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Fragile X Syndrome, caused by Fmr1 gene inactivation, is characterized by 

symptoms including enhanced fear, hyperactivity, social anxiety, and autism, pointing 

to synaptic and neural circuit defects in the amygdala.  Previous studies in Fmr1 

knockout (KO) mice have demonstrated alterations in GABAA receptor (GABAAR) 

function in the basolateral amygdala during early postnatal development.  In this 

study, we sought to determine whether these early defects in GABAAR function are 

accompanied by changes in protein expression of GABAAR α1, 2, and 3 subunits, the 

pre-synaptic GABA-synthesizing proteins GAD65 and 67 (GAD65/67), and the post-

synaptic GABAAR-clustering protein gephyrin.  We found that the developmental 

trajectory of protein expression is altered in KO mice for all tested proteins except 

GABAAR α3 and GAD 65/67.  Our results suggest that alterations in the timing of 

inhibitory synapse protein expression in early postnatal development could contribute 

to observed inhibitory neurotransmission deficits in the KO mouse basolateral 

amygdala. 
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Chapter 1: Introduction 

 
1.1 Cause of Fragile X Syndrome  

Fragile X Syndrome (FXS) is the most common inherited form of autism 

caused by an inactivation of the Fmr1 gene located on the X chromosome.  When 

Fmr1 acquires more than 200 CGG trinucleotide repeats, it is consequently 

hypermethylated and the corresponding protein, Fragile X Mental Retardation Protein 

(FMRP) is not expressed [1].  FMRP is normally expressed during embryonic 

development and continues into adulthood.  It is found throughout the body but is 

most highly expressed in the brain within neurons and glia [2-4].  In neurons, FMRP 

has been show to interact with about 8% of synaptic mRNA [5-7].  It has been 

implicated in mRNA transport out of the nucleus and into dendrites and axons [8].  It 

has also been shown to regulate mRNA translation at synapses, controlling the 

amount, location, and timing of protein synthesis in response to neuronal activity [9-

16].   

 

1.2 FXS and the Basolateral Amygdala 

Absence of FMRP in FXS leads to changes in the brain manifested in 

symptoms such as enhanced fear, hyperactivity, attention deficit, social anxiety, 

mental retardation, aggression, and sensory integration problems [17-26].  Some of 

the more prevalent but less-explored aspects of the syndrome are abnormalities in 

emotional processing seen in behaviors such as enhanced fear and increased social 

anxiety.  These abnormalities point to deficits in the amygdala, a brain region thought 
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to tightly regulate emotionally relevant information.   In this study, we specifically 

focused on the basolateral amygdala (BLA) since it is one of the major input and 

relay stations for emotionally salient information in the brain (Figure 1 A) [27-30].  In 

fact, the BLA is interconnected with the cortex, brainstem, thalamus, hippocampus, 

hypothalamus, the olfactory system, as well as other amygdala nuclei [27].  The BLA 

communicates the nature and strength of the emotional information via excitatory 

projection neurons which are tightly regulated by local inhibitory neurons that assert 

their control primarily through synapsing onto the excitatory projection neuron soma 

[31-37].  Therefore, the integrity of these inhibitory synapses is critical in 

manifestation of appropriate social and emotional behavior.  

 

Figure 1.  Alterations in inhibitory neurotransmission in the developing Fragile 

X Syndrome BLA. 
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Figure 1.  Alterations in inhibitory neurotransmission in the developing Fragile 

X Syndrome BLA.  A Movement of sensory input through the amygdala is 

controlled by inhibitory neurons which determine the intensity of sensory output such 

as fear.  LA: lateral amygdala, BLA: basolateral amygdala, CEl: lateral central 

amygdala, CEm: medial central amygdala B  Axon of an inhibitory neuron synapses 

onto the cell body of an excitatory neuron forming the inhibitory synapse. The 

inhibitory synapse has a number of pre- and postsynaptic proteins which play an 

important role in inhibitory neurotransmission. C Patch clamp recording from the 

excitatory neuron soma in the BLA shows a decrease in sIPSC amplitude at P10 and 

P21, and an increase at P14 in KO mice.  D Patch clamp recording from the 

excitatory neuron soma in the BLA shows a decrease in sIPSC frequency at P10 and 

P21, and an increase at P14 and P16.  error bars: mean±SEM; *p<.05, **p <0.005  

(unpaired, two-tailed t-test)   

