7, the payoff matrix for player j is a

sum of K terms and the kth term is the tensor product of vectors in tuple αj,k. This

is a complicated definition, so let us consider the case when K = 2. In this case, the

payoff matrix is implicitly specified by two vectors, each of length m (the number of

actions). Consider the strategy profile ρ = (ea1 , ea2 , .., ean). This strategy profile tells

us what actions each of the n players is taking. From Equation 5.9, in a rank K = 2
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game, we compute the payoff for player 1 (i.e. j = 1) as

Πn
i=1α

i,1,1
ai + Πn

i=1α
i,1,2
ai .

The following example uses our toy example to illustrate rank K games.

Example 10. As an example, we give a rank-2 decomposition of payoff matrix

PM1 of player T given in Section 5.2.2. A rank-2 decomposition of the matrix is

α1,1,1 = {−1.76,−2.54}, α2,1,1 = {3.05,−0.55}, α1,1,2 = {−1.30, 0.90}, α2,1,2 =

{−0.28,−1.56}. It can be easily verified (up to rounding error) that for T , PM1 =

α1,1,1(α2,1,1)T + α1,1,2(α2,1,2)T . A similar decomposition of PM1 for G is given

by α1,2,1 = {−3.25, 0.99}, α2,2,1 = {1.92, 2.81}, α1,2,2 = {0.67, 2.18}, α2,2,2 =

{1.88,−1.28}. Therefore, the game specified by PM1 is a rank-2 game.

For the special case of rank 1 games, we drop the superscript k from vectors αi,j,k.

Nash Equilibria for Rank 1 Games

The following result presents a complete characterization of Nash equilibria for multi-

player games of rank 1.

Lemma 45. Let σ be a mixed strategy profile. Let u′−j(σ) =
∏
i∈[n]−{j}(

∑
l∈[m] σ

i
lα
i,j
l ).

Let the support of player j’s strategy be Sj = {l|αj,jl = max(αj,j)}. σ is a Nash equi-

librium iff:

u′−j(σ) > 0 =⇒ support(σj) ⊆ Sj

In the rest of this section, we assume that all players have a non-zero payoff at

equilibrium, since, for any general multiplayer game, if a player has a zero payoff at

equilibrium, which is the minimum possible payoff for the game, then her maximum

and minimum possible payoffs are both zero for any choice of action and the player is

free to take any action in her equilibrium strategy.
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ε-Approximate Multiple Payoff Equilibria for Rank 1 Games

We now give a characterization of well-supported relative ε-approximate Nash equilib-

ria. Here we solve the multiplicative approximation problem which is harder than the

additive approximation for normal form games [33].

Lemma 46. A strategy profile σ = 〈σ1, σ2, . . . , σn〉 is a well-supported relative ε-

approximate Nash equilibrium (with a non-zero payoff for all players) for a multiplayer

game of rank 1 with payoffs as specified in Section 5.5.2 iff:

αj,ji ≥ (1− ε)(maxαj,j),∀j ∈ [n], i ∈ S(σj) (5.10)

We now prove the main result for this section and give an algorithm for the compu-

tation of well-supported multple relative ε-approximate Nash equilibria in multiplayer

games of rank 1. The following theorem is the main result for this section.

Theorem 47. Consider an SGM of rank 1 with f different payoff functions for

each player. For t ∈ [f ], let payoff function k for player j be specified by tuple

(α1,j,k, α2,j,k, . . . , αn,j,k). Then, a strategy profile σ = (σ1, σ2, . . . , σn) is a well-

supported multiple relative ε-approximate Nash equilibrium, iff ∀j ∈ [n]:

αj,j,ki ≥ (maxαj,j,k)(1− ε), i ∈ S(σj), k ∈ [f ] (5.11)

Algorithm 6 leverages this result to compute well-supported multiple relative ε-

approximate Nash equilibria for rank-1 games.

We use a variant of our toy example to explain Algorithm 6.

Example 11. As an example, consider a rank-1 game where Player 1 is T and Player

2 is G. Let a rank-1 PM1 for T be α1,1,1 = {1, 0.5}, α2,1,1 = {0.5, 1}. Let, a

similar PM1 for G be given by α1,2,1 = {1, 0.25}, α2,2,1 = {1, 0.25}. Let PM2

for T be given by α1,1,2 = {0.75, 1}, α2,1,1 = {0.75, 1}. Let PM2 for G be given by
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Algorithm 6 well-supported multple relative ε-approximate Nash equilibria in rank-1
games
Input:ε, payoff vectors αi,j,t

Output:Allowed actions in supports of a feasible strategy profile

for i ∈ [m], j ∈ [n] do
if ∀t ∈ [f ], αj,j,ti ≥ (maxαj,j,t)(1 − ε) then Add i to actions in support of

player j’s strategies.
end if

end for
if there exists any player with empty support set then . If any support is empty the
profile is infeasible

return NULL
else

return The support sets constructed in the for loop
end if

α1,2,2 = {0.75, 1}, α2,2,2 = {1, 0.75}. Let ε = 0.5. Then for PM1, all mixed strategies

for T are well-supported relative ε-approximate Nash equilibria. For G only action

CT-ops can be in the support. For PM2, all mixed strategies for both the players are

well-supported relative ε-approximate Nash equilibria. Therefore, a strategy profile

where T plays some mixed strategy and G plays action CT-ops is a well-supported

multiple relative ε-approximate Nash equilibrium with ε = 0.5.

5.5.3 Multiple Payoff Games of Low Rank

In this section we consider the general case of multiplayer games of low rank (Defini-

tion 19). We prove that a class of strategies called “uniform strategies” (which we will

define shortly) can be used to compute approximate Nash equilibria for these games

when the number of actions is small. We then leverage this result to design an algorithm

that computes the set of all multiple payoff equilibria for such games.

In this and the next section, we focus only on uniform strategies. Uniform strategies

provide a tradeoff between simplicity and optimality that may be valuable to the end

user. For example, in the LeT game we study later in the chapter, a policy prescription
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like “India should take covert action against LeT with probability 0.0071” may not be

very useful to the end user. A simpler policy prescription that is almost as good may

be a much better option. We now define a uniform strategy profile.

Definition 20. A strategy profile σ = (σ1, σ2, . . . , σn) is a t-uniform strategy profile

if, ∀i ∈ [n],∀j ∈ [m]:

σij ∈ {
`

t
| ` ∈ {0, 1, . . . , t}}

Intuitively, a t-uniform strategy discretizes the [0, 1] real-valued interval into t seg-

ments and considers two probabilities within the same segment to effectively be the

same. Thus, as t gets bigger, we get finer granularity. Thus, our selection of t con-

trols the granularity of the probability distribution on actions in a strategy. A smaller t

leads to a coarse-grained, simple strategy whereas a larger t allows a more fine grained

strategy that may be closer to an optimal strategy.

Approximate Nash Equilibria in Games of Low Rank

In this subsection, we constructively prove that a uniform strategy profile can be used

to approximate a Nash equilibrium for multiplayer games of low rank. First, we state

the following lemmas to help with the main result.

Lemma 48. Let α be a vector of length m such that each element of α is in [0, 1]. Let

σ be vector of length m. Let σ′ be a vector such that |σi − σ′i| ≤ ε,∀i ∈ [m]. Then

|αTσ − αTσ′| ≤ mε.

Lemma 49. Let x1, . . . , xn be n reals such that 0 ≤ xi ≤ 1,∀i ∈ [n]. Let x′1, . . . , x
′
n

be n reals such that 0 ≤ x′i ≤ 1, |xi−x′i| ≤ ε, ∀i ∈ [n]. Then |
∏
i∈[n] xi−

∏
i∈[n] x

′
i| ≤

nε.

The main technical result of this subsection is that if a strategy profile is a well-

supported multiple ε-approximate Nash equilibrium, then there exists a t-uniform strat-
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egy profile that is also a well-supported multiple ε-approximate Nash equilibrium with

a slightly higher value of ε. However, the simpler lemma below—dealing with the

single payoff case—provides the basis for the more complex theorem to follow.

Lemma 50. Let the strategy profile σ = (σ1, σ2, .., σn) be a well-supported ε-

approximate Nash equilibrium for the given game of rank k. Then there exists a t-

uniform strategy profile σ′ that is a well-supported ε + 2(n−1)mk
t -approximate Nash

equilibrium.

We now extend Lemma 50 to the multiple payoff case pertaining to well-supported

multiple ε-approximate Nash equilibria.

Theorem 51. Let the strategy profile σ be a well-supported multiple ε-approximate

Nash equilibrium with ε = τ for the given SGM, all of whose constituent games are

rank k games. Then, there exists a t-uniform strategy profile σ′ that is a well-supported

multiple ε-approximate Nash equilibrium, with ε = τ + 2(n−1)mk
t .

5.6 Computing Multiple Payoff Approximate Equilib-

ria

Building on the theoretical results of the last section, we now provide an efficient algo-

rithm for computing well-supported multiple ε-approximate Nash equilibria in games

where the number of players is constant. First, we present a grid search algorithm for

computing equilibria (§5.6.1), and show that is efficient through a quasi-polynomial

time approximation scheme (QPTAS) (§5.6.2). This algorithm is validated on simu-

lated data in Section 5.10, and on real data in the next section (§5.7).
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5.6.1 Algorithm for Computation of Equilibria

We leverage Theorem 51 to present Algorithm 7 which searches over the space of

all uniform strategy profiles and outputs those that are well-supported multiple ε-

approximate Nash equilibria. Input parameters to the algorithm are t and payoff func-

tions for the constituent games. We assume that each payoff function is given as an

oracle, which, given the strategy profiles, returns a vector with payoffs for all play-

ers. The output of the algorithm is the set of all t-uniform strategy profiles which are

well-supported multiple ε-approximate Nash equilibria for the given SGM.

The algorithm first chooses a strategy profile and checks if it is an equilibrium

(e.g., by solving the linear programs presented earlier in the chapter). For each payoff

function in the list of f payoff functions, it then iteratively looks at pairs of players,

trying to set payoffs that are sufficiently close to each other in an attempt to find an

equilibrium. It iteratively adds any valid solutions found to the solution and returns

the solution at the end. Via Theorem 51, this coarse grid search is guaranteed to find a

“reasonable” overall equilibrium (with respect to the parameter t).

The following example illustrates Algorithm 7 on our running toy example.

Example 12. We note that a well-supported multiple ε-approximate Nash equilibrium

exists for the game with ε = 0. This is the common equilibrium for both payoff ma-

trices when T plays action terror-attack and G plays action CT-ops. Thus,

to guarantee ε = 0.2, we require t = 40 for this game. For illustrative purposes, to

avoid enumeration of all strategies required for ε = 0.2, we use the algorithm as fol-

lows. We enumerate all t-uniform strategies and report only those strategies that are

well-supported multiple ε-approximate Nash equilibrium with ε = 0.2.

We note that strategy profiles given in rows 1 through 4 of the above table are

common Nash equilibria with ε = 0. All the other 3-uniform profiles have ε > 0.2.

Thus strategy profiles in the first 4 rows are all the 3-uniform well-supported multiple

ε-approximate Nash equilibria of the given game.
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T strategy G strategy ε for T ε for G Max ε
terror-attack peace CT-ops peace PM 1 PM 2 PM 1 PM 2

1 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00
3 1.00 0.00 0.33 1.00 0.00 0.00 0.00 0.00 0.00
4 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
5 0.67 0.33 1.00 0.00 0.19 0.33 0.00 0.03 0.33
6 0.67 0.33 0.67 0.33 0.19 0.33 0.24 0.03 0.33
7 0.67 0.33 0.33 1.00 0.25 0.33 0.73 0.03 0.73
8 0.67 0.33 0.00 1.00 0.19 0.33 0.73 0.03 0.73
9 0.33 1.00 1.00 0.00 0.19 0.48 0.00 0.55 0.55

10 0.33 1.00 0.67 0.33 0.19 0.48 0.24 0.55 0.55
11 0.33 1.00 0.33 1.00 0.25 0.48 0.73 0.55 0.73
12 0.33 1.00 0.00 1.00 0.19 0.48 0.73 0.55 0.73
13 0.00 1.00 1.00 0.00 0.19 0.38 0.00 0.00 0.38
14 0.00 1.00 0.67 0.33 0.19 0.38 0.24 0.00 0.38
15 0.00 1.00 0.33 1.00 0.25 0.38 0.73 0.00 0.73
16 0.00 1.00 0.00 1.00 0.19 0.38 0.73 0.00 0.73

Though this algorithm can be expected to yield reasonable running times for games

of any rank, the guarantees shown in Theorem 51 only apply to low rank games. This

algorithm has the added advantage that we do not need to compute the tensor decom-

position of the game matrix. As we will show in Section 5.6.2, uniform strategies are

expected to provide good results on general games too.

