
ABSTRACT

Title of dissertation: CIRCUIT DESIGN OBFUSCATION
FOR HARDWARE SECURITY

Yang Xie
Doctor of Philosophy, 2018

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and
Computer Engineering

Nowadays, chip design and chip fabrication are normally conducted separately

by independent companies. Most integrated circuit (IC) design companies are now

adopting a fab-less model: they outsource the chip fabrication to offshore foundries

while concentrating their effort and resource on the chip design. Although it is

cost-effective, the outsourced design faces various security threats since the offshore

foundries might not be trustworthy. Attacks on the outsourced IC design can take

on many forms, such as piracy, counterfeiting, overproduction and malicious modifi-

cation, which are referred to as IC supply chain attacks. In this work, we investigate

several circuit design obfuscation techniques to prevent the IC supply chain attacks

by untrusted foundries.

Logic locking is a gate-level design obfuscation technique that’s proposed to

protect the outsourced IC designs from piracy and counterfeiting by untrusted

foundries. A locked IC preserves the correct functionality only when a correct

key is provided. Recently, the security of logic locking is threatened by a strong

attack called SAT attack, which can decipher the correct key of most logic locking

techniques within a few hours even for a reasonably large key-size. In this disser-

tation, we investigate design techniques to improve the security of logic locking in

three directions. Firstly, we propose a new locking technique called Anti-SAT to

thwart the SAT attack. The Anti-SAT can make the complexity of SAT attack

grow exponentially in key-size, hence making the attack computationally infeasible.

Secondly, we consider an approximate version of SAT attack and investigate its ap-

plication on fault-tolerant hardware such as neural network chips. Countermeasure

to this approximate SAT attack is proposed and validated with rigorous proof and

experiments. Lastly, we explore new opportunities in obfuscating the parametric

characteristics of a circuit design (e.g., timing) so that another layer of defense can

be added to existing countermeasures.

Split fabrication based on 3D integration technology is another approach to

obfuscate the outsourced IC designs. 3D integration is a technology that integrates

multiple 2D dies to create a single high-performance chip, referred to as 3D IC.

With 3D integration, a designer can choose a portion of IC design at his discretion

and send them to a trusted foundry for secure fabrication while outsourcing the

rest to untrusted foundries for advanced fabrication technology. In this dissertation,

we propose a security-aware physical design flow for interposer-based 3D IC (also

known as 2.5D IC). The design flow consists of security-aware partitioning and

placement phases, which aim at obfuscating the circuit while preventing potential

attacks such as proximity attack. Simulation results show that our proposed design

flow is effective for producing secure chip layouts against the IC supply chain attacks.

The circuit design obfuscation techniques presented in this dissertation enable

future chip designers to take security into consideration at an early phase while

optimizing the chip’s performance, power, and reliability.

CIRCUIT DESIGN OBFUSCATION
FOR HARDWARE SECURITY

by

Yang Xie

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Dana Dachman-Soled
Professor Manoj Franklin
Professor Gang Qu
Professor Jeffrey S. Foster

c© Copyright by
Yang Xie

2018

Dedication

To my parents, my sister, and my wife, for their love and support.

ii

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Ankur Sri-

vastava, for his continuous guidance and support through my Ph.D. study. I’m

extremely grateful for his patience, motivation and immense knowledge in all the

time we spent on solving challenging research problems. He has always guided me

to the correct path and supported my decision, which makes my Ph.D. experience

productive and rewarding. The enthusiasm he has for his research will always be a

great motivation for me. It’s truly a pleasure to work with and learn from him.

I would also like to express my gratitude to Professor Dana Dachman-Soled,

Professor Manoj Franklin, Professor Gang Qu, and Professor Jeffrey S. Foster for

their time to serve on this committee and their valuable feedback on this dissertation.

I would like to extend my thanks to all my colleagues in Professor Srivastava’s

research group. My thanks first go to three senior colleagues Chongxi Bao, Tiantao

Lu and Caleb Serafy for showing me how to conduct research, set up experiments

and write papers in the early stage of my Ph.D. study. Without them, I would not

be able to adapt to the Ph.D. life so quickly. Thanks also go to my current colleagues

Zhiyuan Yang, Yuntao Liu, Ankit Mondal, Abhishek Chakraborty and Mike Zuzak

for the inspiring research discussions, for the late nights we were working together

before deadlines, and for all the fun we have had in our lab.

Finally, I owe the deepest gratitude to my family. I want to express my

appreciation to my parents and my sister for their endless love and devotion and to

my wife Miao Zhang who has been accompanying me during every hardship.

iii

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction 1
1.1 Taxonomy of Hardware Attacks . 2

1.1.1 IC Supply Chain Attacks . 3
1.1.1.1 Attacks in Design Phase 4
1.1.1.2 Attacks in Fabrication Phase 5

1.1.2 Post-deployment Attacks . 7
1.2 Contributions and Thesis Organization 8

1.2.1 Focus of This Dissertation . 8
1.2.2 Contributions . 9
1.2.3 Thesis Organization . 12

2 Background 14
2.1 Supply Chain Attacks for IP Piracy 14

2.1.1 Attack Model . 15
2.1.2 Attack Schemes . 16

2.2 Circuit Obfuscation . 17
2.2.1 Overview of Circuit Obfuscation 17
2.2.2 Logic Locking . 20

2.2.2.1 Basic Idea . 20
2.2.2.2 Attacks on Logic Locking 22

2.2.3 Split Fabrication . 24
2.2.3.1 Basic Idea . 24
2.2.3.2 Attacks on Split Fabrication 27

iv

3 Anti-SAT: Secure Logic Locking Against SAT Attack 29
3.1 Introduction . 29
3.2 Preliminary: SAT Attack . 31

3.2.1 Attack Model . 31
3.2.2 Attack Insight . 31
3.2.3 Attack Algorithm . 34

3.3 Motivation and Problem Statement 36
3.4 Anti-SAT Based Logic Locking . 38

3.4.1 Anti-SAT Configurations . 38
3.4.2 SAT Attack Resistance Analysis 41
3.4.3 Integrating Anti-SAT into a Circuit 45
3.4.4 A Combined Locking Approach 46

3.5 Anti-SAT Block Obfuscation . 47
3.5.1 Removal Attacks on Anti-SAT 48

3.5.1.1 Functional Attributes 48
3.5.1.2 Structural Attributes 48

3.5.2 Mitigating Removal Attacks 49
3.5.3 SAT-attack Resistance of Anti-SAT After Obfuscation 52

3.6 Experiments and Results . 55
3.6.1 Anti-SAT Block Design . 55

3.6.1.1 On-set Size p . 55
3.6.1.2 Input-size n . 56
3.6.1.3 Secure Integration of Anti-SAT 57

3.6.2 Anti-SAT Block Application 58
3.6.3 Anti-SAT Block Obfuscation 59
3.6.4 Performance Overhead . 61

3.7 Related Work . 62
3.7.1 SAT-attack Resilient Logic Locking 62
3.7.2 SAT Attack on IC Camouflaging 63

3.8 Conclusion . 64

4 Strong Anti-SAT: Secure Logic Locking for Neural Network Chips 65
4.1 Introduction . 65
4.2 Preliminary . 68

4.2.1 Neural Network Models . 68
4.2.2 Neurnal Network Chips . 69
4.2.3 Anti-SAT Based Logic Locking 70

4.2.3.1 Anti-SAT Configuration 71
4.2.3.2 SAT-Attack Resilience 72
4.2.3.3 Output Corruptibility (Error Rate) 73

4.2.4 AppSAT Attack . 73
4.3 Attack on Locked Neural Chips . 74

4.3.1 Attack Model . 75
4.3.2 Step 1: Approx-unlocking Neural Chips 76
4.3.3 Step 2: Neural-network Fine-tuning 76

v

4.3.3.1 Error Profiling . 77
4.3.3.2 Weight Tuning . 77
4.3.3.3 Adder-input Shifting 78

4.3.4 Attack Results . 80
4.3.4.1 Experiment Setup 80
4.3.4.2 Attack Result 1: Approx-unlocking 80
4.3.4.3 Attack Result 2: Neural-network Fine-tuning 82

4.4 Secure Locking for Neural Chips . 83
4.4.1 Strong Anti-SAT: Increasing Error Rate 85

4.4.1.1 Strong Anti-SAT Configuration 85
4.4.1.2 Error Rate Analysis 86

4.4.2 Multiplier Design: Increasing SAT Solving Time Per Iteration 89
4.4.3 Summary of Attack Mitigation 91

4.5 Experiments and Results . 91
4.5.1 Validation of Analytical Lower Bounds 91
4.5.2 Error Rate and Accuracy Loss 92
4.5.3 SAT Solving Iterations and Execution Time 93

4.6 Conclusion . 95

5 Delay Locking: Security Enhancement of Logic Locking Against Overpro-
duction and Counterfeiting 97
5.1 Introduction . 97
5.2 Attack Model . 99
5.3 Delay+Logic Locking (DLL) . 99

5.3.1 Tunable Delay Key-gate (TDK) 100
5.3.2 Timing Constraints of DLL Circuit 102
5.3.3 DLL Design Flow . 104

5.3.3.1 Design Objective . 104
5.3.3.2 Design Techniques 105
5.3.3.3 Design Flow . 107

5.4 Security Analysis of DLL . 109
5.4.1 TDK Removal Attack . 109
5.4.2 Functionality Oriented Attacks 109
5.4.3 MILP Based Delay-key Attack 110

5.5 Experiments and Results . 112
5.5.1 Experiment Setup . 112
5.5.2 Results . 113

5.5.2.1 Effectiveness of Proposed Design Techniques 113
5.5.2.2 MILP-based Delay-key Attack 115
5.5.2.3 Overhead Evaluation 116

5.6 Conclusion . 117

vi

6 Security-aware Design Flow for 2.5D IC Split Fabrication 118
6.1 Introduction . 118
6.2 Preliminary . 119

6.2.1 3D/2.5D Integration . 119
6.2.2 3D/2.5D IC Based Split Fabrication 122

6.3 Security-aware Design Flow for 2.5D ICs 123
6.4 Problem Formulation . 126

6.4.1 Attack Model . 126
6.4.2 Problem Statement . 126
6.4.3 Security Objectives . 127

6.5 Proposed Approach . 129
6.5.1 Secure Partitioning . 129
6.5.2 Secure Placement . 132

6.6 Experiments and Results . 134
6.6.1 Experiment Setup . 134
6.6.2 Results . 136

6.7 Conclusion . 141

7 Conclusion and Future Research Directions 142
7.1 Future Work . 144

7.1.1 Security in Emerging Hardware Designs 144
7.1.2 Parametric Locking . 145
7.1.3 3D IC Security . 146

Bibliography 147

vii

List of Tables

3.1 Impact of p on the security level of Anti-SAT (When n = 16). 56
3.2 Impact of n on the security level of Anti-SAT (When p = 1). 57
3.3 Comparison between secure and random integration. 57
3.4 Benchmark information of 6 circuits from ISCAS85 and MCNC. . . . 58

4.1 Terminology list . 71
4.2 Neural network benchmarks . 82
4.3 Accuracy of neural models deployed on a neural chip that’s unlocked

with a correct key ~KC and an approx-key ~KApp (without/with neural
network fine-tuning) . 83

4.4 Error rate ε and the number of SAT iterations λ of a 16-input Strong
Anti-SAT block with different (n0, p0). ε0 and λ0 are the analytical
lower-bounds. ε is the experimental error rate obtained by simulating
all 216 input patterns. λ is the experimental number of iteration
required by SAT attack. 92

5.1 Functionality and delay of the TDK 101
5.2 Benchmark information and MILP based delay-key attack results. . . 113

6.1 Benchmark information and partitioning results of NormPart, Norm-
Part LargeCutsize, and SecPart. 137

6.2 Tradeoff between HD, area and total wire-length on the c7552 circuit 140

viii

List of Figures

1.1 IC supply chain and its security threats. 3
1.2 Taxonomy of hardware-based attack. 8

2.1 An IC design and fabrication flow enhanced with circuit obfuscation. 17
2.2 Logic locking techniques: (a) overiew; (b) an original netlist; (c)

XOR/XNOR based; (d) MUX based; (e) LUT based. 20
2.3 Split fabrication: (a) 2D IC; (b) 3D IC; (c) 2.5D IC. 25

3.1 Logic locking: (a) original circuit; (b) locked circuit. 29
3.2 Illustration of the iterative SAT attack process. Wrong key combina-

tions are iteratively identified by a set of DIOs till no new ones exist.
WKi is the set of wrong key combinations identified by i-th DIO. . . 33

3.3 Miter-like circuit for finding distinguishing inputs. 35
3.4 Anti-SAT block configuration: (a) type-0 Anti-SAT: always outputs

0 if key values are correct; (b) type-1 Anti-SAT: always outputs 1
if key values are correct; (c) integrating the Type-0 Anti-SAT block
into a circuit. 39

3.5 Anti-SAT block design and obfuscation: (a) one possible construction
of function g to ensure large number of SAT attack iterations; (b) an
additional key-gate is inserted for functional obfuscation. 45

3.6 Design withholding and entanglement technique [51]: (a) original cir-
cuit; (b) design withholding and (c) wire entanglement. 49

3.7 Anti-SAT obfuscation based on design withholding and wire entan-
glement. 50

3.8 SAT attack results on 6 benchmarks with three logic locking configu-
rations: SLL and SLL(5%) + n-bit BA. Timeout is 10 hours (3.6×104

s). The dashed lines are the curve fitting results when the SAT attack
has time-outed after certain key-size. 60

3.9 SAT attack results of c1355 circuit when obfuscation techniques are
applied: (a) design withholding and (b) wire entanglement. For both
techniques, the number of SAT attack iterations required are ≥ 2n

after obfuscation, where n is the input-size of Anti-SAT. 61

ix

4.1 Neural networks: (a) multi-layer perceptron; (b) convolutional neural
network . 68

4.2 Neural chip: (a) core components; (b) processing element 69
4.3 Anti-SAT based logic locking: (a) overview; (b) Anti-SAT block . . . 72
4.4 Adder-input shifting: (a) illustration; (b) implementation 79
4.5 Error rate v.s. SAT attack iteration. The error rate is estimated

using 10000 random input patterns. 81
4.6 Error profiles of approx-unlocked adder/multiplier 81
4.7 Adder input distribution for 5 benchmarks 84
4.8 An n-input Strong Anti-SAT block. Each mini-block g0 has n0 inputs

and on-set size p0. 86
4.9 Lower-bounds of (a) error rate ε0; (b) SAT iterations λ0 for different

Strong Anti-SAT configurations (n, n0, p0). 93
4.10 Accuracy loss v.s. error rate of multiplier for 5 benchmarks. 94
4.11 SAT solving time per iteration for n-input locked multiplier 94
4.12 Total SAT solving time v.s. error rate 95

5.1 Tunable delay key-gate (TDK): (a) overview; (b) implementation . . 101
5.2 A simple sequential circuit. 102
5.3 Illustrative examples of three design techniques for delay locking . . . 105
5.4 DLL design flow . 108
5.5 The impact of path delay balancing and TDK delay ratio r on the

TVR for 8 ISCAS89 benchmarks. 114
5.6 Iterative MILP attack results (Timeout is 10 hours) 115
5.7 Area and delay overhead for the DLL technique. Four bar plots of

each benchmark correspond to TDK delay ratios r = 2, 3, 4, 5 116

6.1 Structures of (a) stacked 3D IC and (b) 2.5D IC. 120
6.2 2.5D IC based split fabrication. 123
6.3 A security-aware 2.5D IC design and split fabrication flow. 125
6.4 A bi-partitioning of the c17 circuit from ISCAS85 benchmark. The

cut-wires are selected as the hidden wires that will be routed in the
interposer. 130

6.5 B*-tree and SA based secure placement algorithm flow [34]. 133
6.6 Impact of security constraint Sth on cut-size 136
6.7 Impact of security constraint Sth on HD 136
6.8 HD and attack correctness for four design flows. 138
6.9 Area and total wire-length overhead for four design flows. 139

x

List of Abbreviations

ATPG Automatic Test Pattern Generation

BDD Binary Decision Diagram
BEOL Back End of Line

CNN Convolutional Neural Network

DIO Distinguishing input/output
DLL Delay+Logic Locking
DPA Differential Power Analysis

EDA Electronic Design Automation
EM Electromagnetic

FEOL Front End of Line
FF Flip-Flops
FIB Focused Ion Beam
FSM Finite State Machine

HD Hamming Distance
HT Hardware Trojan
HSM Hardware Security Module

IC Integrated Circuit
IP Intellectual Property

LB Lower Bound
LUT Look Up Table

MILP Mixed Integer Linear Programing
MLP Multi-Layer Perceptron
MUX Multiplexer

PCB Printed Circuit Board
PE Processing Element
PO Primary Outputs
PUF Physically Unclonable Function

RTL Register Transfer Level

xi

SA Simulated Annealing
SAT Satisfiability
SCA Side Channel Attack
SLL Secure Logic Locking
SoC System on Chip
SPA Simple Power Analysis
SPS Signal Probability Skew

TDB Tunable Delay Buffer
TDK Tunable Delay Key-gate
TRNG True Random Number Generator
TSV Through-Silicon-Vias
TVR Timing Violation Ratio

UB Upper Bound

xii

Chapter 1: Introduction

Traditionally, cyber-security studies focus mainly on software and information

security, which aims at protecting the confidentiality and integrity of data that is

computed and transmitted among multiple parties. Software-oriented security is

developed in forms such as password, encryption and decryption, digital signature,

anti-virus software, crypto-currency, etc. When developing these software-based

security applications, the underlying hardware systems (i.e., electronic systems,

chips, ICs) that provide the computation and communication of the software are

normally assumed to be secure and reliable. However, such security assumptions

about hardware cannot be easily guaranteed, because hardware systems could also

have vulnerabilities and could be attacked. In recent years, people have discovered

more and more hardware-based security threats. Hardware security threats could

be due to unintended human mistakes or oversight during design time. For example,

recent attacks Meltdown [1] and Spectre [2] exploit critical vulnerabilities in modern

processors to develop an effective attack scheme which allows attackers to steal data

that is processed on the hardware. A software patch to fix this hardware flaw could

take up to 25% performance overhead [3]. Besides unintended design flaws, hardware

security threats could also be due to malicious tampering that is performed during

1

chip design and fabrication. Recent reports [4–6] have discovered malicious back-

doors (also known as hardware Trojans) that are inserted into IC designs which

can stealthily make the hardware system malfunction. In addition to hardware

tampering, hardware design piracy and counterfeiting have become a significant issue

in modern IC supply chain. According to a report by IHS Technology, the potential

annual financial risks for the global electronics supply chain due to counterfeiting was

estimated to be over $169 billion in 2011 [7]. These hardware attacks pose significant

security threats to both consumer electronics and mission-critical systems.

1.1 Taxonomy of Hardware Attacks

Hardware attacks can take many forms and they can happen during different

stages of an IC’s life cycle. To begin with, attacks on hardware can happen during

its design and fabrication, which are referred to as supply chain attacks. Modern

chips go through a complicated supply chain of design, fabrication, packaging, and

assembly, as shown in Fig. 1.1. Each stage of the IC supply chain involves many

global suppliers which could be possibly untrustworthy. Hardware designs might be

tampered or pirated by untrusted parties in the IC supply chain, resulting in a huge

economic loss to most IC design companies. Furthermore, attacks can also happen

after the hardware is deployed to end users, which are referred to as post-deployment

attacks. For example, malicious end users might want to reverse-engineer the chips

in order to obtain its implementation details. Besides, they might want to identify

hardware vulnerabilities and use them to access valuable data that is processed on

2

Figure 1.1: IC supply chain and its security threats.

the chips. In this section, we provide a detailed taxonomy of hardware attacks,

including IC supply chain attacks and post-deployment attacks.

1.1.1 IC Supply Chain Attacks

Fig. 1.1 shows an overview of modern IC supply chain. In general, it can be

divided into two phases:

• Design Phase. In the design phase, an abstract design specification is first de-

scribed using register-transfer level (RTL) language such as Verilog and then

synthesized into a gate-level netlist using commercial design and synthesis

tools. After that, physical design tools are used to produce a layout for the

3

netlist. The layout file describes the physical shapes, locations, and routing

of different gates in the netlist, which is used as a reference for chip fabrica-

tion. Nowadays, it’s very common for designers to integrate hardware designs

that are purchased from other companies, which are known as third-party

Intellectual Property (IP).

• Fabrication Phase. In the fabrication phase, the layout is used to generate

masks for chip fabrication. After that, the chips are packaged and assembled

into a printed circuit board (PCB) to produce the final electronic system. To

access advanced semiconductor technology at a low cost, most IC designs are

now outsourced to an off-shore foundry for chip fabrication. Once the layouts

are sent to the foundries, they are not under the direct control or monitoring

of the designer.

Different attacks can happen in different phases of the IC supply chain. The follow-

ing summarizes potential attacks in each phase.

1.1.1.1 Attacks in Design Phase

Security threats in the design phase come from three sources, malicious de-

signer, untrusted third-party IPs, and untrusted third-party design tools. First of

all, a rogue employee in the design team can steal or modify the chip design. This

is the most dangerous threat in the design phase because the rogue employee has

full access to the design. Besides the malicious insiders, third-party IPs which are

provided by untrusted IP vendors can also secretly sabotage the hardware design.

4

Although integrating third-party IPs can expedite the design process, it allows at-

tackers (the IP vendors) to insert malicious backdoor that could make the chip

malfunction under certain circumstances. Lastly, third-party design tools also pose

potential threats to hardware design. Often times, designers simply rely on the

automatic design optimization and verification processes offered by the tools. How-

ever, the resulting design might be tampered or undermined during these automatic

design processes.

To summarize, two attacks can happen during the design phase:

• IP piracy. The objective of IP piracy attack is to steal the hardware design,

illegally claim the ownership and use them in an unauthorized way. IP piracy

can be conducted by a rogue employee in the design team. The employee can

steal the RTL or gate-level designs and sell them to other design companies

to gain profits.

• Hardware Trojan (HT). HTs refer to the malicious modifications or backdoors

that can 1) change or nullify some functionalities [8] and 2) undermine the IC’s

performance and reliability [9]. HTs can be inserted during the design phase

by rogue employees in the design team, untrusted third-party IP vendors or

untrusted third-party design tools.

1.1.1.2 Attacks in Fabrication Phase

Security threats in the fabrication phase mainly come from the malicious in-

sider in the fabrication foundries. To access advanced semiconductor technology

5

at a lower cost, most IC design companies are now outsourcing their IC designs to

an offshore foundry for fabrication. However, the offshore foundry might not be

trustworthy. Without direct control and monitoring from the design company, a

malicious insider in the foundry can pirate or tamper the IC designs. The following

summarizes potential attacks that can happen during the outsourced fabrication

phase.

• IP Piracy. IP piracy can be conducted by a malicious foundry. Since the

foundry has access to the layout of the hardware design, it can analyze the

layout and use state-of-the-art IC reverse engineering techniques [10] to gain

knowledge of the design at different levels (e.g., RTL or gate-level). Later, the

malicious foundry can benefit from selling the extracted design knowledge and

details to other design companies

• IC Overproduction. This attack is conducted by malicious fabrication foundries

which overproduce and sell extra copies of chips for profit. To reduce cost,

these overbuilt ICs might not be subject to a complete testing process. As

a result, some unauthorized and low-quality ICs may end up being packaged

and sold to the market, which renders both economic and reputation loss to

the design company.

• Counterfeiting. This attack is related to the production and distribution of

out-of-spec, fake, or recycled chips [11]. Out-of-spec ICs (which fail some

quality tests) are normally supplied by malicious foundries. During testing,

out-of-spec chips can be withheld by the foundry and marked as qualified

6

chips. Later, these chips can be sold to the market, without the designer being

aware of it. Fake and recycled chips are other forms of counterfeited chips.

For example, an old-generation chip can be relabeled into a new-generation

one. These counterfeited chips could be integrated into a hardware system by

attackers during chip packaging and assembly.

• Hardware Trojan (HT). HTs can be inserted during the fabrication phase by

a malicious foundry. The attacker can modify the layout to change the chip’s

functionality or undermine its performance and reliability.

1.1.2 Post-deployment Attacks

After the hardware are deployed to the users, various attacks can be performed

to tamper the hardware or the data that’s processed on it. Following describes two

common hardware-based attacks in the post-deployment phase.

• Reverse Engineering. In this attack, a malicious user wants to obtain imple-

mentation details of the hardware. He can use state-of-the-art reverse engi-

neering technique [10] to extract valuable knowledge which might be used for

further attacks such as producing counterfeited ICs. Compared to layout-level

reverse engineering by malicious foundries (as discussed in Section 1.1.1.2),

chip-level reverse engineering by end users is harder because it requires more

steps such as chip decapsulation and delayering.

• Side-channel attack (SCA). In this attack, a malicious user exploits physical

characteristics of a hardware system (e.g., power [12, 13], run time [14, 15],

7

electromagnetic (EM) emission [16–18] etc.) to learn the secret data that is

processed on the hardware. The aforementioned Meltdown [1] and Spectre [2]

attacks are examples of SCAs.

The taxonomy of hardware-based attacks is illustrated in Fig. 1.2. These

emerging hardware security threats motivate researchers to develop effective design

techniques to enhance the security of modern chips.

Figure 1.2: Taxonomy of hardware-based attack.

1.2 Contributions and Thesis Organization

1.2.1 Focus of This Dissertation

In this dissertation, we concentrate on the IC supply chain security for mod-

ern chips with a focus on security threats in the fabrication phase. The main theme

8

of this work is to develop novel design techniques to enhance the security of out-

sourced IC designs that are fabricated in possibly untrustworthy foundries. We

investigate new attack strategies and propose security-aware design techniques that

aim at thwarting the supply chain attacks including IP piracy, overproduction and

counterfeiting by untrusted foundries. These design techniques can be utilized to en-

hance trust between design companies and fabrication foundries so that a mutually

beneficial cooperation can be maintained.

1.2.2 Contributions

One set of techniques to protect the outsourced IC designs is to obfuscate the

functionality and implementation detail of the outsourced circuit design so as to

confuse the untrusted foundry. Without knowing the correct functionality or im-

plementation, an attacker cannot obtain the original circuit design or overproduce

any usable chips. Various circuit obfuscation techniques have been proposed, in-

cluding IC metering [19], logic locking [20] and split fabrication [21]. These circuit

obfuscation techniques, however, have been shown to have vulnerabilities and could

be attacked in recent literature [22–30]. De-obfuscation attacks have been proposed

to de-obfuscate the circuit and recover the original design. The vulnerabilities in

existing circuit obfuscation techniques motivate this work to develop new and more

secure countermeasures.

The first contribution of this work is to enhance the security of existing circuit

obfuscation techniques (e.g., logic locking) so that de-obfuscation attacks would be

9

computationally infeasible. We have investigated various attacks on logic locking

and developed countermeasures that can thwart such attacks in a provably-secure

manner. The second contribution of this work is to investigate the security of ex-

isting logic locking techniques when applied to emerging hardware design such as

neural network chips. We proposed new attack and defense strategies to enhance

the security of locking neural chips. The third contribution of this work is to de-

velop completely new design techniques that exploit new obfuscation possibilities in

hardware design. For example, conventional circuit obfuscation techniques aim at

obfuscating the digital aspects (e.g., the Boolean functionality) of a circuit while its

counterpart, the analog aspects (e.g., timing, power, etc.) are not fully exploited.