 

1.3 Neural Abnormalities in FXS Mouse Model  

FXS studies in mice have been conducted using the Fmr1 KO model where 

the Fmr1 gene is fully knocked out to mimic the loss-of-function of the Fmr1 gene in 

the human FXS [89].  In the Fmr1 KO mouse model, molecular, morphological, and 

behavioral abnormalities including overactivation of the mGluR pathway [38-44], 

immature appearance and increased number of cortical dendritic spines [45-49], and 

an increase in hyperactivity and anxiety, have been observed [50-55].  Most recently, 

evidence for alterations in inhibitory neurotransmission was found in the BLA of 3-4 

week-old KO mice, involving decreased frequency and amplitude of sIPSCs in 
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excitatory projection neurons and decreased GABA at inhibitory synapses [56].  

Recording sIPSCs from the soma of excitatory neurons in the BLA, we have recently 

shown that these inhibitory neurotransmission deficits are preceded by dynamic 

changes in inhibition at P10 and 14.  Furthermore, we found that the dynamic 

alterations in inhibition over early postnatal development are accompanied by 

functional changes in GABAARs containing the α1, 2, and 3 subunits [57, 

unpublished data].  

 

1.4 Defects in Inhibitory Neurotransmission in FXS Mouse Model 

Inhibitory neurotransmission precedes excitation in early postnatal 

development and plays a crucial role in shaping neuronal connections and in forming 

proper neural circuits [58].  Changes in expression of FMRP-regulated proteins in 

FXS could lead to alterations in synaptogenesis and, as a result, the precise timing of 

inhibitory neurotransmission during narrow critical periods in early postnatal 

development. In this study, we sought to illuminate any differences in the early 

postnatal developmental trajectory of the α1, 2, and 3-containing GABAARs, 

gephyrin, and GAD65/67—inhibitory synapse molecules responsible for GABAergic 

neurotransmission (Figure 1 B) [32-37, 59-61].  Changes in expression of different 

GABAARs have in fact been observed in other areas of the brain in FXS flies and 

mice at different developmental stages [73, 82, 83, 85, 86].  In light of this evidence 

and our previous functional findings, we hypothesized that the absence of FMRP 

leads to changes in inhibitory neurotransmission early in postnatal development 

through altered expression of proteins responsible for GABAergic neurotransmission. 
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Our results indicate that, although expression of tested inhibitory synapse molecules 

was not significantly changed in KO versus WT mice, the precise timing of the 

expression was altered in KOs for a subset of proteins throughout early postnatal 

development.  These results point to dynamic alterations in GABAergic protein 

expression which eventually lead to deficits in inhibitory neurotransmission in the 

BLA during the third week of life.   
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Chapter 2: Results 

2.1 Functional Deficits in Inhibitory Neurotransmission in the Developing Fmr1 KO 

Mouse BLA 

We have previously shown inhibitory neurotransmission deficits in the BLA 

in KO mice at P21 [56].  Recording from excitatory neuron soma in the BLA, we 

observed dynamic changes in the sIPSC amplitude and frequency in early postnatal 

development.  At P10 and P21, we observed a statistically significant decrease in 

sIPSC amplitude and frequency while, intriguingly, we saw an increase in inhibition 

at P14 (Figure 1 C-D) [57, unpublished data].  Since α1, 2, and 3- containing 

GABAARs are highly enriched on the post-synaptic surface and are major players in 

phasic inhibition [35, 62-64], we wanted to examine whether there are alterations in 

function of these GABAARs.  We took advantage of benzodiazepine drugs zolpidem, 

a GABAAR α1 agonist, and clonazipam, a GABAAR α2/3 agonist (Figure 2 A) [65-

67].  We found that in the KO mice, there were deficits in GABAAR α1 function at 

P16 and P21 while there were deficits in GABAAR α2/3 function at P10.  

