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HYPERCONFORMAL TRANSFORMATIONS.

le Introduction.

An outstanding feature of recent developments in
Quantum Mechaniecs and the Theory of Relativity is the
important role played by the element of arc. The
poaeibilities of the quadratic form with coefficients
dependent upon the properties of the space in question
have received exhaustive consideration. On the other
hand so far as the author is aware, nothing has been
done in the way of investigating the possibilities of
other forms. One purpose of the present paper is to
congider the characteristics in space of n dimensions
of an n-ic form in the differentials of the coordinates
which may be resolved into n linear factors.

As a preliminary Justification of the concept just
indicated it may be well to point out some of the more
important consequences entailed. Liouville has shown
that the transformations which preserve angles in space

of three dimensions are trivial, being comprised under
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translations, rotations, expansions, reflections and
inversions. An intimately related fact is the absence
of a concept analogous to the complex variable in space
of three dimensions. These remarks apply to hyperspace
in general. In an attempt to construct hyperspace analogs
of plane conformal transformations one is naturally led
to assume a composite differential form of arc element.
Indeed all plane transformations which preserve angles
in.magnitude and sense are‘completely characeterized by
admitting as relative invariants the factors of the
quadratic element of arc. This requirement entalls the
preservation of the isotropic lines and the absolute.
The introduction of a composite n~ic form as the element
of arec in space of n dimensions leads at once to the
generalization of these concepts. Transformations exist
which admit the factors of the arc element as relative
invariants and preserve a degenerate absolute of class n.
These transformations will be shown to have all the
properties of plane confqrmal transformations. We shall
call them hyperconformal transformations.

In regard to the extension of the complex variable
concept, it may be remarked that in the work of Volterra
(1) and Rainich (2) certain group properties of the
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analytic funoction have been sacrificed. The plan just
outlined entails the preservation of all of these
Properties. The consequent breakdown of the systems
of functions considered into a set of analytic functions
of ordinary ocomplex variables is not at all surprising.
Indeed this very circumstance affords a striking
demonstration of the uniaque character of such analytic
functions,

In the above sketch we have confined our attentlion
to considerations of affine geometry. This is in keeping
with the purpose of the present paper. The concepts in
question admit of projective generalization by the intro-
duoction of a non~degenerate absolute of class n in space
of n dimensions. It is the intention of the author to
make these considerations the subjeet of a subsequent

PapeTe
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1ll. Formmlation o€ the Problem.

We define the element of arc by the equation;

v
(1) as = Tf au®
K=17
where; "
kK T K
u ::2_3.?73‘.5 [a.J—H:O (k=1leoen)
3=

We define an isotropie hyperplane to be one on which
the element of are (1) vanishes. Thus there are n

isotropie hyperplanés'defined. by the equations;

uaz= O (k=1l...n)

The transformations in question may be defined by the
equations;

e F (u) (k=1...n)
where the functions FK (uK) are anaslytic and single
valued and;

-—K -
u a xu- (E=1ssen)

ey X

YL
_ T
~ L
J=1
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The X; being the coordinates of a gemeric point x and
the EJ those of the transform-point which is uniguely
determined under the conditions imposed. The transfor-
mations in question are completely characterized by the
requirement that the forms du" be relative invariants,
that is;

aﬁ":;\K(:::I ,xl,...xn)duk (k= 1le.n)

The necessary conditions are;

35 ik
(2) - 08 . - Lo a0t ,K = (k=1...n)
'-'_'—d"-"',«K - ( Zleeoe
of 0x, aj DX Uy M
Conversely, any transformation of the form;
IJZEJ (xl ’xlonn xM.) ‘J: 1.0.n)

where the ;ksatisfy equations (2) 1s a hyperconformal
transformation admitting the isotropic hyperplanes;

'u.K.:O (k:l...n)

For each of the above ratios is readily seen to be

equal to; 4525
duk
K

and may be set equal to an arbitrary funotion of u-.