5.6.2 A General Approximation Lemma for SGMs

We prove the existence of a QPTAS for SGMs when the number of players is constant.

For this we first state and prove an approximation lemma (an extension to SGMs of

Althöfer’s Approximation Lemma 1994). Our approximation lemma states that if a

well-supported multiple ε-approximate Nash equilibrium exists for an n-player game,

then there is a well-supported multiple ε-approximate Nash equilibrium for the game

using a t-uniform strategy with a slightly larger ε.

We note that the original version of Althöfer’s Approximation Lemma applies only

to two-player bimatrix games and its straightforward application leads to a QPTAS

for computing well-supported ε-approximate Nash equilibria for two-player games.
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However, our extension of the lemma to multiplayer games with multiple payoffs is

not straightforward. In the multiplayer setting, the variables we consider are mutually

overlapping products of independent random variables. Hence, to apply Hoeffding’s

bound 1963, we iteratively discretize strategies of players.

Lemma 52. Consider a game with players in set [n] and each player with actions in

set [m]. Let σ = (σ1, . . . , σn) be any well-supported multiple ε-approximate Nash

equilibrium with ε = τ for the game. Then, for any j ∈ [n], there exists a well-

supported multiple ε-approximate Nash equilibrium with ε = τ+δ in which the strategy

of player j is t-uniform for t = 2 log(2fmn)
δ2 .

We now prove the main result of this section, Theorem 53. This result is stronger

than Theorem 51 for the general case (applied directly to the low rank case) due to its

logarithmic dependendence on m and f .

Theorem 53. Let the strategy profile σ be a well-supported multiple ε-approximate

Nash equilibrium with ε = τ for the given SGM. Then, there exists a t-uniform strategy

profile that is a well-supported multiple ε-approximate Nash equilibrium, with ε = τ+δ

where t = 2n2 log(2fm(n−1))
δ2 .

Thus, in Algorithm 7, if we set t = 2n2 log(2fm(n−1))
δ2 , we are sure to find a well-

supported multiple ε-approximate Nash equilibrium with ε = τ + δ given that at least

one well-supported multiple ε-approximate Nash equilibrium with ε = τ exists. The

runtime is then O(mnt). Thus, the same algorithm works for both general and low

rank case, albeit with different performance guarantees.

5.7 Policy Analysis Results

We developed the Policy Recommendation Engine based on Vector Equilibria (PREVE)

using the equilibrium concepts and algorithms described earlier. Using PREVE, we

were able to analyze the Lashkar-e-Taiba (LeT) application described in Section 5.2.
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Table 5.2: Statistics on number of (ε, 2) equilibria found.

k ε #Eq. found #Eq. without LeT attacks
2 0 252 6
2 0.1 357 6
2 0.2 1696 9
2 0.3 13925 42

We first obtained payoff matrices from three experts in the politics of South Asia

and LeT in particular; to avoid bias, none had any background in game theory and none

had ethnic origins in the Indian subcontinent. Two were retired US State Department

employees with over 30 years of knowledge of negotiations in the region. The third was

the author of two well-known books on terrorism. The payoff matrices were created

completely independently using open source information as well as expertise of these

experts by following a set of instructions on what payoff values meant.

As described earlier, for notational convenience, we will refer to well-supported

multiple ε-approximate Nash equilibria computed using only U ′ ⊆ U payoff functions

as (ε, k)-equilibria, where |U ′| = k. Such equilibria computed with the full set U are

simply written as ε-equilibria.

Before presenting the policy implications of the results generated by PREVE, we

present a summary of the (ε, k)-equilibria we found in Table 5.2. We limit the equilibria

presented to those where LeT does not attack. No such (ε, 3)-equilibria were found for

ε ≤ 0.5, so we focus on the case when k = 2. In the case of mixed equilibria, we list

an equilibrium as having no LeT attacks when the probability of LeT attacking (action

attack) or holding its current set of attacks (action hold) is 25% or less.

We found no (0, 3)-equilibria where LeT did not perform violent actions, but we

did find the following:

1. There were 20 (0, 2)-equilibria in which experts #1 and #3 agreed, 218 (0, 2)-

equilibria with experts #2 and #3 agreeing, and 14 (0, 2)-equilibria in which

experts #1 and #2 agreed.
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Table 5.3: All (ε, k) equilibria with ε = 0, k = 2 in which LeT does not attack.

Equil. LeT PakG PakM India US
E1

0,1,3 eaw pros crack covert cut
E2

0,1,3 eaw pros crack 0.75: covert cut
0.25: coerce

E3
0,1,3 eaw none crack coerce cut

E4
0,1,3 none pros support covert cut

E5
0,2,3 eaw pros crack coerce cut

E6
0,2,3 none none crack covert cut

2. Of these 252 (0, 2)-equilibria, there were just six in which LeT did not carry out

attacks. There were no (0, 2)-equilibria involving experts #1 and #2 in which

LeT did not carry out attacks. Table 5.3 below summarizes the actions present

in these six situations. An equilibrium named Eε,j,j′ is used to denote an (ε, 2)

equilibrium in which the two experts who “agree” are j and j′.

In all six (0, 2)-equilibria listed above where LeT stands down, the US cuts aid

(development and military) to Pakistan, and India either carries out covert ac-

tion against LeT or engages in coercive diplomacy. Moreover, in most (0, 2)-

equilibria, the Pakistani military must crack down on LeT (though there is one

case where they may expand support) and additionally, the Pakistani government

must mostly prosecute LeT leaders (though there are two cases where they could

do absolutely nothing). When we look at experts #2 and #3, we see that there

are only two (0, 2)-equilibria in which LeT does not attack—in one India takes

covert action and the US cuts aid. In both scenarios, the Pakistani military cracks

down on LeT—in one the Pakistani government prosecutes LeT personnel and

does nothing in the other.

When we do the same with experts #1 and #3, we see that there are four (0, 2)-

equilibria in which LeT does not attack. In all four, India takes either covert

action or applies coercive diplomacy and the US cuts aid. In three cases, LeT

eliminates its armed wing, while in another it does nothing. In the other two, LeT
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Table 5.4: All (ε, k) equilibria with ε = 0.1, k = 2 which are not (0, 2)-equilibria, and
in which LeT does not attack.

Equil. LeT PakG PakM India US
E7

0.1,1,3 0.5: attack pros expand covert cut
0.5: none

E8
0.1,1,3 0.25: attack pros expand covert cut

0.75: none
E9

0.1,1,3 none pros expand covert cut

has a 50% (resp. 75%) chance of doing nothing and a 50% (resp. 25%) chance

of attacking. In three cases, the Pakistani government prosecutes LeT personnel

and does nothing in the fourth. In three of the cases, the Pakistani military cracks

down on LeT, and in the one remaining case, it actually expands support for LeT.

What these results may suggest is that India should expand covert action against

LeT with the US cutting financial aid to Pakistan at the same time if the goal is

to reduce violence by LeT.

3. We also looked at (0.1, 2)-equilibria (i.e., where ε = 0.1), which means that each

player may lose up to 10% of their best utility while being near an equilibrium

with 2 of the 3 experts in agreement. In this case, we see no (0.1, 2)-equilibria

involving experts #1 and #2 where LeT does not attack. But with experts #1 and

#3, and experts #2 and #3, we do see such equilibria. As all (0, 2)-equilibria con-

tinue to be (0.1, 2)-equilibria, we only show new (0.1, 2)-equilibria in Table 5.4.

With ε = 0.1, we only get three new equilibria as compared to Table 5.3. In

all of these, the US needs to cut aid to Pakistan and India needs to carry out

covert action against LeT. As in the previous table, this requires that the Pakistani

government prosecute LeT. Even with an expansion in Pakistani military support

for LeT, this provides hope that covert action on India’s part and cuts in US aid

to Pakistan will lead to reduced terrorist attacks by LeT.

We now consider (ε, 2)-equilibria, for ε ∈ {0.0, 0.1, 0.2}. Though we computed
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(ε, 2)-equilibria for ε = {0.3, 0.4, 0.5, . . .}, all of these equilibria involve players giv-

ing up 30% or more of their payoffs—something that we think is unlikely.

Of the 252 (0, 2)-equilibria, there were five equilibria in which the US cut aid, India

carried out either covert operations against LeT or coercive diplomacy against Pakistan,

and the Pakistani military cracked down on LeT. In every one of these situations, LeT

either eliminated its armed wing or did nothing, and the Pakistani government either

prosecuted LeT or did nothing. Moreover, there are 24 (0, 2)-equilibria in which the

US cuts aid and India carries out either covert action or coercive diplomacy—and in 5

of these 24 equilibria, LeT either eliminated its armed wing or did nothing. However,

the situation is more complex. In our data, we noticed that one expert’s payoffs were

significantly different from those of the other two. In fact, there were vastly more

equilibria between experts #2 and #3 than between experts #1 and #2 or between #1

and #3, suggesting expert #1 was a bit of an outlier. If we only consider experts #2

and #3, then the proportion of “good” equilibria where LeT stands down with the US

cutting aid to Pakistan and India either engages in covert action or coercive diplomacy

against Pakistan rises to 5 out of only 14. Of course, other inducements not considered

in this study can be used to get the Pakistani military to crack down on LeT.

We continued the same analysis of the 357 (0.1, 2)-equilibria. There were a 23

equilibria where the US cut aid and India acted covertly. Of these, 6 equilibria led

to LeT either disbanding its armed wing or doing nothing—good outcomes for peace.

If we ignored expert #1 (who continued to be an outlier when we considered (0.1, 2)-

equilibria), the number of “good” equilibria remained the same, with fewer (20) overall

equilibria. Again, when the Pakistani military cracked down on LeT, there was a 100%

chance of LeT either eliminating its armed wing or getting rid of terrorism altogether.

When we look at the 1696 (0.2, 2)-equilibria, we see a similar pattern. We had a

total of 51 (0.2, 2)-equilibria, of which LeT cut attacks in 9. There were only 51 of

these (0.2, 2)-equilibria in which the US cut aid and India took either covert action
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or engaged in coercive diplomacy. However, we note that when the Pakistani military

also cracks down on LeT (in addition to the US and Indian actions just described), the

majority (8 out of 9) of the remaining equilibria involve LeT eliminating its attacks.

5.8 Related Work

We group our survey of related work into three sections: first, the purely theoretical

aspects of computational game theory; second, the application of (computational and

traditional) game theory to counter-terrorism and modeling conflict; and third, dealing

with the purely social science study of Lashkar-e-Taiba.

5.8.1 Computational Game Theory

Games where each player has multiple payoffs have been studied before under many

names such as vector-valued games [119], multi-criteria games [89], games with mul-

tiple payoffs [140], and multiple objective games [141]. However, past work mainly

focuses on multiple payoffs as a way to model the situation where each player is trying

to optimize many non-tradable and non-monetizable criteria simultaneously. For such

games, Pareto equilibria [19] and its variants [89] have been the solutions of choice.

However, the situation we consider compares alternate realities subscribed to by each

expert. Hence, we are not interested in Pareto optimality.

As explained earlier, our motivation for this work is to analyze a simultaneous

game when experts disagree on payoffs for players. Different experts (with unknown

accuracy of prior knowledge) provide payoff functions for each player—and we expect

experts to differ on such payoff functions because of subjective judgment in such appli-

cations. Since our work requires computation of approximate Nash equilibria that are

common to all given payoffs, the problem is related to enumeration of Nash equilibria

in the multiplayer setting.

The computation of even a single Nash equilibrium for two-player games is a hard
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problem [27, 34]. Enumeration of all Nash equilibria for a multiplayer game is likely

to be an even harder problem [12]. There are also some hardness results known for

computation of approximate Nash equilibria. It has been proven that it is unlikely that

an FPTAS exists for the problem of finding Nash equilibria in a two-player game [27].

Multiplicative approximation of Nash equilibria is also PPAD-complete for a constant

approximation factor—even for two-player games [33].

Recently, there has been considerable progress in computation of approximate Nash

equilibria for two-player games. The best known approximation factor for a polynomial

time algorithm is 0.3393 [129]. However, most recent work focuses on computation of

a single Nash equilibrium for two-player games.

Theobald 2009 studies enumeration of Nash equilibria for two-player games of

rank 1; however, that algorithm is not known to run in polynomial time. Lipton,

Markakis and Mehta 2003 give the first QPTAS for computation of Nash equilibria

in two-player and multiplayer games. However, the exponent depends on the inverse

square of the approximation factor and on the square of the number of players and

hence the algorithm is not feasible in practice. In fact, it has been proven by Feder,

Nazarzaded and Saberi 2007 that, as far as brute force search over uniform strategy

profiles is concerned, the runtime for these algorithms is tight. However, the above two

results do indicate that, in general, a uniform grid search over the strategy space is a

good heuristic for finding approximate Nash equilibria.

