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EYPERCOirFORMAX TRANSFORMATIONS.

1* Introduction*

An outstanding feature of reoent developments in 
Quantum Mechanics and the Theory of Relativity is the 
important role played hy the element of are* The 
possibilities of the quadratic form with coefficients 
dependent upon the properties of the space in question 
have received exhaustive consideration* On the other 
hand so far as the author is aware t nothing has been 
done in the way of investigating the possibilities of 
other forms* One purpose of the present paper is to 
consider the characteristics in space of n dimensions 
of an n-ie form in the differentials of the coordinates 
which may be resolved into n linear factors*

As a preliminary justification of the concept just 
indicated it may be well to point out some of the more 
important consequences entailed* Llouville has shown 
that the transformations which preserve angles in space 
of three dimensions are trivial* being comprised under



(2)
translations, rotations, expansions, reflections and 
inversions* An intimately related fact is the absence 
of a concept analogous to the complex variable in space 
of three dimensions* These remarks apply to hyperspace 
in general* In an attempt to construct hyperspace analogs 
of plane conformal transformations one is naturally led 
to assume a composite differential form of arc element* 
Indeed all plane transformations which preserve angles 
in magnitude and sense are completely characterized by 
admitting as relative invariants the factors of the 
quadratic element of arc* This requirement entails the 
preservation of the isotropic lines and the absolute*
The introduction of a composite n~ic form as the element 
of are in space of n dimensions leads at once to the 
generalization of these concepts* Transformations exist 
which admit the factors of the arc element as relative 
invariants and preserve a degenerate absolute of class n* 
These transformations will be shown to have all the 
properties of plane conformal transformations* We shall 
call them hyperconformal transformations*

In regard to the extension of the complex variable 
concept, it may be remarked that in the work of Volterra 
(1) and Rainieh (2) certain group properties of the
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analytic function have been sacrificed, The plan just 
outlined entails the preservation of all of these 
properties. The consequent breakdown of the systems 
of functions considered into a set of analytic functions 
of ordinary complex variables is not at all surprising. 
Indeed this very circumstance affords a striking 
demonstration of the unique character of such analytic 
functions*

In the above sketch we have confined our attention 
to considerations of affine geometry. This is in keeping 
with the purpose of the present paper. The concepts in 
question admit of projective generalization by the intro­
duction of a non-degenerate absolute of class n in space 
of n dimensions. It is the intention of the author to 
make these considerations the subject of a subsequent 
paper.
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11. Formulation og the Problem.

We define the element of arc by the equation;

(1) ds* ~ T\ du^
K  -  r

where; ^
uK = 2 _ a!r xj laJ ^ °  (tz:l..*n)

J: 1
We define an isotropic hyperplane to be one on which
the element of are (1) vanishes. Thus there are n
isotropic hyperplanes defined by the equations;

K , *u r 0 (kc:l...n)

The transformations in question may be defined by the 
equations;

u r F (uk ) (k— l*..n)
K Xwhere the functions F (u ) are analytic and single 

valued and;
vt— K K —u ^ > a. x - (k-lfci.n)v» si

Jz I
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The xj being the coordinates of a generic point x and 
the xj' those of the transform-point which is uniquely 
determined under the conditions imposed* The transfor­
mations in question are completely characterized by the 
requirement that the forms du be relative invariants,
that is;

-k \Kdu ~ A (x .x . ...i ,Ytdu^^^A (x ,x ,*..x Jdu1 (k-l**n)

The necessary conditions are;
, . i . — !— HQ!?- __ —  .
(2) a* a x , "  ” a *  0 ^ - ’ (krl“ -n)
Conversely, any transformation of the form;

x-zf'(x ,x ••• x ) ( 1 * . .n)J J l 2- VL
where the x'satisfy equations (2) is a hyperconformalJ
transformation admitting the isotropic hyperplanes;

u b O  (k-l...n)