Equatione (2) are the necessary and sufficient conditions
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for the existence of the derivatives;

do’
dyk (k=1les.1m)

They may be viewed as a generalization of the Cauchy-
Riemann conditions.,

The analogy of the transformations in question
with plane conformal transformations consists in the
preservation of n-l cross ratios which will be taken as
measures of angles. We proceed to demonstrate the exist-

ence of these invariants. From equations (2), we have;

_ K
(3) a l(: J(-(g—;du’( (k=1l...n)
. OS S
where a§ is any non-vanishing coefficient of uK + Now
the ratios;
i ( )
R= —< k=-l.en~1
au”t

define the linear element dx at the point x. The
transformation induces a one to one correspondence between
the linear elements at X and the linear elements at X.

We denote by 4X the linear element at X corresponding

to dx and by“ﬁK the ratios which define it. From

equations (3) we have;
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s

&

!
YLy

K

B - 2n _OXs (k=1 1)
—_ - — ZT leesenn=
RrK ag aUV\

OX A

K T

a. ¥ 0 a.m:i: 0

The right members of the last egquations are funetions of
position only. Hence if we consider a second linear
element at x defined by the ratios SK and the correspond=-

- -K
ing linear element at x defined by the ratios S , we have;

-k -K K
R : RK: S: 8 (k—=l...n~-1)

The ce¢ross ratios; RK: SK are therefore absolute invariants
under the transformation. To give a geometrical interpreta-
tion of this invariance, we consider the pencils of hyper-

planes;

K
uK: )\ at (k=le..n=1)

K
The linear element at x defined by the ratios R determines
a hyperplane corresponding to the value RK of the para-

meter }\K, and the linear element at x defined by the ratios

[\

S' "determines a second hyperplane corresponding to the

value SK of the parameter. Denoting these hyperplanes by

K

VK and W “respectively, we have;

K KK
R:SK"" (uK; U.VL; v : W ) (k":'..‘l...n-l)
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Hence the cross ratios R St'may be taken as the
measures of the hyperangle between the hyperplanes VK
and Wki The hyperangle is thus an n-l dimensional
vector which is invariant under the transformation.

We conclude our preliminary study of these trans-
formations by two remarks of fundamental importance.
First, as to the group property. Since the transfor-
mations are completely characterized by the invariance
of the isotropie hyperplanes, it follows without
difficulty that all transformations admitting the sgme
isotropic hyperplanes form a group. This conclusion is

readily verified by consideration of the equations;

_K
Z= @Y= S (k=1...2)

Second as to the complete set of invariants. Of
the in(n-1) absolute invariants at our disposal we have
made an arbitrary choice of n-l. The remaining %(n-1)(n-2)
are dependent on these n-l. The relative invariant T duK'
defined by equation (1) furnishes the metric of our

geometry.
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11ll. Normalization.

We have seen that any two linear elements at the
point x determine n~l c¢ross ratios which are invariant
under thg transformation. We shall take these cross
ratios as measures of n~l angles. The n~1l dimensional
vector thus defined will be called the hyperangle
between the two linear elements in question. In order
to define these concepts with precision, we proceed to
introduce a system of normal functions adapted to our

metric.
We define the hypernorm of the linear element dx

by the equation;
N

—_—W_— K
(4) N(ax) =T a ax
’ |
This linear element may be determined by n-1 arguments;

© e.o © o Let us set;
\ n- L

(
(5) d.xd":' N(u)f\”(q 0..6"._-') (J': 10003.)

where the functions :{ are arbitrary. We have;
— K _ N = K
K arax=8(ax) \J o f.

J -
If the functions fj—are so chosen that their hypernorm
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ie unity, equations (5) will express the components of
the linear element dx in terms of its hypernorm and the
funetions £3 o We choose the system of functions defined
by the equations;

g 8
— P (0 cse e 0‘ )
(6) Z_ 85 f.—e K™ n-{ (k=le..n)
A — J J
here; w—t Tx e
P‘, :Zr Gd' (I‘:, e (= ) (k: 1...n)
J=t
We now have for any linear element dx;
" n
(7) a- dx.— Nfdx)/ a, £_= N(dx)e !
J= J=i
Consider now the ratios;
x_ au ( )
R — kE=leeosn=1
dﬁn

introduced on page 6. In consequence of equations (7) we

have;
1 gRK- P P (k =1l...n-1)
0 = »24. —“lees
We readlily find;
ﬁ:'(n-k)d
(8) ng =/ r logR - (k=le..n-1)
| 8