We explore new opportunities in obfuscating the parametric characteristics so that

another layer of defense can be added to existing countermeasures. In addition,

we explore emerging fabrication technologies (e.g., 3D integration) for obfuscation,

which opens new opportunities in protecting the outsourced IC design. Overall, we

develop the following design obfuscation techniques to enhance chip security against

untrusted foundries.

• Anti-SAT: Secure Logic Locking Against SAT Attack. Logic locking is

a circuit obfuscation technique that has been proposed to protect outsourced

IC designs from piracy and counterfeiting by untrusted foundries. A locked

IC preserves the correct functionality only when a correct key is provided.

Recently, the security of logic locking is threatened by a new satisfiability

(SAT) checking based attack, denoted as SAT attack [24]. The SAT attack

10

can decipher the correct key of most logic locking techniques within a few

hours even for a reasonably large number of keys. In this work, we present a

circuit block (referred to as Anti-SAT block) to thwart the SAT attack. We

show that the number of SAT attack iterations required to reveal the correct

key in a circuit comprising an Anti-SAT block is an exponential function of

the key-size thereby making the SAT attack computationally infeasible.

• Strong Anti-SAT: Secure Logic Locking for Neural Network Chips.

In this work, we investigate the security of logic locking when it’s applied

to a neural network chip. Locking neural chips is not the same as locking

conventional chips in two aspects. Firstly, most neural network applications

are inherently error-tolerant. The classification accuracy of a neural network

would be acceptable even when some of its underlying computations are incor-

rect. This can be exploited by an attacker who can just find an approximate

key instead of a correct key to approximately unlock the chip such that it

can output correctly for most inputs. Secondly, most neural network models

are tune-able (e.g., by fine-tuning the weight values). An attacker can adjust

his own neural models to accommodate the approximately-unlocked neural

chips, hence further improving the classification accuracy. To address these

new challenges, we propose a novel locking technique called Strong Anti-SAT

to protect the neural chips against untrusted foundries.

• Delay Locking: Security Enhancement of Logic Locking Against

Overproduction and Counterfeiting. In this work, we propose a new

11

obfuscation technique called delay locking. For delay locking, the key to a

locked circuit not only determines its functionality but also its timing profile.

A functionality-correct but timing-incorrect key will result in timing violations

and thus make the circuit malfunction. With delay locking, functionality ori-

ented attacks (e.g., SAT attack) are thwarted because they cannot be utilized

to decipher a timing-correct key.

• Security-aware Design Flow for 2.5D IC Split Fabrication. 3D in-

tegration is a technology that integrates multiple 2D dies to create a single

high-performance chip, referred to as 3D IC. With 3D integration, a designer

can choose a portion of layers at his discretion and fabricate them in a trusted

foundry while outsourcing the rest to untrusted foundries for advanced fab-

rication technology. This split fabrication strategy of 3D ICs creates a new

opportunity to obfuscate the outsourced designs. In this work, we propose a

security-aware physical design flow for interposer-based 3D IC (also known as

2.5D IC) technology to prevent supply chain attacks by untrusted foundries.

1.2.3 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we intro-

duce the supply chain attacks by untrusted foundries and summarize various circuit

obfuscation techniques that have been proposed to prevent IC designs from being

pirated, overproduced or counterfeited. In Chapter 3, we discuss a new logic lock-

ing technique called Anti-SAT and validate its security against SAT attack. These

12

results have been published in [31,32]. In Chapter 4, we first investigate new attack

strategies for a neural chip that’s locked with Anti-SAT. Based on the attack results,

we discuss a new defense called Strong Anti-SAT to enhance the security of logic

locking for neural chips. In Chapter 5, we describe a new obfuscation technique

called delay locking that obfuscates the timing profile of an IC design. The results

have been published in [33]. In Chapter 6, we introduce a security-aware design flow

for 2.5D IC split fabrication. Part of the results were published in [34–38]. Finally,

Chapter 7 concludes this dissertation and discusses future work.

13

Chapter 2: Background

In this chapter, we give an overview of supply chain attacks in fabrication

phase with a focus on hardware IP threats. We will describe the attack model,

attack schemes and summarize various types of attack mitigation techniques.

2.1 Supply Chain Attacks for IP Piracy

As introduced in Section 1.1.1, IC designs are increasingly outsourced to an

offshore foundry for fabrication. Since the foundry might not be trustworthy, the

outsourced IC design might be pirated, overproduced, counterfeited or maliciously

modified. In this dissertation, we focus on hardware IP threats. We assume that the

attacker is an untrusted foundry and its primary objective is to steal the hardware

IP or overproduce/counterfeit the chips to make profits. However, as design tech-

niques such as circuit obfuscations (which will be discussed in Section 2.2) have been

proposed to thwart the supply chain attacks, the attacker might have to circumvent

these countermeasures before performing further attacks. Following sections will

formally describe the attack model and attack schemes.

14

2.1.1 Attack Model

We assume that the attacker is an untrusted foundry which fabricates chips

for an IC design company (designer). The attacker’s objective is to 1) learn about

the design implementation and steal the IC design and 2) overproduce or counterfeit

the IC design. The untrusted foundry has access to two components:

1. Layout files of an IC design, provided by the IC design company. These out-

sourced layout files are assumed to be correctly and securely designed using

trusted Electronic Design Automation (EDA) tools for logic synthesis and

physical design. We assume that the attacker has the ability to reverse-

engineer the layouts to obtain their gate-level netlists using state-of-the-art

IC reverse-engineering techniques [10]. Such reverse-engineering capability

enables the attacker to analyze and pirate the IC design.

2. A functional chip, obtained from the open market. This chip will function

correctly as a black-box, i.e., it will produce correct outputs but the imple-

mentation detail of the chip is not known. This component gives the attacker

the ability to query correct input/output responses from the functional chip.

As will be discussed later, such ability can help the attacker to circumvent

certain defense techniques.

The aforementioned attack model has been widely used in most works on hardware

IP protection against malicious foundries [22–24, 26, 36, 39–44]. In some research

works, only the first component is assumed to be accessible to attackers [27–29].

15

2.1.2 Attack Schemes

We consider two attack schemes based on whether an outsourced design is

obfuscated or not.

• Design Without Obfuscation. If the outsourced design is not obfuscated, the

foundry can directly perform the supply chain attacks such as IP piracy, over-

production, and counterfeiting, as described in Section 1.1.1.2. It can reverse-

engineer the layout and pirate the IP, overproduce extra unauthorized chip

copies, and produce counterfeit products that utilize out-of-spec, fake or recy-

cled chips.

• Design With Obfuscation. If the outsourced design is obfuscated, the foundry

has to first de-obfuscate the circuit before performing the supply chain attacks.

As described in Section 2.1.1, the attacker has access to two components which

can be exploited for circuit de-obfuscation. The first component is the obfus-

cated layout files provided by the designer, which is accessible during the

fabrication phase. These layout files can be reverse-engineered to gate-level

netlists which can provide more information about the obfuscated design. The

second component is a functional chip, which is accessible only after the de-

signer has deployed the chips to the open market. This functional chip can be

used to query correct input/output patterns which could assist the attacker

in de-obfuscating the circuit.

16

Figure 2.1: An IC design and fabrication flow enhanced with circuit obfuscation.

2.2 Circuit Obfuscation

The security threats in outsourced chip fabrication have heightened the need

for effective countermeasures. One set of techniques to prevent the supply chain at-

tacks is to obfuscate the functionality and implementation detail of the outsourced

circuit design so as to confuse the untrusted foundry. In this section, we will first

summarize various circuit obfuscation techniques. Then, we will introduce two ob-

fuscation techniques, namely logic locking and split fabrication, in more detail.

2.2.1 Overview of Circuit Obfuscation

Fig. 2.1 shows an IC design and fabrication flow that’s enhanced with circuit

obfuscation. During design time, a circuit design can be obfuscated at different

design stages to hide its functionality and implementation. After that, the lay-

out of the obfuscated design is outsourced to an untrusted foundry for fabrication.

Without knowing the correct functionality or implementation, an attacker cannot

reverse-engineer the original circuit design or overproduce any functional chips. Af-

17

ter fabrication, the non-functional chips will be sent to the designer or trusted

third-party, which can de-obfuscate these chips to regain the functional chips and

sell them to market.

Circuit obfuscation can be implemented at different levels, namely finite-state-

machine (FSM) level, gate level, and layout level.

• FSM Level. FSM is a representation of the Boolean function of sequential

circuits. An FSM normally consists of inputs, outputs, states, and transitions.

Active metering [19] is an FSM-level obfuscation technique. In this technique,

an FSM is obfuscated by adding extra non-functional states and transitions.

To enter a valid functional state, one would need to provide a sequence of

inputs (called pass-key), which converts an initial non-functional state into a

valid functional state. Obfuscated FSMs can be integrated with other RTL

design to obfuscate its control and data flow, as proposed in [45,46].

• Gate Level. Obfuscation can also happen at the gate level after the Boolean

logic is synthesized into a gate-level netlist. Given a gate-level netlist, a de-

signer can obfuscate its combinational portion by modifying the original design

such that the functionality of obfuscated netlist are different from the original

one. The key aspect is that these netlist modifications should be recoverable by

the designer or other trustworthy parties after the chips are fabricated. Logic

locking 1 [20] is a gate-level obfuscation technique that obfuscates a netlist by

inserting a set of key-controlled logic gates (key-gates) and key-inputs. The

1Logic locking is also known as logic encryption [47] and logic obfuscation [22].

18

locked netlist preserves the original functionality only when a correct key is

provided. On the other hand, a wrong key can cause faults inside the netlist

and make it output incorrectly. Chip Editor [48] is another gate-level cir-

cuit obfuscation technique. During design time, a designer can obfuscate the

gate-level netlist by adding extra gates and wires. After receiving the chips

fabricated in untrusted foundries, the designer or trusted third parties can

use focused ion beam (FIB) based chip edit technology to directly modify the

chips to nullify the extra gates or wires, thereby making the chips function

correctly [48].

• Layout Level. A circuit layout is typically composed of multiple metal layers

and device layers. At the layout level, a circuit can be obfuscated by splitting

its layout into two tiers: a trusted tier and an untrusted tier. The untrusted

tier consists of layers which require advanced semiconductor technology, so it is

outsourced to an untrusted foundry. On the other hand, the trusted tier which

contains less advanced layers can be fabricated in a trusted foundry for security.

The final integration of two tiers is also done securely in the trusted foundry.

This security-oriented fabrication strategy is called split fabrication [21]. By

having two tiers fabricated separately, the untrusted foundry could not have

access to the trusted tier and thus cannot have a complete view of the IC

design.

In the remaining of this section, we will discuss two obfuscation techniques

logic locking and split fabrication in more detail.

19

Figure 2.2: Logic locking techniques: (a) overiew; (b) an original netlist; (c)

XOR/XNOR based; (d) MUX based; (e) LUT based.

2.2.2 Logic Locking

2.2.2.1 Basic Idea

Logic locking [20] is a gate-level obfuscation technique. It obfuscates the com-

binational part of a circuit design by inserting a set of key-controlled logic gates

(key-gates) and key-inputs. Fig. 2.2 shows the overview of logic locking techniques.

A circuit is locked by inserting a set of key-gates and key-inputs. The key-inputs

are connected to an on-chip memory and the locked IC preserves the correct func-

tionality only when a correct key is set to the on-chip memory. After inserting the

key-gates, the obfuscated netlist will be re-synthesized so that the key-gates can

blend into the original netlist, which prevents them from being identified and re-

moved. To prevent the untrusted foundry from probing internal signals of a running

chip, a tamper-proof chip protection shall be implemented.

Recent years have seen various logic locking techniques based on different key-

20

gate types and key-gate insertion algorithms. According to the key-gate types, they

can be classified into three major categories: XOR/XNOR based logic locking [20,

22, 47], multiplexer (MUX) based logic locking [23, 39, 47, 49] and Look-Up-Table

(LUT) based logic locking [50–52], as shown in Fig. 2.2(c-e). Besides these three

major types of key-gates, previous works have also investigated the use of AND/OR

gates [53] and other special logic blocks [45] as the key-gates. Among all, the

XOR/XNOR based logic locking has received the most attention mainly due to its

simple structure and low performance overhead.

Different key-gate insertion algorithms have also been proposed [20, 22, 23,

39, 47, 53], which aim at identifying the optimal locations for key-gates to improve

the security of the logic locking technique. The simplest algorithm is the random

insertion [20], where key-gates are distributed randomly to different locations of

the netlist. To increase fault impact, a fault-analysis based insertion algorithm [47]

proposed to insert the key-gates at locations that can maximally corrupt the primary

outputs (POs) when an incorrect key is given. This algorithm ensures that the

functionality of the locked circuit (with an incorrect key) would deviate substantially

from the original one. Following these two prior works [20, 47], researchers have

started to develop key-learning attacks and proposed new logic locking algorithms

to thwart such attacks [22, 23,39,53].

21

2.2.2.2 Attacks on Logic Locking

The attacks on logic locking assume that the attacker has access to two com-

ponents: 1) a locked netlist which can be obtained by reverse-engineering the layout

files provided by the designer and 2) an unlocked functional chip obtained from open

market, as mentioned earlier in Section 2.1.1. The attack objective is to obtain the

correct key by utilizing these two components.

• Brute-force Attack [39]. A circuit netlist normally has multiple outputs. The

functionality of each output is determined by a slice of sub-netlist that’s re-

ferred to as logic cone. In this attack, an attacker firstly segments a locked

netlist into multiple logic cones, each containing a subset of keys. After that,

the attacker targets the logic cones one by one, from the simplest (the one has

the least keys) to the most complicated (the one has the most keys). For each

logic cone, a brute-force search attack is used to find a correct key. To thwart

this attack, a logic-cone analysis based insertion algorithm was proposed to

increase the number of key-gates per logic cone using MUX based key-gates.

• Hill-climbing Search Attack [23]. This attack is based on the assumption that

the output correctness of a locked circuit is proportional to the correctness of

a key. It uses a hill-climbing based searching algorithm that toggles a guessed

key bit-by-bit to search a direction that can improve output correctness (for

a set of test inputs). The attack terminates when the guessed key can make a

circuit output correctly for the test set. To thwart this attack, a MUX-based

22

gradient-obfuscated locking method was proposed which aims at reducing the

sensitivity of circuit outputs to the key toggle.

• Key-sensitizing Attack [22]. This attack uses automatic test pattern genera-

tion (ATPG) tool to find a set of input patterns that can sensitize the correct

key values to POs. The attacker first analyzes the locked netlist to find specific

input pattern that can create a path for keys to be sensitized to POs. Then,

he can apply that input on an unlocked functional chip and observe the correct

key. To mitigate this attack, an interference-analysis based insertion algorithm

called Strong Logic Locking (SLL) was proposed which places the key-gates

at locations with strong interferences (i.e., not dispersed or isolated). This

increases the difficulty of finding an effective sensitizing path from key-inputs

to POs.

• Side-channel Attacks (SCAs) [26, 40]. In [26], a Differential Power Analysis

(DPA) based SCA was proposed to find the correct key by statistically corre-

lating the power trace and the key values. To counter this attack, the authors

suggest to 1) increase the key-input to primary input ratio in a given logic

cone and 2) insert key-gates at selected locations such that incorrect key bi-

ases the POs towards a constant value on average. In [40], a finer-grain power

SCA based on Template Analysis (TA) was proposed. It monitors power trace

samples with respect to different logic depths (determined by arrival time of

each gate) from the functional chip. This information is used as a template

to guide finding the correct keys. Potential direction to counter the TA is to

23

equalize the logic depths of all key-gates through specific layout design.

• SAT-based Attacks [24,41–44]. Recently, the security of logic locking is threat-

ened by a new attack called SAT attack [24], which can decipher the correct

key of most logic locking techniques [20,22,47,50,53] within a few hours even

for a reasonably large key-size. This attack iteratively solves SAT formulas

which can progressively eliminate the incorrect keys till the circuit is unlocked.

Based on [24], various SAT attack variants have been proposed, including ap-

proximate SAT (AppSAT) [41], Double-DIP [42], CycSAT [43] and model

checker [44]. These attacks extend the original SAT attack to enhance its

effectiveness. Developing secure countermeasures against SAT-based attacks

remains an active area of research.

2.2.3 Split Fabrication

2.2.3.1 Basic Idea

Split fabrication [21] is a layout-level circuit obfuscation technique. A layout

normally consists of multiple metal layers and device layers. A circuit can be obfus-

cated by splitting its layout layers into two tiers. One tier is called the untrusted tier

because it’s outsourced to an untrusted offshore foundry for advanced semiconduc-

tor technology. The other tier is called the trusted tier because it is fabricated in a

trusted foundry for security. After fabrication, two tiers are aligned and integrated

together in the trusted foundry. By having two tiers fabricated separately, the un-

trusted foundry could not have access to the trusted tier and thus cannot have a

24

(a)

(b)

(c)

Figure 2.3: Split fabrication: (a) 2D IC; (b) 3D IC; (c) 2.5D IC.

complete view of the design.

The split fabrication strategy can be applied to conventional 2D IC technology

and emerging 3D IC technologies.

• 2D IC based Split Fabrication. Fig. 2.3 (a) shows a cross-section of a 2D IC

layout, which consists of multiple metal layers and a device layer. For 2D IC

split fabrication [27, 54–57], the layout layers are divided into a Front-End-

25

of-Line (FEOL) tier that contains the device layer and lower metal layers,

and a Back-End-of-Line (BEOL) tier that contains only higher metal layers.

The FEOL tier is outsourced to an untrusted foundry for advanced fabrication

technology while the fabrication of the BEOL tier and the final integration are

securely implemented in a trusted foundry. As a result, interconnect wires in

the BEOL tier are kept secret from the untrusted foundry.

• 3D IC based Split Fabrication. 3D integration is a technology that vertically

integrates multiple 2D dies to create a single high-performance chip, referred

to as 3D IC (as shown in Fig. 2.3 (b)). Split fabrication for 3D ICs can be done

in two approaches [58–60]. In one approach, some 2D dies are fabricated in a

trusted foundry as the trusted tier while others are fabricated in an untrusted

foundry as the untrusted tier, as shown in Fig. 2.3 (b). With that, a portion

of circuit design in the trusted tier are not directly accessible to the untrusted

foundry. In another approach, all 2D dies are outsourced to offshore foundries,

but they are securely aligned and integrated in a trusted foundry. By doing so,

the vertical connections between dies are kept secret. Although the offshore

foundry can reverse-engineer the layout of each die, the retrieved netlist is

incomplete because it lacks the vertical inter-die connections. Such incomplete

netlist would be incomprehensible if a circuit design is intelligently partitioned

into different dies in an obfuscated manner.

• 2.5D IC based Split Fabrication. Interposer-based 3D IC, also known as 2.5D

IC, is a special form of 3D IC. As shown in Fig. 2.3(c), 2.5D IC places multiple

26

2D dies side-by-side and stacks them on a silicon interposer. The interposer

contains both horizontal chip-scale interconnect wires between dies as well as

vertical interconnect TSVs to external I/O pins. While commercial large-scale

3D IC is still being developed, the 2.5D product is already in the market, such

as Xilinx Virtex-7 2000T [61]. For 2.5D IC split fabrication [34–38, 62, 63],

the silicon interposer is fabricated in the trusted foundry as the trusted tier

while the dies are outsourced to offshore foundries as the untrusted tier. The

final integration is also implemented in the trusted foundry. Accordingly, the

interconnection in the interposer is hidden from the untrusted foundry.

2.2.3.2 Attacks on Split Fabrication

The security of split fabrication rests upon the assumption that the attacker

does not know the hidden portion (the trusted tier) and cannot infer it based on

the exposed portion of design (the untrusted tier). Otherwise, the attacker can

reconstruct the complete design and continue to pirate or overproduce it. Attacks

on 2D and 2.5D split fabrication have been proposed in recent literature [27–29,34].

To infer the hidden wires in the trusted tier, Rajendran et al. [27] proposed an

attack called proximity attack. The attack is based on the observation that modern

floorplanning and placement tool will place two connected input/output pins closely

so as to reduce the interconnect wire-length. However, the physical proximity of two

connected pins leaks the information of the hidden connections. Since the layout

information of the untrusted tier is known to the attacker, he can obtain the position

27

of all input/output pins. With this, he can iteratively connect an output pin to

its closet input pin until a netlist is reconstructed. Extensions of the proximity

attack have been proposed, which exploit extra layout information such as routing

proximity [29], input/output capacitance and timing constraints [28].

28

Chapter 3: Anti-SAT: Secure Logic Locking Against SAT Attack

3.1 Introduction

In Section 2.2.2, we have introduced a circuit obfuscation technique called logic

locking, which can be used to protect outsourced IC designs from being pirated or

counterfeited by untrusted foundries. Fig. 3.1 shows a simple example of logic

locking. A gate-level netlist is locked by inserting a set of key-gates and key-inputs.

The locked netlist preserves the correct functionality only when a correct key is

provided to the key-inputs. Recently, the security of logic locking is threatened by

a strong attack called SAT attack, which can decipher the correct key of most logic

locking techniques within a few hours [24] even for a reasonably large key-size. This

attack iteratively solves SAT formulas which progressively eliminate the incorrect

keys till the circuit is unlocked. In this chapter, we present a circuit block (referred

(a) (b)

Figure 3.1: Logic locking: (a) original circuit; (b) locked circuit.

29

to as Anti-SAT block) to enhance the security of existing logic locking techniques

against the SAT attack. We show using a mathematical proof that the number of

SAT attack iterations to reveal the correct key in a circuit comprising an Anti-SAT

block is an exponential function of the key-size thereby making the SAT attack

computationally infeasible. Besides, we address the vulnerability of the Anti-SAT

block to various removal attacks and investigate obfuscation techniques to prevent

these removal attacks. More importantly, we provide a proof showing that these

obfuscation techniques for making Anti-SAT un-removable would not weaken the

Anti-SAT block’s resistance to SAT attack. The contributions of this work are as

follows.

• We propose an Anti-SAT circuit block to mitigate the SAT attack on logic

locking. We illustrate how to construct the functionality of the Anti-SAT

block and use a mathematically rigorous approach to prove that if chosen

correctly, the Anti-SAT block makes SAT attack computationally infeasible

(exponential in key-size).

• The Anti-SAT block might be subject to attacks that intend to identify and

nullify it, which are called removal attacks. We investigate a unified obfusca-

tion technique to hide the functionality and structure of the Anti-SAT block.

Also, we provide a proof showing that the obfuscation technique would not

weaken the Anti-SAT block’s resistance to the SAT attack.

• Rigorous analysis and experiments on 6 circuits from ISCAS85 and MCNC

benchmark suites have been conducted to validate the effectiveness of our

30

proposed technique in improving the security of existing logic locking tech-

niques.

3.2 Preliminary: SAT Attack

Recently, Subramanyan et al. [24] proposed a new attack called SAT attack

that can effectively break many logic locking techniques including [20,22,47,50,53].

3.2.1 Attack Model

The SAT attack is based on the same attack model as discussed in Sec-

tion 2.1.1. It assumes that the attacker is an untrusted foundry whose objective

is to obtain the correct key of a locked circuit and then pirate or overprudce the

unlocked IC design. The attacker has access to the following two components: 1) a

gate-level locked netlist, which can be obtained by reverse-engineering the layout file

provided by the designer and 2) an activated functional chip, which can be obtained

from an open market. The followings discuss the insight and algorithm of the SAT

attack.

3.2.2 Attack Insight

The key idea of the SAT attack is to reveal the correct key using a small number

of carefully selected inputs and their correct outputs observed from an activated

functional chip. These special input/output pairs are referred to as distinguishing

input/output (DIO) pairs. Each DIO can be used to identify a subset of wrong

31

key combinations based on circuit satisfiability checking. Together, these DIOs

guarantee that only the correct key can be consistent with these correct I/O pairs.

This implies that a key that correctly matches the inputs to the outputs for all the

DIOs must be the correct key. The crus of the SAT attack is to find this set of

DIOs by iteratively building and solving a sequence of SAT formulas (which will be

discussed later).

Definition 1 (Wrong key combination). Consider the logic function ~Y = fl(~X, ~K)

and its SAT formula C(~X, ~K, ~Y) in conjunctive normal form (CNF). Let (~X, ~Y) =

(~Xi, ~Yi), where (~Xi, ~Yi) is a correct I/O pair. The set of key combinations WKi which

result in an incorrect output of the logic circuit (i.e., ~Yi 6= fl(~Xi, ~K), ∀ ~K ∈ WKi)

is called the set of wrong key combinations identified by the I/O pair (~Xi, ~Yi). In

terms of SAT formula, it can be represented as C(~Xi, ~K, ~Yi) = False, ∀ ~K ∈ WKi.

Definition 2 (Distinguishing input/output (DIO) pair). As noted above, the

SAT attack shall solve a set of SAT formulas iteratively. In each iteration, it shall

find a correct I/O pair to identify a subset of wrong key combinations until none of

these are left. An I/O pair at i-th iteration is a DIO, denoted as (~Xd
i , ~Y

d
i), if it can

identify a unique subset of wrong key combinations that cannot be identified by the

previous i− 1 DIOs, i.e., WKi * (∪j=i−1
j=1 WKj), where WKi is the set of wrong key

combinations identified by the DIO at i-th iteration.

The crux of the SAT attack algorithm relies on finding the DIOs iteratively

to identify unique wrong key combinations (see Definition 2) until no further ones

can be found. At this point, the set of all DIOs together can identify all wrong key

32

combinations thereby revealing the correct one. An illustration of the SAT attack

process is shown in Fig. 3.2. In each iteration, the SAT attack will find a new

DIO that can rule out a subset of wrong key combinations WKi. Notice that each

iteration can identify unique wrong key combinations that are not belong to the

ones discovered previously, i.e., WKi * (∪j=i−1
j=1 WKj). The attack terminates when

all wrong key combinations are identified.

Figure 3.2: Illustration of the iterative SAT attack process. Wrong key combinations

are iteratively identified by a set of DIOs till no new ones exist. WKi is the set of

wrong key combinations identified by i-th DIO.

Take the XOR/XNOR based locked circuit in Fig. 3.1 as an example. At first

iteration, the I/O pair (~Xd
1 ,
~Y d

1) = (00, 10) is a distinguishing I/O pair because it can

rule out wrong key combinations ~K = (01), (10), and (11) as these key combinations

will result in incorrect outputs (y1y2) = (11), (00) and (01), respectively. Since this

single I/O observation has already ruled out all incorrect key combinations, we have

revealed the correct key ~K = (00). In general, a small number of correct I/O pairs

(compared to all possible I/O pairs) are usually enough to infer the correct key [24].

As a result, the SAT attack is efficient because it only requires a small number of

iterations to find these distinguishing I/O pairs.

33

3.2.3 Attack Algorithm

As noted above, the central theme of SAT attack algorithm is to iteratively find

distinguishing I/O pairs till no new ones can be found. To find such distinguishing

I/O pairs, the SAT attack algorithm iteratively formulates a SAT formula that can

be solved by SAT solvers. The SAT formula Fi at i-th iteration is:

Fi :=C(~X, ~K1, ~Y1) ∧ C(~X, ~K2, ~Y2) ∧ (~Y1 6= ~Y2)

(

j=i−1∧
j=1

C(~Xd
j , ~K1, ~Y

d
j)) ∧ (

j=i−1∧
j=1

C(~Xd
j ,
~K2, ~Y

d
j))

(3.1)

Let’s look at this SAT formula Fi line by line. Recall that C(~X, ~K, ~Y) is the SAT

formula of a locked circuit with PIs ~X, key-inputs ~K, and POs ~Y . Besides, ~Xd
j is

the distinguishing input identified in the previous j-th iteration and ~Y d
j is the corre-

sponding correct output. This correct output is know from the activated functional

chip obtained from the open market.