A particularly pertinent paper is that of Kalyanaraman and Umans 2007, which

defines constant rank multiplayer games and gives a PTAS for finding approximate

Nash equilibria for such games. We prove a structural theorem and also give a poly-

nomial time algorithm for computation of Nash equilibria and well-supported multiple

ε-approximate Nash equilibria for the rank 1 case. We also prove that when players

have a small number of strategies to choose from, an assumption which holds for many

real-world games, then a uniform strategy does well in the constant rank case.
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Games we consider cannot be modeled as Bayesian games because Bayesian games

require knowledge about priors. We study the situation where experts differ in their

perception of payoffs and where we have no prior over the accuracy of each expert.

Our definitions of equilibria for multiple payoffs are closer in spirit to definition of

minimax-regret equilibrium given by Hyafil and Boutilier 2004.

5.8.2 Game Theory and the Study of Conflict

Though there has been extensive work on the use of game theory for political analysis,

almost none of it involves large multiplayer games, and almost none of it involves

the use of formal computational methods. The use of game theory to study conflict

was pioneered by Schelling 1980, who developed a social scientist’s view of how two-

player conflicts—including terrorism—could be studied via game theory. Later, Bueno

de Mesquita 2010 recounts how he used two-person games to predict various actions

including one of interest in this project, namely that current US President Obama would

not be able to stop Pakistani-based terrorism. Both these and similar efforts focus

on two-player games; in contrast, the theory of equilibria in multiplayer games with

multiple payoff matrices was not described by either of them. Lastly, this work uses

the LeT game proposed by Dickerson et al. 2011. In contrast to this work, which used

only one payoff matrix corresponding to the views of a single expert, we use a multiple

payoff matrix model in this work for which the relevant game theory and the resulting

implications for dealing with LeT had to be completely reconsidered.

Ozgul et al. 2007 have studied the problem of detecting terror cells in terror net-

works and proposed a variety of algorithms such as the GDM and OGDM methods.

Similarly, Lindelauf et al. 2009 have studied the structure of terrorist networks and how

they need to maintain sufficient connectivity in order to communicate while simultane-

ously maintaining sufficient disconnectivity in order to stay hidden. They model this

tension between communication and covertness via a game-theoretic model. This same
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intuition led to the concept of covertness centrality [106] in social networks where a

statistical (rather than game-theoretic) method is used to predict covert vertices in a

network.

Sandler and Enders 2004 use the ITERATE data set of terrorist events to discuss

how economic methods including both game theory and time series analysis can be

used to propose policies for counter-terrorism. In an earlier survey [48], the same au-

thors specify how game theory might be used to model target selection by terrorists.

Major 2002 uses a mix of game theory, search, and statistical methods to model terror-

ism risk. None of these works provide a formal game-theoretic model involving both

multiple players and multiple payoff matrices.

5.8.3 Research on and Analysis of Lashkar-e-Taiba

On the social science side, Clark 2010 was the first to study LeT from a military per-

spective. He argues that LeT has grown beyond the control of Pakistan and the Direc-

torate for Inter-Services Intelligence (ISI), and that it will continue to grow with help

from fringe elements in the Pakistani military establishment. He argues that India can

only insulate itself from LeT-backed attacks by diminishing the internal threat posed

by the Indian Mujahideen, an Indian group closely affiliated with LeT.

Tankel 2011 wrote a detailed analysis of LeT based on years of field work and

multiple visits to Pakistan to interview both LeT operatives as well as members of

Pakistan’s ISI. He provides a wonderful insight into LeT’s origins, ideology, and op-

erational structure, but does not include a policy analytics section specifically saying

how to deal with the menace posed by LeT. John’s excellent volume [70] on the same

topic provides another in-depth study of LeT but does not propose policies on how the

US and/or India can collectively help reduce LeT attacks.

Virtually all past work on counter-terrorism policy is qualitative (see work by

Mannes 2013 for an overview). A group of experts gather around a table, hypoth-
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esize about the impacts of different possible policies, and then decide which one to

use. It is only recently that quantitative methods for generating policies against terror

groups have started playing a role. Data mining approaches have been used to study the

Pakistani terror group Lashkar-e-Taiba [122] with considerable impact in the strategic

policy community in both the US and India, both of whom have attended talks on the

results. Subrahmanian et al. 2012 performs a data mining study of LeT involving 770

variables that are analyzed via data mining algorithms to learn the conditions under

which LeT executes various types of attacks. It goes on to consider the problem of

shaping the behavior of LeT by using abductive inference models. Another excellent

recent book on Pakistan in general by Bruce Riedel 2012, a former top CIA official

who advised the last five US presidents on relations with India and Pakistan, lays much

of the blame for terrorism out of Pakistan (including LeT terrorism) squarely at the

doorstep of the Pakistani intelligence agency but does not address LeT attacks in par-

ticular.

5.9 Conclusions

In this chapter, we showed how to merge vector payoffs [119] and well-supported ε-

approximate equilibria [34, 35] so as to handle the problem of efficient computation

of equilibria in multiplayer games where multiple experts provide different payoff ma-

trices, each capturing their own perception of reality. We present efficient algorithms

to find such equilibria—as well as a QPTAS—and experimental results showing they

work. The work is motivated by a real-world game we have built to formulate policies

against the terror group Lashkar-e-Taiba (LeT) which carried out the 2008 Mumbai

attacks. We then presented PREVE, a set of algorithms based on multiplayer game

theory that extends a game developed earlier [43] to the case where there are multiple

payoff matrices that reflect differing opinions of different experts. As a consequence,

the resulting equilibria are much more robust to variations than the equilibria developed
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in [43] that are very sensitive to minor changes in the payoff matrix.

Pakistan is widely recognized as being one of the biggest threats to global security

today because of several factors: (i) its nuclear arsenal, (ii) the large milieu of violent

terrorist and extremist groups in the area with close ties to Pakistani intelligence, (iii)

tensions with India, and (iv) a collapsing economy. In this chapter, we have focused

primarily on Pakistan-India relations, which India views primarily through the lens of

terrorist acts in India that are backed by the Pakistani military and are usually opera-

tionally executed by LeT and/or its allies, like the Indian Mujahideen.

The PREVE theory, framework, and code have been developed in order to help poli-

cymakers with an interest in peace in South Asia determine the best ways for the parties

involved to move forward in order to reduce the threat of Lashkar-e-Taiba. Though we

applied PREVE only to LeT in this chapter, the theory is general and can be applied

to any set of actors with any set of actions as long as one or more payoff matrices are

available. In this work, area experts used open source data to create payoff matrices for

our five-player game.

From a public policy perspective, the results of this chapter may support three ideas.

1. The US must cut aid to Pakistan. There are no equilibria where LeT behaves

well where the US is providing aid to Pakistan. However, we do not have a

recommendation for exactly how much this cut should be—only that cuts need

to be made.

2. India must engage in additional covert action against LeT and its allies and/or

coercive diplomacy towards Pakistan. By cutting aid, the US would intuitively

increase political and economic pressure on the Pakistani establishment, leading

to a potential loss of support for the Pakistani military leadership amongst the

Pakistani people. By engaging in covert action, India would put operational

constraints on LeT, making attacks harder by “taking the fight to them” as the US

has done against Al-Qaeda. By taking steps towards coercive diplomacy, India
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would concurrently increase pressure on the Pakistani government and military,

complementing the US aid cuts proposed.

3. The key policy element is getting the Pakistani military to crack down on LeT,

in conjunction with US cuts on aid to Pakistan and covert action/coercive diplo-

macy by India. The key question is how to induce the Pakistani military to crack

down on LeT. An examination of the deep social, political, economic, and ji-

hadist links that the Pakistani military has could lead to better understanding of

the pressures that might induce them to crack down on extremist elements, many

of whom they currently support.

PREVE is a codebase, not an operational system. Top politicians and policymakers

are busy and are often more interested in white papers addressing their problem than

learning how to use software systems. In our case, PREVE has been used to generate

these results and then generate a report interpreting the results for policymakers. The

results of this study have been disclosed to top government officials in both the US and

Indian government. There is significant interest in continuing these studies.

5.10 Additional Experiments

In this section, we present experimental results for Algorithm 7 on simulated data.

First, we present results showing the algorithm’s running time and output on generated

games. Second, we explore the relationship between various traits of the game and the

percentage of strategies that are equilibria. The framework was implemented in about

700 lines of C++, and the experiments were run on a 4-CPU, 4-core Intel Xeon 3.4GHz

machine with 64GB of RAM running Ubuntu 12.04.

To test the scaling properties of Algorithm 7, we built a game generator and varied

the number of experts (each giving one set of payoff matrices), players, and actions per

player. We also varied the granularity factor t when generating t-uniform strategies.
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Figure 5.1: Runtime as the number of players increases (left) and number of actions
increases (right) for t-uniform factor t ∈ {1, . . . , 5}.

Figure 5.1 shows the runtime of Algorithm 7 on generated data as both the number

of players and number of actions increase, for varying granularity factors. As expected,

increasing the number of players (while holding the number of actions constant) hurts

runtime significantly more than increasing the number of actions (while holding the

number of players constant). Similarly, increasing the granularity factor t (shown on

the x-axis) exponentially increases the number of possible strategy profiles over which

the algorithm must iterate, resulting in large runtime increases. Future research would

increase the algorithm’s equilibrium-generation capabilities to games with many play-

ers and many actions.
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Figure 5.2: Percentage of all sets of strategy profiles that are well-supported multiple
ε-approximate Nash equilibria as the number of experts increases (left) and t-uniform
factor increases (right), for ε ∈ {0.0, 0.05, . . . , 1.0}.
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Figure 5.2 quantifies the relationship between the ε-approximation threshold and

the percentage of strategy profiles that are well-supported multiple ε-approximate Nash

equilibria. Intuitively, increasing the slack in the approximation factor ε yields a higher

percentage of strategy profiles being equilibria, while increasing the number of poten-

tial payoff matrices decreases this percentage of strategy profiles. The rate of increase

of this line is highly dependent on the distribution of payoffs to each individual player.

With random generation of payoffs, the increase is fairly steady; however, a more struc-

tured (e.g., real-world) payoff function would affect this trend. In Section 5.7, we

considered such a real-world game.

5.11 Proofs

In this section, we provide complete proofs for various theorems and lemmas in the

chapter.

5.11.1 Proofs for Section 5.5.1

Lemma 40

Proof. Let (σ1, σ2) be a feasible solution to the given LP. Let p =
∑
i∈[m]

∑
j∈[m] σ

1
i σ

2
ju(ei, ej)

be the payoff for player 1. The payoff for player 2 will be −p. Then, we have:

p =
∑
i∈[m]

∑
j∈[m]

σ1
i σ

2
ju(ei, ej) =

∑
i∈[m]

σ1
i

∑
j∈[m]

σ2
ju(ei, ej)

≤
∑
i∈[m]

σ1
i (r + ε) (from (5.6))

= r + ε ∵
∑
i∈[m]

σ1
i = 1 (5.12)
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Similarly,

p =
∑
j∈[m]

σ2
j

∑
i∈[m]

σ1
i u(ei, ej) ≥

∑
j∈[m]

σ2
j (r − ε) (from (5.5))

=r − ε ∵
∑
j∈[m]

σ2
j = 1 (5.13)

From (5.12) and (5.5):

∑
i∈[m]

σ1
i (−u(ei, ej)) ≤ −p+ 2ε, ∀j ∈ [m] (5.14)

Similarly, from (5.13) and (5.6):

∑
j∈[m]

σ2
ju(ei, ej) ≤ p+ 2ε,∀i ∈ [m] (5.15)

Since p and −p are payoffs for given strategies and u and −u are the payoff functions

for players 1 and 2 respectively, the claim follows from (5.14), (5.15) and the definition

of approximate Nash Equilibrium (Definition 11).