For each of the above ratios is readily seen to be
equal to;

d U K
irand may be set equal to an arbitrary function of u %  

Equations (2) are the necessary and sufficient conditions
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for the existence of the derivatives;

dU_*
d 0K (k=l...n)

They may be viewed as a generalization of the Cauchy- 
Kiemann conditions*

The analogy of the transformations in question 
with plane conformal transformations consists in the 
preservation of n-1 cross ratios which will he taken as 
measures of angles. We proceed to demonstrate the exist­
ence of these invariants. From equations (2), we have;

(3) du*r \  du^ (k — l...n)
o' H

where ia any non-vanishing coefficient of u . Sow 
the ratios;

KB s - r ,  (k~l..n-l)du
define the linear element dx at the point x. The 
transformation induces a one to one correspondence between 
the linear elements at x and the linear elements at x.
We denote by dx the linear element at x corresponding 
to dx and by R the ratios which define it. From 
equations (3) we have;



The right members of the last equations are functions of 
position only* Hence if we consider a second linear
element at x defined by the ratios S and the correspond-

—  - King linear element at x defined by the ratios S , we have;
— k K -K K , .R : R -  S : S (k:rl.*.n-l)

K K.The cross ratios; H ; S are therefore absolute invariants 
under the transformation* To give a geometrical interpreta­
tion of this invariance, we consider the pencils of hyper-

k
u^— A ^  (kzrl*. .n-1)

KThe linear element at x defined by the ratios R determines
a hyperplane corresponding to the value R of the para-

i K.m e t e r , and the linear element at x defined by the ratios
LS determines a second hyperplane corresponding to the

value S of the parameter* Denoting these hyperplanes by
K ACV and W respectively, we have;
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Hence the cross ratios ^  may he taken as the
Kmeasures of the hyperangle between the hyperplanes V 

and W * The hyperangle is thus an n-1 dimensional 
vector which is invariant under the transformation*

We conclude our preliminary study of these trans­
formations by two remarks of fundamental importance*
First, as to the group property. Since the transfor­
mations are completely characterized by the invariance 
of the isotropic hyperplanes, it follows without 
difficulty that all transformations admitting the some 
isotropic hyperplanes form a group* This conclusion is 
readily verified by consideration of the equations;

—  K k.-K K, Kxu ~  F (u ) ~ Gr (u ) (k=l*..n)

Second as to the complete set of invariants. Of 
the %n(n-l) absolute invariants at our disposal we have 
made an arbitrary choice of n-1* The remaining i-(n-l>(n-2) 
are dependent on these n-1* The relative invariant TT du 
defined by equation (1) furnishes the metric of our 
geometry*
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111* Normalization*

We have seen that any two linear elements at the 
point x determine n-1 cross ratios which are invariant 
tinder the transformation* We shall take these cross 
ratios as measures of n-1 angles* The n-1 dimensional 
vector thus defined will be called the hyperangle 
between the two linear elements in question* In order 
to define these concepts with precision, we proceed to 
introduce a system of normal functions adapted to our 
metric*

We define the hype m o  rm of the linear element dx 
by the equation;

This linear element may be determined by n-1 arguments; 
0 *•• & , • Let us set;

(4)

(5) dx- _ N{ax)f-(e a ) (J n 1* * *n}
where the functions fr are arbitrary* We have;

TC Z v  avKa*)'* A 2V -  fs
If the functions f--are so chosen that their hyperaormJ
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1b unity, equations (5) will express the components of 
the linear element dx in terms of its hypernorm and the 
functions f-r * We choose the system of functions definedJ
hy the equations;

v- p*.(e- ... & )(6) > a, f e  * 1 (k — 1...n)
J J

where; ° - 1 vt~<
n “  j  kP — /  r 9 -  (r- e KL ) (h:l...ii)K. / — is
tT-f

We now have for any linear element dx;

(7) y  a- Ax--
J ; j o (k=*l*.*n)02./

Consider now the ratios;
.  K K 3Lu— - (k-l#..n-l)du1

introduced on page 6* In consequence of equations (7) we 
have;

logE r P - P  (krl...n-l)
K H.