• The first line of Eq. (3.1) can be interpreted as a Miter-like circuit [64] as

shown in Fig. 3.3. Specifically, C(~X, ~K1, ~Y1) can be viewed as the first copy

of the locked circuit and C(~X, ~K2, ~Y2) is the second copy of the locked circuit,

where ~X, ~K1, ~K2, ~Y1, ~Y2 are all unknown variables. As seen, these two circuit

copies share the same PIs ~X but have different key-inputs and different POs.

The clauses (~Y1 6= ~Y2) enforce that two POs must be different in order to

satisfy this SAT formula.

• In the second line of Eq. (3.1), C(~Xd
j , ~K1, ~Y

d
j) can be viewed as another copy

of the locked circuit, where its PIs are fixed to known values ~Xd
j , POs are

34

Figure 3.3: Miter-like circuit for finding distinguishing inputs.

fixed to known values ~Y d
j , and the key-inputs are connected to ~K1. Similarly,

C(~Xd
j , ~K2, ~Y

d
j) can be viewed in the same way but the key-inputs are connected

to ~K2.

If Eq. (3.1) is satisfiable, an assignment for variables ~X, ~K1, ~K2, ~Y1, ~Y2 will be

generated. Let’s denote the values assigned to ~X as ~Xd
i . The first line in the

formula Eq. (3.1) guarantees that the input ~X = ~Xd
i is capable of identifying two

keys ~K1, ~K2 which produce different outputs (see ~Y1 6= ~Y2). In other words, at least

one of the key assignments is incorrect. This in itself is not enough to call ~X = ~Xd
i as

a distinguishing input. According to Definition 2, a distinguishing input in the i-th

iteration must find unique wrong key combinations that have not been identified by

previous i− 1 DIOs. This condition is checked by the second line of Eq. (3.1). The

clauses in line 2 guarantee that the keys ~K1 and ~K2 which result in different outputs

in line 1 of this formula produce the correct outputs for all previous DIOs. Hence, in

35

this iteration we could identify at least one incorrect key combination which previous

iterations could not. Therefore, by Definition 2 the input ~Xd
i (obtained from the

SAT solver) and the corresponding correct output ~Y d
i (obtained from the activated

chip) represent the i-th DIO pair. The processing of finding DIOs is continued till

no new ones can be found (assuming after λ iterations). At this point, a correct key

can be obtained by solving the following SAT formula G:

G :=
λ∧
i=1

C(~Xd
i ,
~K, ~Y d

i) (3.2)

Basically it finds a key ~K which satisfies the correct functionality for all the DIOs.

This must be the correct key since no other DIOs exist at this point (see Definition 2).

The SAT attack algorithm is shown in Algorithm 1. It starts by first solving

the line 1 of the SAT formula Eq. (3.1) and as iterations progress it adds the clauses

comprised in line 2 of the formula Eq. (3.1). It stops when the resulting SAT

formula is unsatisfiable indicating no further DIOs exist. The correct key is obtained

by finding a key value which satisfies the correct I/O behavior of all the DIOs

(Eq. (3.2)). This algorithm is guaranteed to find the correct key. Please refer to [24]

for any further theoretical details.

3.3 Motivation and Problem Statement

As discussed in Section 3.2, the SAT attack [24] has created a new security

concern on the logic locking technique. Note that the SAT attack is an iterative

36

Algorithm 1 SAT Attack Algorithm [24]
Input: C and eval

Output: ~KC

1: i := 1;

2: Gi := True;

3: Fi := C(~X, ~K1, ~Y1) ∧ C(~X, ~K2, ~Y2) ∧ (~Y1 6= ~Y2);

4: while sat[Fi] do

5: ~Xd
i := sat assignment ~X [Fi];

6: ~Y d
i := eval(~Xd

i);

7: Gi+1 := Gi ∧ C(~Xd
i ,
~K, ~Y d

i);

8: Fi+1 := Fi ∧ C(~Xd
i ,
~K1, ~Y

d
i) ∧ C(~Xd

i ,
~K2, ~Y

d
i);

9: i := i+ 1;

10: end while

11: ~KC := sat assignment ~K(Gi);

process, the efficiency of SAT attack can be evaluated by the total execution time:

T =
λ∑
i=1

ti (3.3)

where λ is the total number of SAT attack iterations and ti is the SAT solving time

for i-th iteration. Consequently, the SAT attack can be mitigated if ti is large and/or

λ is large. λ depends on the key-size and key location in the locked circuit. However,

simply increasing the key-size or trying different key locations may not effectively

thwart the SAT attack. As shown in the SAT attack results [24], even with large

number of keys (50% area overhead), for six previously proposed key-gate insertion

algorithms [20, 22, 47, 50, 53], 86% benchmarks on average can still be unlocked in

37

10 hours.

This serious security threat motivates us to investigate a SAT attack resistant

logic locking design. We want to develop a light-weight SAT-attack resistant circuit

block (denoted as the Anti-SAT block) to enhance the security of conventional logic

locking against the SAT attack. The Anti-SAT block will be integrated into the

original circuit to thwart the SAT attack. The objective is to construct the Anti-

SAT block and use a mathematically rigorous approach to prove that if chosen

correctly, the Anti-SAT block makes the SAT attack iterations grow exponentially

in key-size, thereby making SAT attack computationally infeasible. Besides, to

prevent the Anti-SAT block from being identified (and removed by an attacker), we

shall develop obfuscation techniques to hide the functionality and structure of the

Anti-SAT block.

3.4 Anti-SAT Based Logic Locking

To mitigate the SAT attack, we propose to insert a relatively light-weight

circuit block (referred to as Anti-SAT block) that can efficiently increase the number

of iterations λ so as to increase the total execution time T .

3.4.1 Anti-SAT Configurations

Fig. 3.4(a) and Fig. 3.4(b) illustrate two configurations of the proposed Anti-

SAT block, referred to as type-0 Anti-SAT and type-1 Anti-SAT. They consist

of two logic blocks g and g, which share the same set of inputs ~X = (X1...Xn).

38

Figure 3.4: Anti-SAT block configuration: (a) type-0 Anti-SAT: always outputs 0

if key values are correct; (b) type-1 Anti-SAT: always outputs 1 if key values are

correct; (c) integrating the Type-0 Anti-SAT block into a circuit.

The functionalities of g and g are complementary. A set of key-gates (XORs 1)

are inserted at the inputs of two logic blocks, denoted as ~Kl1 = (K1...Kn) and

~Kl2 = (Kn+1...K2n). Hence the key-size is 2n. The output of g and g are fed into

an AND2 gate (for Fig. 3.4(a)) or an OR2 gate (for Fig. 3.4(b)) to form the final

single-bit output Y . As a result, we have Y = g(~X ⊕ ~Kl1) ∧ g(~X ⊕ ~Kl2) for type-0

1Note that here we are using only XOR gates as key-gates for the sake of ease of explanation.

The key-gates used could be either XOR or XNOR gates (+ inverters) based on a user-defined

key [47]. The usage of inverters can remove the association between key-gate types and key-values

(e.g., the correct key into an XOR gate can be either 0 or 1). Besides, the synthesis tools can

“bubble push” the inverters to their fan-out gates and an attacker cannot easily identify which

inverters are part of the key-gates [47]. Therefore, the attacker cannot obtain the correct key-values

by simply inspecting the key-gate types.

39

Anti-SAT and Y = g(~X ⊕ ~Kl1) ∨ g(~X ⊕ ~Kl2) for type-1 Anti-SAT.

Constant-output Property: One basic property of Anti-SAT block is that

when the key vector is correctly set, the output Y is a constant. Specifically, given a

correct key, Y always outputs value 0 for type-0 Anti-SAT (Fig. 3.4(a)) and always

outputs value 1 for type-1 Anti-SAT (Fig. 3.4(b)). On the other hand, when a wrong

key is given, Y can output either 1 or 0 depending on the inputs ~X. This property

enables it to be integrated into the original circuit. Fig. 3.4(c) shows an example of

integrating a type-0 Anti-SAT into a circuit. As seen, the inputs of Anti-SAT block

~X are from the wires in the original circuit. The output Y is connected into the

original circuit using an XOR gate. When a correct key is provided, the output Y

always equals to 0 (so the XOR gate behaves as a buffer) and thus will not affect

the functionality of the original circuit. If a wrong key is provided, Y can be 1 for

some inputs (so the XOR gate behaves as an inverter) and thus can produce a fault

in the original circuit. Similarly, the type-1 Anti-SAT block can be integrated into

the original circuit using an XNOR gate.

Correct Keys: Since the Anti-SAT block has 2n keys, the total number of

wrong key combinations is 22n−c, assuming there exists c correct key combinations.

To ensure the constant-output property, the correct keys for the Anti-SAT block

would be the ones that make type-0 Anti-SAT always output 0 and type-1 Anti-

SAT always output 1. We can design g such that this happens when i-th key-bit

from ~Kl1 and i-th key-bit from ~Kl2 have the same value. So the number of correct

key combinations c = 2n for both types of Anti-SAT blocks and the number of wrong

40

key combinations is 22n − 2n.

In the subsequent sections, we provide details on constructing the Anti-SAT

block (i.e., the functionality of g) and its impact on SAT attack complexity. We

provide a rigorous mathematical analysis which gives a provable lower bound to the

number of SAT attack iterations. For some constructions of g, this lower bound is

exponential in the key-size thereby making the SAT-attack complexity very high.

3.4.2 SAT Attack Resistance Analysis

Here we analyze the complexity of SAT attack on the Anti-SAT block (assum-

ing this is the circuit being attacked to decipher the 2n key bits).

Terminology Given a Boolean function g(~L) with n inputs, assuming there exists

p input vectors that make g equal to one (denote p as on-set size, 1 ≤ p ≤ 2n − 1),

we can classify the input vectors ~L into two groups LT and LF , where one group

makes g = 1 and another makes g = 0:

LT = {~L|g(~L) = 1}, (|LT | = p)

LF = {~L|g(~L) = 0}, (|LF | = 2n − p)
(3.4)

The function g and its complementary function g are used to construct the Anti-SAT

block as shown in Fig. 3.4.

Theorem 3.4.1. Assuming the on-set size p of function g is sufficiently close to 1

or sufficiently close to 2n− 1, the number of iterations needed by the SAT attack to

decipher the correct key is lower bounded by 2n.

Proof for Type-0 Anti-SAT. As shown in Section 3.2, the SAT attack algorithm will

41

iteratively find a DIO (~Xd
i , Y d

i) to identify wrong key combinations in the Anti-

SAT block until all wrong key combinations are identified. In the i-th iteration,

the corresponding DIO can identify a subset of wrong key combinations, denoted as

WKi. Notice that for any input combinations (including the distinguishing inputs

~Xd
i), the correct output (when provided the correct key) is 0 for type-0 Anti-SAT.

Therefore, a wrong key combination ~K = (~Kl1, ~Kl2) ∈ WKi which was identified by

(~Xd
i , Y d

i) must produce the Anti-SAT block output incorrectly as 1. This condition

is described below.

Y d
i = g(~Xd

i ⊕ ~Kl1) ∧ g(~Xd
i ⊕ ~Kl2) = 1

⇔ (g(~Xd
i ⊕ ~Kl1) = 1) ∧ (g(~Xd

i ⊕ ~Kl2) = 0)

⇔ ((~Xd
i ⊕ ~Kl1) ∈ LT) ∧ ((~Xd

i ⊕ ~Kl2) ∈ LF)

(3.5)

Basically Eq. (3.5) states that the wrong key identified in the i-th iteration

must be such that its output Y d
i should be 1. This implies that both g and g must

evaluate to 1. This means that the input to g, which is ~Xd
i ⊕ ~Kl1, should be in LT

and the input to g, which is ~Xd
i ⊕ ~Kl2, should be in LF .

Since ~Xd
i ⊕ ~Kl1 is the input vector to g, for any given ~Xd

i , we can always find

a key ~Kl1 such that ~Xd
i ⊕ ~Kl1 ∈ LT . Basically ~Xd

i ⊕ ~Kl1 flips some of the bits of

~Xd
i (for which corresponding ~Kl1 bits are 1) while keeping other bits the same (for

which corresponding ~Kl1 bits are 0). Hence for a given ~Xd
i , we can always choose

~Kl1 such that the resulting input to g is in LT . However note that |LT | = p in

Eq. (3.4). Hence for any given ~Xd
i , we can select ~Kl1 in p different ways such that

~Xd
i ⊕ ~Kl1 ∈ LT .

42

Similarly, for any given ~Xd
i , we can always find a key ~Kl2 such that ~Xd

i ⊕ ~Kl2 ∈

LF . Note that |LF | = 2n − p in Eq. (3.4). Hence for any given ~Xd
i , we can select

~Kl2 in 2n − p different ways such that ~Xd
i ⊕ ~Kl2 ∈ LF .

Now, as noted above, for a given ~Xd
i , a wrong key ~K = (~Kl1, ~Kl2) should be

such that ~Xd
i ⊕ ~Kl1 ∈ LT and ~Xd

i ⊕ ~Kl2 ∈ LF . The total number of ways in which

we can select such a wrong key is p · (2n − p).

Now in any given iteration i, for a given Xd
i , the maximum number of incorrect

keys identified is p · (2n− p). This follows naturally from the discussion above. This

is the maximum number because it is very much possible that some of these keys

were identified in previous iterations. Hence the total number of unique wrong keys

UKi identified in iteration i is upper-bounded by p · (2n − p). This is noted in the

equation below.

p · (2n − p) ≥ UKi (3.6)

The SAT attack works by iteratively removing all incorrect keys till only the correct

ones are left (assuming after λ iterations). Hence the following holds true.

λ(p · (2n − p)) ≥
λ∑
i=1

UKi (3.7)

Since
∑λ

i=1 UKi is the total number of wrong key combinations, its value is 22n−2n

as discussed in Section 3.4.1. Eq. (3.7) can be rewritten as follows.

λ ≥ 22n − 2n

p(2n − p)
(3.8)

We denote this lower bound on λ as λ0. When p→ 1 or p→ 2n − 1, we have

λ0 =
22n − 2n

p(2n − p)
→ 22n − 2n

1× (2n − 1)
= 2n (3.9)

43

Hence proved.

�

Proof for Type-1 Anti-SAT. For type-1 Anti-SAT, the correct output (when provided

the correct key) is always 1. Therefore, a wrong key combination ~K = (~Kl1, ~Kl2) ∈

WKi which was identified by (~Xd
i , Y d

i) must produce the incorrect output as 0. This

condition is described below.

Y d
i = g(~Xd

i ⊕ ~Kl1) ∨ g(~Xd
i ⊕ ~Kl2) = 0.

⇔ (g(~Xd
i ⊕ ~Kl1) = 0) ∧ (g(~Xd

i ⊕ ~Kl2) = 1)

⇔ ((~Xd
i ⊕ ~Kl1) ∈ LF) ∧ ((~Xd

i ⊕ ~Kl2) ∈ LT)

(3.10)

Based on the discussion in the proof for type-0 Anti-SAT, we know that for any

given ~Xd
i , we can select ~Kl1 in 2n− p different ways such that ~Xd

i ⊕ ~Kl1 ∈ LF . Also,

for any given ~Xd
i , we can select ~Kl2 in p different ways such that ~Xd

i ⊕ ~Kl2 ∈ LT .

As noted in Eq. (3.10), for a given ~Xd
i , a wrong key ~K = (~Kl1, ~Kl2) should be such

that ~Xd
i ⊕ ~Kl1 ∈ LF and ~Xd

i ⊕ ~Kl2 ∈ LT . The total number of ways in which we

can select such a wrong key is p · (2n − p), which is exactly the same as the one

for type-0 Anti-SAT. Therefore, the subsequent analysis would be the same as the

analysis for type-0 Anti-SAT and we can obtain the same lower bound λ0 as shown

in Eq. (3.9). Hence proved.

�

As seen in Eq. (3.9), if we choose a g function such that p is either very low

or very high then the SAT attack would at least require an exponential number of

44

(a) (b)

Figure 3.5: Anti-SAT block design and obfuscation: (a) one possible construction

of function g to ensure large number of SAT attack iterations; (b) an additional

key-gate is inserted for functional obfuscation.

iterations in n. Since the key-size of Anti-SAT is 2n, the number of SAT attack

iterations is also an exponential number in the key-size of Anit-SAT when g is

correctly configured. One possible choice of g is indicated in Fig. 3.5(a) where g is

chosen to be a simple n-input AND gate. For AND gates p = 1 which clearly results

in exponential complexity of SAT attack in n. Experimental results to indicate that

shall be shown later. Moreover, we can see that the lower bound λ0 is tight when

p = 1 or p = 2n − 1. This is because that for a n-input Anti-SAT block, the total

number of input combinations is 2n so the number of iterations to find distinguishing

inputs is upper-bounded, i.e., λ ≤ 2n. This combined with the Eq. (3.9) shows that

the lower bound is tight when p = 1 or p = 2n − 1.

3.4.3 Integrating Anti-SAT into a Circuit

When the Anti-SAT block is integrated into a circuit, a set of wires in the

original circuit are connected to the inputs ~X of the Anti-SAT block and the output

45

Y of the Anti-SAT block is integrated to a wire in the original circuit (as shown

in Fig. 3.4(c)). If ~X are connected to wires that are highly correlated (e.g., two

wires with identical logic), then the overall security of the block shall be reduced

because less possible input combinations can occur at the inputs of the Anti-SAT

block. The location for Y is also important. An incorrect key causes Y = 1 for

some inputs (for type-0 Anti-SAT). This incorrect Anti-SAT output must impact

the overall functionality of the original circuit. Otherwise the logic will continue to

function correctly despite of wrong key inputs. In conclusion, the best location of

the Anti-SAT block is such that the inputs ~X are highly independent and Y has

high observability at the POs (i.e., changes in Y can be observed by the POs of

the original circuit). Here we propose a secure integration method: n inputs of the

Anti-SAT block ~X are connected to n PIs of the original circuit. The output Y is

connected to a wire which is randomly selected from wires that have the top 30%

observability. The randomness of the location of Y can assist in hiding the output

wire of the Anti-SAT block and preventing it from being identified and nullified.

The impact of the Anti-SAT integration location on the overall security shall be

evaluated in the experiments.

3.4.4 A Combined Locking Approach

As noted before, conventional logic locking techniques such as [22, 47] try

to avoid an unauthorized user who does not have a key from accessing the chip’s

functionality. They attempt to insert key gates in a way to achieve high output-

46

corruptibility, i.e., forcing the chip to deviate substantially from the actual function-

ality whenever a wrong key is provided. These techniques are not immune to SAT

attack (as noted in [24] and also indicated in our simulations). While our Anti-SAT

block can provide provable measures to increasing the SAT attack complexity, they

may not necessarily cause substantial deviation in the chip functionality for incor-

rect keys. Hence an unauthorized end user may still be able to use the chip correctly

for “many” inputs (but not all). Therefore, conventional logic locking techniques

need to be combined with our Anti-SAT block designs for achieving foolproof logic

locking. Moreover, the key-gates inserted at the original circuit can make the Anti-

SAT block less distinguishable with the original circuit. Without these key-gates in

the original circuit, an attacker has less difficulty to locate the Anti-SAT block by

inspecting the only key-inputs into the Anti-SAT block.

In this work, the original circuit is locked using the secure logic locking (SLL),

an interference-based logic locking algorithm [22]. This technique has been shown to

be secure against key-sensitizing attack [22] (see Section 2.2.2.2) while obfuscating

the original functionality.

3.5 Anti-SAT Block Obfuscation

In this section, we first analyze the security of Anti-SAT against a new type of

attack called removal attack, which aims at identifying and nullifying the Anti-SAT

block. Then, we investigate a unified obfuscation based on [51] which hides the

functional and structural traces of the Anti-SAT block.

47

3.5.1 Removal Attacks on Anti-SAT

3.5.1.1 Functional Attributes

In Anti-SAT, the logic blocks g and g have complementary functionality. An

attacker can simulate the circuit and find potential complementary pairs of signals

leading to potential identification of the Anti-SAT block. Moreover, in order to

guarantee exponential number of SAT attack iterations, the function g shall be con-

figured to have very small on-set size p. Assuming p = 1, the outputs of g/g would

be 0/1 for most of the time even when wrong keys are provided for the Anti-SAT

block. In other words, the outputs of g and g will have very high signal skews of

opposite polarities. This functional attribute is exploited by Signal Probability Skew

(SPS) attack [65] to identify the Anti-SAT block. Another functionality attribute

of Anti-SAT block is its low functionality corruptibility. Due to the construction

of g and g, the Anti-SAT keys normally have lower output corruptibility than the

conventional keys in the original circuit. Recently, an approximate de-obfuscation

technique called AppSAT [41] was proposed to learn the high-corruptibility con-

ventional keys in the original circuit. An AppSAT + netlist analysis based removal

attack [66] has also been proposed to identify the Anti-SAT block.

3.5.1.2 Structural Attributes

In the Anti-SAT block, the internal wires in g and g do not have connections

with the locked circuit. This makes the Anti-SAT block a relatively isolated and

48

(a) (b) (c)

Figure 3.6: Design withholding and entanglement technique [51]: (a) original circuit;

(b) design withholding and (c) wire entanglement.

separable structure. When the size of the Anti-SAT block is roughly known, it’s

possible for an attacker to utilize a partitioning algorithm to partition the whole

circuit into two parts while ensuring that small partition has about the same size as

the Anti-SAT block. If a large portion of gates of the Anti-SAT block is moved to the

small partition, then the attacker will have less difficulty to identify the Anti-SAT

block using this partitioning based removal attack.

3.5.2 Mitigating Removal Attacks

To mitigate the removal attacks, we propose a unified obfuscation technique

that obfuscates the functionality and structural attributes of the Anti-SAT block us-

ing design withholding and wire entanglement [51]. Fig. 3.6 illustrate the basic idea

of design withholding and wire entanglement. In design withholding (Fig. 3.6(a)), a

portion of design is replaced with a set of LUT’s to ensure that the original design

detail is not available to the untrusted foundry. Hence, design withholding technique

49

Figure 3.7: Anti-SAT obfuscation based on design withholding and wire entangle-

ment.

can be used to hide both the functionality and implementation detail of the Anti-

SAT. Design entanglement is another obfuscation technique that aims at obfuscating

the interconnect structure of an IC design by using a wire-entanglement module, as

shown in Fig. 3.6(b). The basic idea of wire-entanglement module is to entangle

a set of target wires with another set of obfuscation wires using MUX-based inter-

connect network. When the selection bits of the MUXes are correctly configured,

the wire-entanglement module will represent the original interconnection. The wire-

entanglement module is useful for obfuscating the interconnect structure between

the Anti-SAT block and the original netlist.

Fig. 3.7 illustrates the overall obfuscation for Anti-SAT based on design with-

holding and wire entanglement. The design withholding technique is used to hide

the functionality of the Anti-SAT block and part of the original netlist. When ob-

fuscated using LUTs, the signal skews of g and g would be significantly reduced,

so the SPS attack cannot effectively identify the Anti-SAT block. Note that the

50

obfuscation for g and g does not necessarily need to be balanced (i.e., the key-size

of g and g can be different) as long as the outputs of g and g do not have a high

signal skew. This can help mitigating the AppSAT + netlist analysis attack which

assumes both g and g would have roughly the same key-size and use it as a hint to

locate the Anti-SAT.

On the other hand, wire-entanglement technique is used to obfuscate the in-

terconnection between the original circuit and the Anti-SAT block to prevent the

partitioning-based attack. With the wire-entanglement module, the interconnec-

tions between the Anti-SAT block and the locked circuit will be increased and it’s

difficult for an attacker to partition and isolate the Anti-SAT block from the locked

circuit. Besides, the design withholding and entanglement technique can be de-

signed to mitigate the AppSAT + netlist analysis attack. This is because that

after wire entanglement, new signal paths would be created which fanout many low-

corruptibility keys to the original netlist. Therefore, gates in the original netlist can

have many low-corruptibility keys in their fan-in cones. It increases the difficulty

of the netlist analysis phase which tries to identify the Anti-SAT by counting the

number of low-corruptibility keys in a gate’s fan-in.

With regard to SAT attack, since these techniques are based on LUT-based

and MUX-based logic locking, they can be modeled in SAT formula and attacked

by the SAT attack. However, in Section 3.5.3, we will use a proof to show that the

number of SAT attack iterations for unlocking a circuit with an obfuscated Anti-

SAT will not be reduced. Experimental results in Section 3.6.3 also validate this

analysis.

51

3.5.3 SAT-attack Resistance of Anti-SAT After Obfuscation

In Section 3.5.2, a unified obfuscation technique for Anti-SAT block based on

withholding and entanglement [51] is discussed. It basically obfuscates the Anti-

SAT block by adding additional logic gates and key-inputs. Here we use a rigorous

proof to show that the resistance of Anti-SAT block would not be weakened when

obfuscation technique is applied. In other words, adding addition key-gates and

key-inputs will not reduce the number of SAT attack iterations required to decipher

the Anti-SAT block.

We first show that adding one additional key-gate for obfuscation will not

reduce the number of SAT attack iterations required for unlocking the Anti-SAT.

Without loss of generality, we use XOR/XNOR-based key-gates instead of LUT-

based key-gates to obfuscate the Anti-SAT in order to simply the proof. Also, we

insert the extra key-gate as shown in Fig. 3.5(b).

Theorem 3.5.1. Assuming a new key-gate K2n+1 is inserted into the Anti-SAT

block (with p = 1) for obfuscation (as shown in Fig. 3.5(b)), the number of SAT

attack iterations needed by the SAT attack to decipher the correct key will remain

to be 2n.

Proof: Let’s first derive the equation which represents the wrong key combinations

that can be identified by a DIO (~Xd
i , ~Y

d
i). Notice that for any input combinations

(including the distinguishing inputs ~Xd
i), the correct output (when provided a cor-

rect key) is 0 for type-0 Anti-SAT. Therefore, a wrong key combination which is

identified by (~Xd
i , ~Y

d
i) must result in incorrect output as 1. This condition is de-

52

scribed as

[(K2n+1 = 0) ∧ (g(~Xd
i ⊕ ~Kl1) = 1) ∧ (g(~Xd

i ⊕ ~Kl2) = 1)]

∨[(K2n+1 = 1) ∧ (g(~Xd
i ⊕ ~Kl1) = 0) ∧ (g(~Xd

i ⊕ ~Kl2) = 1)]

(3.11)

This is equivalent to

[(K2n+1 = 0) ∧ (~Xd
i ⊕ ~Kl1 ∈ LT) ∧ (~Xd

i ⊕ ~Kl2 ∈ LF)]

∨[(K2n+1 = 1) ∧ (~Xd
i ⊕ ~Kl1 ∈ LF) ∧ (~Xd

i ⊕ ~Kl2 ∈ LF)]

(3.12)

Note that the function g in Fig. 3.5(b) is an n-input AND gate,

LT = {(11...11)}, LF = Bn \ LT (3.13)

where Bn is the set of all n-bit boolean vectors, and Bn \ LT means every n-bit

Boolean vector except (11...11).