Interestingly, GABAAR α2/3 function surpassed WT levels at P21 [57, unpublished 

data] (Figure 2 B-C).  This data led us to the hypothesis that there might be alterations 

in GABAAR subunit expression during early postnatal development in KO mice. 
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Figure 2.  Functional deficits in α1, 2, and 3 subunit-containing GABAARs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Functional deficits in α1, 2, and 3 subunit-containing GABAARs.  A 

The GABAAR is a pentomer containing a site where benzodiazepine drugs can bind 

and act as agonists.  B Benzodiazepine drug zolpidem, specifically targeting α1 

subunit-containing GABAARs, fails to enhance receptor function at P16 and P21.  C 

Benzodiazepine drug clonazepam, specifically targeting α2/3 subunit-containing 

GABAARs, fails to enhance receptor function at P10 while increasing receptor 

function at P21.  error bars: mean±SEM; *p<.05, **p <0.005 (unpaired, two-tailed t-

test)   
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2.2 Expression of GABAAR α1 Subunit Protein in the BLA of WT and Fmr1 KO Mice 
 

To determine if changes in GABAAR function reflect alterations in protein 

expression, we examined the expression of GABAAR subunits α1, α2, and α3.  

Immunohistochemistry analysis was conducted at P10, 14, and 21 and revealed α1 

subunit expression in the BLA at all three developmental time points.  There was no 

qualitative difference in α1 expression in KO versus WT mice except at P21 where 

KO mice showed a decrease in the subunit (Figure 3 A-F).  Quantification of α1 

protein expression by immunoblotting did not reveal a statistically significant 

difference in KO versus WT α1 expression at each tested time point (Figure 3 G-H).  

However, within-genotype analysis over early postnatal development revealed 

differences in the timing of specific changes in protein expression in KO mice.  In 

WT mice, α1 expression increased significantly from P14 to P21 (p=.048) while, in 

KO mice, the increase occurred from P10 to P14 (p=.016).  Both genotypes show an 

increase in α1 from P10 to P21 (WT: p=.024, KO: p=.029).  Our results suggest that 

defects in timing of α1 expression could be involved in changes in inhibitory 

neurotransmission over early postnatal development in KO mice.  
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Figure 3.  Developmental trajectory of GABAAR α1 subunit protein expression. 

 

 

 

 

 

 

Figure 3.  Developmental trajectory of GABAAR α1 subunit protein expression.  

A-F GABAAR α1 antibody staining of 50µm thick P10-P21 WT and KO mice brain 

sections reveals α1 subunit protein expression in the BLA throughout development. G 

Immunoblot of protein from whole BLA tissue shows the amount of α1 protein at 

P10, P14, and P21.  H Quantification of the α1 subunit, using actin as a loading 

control, reveals a statistically significant increase in the protein from P10 to P21 and 

P14 to P21 in WT mice.  In KO mice, the developmental increase in expression is 

significant from P10 to P14 and P10 to P21.  However, there is no statistically 

significant difference in KO versus WT expression at each developmental time point.  

scale bar=200 µm, n=3 (each n is a pool of 3 BLAs), error bars: mean±SEM,  *p<.05 

(paired, two-tailed t-test), ns=not significant    
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Using immunohistochemistry, we revealed that the α2-containing GABAARs 

are expressed throughout early postnatal development in the BLA.  Qualitative 

assessment of protein expression revealed no statistically significant difference in α2 

expression in KO versus WT mice except at P21 where the protein seemed to be 

increased in the KO mouse BLA (Figure 4 A-F).  Immunoblot quantification of the 

α2 subunit demonstrated that there was no significant difference in protein expression 

between WT and KO mice at each time point.  When the developmental trajectory of 

α2 was examined in WT mice, α2 expression did not increase significantly over 

development.  In KO mice, however, the α2 significantly increased from P10 to P21 

(p=.014), pointing to an early deficiency in the protein at P10 and/or to an increase in 

expression at P21 (Figure 4 G-H).  This finding points to the α2 subunit involvement 

in observed inhibitory neurotransmission alterations in the KO mouse BLA. 
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Figure 4.  Developmental trajectory of GABAAR α2 subunit protein expression. 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Developmental trajectory of GABAAR α2 subunit protein expression.  

A-F GABAAR α2 antibody staining of 50µm thick P10-P21 WT and KO mice brain 

sections reveals α2 subunit protein expression in the BLA throughout development. G 

Immunoblot of protein from whole BLA tissue shows the amount of α2 protein at 

P10, P14, and P21.  H Quantification of α2 subunit, using actin as a loading control, 

reveals a statistically significant increase in expression from P10 to P21 in KO mice.  