We readily find; VI -"J—  (n-k)3
(8) n9* r ?  r logR - (k-i#..n-l)

hr- Jj ̂  I
How let <j>j" be the arguments of the linear element 
defined by the ratios S «We define the hyperangle between
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the two linear elements In question to he the n-1
dimensional vector; 0 - (̂ • She components of this
hyper angle are given hy the equations;

Vl-l
(9) n(*j? “ ^  1 = 51 f /

o -1 j s
These equations may he viewed as an extension of the 
laguerre definition of angle*

We are now in a position to state concisely the 
characteristic properties of a hypereonformal trans­
formation* We denote hy T the vector whose components
are;^L^ hyo( • • • Cxh the arguments of Tf h y -0 ••* -0K _,

1 1 _  _  L __the arguments of dx and hy 0^ ♦*. 0^ the arguments of dx*
In consequence of equations (2), (3) and (7), we have;

u(ax)e K 1 3̂j(ax)jir(a!je * ' ^ * *
(k rrl. • .n)

These equations have the solutions;

H(dx)- SF(dx)E(T)

-b <*j- (i — l..n~l)
J

The interpretation is that the transform of the element 
dx is the product of dx and T in the complex variable
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sense; that is each argument of dx is increased hy the 
corresponding argument of T and the hyperaorm of dx is 
multiplied hy the hypernorm of I* The latter hypernorm 
may he termed the local magnification.

Finally we shall determine the periods of the 
functions fj • The conditions necessary and sufficient 
that the two sets of polar coordinates;

. V - V ,  >
determine the same point# are;

(j —  1*■*n)
This necessitates that;

Pk>(|3l ...ph )=8Bk K± (k-l...n-l)
and;

The solution of these equations gives;

[n-lr j - T
h >  (r -1)H- (krl..n-l)
I k "  K- “ r- -

■J - I

These quantities are the periods of the normal functions.



(13)

IT* Functions of a Hypercomplex Variable#

We shall call the quantities;

K ^  (2k-l)(3-1)
u

0 2.1
a complete set of hypercomplex variables in n dimensions*

ilyx- (r- e H. ) (kzrl***n)
vi

We consider the hyper conformal transformation defined hy 
the equations;

-X J6#u : F  m  ) u* r SK(u*K)
K   __

(k ml* * *n)
where the functions F are analytic, u* is the conjugate 
of u^ in the ordinary complex variable sense, and n:2i« 
In the case of an odd number of dimensions, nx£m-M, we 
adjoin to the above the equation;

— m+i- .Jtt+k 7U+K u m  F (u )

The relative invariant TT du takes the form;

D (dXjJ ̂

dx, -dx^-dx -dxo1 V L Ifl *
dx0 dx, -dx *•• -dxT
dx-, dxrt dx.*,. -dx.,2. I 4-

• • •  * * •  • • •  • • •

dx dx dx * * • dxH n-i vt-x 1
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Equations (S) are equivalent to the Requirement that the 
Jacobian determinant of the transformation have the form;

(10) D( )

This requirement is the necessary condition for the exist-
enoe of the derivatives of the functions; F (u )•
Conversely, when this requirement is satisfied, we have;

Yu T/V(2fc-l)(3-l) x- (2k-l)(i-lk- nT (2h-l)(3-l)
- a s = 2 - x - f*2-r

3 = 1 Jzi OX' J -•
Whence;

-   y r ...jj (k  1# • .n)
d u ^

Hence the requirement is the necessary and sufficient
condition for the existence of the derivatives of the 

tc kfunctions F (u ), and may he regarded as the extension 
of the Cauchy-Riemann conditions in the theory of an 
ordinary complex variable*