We can see that when K2n+1 = 0, to satisfy Eq. (3.12), we need to ensure

~Xd
i ⊕ ~Kl1 ∈ LT and ~Xd

i ⊕ ~Kl2 ∈ LF . Since LT has only one vector (11...11), for any

~Xd
i , we only have one way of selecting ~Kl1 to make ~Xd

i ⊕ ~Kl1 = (11...11), that is

~Kl1 = ¬ ~Xd
i (bit-wise negation), i.e.,

~Kl1[j] = ¬ ~Xd
i [j], j = 1...n (3.14)

On the other hand, since LF = Bn \ LT , for any ~Xd
i , we have 2n − 1 ways to select

~Kl2 such that ~Xd
i ⊕ ~Kl2 ∈ LF , those are ~Kl2 ∈ Bn \ ¬ ~Xd

i .

Therefore, the wrong key combinations (withK2n+1 = 0) identified by (~Xd
i , Y

d
i)

has the following form:

(~Kl1 = ¬ ~Xd
i ,
~Kl2 ∈ (Bn \ ¬ ~Xd

i), K2n+1 = 0) (3.15)

53

We can see that since ~Kl1 = ¬ ~Xd
i , there exists an one-to-one matching between

each pair of ~Xd
i and ~Kl1. In other words, any ~Xd

i value (from 0 to 2n − 1) can

identify a unique set of wrong key combinations in a form of Eq. (3.15). It’s unique

because that ~Kl1 = ¬ ~Xd
i and different ~Xd

i would result in different ~Kl1. Therefore,

every input combination (from 0 to 2n − 1) is a distinguishing input because it can

identify a unique set of wrong key combinations that can only be identified by it.

Thus, the SAT attack requires 2n DIOs (i.e., 2n iterations) to identify all wrong key

combinations.

�

We now show that adding more than one additional key-gates for obfuscation

still does not reduce the number of SAT attack iterations required for unlocking the

Anti-SAT.

Theorem 3.5.2. Assuming nobf new key-gates are inserted into the Anti-SAT block

(with p = 1) for obfuscation, the number of SAT attack iterations needed by the

SAT attack to decipher the correct key will be 2n.

Proof: The proof for Theorem 2 shows that after adding a new key-gate to the

Anti-SAT block for obfuscation (Fig. 3.5(b)), the number of SAT attack iterations

remains to be 2n. Notice that this conclusion is also true when nobf additional key-

gates are inserted to the Anti-SAT for obfuscation. Let’s denote the extra keys for

obfuscation as ~Kobf and its correct key is ~KC
obf . Based on Eq. (3.15), we can conclude

that any Anti-SAT input combination is a distinguishing input ~Xd
i because it can

54

identify a unique set of wrong keys which is:

(~Kl1 = ¬ ~Xd
i ,
~Kl2 ∈ (Bn \ ¬ ~Xd

i), ~Kobf = ~KC
obf) (3.16)

and this set of wrong keys can only be identified by this input ~Xd
i . Hence the

SAT attack requires at least 2n DIOs (i.e., 2n iterations) to identify all wrong

key combinations. Therefore, adding additional key-gates at different locations for

obfuscation will not weaken the Anti-SAT’s resistance to the SAT attack.

�

3.6 Experiments and Results

In this section, we evaluate the security level of our proposed Anti-SAT blocks.

The security level is evaluated by the number of SAT attack iterations as well as

the execution time to infer the correct key. SAT attack tools and benchmarks used

are from [24]. The SAT attack tool uses the Lingeling [67] SAT solver. The CPU

time limit is set to 10 hours as [24]. The experiments are running on an Intel Core

i5-2400 CPU with 16GB RAM.

3.6.1 Anti-SAT Block Design

3.6.1.1 On-set Size p

Table 3.1 illustrates the impact of p on the security level of 16-bit Anti-SAT

blocks (type-0 and type-1). For both types of Anti-SAT, when p → 1 and p →

216 − 1 = 65535, the SAT attack algorithm fails to unlock the Anti-SAT block in

55

Table 3.1: Impact of p on the security level of Anti-SAT (When n = 16).

p 1 81 243 2187 30375 63349 65293 65455 65535

Type-0 # Iterations - 10675 4760 901 273 898 4647 - -

Anti-SAT Time (s) timeout 16555.8 8746.12 174.743 3.24 307.104 12932.3 timeout timeout

Type-1 # Iterations - - 4853 877 285 881 4691 - -

Anti-SAT Time (s) timeout timeout 3559.96 55.108 3.148 187.896 1048.19 timeout timeout

10 hours. This is because that it requires a large number of iterations to rule out

all the incorrect key combinations. As p → 216/2 (the worst case), the SAT attack

begins to succeed using less and less iterations and execution time for both types

of Anti-SAT. This result validates out analysis in Eq. (3.9), which shows that for a

fixed n, when p is close to 1 or 2n − 1, λ will be large and the SAT attack will fail

within a practical time limit.

3.6.1.2 Input-size n

As shown in Eq. (3.9), λ0 is an exponential function of n when p is very low

(p → 1) or very high (p → 2n − 1). Table 3.2 shows the exponential relationship

between λ and n when p = 1 for type-0 and type-1 Anti-SAT block. It can be

seen that as n increases, the simulated SAT iterations and execution time grows

exponentially.

In the following experiments, we focus on the type-0 Anti-SAT and construct

an n-bit baseline Anti-SAT block (n-bit BA) using an n-input AND gate (p = 1) as

the logic block g to ensure large number of iterations. However notice that this is

not the only possible choice for g.

56

Table 3.2: Impact of n on the security level of Anti-SAT (When p = 1).

n 8 10 12 14 16

Type-0 # Iterations 255 1023 4095 16383 -

Anti-SAT Time (s) 1.14569 20.024 324.727 4498.03 timout

Type-1 # Iterations 255 1023 4095 16383 -

Anti-SAT Time (s) 1.06 14.612 273.1 3658.76 timeout

Table 3.3: Comparison between secure and random integration.

n 8 12 16

Random

Avg. # Iteration 151 1748 11461

Avg. Time (s) 1.4296 162.529 10272.4

Secure

Iteration 255 4095 -

Time (s) 3.452 759.924 timeout

3.6.1.3 Secure Integration of Anti-SAT

Here we compare two approaches of integrating the Anti-SAT block with the

original circuit, namely secure integration and random integration. For the secure

integration, n inputs of the Anti-SAT block ~X are connected to n PIs of the original

circuit. The output Y is connected to a wire which is randomly selected from wires

that have the top 30% observability. For the random integration, the inputs ~X are

connected to random wires of the original circuit, and the output Y is connected

to a random wire. For both cases, the wire for Y has a later topological order

than that of the wires for ~X to prevent combinational loop. Table 3.3 shows the

results for two integration approaches when three n-bit BA (n = 8, 12, 16, p = 1)

57

Table 3.4: Benchmark information of 6 circuits from ISCAS85 and MCNC.

Circuit #PI #PO #Gates

Key-size

SLL n-bit BA

c1355 41 32 546 29

2n

c1908 33 25 880 46

c3540 50 22 1669 86

dalu 75 16 2298 119

des 256 245 6473 336

i8 133 81 2464 130

are integrated into the c1355 circuit from ISCAS85. It can be seen that secure

integration is better than random integration as the former requires more iterations

(∼ 2×) and execution time (∼ 3×) for the SAT attack algorithm to reveal the key.

Therefore, in the following experiments, we adopt the secure integration as the way

to integrate the Anti-SAT block into a circuit.

3.6.2 Anti-SAT Block Application

We evaluate the security level of the Anti-SAT block when it’s applied to 6

circuits from ISCAS85 and MCNC benchmark suites. The benchmark information

is shown in Table 3.4. We compare two logic locking configurations as follows:

• SLL: The original circuit is locked only using the secure logic locking (SLL),

an interference-based logic locking algorithm [22]. This technique has been

shown to be secure against key-sensitizing attack [22] while obfuscating the

original functionality.

58

• SLL (5%) + n-bit BA: The original circuit is locked with SLL technique.

The number of key-gates inserted in the original circuit equals to 5% of the

gate-size of the original circuit. Besides, an n-bit BA is integrated into the

locked circuit using the secure integration (described in Section 3.4.3).

We compare the security level of two configurations when the same number of keys

are used in each configuration 2. The SAT attack results of two configurations w.r.t

increasing key-size are shown in Fig. 3.8. It can be seen that for SLL, increasing

the key-size cannot effectively increase SAT attack complexity. For all benchmarks

locked with SLL, they can be easily unlocked using at most 67 iterations and 1070.85

seconds. On the other hand, when the Anti-SAT blocks are integrated, the SAT

attack complexity increases exponentially with the key-size in the Anti-SAT block.

The SAT attack fails to unlock the circuits within 10 hours when a 16-bit BA is

integrated (as shown by the fifth data point w.r.t. x-axis).

3.6.3 Anti-SAT Block Obfuscation

In Section 3.5.3, we have shown that after obfuscation, the security of Anti-

SAT against SAT attack would not be undermined. To validate this proof, we

obfuscate the Anti-SAT block using LUTs and MUXes. Fig. 3.9 shows the SAT

2For SLL, the extra key-gates are inserted to the original circuit. For SLL(5%) + n-bit BA/OA,

the extra key-gates are used in the Anti-SAT block and increasing the key-size also indicates

increasing the input-size n because we construct the n-bit BA with key-size kBA = 2n. In this

experiment, we experiment the n-bit BA with n = 8, 10, 12, 14, 16, 18, 20. The key-sizes are shown

in Table 3.4.

59

Figure 3.8: SAT attack results on 6 benchmarks with three logic locking configura-

tions: SLL and SLL(5%) + n-bit BA. Timeout is 10 hours (3.6×104 s). The dashed

lines are the curve fitting results when the SAT attack has time-outed after certain

key-size.

attack results of c1355 circuit when obfuscation techniques are applied. Fig. 3.9(a)

shows the result for LUT based design withholding technique. Here we increasingly

replace the 2-input AND gates in g and g with LUTs and evaluate its impact on

the SAT attack iteration. As seen, when the number of LUTs is increased, the

SAT attack iteration remains to be 2n, where n is the input-size of Anti-SAT (n =

8, 10, 12). Fig. 3.9(b) shows the results for MUX based wire entanglement technique.

Here we use 2-input MUXes, where one input of MUX comes from the original

60

(a) (b)

Figure 3.9: SAT attack results of c1355 circuit when obfuscation techniques are

applied: (a) design withholding and (b) wire entanglement. For both techniques,

the number of SAT attack iterations required are ≥ 2n after obfuscation, where n is

the input-size of Anti-SAT.

circuit and the other input comes from the Anti-SAT block. As seen, the SAT

attack iteration is ≥ 2n for different choices of n. The number of iterations could be

larger than 2n because the MUXes enlarge the fan-in cones of the Anti-SAT block.

These results confirm that the proposed obfuscation technique will not hamper the

SAT attack resistance of Anti-SAT.

3.6.4 Performance Overhead

Different implementation of g and g will result in different overhead. In our

experiments, we utilize an n-bit AND gate and an n-bit NAND gate to implement

the function g and g, each consists of n − 1 AND2 gates. The estimated area

for a n-bit BA is 4n additional gates. Since the number of SAT attack iteration

61

required is 2n, a slight increase in area overhead of the Anti-SAT block can result

in exponential increase in SAT attack complexity. To counter removal attacks,

we investigate both the design withholding and entanglement techniques. These

two obfuscation techniques will inevitably increase the performance overhead. For

example, an n-input, m-output LUT would require O(m × 2n) gates. The key-size

for such LUT is m × 2n. An n-input, m-output wire entanglement module would

require m number of n-input MUXes. The key-size for such module is m× log(n).

To reduce overhead, we can use multiple small LUTs/MUXes (with less inputs and

outputs) to form large LUTs/MUXes, as suggested in [51]. However, we present it

as the first unified obfuscation technique to make various removal attacks harder.

A more light-weight solution may be explored in future research.

3.7 Related Work

3.7.1 SAT-attack Resilient Logic Locking

Recent years have seen an increasing number of research work on mitigating

the SAT attack on logic locking. In [68], Yasin et al. proposed to add an AES circuit

into a locked circuit which aims at increasing the SAT solving time. Although this

approach is effective, the AES circuit leads to a significant performance and area

overhead since a standard AES circuit implementation requires a large number of

gates [69]. In [70], a technique called SARLock was proposed which can make the

number of SAT attack iterations grow exponentially in key-size. SARLock is similar

to Anti-SAT, however, it has been shown to be vulnerable to some variants of SAT

62

attack called double-DIP [42] or bypass attack [71]. On the contrary, these attacks

cannot break Anti-SAT (when the combination of SLL and Anti-SAT locking is

used), as analyzed in [42]. In [71], Xu et al. proposed a Binary Decision Diagram

(BDD) based design technique to achieve exponential number of SAT attack itera-

tions. However, the disadvantage of the BDD based technique is that it will result

in a very significant area overhead, because the size of the BDD is almost always

exponential in the key-size as shown in [71]. To increase the difficulty of SAT formu-

lation, Shamsi [72] et al. proposed a cyclic logic locking technique which introduces

non-reducible combinational loops to the locked circuit. However, the cyclic logic

locking technique was shown vulnerable to a variant of SAT attack called Cyclic-

SAT [43]. Besides conventional logic locking, a new set of locking techniques called

parametric locking is proposed [33, 73]. The parametric locking techniques aim at

obfuscating the parametric behavior of the circuit such as power, delay and relia-

bility etc. For incorrect keys, the locked circuit will malfunction or have degraded

performance.

3.7.2 SAT Attack on IC Camouflaging

IC camouflaging is a reverse-engineering prevention technique that hides a

circuit’s functionality with camouflaging cells. It has been shown that SAT attack

can also be applied to recover the functionality of the camouflaging cells [74, 75].

To counter the SAT attack, various countermeasures have been proposed [76, 77],

which aim at making the de-camouflaging effort exponentially harder in the number

63

of camouflaged gates.

3.8 Conclusion

In this chapter, we present a circuit block called Anti-SAT to mitigate the SAT

attack on logic locking. We show that the iterations required by the SAT attack

to reveal the correct key in the Anti-SAT block is an exponential function of the

key-size in the Anti-SAT block. The Anti-SAT block is integrated to a locked circuit

to increase its resistance to the SAT attack. A unified obfuscation technique has

been proposed to protect the Anti-SAT block from removal attacks such as the SPS

attack and the partitioning based attack. Overall, our proposed Anti-SAT based

logic locking can effectively thwart the SAT attack and various removal attacks.

64

Chapter 4: Strong Anti-SAT: Secure Logic Locking for Neural Net-

work Chips

4.1 Introduction

In recent years, neural network has made a significant impact on various fields

such as computer vision, speech recognition, and natural language processing. As

neural network models (neural models) are getting deeper and more complex, its

computation is becoming time-consuming and resource-intensive. To address these

problems, researchers have started to develop fast and low-power neural network

chips that can support a range of neural models. Examples of such neural chips

include DianNao [78], EIE [79], Eyeriss [80], TPU [81], etc.

Neural chips, following the trend of fabrication outsourcing, are inevitably

subject to supply chain attacks by untrusted foundries. Logic locking techniques, as

discussed in Chapter 2 and Chapter 3, can be applied to protect the neural network

chip design from being pirated or overproduced. However, locking neural chips is not

the same as locking conventional chips in two aspects. Firstly, most neural network

applications are inherently error-tolerant. The classification accuracy of a neural

network would be acceptable even when some of its underlying computations are in-

65

correct [82]. This can be exploited by an attacker who can just find an approximate

key (approx-key) instead of a correct key to approximately unlock the chip such that

it can output correctly for most inputs. The relaxed requirement makes attacks such

as Approximate SAT (AppSAT) attack [41] applicable. Secondly, most neural mod-

els are tune-able (e.g., by fine-tuning the weight values). An attacker can adjust his

own neural models to accommodate the approximately-unlocked (approx-unlocked)

neural chips, hence further improving the classification accuracy.

In this work, we address these new challenges and propose a novel locking

technique to protect neural chips against untrusted foundries. The neural chip

can be loaded with a wide range of neural models. The objective of locking the

neural chip is to ensure that given any wrong key, the locked neural chip cannot

function correctly, so any neural model running on such chip would have very low

classification accuracy. Neural chips are normally composed of a control unit, an

arithmetic unit, a memory interface and an interconnect unit. These components

can be locked to protect the neural chips. For simplicity, we target the locking of

the arithmetic unit (i.e., adders and multipliers) in this work. However, some of

our proposed techniques can be extended and applied to other components. The

contributions of this work are as follows.

• We propose an attack methodology to investigate the vulnerability of state-

of-the-art logic locking techniques [31] in securing neural chips. The proposed

attack firstly utilizes the AppSAT attack [41] to find an approx-key which

results in neural chips with very low error rate. Deploying neural models on

66

such hardware is shown to have only 7.2% reduction in classification accuracy.

To further improve accuracy, we propose a neural-network fine-tuning tech-

nique which exploits the error characteristics of the approx-unlocked neural

chips. Experiment results show that after fine-tuning, the accuracy loss for

the deployed neural model is 0%.

• To counter this attack, we propose a secure locking scheme for neural chips

which is based on a co-design of locking infrastructure and functional modules.

We first propose an improved locking infrastructure (called Strong Anti-SAT

block) based on Anti-SAT. We use a rigorous proof to derive a lower-bound

of error rate for the Strong Anti-SAT block. Note that this error rate lower-

bound holds for any wrong key. Thus, with correct configuration of Strong

Anti-SAT, we can guarantee a high error rate for any key that’s obtained by

the AppSAT attack [41], hence making the attack ineffective. Furthermore,

we investigate functional modules (e.g., multipliers) which can be designed to

be very hard for SAT solving. Hence, by appropriate design of the functional

modules, we can ensure extremely long time for exact SAT attack [24] to find a

correct key, thereby making it computationally impractical to correctly unlock

the neural chips.

• Experimental results show that the proposed locking scheme can result in 1)

80% accuracy loss for neural models deployed on any approx-unlocked chip,

and 2) a long time (e.g., ≥ 1 year) for exact SAT attack to find the correct

key.

67

4.2 Preliminary

4.2.1 Neural Network Models

(a) (b)

Figure 4.1: Neural networks: (a) multi-layer perceptron; (b) convolutional neural

network

Fig. 4.1(a) illustrates an example of an artificial neural network based on multi-

layer perceptron (MLP). A set of neurons are arranged in multiple layers and neurons

in subsequent layers are fully connected. Each neuron takes the outputs of its previ-

ous layer as inputs, perform an inner-product between the inputs and a weight vector

and pass the result into a nonlinear activation function to produce an output for this

neuron. During training, a set of data-label pairs is used to tune the weights (using

back-propagation algorithm) such that the prediction error for the training data is

minimized. After the weights are learned, a forward-propagation of the neural net-

work will output a predicted label given an input data. This forward-propagation is

also known as testing or inference. A variant of MLP is called Convolutional neural

network (CNN) [83]. CNN is a promising neural network model that has shown its

effectiveness in various classification applications such as computer vision [83, 84].

68

(a) (b)

Figure 4.2: Neural chip: (a) core components; (b) processing element

Fig. 4.1(b) shows a simple CNN example. It normally consists of a few common

building blocks, namely convolutional layers, pooling layers and fully-connected lay-

ers.

4.2.2 Neurnal Network Chips

In order to improve the flexibility to support more neural network models,

many neural chip designs have been proposed, such as DianNao [78], EIE [79], and

TPU [81]. These neural chips have emerged as a perfect platform for achieving fast

and low-power computation for a wide range of neural network models. Fig. 4.2(a)

shows some core components that are commonly shared among most neural chip

designs, including a control unit, an arithmetic unit, buffers (for input, weight, and

output), interconnect components, and a memory interface to external memory.

69

The arithmetic unit is an important component because it performs vector mul-

tiplication, the most fundamental operation in neural networks. For example, in

AlexNet [84], more than 96% of weights are used in the fully-connected layers and

these weights require a massive amount of vector multiplication operations. The

arithmetic unit is formed by a group of processing elements (PEs), which is com-

posed of an array of multipliers and an adder tree [78, 85] as shown in Fig. 4.2(b).

To map a neural network design into the chip, a compiler will translate network

specifications (e.g., number of layers, layer types and layer sizes) into a set of in-

structions and store them into the control unit. Besides, pre-trained weights will

normally be stored in an external memory.

4.2.3 Anti-SAT Based Logic Locking

To access advanced semiconductor technology, modern chips are increasingly

outsourced to an offshore foundry for fabrication. The outsourced chip designs,

however, are subject to attacks such as piracy, overproduction, and counterfeiting by

the untrusted foundry. Neural chips, following this trend of fabrication outsourcing,

are inevitably subject to these threats. One class of prevention technique is logic

locking, which was introduced in Section 2.2.2. During design time, a circuit is

locked by inserting a set of key-gates and key-inputs. The locked chip preserves

the correct functionality only when a correct key is provided. Anti-SAT based

logic locking is a sophisticated logic locking techniques, as discussed in Chapter 3.

Such a logic locking would render the SAT attack [24] which attempts to learn

70

Table 4.1: Terminology list

Symbol Definiton Symbol Definition

n Input-size of original circuit λ SAT attack iterations

nas Input-size of Anti-SAT ε Error rate

~X Inputs of original circuit λ0, ε0 Lower-bounds of λ and ε

~Xas Inputs of Anti-SAT g0 Mini-blocks of Strong Anti-SAT

Yas Output of Anti-SAT n0 Input-size of mini-block g0

~Ka Conventional keys p0 On-set size of mini-block g0

~Kb Anti-SAT keys t SAT solving time per iteration

g, g Logic blocks of Anti-SAT T Total SAT solving time

p On-set size of logic block g T0 Lower-bound of T

the perfectly-correct key ineffective. Here we review the design of Anti-SAT and

analyze its SAT-attack resistance and output corruptibility. The terminologies used

are listed in Table 4.1.

4.2.3.1 Anti-SAT Configuration

Fig. 4.3(a) shows the overview of Anti-SAT based logic locking. The original

circuit is locked with ~Ka (referred to as conventional keys) using conventional locking

techniques such as [22, 47]. Besides, an Anti-SAT block is attached to the locked

circuit. The Anti-SAT has inputs ~Xas which are connected to some primary inputs

~X of the original circuit. The Anti-SAT output Yas is connected to an internal wire

of the original circuit using an XOR gate. A set of keys ~Kb (referred to as Anti-SAT

71

(a) (b)

Figure 4.3: Anti-SAT based logic locking: (a) overview; (b) Anti-SAT block

keys) are inserted at the Anti-SAT block. Fig. 4.3(b) shows the detail of Anti-

SAT block. It is composed of two logic blocks g and g which have complementary

functionalities. The Anti-SAT keys ~Kb = (~Kb1, ~Kb2) are inserted at each input of

g and g. The outputs of g and g are fed into a 2-input AND gate to produce the

Anti-SAT output Yas, which makes Yas = g(~Xas ⊕ ~Kb1) ∧ g(~Xas ⊕ ~Kb2). Given a

wrong key, Yas will output 1 and inject faults into the circuit. The logic block g in

Anti-SAT has input-size nas and on-set size p, where on-size size is the number of

input patterns that can make function g output one.

4.2.3.2 SAT-Attack Resilience

According to Theorem 3.4.1 in Chapter 3, the number of SAT attack iterations

λ required to unlock the Anti-SAT block is bounded by λ0:

λ ≥ λ0 =
22nas − 2nas

p× (2nas − p)
(4.1)

As seen in Eq. (4.1), when p→ 1 or p→ 2nas − 1, we have

λ ≥ λ0 = 2nas (4.2)

72

which shows the exponential increase of SAT attack complexity. When p = 1, g

could simply be an nas-bit AND gate. In the remaining of this paper, we by default

assume Anti-SAT blocks have p = 1 as it can ensure exponential increase of λ0.

4.2.3.3 Output Corruptibility (Error Rate)

Here we analyze the output corruptibility of the Anti-SAT block. According

to [31], when p = 1, for any wrong key into ~Kb, only 1 out of 2nas input patterns

(w.r.t ~Xas) can make incorrect output Yas = 1. Let’s denote such corrupted input

pattern as ~Xw
as. As a result, the error rate of the Anti-SAT block is 1

2nas for any

wrong key. Now let us analyze the error rate of a circuit that’s comprised of the

Anti-SAT block. Assume the circuit has n inputs and nas out of them are used for

the Anti-SAT inputs. The corrupted input patterns would be such that 1) the nas

primary inputs that are connected to the Anti-SAT have values as ~Xw
as; and 2) the

other n−nas primary inputs can take any values. Thus, we have 2(n−nas) corrupted

input patterns (w.r.t ~X) that can make incorrect output Yas = 1, so the error rate of

the locked circuit is ε = 2(n−nas)

2n
= 1

2nas . As seen, although reducing nas can increase

ε, it inevitably reduces λ as illustrated in Eq. (4.2).

4.2.4 AppSAT Attack

In [41], Shamsi et al. proposed an approximate SAT (AppSAT) attack which

targets locking techniques such as Anti-SAT [31] and SARLock [70]. The AppSAT

attack assumes the same attack model as the one used for SAT attack (see Sec-

73

tion 3.2). It extends the SAT attack by adding an early termination condition to

avoid taking an exponential number of iterations to find a correct key. When the

early termination condition is satisfied, the AppSAT terminates and outputs the

approx-key which can match all already found distinguishing inputs to their correct

outputs. As shown in [41], after a few iterations, the AppSAT attack can deci-

pher an approx-key which has correct conventional keys ~Ka but incorrect Anti-SAT

keys ~Kb (see Fig. 4.3(a)). This is because that the keys ~Ka inserted at the original

netlist have high output-corruptibility and each distinguishing input/output pair

can eliminate a large number of wrong keys w.r.t. the ~Ka. As a result, the ~Ka are

gradually learned in the first few iterations, hence leaving the circuit that’s only

locked with ~Kb. Since the Anti-SAT keys ~Kb have very low corruptibility as dis-

cussed in Section 4.2.3.3, the approx-key can effectively de-obfuscate most of the

correct functionality.

4.3 Attack on Locked Neural Chips

In this section, we investigate the security of neural chips when its arithmetic

units (adders and multipliers) are locked with Anti-SAT based logic locking [31]. As

discussed in Section 4.2.3, this locking technique utilizes a combination of conven-

tional logic locking [22, 47] (with conventional keys ~Ka) and Anti-SAT block (with

Anti-SAT keys ~Kb) which represents among the strongest defenses to SAT attack.

Such locking technique would render the SAT attack which attempts to learn the

correct key ineffective. However, we propose an attack methodology to show that

74

such sophisticated locking scheme is not secure for neural chips.

4.3.1 Attack Model

The proposed attack methodology consists of two steps, which exploits 1) the

AppSAT attacks [41] and 2) neural model fine-tuning in effective ways. In the

AppSAT attack step, we assume that the attacker is an untrusted foundry and

its objective is to obtain an approx-key to approximately unlock the chip. In the

neural-model fine-tuning step, the attacker can be the untrusted foundry or an end-

user who is in collusion with the untrusted foundry. The attacker’s objective is

to deploy a neural model to the approx-unlocked neural chips. To achieve a high

classification accuracy, the attacker wants to tune his neural model to adapt to the

approx-unlocked neural chip.