However, there is no statistically significant difference in KO versus WT expression 

at each developmental time point. scale bar=200 µm, n=3 (each n is a pool of 3 

BLAs), error bars: mean±SEM, *p<.05 (paired, two-tailed t-test) 
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2.4 Expression of GABAAR α3 Subunit Protein in the BLA of WT and Fmr1 KO Mice 

We demonstrated that the α3 subunit is prominently expressed throughout 

early postnatal development in the BLA.  Qualitatively, α3 protein seemed to be 

increased in expression at P10 and P14 in KO mice (Figure 5 A-F).  However, 

quantification of α3 protein revealed that there was no statistically significant change 

in expression at all tested time points in KO versus WT mice.  In addition, α3 

expression timing did not significantly change over development in WT mice nor was 

it altered in KO mice (Figure 5 G-H).  This result suggests that the α3 subunit does 

not seem to play a role in inhibitory neurotransmission defects seen in KO mice.     

 

Figure 5.  Developmental trajectory of GABAAR α3 subunit protein expression. 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Developmental trajectory of GABAAR α3 subunit protein expression.  

A-F GABAAR α3 antibody staining of 50µm thick P10-P21 WT and KO mice brain 
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sections reveals α3 subunit protein expression in the BLA throughout development. G 

Immunoblot of protein from whole BLA tissue shows the amount of α3 protein at 

P10, P14, and P21.  H Quantification of α3 subunit, using actin as a loading control, 

reveals no statistically significant change in protein expression within each genotype 

over the tested time points.  There is also no statistically significant difference in KO 

versus WT expression at each developmental time point. scale bar=200 µm, n=3 

(each n is a pool of 3 BLAs), error bars: mean±SEM, *p<.05 (paired, two-tailed t-

test)    

 

2.5 Expression of Gephyrin Protein in the BLA of WT and Fmr1 KO Mice 

Since gephyrin was demonstrated to directly interact with synaptic GABAARs 

[60, 61, 68-71], we wanted to examine any alterations in gephyrin protein expression 

in KO mice.  We found that gephyrin is expressed in the BLA during the tested time 

points.   We furthermore found that gephyrin staining was qualitatively less intense at 

P14 in KO mice (Figure 6 A-F).  After immunoblot quantification, we did not find 

any significant differences in gephyrin expression in KO versus WT mice at each 

time point.  In WT mice, gephyrin expression increased from P14 to P21 (p=.03) 

while KO mice failed to show this increase (Figure 6 G-H).   Our observation reflects 

the developmental expression pattern of the α1 subunit in KO mice.  Both gephyrin 

and the α1 subunit do not show a normal increase from P14 to P21 in KO mice, 

pointing to a possible link between the two proteins in the manifestation of inhibitory 

neurotransmission deficits. 
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Figure 6.  Developmental trajectory of gephyrin protein expression. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Developmental trajectory of gephyrin protein expression.  A-F 

Gephyrin antibody staining of 50µm thick P10-P21 WT and KO mice brain sections 

reveals gephyrin protein expression in the BLA throughout development. G 

Immunoblot of protein from whole BLA tissue shows the amount of gephyrin at P10, 

P14, and P21.  H Quantification of gephyrin, using actin as a loading control, reveals 

a statistically significant increase in the protein from P14 to P21 in WT mice but not 

KO mice.  However, there is no statistically significant difference in KO versus WT 

expression at each developmental time point. scale bar=200 µm, n=3 (each n is a pool 

of 3 BLAs), error bars: mean±SEM, *p<.05 (paired, two-tailed t-test)    
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2.6 Expression of GAD65/67 Proteins in the BLA of WT and Fmr1 KO mice 

To discern whether presynaptic changes contribute to defects in inhibitory 

neurotransmission, we examined GAD65/67 expression in the BLA.  