Lemma 41

Proof. Let p =
∑
i∈[m]

∑
j∈[m] σ

1
i σ

2
ju(ei, ej) be the payoff for player 1. Because its

a zero-sum game, the payoff for player 2 will be −p. Then, from Definition 11 of
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approximate Nash Equilibrium:

∑
i∈[m]

σ1
i (−u(ei, ej)) ≤− p+ ε,∀j ∈ [m]

=⇒
∑
i∈[m]

σ1
i u(ei, ej) ≥p− ε, ∀j ∈ [m] (multiplying by -1)

=⇒
∑
i∈[m]

σ1
i u(ei, ej) ≥r − τ,∀j ∈ [m] ∵ p ≥ r − ε, 2ε ≤ τ (5.16)

Similarly,

∑
j∈[m]

σ2
ju(ei, ej) ≤p+ ε,∀i ∈ [m]

=⇒
∑
j∈[m]

σ2
ju(ei, ej) ≤r + τ,∀i ∈ [m] ∵ p ≥ r − ε, 2ε ≤ τ (5.17)

The other constraints in the LP are satisfied by any valid strategy profile. Thus, the

claim follows from (5.16), (5.17) and the fact that (σ1, σ2) is a strategy profile.

Lemma 42

Proof. Any feasible solution toLP_MEAE(U,P, ε2 ) is a feasible solution toLP_EAE(ui, ri,
ε
2 ),∀i ∈

[f ] because constraints for LP_MEAE(U,P, ε2 ) are a superset of constraints for

LP_EAE(ui, ri,
ε
2 ),∀i ∈ [f ]. Thus, from Lemma 40, the feasible solution is a strat-

egy profile that is an ε-approximate Nash equilibrium for all constituent games of the

ZSGM. The result then follows from Definition 15 of multiple ε-approximate Nash

equilibrium.

Lemma 43

Proof. From Lemma 41, any ε-approximate Nash equilibrium for zero-sum game with

payoff matrix ui such that payoff for player 1 is between ri − ε and ri + ε,∀i ∈

[f ] satisfies all constraints of LP_EAE(ui, ri, 2ε). Thus, the given equilibrium is
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feasible for LP_EAE(ui, ri, 2ε),∀i ∈ [f ]. Hence the given equilibrium satisfies

LP_MEAE(U,P, 2ε).

Theorem 44

Proof. All LPs in the returned set are of the form

LP_MEAE(U,P, 1
k ). From Lemma 43, all strategy profiles that are feasible for these

LPs are multiple ε-approximate Nash equilibrium with ε = 2
k and hence the first con-

dition is satisfied. From Lemma 42, all feasible solutions are ε-approximate Nash equi-

libria with ε = 1
2k for the given game and hence the second condition is satisfied. For

computing the runtime of the algorithm, we observe that the for loop in the algorithm

runs (k + 1)f times and each time it outputs an LP of size 2mf + 2m + 2 which can

be appended to a data structure such as a list in constant time. Thus, the algorithm can

be implemented in time O((k + 1)f (2mf + 2m+ 2)).

5.11.2 Proofs for Section 5.5.2

Lemma 45

For arbitrary real numbers, we have, by matching coefficients on LHS and RHS,

∑
a∈A

∏
i∈[n]

xiai ≡
∏
i∈[n]

∑
l∈[m]

xil (5.18)

From (5.9), by combining the two product terms into one, we get: uj(σ) =∑
a∈A

∏
i∈[n] σ

i
aiα

i,j
ai . From (5.18), with xiai = σiaiα

i,j
ai , we get

uj(σ) =
∏
i∈[n]

∑
l∈[m]

σilα
i,j
l (5.19)
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This function is not a function of j’s strategy. When player j’s strategy is pure and its

support is just an action, say l ∈ [m], substituting value of σj as el in (5.19), we have:

uj(el, σ−j) = αj,jl

∏
i∈[n]−{j}

∑
l∈[m]

σilα
i,j
l = αj,jl u′−j(σ) (5.20)

A necessary and sufficient condition for Nash equilibrium is that only the best pure

responses can be in support of each player’s strategy Let σ = (σ1, σ2, .., σn) be a Nash

equilibrium for the above game. Let E be the set of all Nash equilibria for the given

game. Therefore, for any player, j, with a positive payoff and any action a in support

of σj , we have:

σ ∈ E ⇐⇒ uj(ea, σ−a) ≥ uj(el, σ−a), ∀l ∈ [m] (5.21)

⇐⇒ αj,j
a u′−j(σ) ≥ αj,j

l u′−j(σ) (Substituting from (5.20)) (5.22)

Assuming that u′−j > 0 (otherwise, j can play any action without affecting his payoff,

which remains 0), we have:

(5.22) ⇐⇒ αj,j
a ≥ αj,j

l ⇐⇒ a ∈ Sj (From defn. of Sj) (5.23)

Since the above is true ∀a ∈ support(σj) and ∀j ∈ [n], the claim follows.

Lemma 46

Proof. A necessary and sufficient condition for well-supported relative ε-approximate

Nash equilibrium is that only the approximate pure best responses can be in support

of each player’s strategy. Let W be the set of all well-supported relative ε-approximate

Nash equilibria (with non-zero payoffs for each player) for the given game. Therefore,
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for any player, j, with a positive payoff and any strategy i in support of σj , we have:

σ ∈W ⇐⇒ uj(i, σ−i) ≥ (1− ε)ul(l, σ−i),∀l ∈ [m]

⇐⇒ αj,ji u′j(σ) ≥ (1− ε)αj,jl u′j(σ),∀l ∈ [m]

⇐⇒ αj,ji ≥ (1− ε)αj,jl ,∀l ∈ [m]

αj,ji ≥ (1− ε)(maxαj,j)

Thus, equation (5.10) above is the complete characterization of well-supported relative

ε-approximate Nash equilibria for the given game.

Theorem 47

Proof. Let σ be a strategy profile for the given game for which equation (5.11)

holds. From the definition of well-supported multiple relative ε-approximate Nash

equilibrium (Definition 17), a strategy profile is well-supported multiple relative ε-

approximate Nash equilibrium iff it is a well-supported ε-approximate Nash equilibri-

umfor each constituent game of the SGM. Since equation (5.11) holds for σ for all con-

stituent games, from Lemma 46, σ is well-supported multiple relative ε-approximate

Nash equilibrium for the given game. Thus, from Lemma 46, σ satisfies equation (5.10)

for all constituent games. Thus, σ satisfies equation (5.11).

5.11.3 Proofs for Section 5.5.3

Lemma 50

Proof. From definition of well-supported ε-approximate Nash equilibrium, for any ac-

tion a ∈ Support(σj):

uj(ea, σ−j) ≥ uj(el, σ−j)− ε, ∀l ∈ [m] (5.24)
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Now, we construct a t-uniform strategy profile, σ′, from σ as follows. Let σ′i = dσite
t .

The above rounding procedure can make ||σ′||1 greater than 1. To counter this, select

any element in σ′ arbitrarily (without replacement) and round it down to bσitc
t . Repeat

this until ||σ′||1 6= 1. The above procedure is guaranteed to give a t-uniform strategy

profile σ′ such that:

|σ′i − σi| ≤
1

t
(5.25)

From the definition of multiplayer games of low rank, the payoff is given by:

uj(σ) =

K∑
k=1

∏
i∈[n]

∑
l∈[m]

σilα
i,j,k
l (5.26)

From above, when player j plays action a with probability 1 and the rest of the players

play their respective strategies in σ, we have:

uj(ea, σ−j) =

K∑
k=1

αj,j,ka

∏
i∈[n]−{j}

∑
l∈[m]

σilα
i,j,k
l (5.27)

Thus, we have:

|uj(ea, σ−j)− uj(ea, σ′−j)| =|
K∑
k=1

αj,j,ka

∏
i∈[n]−{j}

∑
l∈[m]

σilα
i,j,k
l

−
K∑
k=1

αj,j,ka

∏
i∈[n]−{j}

∑
l∈[m]

σ′
i
lα
i,j,k
l |
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By taking the outermost summation and the common factor αj,j,ka out, we get:

|uj(ea, σ−j)− uj(ea, σ′−j)|

=|
K∑
k=1

αj,j,ka (
∏

i∈[n]−{j}

∑
l∈[m]

σilα
i,j,k
l −

∏
i∈[n]−{j}

∑
l∈[m]

σ
′i
l α

i,j,k
l )|

=|
K∑
k=1

αj,j,ka (
∏

i∈[n]−{j}

xi,k −
∏

i∈[n]−{j}

x′i,k)| (5.28)

Where, xi,k =
∑
l∈[m] σ

i
lα
i,j,k
l = (αi,j,k)Tσ and

x′i,k =
∑
l∈[m] σ

′i
lα
i,j,k
l = (αi,j,k)Tσ′. From Lemma 48 and Equation 5.25, we have

|xi,k − x′i,k| ≤ m
t . From Lemma 49 and the above, we have:

|
∏

i∈[n]−{j}

xi,k −
∏

i∈[n]−{j}

x′i,k| ≤
(n− 1)m

t

From above and Equation 5.28, we have:

|uj(ea, σ−j)− uj(ea, σ′−j)| ≤ |
K∑
k=1

αj,j,ka

(n− 1)m

t
|

≤ (n− 1)mk

t
∵ αj,j,ka ≤ 1 (5.29)

From above and Equation 5.24, we have, for every action a in support of σ′:

uj(ea, σ
′
−j) ≥ uj(el, σ′−j)−

2(n− 1)mk

t
− ε,∀l ∈ [m]

Thus, from the definition, σ′ is a well-supported ε+ 2(n−1)mk
t -approximate Nash equi-

librium.
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Theorem 51

Proof. From Lemma 50, given a well-supported τ -approximate Nash equilibrium strat-

egy profile, we can always construct a t-uniform strategy profile that is a well-supported

τ + (n−1)mk
t -approximate Nash equilibrium. From the definition of well-supported

multiple ε-approximate Nash equilibrium, σ is a well-supported τ -approximate Nash

equilibrium strategy profile for each of the constituent games. The construction of σ′

from σ, as described in the proof of Lemma 50, is independent of payoff functions for

constituent games and hence the lemma applies simultaneously to all the constituent

games of the SGM. Hence σ′ is a well-supported τ+ (n−1)mk
t -approximate Nash equi-

librium for all the constituent games of the SGM. Thus, from the definition of well-

supported multiple ε-approximate Nash equilibrium, σ′ is a well-supported multiple

ε-approximate Nash equilibrium with ε = τ + (n−1)mk
t and the claim follows.

5.11.4 Proofs for Section 5.6.2

Lemma 52

Proof. Let σ = (σ1, . . . , σn) be a Nash equilibrium. Construct a multiset M j by

sampling independently at random from the set of actions according to distribution σj .

Construct strategy ρj by assigning probability of l
t to an action that appears l times

in Mj and ρ−j = σ−j . We prove that ρ is an τ + δ-well supported multiple payoff

approximate Nash equilibrium w.p.p.

Let M j
s ∈ [m] be a random variable that denotes the sth element of M j . Let

Ys = uil(eMj
s
, ek, σ

−j,l) be a random variable that is equal to payoff for player l, when

player l plays action k and player j plays action M j
s in constituent game i. Let µ be
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the mean of random variables {Y1, . . . , Yt}. Then, we have:

µ =

t∑
s=1

uil(eMj
s
, ek, σ

−j,l)

t

=

t∑
s=1

uil(eMj
s
, ek, ρ

−j,l)

t
(from (ρ−j = σ−j))

=uil(

t∑
s=1

eMj
s

t
, ek, ρ

−j,l) (from (definition of uil))

=uil(ek, ρ
−l)

Where, the last equality follows from the fact that if an action occurs l times in M j ,

it gets a weight of l
t is ρj . Also, from construction of ρ, it follows that E(ρjk) = σjk.

From linearity of expectation it follows that E(uil(ek, ρ
−l)) = uil(ek, σ

−l). Thus, ∀i ∈

[f ], l ∈ [n] − {j}, k ∈ [m], uil(ek, ρ
−l) is the mean of t i.i.d. random variables, each

with expectation uil(ek, σ
−l). Payoffs are in [0, 1] and the same bound applies to all

these random variables. Also, since only player j’s strategy is changed, uij(ek, σ
−j) =

uij(ek, ρ
−j).

Let A(i, k, l) be the event |uil(ek, ρ−l) − uil(ek, σ−l)| ≥ δ
2 . From Hoeffding in-

equality, we have:

Pr[A(i, k, l)] ≤ 2 exp (
−tδ2

2
)

Let A =
⋃
i∈[f ],k∈[m],l∈[n]−{j}A(i, k, l). From union bound:

Pr[A] ≤ 2fm(n− 1) exp (
−tδ2

2
)

Thus, 2fmn exp (−tδ
2

2 ) = 1 =⇒ Pr[Ac] > 0. Therefore, t = 2 log(2fmn)
δ2 ensures

that ∃ρ for which event Ac occurs. Let π be the strategy profile for which this happens.
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From definition of Ac and well-supported multiple ε-approximate Nash equilibrium,

we have, ∀i ∈ [f ],∀k ∈ [m],∀l ∈ [n]:

uil(ek, σ
−l) ≤ uil(eh, σ−l) + τ (from (Definition 16))

=⇒ uil(ek, π
−l) ≤ uil(eh, π−l) + τ + δ (from (definition of Ac))

Thus π is well-supported multiple ε-approximate Nash equilibrium with ε = τ+δ.