Neural chips are normally composed of a control unit, an arithmetic unit, a

memory interface and an interconnect unit. These components can be locked to

protect the neural chips. For simplicity, we target the locking of the arithmetic

unit (i.e., adders and multipliers) in this work. The adders and multipliers perform

the most fundamental and frequent operation of the neural network, i.e., vector

multiplication. Hence, as a natural choice, we assume that the attacker inserts the

key-gates into the adders/multipliers to lock the core functionality of the neural

chip. However, some of our proposed techniques can be extended and applied to

other components.

75

4.3.2 Step 1: Approx-unlocking Neural Chips

Different from conventional chips, the neural chips are designed for neural net-

work applications that are normally error-tolerant. By exploiting the error-tolerant

nature, an attacker only needs to obtain an approx-key which can unlock most (but

not all) of the correct functionality for the neural chips. This relaxed requirement

makes attacks such as AppSAT [41] applicable. As shown in [41] and in this work,

after a few iterations, the AppSAT attack can decipher the conventional keys ~Ka

but not the Anti-SAT keys ~Kb. This is because that the output corruptibility of ~Ka

is much higher than that of ~Kb. Therefore, as iteration progresses, ~Ka is gradually

learned, thereby leaving a circuit that’s only locked using the Anti-SAT block with

keys ~Kb. As analyzed in Section 4.2.3.3, the error rate of such locking scheme is

ε = 1
2nas . For typical nas, this error rate may be very small thereby resulting in

an approx-unlocked circuit which is correct for most input patterns. The AppSAT

attack results on locked adders/multipliers will be shown in Section 4.3.4.2.

4.3.3 Step 2: Neural-network Fine-tuning

Now let us suppose on such approx-unlocked neural chips, an attacker wishes

to deploy a neural model. The attacker may just deploy his model on the approx-

unlocked chips directly and tolerate a rather humble degradation in quality. Or he

may exploit knowledge of the error characteristics of the approx-unlocked chips and

tune the neural model to avoid high error scenarios. Here we assume the attacker

has the ability to fine-tune his own neural model and schedule its computation

76

to specific arithmetic modules in the neural chips. The objective of the attack is

to reduce the number of incorrect computations based on the observation that the

classification accuracy would increase as the computation error decreases. To achieve

this objective, we propose a neural network fine-tuning technique which consists of

three steps: error profiling, weight tuning, and adder-input shifting.

4.3.3.1 Error Profiling

After acquiring the approx-unlocked neural chip, the attacker can first profile

the error distribution for both the approx-unlocked multipliers and adders. The

error profile represents the numerical distance between incorrect outputs and correct

outputs for given input operands. If enumerating all possible I/Os is impractical, an

attacker can randomly sample a large subset of I/Os to estimate the error profile.

4.3.3.2 Weight Tuning

In neural-network models, inputs of neurons are multiplied with neural weights,

which are computed by the multipliers in the arithmetic unit. The pre-trained weight

values are known and tunable by the attackers. Recent studies have found that mi-

nor weight changes (e.g., weight quantization or fine-tuning) would not affect the

classification accuracy of the neural model, which has been widely exploited for var-

ious hardware optimization [86]. In this work, we fine-tune the weights for another

purpose, which is to reduce the number of computation error thereby improving

classification accuracy. To reduce the error, an attacker can tune a weight to an-

77

other value in its vicinity such that the new weight will have less multiplication

error. We formulate the problem as follows.

minimize
wm

i,j

∑
d∈Di,j

error(wmi,j × d)

subject to |wmi,j − wi,j| ≤ σ

(4.3)

Here wi,j is the j-th pre-trained weight at i-th layer, wmi,j is the modified weight,

σ is the limit for weight tuning, error(wmi,j × d) is the absolute numerical error for

multiplying the weight wmi,j with data d, and Di,j is the typical set of values that the

weight wi,j is multiplied with. For each weight, Di,j is either the set of training data

values or the intermediate output values of neurons, so it can be easily estimated

based on a set of training data. In our implementation, the weights are fine-tuned

layer by layer. After updating all the weights at layer i based on Di,j, we compute

the neuron outputs which are used in the next layer as Di+1,j. We repeat the weight

tuning process until every layer is tuned. Since weight tuning deviates the weights

from the ones learned from training data, a large change in weights might instead

decrease accuracy. Therefore, in this work, σ is set to be a very small value. For

example, for a weight which is represented as a fixed-point number with q bits for

its fraction part, we set σ = 2−q.

4.3.3.3 Adder-input Shifting

Unlike multipliers where one input is a tunable weight, the adders accept

intermediate values as inputs that are not directly tunable. To reduce the error, we

propose an adder-input shifting technique. The basic idea is shown in Fig. 4.4(a).

78

(a) (b)

Figure 4.4: Adder-input shifting: (a) illustration; (b) implementation

Recall that the attacker has an error profile of the approx-unlocked adder which

represents the error distribution over two adder inputs (red region in Fig. 4.4(a)).

Besides, because the attacker has the ability to schedule the computation to the

arithmetic operator, he can obtain an input profile for adder based on a set of

training data, which represents the data distribution over two adder inputs (blue

region in Fig. 4.4(a)). Based on these two distributions, the attacker can shift two

adder inputs by a constant value δ in opposite directions:

A+B → (A+ δ) + (B − δ) (4.4)

such that the new data distribution for (A + δ) and (B − δ) will be away from the

error distribution. To implement the adder-input shifting, the attacker can modify

his neural network as shown in Fig. 4.4(b). Each add operation is now realized by

three add operations as shown in Eq. (4.4). Besides, he needs to modify the data

flow scheduling to ensure correct order of three add operations.

79

4.3.4 Attack Results

4.3.4.1 Experiment Setup

In this experiment, the neural chip under attack uses 16-bit fixed-point adders

and multipliers (7 bits for fractional part). Such arithmetic operators can preserve

high classification accuracy while saving power and area, which is widely used in

modern neural chip designs [78–80]. The adders and multipliers are locked using

Anti-SAT based logic locking. The original circuit is locked with keys ~Ka which has

key-size | ~Ka| = 5%× #Gates of the original circuit. Besides, a 16-input obfuscated

Anti-SAT block (with p = 1) was attached to the locked circuit, which has key-size

| ~KB| = 4× 16 = 64. The 16 inputs of Anti-SAT are randomly connected to 16 out

of 32 primary inputs of the adder/multiplier. Such locking scheme can cost the SAT

attack more than 1 year to find the correct key [31].

4.3.4.2 Attack Result 1: Approx-unlocking

As discussed in Section 4.3.2, in the first step of our proposed attack method-

ology, we utilize the AppSAT attack to find an approx-key to de-obfuscate most

of the correct functionality. Fig. 4.5 shows the AppSAT attack progress. As seen,

for both the adder and the multiplier, the error rate ε starts at 100% for a random

key. However, ε drops dramatically during the first 30 iterations and it continues

to decrease gradually as the attack proceeds. These results show the efficiency of

AppSAT attack on finding an approx-key which can achieve low error rate. In this

80

Figure 4.5: Error rate v.s. SAT attack iteration. The error rate is estimated using

10000 random input patterns.

Figure 4.6: Error profiles of approx-unlocked adder/multiplier

experiment, the AppSAT attack is terminated at 5000 iterations and it outputs

an approx-key denoted as ~KApp. Fig. 4.6 illustrates the error distribution for the

approx-unlocked adder/multiplier with ~KApp. The colored region shows the error

distribution over the input space (blank space means no error). Also, the color bar

on the right of each figure shows the absolute numerical distance between correct

and incorrect outputs.

Five neural-network models (as listed in Table 4.2) are used to evaluate the

performance of the approx-unlocked chip. The neural network is simulated using

Ristretto [86], a neural network framework based on Caffe. To simulate the arith-

81

Table 4.2: Neural network benchmarks

Benchmark #Label
#Test

Model
Data

MNIST 10 10000 LeNet

SVHN 10 10000 CIFAR10 Full

CIFAR10 10 10000 CIFAR10 Quick

ILSVRC-2012 1000 500 CaffeNet

Oxford102 102 1000 CaffeNet

metic error, error profiles of the approx-unlocked adder and multiplier are embedded

into the simulation tool. Table 4.3 shows the accuracy of 5 models running on a

neural chip that’s unlocked with a correct key ~KC and an approx-key ~KApp. We can

see that the relative accuracy loss of an approx-unlocked neural chip is only 7.20%

on average. This is due to the low error rate of the approx-unlocked circuits as well

as the inherent error-tolerant nature of neural networks.

4.3.4.3 Attack Result 2: Neural-network Fine-tuning

From Table 4.3, we can see that the accuracy decreases more for large bench-

mark such as ILSVRC-2012. Here we evaluate the effectiveness of our neural-network

fine-tuning technique in further improving the accuracy. For weight tuning, we set

σ = 2−q = 2−7. For adder input shifting, we first plot the adder input distribution

for 5 benchmarks based on 100 training data, as shown in Fig. 4.7 . Based on Fig. 4.6

(left) and Fig. 4.7, we select the shift distance δ to be 50 as it can shift the input

distribution away from the error region. As shown in the last column of Table 4.3,

82

Table 4.3: Accuracy of neural models deployed on a neural chip that’s unlocked with

a correct key ~KC and an approx-key ~KApp (without/with neural network fine-tuning)

Benchmark

With ~KC With ~KApp

With ~KApp

+ Fine-tuning

Accuracy Accuracy
Accuracy

Accuracy
Accuracy

Loss Loss

MNIST 99% 98.51% 0.49% 99% 0%

SVHN 93.51% 92.64% 0.93% 93.51% 0%

CIFAR10 75.37% 69.75% 7.46% 75.37% 0%

ILSVRC-2012 41.40% 33.20% 19.81% 41.40% 0%

Oxford102 87.60% 81.20% 7.31% 87.60% 0%

Average - - 7.20% - 0%

fine-tuning improves the accuracy of all 5 benchmarks. The accuracy loss is reduced

to 0% for all benchmarks.

These results together demonstrate that an attacker can use the proposed

attack methodology to approx-unlock a neural chip and fine-tune his neural network

models to accommodate the approx-unlocked neural chips so as to achieve better

accuracy.

4.4 Secure Locking for Neural Chips

The attack results in Section 4.3.4 illustrate that AppSAT can easily decipher

an approx-key to obtain approx-unlocked adders/multipliers with low error rate.

The low error rate of approx-unlocked adders/multipliers leads to a humble degra-

83

Figure 4.7: Adder input distribution for 5 benchmarks

dation in classification accuracy for neural models that are deployed on the approx-

unlocked chips. In addition, the low error rate also facilitates the fine-tuning step,

which makes the approx-unlocked neural chip work better for fine-tuned models.

To thwart the proposed attack scheme, we need to ensure that the error rate of an

approx-unlocked chip is sufficiently high. One possible approach is to increase the

output corruptibility of the Anti-SAT block (e.g., by reducing nas). However, if

nas is reduced, the complexity of exact SAT attack for finding a correct key would

surely come down, as discussed in Section 4.2.3.3. Hence there are two competing

objectives:

1. AppSAT type attacks should have high error rate to ensure a sufficient quality

degradation in application level;

2. The complexity of exact SAT attack to determine the correct key should still

be very high.

84

In this section, we propose a secure locking scheme which aims at achieving these two

objectives simultaneously. The proposed locking technique is based on a co-design

of the locking infrastructure (i.e., a modified Anti-SAT block) and the functional

modules (i.e., the multipliers).

4.4.1 Strong Anti-SAT: Increasing Error Rate

4.4.1.1 Strong Anti-SAT Configuration

To ensure that AppSAT type attacks should have a high error rate, we propose

a modified Anti-SAT block (referred to as Strong Anti-SAT) which makes two modi-

fications to existing Anti-SAT block. Firstly, the Strong Anti-SAT block decomposes

the logic block g of Anti-SAT (shown in Fig. 4.3(b)) into m mini-blocks g0, as shown

in Fig. 4.8. Each mini-block g0 has n0 inputs and on-set size p0 (1 ≤ p0 ≤ 2n0 − 1).

We use ~Kj
b1 and ~Kj

b2 to denote the portion of key-inputs into the j-th mini-block

of logic block g and g, where 1 ≤ j ≤ m. Also, we use ~Xj to denote the portion

of Anti-SAT inputs into the j-th mini-block of logic block g and g. The outputs

of the mini-blocks in g and g are denoted as Y j
b1 and Y j

b2, respectively. We enforce

the g0 to be a function that satisfy the following condition: if ~Kj
b1 6= ~Kj

b2, then

there must exist an input ~Xj such that g0(~Xj ⊕ ~Kj
b1) 6= g0(~Xj ⊕ ~Kj

b2). This means

that a mismatch between two keys must make the function g0 output differently

for some input patterns. This condition ensures that a key for Strong Anti-SAT

~K = (~Kb1, ~Kb2) is a wrong key if ~Kb1 6= ~Kb2.

The second modification in the Strong Anti-SAT is that, when locking a circuit

85

Figure 4.8: An n-input Strong Anti-SAT block. Each mini-block g0 has n0 inputs

and on-set size p0.

with n primary inputs, we enforce the Strong Anti-SAT block to have nas = n inputs.

Such enforcement ensures that every primary input can affect the Anti-SAT block,

thereby making the error more uniformly distributed across the input space. In the

remaining of this chapter, we assume nas = n and use ~X and n to denote the inputs

and input-size of both the original circuit and the Strong Anti-SAT block. So for

n-input Strong Anti-SAT, we have m = n/n0 mini-blocks in g.

4.4.1.2 Error Rate Analysis

In this section, we will derive an error rate lower-bound ε0 of the Strong Anti-

SAT block. Such ε0 holds for any wrong key and it can be tuned to a large value,

so AppSAT type attacks will not be able to decipher a “good” enough approx-key.

Theorem 4.4.1. The error rate of an n-input Strong Anti-SAT block (in Fig. 4.8)

is ε ≥ ε0 =
p
(n/n0−1)
0

2n
for any wrong key.

86

Proof. We prove this theorem by first deriving the form of wrong keys and corrupted

input patterns. Then, for any given wrong key, we analyze the number of ways to

construct a corrupted input pattern and then compute the error rate.

1. Firstly, we recall that the Strong Anti-SAT preserves the constant-output

property as the Anti-SAT. In other words, given a correct key, the output

Yas in Fig. 4.8 should always output 0 for all inputs ~X. On the other hand,

given a wrong key, Yas can output 1 for some input patterns. Note that a key

for Strong Anti-SAT ~Kb = (~Kb1, ~Kb2) is a wrong key if ~Kb1 6= ~Kb2, as discussed

earlier.

2. Now, we fix ~Kb = (~Kb1, ~Kb2) to some wrong keys which satisfy ~Kb1 6= ~Kb2,

and analyze the number of possible assignments to inputs ~X that can produce

incorrect output Yas = 1. Without loss of generality, let’s assume that these

two key-input vectors ~Kb1 and ~Kb2 differ in the portion that’s connected to

the first mini-block, i.e., the wrong key has ~K1
b1 6= ~K1

b2 and all other key-bits

can be either 0 or 1 1.

3. As shown in Fig. 4.8, to make Yas = 1, the Anti-SAT block should have Yg = 1

and Yg = 1, which requires that

∀j ∈ [1,m], Y j
b1 = g0(~Xj ⊕ ~Kj

b1) = 1 (4.5)

1Note that we can repeat the analysis for m groups of wrong keys, where the j-th group satisfies

that ~Kj
b1 6= ~Kj

b2 while all other key-bits can be 0 or 1. Here we only focus on the first group of

wrong key for the simplicity of explanation.

87

and

∃j ∈ [1,m], Y j
b2 = g0(~Xj ⊕ ~Kj

b2) = 0 (4.6)

The corrupted input patterns for ~X = (~X1, ..., ~Xm) must be those that satisfy

both Eq. (4.5) and Eq. (4.6).

4. We now show that for the fixed wrong key as assumed in step 3, the number of

ways to construct a corrupted input pattern based on conditions Eq. (4.5) and

Eq. (4.6) would be at least pm−1
0 = p

n/n0−1
0 . Since we have assumed a wrong

key with ~K1
b1 6= ~K1

b2, we can know that the inputs to the first mini-block in g

(which is ~X1⊕ ~K1
b1) and the inputs to first mini-block in g (which is ~X1⊕ ~K1

b2)

are different. Given ~K1
b1 6= ~K1

b2 and ~X1 ⊕ ~K1
b1 6= ~X1 ⊕ ~K1

b2, there must exist

at least one way to construct ~X1 such that the Y 1
b1 = g0(~X1 ⊕ ~K1

b1) = 1 and

Y 1
b2 = g0(~X1 ⊕ ~K1

b2) = 0 2. With this, the condition in Eq. (4.6) is satisfied.

The only remaining conditions that need to satisfied is Y j
b1 = 1, j ∈ [2,m] in

Eq. (4.5). We want to compute the number of ways to construct the other

inputs ~Xj, j ∈ [2,m] to satisfy the remaining conditions in Eq. (4.5). Since

we assume the mini-block g0 has on-set size p0, for any key into g0, there exists

p0 ways to select an input assignment for ~X i to ensure Y i
b1 = 1. Therefore,

each portion of inputs ~Xj (j ∈ [2,m]) can be selected in p0 ways. Since ~X1

can be selected in at least one way and each ~Xj (j ∈ [2,m]) can be selected

in p0 ways, the total number of ways to construct a corrupted input pattern

2 Note that in Section 4.4.1.1, we have enforced that, if ~Kj
b1 6= ~Kj

b2, then there must exist an

input ~Xj such that g0(~Xj ⊕ ~Kj
b1) 6= g0(~Xj ⊕ ~Kj

b2).

88

would be at least pm−1
0 = p

n/n0−1
0 .

5. We can repeat above analysis for any other m− 1 group of wrong keys, where

the j-th group satisfies ~Kj
b1 6= ~Kj

b2, j ∈ [2,m]. Each group of wrong keys can

corrupt p
n/n0−1
0 input patterns, however these corrupted input patterns might

not be mutually exclusive. Therefore, we conclude that for any wrong key, the

number of corrupted input patterns is ≥ p
(n/n0−1)
0 .

6. Since the total number of input patterns is 2n, the error rate for any wrong

key is

ε ≥ ε0 =
p

(n/n0−1)
0

2n
(4.7)

Hence proved. �

Theorem 4.4.1 provides a rigorous error rate lower-bound ε0 of the Strong

Anti-SAT block for any wrong key. Based on Theorem 4.4.1, we can design an n-

input Strong Anti-SAT block with a guarantee of high error rate by tuning n0 and

p0. Hence AppSAT will never be able to find a key whose error rate is smaller.

4.4.2 Multiplier Design: Increasing SAT Solving Time Per Iteration

Since the logic block g in the Strong Anti-SAT block has input-size nas = n

and on-set size p = pm0 = p
(n/n0)
0 , the number of SAT attack iterations for finding a

correct key becomes

λ ≥ λ0 =
22n − 2n

p
(n/n0)
0 × (2n − p(n/n0)

0)
= Θ

(2n

p
(n/n0)
0

)
(4.8)

89

As can be seen in Eq. (4.7) and Eq. (4.8), for p0 = 1 the error rate and the SAT

iterations are exactly those for Anti-SAT. Now tuning n0 and p0 can help increase

the error rate but as illustrated this will impact the number of SAT iterations. One

way to counter this degradation in the number of SAT iterations is to investigate

the design of functional units which are inherently very slow in completing each

SAT iteration. Note that SAT is an NP-Complete problem. Hence by appropriate

design of the functional units, we may be able to ensure that the each SAT iteration

takes a long time to solve. Hence running Θ(2n

p
(n/n0)
0

) iterations, even though smaller

than 2n, is actually practically impossible. To maintain a large total SAT solving

time, we propose to increase the size of multipliers in the arithmetic units. Modern

neural chips [78–80] use 16-bit (or even smaller) fixed-point multiplier to save power

and area. However, such a small multiplier is easily solvable by SAT solvers. A

large multiplier, on the contrary, has been considered as a circuit that’s hard for

SAT solvers based on the conjecture that factoring large integers is difficult [87].

Experiments in [88] showed that the SAT solving time for factoring integers could

increase exponentially in the operand width w. As will be shown in Section 4.5, the

SAT solving time per iteration will also increase exponentially in w. Thus, we can

maintain a high SAT attack complexity by using a larger multiplier 3.

3Since we enforce that the Strong Anti-SAT has the same number of inputs as the locked circuit

(nas = n), the size of the multiplier and the Strong Anti-SAT are both determined by n. Increasing

n will increase the size of multipliers and Strong Anti-SAT.

90

4.4.3 Summary of Attack Mitigation

In summary, our attack mitigation is based on a co-design of the Strong Anti-

SAT block and the multiplier modules. Firstly, appropriate choice of n0 and p0 of

the Strong Anti-SAT can be designed to achieve a desired error rate lower-bound.

Also, by enforcing the Strong Anti-SAT inputs to connect to all primary inputs

~Xas = ~X, we ensure that every primary input can affect the Anti-SAT block, thereby

making the error more uniformly distributed across the input space. Secondly, a

large multiplier design is utilized to increase the SAT solving time per iteration.

Together these would 1) counter the AppSAT attack and the fine-tuning attack

because the error rate of locked arithmetic units is sufficiently high for any approx-

key, and 2) counter the exact SAT attack because the total SAT solving time for

finding the correct key is extremely long (e.g., ≥ 1 year).

4.5 Experiments and Results

This section shows the experimental results of our proposed secure locking

technique for neural chips.

4.5.1 Validation of Analytical Lower Bounds

In Section 4.4.1, we discuss the configuration of a Strong Anti-SAT block and

analyze the lower-bounds for error rate ε0 and the number of required SAT iteration

λ0 as shown in Eq. (4.7) and Eq. (4.8). To validate the correctness of two analytical

lower-bounds, we designed a 16-input Strong Anti-SAT block with different (n0, p0)

91

Table 4.4: Error rate ε and the number of SAT iterations λ of a 16-input Strong

Anti-SAT block with different (n0, p0). ε0 and λ0 are the analytical lower-bounds.

ε is the experimental error rate obtained by simulating all 216 input patterns. λ is

the experimental number of iteration required by SAT attack.

n=16

(n0, p0) (2,1) (2,3) (4,7) (4,8) (4,13) (4,15)

ε0 1.53E-05 3.34E-02 5.23E-03 7.81E-03 3.35E-02 5.15E-02

ε 1.53E-05 9.13E-02 3.57E-02 3.66E-02 2.16E-01 1.86E-01

λ0 65536 12 29 18 5 6

λ 65536 364 656 1334 344 187

and test their actual error rate and SAT iterations. The result is shown in Table 4.4.

As seen, for different (n0, p0), we always have ε ≥ ε0 and λ ≥ λ0, which validates

the correctness of our analysis for the lower-bounds ε0 and λ0.

4.5.2 Error Rate and Accuracy Loss

In Fig. 4.9, we plot ε0 and λ0 for an n-input Strong Anti-SAT block with

different (n0, p0). For each n ∈ (32, 48, 64, 80), we set n0 = 4 and increase p0 from

1 to 15. As seen in Fig. 4.9(a), by increasing p0, the ε0 will increases substantially.

For different n, we can always find a configuration (n0, p0) such that the ε0 is larger

than a desired error rate. A desired ε0 can be estimated to a value such that neural

applications of interest are guaranteed to have a high accuracy loss. To estimate

a desired ε0, we simulate the relationship between accuracy loss of neural models

and error rate of multipliers for 5 benchmarks, as illustrated in Fig. 4.10. Based

92

0 5 10 15

(n
0
=4, p

0
)

10-10

10-8

10-6

10-4

10-2

100

E
rr

or
 r

at
e

0

n=32
n=48
n=64
n=80

0 5 10 15

(n
0
=4, p

0
)

100

102

104

106

108

1010

#I
te

ra
tio

n
0

n=32
n=48
n=64
n=80

(a) (b)

Figure 4.9: Lower-bounds of (a) error rate ε0; (b) SAT iterations λ0 for different

Strong Anti-SAT configurations (n, n0, p0).

on this figure, we can estimate a desired ε0 for the multiplier to achieve a sufficient

application-level accuracy loss. For example, if we want to achieve 50% averaged

accuracy loss, a desired ε0 for the multiplier is estimated to be 10−6. Using such an

analysis we can estimate the desired ε0 for the multipliers which can then be used

to design the Strong Anti-SAT block (by tuning n0 and p0).

4.5.3 SAT Solving Iterations and Execution Time

Increasing ε0, however, will inevitably decreases λ0, as discussed in Section 4.4.2.

This is validated in Fig. 4.9(b), which shows that λ0 decreases as p0 increases. To

counter this degradation in the number of SAT iterations, we proposed to use a

larger multiplier (which multiplies operands with larger bit-width w) 4. Let’s de-

note the SAT solving time per iteration as t. Fig. 4.11 shows the t for different

4The input-size of the multiplier is n = 2w.

93

10-8 10-7 10-6 10-5 10-4

Error rate of multiplier

0

20

40

60

80

100

A
cc

ur
ac

y
lo

ss
 (

%
)

MNIST
SVHN
CIFAR10
ILSVRC-2012
Oxford102
Average

Figure 4.10: Accuracy loss v.s. error

rate of multiplier for 5 benchmarks.

28 32 36 40 44 48 52
n-input locked multiplier

0

2

4

6

8

10

S
A

T
 s

ol
vi

ng
 ti

m
e

pe
r

ite
ra

tio
n

 t
 (

s)

104

Estimated
Experimental

Figure 4.11: SAT solving time per iter-

ation for n-input locked multiplier

n-input fixed-point multipliers locked with Anti-SAT. It’s computed by running the

SAT attack in 10 hours and then dividing it by the number of iterations the at-

tack can process. As seen, as the input-size n increases, t increases exponentially.

To validate the extrapolated exponential increase, we run the SAT attack on a 56-

input locked multiplier and find that it can only process 1 iteration in 2.41E+05

seconds (about 67 hours), which is the estimated value based on the exponential

curve. Hence such a predictive approach can be used to estimate an appropriate

multiplier size for achieving certain t to ensure sufficient total SAT solving time.

Based on λ0 in Fig. 4.9(b) and t in Fig. 4.11, we can compute the lower-bound of

total SAT solving time T0 = t× λ0 for each tuple (n, n0, p0) and see if it can satisfy

a pre-defined requirement on the total SAT solving time.

In Fig. 4.12, we plot the relationship between T0 and ε0 for different config-

urations of (n, n0, p0). This is useful for selecting a locking configuration that can

satisfy both the SAT solving time requirement T ≥ T0 and the error rate require-

94

Figure 4.12: Total SAT solving time v.s. error rate

ment ε ≥ ε0. To obtain such plot, we first determine the (n, n0, p0) which can just

achieve certain ε0 based on Fig. 4.9(a). Then, we compute λ0 and T0 for each tuple

and show the relationship between T0 and ε0 in Fig. 4.12. As seen, we can always

select a configuration (n, n0, p0) so as to satisfy a desired ε0 and T0 simultaneously.

As an example, when (n, n0, p0) = (64, 4, 11), we have ε0 > 10−4 and T0 > 1 year.

Such configuration would result in 80% accuracy loss for neural models running on

approx-unlocked chips, as shown in Fig. 4.10.