Immunohistochemistry revealed that GAD65/67 expression was prominent at all 

developmental stages in WT and KO mice.  Qualitatively, there was no difference in 

GAD65/67 expression in KO versus WT mice (Figure 7 A-F).  Protein quantification 

revealed that GAD65/67 expression increased in WT as well as the KO mice from 

P10 to P14 (WT: p=.01, KO: p=.005), P14 to P21 (WT: p=.025, KO: p=.013), and 

P10 to P21 (WT: p=.0003, KO: p=.002)  (Figure 7 G-H).  There was also no 

statistically significant change in expression at each time point in KO versus WT 

mice.  Our results suggest that proteins GAD65/67 do not play a role in inhibitory 

neurotransmission changes we see in the BLA.  
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Figure 7.  Developmental trajectory of GAD65/67 protein expression. 

 

 

 

 

 

 
 
 
 
 

 
 

 
 
Figure 7.  Developmental trajectory of GAD65/67 protein expression.  A-F  

GAD65/67 antibody staining of 50µm thick P10-P21 WT and KO mice brain sections 

reveals GAD65/67 protein expression in the BLA throughout development. G 

Immunoblot of protein from whole BLA tissue shows the amount of GAD65/67 

protein at P10, P14, and P21.  H Quantification of GAD65/67, using actin as a 

loading control, reveals a statistically significant increase in the protein in WT and 

KO mice throughout early postnatal development.  However, there is no statistically 

significant difference in KO versus WT expression at each developmental time point.   

scale bar=200 µm; n=3 (each n is a pool of 3 BLAs); error bars: mean±SEM;  *p<.05, 

**p <0.005 (paired, two-tailed t-test)    
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Chapter 3: Discussion 

 
3.1 GABAAR α1 and Gephyrin Contribution to Defects in Inhibitory 

Neurotransmission in the Fmr1 KO BLA 

Although we failed to find statistically significant changes in α1 expression in 

KO versus WT mice at each time point, we did find changes in how the protein 

progresses in expression over development in KO as compared to WT mice.  The 

correct timing of GABAergic protein expression is essential in setting up proper 

neuronal connections and in wring up local neuron networks into correct brain 

circuits [70-73].  Failure in precise timing of protein expression in the BLA could 

lead to behavioral deficits we see in FXS patients, such as increased fear and anxiety.  

Although α1 expression in WT mice was similar to the expression in KO mice at P14, 

we only observed an increase in α1 expression from P10 to P14 in KO mice, an event 

which is reflected in the normal zolpidem drug enhancement and an increase in 

inhibitory neurotransmission at P14.  Furthermore, the fact that α1 expression 

increases from P14 to P21 in WT mice but not in KO mice is reflected in the failure 

of zolpidam to enhance GABAAR α1 function and in the decrease in inhibitory 

neurotransmission at P21 in KO mice.    

Because there was no increase in α1 and gephyrin expression in KO mice 

from P14 to P21, there is a possibility that the homeostatic effort to increase these 

proteins in the post-synaptic membrane failed due to a smaller number of existing 

synapses at P21 [56].  The decrease in α1-containing GABAAR clusters on the 

postsynaptic surface could therefore be a reason for the decrease in inhibitory 

neurotransmission.  Decrease in inhibition at P10 in KO mice could possibly be 
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explained by P10 and/or pre-P10 alterations in α2 or α3 expression.  Furthermore, the 

increase in inhibition observed at P14 could be accounted for by homeostatic 

compensation in α2 protein after P10 and up to P14 [74-76].  It is most likely no 

coincidence that the culmination of the proposed homeostatic response occurs around 

P14, a peak time in synaptogenesis [77].  It is important to note that FMRP has not 

been found to directly target mRNA of the tested proteins and, as a result, 

translational regulation of these proteins likely occurs under different mechanisms 

which are accessible to homeostatic modifications.   

 

3.2 GABAAR α2 and α3 Contribution to Defects in Inhibitory Neurotransmission in 

the Fmr1 KO BLA 

We did not observe significant changes in α2 and α3 subunit expression in KO 

versus WT mice at each time point; however, we detected differences in timing of α2 

but not α3 subunit expression in KO mice.  While α2 expression was unchanged over 

time in WT mice, there was a statistically significant increase in the α2 subunit from 

P10 to P21 in KO mice.  This increase could be a consequence of an early deficiency 

in α2 at P10 and/or to an increase in expression at P21.  The result matches our 

clonazepam drug data for KO mice, where the enhancement of α2/3 subunit-

containing GABAAR function undershoots at P10 and overshoots at P21 [57].  