The subgroup for which all the functions F are 
identical may be generated in a manner precisely similar 
to that employed in the case of plane conformal transfor­
mations* let F(u) be an analytic function of any u, and
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let the expansion of F(u) he arranged according to powers 
of r* By equating ooeffioients of like powers of r in the 
relation;

uc F(u)

a transformation is obtained whioh has a Jacobian determi­
nant of the form (10) as is readily verified on differen­
tiation*

Any transformation of the type jus$ considered may be 
replaced by a set of plane conformal transformations in 
space of an even number of dimensions with the addition 
already indicated in case the number of dimensions is odd* 
The rotation defined by the equations;

(n" (y 4- iy )=.f£ u^ (k~l*«*in)
ZK-i

(n^Em)
with the addition of the equation;

VnJn y “ u 
wl-hi

when n^_Em-f-l» permits to replace the complete set of 
hyper complex variables by a set of ordinary complex 
variables* Any hyper conformal transformation of the type
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Just considered is therefore the product of this rotation 
and a suitable set of plane conformal transformations*
This conclusion while of a decidedly negative character 
is not without value as evidencing the unique character 
of the analytic function*

From the above considerations it is evident that the 
zeros of an analytic function of a hypercomplex variable 
are arranged in axes* The same remark applies to the poles* 
The entire theory of such functions is an immediate exten­
sion of the theory of functions of an ordinary complex 
variable* For integrals taken around a closed variety of 
one dimension we have;

J* Ffujdu^ 0 
C

where the contour C does not encircle any axis of poles*
The extension of the Cauchy integral formula is;

F(u)du
u-a

C
Where the closed contour C encircles the axis a and F{&) 
is the value of F(u) at any point of the axis*
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V* Special cases*

We shall now give two examples of hyperconformal 
transformations the first being in space of three 
dimensions* We select the transformations for which 
the arc element is defined by the equation;

ds 3  C(dxftdytdz) —
dx dz dy 
dy dx dz 
dz dy dx

the restrictions imposed by equations (2) are in this 
case equivalent to the requirement that the Jacobian 
determinant of the transformation be of the cireulant 
form; _ _

and we have;

48 - c(5 3 ^  Sc** S * )ds
d?he isotropic planes are defined by the equations;

^  2JLT
x+w^y^-w’ z: 0 (w^e 3> ) (kz:l#2#3)

Such transformations may be generated from the equation;
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x+'Wy-f-w2’z r F(x-f- wy-f- w^z )

“by equating coefficients of like powers of w on the
two sides* For example the equation;

_  _  -  „  2 x + w y t  w" z r  (x-f wy4 w^z)

gives rise to the transformation;
 ̂ M." p. -x -^x“-+2yz y ~ z  +  2xy z-y^gxz

She normal functions for three dimensions are defined 
hy the equations;

lr jjr W^V-f-W^ d
w f(0*,?)“ e 

V z 3 (k =1,2*3)
The hyperangle between the linear elements defined hy;
R1 R 2' and S* S*- has for components;

2_ R* Rx f l > 0 0  j ̂  R̂  2. H2,w log"~+wlog—; /< wlog-s+w - log
o cj * o '

P

^  /    —S. j  Li, ̂  J W  j
The isotropic hq^Mplanes determine on the plane at 
infinity a degenerate absolute * the triangle IJK* 
Denoting hy P P^ the traces of the linear elements
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above Indicated, we have;

■— =- (X J :J X  :J P :J P )  SI I a.
B
— z (ELsXJ :E P :X P )

In space of four dimensions we consider the trans< 
formations for which;

dx( -dx^ -dx^ -dx^

ds ~ D(dx * *dx )r
' + dx

dx^ dx^ -dx
_ dx 3 ^ 2

*-**3 
dx —dx.

dx dx dx dx*-t 5 x i
Ihe conformality conditions are equivalent to the require­
ment that the Jacobian determinant have the form;

d (  ^  . . . .  dx-y.)
bx, dx< i

Ihe isotropic hyperplanes are defined by the equations;
‘ (T~r x-:0^  j

ttj,
(r:e H (krl..4)

j :,
Such transformations may be generated from the equation;

2 _
rHx^ r F( > r x-)j ‘—  j

by equating coefficients of like powers of r*
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¥1* Conclusion.