=
Jz=

Now let O be the arguments of the linear element
defined by the ratios S .We define the hyperangle between
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the two linear elements in question to be the n=-1
dimensional vector; © = ¢ . The components of this

hyperangle are given by the equations;

-t -
| v (n-07 Y _
(9) n(op ~ ¢K )= \;Z.‘h .~ m %J, (k=1..n-1)

These edquations may be viewed as an extension of the
laguerre definition of angle.

We are now in a position to state concisely the
characteristic properties of a hyperconformal trans-—
- formation. We denote by T the vector whose components
are;‘%;q; byo(’l...()(h;l:lhe argmients o-f Ty by 0.."' O -y
the arguments of dx and by € ... eh_?he arguments of d4X.
In consequence of equations (2),(3) and (7), we have;

N(ﬁ)er,((bj .uéuf-_!)mfdx)N(T)ePk‘e; o8 MHEB(X - %)
‘ ' (k=l.e¢.n)

These equations have the solutions;
N(dx)= N{ax)H(T)

"-a’,: 'QJ' -+ :)(J_ (j ':loon"‘l)
J
The interpretation is that the transform of the element

dx is the product of dx and T in the complex variable
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sense; that is each argument of dx is increased by the
corresponding argument of T and the hypernmorm of dx is
multiplied by the hypernorm of T. The latter hypernorm
may be termed the local magnification.

Finally we shall determine the periods of the
functions fj » The conditions necessary and sufficient

that the two sets of polar coordinates;
(8,8 ,0 «..0, ) m,e‘-;-p},e»,g«;-;sf.ehﬂ-»??)_'
determine the same point, are;

fJ— (9\ ,G'L ee .GV\VI ): fJ— (6‘+P‘ .'9'2""" F]:_‘ ‘e‘n-f’“ PL‘_‘

(J=1...n)

This necessitates that; ﬁ

Pk‘p‘ ...Ph_,_lr): 2N!fmi (k:looon—'l)
and; W=

?H‘IBI "ﬁ%.,' 27(14?_ Ex,
The solution of these equations gives;

‘ __~V.I::.’ {n-—k}f
/Bk:‘-ﬁ—‘”« 7 r “1)¥- (k-l..n-1)

S =
These quantities are the periods of the normal functions.
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1V. Functions of a Hypercomplex Variable.

We shall call the quantities;

"
— (2kwl)(3=1) L
uK:Z_r ! ,xj (r:eHVf) (k=1s..n)

J={
a complete set of hypercomplex variables in n dimensionse.
We conslider the hyperconformal transformation defined by

the equations;

- K
u](:' FK (uK) -ﬁ* - FK(u* K) (k —lee on)

where the functions F~ are analytic, u*K

K

ies the conjugate
of u in the ordina.ry complex variable sense, and n= Zm.
In the case of an odd number of dimensions, n=2m+1l, we

adjoin to the above the equation;

k
The relative invariant T[ du takes the form;

i
dx, -Ax -4 .p. =dX3,

d.xz dx‘ -d.x_h:oo -dxs

D(axK) .;: dx3 d.xz_ d.x.... -dx"l"

e L L N 2 [ N N

ax dax ax ... 4x
n N wm-2 !
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Equations (2) are equivalent to the Pfequirement that the

Jacobian determinant of the transformation have the form;

(10) D %;—:J‘ )
. {

This requirement is the necessary condition for the exist~
ence of the derivatives of the functions; FK(uK).

Conversely, when this requirement is satisfied, we have;

n (2k=1)(3=1) = (2-1)(3-1) o = (2k-1)(3=1)
r dxs =/ 0X” Zz_r ax —
7 o T2
Whence;

"
u"(vl‘) Z (x-2) (1) p%-
5%

Hence the requirement is the necessary and sufficient
condition for the existence of the derivatives of the
fanctions F (uk), and may be regarded as the extension
of the Cauchy-Riemann conditions in the theory of an
ordinary complex wvariable.