4.6 Conclusion

In this chapter, we investigate both attack and defense methodologies for

locked neural chips. Our proposed attack methodology exploits existing SAT-based

attacks and neural model fine-tuning in effective ways. To counter this attack, we

propose a secure locking scheme based on a co-design of the locking infrastructure

95

and the functional modules. Experimental results show that our proposed locking

scheme can effectively secure neural chips against the AppSAT attack as well as the

exact SAT attack.

96

Chapter 5: Delay Locking: Security Enhancement of Logic Locking

Against Overproduction and Counterfeiting

5.1 Introduction

In Chapter 3, we discussed the vulnerability of many existing logic locking

techniques to a strong attack called SAT attack [24]. Countermeasures have been

proposed to mitigate the SAT attack [31,68,70], including our proposed Anti-SAT.

Basically, these countermeasures proposed to insert additional SAT-attack resistant

logic blocks such as the Anti-SAT block [31], the SARLock [70], or an AES block

with a fixed AES key [68] into the locked circuit to increase the SAT attack iterations

and execution time. Although effective, one limitation of all above countermeasures

is that these SAT-attack resistant logic blocks have a special and separable structure.

They may be removed or nullified by an attacker if they are identified. Then, the

SAT attack can be launched to unlock the circuit without these SAT-resistant logic

blocks. In this chapter, we propose a new technique called delay locking to enhance

the security of existing logic locking techniques. For delay locking, the key to a

locked circuit not only determines its functionality, but also its timing profile. A

functionality-correct but timing-incorrect key will result in timing violations and

97

thus make the circuit malfunction. The SAT attack is thwarted because it cannot

be utilized to decipher a timing-correct key. The contributions of this work are as

follows.

• A delay+logic locking (DLL) technique is proposed to enhance the security of

existing logic locking techniques to prevent IC counterfeiting and overproduc-

tion. It obfuscates the timing profile of a circuit design such that an incorrect

key will violate timing constraints and thus make the circuit malfunction.

• A new type of key-gate called tunable delay key-gate (TDK) is introduced,

which has two types of keys: functional-key and delay-key. The functional-

key controls the TDK’s functionality while the delay-key determines its gate

delay.

• An overall DLL design flow is proposed, which allocates the new TDK gates

and designs the timing constraints for simultaneous functional and delay ob-

fuscation.

• Our proposed approach is fundamentally immune to previous attacks such

as the SAT attack because these attacks only focus on deciphering the cor-

rect functional-key. Finding the correct delay-key can be formulated to be

an instance of mixed-integer-linear-programming (MILP). However, necessary

constraint relaxations to satisfy the linear formulation make it fail to find

the correct delay-key (as discussed in Sec. 5.4.3). Hence our approach of si-

multaneous functional and delay obfuscation results in substantial security

enhancements.

98

5.2 Attack Model

This work assumes the same attack model as discussed in Section 2.1.1. The

attacker is an untrusted foundry whose objective is to obtain the correct key of

a locked circuit and use it to unlock overproduced chips or out-of-spec counterfeit

chips. The malicious foundry has access to the following two components:

1. A locked gate-level netlist, which can be obtained by reverse-engineering the

layout file of the locked circuit provided by the designer.

2. An activated functional chip, which can be obtained from an open market.

This chip can be used to observe a set of correct I/O pairs as a black box.

5.3 Delay+Logic Locking (DLL)

To enhance the security of existing logic locking techniques, we propose a new

technique called delay locking that can thwart existing attacks on logic locking.

The basic idea of delay locking is to make the circuit’s delay dependent on the

key value. When logic locking is enhanced with delay locking, the key into a locked

circuit not only determines its functionality but also its timing profile. A correct key

value should recover the original combinational functionality as well as the correct

timing profile that can satisfy a set of pre-defined timing constraints. On the other

hand, a key is incorrect if it fails to recover a) the original functionality or b) the

correct timing profile. Since previous attack algorithms on logic locking (described

in Section 2.2.2.2) only focus on retrieving the correct combinational functionality,

99

they are not guaranteed to recover the timing-correct key. A functionality-correct

but timing-incorrect key will result in timing violations and thus make the circuit

malfunction.

In the remaining of this section, we discuss how the delay locking is imple-

mented and introduce the design objectives, design techniques, and the overall design

flow of the DLL design.

5.3.1 Tunable Delay Key-gate (TDK)

To make the delay of a key-gate dependent on its key value, we propose a tun-

able delay key-gate (TDK). Fig. 5.1 illustrates the structure of the TDK, which com-

bines a conventional key-gate (XOR/XNOR) with a tunable delay buffer (TDB) [89].

TDB is a widely used solution for post-silicon adjustment of gate/circuit delays. One

typical application of TDBs is to correct timing violations that are induced by the

process, temperature and other variances. Various implementations of TDBs have

been proposed in the previous literature. One low-power TDB design is proposed by

Tsai et al. [89], which is based on two inverters with a set of NMOS-based capacitive

loads in between, as shown in Fig. 5.1(b). Each capacitive load is controlled by a

transmission gate. When the transmission gate is activated by its control signal, the

corresponding capacitive load is added into the path between the pair of inverters,

thus obtaining tunable delays.

As shown in Fig. 5.1, each TDK has two key-inputs, one feeding into the

XOR/XNOR gate (referred to as the functional-key) and the other feeding into the

100

(a) (b)

Figure 5.1: Tunable delay key-gate (TDK): (a) overview; (b) implementation

Table 5.1: Functionality and delay of the TDK

Key (k1k2) Functionality Delay

00 y = x d0

01 y = x d1

10 y = x̄ d0

11 y = x̄ d1

control signal of the TDB (referred to as the delay-key). The impact of the keys on

the functionality and delay of the TDK is shown in Table 5.1. The functional-key k1

determines whether the TDK behaves as a buffer or an inverter while the delay-key

k2 determines whether the TDK gate delay is d0 or d1. The TDK delay ratio

r = d1/d0 (5.1)

can be set at design time by tuning the capacitive load. This delay ratio has a great

impact on the circuit delay distribution across different key values as well as the

timing violation sensitivity, which will be discussed in Section 5.3.3.2.

In the remaining of the paper, we refer a circuit that’s locked with the TDKs

to be a delay-logic-locked circuit (DLL circuit).

101

Figure 5.2: A simple sequential circuit.

5.3.2 Timing Constraints of DLL Circuit

Now we describe how the allocation of TDKs impacts the overall timing con-

straints of the design. We first describe the timing constraints for a conventional

sequential circuit, as shown in Fig. 5.2. Given a sequential design, we can represent

it as a directed graph G = (V,E), where V is a set of flip-flops (FFs) and E is a set

of edges representing the combinational logic paths between the FFs. We want to

analyze the timing constraints for the path delay between any two FFs i and j. Two

types of timing constraints are considered in a sequential circuit, namely longest-path

timing constraint and shortest-path timing constraint. In a nutshell, the longest-path

timing constraint ensures that the combinational netlist shall propagate the logic

computation in time to the destination FF. On the other hand, the shortest-path

timing constraint ensures that the combinational netlist shall not propagate too fast

such that it contaminates the correct value that needs to be stored in the destination

FF. The following formally describes these two timing constraints.

Let us assume that Ti and Tj are the clock arrival time at FFs i and j. Ti

and Tj may not be the same due to clock skews (the spatial variation in arrival time

of different FFs). Let Dlong
ij be the longest-path delay between FFs i and j, i.e.,

102

the maximum delay among all combinational logic paths between two FFs i and

j. Let T jset be the setup time for FF j and Tclk be the clock period. To meet the

longest-path timing constraint, the circuit needs to satisfy:

Dlong
ij + T jset ≤ Tclk + Tj − Ti,∀i, j (5.2)

This longest-path timing constraint indicates that the clock period should be large

enough for the data to propagate through the combinational logic paths and to be

set up at the destination FF before the next trigging edge of the clock arrives.

Besides, the circuit should also satisfy the shortest-path timing constraint

(hold time constraint) between two FFs. Let Dshort
ij be the shortest-path delay be-

tween FFs i and j and T jhold be the hold time for FF j. The hold time of the

destination FF j must be shorter than the shortest-path delay through the combi-

national logic network, considering the clock skew phenomenon:

Dshort
ij ≥ T jhold + Tj − Ti,∀i, j (5.3)

Based on Eq. (5.2) and Eq. (5.3), we can represent the timing constraints for a DLL

circuit as follows. Let Dshort
ij (~K) and Dlong

ij (~K) be the shortest/longest path delay

between FFs i and j of a DLL circuit with a key ~K. The timing constraints for the

DLL circuit can be represented as:

Dshort
ij (~K) ≥ T jhold + Tj − Ti ≡ LBij

Dlong
ij (~K) ≤ Tclk + Tj − Ti − T jset ≡ UBij

(5.4)

Eq. (5.4) enforces that the combinational path delays (for a correct key ~K = ~KC)

between two FFs should satisfy both the shortest and the longest timing constraints.

103

Allocation of keys to the fastest or slowest corner may not be the correct timing

solution because a key that increases delay may violate the upper bound (UB) and a

key that decreases delay may violate the lower bound (LB). This makes the delay-key

determination problem very hard from an attacker’s standpoint.

5.3.3 DLL Design Flow

In this section, we introduce the design objectives, design techniques, and the

overall design flow of the DLL design. In general, the design problem is formulated

as follows: we want to achieve simultaneous functionality and delay obfuscation by

allocating the TDK gates and designing the timing constraints as shown in Eq. (5.4).

5.3.3.1 Design Objective

The objective of DLL design consists of two aspects:

1. Functionality obfuscation. The functionality of a circuit shall be obfuscated in

order to conceal the correct functionality when it passes through the untrusted

foundry and other potentially untrusted phases of the supply chain. This

requires the TDKs to be located in functionality-critical spots.

2. Delay obfuscation. The timing profile of the locked circuit should be obfuscated

in order to defend the functionality-oriented attacks such as SAT attack. For

an incorrect delay-key, at least one path will violate either the longest or the

shortest-path timing constraint as described in Eq. (5.4). This requires the

paths which comprise the TDKs to be timing-critical.

104

(a) Technique 1: tighten upper or lower timing bounds

(b) Technique 2: path delay balancing

(c) Technique 3: increase TDK gate delay ratio r

Figure 5.3: Illustrative examples of three design techniques for delay locking

5.3.3.2 Design Techniques

The first design objective (functionality obfuscation) can be achieved by previ-

ously proposed key-gate insertion algorithms [20, 22,47], which insert the key-gates

to internal wires of a netlist to obfuscate the original functionality. However, such

locations might not belong to the timing-critical paths. Therefore, an incorrect key

might not result in sufficient timing violations to cause an error. To achieve better

105

delay obfuscation, we need to make the paths which comprise the TDKs become

timing-critical. We propose the following three design techniques to achieve this.

1) Timing Bound Design. The timing bounds UBij or LBij shall be sufficiently

tightened to the longest or shortest path delay, respectively. In other words, either

UBij is set to be larger than but sufficiently close to Dlong
ij (~KC), or LBij is set to be

less than but sufficiently close to Dshort
ij (~KC), as illustrated in Fig. 5.3 (a). When

the bounds are sufficiently tight, it can ensure that the paths with delay values that

are very close to LBij or UBij can violate the timing bounds if the delay-keys are

incorrect. As shown in Eq. (5.4), LBij and UBij can be tuned by changing the clock

arrival time Ti and Tj, which can be controlled by the clock tree design [90]. Clock

tree design which exploits the tuning of Ti and Tj is also called useful-skew based

optimization. In this case, we exploit useful skews for security purpose.

2) Path Delay Balancing. The path delays shall be balanced such that every

path delay is close to the longest-path delay of the whole combinational block,

denoted as Dbalanced. Imbalanced path delays mean that TDKs on the non-critical

paths will not result in desired timing sensitivity. On the contrary, making all paths

almost equally critical would make the timing profiles sensitive to all TDKs. Hence,

path delay balancing makes it easier for the circuit to violate the timing constraints

when the delay-key is incorrect. Path delay balancing is a widely used technique

for eliminating glitches. There exist many approaches for path delay balancing. In

this work, we exploit gate sizing and buffer insertion [91] to achieve the path delay

balancing.

3) Increase TDK Delay Ratio r. The TDK delay ratio r shall be large enough

106

to ensure a desired timing violation magnitude, i.e., the difference between an in-

correct delay and the violated timing bound. A larger r indicates that when a key

bit flips, the delays of the paths that comprise this TDK will increase or decrease

with a larger magnitude. Therefore, these paths would have more severe timing

violations, as shown in Fig. 5.3(c). A larger timing violation magnitude is preferred

because it indicates a higher probability of fault occurrences.

The above mentioned three techniques will be used to achieve a high timing

violation sensitivity to incorrect keys leading to maximum chances of delay locking

to be effective. To quantify the timing violation level of a DLL circuit with an

incorrect key, we define a security metric call timing violation ratio (TVR). For FFs

i and j, the TVR of a key ~K can be calculated as:

TV Rij(~K) =
max{0, Dlong

ij (~K)− UBij, LBij −Dshort
ij (~K)}

Dbalanced
(5.5)

A larger TVR indicates more timing violation and a higher probability of fault

occurrences. On the other hand, for a correct key, there is not timing violation and

TVR is 0. Based on Eq.(5.5), we can define the TVR for the whole circuit as follows:

TV R(~K) = max
FFs i,j

{TV Rij(~K)} (5.6)

This metric captures the maximum timing violations (if any) among all pairs of FFs.

5.3.3.3 Design Flow

The overall delay locking design flow is shown in Fig. 5.4. It consists of two

design phases: logic locking and delay locking.

107

Figure 5.4: DLL design flow

Logic Locking Phase: Given a netlist G and a (randomly generated) correct

key ~KC , we first integrate the TDK gates into the combinational block of the orig-

inal netlist and produce a locked netlist GL(~K). The locations for the TDK gates

can be determined using previously proposed key-gate insertion algorithms, such as

random insertion [20], fault-analysis based insertion [47] and interference-analysis

based insertion [22], which is not the focus of this work.

Delay Locking Phase: In the delay locking phase, we apply three design tech-

niques as discussed in Section 5.3.3.2 to improve the timing violation sensitivity.

The TDK gate delay ratio r is gradually increased until the TV R(~K) (defined

in Eq.(5.6)) for a random key is larger than a pre-defined security threshold TV Rth.

After the delay locking phase, we obtain the final DLL design G′L(~K).

108

5.4 Security Analysis of DLL

In this section, we analyze the security of DLL technique against different

attacks.

5.4.1 TDK Removal Attack

The attacker might attempt to nullify or bypass the TDK gates (either the

XOR/XNOR gate, the TDB, or both) in the DLL circuit by replacing it with a

normal wire. However, such attempt cannot recover the original functionality and

delay if he does not know the correct functional-key and delay-key. On one hand, a

TDK can function as a buffer or inverter depending on the functional-key. Replacing

it with a wire might flip the correct functionality. On the other hand, nullifying the

TDK gates (or just the TDB) is simply equivalent to decreasing the path delays,

which might violate the timing lower bound ensured by the shortest-path timing

constraint.

5.4.2 Functionality Oriented Attacks

As discussed earlier, previous attacks [22–24] on logic locking such as the SAT

attack algorithm are all functionality oriented, which means that an attacker only

focuses on finding a functionality-correct key w.r.t. the combinational logic of the

circuit. However, when the delay locking technique is utilized, the key obtained by

these attacks cannot unlock the overproduced locked chip because they are not guar-

anteed to obtain a timing-correct key. A circuit based on a functionality-correct (but

109

not timing-correct) key will violate the pre-defined timing constraints and thus pro-

duce incorrect outputs, which will be shown in the experiment section (Section 5.5).

As a result, the functionality oriented attacks fail to unlock a chip that is enhanced

with the delay locking technique.

5.4.3 MILP Based Delay-key Attack

Assuming an attacker can obtain a correct functional-key using previously

proposed attacks, in order to unlock the circuit, he has to find a correct delay-key

that can satisfy all pre-defined timing constraints. Here we assume a stronger attack

model, where the attacker knows the timing LB and UB of all paths and he intends

to formulate a mixed integer linear programming (MILP) to solve the delay-key. A

straightforward formulation can set UB and LB as constraints for each path delay

and find a delay-key that satisfies these constraints. However, this direct formulation

is impractical because the number of possible signal paths can be exponential in the

total number of gates [92]. This issue can be handled by the classic technique which

divides the constraints on path delay into constraints on a gate’s arrival time [92].

Let ai denotes the arrival time of the output of a gate or a primary input i. Let

gi denotes the delay of a gate i. If it’s a TDK gate, then gi is dependent on the

110

delay-key value denoted as xi. We can formulate the above problem as:

find ~x,~a

s.t. LBj ≤ aj ≤ UBj, ∀PO j

aj + gi ≤ ai, ∀gate i,∀j ∈ inputs(i)

gi ≤ ai, ∀PI i

gi = xi × d1 + (1− xi)× d0, ∀gate i ∈ TDK

xi = 0 or 1, ∀gate i ∈ TDK

(5.7)

But the above formulation might not recover the correct arrival time and delay-key

because the timing constraint for a gate ai = max{aj +gi},∀j ∈ inputs(i) is relaxed

to be ai ≥ aj + gi in order to form an MILP formulation. This relaxation will make

the arrival time ai inaccurate and result in an incorrect delay-key. As will be shown

in Section 5.5, the resulting key values from above MILP formulation will violate

the pre-defined timing constraints. The attacker can attempt to iteratively run the

MILP attack and add new constraints on the key values to prune out the incorrect

keys discovered in previous iterations. However, since each iteration can only prune

out one incorrect key, when key-size is large, the execution time to find a correct

delay-key will be exponential in the key-size, as will be shown in Section 5.5.

111

5.5 Experiments and Results

5.5.1 Experiment Setup

We validate the effectiveness of the delay locking technique using 8 sequential

benchmarks from ISCAS89. The benchmark information is shown in Table 5.2. Each

benchmark is synthesized using Cadence RTL compiler with SAED 90nm digital

standard cell library. Timing information of the standard cell library is extracted

for timing analysis.

For the TDK, when the delay-key k2 = 0 the gate delay d0 is the XOR/XNOR

gate delay plus a buffer delay. When k2 = 1, its gate delay is set to be d1 = r × d0,

where r is the delay ratio. The TDKs are implemented and simulated using Cadence

Virtuoso and its gate area and delay are obtained for overhead evaluation. In the

logic locking phase, we randomly generate a correct key and adopt the random key-

gate insertion algorithm [20] to insert key-gates into the combinational block of the

benchmark. The number of key-gates equals 10% the number of original gates, as

shown in Table 5.2. In the delay locking phase, we apply three design techniques

(Section 5.3.3.2) to improve delay obfuscation.

To evaluate the level of timing violation given an incorrect delay-key, we com-

pute the TVR (defined in Eq. (5.6)) for the DLL circuit under the case that the

functional-key values are all correct but the delay-key values are randomly gener-

ated. Noted that in the experiment we set the timing bounds to the balanced path

delay for the easy of TVR computation and comparison. The TVR is averaged over

112

Table 5.2: Benchmark information and MILP based delay-key attack results.

Circuit #Gates #FFs

MILP Attack

#Key Correctness TVR

gates (~Kguess) (~Kguess)

s1488 336 6 34 44.12% 28.13%

s5378 748 179 75 58.67% 39.25%

s9234 1014 211 101 59.41% 34.60%

s13207 1924 638 192 63.02% 33.60%

s15850 1952 534 195 63.08% 27.64%

s35932 4763 1728 476 68.07% 26.18%

s38417 5066 1636 507 60.95% 31.87%

s38584 6857 1426 686 58.60% 36.39%

1000 random key trails.

5.5.2 Results

5.5.2.1 Effectiveness of Proposed Design Techniques

In this experiment, we validate the effectiveness of our proposed design tech-

niques (Section 5.3.3.2) in improving the level of timing violations. We assume

technique 1 is always applied and evaluate the impact of other two techniques: path

delay balancing and increasing TDK delay ratio r. Fig. 5.5 shows the TVR values

of different delay ratios r when the path delay balancing is applied (bold lines) and

when it’s not applied (dash lines). As seen, without path delay balancing (dash

lines), the TVR values of most benchmarks are below 5%, and increasing the delay

113

Figure 5.5: The impact of path delay balancing and TDK delay ratio r on the TVR

for 8 ISCAS89 benchmarks.

ratio r cannot effectively achieve a higher TVR value. This is because that when

path delays are imbalanced, most TDKs are not on the timing-critical paths so an

incorrect delay-key cannot cause severe timing violations. When path delay balanc-

ing is applied (bold lines), we can see a remarkable improvement in TVR for all

choices of r. Besides, as r increases, the TVR value increases from about 8% to

39%. The value of r can be designed to achieve a desired TVR threshold.

114

Figure 5.6: Iterative MILP attack results (Timeout is 10 hours)

5.5.2.2 MILP-based Delay-key Attack

As discussed in Section 5.4.3, a MILP formulation might be applied by an at-

tacker to find the delay-key. However, such formulation requires necessary constraint

relaxation to satisfy the linear formulation and thus fail to retrieve the original de-

lay and the correct delay-key. To validate this analysis, we implemented the MILP

formulation based attack. For each DLL circuit, r is set to 3 and path delay bal-

ancing is applied because they can result in a relatively large TVR value as shown

in Fig. 5.5. The correctness (# bits that are the same as the correct key) and the

corresponding TVR values of the MILP solution ~Kguess are computed and shown in

Table 5.2. As seen, the resulting delay-keys are incorrect for all benchmarks and

they will violate the timing constraints with an average TVR of 32.21%. We also

implement an iterative MILP attack which iteratively performs the MILP attack

and adds new constraints on the key values to prune out the incorrect keys discov-

ered in previous iterations. The attack results on 8 benchmarks for key-size ranging

115

(a) Area overhead

(b) Delay overhead

Figure 5.7: Area and delay overhead for the DLL technique. Four bar plots of each

benchmark correspond to TDK delay ratios r = 2, 3, 4, 5

from 4 to 16 are shown in Fig. 5.6. As seen, since each iteration can only prune out

one incorrect key, as the key-size increases, the execution time for finding a correct

delay-key increases exponentially. When key-size is 16, the attack timeouts (≥10

hrs) for all benchmarks.

5.5.2.3 Overhead Evaluation

Fig. 5.7 shows the area and delay overhead of the DLL technique for 8 bench-

marks when compared to the conventional XOR/XNOR based logic locking. For

each benchmark, we vary the TDK delay ratio r and report its impact on area

and delay. Four bar plots of each benchmark correspond to r = 2, 3, 4, 5. As seen,

116

when r increases from 2 to 5, the average area overhead increases from 4.36% to

5.29%. The area overhead mainly comes from the TDBs. A larger r requires a

larger capacitive load so it results in a slightly higher area overhead. The impact of

r is mainly reflected in the delay overhead. As seen, with r increases, the averaged

delay overhead increases from 11.88% to 64.03%. This is because that a larger r will

lead to a larger key-gate delay (if the correct delay-key is 1) and increase the delay

for the overall circuit. Combined with the result in Fig. 5.5, we can see that our

approach is capable of generating a tradeoff between the TVR and the performance

overheads. By tuning the TDK delay ratio r, we can achieve a desired TVR with

acceptable overheads.

5.6 Conclusion

In this chapter, we present a new technique called delay locking to enhance the

security of existing logic locking techniques. A tunable delay key-gate is proposed

to obfuscate both the functionality and timing profile of an IC design. An overall

delay+logic locking design flow is proposed to increase the timing violation sensi-

tivity to incorrect key values. The security of proposed delay locking technique is

evaluated with previous attacks and a new attack based on MILP. Both analytical

and experimental results show that such attacks fail to find the correct delay-key.

117

Chapter 6: Security-aware Design Flow for 2.5D IC Split Fabrication

6.1 Introduction

The increasing trend of outsourced fabrication for modern chips makes circuit

designs vulnerable to IP piracy or counterfeiting by untrusted foundries. 2.5D IC

technology has shown the capability to counter this threat. By limiting the inter-

poser layer of a 2.5D IC that contains inter-chip connections to be fabricated in a

trusted foundry, the complete exposure of original design to an untrusted foundry

is prevented. This fabrication strategy is called split fabrication. In this chapter,

we propose a security-aware physical design flow for 2.5D IC technology to pre-

vent IP piracy. The partitioning phase utilizes the concepts of controllability and

observability to conceal the functionality of a design and the placement phase gen-

erates obfuscated chip layouts that can withstand layout-geometry based attacks

such as proximity attack. Simulation results show that our design flow is effective

for producing secure chip layouts for outsourcing whose original netlist and func-

tionality cannot be reverse-engineered based on the layout-geometry information.

The contributions of this work are as follows.

• We propose a security-aware physical design flow for 2.5D IC split fabrication

118

to address the IP piracy threat in outsourced fabrication.

• A secure min-cut bi-partitioning algorithm based on the concepts of controlla-

bility and observability is proposed to reduce the cut-size while enforcing the

controllability and observability of wires in the cut-set are relatively high so

that incorrect connections between two partitions will lead to incorrect out-

puts. Hence incorrect reconnection of outsourced sub-netlists can’t disclose

the correct functionality.

• A secure simulated-annealing based placement algorithm is proposed to thwart

the layout-geometry based attack algorithm (i.e., proximity attack) while bal-

ancing the performance overhead on area and wire-length.

• We evaluate the security level of our design flow under proximity attack on 8

publicly available benchmarks. Simulation results show that our approach can

effectively prevent a malicious foundry from reverse-engineering the complete

functionality and netlist (46.35% Hamming distance and 0.27% correctness of

reconnection under proximity attack).

6.2 Preliminary

6.2.1 3D/2.5D Integration

Technology scaling which shrinks the physical feature size of transistors has

long been an effective approach to improve chip performance. However, this ap-

proach is now experiencing asperities mainly due to the physical limit of transistor

119

Die 1

Die 2

Die 3

Package substrate

Substrate
Device/Metal layers
Micro-bumps
TSVs

C4 Bumps

(a)

Die 1 Die 2

Package substrate

Micro-bumps

Interposer

C4 Bumps

(b)

Figure 6.1: Structures of (a) stacked 3D IC and (b) 2.5D IC.

miniaturization. This motivates the development of 3D integration technology.

3D integration is a technology that vertically integrates multiple 2D dies to

create a single high-performance chip named 3D IC. A common configuration of 3D

IC is shown in Fig. 6.1(a). Multiple 2D dies (which contain device/metal layers) are

stacked and interconnected using vertical connections called Through-Silicon-Vias

(TSVs). 3D integration reduces interconnect wire-length because two distant de-

vices in a conventional 2D design can be placed vertically close to each other and

connected with a shorter connection. The reduction in wire-length scales down inter-

connect power and delay, which can be leveraged by implementing a more highly con-

nected architecture such as the high-bandwidth memory-on-chip architecture [93].

120

Moreover, 3D integration allows heterogeneous integration, which integrates com-

ponents of different materials and technologies into a single chip. Recent years have

seen a lot of research working on improving the performance and reliability of 3D

integration technology [94].