Theorem 53

Proof. Let t = 2n2 log(2fm(n−1))
δ2 . Then by application of Lemma 52 for player 1, we

get a well-supported multiple ε-approximate Nash equilibrium with ε = τ + δ
n with t-

uniform strategy of player 1. To the resulting strategy profile, we can apply Lemma 52

to the strategy for player 2 and get a strategy profile that is a well-supported multiple

ε-approximate Nash equilibrium with ε = τ + 2δ
n with t-uniform strategy of players 1

and 2. We can do this successively for all players and get a t-uniform strategy profile

which is a well-supported multiple ε-approximate Nash equilibrium with ε = τ+δ

169



Algorithm 7 well-supported multiple ε-approximate Nash equilibrium for constant
rank games
Input:t, payoff functions for the SGM
Output:t-uniform well-supported multiple ε-approximate Nash equilibrium strategy
profiles

S ← Set of all possible t-uniform strategies
E ← ∅
Σ←×n

i=1
S . Cardinality: O(mkn)

for l ∈ [f ] do . f is the number of constituent games of the SGM
El ← ∅
for σ ∈ Σ do

isEquilibrium ← TRUE
for j ∈ [n] do

if not isEquilibrium then
break

end if
payoff ← ulj(σ)
for i ∈ [m] do

payoff i ← ulj(ei, σ−j)
if payoff i − payoff > ε then

isEquilibrium ← FALSE
break

end if
end for

end for
if isEquilibrium then

El ← El ∪ {σ}
end if

end for
end for
return E1 ∩ E2 ∩ . . . ∩ Ef

170



Chapter 6

Payoff Inference

6.1 Introduction

Virtually almost all work in game theory starts with a payoff matrix. In his pioneering

study of conflict, Schelling [117] starts out with a payoff matrix for virtually every

scenario. Unfortunately, getting a payoff matrix poses an enormous challenge in many

real-world strategic games. In this chapter, we answer the following question: Given

a body of historical data about the interactions of multiple players, is there a way to

learn a payoff matrix? In order to answer this question, we make certain assumptions:

Time Discounting. We believe that players are more likely to be influenced by “recent”

history as opposed to events from a distant past. In order to model this, we developed

a notion of time-discounted regret.

No Correlated Equilibria, Short Histories. We do not assume correlated equilibria [52]

nor do we assume the existence of a signaling mechanism. When long histories are

available and some extra assumptions are made e.g. [52], game play can converge to

correlated equilibrium even without a signaling mechanism. However, our real-world

applications have short histories for which convergence cannot be assumed.

0This is a joint work with E. Serra, M. T. Hajiaghayi, S. Kraus and V. S. Subrahmanian.
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Bounded Rationality. Unlike past work on inverse reinforcement learning that assume

fully rational agents, we assume bounded rationality, i.e. players take actions whose

payoffs are within ε percent of the action with best response payoff.

No Knowledge of Outcomes. We assume that we only know the game history but noth-

ing about outcomes.

Best Response. We assume that all players have complete knowledge of the history of

past events and that in each time period, players choose an action that is an approximate

best response to the history (subject to the bounded rationality assumption).

We define constraints whose variables represent the payoffs for each player under

each joint action. Our constraints informally state that at each time point t in the past,

each player i chose to perform the action for which he had the maximal expected time-

discounted regret prior to time t. We also interpret these constraints as a myopic best

response to the state of the world. This leads to a set of constraints with many possible

solutions. We define three heuristics to estimate payoffs.

1. Centroid Solution (CS). In CS, the (approximate) centroid of the constraint

polytope is picked as the solution.

2. Soft Constraints Approach (SCA). In SCA, we allow the rationality con-

straints to be violated but penalize such violations in the objective function used.

3. SVM-based Method (SVMM). In SVMM, we propose a heuristic method to

map the payoff inference problem onto a support vector machine [32] and build

a separator that captures the payoff function we wish to learn.

We implemented CS, SCA, SVMM, as well as the recent ICEL algorithm (Inverse Cor-

relation Equilibrium Learning) for comparison [134]. We compared all 4 algorithms

w.r.t. solution quality and run-time. On synthetic data where we knew the ground truth

(because we generated player behavior using known payoff functions), we showed that

SVMM outperforms both CS and SCA w.r.t. both solution quality and run-time. We
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also compared CS,SCA, and SVMM on two real-world data sets: (i) the Minorities

at Risk Organizational Behavior (MAROB) dataset [10] the contains data on terror-

ist group behaviors and related government actions and (ii) a much more fine-grained

data set [122] about the behavior of the terrorist group Lashkar-e-Taiba (LeT).1 Again,

SVMM outperformed CS and SCA. We then ran experiments comparing SVMM with

ICEL. When we compare the ability of SVMM with that of ICEL to predict true be-

haviors from learned payoffs on the MAROB data, SVMM’s ability to predict behavior

from the learned payoffs was much better than that of ICEL (median Spearman Corre-

lation Coefficient of 0.7 for SVMM, compared to just 0.114 for ICEL).

6.2 Related Work

Inverse Reinforcement Learning [101] learns payoffs of a single-agent operating in a

given (usually Markovian) environment. [101] addresses the problem of learning a

reward function by observing behavior of MDPs. However, they and a series of sub-

sequent works [97, 143] assume a single rational agent in a given environment. Some

recent works have focused on Multi-agent Inverse Reinforcement Learning (MIRL)

[84, 96]. [96] examines a cooperative setting with an explicit centralized coordina-

tor. [84] studies the problem in a 2-person zero-sum stochastic games. [136] focuses

on learning payoffs for symmetric games. Waugh et al. [134] proposed an approach

to predict player behavior when no payoff matrix is available. A convex optimization

formulation finds a maximum entropy solution to find the predicted distribution over

joint actions. Finally, payoffs are computed by using the dual of the above optimization

convex problem.

Economists have studied payoff inference problems for various markets [31, 99,
1As no ground truth exists about payoffs for real-world players in the MAROB and LeT data sets, we

learned player payoffs from a training data set and then validated them on a separate validation data set by
making predictions based on learned payoffs. We emphasize the fact that this work is not about prediction
– but about learning payoffs in order to understand group behavior. The goal is to understand the payoff
structure for different players for different strategies so diplomats and counter-terrorism agencies can shape
policies towards the terrorist groups. We use predictions solely to validate learned payoffs.
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Table 6.1

PIE Waugh Ng-Russell Natarajan Lin Wiedenbeck
multi-player yes no yes 2-player yes
non-perfect rationality yes no no no yes
non-cooperative no (assumes NA no yes (zero-sum) yes

corr. eq.)
not symmetric yes NA yes yes no
demonstrated w/ yes no no no no
real data
scalable no (Non- yes (LP) yes (LP) no (QP) yes

smooth convex
program )

108, 123]. However, their focus is on modeling a particular market and then to use

various model fitting and regression to learn the best parameters. For instance, [123]

studies the effect of land use regulations on the mid-scale hotel market.

The assumption of equilibrium is common to most work on MIRL and other payoff

learning methods. However, decision theory bears out the fact that human players don’t

follow equilibrium strategies, even when the equilibrium is unique (which is rare!)

[117]. However, decision theory does highlight the importance of recency [100] and

regret in human decision making. Anticipated regret is considered an important deter-

minant of choice-behavior [29, 120, 139]. These aspects form the basis for PIE’s time

discounted regret minimization and myopic best response with exponentially decaying

state. Thus, PIE differs from existing work on payoff inference in that we assume my-

opic rationality and not global rationality (equilibrium). We also assume simple game

play dynamics inspired by relevant work from decision theory. In addition, we develop

a fast and practical data analytic approach compared to more theoretical approach taken

by most machine learning papers. We show this with experiments on two real-world

datasets and show superior performance compared to Waugh et al [134]. Table 6.1

compares our work with related work.

A major driver for our work is counter-terrorism applications. The development of

game-theoretic methods to analyze terrorist behavior and organization has been pio-

neered by Lindelauf [85, 86] and subsequently adopted by others [44, 92, 133].
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6.3 Preliminaries

Let [N ] = {1, . . . , N} be a set of players. We assume that each player i has an associ-

ated setAi of actions that it can take. LetA = A1 × · · · ×AN denote the set of all pos-

sible joint actions. Given a joint action a ∈ A, ai is the action of player i and a−i is the

joint action of all other players. Let ui be an unknown payoff function: ui : A → [0, 1].

ui(a) is the payoff of joint action a for player i. Let U = {u1, . . . , uN} be the set of

all (as yet unknown) payoff functions where ui is the payoff function for player i. Let

[T ] = {1, . . . , T} be a set of past time points.

Let m =
∑
i∈[n] |Ai| be the total number of actions for all players in the game. We

encode a joint action as an m-dimensional binary vector. Each action for a player is

indexed from
∑
j∈{1...,i−1} |Aj |+1 to

∑
j∈{1...i} |Aj | in a fixed but arbitrary order. In

other words, the first |A1| entries in the vector describe the actions for the first player,

the next |A2| entries describe the actions for the second player, and so forth. Let v be

an encoding for a ∈ A. If, in the joint action represented by a, player i plays action

ai ∈ Ai at time t, then, and only then is v[ai] = 1, otherwise v[ai] = 0.

Example 13. Suppose we have two players 1, 2 and suppose A1 = {a, b, c} and A2 =

{a, e} are the actions they can perform. Then the dimensionality of a joint action is 5

and an example of the vector representation of a joint action is:

pl-1 pl-1 pl-2 pl-2 pl-2

a b c a e

1 0 0 0 1

The first row is the player’s ID and the second row is the action name. Here, the

5-dimensional vector (1,0,0,0,1) tells us that in this joint action, player 1 performed

action a and player 2 performed action e.

A history is a sequence Hτ =< a1, . . . , aτ > where at is the vector of joint
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actions taken at time t ∈ [T ]. We represent the history of a game as a matrix, H , where

H[t, a] = 1 iff player i plays action a ∈ Ai at time t. Thus, Ht, the tth row of the

history matrix represents the joint action taken by all players at time t. Likewise, the

i’th column of H tells us that actions taken by player i at each time point.

A time-weighed history, wt, at time t is an m-dimensional vector defined as fol-

lows:

wt =

∑
i∈{1...t} α

t−iHi∑
i∈{1...t} α

t−i .

Example 14. Suppose we have two players [N ] = {1, 2}; player 1 is a terror group

and player 2 is the government. Assume that the players’ actions are pe_g ( “polit-

ical engagement with the government") for player 1 and pe_tg (“political engage-

ment with the terror group") for player 2. Each of these variables has 3 possi-

ble levels (low, medium, high) of intensity. Therefore, player 1 has three actions,

pe_g(l), pe_g(m), pe_g(h), corresponding to the three levels of intensity of this ac-

tion, and similarly, player 2 has three actions pe_tg(l), pe_tg(m), pe_tg(h). Let in-

dices of the actions pe_g(l), pe_g(m), pe_g(h) be 1, 2 and 3 respectively for player 1,

and 4, 5 and 6 respectively for player 2. Suppose we have three years ([T ] = {1, 2, 3})

history below:

[T ] year player 1 player 2

1 2010 pe_g(l) pe_tg(m)

2 2011 pe_g(m) pe_tg(l)

3 2012 pe_g(h) pe_tg(m)

Then the history matrix, H representing the above game history is given by:


1 0 0 0 1 0

0 1 0 1 0 0

0 0 1 0 1 0


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6.4 Time Discounted Regret

In this section, we define the concept of time discounted regret. Classical regret is

defined with respect to a class Φ of modification functions. Each modification function

f ∈ Φ is a mapping f : A → A. Intuitively, a modification function suggests an

alternative choice f(a) for an action a - instead of taking action a, the player takes

action f(a). As there are many ways in which a player could modify his choice, we

consider a set Φ of modification functions. In the context of our running counter-

terrorism example, the different modification functions might correspond to all feasible

actions that could replace a given action a. The regret for a player i is defined as:

Ri,Φ(t) = max
f∈Φ

t−1∑
t̂=1

ui(f(at̂i), a
t̂
−i)− ui(at̂).