The subgroup for which all the funections Fk;are
identical may be generated in a manner precisely similar
to that employed in the case of plane conformal transfore

mations. Let F(u) be an analytic function of any uw, and
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let the expansion of F(u) be arranged according to powers
of r. By equating coeffiolents of like powers of r in the
relation;

u= F(u)

a transformation is obtained which has a Jacobian determie
nant of the form (10) as is readily verified on differen=-
tiation.

Any transformation of the type jusl considered may be
replaced by a set of plane conformal transformations in
space of an even number of dimensions with the addition
already indicated in case the number of dimensions is odd.

The rotation defined by the equations;

K
@y +14y )=z (Kk=1leeem
2k-) 2K |
(n=2m)
with the addition of the equation;
w+1

oy = u

W
when n—= 2m+ 1, permits to replace the complete set of
hypercomplex variables by a set of ordinary complex

varisbles. Any hyperconformal transformation of the type



(16)

Just considered is therefore the product of this rotation
and a suitable set of plane conformal transformations.
This conclusion while of a decidedly negative character
is not without value as evidencing the unique character
of the analytie function.

From the above considerations it is evident that the
zeros of an analytic function of a hypercomplex variable
are arranged in axes. The same remark applies to the poles.
The entire theory of such funetions is an immediate exten=
gion of the theory of functions of an ordinary complex
variable. For integrals taken around a closed variety of

one dimension we have;

fFfu)a.u: 0
¢

where the contour C does not eneirele any axis of poles.
The extension of the Cauchy integral formula is;
F(u)du
2 1F(a)= | —
U8,
c
Where the closed contour C encircles the axis a and F(a)

18 the value of F(u) at any point of the axis.
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V. Special cases.

We ghall now give two examples of hyperconformal
traneformations the first beimg in space of three
dimensions. We select the trameformations for which

the are element is defined by the equation;

dx 4z dy
déS: ¢(ax,dy,dz)= |dy dx 4z
’ dz dy ax

the reastrictions imposed by equations (2) are in this
case equivalent to the redquirement that the Jacobian
determinant of the transformation be of the circulant

c(gfcdgx‘)%&

form;

and we have;
S5 o(OF 3V 02,
= o5l Hosn
The isotropic planes are defined by the equations;

2k 270
+w y+w 2z=0 (w- e 3 ) (k=1,2,3)

Such transformations may be generated from the equation;
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X+WY4+ W z2 = F(x+Wy+wz)

by equating coefficlents of like powers of w on the
two sides. For example the equation;
X4 WY+W 2= (X+wWy+ W 2)

glves rise to the transformation;

—

X =-—x42y% F- 2% 2xy Z- ¥ 42%z

The normal funetions for three dimensions are defined

by the equations;

K <k
ﬂ K 2K we+w  Q
' et w 2 é*—w 3 ¢) ° (k =1,2,3)

The hyperangle between the linear elements defined by

R' R?' and S' Sz' has for components;
. R\+ R> /.(‘L;(JJ w) R_:L ) R*
w log—t+wlog—, wlog—+wW-log—
€ s* s! s*

\\
~p
-

T i@ J (4, w, i,
The isotropic hgpewplanes determine on the plane at

infinity a degenerate absolute, the triangle IJK.
Denoting by P :E1 the traces of the linear elements
)
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above indicated, we have;

} R

R R

— = (IJ:JK :JP:JP) — = (KI:KJ :KP:KP)
s! 12 82 F o2

In space of four dimensions we consider the transe

formations for which;

ax -4x, -a% dx,

dx, dx -dx

d.aq':l)(d.x, vedx )= | = “+
*7 lax, ax, ax -ax,
dx dx_ dx  dx

3 2

The conformality conditions are equivalent to the require-
'ment that the Jacobian determinant have the form;
D( ‘)x seese D}&)
bX ox,
The isotropic hyperplanes are defined by the equations;

4 . 40

~N - = - —dlee

2 r X -0 (r-e # ) fkv..l 4)‘-
Jz I L ) WY

Such transformations may be generated from the equation;

—_— o -
Z_rrxﬂz F( > rx.)
b) — J

by equating coefficlients of like powers of r.
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¥1. Conclusion.