Two common structures of 3D ICs are stacked 3D IC and interposer-based

3D IC (also known as 2.5D IC). Fig. 6.1(a) illustrates the structure of a stacked

3D IC. Multiple TSV-penetrated dies are stacked and bonded vertically. However,

the increased device density in stacked 3D ICs brings about thermal, power and

reliability issues. To alleviate these issues, 2.5D IC has been proposed. The structure

of 2.5D IC is shown in Fig. 6.1(b). Unlike the stacked 3D ICs, 2.5D IC places multiple

dies side-by-side and bonds them on a silicon interposer through fine-pitch micro-

bumps. The interposer contains horizontal chip-scale wires for inter-die connections

as well as vertical TSVs to connect with external I/O pins. Note that in 2.5D ICs,

the dies are not penetrated by the TSVs. The absence of TSVs in the dies of 2.5D

IC makes it easier to design and fabricate than the TSV-penetrated stacked 3D IC.

Although 2.5D ICs might not achieve the same amount of performance improvement

as 3D ICs, it offers better cooling options, which is essential for high-performance

computing systems. While commercial large-scale 3D IC is still being developed,

large-volume commercial 2.5D products are already in the market, such as the Xilinx

Virtex-7 2000T FPGA [95].

121

6.2.2 3D/2.5D IC Based Split Fabrication

As 3D/2.5D integration is becoming a promising technology for next-generation

chip design, researchers have started to investigate it from a hardware security

perspective [96]. One line of research focuses on utilizing 3D/2.5D IC technology

to protect IC designs from being pirated or tampered during outsourced fabrica-

tion [34, 58, 62, 97–99]. In 3D integration, multiple dies (functional layers) can be

fabricated independently on separate substrates and then integrated together into

a single chip. This fabrication process offers inherent support for split fabrication.

Split fabrication, as introduced in Section 2.2.3, is a layout-level circuit obfuscation

technique. To adopt split fabrication, a designer can first partition a circuit design

into different functional layers in the 3D chips. Then, he can send a portion of the

layers at his discretion to a trusted foundry for secure fabrication while outsourcing

the rest to an untrusted foundry for state-of-the-art fabrication technology. The

final integration between two components is done in the trusted foundry. Because

some information will be hidden from the untrusted foundry, split fabrication can

prevent the supply chain attacks such as piracy, overbuilding, and counterfeiting.

The split fabrication strategy of 3D/2.5D IC is adaptable to off-the-shelf 3D/2.5D

IC fabrication process. Each die is an individual component that can be fabricated

separately and then integrated together, either in a single foundry or in different

foundries. Interconnecting separately made dies using 3D integration is already a

proven technology [59]. Thus, the extra effort for 3D/2.5D IC to adopt the split

fabrication is negligible.

122

Figure 6.2: 2.5D IC based split fabrication.

In this work, we focus on 2.5D IC based split fabrication. 2.5D IC has less

severe thermal and reliability challenges while offering a comparable performance

improvement compared to the stacked 3D IC. Moreover, leveraging this 2.5D in-

tegration technology requires only minor modification to current IC design flow

and fabrication process. Fig. 6.2 illustrates the basic idea of 2.5D split fabrication.

The silicon interposer in a trusted foundry is fabricated in a trusted foundry (as

the trusted tier) while the dies are outsourced to untrusted foundries (as the un-

trusted tier). If all untrusted foundries are independent (not colluded), an attacker

in one untrusted foundry can only obtain the netlist of a die that’s fabricated in

this foundry. Even if the offshore foundries collude, they can at most obtain an in-

complete design that lacks the interconnect wires in the interposer. The incomplete

netlist will be incomprehensible if the wires in the interposer layer are intelligently

selected.

6.3 Security-aware Design Flow for 2.5D ICs

As discussed, by fabricating the interposer of 2.5D IC in a trusted foundry

while outsourcing the rest to an untrusted foundry, an attacker in the untrusted

foundry can at most obtain an incomplete netlist which lacks the wires in the inter-

123

poser (the trusted tier).

However, this doesn’t imply that a conventional performance-driven 2.5D

IC design flow followed by a split fabrication strategy is security-optimal. In a

performance-driven 2.5D IC design flow, a netlist is first partitioned in a way that

minimizes the number of cut-wires to reduce the number of wires that need to be

routed in the trusted tier. Then, corresponding layouts are generated using place-

ment and routing algorithms which minimize layout area and routing wire-length.

Although a min-cut partitioning has a lower performance overhead, it might not

hide enough wires to fully obfuscate the functionality of the outsourced designs.

Also, a performance-driven placement might place two connected pins/gates close-

by, thereby leaking the information about the hidden connections that can be ex-

ploited by an attacker.

Here we introduce a security-aware 2.5D IC design and split fabrication flow

that aims at thwarting hardware IP piracy. The security-aware 2.5D IC design and

split fabrication flow is shown in Fig. 6.3. In the design stage, a gate-level netlist is

first partitioned into two parts. The cut-wires are selected as the hidden wires in the

interposer layer. After that, a placement and routing phase assigns exact physical

locations for gates in two partitions and determines the proper intra-die routing as

well as the inter-die routing in the interposer. This is followed by the fabrication

stage, where the layout files of the dies are outsourced to an untrusted foundry while

the interposer is fabricated in a trusted foundry for security. The final integration is

also implemented in the trusted foundry. Note that this design and fabrication flow

assumes only one untrusted offshore foundry that is responsible for fabricating two

124

Netlist

Sub-netlist 1 Sub-netlist 2 Inter-chip Wires

Layout 1 Layout 2 Interposer

Die 1 Die 2 Interposer

Complete Circuit

Secure Partitioning

Secure Placement & Routing

Untrusted Fabrication
Trusted

Fabrication

Secure Integration

D
e

si
g

n
 S

ta
g

e
S

p
li

t
F

a
b

ri
ca

ti
o

n
 S

ta
g

e

Die 1 Die 2

Interposer

Figure 6.3: A security-aware 2.5D IC design and split fabrication flow.

dies. However, it’s possible that two dies can be outsourced to different foundries

and if these foundries are completely independent (no collusion), the information

leakage to each foundry can be reduced. Moreover, this design flow focuses only on

bi-partitioning for simplicity, but it would be possible to partition into more layouts

and use more “independent” foundries for better security.

125

6.4 Problem Formulation

6.4.1 Attack Model

The attack model addressed in this work is widely used in previous anti-IP-

piracy research [27, 100]. It assumes that the attacker is an untrusted foundry that

has access to the GDSII layout files of two sub-netlists, but it lacks the knowledge

of the correct interconnection between two sub-netlists. The interconnection in the

interposer layer is not accessible to the attacker. Inferring the interconnect wires

in the interposer layer by reverse-engineering a final product from the market is

assumed thwarted by anti-reverse-engineering techniques such as camouflaged smart

filling [101].

The attacker’s goal is to retrieve the complete gate-level netlist and function-

ality. Since an ideal security-aware design will produce incorrect output logics on

applying incorrect connections, any random reconnection should lead to a com-

pletely different functionality. Therefore, the attacker’s first concern is to determine

the missing connections based on two sub-netlists and chip layout geometries, and

generate a reconstructed circuit so that he can gain profit from pirating and over-

building the IC.

6.4.2 Problem Statement

The goal of the security-aware 2.5D IC design flow is to thwart IP piracy by

producing a security-aware partitioning and placement solution that can obfuscate

126

the original functionality while preventing the leakage of the correct interconnections

between two partitions. The research problem can be defined as follows:

Given a netlist of a combinational circuit and the Boolean function F that

maps its primary inputs (PIs) ~X to its primary outputs (POs) ~Y : ~Y = F (~X), we

want to find a bipartition and a corresponding gate-level placement result, so that

the placement result of two partitions will disclose the least functionality and netlist

of the original circuit at a minimum performance cost.

6.4.3 Security Objectives

1) Functionality Obfuscation. One objective of 2.5D split fabrication is to

obfuscate the functionality of the outsourced design (the untrusted tier). To do so,

we select and hide a set of wires into the trusted tier such that the functionality of the

untrusted tier (or a reconstructed circuit that’s inferred based on the untrusted tier)

differs substantially from the original functionality. By obfuscating the functionality,

an attacker who has the knowledge of the untrusted tier cannot infer or utilize

the functionality of the original complete design, thereby protecting the outsourced

design from piracy and overproduction. Hamming distance (HD) is widely used to

quantify the security level of functionality obfuscation [27,34,100,102]. It’s defined

as the number of different output bits between an original netlist and a reconstructed

netlist on applying the same input vector. Given one input vector ~Xi, the function

of original netlist F will produce an output vector ~Yi = F (~Xi), while the function

of reconstructed netlist F
′

will produce another output vector ~Yi
′

= F
′
(~Xi), the

127

HD between two outputs HD(~Y
′
i , ~Yi) is the number of different bits in two output

vectors, and the normalized HD of two functions can be calculated as follows:

HD(F, F
′
) =

1

n

n∑
i=1

HD(~Y
′
i , ~Yi)

|~Y |
× 100% (6.1)

where n is the number of input vectors and |~Y | is the number of output bits. Since

the objective of functionality obfuscation is to restrain the attacker’s ability to infer

or utilize the correct functionality, HD(F, F
′
) approaching 50% is desirable, which

indicates that the functionality of the reconstructed netlist deviates substantially

away from the original functionality.

2) Layout Obfuscation. The security of 2.5D split fabrication rests upon the

assumption that the attacker does not know the hidden portion (the trusted tier)

and cannot infer it based on the exposed portion of design (the untrusted tier). Oth-

erwise, the attacker can reconstruct the complete design and continue to conduct

his attacks. To infer the hidden connections in the trusted tier, Rajendran et al. [27]

proposed an attack called proximity attack. The attack is based on the observation

that modern floorplanning and placement tool will place two connected pins closely

in the untrusted tier so as to reduce the wire-length. However, the physical proxim-

ity of two connected pins leaks the information of the hidden connections. Since the

layout information for each die is known to the attacker, he can iteratively connect

an output pin in one die to its closet input pin in other die and thus reconstruct the

circuit. Therefore, it’s necessary to obfuscate the layout (by placing two connected

pins far away) in order to prevent the leakage of the trusted tier in 2.5D split fabri-

cation. Proximity attack correctness is a security metric that’s used to quantify the

128

layout obfuscation level under the proximity attack. For 2.5D split fabrication, it’s

defined as the percentage of correct connections that are recovered by the proximity

attack algorithm. Attack correctness approaching 0% is desirable for a secure layout

design, which indicates that the attacker cannot infer the correct connections in the

trusted tier.

Based on these two security metrics, the objective of our problem can be

formulated as follows:

minimize |HD − 50%|+ Correctness (6.2)

A secure design flow for 2.5D IC should achieve two objectives: a) incorrect function-

ality will be produced when incorrect connections are made between two partitions,

i.e., the HD between the functionalities of the original netlist and that of the netlist

reconstructed using proximity attack algorithm approaches 50%; b) the proximity

attack algorithm has 0% attack correctness.

6.5 Proposed Approach

6.5.1 Secure Partitioning

The partitioning phase plays a pivotal role in functionality obfuscation be-

cause it determines the hidden wires in the interposer layer. Fig. 6.4 illustrates

a bi-partitioning of the c17 circuit from the ISCAS85 benchmark. The cut-wires

are selected as the hidden wires that will be routed in the interposer layer. The

resulting cut-wires have a significant impact on the incorrectness of output logic of

129

Figure 6.4: A bi-partitioning of the c17 circuit from ISCAS85 benchmark. The

cut-wires are selected as the hidden wires that will be routed in the interposer.

a reconstructed netlist, because they decide whether faults can be generated and

propagated to POs when incorrect connections are made.

To evaluate the capability of fault occurrence and fault propagation for a cut-

set, we utilize the concepts of controllability and observability. Controllability and

observability are two characteristics that are widely used in IC testing and security

techniques. Controllability of an internal wire is the sensitivity of the wire w.r.t.

the logic transition of PIs. It quantifies the ability to set a wire to some values (1

or 0) through PIs in order to activate a fault (due to incorrect reconnections) inside

a circuit. Observability of a wire is the sensitivity of POs w.r.t. the logic transition

of the internal wire. It quantifies the ability to observe faults in POs when the

logic value of a wire inside the circuit is flipped. In order to activate and produce

more faults when incorrect connections are made between two partitions, we aim at

selecting cut-wires with high controllability and observability. The controllability

CTRL(w) and observability OBS(w) of a wire w can be simulated and normalized

to a value between 0 to 1 [34], where 1 indicates high controllability/observability.

130

The secure min-cut problem is to find a bi-partitioning with minimum cut-size

while satisfying balance constraint and security constraint. The balance constraint

ensures that two partitions have roughly equal sizes while the security constraint

enforces that the controllability and observability of the wires in the cut-set are

relatively large. The overall algorithm is based on Fiduccia-Mattheyses (FM) al-

gorithm [103], a linear time heuristic approach to solve hypergraph bi-partitioning

problem. The overall algorithm is as follows:

• Initialization: a balanced partitioning is randomly initialized so that two par-

titions have roughly equal sizes. PI pins and PO pins are separated into two

partitions. Moreover, the controllability and observability of all wires are sim-

ulated.

• Maintenance: after initialization, the FM algorithm will iteratively move a

gate that has the maximum cut-size drop from one block to another while

maintaining the following two constraints:

– Balance constraint: |A(P1)−A(P2)|
A(P1)+A(P2)

≤ Bth, where A(P1), A(P2) are the sizes

of two partitions P1 and P2, and Bth is a pre-defined balance threshold

0 ≤ Bth ≤ 1.

– Security constraint: if a gate’s output wire w is in the cut-set and it has

high controllability/observability CTRL(w)+OBS(w) ≥ Sth, then don’t

move this gate. Sth is a pre-defined security threshold 0 ≤ Sth ≤ 2.

• Termination: After all possible gate moves, the algorithm obtains a series

131

of moves that will result in the most cut-size reduction, which produces a

new partitioning solution. The algorithm is continued until it cannot find a

partitioning solution with smaller cut-size. Then, a final partitioning solution

is generated and each gate is assigned to a partition.

We normally run the FM algorithm multiple times with random initial partitioning

solution and select the best partitioning solution with minimum cut-size as the final

solution.

6.5.2 Secure Placement

The placement phase is designed to thwart the proximity attack by obfuscating

the layouts of the untrusted tier so as to mislead the proximity attack algorithm into

making wrong connections. The goal of secure placement is to minimize the area,

intra-chip wire-length, inter-chip wire-length and proximity-attack correctness.

The secure 2.5D IC placement algorithm is based on a B*-tree and simulated

annealing (SA) based 2.5D IC placement algorithm proposed by Ho et al. [104].

Fig. 6.5 shows the overall flow of the secure placement algorithm. The placement

algorithm utilized the B*-tree to represent a compacted placement solution [105].

Two B*-trees are firstly constructed to represent the geometry relationship for all

gates and I/O pins of two sub-netlists. A node in the B*-tree represents a gate

or an I/O pin and each B*-tree represents a compacted placement for one sub-

netlist. Using two B*-trees allows us to optimize the placement of two sub-netlists

simultaneously. Three node perturbation operations are implemented in the SA

132

Sub-netlists

Security-driven

SA Optimization (0)

B*-trees Creation

Initial Performance-driven

SA Optimization (=0)
SA

Loop

SA

Loop

Normal Placement

solution

Secure Placement

solution

Figure 6.5: B*-tree and SA based secure placement algorithm flow [34].

process, as defined in [104]:

• Rotation: the rotation of a gate or I/O pin.

• Move within a B*-tree: the move of a gate or an I/O pin within same die.

• Swap two nodes within a B*-tree: the swap of two gates or I/O pin within the

same die.

After perturbation, two new B*-trees are formed and corresponding compact place-

ments for two chips can be obtained. Based on the placement solution, we can

calculate its area, inter-chip wire-length, intra-chip wire-length and perform the

proximity attack to obtain the proximity-attack correctness. The proximity attack

algorithm will take the coordinates of I/O buffers and two sub-netlists as input data,

generate a reconnection and calculate its correctness.

133

The cost function of SA optimization is defined as:

Φ = α× Area+ β ×WLintra + γ ×WLinter + θ × Correctness (6.3)

where α, β, γ and θ are user-specified weighting parameters, Area is the total area

of two chips, WLintra is the total intra-chip wire-length, WLinter is the total inter-

chip wire-length and Correctness is the proximity-attack correctness obtained by

proximity attack algorithm. Two SA processes are used to generate an effective and

secure placement, as shown in Fig. 6.5. The first performance-driven (θ = 0) SA

process creates an initial placement that has optimized area and total wire-length.

Based on this initial placement, the second security-driven (θ 6= 0) SA process

attempts to trade-off between performance and security.

6.6 Experiments and Results

6.6.1 Experiment Setup

We examined our proposed design flow on 8 combinational circuits from ISCAS-

85 benchmarks [106] and ITC’99 benchmarks [107]. Table 6.1 shows the benchmark

details. A TSMC-180nm standard cell library is used in placement phase. The con-

trollability and observability values are computed using 1000 random input vectors

for each benchmark. Notice that using more input vectors can increase the accuracy

of estimation of these two values, but it will take longer computation time. In the

results shown below, we find that 1000 random input vectors are enough. The HD

between reconstructed netlist and original netlist is determined by 1000 random in-

134

put vectors for each benchmark, which are not necessarily the same as the previous

input vectors used for computing controllability and observability.

In the partitioning phase, we set the balance threshold Bth to be 0.1. The

security threshold Sth varies from 1.01 to 1.3 for different benchmarks, which are the

ones that lead to the best tradeoff between cut-size and HD during simulation. To

study the relation between Sth, HD and cut-size, and to find the best Sth, we run the

partitioning algorithm with a set of security threshold values and calculate the HD

between randomly reconstructed netlist and original netlist. The impact of Sth on

cut-size and HD are shown in Fig. 6.6 and Fig. 6.7. As Sth increases, the cut-size and

HD decreases for all benchmarks since a large Sth indicates a loose constraint, which

means that only a few wires with high controllability and observability will be locked

in cut-set during partitioning. Based on this simulation results, we define Secure

Partitioning (SecPart) as the partitioning with Sth that makes HD larger than

40%. Also, we define Normal Partitioning (NormPart) as the partitioning that

doesn’t consider the security constraint. Since the security constraint will increase

the cut-size, one interesting question to ask is that whether we can achieve the

same HD by using the NormPart algorithm but enforce that the partitioning result

should have the same cut-size as the one produced by the SecPart algorithm. We

implement the normal partitioning with a cut-size lower-bound that’s set to the

cut-size of secure partitioning solution (denoted as NormPart LargeSize). All

the partitioning algorithms are run with 1000 random initializations and the best

solution with minimum cut-size is selected as the final solution.

In the placement phase, in order to determine the optimal weights for the cost

135

Figure 6.6: Impact of security constraint

Sth on cut-size

Figure 6.7: Impact of security constraint

Sth on HD

function, we test different setups on all benchmarks and define the setup α = 0.2, β =

0.7, γ = 0.1, θ = 0 as Normal Placement (NormPlace) since it can obtain a

relatively optimal result in area and total wire-length. For Secure Placement

(SecPlace), we increase θ to 0.05 and decrease γ to 0.05. The reason we decrease

the inter-chip wire-length weight γ is that we want to weaken the correlation between

connectedness and layout proximity of inter-die I/O buffers.

6.6.2 Results

Table 6.1 shows the partitioning results of three partitioning settings, namely

NormPart, SecPart and NormPart LargeSize. Comparing NormPart and SecPart,

we can see that HD increases from 13.24% to 46.35% on average. This is because that

we have enforced the security constraint to select enough cut-wires with high control-

lability/observability so that more faults will be produced for an incorrectly recon-

structed netlist. However, the security constraint inevitably increases the cut-size

136

Table 6.1: Benchmark information and partitioning results of NormPart, Norm-

Part LargeCutsize, and SecPart.

Benchmark #PIs #POs #Gates

NormPart NormPart LargeSize SecPart

Cutsize HD Cutsize HD Cutsize HD

c499 41 32 202 16 0.86% 45 48.20% 45 49.84%

c1355 41 32 546 16 7.08% 43 45.01% 43 49.96%

c1908 33 25 880 35 20.09% 37 33.46% 37 44.79%

c3540 50 22 1669 57 32.82% 74 33.28% 74 42.67%

c5315 178 123 2307 30 8.65% 168 19.13% 168 41.07%

c7552 207 108 3512 25 5.46% 155 14.34% 155 48.55%

b14 1 277 299 4048 99 14.85% 386 19.14% 386 44.76%

b15 485 519 7022 168 16.14% 625 27.76% 625 49.12%

Average - - - 56 13.24% 192 30.04% 192 46.35%

of secure partitioning. As seen, the cut-size of SecPart is 3.4× the cut-size of Norm-

Part on average. The extra cut-wires will increase the performance overhead such

as area and wire-length in the placement phase. Comparing NormPart LargeSize

and SecPart, we can see that although these two cases have the same cut-size, Sec-

Part can ensure 46.35% HD while NormPart LargeSize can only achieve 30.04% HD.

Therefore, with security constraint, the secure partitioning algorithm can achieve

50% HD more efficiently.

In order to evaluate the overall design flow, we compare four possible combi-

nations, namely NormPart + NormPlace, NormPart + SecPlace, SecPart + Norm-

Place and SecPart + SecPlace in terms of attack correctness, Hamming distance,

area and total wire-length.

137

c499 c1355 c1908 c3540 c5315 c7552 b14_1 b15 average
Benchmarks

0

10

20

30

40

50

60

H
D

 (
%

)

11
.9

8
13

.2
4

43
.8

7
46

.3
5

NormPart+NormPlace NormPart+SecPlace SecPart+NormPlace SecPart+SecPlace

c499 c1355 c1908 c3540 c5315 c7552 b14_1 b15 average
Benchmarks

0

20

40

60

80

A
tta

ck
 C

or
re

ct
ne

ss
 (

%
)

20
.1

3
0.

22 9.
00

0.
27

Figure 6.8: HD and attack correctness for four design flows.

Fig. 6.8 shows the correctness and HD of proximity attack for four cases. For

‘NormPart+NormPlace’, the attack correctness is 20.13% and HD is only 11.98%

because no security constraint is enforced in the NormPart to conceal the functional-

ity, and the NormPlace doesn’t minimize attack correctness during SA optimization.

When SecPlace is performed on NormPart, we can see that the attack correctness

is limited to 0.22%, and the HD increases to 13.24%, which is still far below 50% as

a large amount of functionality is exposed due to the normal min-cut partitioning.

For the case ‘SecPart+NormPlace’, the HD increases to 43.87%, which proves the

effectiveness of SecPart in concealing the functionality of a design. Finally, if we

perform SecPlace on top of SecPart, compared to the ‘SecPart+NormPlace’ case,

the attack correctness is reduced from 9.00% to 0.27% and the HD increases from

43.87% to 46.35%. The ‘SecPart+SecPlace’ design flow achieves the optimal security

among four design flows. Overall, the SecPart algorithm is capable of approaching

138

c499 c1355 c1908 c3540 c5315 c7552 b14_1 b15 average
Benchmarks

0.8

1

1.2

A
re

a
R

at
io

1.
03 1.

05 1.
09

NormPart+NormPlace NormPart+SecPlace SecPart+NormPlace SecPart+SecPlace

c499 c1355 c1908 c3540 c5315 c7552 b14_1 b15 average
Benchmarks

0.8

1

1.2

1.4

W
L

R
at

io

1.
01

1.
14 1.
17

Figure 6.9: Area and total wire-length overhead for four design flows.

50% HD, and the SecPlace algorithm can effectively achieve 0% attack correctness.

Fig. 6.9 shows the area and total wire-length for four cases. Chip area and

wire-length are two metrics that are commonly used to evaluate the performance

of gate placement algorithm [104]. The ‘NormPart+NormPlace’ design flow is con-

sidered as a baseline for calculating overheads. As seen, the main overheads come

from the SecPart, as it requires a larger cut-set than NormPart to ensure 50% HD,

which will inevitably increase the area and wire-length. The average overheads for

SecPart are 5.29% on the area and 14.27% on total wire-length. The SecPlace al-

gorithm contributes to additional overhead because it perturbs the layout geometry

to produce a placement with 0% attack correctness. Overall, the average overheads

for ‘SecPart+SecPlace’ design flow are 8.95% on the area and 17.27% on total wire-

length.

Finally, we study the tradeoff between a more gradual degradation in cut-

139

Table 6.2: Tradeoff between HD, area and total wire-length on the c7552 circuit

Placement Cut-size
Area

(µm2)

Area

Overhead

WL

(µm)

WL

Overhead
Correctness HD

Normal 25 272053 0% 1048730 0% 8.00% 5.45%

Secure

25 274075 0.74% 1058320 0.91% 0% 5.46%

65 283525 4.22% 1106230 5.48% 0% 20.31%

105 280691 3.18% 1133420 8.08% 0% 31.34%

145 281941 3.63% 1169020 11.47% 0% 38.53%

155 290849 6.91% 1197160 14.15% 0% 48.55%

size and the security obtained, since the large cut-size due to the secure min-cut

algorithm is the main source of performance overhead. Our objective is to study

the impact of security constraint threshold Sth on cut-size and HD, and perform

tradeoff analysis between HD and performance.

We use the c7552 circuit to demonstrate the tradeoff between HD and perfor-

mance due to its large cut-size increase between normal and secure min-cut. The

cut-size decreases from 155, which is the cut-size when the security threshold Sth is

set to 1.2. By gradually increasing the security threshold Sth to 2, the algorithm

will produce solutions with less cut-size. For a set of partitioning solutions with less

cut-size, we perform secure placement and proximity attack and calculate the HD

between the reconstructed netlist and the original netlist.

Table 6.2 shows the tradeoff between security and performance. NormPart+NormPlace

is used as a baseline for calculating overheads. Our approach is capable of generating

a tradeoff between security and other performance parameters. For performance-

140

driven designs, we can increase the security threshold Sth to produce a partitioning

with less cut-size.

6.7 Conclusion

In this chapter, we present a security-aware physical design flow for 2.5D IC

to counter IP piracy in outsourced fabrication. In partitioning phase, we propose

a secure partitioning algorithm that can generate a bipartition with 46.35% HD

on applying incorrect reconnection. In placement phase, we equip an SA-based

placement algorithm with proximity attack correctness evaluation which limits the

correctness of proximity attack to 0.27%. Experiment results have shown that our

approach is capable of generating layout files that are fully obfuscated and resilient to

proximity attack at a low performance cost. In addition, a tradeoff between security

and other performance parameters has been shown which could be utilized by chip

designer to estimate the performance overhead for a certain security improvement.

141

Chapter 7: Conclusion and Future Research Directions

In Chapter 1, we summarized various hardware-based attacks in different

phases of an IC’s life cycle. The main goal of our work is to develop design ob-

fuscation techniques to enhance the security of outsourced IC designs that are fabri-

cated in possibly untrustworthy foundries. These techniques can help building trust

between IC design companies and fabrication foundries so as to create a win-win

scenario. In Chapter 2, we provided background on IC supply chain attacks and

discussed countermeasures such as logic locking and split fabrication.

In Chapter 3 and Chapter 4, we investigated emerging attacks on logic locking

techniques and proposed new locking techniques that can thwart such attacks in

a provably-secure manner. Specifically, Chapter 3 presented a circuit block called

Anti-SAT that can mitigate the SAT attack on logic locking. We show that the

number of iterations required by the SAT attack to reveal the correct key in the

Anti-SAT block is an exponential function of the key-size, thereby making the attack

computationally infeasible. The Anti-SAT block is integrated into a locked circuit to

increase its resistance to the SAT attack. A unified obfuscation technique has been

proposed to protect the Anti-SAT block from potential removal attacks. Based on

Anti-SAT, Chapter 4 investigated both attack and defense methodologies for locked

142

neural chips. We proposed new attack methodology that exploits existing AppSAT

attack and neural model fine-tuning in effective ways. To counter this attack, we

proposed a secure locking scheme based on a co-design of the locking infrastructure

(called Strong Anti-SAT) and the functional modules. These proposed techniques

were validated with rigorous proof and extensive experiments.