However, the α2/3 enhancement in function at P21 is not reflected in the strength of 

inhibitory neurotransmission which is significantly decreased.  These seemingly 

contradictory results could be interpreted in the following ways: 1) although α2/3 

function is intact and even greater in KOs at P21, the enhanced function is not enough 
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to compensate for the inhibitory neurotransmission deficits due to the functional 

defects and alterations in timing of expression of α1-containing GABAARs, 2) there is 

a decrease in GABA available at the synaptic cleft which, according to our findings, 

is not related to a decrease in GAD65/67 proteins, 3) since we have previously 

observed a decrease in inhibitory synapses in the P21 BLA, the enhancement of α2/3-

containing GABAAR function could be due to the increased insertion of these 

receptors into the postsynaptic membrane in the existing synapses, and 4) the 

combination of the three scenarios could be at play.  It has recently been 

demonstrated that α3-containing GABAARs are predominantly found in the 

extrasynaptic space on BLA excitatory neurons, participating mainly in tonic 

inhibition [79].  Another interpretation of our data showing increased function of 

α2/3-containing GABAARs at P21 in KO mice could be that due to the lack of the α1 

subunit expression, α3 subunit replaces it at the postsynaptic membrane.  Perhaps 

because of the lower affinity of GABA for the α2 and α3-containing receptors, 

inhibitory neurotransmission could not recover to the WT levels.     

 

3.3 GAD65/67 Contribution to Defects in Inhibitory Neurotransmission in the Fmr1 

KO BLA 

We did not observe differences in GAD65/67 expression in KO versus WT 

animals at the tested time points nor did we observe changes in timing of expression 

in KO mice.  Our findings therefore suggest that GAD65/67 did not contribute to the 

changes in inhibitory neurotransmission.  However, deficits in GAD65/67 expression 

prior to P10 could have contributed to setting up the inhibitory deficits we see at P10.  
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At tested time points, inhibitory neurotransmission changes seem to be primarily 

driven by other factors.  For instance, we observed an increase in inhibitory 

neurotransmission at P14 in KO mice but we did not see an increase in GAD65/67 

protein expression.  In addition, we did not observe a change in GAD65/67 

expression at P21, yet there was a significant decrease in inhibition at that time point.  

Since we have previously shown that there is a decrease in inhibitory synapses 

at P21, we can speculate that there was perhaps a homeostatic increase in GAD65/67 

within the remaining inhibitory synapses.  However, for a reason yet to be uncovered, 

the effort to maintain a certain level of inhibition failed at P21 despite the enhanced 

function of α2/3-containing GABAARs, and was accompanied by a decrease in 

GABA at inhibitory synapses.  Nonetheless, a decrease in GABA at synapses could 

have been caused by other downstream factors not involving GAD65/67 such as: 1) 

decrease in vesicle GABA content, 2) decrease in the number of docked and primed 

vesicles at the synaptic cleft, and 3) decrease in the amount of GABA released form 

vesicles in response to activity.  One reason for a decrease in GABA release could 

have been a homeostatic response to strong enhancement in inhibition around P14.  

However, perhaps because of the loss of α1-containing GABAAR function and 

because of the decrease in inhibitory synapses at P21, inhibitory neurotransmission 

decreased to levels below WT mice.  Together, our results demonstrate that the events 

culminating into decreased inhibitory neurotransmission in KO mice are very 

dynamic in nature.   
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3.4 Conclusion and Implications for FXS Patient Therapy  

Our results indicate that there are functional and protein changes in inhibitory 

neurotransmission in the BLA early in postnatal development.  We have shown that 

α1 and α2/3-containing GABAARs have functional deficits at particular 

developmental time points [57].  On a protein level, we discovered that inhibitory 

synapse molecules GABAAR α1, GABAAR α2, and gephyrin have altered timing of 

expression in KO mice but do not significantly change in expression at each time 

point in KO versus WT mice.  Existing studies concerning GABAergic protein 

expression and function have, for the most part, been conducted in adult FXS mice 

and have not included the amygdala and, therefore, our research has contributed and 

important piece to the FXS puzzle [73, 83, 85, 86].  Although we did not study 

developmental time points beyond P21, it would be interesting to see how these early 

deficits in inhibition influence GABAergic protein expression and function in adult 

FXS mice.  Studying later developmental stages would be beneficial for examining 

long-term outcomes of drug therapies administered at early developmental stages. 