Here, ui(f(at̂i), a
t̂
−i) − ui(a

t̂) is the difference in utility for player i had he elected

to take action f(at̂i) instead of whatever action he took at time t in the past. The

summation
∑t−1
t̂=1

ui(f(at̂i), a
t̂
−i) − ui(a

t̂) reflects the total regret that player i had

w.r.t. his past actions, had he chosen to use modification function f instead of whatever

method he used to select his past actions. Had player i used the modification function

f ∈ Φ that maximizes this summation, then he would have gotten the maximal possible

benefit, and the fact that he (maybe) did not use it is what leads to this regret.

When determining what action to take, players in the real world are often more

influenced by recent actions than by actions in the distant past. Our notion of time-

discounted regret takes this into account by allowing a player to discount the past at

a rate α s.t. 0 < α ≤ 1. After each time point, the “importance” of a past event is

reduced by a factor of α. The time-discounted regret is defined as follows:

TDRi,Φ(t) = max
f∈Φ

∑t−1
t̂=1

αt−1−t̂(ui(f(at̂i), a
t̂
−i)− ui(at̂))∑t−1

t̂=1
αt−1−t̂

(6.1)
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Because of the α parameter in the definition of TDR, for us, a history is a timed-

stamped collection of past joint actions. This is very different from [134] which only

uses the history to extract the distribution of joint actions and consider it to be a collec-

tion (without timestamps) of past joint actions. When α = 1, the definitions of regret

and time-discounted regret coincide.

Suppose Φc is the set of all functions from A to A that are constant functions, i.e.

if f is in Φc, there must exist an action a′ ∈ A such that for all a ∈ A, f(a) = a′. The

time discounted external regret w.r.t. Φc is then simply given by:

TDERi,Φc
(t) = max

â∈A

∑t−1
t̂=1

αt−1−t̂(ui(â, a
t̂
−i)− ui(at̂))∑t−1

t̂=1
αt−1−t̂

In other words, TDERi,Φc
only considers constant functions when computing time-

discounted regret. We define the time-discounted external regret w.r.t. action â as:

TDERi(â, t) =

∑t−1
t̂=1

αt−1−t̂(ui(â, a
t̂
−i)− ui(at̂))∑t−1

t̂=1
αt−1−t̂

(6.2)

Intuitively, TDERi(â, t) is the regret for player i due to the fact that she/he did not

use the strategy to always play the action â in the past. We assume that for a rational

player, the greater the regret w.r.t an action â in the past, the more likely it is that the

player will play the action â in the future.2

Example 15. Let’s reconsider Example 14 with α = 0.9. The time-discounted external
regret for player 1 w.r.t. action h in the year 2013 (t = 4) is:

TDER1(h, 4) =
0.81(u1(h,m)− u1(l,m)) + 0.90(u1(h, l)− u1(m, l)) + 1.00(u1(h,m)− u1(h,m))

0.81 + 0.9 + 1.0

Observe that the weights 0.81, 0.9 and 1.0 are the weights for years 2010, 2011 and

2012, respectively. 2

A player is ration if, for each time t, the player chooses the action that caused the
2In simple terms: if the player had great regret about not doing something in the past, especially the

recent past, then he is more likely to do it in the future, especially in the near future.
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maximum time-discounted external regret in the past. Thus, our rationality constraints

require that ∀t ∈ [T ] \ {1}, ∀i ∈ [N ], ∀â ∈ A \ {ati} the following condition holds:

TDERi(â, t) ≤ TDERi(ati, t) (6.3)

or, equivalently,

t−1∑
t̂=1

αt−1−t̂(ui(â, a
t̂
−i)− ui(ati, at̂−i)) ≤ 0 (6.4)

Bounded Rationality. As only a few players in the real world are completely rational,

we introduce a parameter ε ∈ [0, 1] that is the degree of rationality. The closer ε is to 1,

the more rational the player is, while the closer ε is to 0, the more irrational the player

is. We replace Equation 6.3 (which assumes complete rationality) with the equation

below, which allows weaker notions of rationality:

ε · TDERi(â, t) ≤ TDERi(ati, t)

or equivalently

t−1∑
t̂=1

αt−1−t̂(ε · ui(â, at̂−i)− ui(ati, at̂−i)) ≤ 0. (6.5)

As ε and the α’s are constants, this equation is linear. Each ui(−) term is a variable

in this constraint. Let LC be the set of all linear constraints generated by Equation 6.5

above. We demonstrate them in the next example.

Example 16. By considering only the last two years of the history in Example 14 we

observe that HT is

[T ] year player 1 player 2

1 2011 m l

2 2012 h m
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If α = 0.9 and ε = 0.8, the rationality constraints for both players are:

(0.8 u1(l, l)− u1(h, l)) ≤ 0 (0.8 u1(m, l)− u1(h, l)) ≤ 0

(0.8 u2(m, l)− u2(m,m)) ≤ 0 (0.8 u2(m,h)− u2(m,m)) ≤ 0

The result below states that LC is polynomial in size.

Proposition 1. The number of variables occurring in LC is polynomial in the number

of players N , the number of actions M and in the size of the history T .

Proof. The number of constraints for each player at time t ∈ [T ] is M − 1. Each

constraint has at most T variables. Thus, the total number of variables that can occur

in LC is at most (M − 1)NT .

One problem with LC is that it may have multiple solutions, some of which may

be trivial. An example of a trivial solution is when the utility function returns the same

value for each joint action for each player. For instance, the maximal entropy solution

of LC (the entropy function is applied to all variables of LC) assigns the same utility

to all combinations of players and joint actions.

Proposition 2. Suppose U = {u1, . . . , uN} is a maximal entropy solution for LC.

Then for all joint actions a, a′ and all players i, j, ui(a) = uj(a
′).

Proof. Let the entropy function be defined as follows

−
∑

i∈[N ],a∈A

ui(a) ln(ui(a))

We obtain the maximum value of this function when ∀i ∈ [N ], ∀a ∈ A we can deduce

that ui(a) = e−1. Since we know that when ε ∈ [0, 1],

t−1∑
t̂=1

αt−1−t̂ε · e−1 ≤
t−1∑
t̂=1

αt−1−t̂e−1
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our rationality constraints in Equation 6.5 are satisfied. For these reasons it follows that

the theorem holds. 2

Hence, given the assumptions in this chapter, maximal entropy is not a very effective

way of choosing a solution.

6.5 Non-Linear Time-Weighted History Payoffs

PIE was motivated by our ongoing counter-terrorism research. We have applied PIE

to a multi-player game involving the terrorist group Lashkar-e-Taiba (responsible for

the 2008 Mumbai attacks) and the governments of Pakistan and India. In such sce-

narios, a time-weighted history of players’ actions is a representation of state of the

world (which is a history of players’ actions) at the time the player decides to take a

new action. Time-weighted history captures the idea that recent actions may be more

relevant than older ones.

The payoffs in Equation 6.5 are linear. Suppose we assume that a payoff function

for player i at time t is any (linear or non-linear) function πi : Rm+1 7→ R of the time-

weighted history at time t. That is, πi(a,wt) takes an action a and a time weighted

history wt (which is a vector of dimensionality m as defined earlier in Section 6.3) as

input and returns a payoff value as output, specifying the payoff to player i of playing

a at time t, w.r.t. wt.

We assume that a player chooses an action at time t that has highest payoff with

respect to the state of the world at time t− 1. Let a be the action played by player i at

time t. The constraint below encodes the fact that a is player i’s best response.

πi(a,wt) ≥ πi(a′, wt) ∀a′ ∈ Ai, i ∈ [N ], t ∈ [T ] (6.6)

One such constraint needs to be written for each player i and each time t. Note

that these constraints may be non-linear as no constraints have been imposed to make
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πi linear. It is easy to see that Equation 6.6 generalizes Equation 6.5. Note that this

system of inequalities is feasible as assigning identical payoffs for all actions always

satisfies Equation 6.6. However, this is not a good solution. Hence, it is very important

to choose a “robust” solution to the above system. For real-world problems, we require

that the selected solution satisfies the following properties:

(P1) The family of functions to which our payoff functions πi belong should not have

arbitrary complexity, i.e., our hypothesis space should not allow arbitrary payoff

functions to avoid overfitting. On the other hand, we should allow somewhat

complicated non-linear payoff functions to avoid over-simplification.

(P2) While it is reasonable to assume that players react to game history and use actions

which would generate high payoffs, we cannot assume that each and every player

always adheres to this heuristic at all times. Therefore, our algorithm must admit

the possibility that some points in the history may violate Equation 6.6. However,

Equation 6.6 should hold for most of the game history.

(P3) Last but not the least, there must be a tractable algorithm to select a solution of

these constraints so that PIE can apply to real-world strategic games involving

many players and dozens of actions. While the current best approach [134] in

literature has been applied to games of upto 6 players with 3 actions for each

player, they don’t discuss runtime of their approach. As per our experiments, our

best approach is 1 to 2 orders of magnitude faster.

6.6 Solution Selection

In this section, we present three approaches to select a solution of the system of con-

straints.
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Centroid Based Solution (CS) The Centroid Based Solution uses LC (not Equa-

tion 6.6). The classical way to choose one solution of LC is to choose the maximum

entropy solution. However, as proved earlier in Proposition 2, this is not useful as the

maximum entropy solution assigns the same utility to all combinations of players and

joint actions. In order to avoid this, we choose a centroid based approach. The cen-

troid solution of LC is the mean position of all points satisfying LC. Unfortunately,

computing the centroid of a convex region is computationally very complex — even

approximating it is #P -hard [111]. We therefore approximate the centroid by using

Hit-and-Run (HAR) sampling [16]. In HAR sampling, we start with a randomly se-

lected solution of the constraints (point in the polytope). We then randomly identify a

direction and distance and head in that direction for the selected distance from the last

sampled point. If we are still within the polytope, this becomes our next sampled point.

If the new point is outside the polytope, we regenerate a distance and direction till a

valid point within the polytope is found. This process is iterated till the desired number

of sample points is generated. HAR sampling allows us to sample points from a convex

polytope uniformly at random in time polynomial in the number of dimensions (num-

ber of variables of LC). We approximate the centroid by taking the component-wise

mean of the sampled payoffs.

Proposition 3. The centroid approximation described above is also a solution of LC.

The proposition above follows as the centroid approximation is a convex combina-

tion of solutions of LC.

Soft Constraints Approach (SCA) In the Soft Constraints Approach, we again use

only LC (Equation 6.6 is not used) and allow the rationality constraints to be violated

by introducing a slack variable in each constraint in LC. These slack variables are

denoted si,a,t in the revised linear program RLP given below. We then find a solution

of RLC that minimizes the sum of the slack variables which, in a sense, minimizes
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the amount of violation of the constraint. The Revised Linear Program RLP is shown

below.

Maximize
s,u

∑
i,a,t

si,a,t

Subject to:

t−1∑
t̂=1

αt−1−t̂(εui(a, a
t̂
−i)− ui(ati, at̂−i) + si,a,t) ≤ 0,∀i ∈ [N ], a ∈ A, t ∈ [T ] (6.7)

The slack variables in Equation 6.7 are inside the parentheses to normalize for the

history length and time decay of payoffs.

Payoff Inference using SVMM In this section, we present a novel approach that uses

Support Vector Machines (SVM) to find a “good” candidate solution to the system of

inequalities given in Equation 6.6. Here, we use a set CONS of constraints which

are generated by Equation 6.6 – we do not use Equation 6.5 in this approach. Each

constraint generated by Equation 6.6 has a left hand side and a right hand side. We

encode the right hand and the left hand sides of the inequalities in Equation 6.6 as

points in a space. If a point encodes the right hand side of an inequality, it is assigned

a label 1, otherwise, it is assigned a label 0. We then run the classification algorithm.

The decision function for the learned classifier is the desired payoff function. We now

describe this method in more detail.

Encoding points in game history. Let the number of actions of player i be ni =

|Ai|. Let a be an action of player i, whose index is equal to
∑
j∈{1...i−1} |Aj | + k.

Consider an m + 1-tuple (a, h), where a ∈ Ai and h is an m-dimensional point. Let

V : Rm+1 7→ R(m+1)ni be a map that takes this m + 1’th-tuple as input and outputs
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an (m+ 1) ∗ ni-dimensional vector. Map V is defined as follows:

V (a, h)[(k − 1) ∗ (m+ 1) + 1] = 1

V (a, h)[(k − 1) ∗ (m+ 1) + 1 + j] = h[j] ∀j ∈ {1 . . .m}

All other entries of V (a, h) are 0. Suppose player i plays action a at time t. Then

V (a,wt,i, wt−1,−i) is labeled 1. For all actions a′ 6= a, V (a′, wt,i, wt−1,−i) are labeled

0. The following example shows how this works.

Example 17 (SVMM Method). Consider a 3 player game with players {1, 2, 3} with

2 actions (namely, Action 1 and Action 2) for each player. A point in the history of

the game is represented by a 6-dimensional binary vector, e.g. the vector (1,0,0,1,1,0)

represents the fact that players 1, 2 and 3 played actions 1, 2 and 1 respectively. Let

the current state of the world be given by the vector wt = (w1, w2, w3, w4, w5, w6).