In Chapter 5, we explored new opportunities in obfuscating the timing profile

of a circuit design and proposed the delay locking technique. For delay locking,

the key to a locked circuit not only determines its functionality, but also its timing

profile. A functionality-correct but timing-incorrect key will result in timing viola-

tions, hence making the circuit malfunction. Such locking scheme can thwart many

functionality-oriented attacks (e.g., SAT attack) because they cannot be utilized to

decipher a timing-correct key.

In Chapter 6, we studied the security implications of 3D/2.5D ICs and pro-

posed a security-aware physical design flow for 2.5D IC to counter supply chain

attacks in outsourced fabrication. Simulation results show that our design flow is

effective for producing secure chip layouts for outsourcing whose original netlist

and functionality cannot be reverse-engineered based on the layout-geometry infor-

mation. A trade-off between security and other performance parameters has been

shown which could be utilized by chip designer to estimate the performance overhead

for a certain security improvement.

143

7.1 Future Work

In this dissertation, we have developed various unconventional design obfusca-

tion techniques to enhance the hardware security. There are still many possibilities

for improvement. The following summarizes potential future research directions to

extend the research work presented in this dissertation.

7.1.1 Security in Emerging Hardware Designs

In recent years, researchers have proposed numerous innovative hardware de-

signs and architectures that are different from conventional circuit designs. Neural

network chip, as discussed in Chapter 4, is one example of the emerging hardware.

Another emerging hardware design that has not been discussed in this dissertation

is called approximate computing circuit. Unlike conventional circuits, the approxi-

mate circuit is a hardware that trades computation correctness/quality for reduced

power and area. By design, the approximate circuit can output incorrectly at a tol-

erably low frequency and magnitude, but it can save a significant amount of power

and area. Existing research on approximate computing focuses mainly on improv-

ing its performance and reliability. However, the security aspect of these emerging

hardware is not fully investigated. We are interested in studying the security and

vulnerability implications of these technologies. We plan to investigate the effec-

tiveness of existing supply chain attacks on these new hardware designs and look

for new countermeasures to improve their security. New attack model assumptions

and new security metrics shall also be investigated for evaluating the security level

144

of these novel hardware designs and architectures.

7.1.2 Parametric Locking

Conventional logic locking techniques purely focus on the Boolean logic level.

Thus, they are subject to logic-analysis based attacks such as the SAT attack. In

Chapter 5, we explored new obfuscation possibility by obfuscating the timing profile

of a circuit. Moving forward, we plan to investigate new circuit locking techniques

that obfuscate other parameters of a circuit such as power, heat dissipation and

so on. We refer this type of locking as parametric locking. By doing so, a key

to a locked circuit would not only determines its functionality, but also its para-

metric behavior. A functionality-correct but parameter-incorrect key will result in

parametric violations (such as power or temperature violations) and thus make the

circuit malfunction or deviate from its normal behavior. The advantage of paramet-

ric locking is that it’s immune to logic-analysis based attack because the parametric

locking does not depend on the Boolean logic. Besides, analog components (such

as power management, heat dissipation) are parts of hardware IPs that would be

attractive to attackers, but corresponding obfuscation techniques for these compo-

nents are not fully investigated in existing literature. Obfuscating these subsidiary

circuit components is an interesting future research direction.

145

7.1.3 3D IC Security

While 3D integration is initially developed to overcome the obstacles in device

miniaturization, it has presented various security advantages in different security

techniques and applications. The stacking structure and high-density nature of 3D

integration offer a natural defense for side-channel attacks as it adds significantly

more complexity for an attacker to extract a meaningful signal from the compli-

cated background noise. Moreover, reverse-engineering becomes challenging since

hardware designs can be protected inside the firmly stacked substrates. In addition,

with 3D heterogeneous integration, novel non-CMOS security primitives can be in-

tegrated with CMOS processor to achieve a comprehensive system with optimal

security and performance. As for future works, we would like to investigate design

techniques for 3D ICs that utilize these unique advantages to thwart hardware-based

attacks. With the effort made in 3D IC security characterization and modeling, fu-

ture chip designers can take security into consideration at an early phase of the

design while optimizing the chip for performance and power.

146

Bibliography

[1] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Ham-
burg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[2] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018.

[3] Navin Shenoy. Firmware updates and initial performance data
for data center systems. https://newsroom.intel.com/news/

firmware-updates-and-initial-performance-data-for-data-center-systems/.

[4] Sally Adee. The hunt for the kill switch. iEEE SpEctrum, 45(5):34–39, 2008.

[5] A Rawnsley. fishy chips: Spies want to hack-proof circuits. Wired, Jun, 24,
2011.

[6] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scanning
discovers backdoor in military chip. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 23–40. Springer, 2012.

[7] IHS Technology. Ihs technology press release: Top 5 most counterfeited parts
represent a $169 billion potential challenge for global semiconductor industry.
2012.

[8] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware tro-
jan taxonomy and detection. 2010.

[9] Kaushik Vaidyanathan, Bishnu P Das, and Larry Pileggi. Detecting reliability
attacks during split fabrication using test-only beol stack. In Proceedings of
the 51st Annual Design Automation Conference, pages 1–6. ACM, 2014.

147

https://newsroom.intel.com/news/firmware-updates-and-initial-performance-data-for-data-center-systems/
https://newsroom.intel.com/news/firmware-updates-and-initial-performance-data-for-data-center-systems/

[10] Randy Torrance and Dick James. The state-of-the-art in IC reverse engineer-
ing. In Cryptographic Hardware and Embedded Systems-CHES 2009, pages
363–381. Springer, 2009.

[11] Ujjwal Guin, Ke Huang, Daniel DiMase, John M Carulli, Mohammad Tehra-
nipoor, and Yiorgos Makris. Counterfeit integrated circuits: a rising threat in
the global semiconductor supply chain. Proceedings of the IEEE, 102(8):1207–
1228, 2014.

[12] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in CryptologyCRYPTO99, pages 388–397. Springer, 1999.

[13] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems-
CHES 2004, pages 16–29. Springer, 2004.

[14] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

[15] Daniel J Bernstein. Cache-timing attacks on AES, 2005.

[16] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In Smart Card Pro-
gramming and Security, pages 200–210. Springer, 2001.

[17] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi.
The EM sidechannel (s). In Cryptographic Hardware and Embedded Systems-
CHES 2002, pages 29–45. Springer, 2003.

[18] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded System-
sCHES 2001, pages 251–261. Springer, 2001.

[19] Farinaz Koushanfar. Hardware metering: A survey. In Introduction to Hard-
ware Security and Trust, pages 103–122. Springer, 2012.

[20] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Epic: Ending piracy
of integrated circuits. In Proceedings of the conference on Design, Automation
and Test in Europe, pages 1069–1074. ACM, 2008.

[21] Richard Wayne Jarvis and Michael G McIntyre. Split manufacturing method
for advanced semiconductor circuits, March 27 2007. US Patent 7,195,931.

[22] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Security analysis of logic obfuscation. In Proceedings of the 49th Annual Design
Automation Conference, pages 83–89. ACM, 2012.

[23] Stephen M Plaza and Igor L Markov. Solving the third-shift problem in IC
piracy with test-aware logic locking. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 34(6):961–971, 2015.

148

[24] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the secu-
rity of logic encryption algorithms. In Hardware Oriented Security and Trust
(HOST), 2015 IEEE International Symposium on, pages 137–143. IEEE, 2015.

[25] Muhammad Yasin, Samah Mohamed Saeed, Jeyavijayan Rajendran, and
Ozgur Sinanoglu. Activation of logic encrypted chips: Pre-test or post-test? In
2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 139–144. IEEE, 2016.

[26] Muhammad Yasin, Bodhisatwa Mazumdar, Sk Subidh Ali, and Ozgur
Sinanoglu. Security analysis of logic encryption against the most effective
side-channel attack: Dpa. In 2015 IEEE International Symposium on De-
fect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pages
97–102. IEEE, 2015.

[27] Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Is split man-
ufacturing secure? In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1259–1264. EDA Consortium, 2013.

[28] Yujie Wang, Pu Chen, Jiang Hu, and Jeyavijayan JV Rajendran. The cat
and mouse in split manufacturing. In Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[29] Jonathon Magaña, Daohang Shi, and Azadeh Davoodi. Are proximity attacks
a threat to the security of split manufacturing of integrated circuits? In
Proceedings of the 35th International Conference on Computer-Aided Design,
page 90. ACM, 2016.

[30] Ping-Lin Yang and Malgorzata Marek-Sadowska. Making split-fabrication
more secure. In Proceedings of the 35th International Conference on
Computer-Aided Design, page 91. ACM, 2016.

[31] Yang Xie and Ankur Srivastava. Mitigating sat attack on logic locking. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 127–146. Springer, 2016.

[32] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[33] Yang Xie and Ankur Srivastava. Delay locking: Security enhancement of logic
locking against ic counterfeiting and overproduction. In Proceedings of the
54th Annual Design Automation Conference 2017, page 9. ACM, 2017.

[34] Yang Xie, Chongxi Bao, and Ankur Srivastava. Security-aware design flow
for 2.5 d ic technology. In Proceedings of the 5th International Workshop on
Trustworthy Embedded Devices, pages 31–38. ACM, 2015.

149

[35] Yang Xie, Chongxi Bao, and Ankur Srivastava. 3d/2.5 d ic-based obfuscation.
In Hardware Protection through Obfuscation, pages 291–314. Springer, 2017.

[36] Yang Xie, Chongxi Bao, and Ankur Srivastava. Security-aware 2.5 d integrated
circuit design flow against hardware ip piracy. Computer, 50(5):62–71, 2017.

[37] Yang Xie, Chongxi Bao, Caleb Serafy, Tiantao Lu, Ankur Srivastava, and
Mark Tehranipoor. Security and vulnerability implications of 3d ics. IEEE
Transactions on Multi-Scale Computing Systems, 2(2):108–122, 2016.

[38] Yang Xie, Chongxi Bao, Yuntao Liu, and Ankur Srivastava. 2.5 d/3d inte-
gration technologies for circuit obfuscation. In Microprocessor and SOC Test
and Verification (MTV), 2016 17th International Workshop on, pages 39–44.
IEEE, 2016.

[39] Yu-Wei Lee and Nur A Touba. Improving logic obfuscation via logic cone
analysis. In 2015 16th Latin-American Test Symposium (LATS), pages 1–6.
IEEE, 2015.

[40] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. Template attack
based deobfuscation of integrated circuits. In Computer Design (ICCD), 2017
IEEE International Conference on, pages 41–44. IEEE, 2017.

[41] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier
Jin. Appsat: Approximately deobfuscating integrated circuits. In Hardware
Oriented Security and Trust (HOST), 2017 IEEE International Symposium
on, pages 95–100. IEEE, 2017.

[42] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating security of logic en-
cryption algorithms. In Proceedings of the on Great Lakes Symposium on VLSI
2017, pages 179–184. ACM, 2017.

[43] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. Cycsat: Sat-based attack on cyclic
logic encryptions. In Computer-Aided Design (ICCAD), 2017 IEEE/ACM
International Conference on, pages 49–56. IEEE, 2017.

[44] Mohamed El Massad, Siddharth Garg, and Mahesh Tripunitara. Reverse
engineering camouflaged sequential circuits without scan access. In Computer-
Aided Design (ICCAD), 2017 IEEE/ACM International Conference on, pages
33–40. IEEE, 2017.

[45] Rajat Subhra Chakraborty and Swarup Bhunia. Harpoon: an obfuscation-
based soc design methodology for hardware protection. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(10):1493–
1502, 2009.

[46] Rajat Subhra Chakraborty and Swarup Bhunia. Rtl hardware ip protection
using key-based control and data flow obfuscation. In VLSI Design, 2010.
VLSID’10. 23rd International Conference on, pages 405–410. IEEE, 2010.

150

[47] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok
Pino, Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic encryp-
tion. Computers, IEEE Transactions on, 64(2):410–424, 2015.

[48] Bicky Shakya, Navid Asadizanjani, Domenic Forte, and Mark Tehranipoor.
Chip editor: leveraging circuit edit for logic obfuscation and trusted fabrica-
tion. In Proceedings of the 35th International Conference on Computer-Aided
Design, page 30. ACM, 2016.

[49] James B Wendt and Miodrag Potkonjak. Hardware obfuscation using PUF-
based logic. In Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design, pages 270–277. IEEE Press, 2014.

[50] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing IC
piracy using reconfigurable logic barriers. IEEE Design & Test of Computers,
2010.

[51] Soroush Khaleghi, Kai Da Zhao, and Wenjing Rao. IC piracy prevention
via design withholding and entanglement. In Design Automation Conference
(ASP-DAC), 2015 20th Asia and South Pacific, pages 821–826. IEEE, 2015.

[52] Bao Liu and Brandon Wang. Embedded reconfigurable logic for ASIC design
obfuscation against supply chain attacks. In Proceedings of the conference
on Design, Automation and Test in Europe, page 243. European Design and
Automation Association, 2014.

[53] Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale, M-L Flottes, and Bruno
Rouzeyre. A novel hardware logic encryption technique for thwarting ille-
gal overproduction and hardware trojans. In On-Line Testing Symposium
(IOLTS), 2014 IEEE 20th International, pages 49–54. IEEE, 2014.

[54] Kaushik Vaidyanathan, Bishnu P Das, Ekin Sumbul, Renzhi Liu, and Larry
Pileggi. Building trusted ics using split fabrication. In Hardware-Oriented
Security and Trust (HOST), 2014 IEEE International Symposium on, pages
1–6. IEEE, 2014.

[55] Karthikeyan Vaidyanathan, Renzhi Liu, Ekin Sumbul, Qiuling Zhu, Franz
Franchetti, and Larry Pileggi. Efficient and secure intellectual property
(IP) design with split fabrication. In Hardware-Oriented Security and Trust
(HOST), 2014 IEEE International Symposium on, pages 13–18. IEEE, 2014.

[56] Meenatchi Jagasivamani, Peter Gadfort, Michel Sika, Michael Bajura, and
Michael Fritze. Split-fabrication obfuscation: Metrics and techniques. In
Hardware-Oriented Security and Trust (HOST), 2014 IEEE International
Symposium on, pages 7–12. IEEE, 2014.

[57] Lang Feng, Yujie Wang, Jiang Hu, Wai-Kei Mak, and Jeyavijayan Rajen-
dran. Making split fabrication synergistically secure and manufacturable. In

151

Computer-Aided Design (ICCAD), 2017 IEEE/ACM International Confer-
ence on, pages 321–328. IEEE, 2017.

[58] Tezzaron. 3D-ICs and integrated circuit secu-
rity. http://www.tezzaron.com/about/papers/3D-
ICs and Integrated Circuit Security.pdf, 2008.

[59] Jonathan Valamehr, Timothy Sherwood, Ryan Kastner, David Marangoni-
Simonsen, Ted Huffmire, Cynthia Irvine, and Timothy Levin. A 3-d split man-
ufacturing approach to trustworthy system development. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(4):611–615,
2013.

[60] Paul Franzon, Steve Lipa, and Lisa McIlrath. Trusted fabrication through 3d
integration. Technical report, North Carolina State University Raleigh United
States, 2017.

[61] Patrick Dorsey. Xilinx stacked silicon interconnect technology delivers break-
through fpga capacity, bandwidth, and power efficiency. Xilinx White Paper:
Virtex-7 FPGAs, 2010.

[62] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V Tripunitara.
Securing computer hardware using 3d integrated circuit (ic) technology and
split manufacturing for obfuscation. In USENIX Security Symposium, pages
495–510, 2013.

[63] Johann Knechtel, Ozgur Sinanoglu, Ibrahim Abe M Elfadel, Jens Lienig, and
Cliff CN Sze. Large-scale 3d chips: Challenges and solutions for design au-
tomation, testing, and trustworthy integration. IPSJ Transactions on System
LSI Design Methodology, 10:45–62, 2017.

[64] Aarti Gupta and Pranav Ashar. Integrating a boolean satisfiability checker
and bdds for combinational equivalence checking. In VLSI Design, 1998. Pro-
ceedings., 1998 Eleventh International Conference on, pages 222–225. IEEE,
1998.

[65] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Security analysis of anti-sat. Cryptology ePrint Archive, Report
2016/896, 2016. http://eprint.iacr.org/2016/896.

[66] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Removal attacks on logic locking and camouflaging techniques.
IEEE Transactions on Emerging Topics in Computing, 2017.

[67] Armin Biere. Lingeling, plingeling and treengeling entering the sat competition
2013. Proceedings of SAT Competition, 2013, 2013.

152

http://eprint.iacr.org/2016/896

[68] Muhammad Yasin, Jeyavijayan Rajendran, Ozgur Sinanoglu, and Ramesh
Karri. On improving the security of logic locking. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 2015.

[69] Helion Technology. High Performance AES (Rijndael) cores for ASIC. http:
//www.heliontech.com/downloads/aes_asic_helioncore.pdf, 2015.

[70] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and
Ozgur Sinanoglu. Sarlock: Sat attack resistant logic locking. In Hardware
Oriented Security and Trust (HOST), 2016 IEEE International Symposium
on, pages 236–241. IEEE, 2016.

[71] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel
bypass attack and bdd-based tradeoff analysis against all known logic locking
attacks. In International Conference on Cryptographic Hardware and Embed-
ded Systems, pages 189–210. Springer, 2017.

[72] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier
Jin. Cyclic obfuscation for creating sat-unresolvable circuits. In Proceedings
of the on Great Lakes Symposium on VLSI 2017, pages 173–178. ACM, 2017.

[73] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos
Makris, Ozgur Sinanoglu, and Jeyavijayan JV Rajendran. What to lock?:
Functional and parametric locking. In Proceedings of the on Great Lakes Sym-
posium on VLSI 2017, pages 351–356. ACM, 2017.

[74] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. Integrated
circuit (ic) decamouflaging: Reverse engineering camouflaged ics within min-
utes. In NDSS, 2015.

[75] Cunxi Yu, Xiangyu Zhang, Duo Liu, Maciej Ciesielski, and Daniel Holcomb.
Incremental sat-based reverse engineering of camouflaged logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[76] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and
David Z Pan. Provably secure camouflaging strategy for ic protection. In
Proceedings of the 35th International Conference on Computer-Aided Design,
page 28. ACM, 2016.

[77] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Camoperturb: secure ic camouflaging for minterm protection. In
Proceedings of the 35th International Conference on Computer-Aided Design,
page 29. ACM, 2016.

[78] Tianshi Chen and et al. Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning. In ACM Sigplan Notices, volume 49,
pages 269–284. ACM, 2014.

153

http://www.heliontech.com/downloads/aes_asic_helioncore.pdf
http://www.heliontech.com/downloads/aes_asic_helioncore.pdf

[79] Song Han and et al. Eie: efficient inference engine on compressed deep neural
network. In Proceedings of the 43rd International Symposium on Computer
Architecture, pages 243–254. IEEE Press, 2016.

[80] Yu-Hsin Chen and et al. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. In Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on, pages 367–379.
IEEE, 2016.

[81] Norman Jouppi, Cliff Young, Nishant Patil, David Patterson, et al. In-
datacenter performance analysis of a tensor processing unitTM . In 44th Inter-
national Symposium on Computer Architecture (ISCA), 2017.

[82] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. Analysis and characterization of inherent application resilience for
approximate computing. In Proceedings of the 50th Annual Design Automa-
tion Conference, page 113. ACM, 2013.

[83] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[85] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li.
C-brain: A deep learning accelerator that tames the diversity of cnns through
adaptive data-level parallelization. In Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[86] Philipp Gysel and et al. Hardware-oriented approximation of convolutional
neural networks. arXiv preprint arXiv:1604.03168, 2016.

[87] Stephen A. Cook and et al. Finding hard instances of the satisfiability problem:
A survey. pages 1–17. American Mathematical Society, 1997.

[88] Stefan Schoenmackers and et al. Satisfy this: An attempt at solving prime
factorization using satisfiability solvers. 2004.

[89] Jeng-Liang Tsai, DongHyun Baik, Charlie Chung-Ping Chen, and Kewal K
Saluja. A yield improvement methodology using pre-and post-silicon statis-
tical clock scheduling. In Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, pages 611–618. IEEE Computer Society,
2004.

[90] Vishal Khandelwal and Ankur Srivastava. Variability-driven formulation for
simultaneous gate sizing and postsilicon tunability allocation. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2008.

154

[91] S Kim, J Kim, and S-Y Hwang. New path balancing algorithm for glitch
power reduction. IEE Proceedings-Circuits, Devices and Systems, 148(3):151–
156, 2001.

[92] Chung-Ping Chen, Chris CN Chu, and DF Wong. Fast and exact simulta-
neous gate and wire sizing by lagrangian relaxation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(7):1014–1025,
1999.

[93] Philip Garrou, Christopher Bower, and Peter Ramm. Handbook of 3d inte-
gration: volume 1-technology and applications of 3D integrated circuits. John
Wiley & Sons, 2011.

[94] Tiantao Lu, Caleb Serafy, Zhiyuan Yang, Sandeep Samal, Sung Kyu Lim,
and Ankur Srivastava. Tsv-based 3d ics: Design methods and tools. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2017.

[95] Kirk Saban. Xilinx stacked silicon interconnect technology delivers break-
through fpga capacity, bandwidth, and power efficiency. Xilinx, White Paper,
2011.

[96] Yang Xie, Chongxi Bao, Caleb Serafy, Tiantao Lu, Ankur Srivastava, and
Mark Tehranipoor. Security and vulnerability implications of 3d ics. IEEE
Transactions on Multi-Scale Computing Systems, 2016.

[97] Kan Xiao, Domenic Forte, and Mark Mohammed Tehranipoor. Efficient and
secure split manufacturing via obfuscated built-in self-authentication. In Hard-
ware Oriented Security and Trust (HOST), 2015 IEEE International Sympo-
sium on, pages 14–19. IEEE, 2015.

[98] Seetharam Narasimhan, Wen Yueh, Xinmu Wang, Saibal Mukhopadhyay, and
Swarup Bhunia. Improving IC security against trojan attacks through inte-
gration of security monitors. IEEE Design & Test of Computers, 29(5):37–46,
2012.

[99] Michael Bilzor. 3D execution monitor (3D-EM): Using 3D circuits to detect
hardware malicious inclusions in general purpose processors. In Proceedings of
the 6th International Conference on Information Warfare and Security, page
288. Academic Conferences Limited, 2011.

[100] Masoud Rostami, Farinaz Koushanfar, Jeyavijayan Rajendran, and Ramesh
Karri. Hardware security: Threat models and metrics. In Proceedings of the
International Conference on Computer-Aided Design, pages 819–823. IEEE
Press, 2013.

155

[101] Ronald P Cocchi, James P Baukus, Lap Wai Chow, and B Jiangyun Wang.
Circuit camouflage integration for hardware ip protection. In Design Au-
tomation Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–5. IEEE,
2014.

[102] Jeyavijayan Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Regaining
trust in vlsi design: Design-for-trust techniques. Proceedings of the IEEE,
102(8):1266–1282, 2014.

[103] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic for
improving network partitions. In Design Automation, 1982. 19th Conference
on, pages 175–181. IEEE, 1982.

[104] Yuan-Kai Ho and Yao-Wen Chang. Multiple chip planning for chip-
interposer codesign. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–6. IEEE, 2013.

[105] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-
trees: a new representation for non-slicing floorplans. In Proceedings of the
37th Annual Design Automation Conference, pages 458–463. ACM, 2000.

[106] Franc Brglez. Neutral netlist of ten combinational benchmark circuits and
a target translator in FORTRAN. In Special session on ATPG and fault
simulation, Proc. IEEE Int. Symp. Circuits and Systems, 1985.

[107] ITC’99 Benchmarks [Online]. Available: http://www.cad.polito.it/

downloads/tools/itc99.html.

156

http://www.cad.polito.it/downloads/tools/itc99.html
http://www.cad.polito.it/downloads/tools/itc99.html

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Taxonomy of Hardware Attacks
	IC Supply Chain Attacks
	Post-deployment Attacks

	Contributions and Thesis Organization
	Focus of This Dissertation
	Contributions
	Thesis Organization

	Background
	Supply Chain Attacks for IP Piracy
	Attack Model
	Attack Schemes

	Circuit Obfuscation
	Overview of Circuit Obfuscation
	Logic Locking
	Split Fabrication

	Anti-SAT: Secure Logic Locking Against SAT Attack
	Introduction
	Preliminary: SAT Attack
	Attack Model
	Attack Insight
	Attack Algorithm

	Motivation and Problem Statement
	Anti-SAT Based Logic Locking
	Anti-SAT Configurations
	SAT Attack Resistance Analysis
	Integrating Anti-SAT into a Circuit
	A Combined Locking Approach

	Anti-SAT Block Obfuscation
	Removal Attacks on Anti-SAT
	Mitigating Removal Attacks
	SAT-attack Resistance of Anti-SAT After Obfuscation

	Experiments and Results
	Anti-SAT Block Design
	Anti-SAT Block Application
	Anti-SAT Block Obfuscation
	Performance Overhead

	Related Work
	SAT-attack Resilient Logic Locking
	SAT Attack on IC Camouflaging

	Conclusion

	Strong Anti-SAT: Secure Logic Locking for Neural Network Chips
	Introduction
	Preliminary
	Neural Network Models
	Neurnal Network Chips
	Anti-SAT Based Logic Locking
	AppSAT Attack

	Attack on Locked Neural Chips
	Attack Model
	Step 1: Approx-unlocking Neural Chips
	Step 2: Neural-network Fine-tuning
	Attack Results

	Secure Locking for Neural Chips
	Strong Anti-SAT: Increasing Error Rate
	Multiplier Design: Increasing SAT Solving Time Per Iteration
	Summary of Attack Mitigation

	Experiments and Results
	Validation of Analytical Lower Bounds
	Error Rate and Accuracy Loss
	SAT Solving Iterations and Execution Time

	Conclusion

	Delay Locking: Security Enhancement of Logic Locking Against Overproduction and Counterfeiting
	Introduction
	Attack Model
	Delay+Logic Locking (DLL)
	Tunable Delay Key-gate (TDK)
	Timing Constraints of DLL Circuit
	DLL Design Flow

	Security Analysis of DLL
	TDK Removal Attack
	Functionality Oriented Attacks
	MILP Based Delay-key Attack

	Experiments and Results
	Experiment Setup
	Results

	Conclusion

	Security-aware Design Flow for 2.5D IC Split Fabrication
	Introduction
	Preliminary
	3D/2.5D Integration
	3D/2.5D IC Based Split Fabrication

	Security-aware Design Flow for 2.5D ICs
	Problem Formulation
	Attack Model
	Problem Statement
	Security Objectives

	Proposed Approach
	Secure Partitioning
	Secure Placement

	Experiments and Results
	Experiment Setup
	Results

	Conclusion

	Conclusion and Future Research Directions
	Future Work
	Security in Emerging Hardware Designs
	Parametric Locking
	3D IC Security

	Bibliography