Benzodiazepine drugs such as diazepam have been used in FXS patients to 

alleviate symptoms including increased fear and anxiety [67, 80].  Upon the discovery 

that different GABAAR subunits are responsible for unique subsets of diazepam 

effects, newer drugs such as zolpidam and clonazepam were developed, targeting 

specific subunits to minimize unnecessary side effects [67].  Our data suggests that 

these drugs could be used to treat some of the amygdala-associated FXS symptoms 

but the specific benzodiazepine drugs used and the timing of usage will have to be 
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carefully planned.  For instance, since α1 expression and function appears to be 

normal at P10, zolpidem could be used to enhance inhibitory neurotransmission 

around 6 months after birth in humans which is comparable to mouse P10 [84, 87, 

92].  Benefits of using zolpidem could be limited since α1 expression is relatively low 

in the BLA very early in development [78].  However, this initial boost in inhibition 

from zolpidam, no matter how small, could aid in alleviating increased fear and 

anxiety later in development.  Clonazepam could be a more beneficial drug in humans 

around 5 to 10 years of age comparable to mouse P14 through P21, since α2/3-

containing receptors are as or more functional and since both subunits are normally 

expressed at these stages in KO mice [84, 87, 92].  Dose-dependent studies will have 

to be performed in mice to assess functional benefits and side effects of this therapy.  

Even if zolpidem and clonazepam therapy proves to be beneficial in mice, another 

challenge will be adapting the therapy effectiveness to humans while minimizing 

adverse effects.  Recent human and rodent studies have demonstrated that the use of 

GABAAR subunit-selective allosteric compounds modulating receptor function via 

the benzodiazepine site could substantially improve therapy outcomes in anxiety 

disorders while greatly decreasing side effects [67].  Collectively, our date support the 

idea that certain GABAAR subunit-selective benzodiazepine drugs could be effective 

in improving some of the amygdala-based FXS behavioral symptoms.   

In addition, non-benzodiazepine drugs have been shown to be effective in 

treating symptoms such as hyperactivity and heightened fear in mice.  For example, 

the neuroactive steroid ganaxolone, a δ subunit-containing GABAAR agonist, has 

been show to be effective in decreasing anxiety, stress, and neuronal hyperexcitability 
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in FXS mice and is in the beginning stages of a clinical trial [80, 88].  Another δ 

subunit-targeting drug, the superagonist THIP, has been show to decrease 

hyperactivity, neuronal hyperexcitability, and sensitivity to auditory stimuli in FXS 

mice [56, 81].  Benzodiazepine drugs and other GABAAR-targeting drugs such as 

THIP and ganaxolone could be used in combination and at different developmental 

stages to enhance both phasic and tonic inhibition.  GABABR-targeting drugs have 

also been successful in ameliorating amygdala-based FXS symptoms such as social 

withdrawal in humans, and one such drug, arbaclofen, has reached stage II in human 

clinical trials [90, 91].  Taking into consideration the drugs’ known side effects, their 

GABA receptor specificity, and the best time for their administration, could help 

doctors design appropriate drug therapies that could have a major impact on FXS 

patient prognosis.    
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Chapter 4: Experimental Procedure 

 
4.1 Animals 

Fmr1 WT (stock no. 4828) and Fmr1 KO (Fmr1-/y) (stock no. 4624) mice on 

the FVB background were obtained from the Jackson Laboratory (Bar Harbor, MA, 

USA).  In this study, mice at postnatal day 10, 14, and 21 were used for experiments.  

All protocols were approved by the animal committee at Children’s National Medical 

Center. 

 

4.2 BLA Microdissection and Protein Isolation 

WT and KO mice at P10, 14, and 21 were euthanized with an overdose of 

isoflurane.  The brains were removed and placed in ice-cold 1X PBS.  They were then 

cut into 300µm coronal slices using a vibratome.  Slices containing the BLA (3-5 

slices) were carefully dissected under the microscope using microscissors.  The BLA 

tissue was immediately placed into RIPA buffer (Santa Cruz, sc-24948) and 

incubated on ice for 15 minutes.  The tissue was homogenized by mixing the RIPA 

buffer and the tissue using a pipette until the tissue was completely dissolved.  