Assume that at any time, player 1 plays a myopic best response to this state of the

world. For simplicity, let payoffs be a linear function of state of the world. The payoff

for playing action 1 by player 1 is p1 = a1 +
∑
i∈{1..6} a1iwi. Similarly for action

2, p2 = a2 +
∑
i∈{1..6} a2iwi. Thus, the payoff function can be represented as a

14-dimensional vector p = (a1, a11, . . . , a16, a2, a21, . . . , a26). Further, assume that

player 1 actually chooses action 1 as her best response. Then:

p1 >= p2 (6.8)

Now, lets encode RHS as V (1, wt) = (1, w1, w2, w3, w4, w5, w6, 0, 0, 0, 0, 0, 0, 0) and

the LHS as V (2, wt) = (0, 0, 0, 0, 0, 0, 0, 1, w1, w2, w3, w4, w5, w6). If we use SVM to

learn a separating hyperplane W for points V (1, wt) and V (2, wt) such that V (1, wt)
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is on the positive side and V (2, wt) is on the negative side, then we have:

WTV (1, wt) > 0WTV (2, wt) < 0 (6.9)

Thus, we have WTV (1, s) > WTV (2, s) and thus W is a 14-dimensional vector

representing a feasible payoff function satisfying 6.9.

Going back to the general case, let E be the function that takes a given game history

as input and returns as output, the labeling and encoding of points as defined above.

We now describe the relationship between SVM classifier applied to points given by

mapping V and the system of inequalities given by Equation 6.6 with the help of the

following two propositions.

Proposition 4. The system of inequalities given in Equation 6.6 is feasible for a game

history H , i.e., we can find payoff functions such that all the inequalities are satisfied

if the SVM algorithm can find a separator for encoding E(H).

Proof. We note that for points on one side of decision surface, the value of decision

surface is less than 0 and for the other side it is greater than 0. Therefore, if points

encoded for the RHS are on the positive side and LHS on the negative side, Equations

6.6 are satisfied. Otherwise, we can flip sign of the decision function and achieve the

same result.

Proposition 5. If the SVM algorithm can find a separator that misclassifies n1 points

with labels 1 and n0 points with labels 0, then we can find payoff functions such that at

most n0 + n1 of the inequalities given by Equation 6.6 are not satisfied.

Proof. Without loss of generality, we assume that points encoding the RHS of Equation

6.6 are assigned positive labels and points encoding the LHS are assigned negative

labels. A misclassified point LHS point can be assigned a decision value higher than

the RHS point can lead to at most one violated constraint. Similarly, a misclassified
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RHS point can lead to at most one violated constraint. Thus in all we can have at most

n0 + n1 violated constraints.

6.7 Implementation and Experiments

We implemented CBS, SCA, SVMM as well as the ICEL algorithm [134]. Sec-

tions 6.7.1 use synthetic data (with known payoff functions to evaluate these algo-

rithms’ accuracy). Section 6.8 uses the real-world MAROB data about 10 terrorist

groups [10] with actions by both the terrorist groups and the government of the country

involved. Section 6.8.1 uses a very fine-grained counter-terrorism data set with three

actors: the terror group Lashkar-e-Taiba [122] which carried out the Mumbai attacks

and the governments of Pakistan and India. The next two subsections compare the

three algorithms presented in this chapter in order to identify which one is best - both

from an accuracy and from a run-time perspective. Section 6.9 compares our best al-

gorithm with theICEL algorithm. Because of Proposition 2, we could not apply ICEL

to the synthetic data — and because the Lashkar-e-Taiba contained a host of environ-

mental variables, we could not apply ICEL to that either. We used the MAROB data to

compare ICEL and our SVMM metric.

6.7.1 Experiments on Synthetic Data

Generation of Synthetic Data

We wrote R code to generate random games with random linear payoffs functions and

a random state of the world at each time. A payoff function is represented as a vector of

coefficients of a linear function. Each of the payoff functions and the state of the world

at each time point is a uniformly randomly directed positive vector of norm 1. After

generating the payoffs and the state of the world at different times, an action history for

all players is generated assuming best response. We are not simulating a game. Instead,

187



each time point is a “what if” scenario, where each player is presented with a state of

the world and they choose the best response as per their payoff functions. The code to

generatef random games varies the following inputs:

np Number of players

na Number of actions for each player

n Length of history for each game

noise Probability that action of a player will be chosen uniformly at random (instead of the best response heuristic)

seed The seed for random number generation (to ensure reproducibility of experiments)

The state of the world is thus an (na ∗ np)-dimensional vector. Payoff for each

action is a linear function of the state of the world and hence is represented as an

(na ∗ np)-dimensional vector of coefficients. Thus, each player has na such vectors.

3 We introduce noise into our experiments by allowing each player, at each time step,

to either play a random response independently at random with probability given by

parameter “noise”, or a best response to the current state of the world. To evaluate

quality of payoffs learned, for each player, we learn the np ∗ na2 length vector of

parameters of the player’s payoff function. We measure the quality of our three payoff

learning algorithms by comparing this vector with the actual payoff function vectors

using Pearson Correlation Coefficients (PCCs for short).

Performance of SVM based method

We use a linear soft margin SVM classifier using the R interface to libsvm [22]. The

hyperparameter for tuning this SVM is the cost of misclassification C. We tried values

of C ∈ {0.01, 0.1, 1, 10, 100} and chose the best-forming SVM model. However, we

also report the overall results (encompassing all five values of C). The choice of C

turns out to be not critical to the performance of our algorithms. SVMM performs very

well with median PCC above 0.8 for games with 5 players and 5 actions for each player

and median PCC between 0.6 and 0.8 for most of the smaller games. In addition,

3For most experiments on synthetic data, we have na = np = 3. Thus, each payoff function is a 9
dimensional vector. As there are 3 payoff functions per player (one per action), we are trying to learn a total
of 9 vectors, each of which is 9-dimensional.
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performance degrades slowly with noise. We now analyze SVMM’s performance in

more detail.

Effect of Dimension of Payoff Function (SVM) Figure 6.1 shows the effect of di-

mension of the payoff function on performance of SVMM.4 Here, the number of sam-

ple history points is 1000 and the noise parameter is set to 0. Surprisingly, the perfor-

mance improves with dimension of the payoff function.

Effect of Noise (SVM) Figure 6.2 shows the effect of noise on SVMM’s perfor-

mance. The number of samples is 1000 and the dimension of the payoff function is 9.

We note that performance degrades gracefully under noise. For zero noise, the median

PCC value is 0.73, whereas even with noise as high as 0.3 (i.e., with probability 0.3

a player chooses to play a random action instead of the best response), we still get a

4The figure was plotted using the standard "boxplot" function in R (http://www.r-
bloggers.com/boxplots-and-beyond-part-i/). The boxes denote the range of 25th and the 75th percentiles.
The line in the box is the median. The upper and lower lines outside the box is the "nominal" range of values
and the circles are outliers.
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median PCC of 0.66.

Effect of Length of History (n) (SVM) Figure 6.3 shows the effect of the length of

the history on SVMM’s performance. There is slight improvement in median PCC as

n increases from 200 to 1000.

Performance of SCA

In this section we go into details of performance of the SCA method and show that is

is inferior to SVMM.

Effect of Dimension of Payoff Function (SCA) Figure 6.4 shows the effect of di-

mension of the payoff function on SCA’s performance. The number of sample history

points is 1000 and the noise parameter is set to 0. Performance degrades with dimen-

sion of the payoff function.
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mance of SCA for synthetic data
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performance of SCA for synthetic data

Effect of Noise (SCA) Figure 6.5 shows the effect of noise on SCA’s performance.

The number of samples is 200 and dimension of the payoff function is 9. While perfor-

mance does not degrade significantly with noise, overall performance is poor (Overall

PCC median of 0.22).

Effect of History length (SCA) Figure 6.6 shows the effect of history length on

SCA’s performance. Here noise is 0 and dimension of the payoff function is 9. Some-

what counter-intuitively, performance degrades with history length. This could be be-

cause the number of slack variables increases linearly with the length of history. Thus,

the degrees of freedom of the model is potentially higher with a longer history and thus

a longer history can lead to overfitting.

Performance of Centroid Based Method

In this section we study CBS’s performance and show that it is far inferior than SVMM.

191



●

0.7 0.8 0.9

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
CBS performance with epsilon

Epsilon

P
C

C

Figure 6.7: Effect of epsilon on perfor-
mance of CBS for synthetic data

●

4 6 8 9 10 12 15 16 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect of dimension on CBS

Dimension of payoff function

P
C

C

Figure 6.8: Effect of dimension of pay-
off function on performance of CBS for
synthetic data

Effect of ε (CBS) Figure 6.7 shows the effect of ε on CBS’s performance. Here,

the length of history is 200 and dimension of the payoff function is 9. The noise is 0.

Overall performance is better than SCA but much worse than the SVM based method

(PCC median of 0.45 for ε = 0.9).

Effect of Dimension of Payoff Function (CBS) Figure 6.8 shows the effect of di-

mension of the payoff function on performance of CBS. Here, the number of sample

history points is 1000 and the noise parameter is set to 0. Performance shows no dis-

cernible trend.

Effect of Noise Figure 6.9 shows the effect of noise on performance of CBS. Here,

the number of samples is 1000 and dimension of the payoff function is 9. Performance

degrades sharply with noise and even with 10% noise, is close to random.

Effect of Length of History (CBS) Figure 6.10 shows the effect of history length

on performance of CBS. Here noise is 0 and dimension of the payoff function is 9.
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Performance does not improve with n and shows no discernible trend.

6.7.2 Runtime Comparison of CBS, SCA, SVMM

Figure 6.11 shows the relative runtime performance of the three methods for varying

lengths of histories. SVMM is faster than the SCA by an order of magnitude and faster

than the CBS by 2-3 orders of magnitude. For this comparison na and np are 3. Actual

performance time of SVMM for varying values of n, na and np are given in Figure

6.12.

6.7.3 Discussion of the Results

Effect of Dimension of Payoff Function The effect of the dimension of the payoff

functions on the performance of the SVMM, SCA and CBS is depicted in Figures 6.1,

6.4 and 6.8 respectively. We see that SVMM’s performance improves with dimension.

This is counter-intuitive as performance of most classifiers degrades with dimension.

However, for the payoff inference problem, the number of constraints and hence the
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number of points increases with the payoff function’s dimension (for a fixed length

of history). Thus, while the complexity of the classifier increases with dimension of

data, we have more data to learn from and hence, performance improves with dimen-

sion. In case of SCA, we see that performance degrades with dimension. For SCA the

number of slack variables is the product of history length and dimension of the payoff

function. Thus, the increase in dimension leads to an increase in number of the slack

variables. We hypothesize that in SCA this increase in number of slack variables with

increase in dimension leads to performance degradation. CBS shows no discernible

trend with increasing dimension. First, we are only approximating the centroid. Sec-

ond, the centroid is very sensitive to individual constraints. Thus, CBS chooses an

approximation to a feasible representative solution that is very sensitive to individual

constraints. Therefore, it is not surprising that its performance is erratic.

Effect of Noise The effect of noise on the performance of the SVMM, SCA and CBS

is depicted in Figures 6.2, 6.5 and 6.9 respectively. SVMM’s performance degrades
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gracefully with noise. As oft margin SVMs evolved from hard margin SVMs to handle

misclassification, this graceful degradation is expected. SCA’s performance remains

more or less constant and very poor with and without noise. SCA accommodates noisy

points by allowing constraints to be violated by allowing negative slack variables and

hence some robustness to noise is expected. However, a total lack of trend is a bit

surprising. As noted earlier, centroid is very sensitive to individual constraints and

hence extreme sensitivity to noise, as depicted in Figure 6.9 is expected.

Effect of History Length The effect of history length on the performance of SVMM,

SCA and CBS is depicted in Figures 6.3, 6.6 and 6.10 respectively. SVMM’s perfor-

mance improves slightly when n increases. Thus, SVMM learns a better classifier

with more data. Surprisingly, for synthetic data, it seems that SVMM is able to learn

a very good classifier even with n = 200. SCA again shows the trend of degrading

performance with the increasing number of constraints. Performance of CBS is again

erratic.

Runtime The runtimes of the SVMM, SCA and CBS are compared in Figure 6.11.