Ae If in space of n dimensions we confine ourselves
to a metric defined by a quadratic form in n-variables,
ny2, we can obtain only conformal transformations of

the trivial kind.

Be If we consider an n—ic form in the n differentials

s metric is defined which admits transformations for which;
-V n
ds = /\ (x‘ X oX, oo xh)ds
These transformations are not triviale.

Ce If in particular, we take the case where;
¢
as"= I](a ax)
(=1
we may by a suitable transformation of coordinates view

the "a"s as the nth. roots of unity.

D. Transformations of this class may be derived from

the equation;
2 = F(z )
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where F 48 an arbitrary analytis funetion and;

L o 270
E - T J- = AL

zZ- X - zZ =/ - = j
EL_r ; > T x, r-e L
J=1 VY,

The equations of the transformation are obtained by

identifying the coefficients of like powers of r.

E, It 1s poseible to define an (n-l)-dimensional
veotor which may be viewed as a hyper-angle, the
vector reducing to a secalar for n—2, in which wsase
we obtain the Laguerre definition of angle. Any two
linear elemente determine such a hyperangle. The
transformation; Z=F(z) defines at the transformed
point the two transformed elements which admit the
szme hyperanglee.

Fe. The Cauchy~Riemann-Weierstrass theory of
analytic functions, their singularities, residues
and ceontour integrals may be readily extended to the

case of funetions of a hypercomplex variable.
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Ge. For any continuous point transformation in S

we have;

18

%EES)

‘k: l...n)
2 X;

N K
(11) Z_p dx, (p&—:
J=i

Denoting by y the trace of the linear element dx on
the hyperplane at inﬁnity, these equations become;

{Vt

(k—=1l.. .:n)

.J

(12)
- _—I
In the case where the transformation (1l) is bhyper-
conformal, equations (12) define transformations in CI
having the same property. Hence a hyperconformal
transformation in space of order n induces n-~]l hyper=
conformal transformations in every subspace of order
n=le.
For a sufficiently small region about y, the p§,
may be regarded as constant, and equations (12)

define a collineation. Now the conditions;

J "3 a4 <

WA -
(13) ZaK pJ - af dulk (E=1eeen)
J": ‘s:l..on’
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8how that in the case of hyperconformal transformations
the local collineations defined by equations (12) admit

the common set of invariant points;

K K K K
a.K ‘a‘ ,al,asooo ah.‘) (k:l...n)

Conversely, if a set of points a' be taken such
- K
that ]gﬂ#O, the funotions u and @ = are completely

determined, and the equations;
— K,
uK;F ‘u ) (k :1uon)

define a group of hyperconformal transformetions which
preserve the points aX . Thnis property is the extension
of the preservation of the c¢ircular points at infinity
under a plane conformal transformation.

From equations (13) it is evident that the roots
of the characteristic equation of the local collineation

are the total derivatives; 4o’
d uts

From a projective point of view the same considerations
hold in the case where the hyperplane A of the points aK
is arbitrarily chosen. If the hyperplane A and the

isotropic hyperplanes be taken as coordinate hyperplanes
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the equations of the transformation are;

- K
xl:,F ‘XK) (k:looon)

Since the product of the roots of the echaracteristie
equation of the collineations is the Jacobian determinant;

2

g(9Xr )
d;
we have for all hyperconformal transformations;
T aa™- a( a;‘“ ) au’
a,Jl‘—f

v

It is also evident that there is a one to one
correspondence between the groups of hyperconformsl

transformations in S, and the collineations in Swvf The

i
classification of the former is isomorphic with that of
the latter.

He Finally let us remark that the further éeneraliza-
tion of conformal transformations is to be sought in the
case where the absolute is a non-degenerate variety of
class n. The group of transformations would then be defin-
ed by the invarlance of such a variety. This is equivalent
to assuming that the transformations admit as relative
invariants a non-decomposable n-ic form in the differen-

tials. ie expect to make these considerations the subject

of another paper.
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