A. If in space of n dimensions we confine ourselves 
to a metric defined by a quadratic form in n-variables* 
n 7  2, we can obtain only conformal transformations of 
the trivial kind.

B. If we consider an n-ic form in the n differentials 
a metric is defined which admits transformations for which

ds^z A (x *x ,x ... x, Jds14'1 2 -  3
These transformations are not trivial.

C# If in particular, we take the case where;
Vu - 

ds^r 11 (aC dx)
f- t

we may hy a suitable transformation of coordinates view 
the as the nth. roots of unity.

Dm Transformations of this class may be derived from 
the equation;
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where F is an arbitrary analytic function and;

The equations of the transformation are obtained by 
identifying the coefficients of like powers of r*

E# It is possible to define an (n-1)-dimensional 
vector which may be viewed as a hyper-angle, the 
vector reducing to a scalar for n-2, in which vase 
we obtain the Laguerre definition of angle* Any two 
linear elements determine such a hyperangle* The 
transformation; F(z) defines at the transformed 
point the two transformed elements which admit the 
same hyperangle*

F* The Oauchy-Rlemann-Weierstrass theory of 
analytic functions, their singularities, residues 
and contour integrals may be readily extended to the 
case of functions of a hypercomplex variable*

j
o -  i

VL
j

U r /

2- 711 
Tz: 6 iA,
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Gr# For any continuous point transformation in S
w© have;

(11)
Denoting by y the trace of the linear element dx on 
the hyperplane at infinity, these equations become;

In the case where the transformation (11) is hyper- 
conformal, equations (12) define transformations in 
having the same property# Hence a hyperconformal 
transformation in space of order n induces n-1 hyper- 
conformal transformations in every subspace of order 
n-l«

KFor a sufficiently small region about y, the p ̂

(k~1.. *n)

may be regarded as constant, and equations (12) 
define a collineation# How the conditions;

\ A  -

J - '
(k “ 1* « *n) 
(s _ 1*• »zi)
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show that in the ease of hyperconformal transformations 
the local collineations defined by equations (12) admit 
the common set of invariant points;

X t < K K K . ,, .a •  ̂8<j• • • a ( k  ̂  1* • >n)

Conversely, if a set of points a^ be taken such 
that Ja.Ĵ O, the functions u^ and u^ are completely 
determined, and the equations;

u *^F  (u^) (k-l..n)

define a group of hyperconformal transformations which
L*"preserve the points a • Ihis property is the extension 

of the preservation of the circular points at infinity 
under a plane eonformal transformation*

From equations (13) it is evident that the roots 
of the characteristic equation of the local collineation 
are the total derivatives; d

d
From a projective point of view the same considerations 
hold in the case where the hyperplane A of the points a 
is arbitrarily chosen* If the hyperpiane A and the 
isotropic hyperplanes be taken as coordinate hyperplanes
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the equations of the transformation are;
— K ,
X - F  (x ) (k-l...n)

Is.

Since the product of the roots of the characteristic 
equation of the eollineations is the Jacobian determinant;

j (  j

<5> V

we have for all hyperconformal transformations;

7f aiK= J ( — K
It is also evident that there is a one to one 

correspondence between the groups of hyperconformal
transformations in S. and the eollineations in S., • The

>l

classification of the former is isomorphic with that of 
the latter*

H* Finally let us remark that the further generaliza­
tion of conformal transformations is to be sought in the 
case where the absolute is a non-degenerate variety of 
class n* The group of transformations would then be defin­
ed by the invariance of such a variety* This is equivalent 
to assuming that the transformations admit as relative 
invariants a non—decomposable n—ic form in the differen­
tials* We expect to make these considerations the subject 
of another paper*
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