Homogenized tissue was sonicated for 5 minutes using a water sonicator filled with 

ice-cold water.  The samples were then incubated on ice for 10 minutes before they 

were centrifuged for 3 minutes at 13,200 rpm at 4°C.  The supernatant was 

transferred into new tubes and stored at –20°C for further use.   
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4.3 Immunoblotting, Quantification, and Statistics 

Sample protein concentrations were determined using the BCA protein assay 

(Pierce, 23225).  For each sample, 2 µg (for GABAAR α2, GABAAR α3, and 

GAD5/67) or 5 µg (for GABAAR α1) of protein was loaded on a 4-15% gradient 

SDS-polyacrylamide gel (Biorad, 456-1084) and transferred onto a PVDF membrane 

(Millipore, IPVH20200).  Each sample was a pool of 3 BLA homogenates and three 

gels were run for each protein tested.  The proteins were visualized using appropriate 

primary and secondary antibodies, ECL (Pierce, 32106), and Kodak film (VWR, 

8689358).  The film was scanned and TIFF images were analyzed using the ImageJ 

software (NIH website: rsbweb.nih.gov/ij/).  Actin was used as a loading control to 

quantify the amount of protein on each blot.   After samples were normalized to actin, 

positive control homogenate from three P21 hippocampi (2 or 5 µg) was used in order 

to normalize the amount of protein across different blots.  Three values for each 

protein were averaged and standard error was calculated.  Microsoft Excel was used 

to graph results and to perform statistical analysis.  Two different statistical tests were 

used to analyze the results.  First, a two-tailed, unpaired t-test was used to determine 

if there was a statistically significant difference between WT and KO mice at each 

time point.  Second, a two-tailed, paired t-test was performed to analyze within-

genotype progression of protein expression over development.  The p-value was set to 

less than .05 (p<.05) or .005 (p<.005), and the error bars were defined as mean±SEM.   
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4.4 Immunohistochemstry 

Mice at P10, 14 and 21 were deeply anesthetized with isoflurane and perfused 

through the heart with 4% paraformaldehyde.  The brains were isolated and placed in 

4% paraformaldehyde for up to 24 hours.  The brains were washed with 1X PBS, 

mounted in 4% low-melting agarose, and cut in 50 µm thick coronal sections on a 

vibratome.  Free-floating sections containing the BLA were blocked in 1X PBS, with 

.02% Triton X and 10% Normal Donkey serum.  This solution was used for all 

subsequent antibody incubations.  Blocked sections were then incubated with primary 

antibody overnight at room temperature.  After three 10 minute washes with 1X PBS 

and .02% Triton X, the sections were incubated with secondary antibody for 2 hours 

at room temperature, and were protected from light.  Sections were placed on 

positively charged slides, dried for 5 minutes, and mounted with CC/Mount (Sigma-

Aldrich, C9369).  10X magnification pictures of the BLA were taken in the TIFF 

format on a Zeiss fluorescent microscope.   

 

4.5 Antibodies 

For immunoblotting, the following primary antibodies were used:  GABAAR 

α1, 1:1000 (Millipore, 106-868); GABAAR α2, 1:250 (Abcam, ab72445); GABAAR 

α3, 1:1,000 (Sigma, G4291); gephyrin, 1:500 (Synaptic Systems, 147 003); 

GAD65/67, 1:5,000 (Abcam, ab11070); and actin, 1:5,000 (Millipore, MAB1501).  

The secondary antibody, goat rabbit polyclonal HRP-conjugated Ab, was obtained 

from Santa Cruz, 1:10,000 (SC-2004).  For immunohistochemistry, the same primary 
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antibodies were used except GAD65/67 which was purchased from Millipore, 1:500 

(AB1511).  Dilutions used for primary antibodies were as follows: GABAAR α1, 

1:1000; GABAAR α2, 1:250; GABAAR α3, 1:200; and gephyrin 1:250.  The 

secondary antibody, DyLight donkey anti-rabbit 549, was obtained from Jackson 

Immunoresearch, 1:100 (711-505-152). 
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