CBS is easily the worst. SVMM runtime increases with length of the history (Fig-

ure 6.12 because the problem size varies linearly with the length of the history. The

corresponding increase with the number of actions is faster as the problem size varies

quadratically with the number of actions. SVMM’s runtime increases with the number

of players in general, however, when the number of players is 10 it suddenly drops. We

don’t have a good explanation for this behavior and it is left for future work.

We conclude by stating that of the three algorithms presented in this chapter, SVMM

achieves significantly larger accuracy than SCA and CBS, is more robust to noise, and

performs much better and faster than the other two methods. It gives excellent perfor-

mance on relatively large games (Median PCC above 0.8 for games with 5 players, 5

actions per player).
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6.8 Experiments on Marob Data Set

We ran tests on all 10 terror groups in the Minorities at Risk Organizational Behavior

(MAROB) [10] data set for which at least 20 rows of data are available. We aggregated

low level MAROB actions (both by the group and the government of the nation where

the group is based) into high level actions. The high level actions involved two actions

each for the group (political engagement with the government, militant activities) and

for the government (political engagement with the group and suppression of the group).

Each of these actions can be carried out at low, medium, high levels. Hence, each

player can take one of 9 actions, leading to 81 total joint actions. We ran experiments

with data about 10 group/nation pairs. To test validity of the payoffs learned, we made

predictions of actions of terror groups and governments and checked the accuracy of

these predictions. The mean number of actions for government player, denoted by G is

4.1 and the mean for terro organization, denoted TO is 5.6. The mean number of joint

actions (product of actions of G and TO) is 25.30. The history length of each game is

between 20 and 25.

Working on this data is problematic for two reasons: (i) we only have 20 data points

for each group/nation pair, (ii) we don’t know the ground truth. We evaluate the quality

of the learned payoffs as follows. We compute the Spearman Rank Correlation Coef-

ficient (SCC) correlation between predicted payoffs and the binary vector representing

actual actions performed during the time period. While the payoffs are reals in [0, 1],

we are correlating them with binary variables in {0, 1}, thus even in the best case, we

cannot expect the correlation to be 1, e.g. for 5 actions (about average for the games in

MAROB dataset), a point in history may be (1, 0, 0, 0, 0). It will be correctly predicted

by a payoff vector such as p = (1, p2, p3, p4, p5), pi < 1 ∀i ∈ {2..5}. Assuming that

pi 6= pj ∀i, j ∈ {1 . . . 5}, the expected SCC for this data (assuming pi’s uniformly

distributed over [0, 1)) is 0.71 which is quite good, given the paucity of data. Figure

6.13 gives the best expected SCC as a function of the number of actions of a player.
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Depending on the number of actions of a player, we normalize the SCC between pre-

dicted payoffs and the actual binary action vector to arrive at normalized SCC (NSCC).

Comparison of performance of the three methods (Marob) Figure 6.14 compares

CBS, SCA, and SVMM. On this dataset, SVMM uses the radial basis function as the

kernel and the model is selected based on leave-one-out cross validation. Here again,

SVMM performs well (median NSCC=0.7) and comfortably outscores SCA (median

NSCC=0.6) and CBS (median NSCC=0). While in for some part of the data set CBS

does do well with 75th percentile NSCC value close to 0.4, the average CBS performs

particularly poorly, with a median NSCC of close to 0 indicating near random perfor-

mance. SCA performs well but not as well as SVMM.

As in the case of synthetic data (Figure 6.9) CBS is very sensitive to noise. SVMM

and SCA perform well becausethey both allow some constraints to be violated. As

shown in Figures 6.4 and 6.6, SCA’s performance degrades with the number of con-
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straints. However, since all the histories of in the MAROB data set are short ( 20), SCA

performs quite well. SVMM performs even better than SCA. We hypothesis that this is

because SVMM accommodates non-linear payoff functions using kernel methods and

SCA allows only linear payoffs. We believe that real players’ payoffs functions are not

necessary linear.

6.8.1 LeT Experiments

We conducted extensive tests on the Lashkar-e-Taiba (LeT) dataset[122] which con-

tains 252 rows (months) of data about 700+ variables.5 We choose 24 variables which

we considered relevant to our problem. These variables include six variables for var-

ious types of attacks carried out by LeT and eight for actions taken by the Pakistani

government and military. The other 10 variables such as existence of international

ban, existence of conflict within LeT, split in LeT etc. are treated as environmental

variables.6

The LeT dataset models a relatively big game. Players can take many actions si-

multaneously. If we encode each combination of actions as a separate action, we will

end up with 64 actions for LeT and 256 actions for Pakistani government. This leads to

a very high dimensional encoding for this dataset. As an illustration, for a the given his-

tory,H of this game, E(H) for Pakistani government would be 256∗(1+336) = 86272

dimensions (ignoring the environment variables). We now describe how we tackle the

dimensionality problem.

5It includes details about attacks carried out by LeT, communications campaigns and rallies organized
by LeT. It also includes actions by the state (Pakistan) and international actors (US, India, EU etc.) such as
arrests, tribunals, killings related to members of LeT.

6Environment variables can be seen to be actions of another player (similar to the “nature” player in
classical game theory), whose actions we cannot predict (or are not interested in predicting). Nevertheless,
these actions do have an effect on payoffs of other players.
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Independent Payoffs for Simultaneous Actions

One natural way to reduce dimensions of the embedding is to assume that payoffs

for simultaneous actions are independent and additive. However, different actions may

require different level of effort for the player and it is reasonable to assume that payoffs

are proportional to effort. For example, if attacking a security installation requires

double the effort of attacking civilian transport, then the payoffs for the two actions

are comparable only if the payoff from attacking the security installation is double the

payoff from attacking civilian transport. This is because capability and resources of

an organization are limited and thus, to maximize the payoff, effort should be spent on

actions that give maximum payoff for each unit of effort. Therefore, for this approach,

we need to assign effort-based weights to players’ actions. However, there is no reliable

way of knowing how much effort was needed for each action of the player. Therefore,

we reject this approach. Instead, we relax the constraints in Equation 6.6 by assuming

that regret for each action actually played at time t is greater than or equal to regret

for actions not played at time t. For example, assume that at time t a player played

actions (0, 1, 0, 1, 0, 0) indicating that they took actions 2 and 4 out of possible actions

in {1, . . . , 6}. Then, we assume that regrets for actions 2 and 4 were higher than

regrets for other actions at time t. The other alternative could have been encoding each

of the possible combinations of actions as a separate action, which leads to 64 possible

distinct actions at each time step.

Evaluation of Quality of Learned Payoffs

We evaluate the quality of prediction in two ways. First, we compute the SCC of events

and payoffs for each time period from the test data. We compute correlation between

predicted payoffs for actions and the binary vector representing actual occurrence of

the events during the time period. We use this method to compare the performance of

SVMM, CBS and SCA. Second, for SVMM, we compute the quality of predictions
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using Area Under the RoC curve as our metric. We don’t use predictions to evaluate

CBS and SCA methods because these methods don’t extend naturally to prediction and

prediction is not our primary objective.

Comparison of the Methods

Figure 6.16 presents comparative performance of the three methods on the LeT dataset.

Again, SVMM performs well and clearly outperforms SCA and CBS. The NSCC for

SVMM for Player LeT in the dataset is 0.59. The NSCC for SVMM for Player Pakistan

is 0.80. The predictive performance of SVMM is good with area under single point

RoC curve of 0.74 and 0.85 for LeT and Pakistan respectively (Figure 6.15).

The performance of SVMM is much better than the other two methods. We think

that the reasons are three-fold. First, SVMM is robust to noise. Second, SVMM allows

for non-linear payoff functions. Third, SVMM performs better with more constraints

and higher dimensional payoff functions.
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6.9 Comparison with ICEL

We compare the performance of our best algorithm (SVMM) against the Inverse Cor-

related Equilibrium Learning (ICEL) algorithm of [134]. ICEL assumes that players

play a correlated equilibrium. Input to the ICEL algorithm is the game history and

corresponding outcomes, which depend on joint actions of the players. The output is

a joint distribution over the player’s actions. The learned distribution is a Correlated

Equilibrium for the corresponding inferred payoffs.

We evaluated the performance of ICEL against SVMM using NSCC metric on the

MAROB dataset. We could not evaluate ICEL on LeT dataset because it has environ-

ment variables in addition to player actions and ICEL is not applicable to games with

environmental variables. If the payoffs learned by ICEL correspond to a Correlated

Equilibrium actually played by the players, we can expect good rank correlation be-

tween chosen actions and payoffs. However, as can be seen from Figure 6.17, this is

not the case. The median NSCC is 0.1140 over all games (which suggests that ICEL is

only marginally better than random noise). NSCC is above 0.5 in only 3 out of 20 in-
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stances (10 games, 2 players per game). In comparison, SVMM performs much better

with median NSCC of 0.7.

We believe the poor performance of ICEL stems from two factors. First, we have

no knowledge of the outcomes, only of game history. We empirically observed that in

the absence of any information about the outcomes, the ICEL convex program simply

converges to distribution of actions actually played by the players (mean Kullback-

Leibler divergence between actual and learned distributions is 0.043, max 0.088). Thus,

in effect, the method corresponds to predicting that whatever happened in past will

happen in future with no notion of recency and dynamics. Secondly, in our real-world

data, the players may not play a correlated equilibrium and our proposed dynamics,

which are based on regret minimization and recency, may be a closer approximation of

reality.

The runtime comparison is shown in Figure 6.18. Here again, SVMM is 1-2 orders

of magnitude faster than ICEL. However, this is a bit of apples and oranges compar-

ison as the SVMM code is in R with a Libsvm backend and the ICEL code uses the

Python code provided by authors publicly at their website. We note that ability to use

highly optimized, stable and mature libraries provided by machine learning commu-

nity for classification tasks is one of the advantages of our approach over other extant

approaches.

6.10 Conclusion

In this work, we have developed, for the first-time, a method to infer payoffs for real-

world games, under much more reasonable assumptions than past work. Specifically,

unlike much past work, PIE is applicable to multi-player games, allows players to

not be fully rational, does not assume a coordination mechanism, does not assume

a symmetric game and is scalable, while other works are lacking in at least one of

these aspects. Moreover, we apply our theory to real-world strategic games with a
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real world dataset based on a widely influential previous study[122] that was briefed

to two national security advisors and heads of multiple security agencies around the

world. Such individuals seek understanding - and our goal in learning these payoffs

were to facilitate explaining the payoffs to such senior decision makers - rather than

prediction. Toward this end, we propose three heuristics that may be used to learn

payoffs of players in multi-player real-world games including one that builds upon

Support Vector Machines - a tested technique in data mining that has never been used

before for learning payoffs. Though the goal of this work is not prediction, we test our

methods in three ways. We use a synthetic data set and a well-known terrorism data

set[10] to see how well we can predict known payoff functions (synthetic data) and

actions ([10] data). Even though we have small amounts of data in both cases, they are

bigger than those in previous studies, and our best algorithm (SVMM) achieves good

correlations. Our third test looks at 10 years of data about the terror group Lashkar-

e-Taiba (responsible for the 2008 Mumbai attacks). We show that SVMM is both

faster and much more accurate than ICEL [134] one of the best prior algorithms in the

literature. Much work remains to be done. Even though PIE is more scalable than

past work, there is still a long way to go. And explaining learned payoff functions to

real world decision makers also has many challenging aspects that deserve much future

study.
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Chapter 7

Future Work

We conclude this work with a brief overview of potential future research directions

related to our work. In absence of symmetry introduced by assumption of uniform

thresholds, the problem is notoriously hard to approximate [39] and that too for case

of a simple diffusion model (Independent Cascade). To make this research relevant to

diffusion processes in real-world social networks, there is a need to extend our algo-

rithms to the case where more information about individual nodes can be incorporated

into the model. Ideally, these approaches also need to be extended to various diffusion

models. One work in this directions is the work on diffusion centrality [72]. However,

this work is without the clean theoretical guarantees provided by our algorithms. Thus,

modeling diffusion of influence in social networks using models that balance technical

tractability with real-world applications is still somewhat of an open problem.

Another productive direction of research can be unification of various strategic re-

source allocation problems being studied in a single framework. Network Cournot

Competition is a very flexible model for strategic resource allocation. Intuitively, there

are important similarities between the linear Arrow-Debreu market model, Fisher mar-

ket model and Network Cournot Competition market model. Thus, studying all these
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related problems under a single model is an exciting possibility.

With regards to Payoff Inference problem, we make certain assumptions about dy-

namics of the game. Incorporation different dynamics into this framework is a direc-

tion for future research. Another interesting possibility is incorporation and learning of

players belief about each other into the game play dynamics.
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