ABSTRACT

Title of Thesis: TEMPORAL DATABASES IN NETWORK MANAGEMENT
Degree Candidate: Ajay Gupta
Degree and year: Master of Science, 1998
Thesis directed by: Professor John S. Baras
Department of Electrical Engineering

Computer networks are becoming a crucial part of a business’ lifeline, therefore,
managing these networks, and ensuring they remain operational, is an increasingly
important task. This thesis discusses issues involved with performing network
management, specifically with means of reducing and storing the large quantity of data
that networks management tools and systems generate.

The value of the network management data collected diminishes as the data
ages. The value that remains is in the trend that the data outlines of the macroscopic
behavior of the network. This thesis proposes an algorithm which highlight these
trends and, in the process, causes a significant data reduction. The proposed
algorithm’s reduction methodology is compared with standard data reduction
techniques. It is further shown that the processed data is suited for storage in a

temporal database. The benefits of storing time series data, such as the network

management data discussed (i.e, Link Utilization, CPU Load, and Device
Reachability), in a temporal databases is demonstrated by storing the data in both a
relational Oracle 7 and a temporal TIGER database, and examining results of queries

against both databases.

TEMPORAL DATABASES
IN
NETWORK MANAGEMENT

by
Ajay Gupta

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Master of Science
1998

Advisory committee

Professor John S. Baras, Chairman/Advisor
Professor Wesley Lawson

Dr. Mathew Scott Corson

Dr. George Mykoniatis

© Copyright by
Ajay Gupta

1998

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to several individuals who made this thesis
possible. Firstly, Dr. John Baras for giving me the opportunity and providing the
facilities to work on this thesis throughout my graduate studies. I'd like to thank
Professor Wesley Lawson, Dr. Mathew Scott Corson, and Dr. George Mykoniatis for
joining my defense committee. Farooq Anjum’s assistance in the simulations proved
invaluable and irreplaceable. Vineet Brimani helped greatly in the study of temporal
databases. The technical assistance given by Professor Michael Boehlen and the TIGER
team at Aalborg University with the use and operation of TIGER is greatly appreciated
and saved considerable development time. I also appreciate Professor Boehlen’s
inclusion of the Relational, Temporal database script in TIGER’s web site.

I'd like to thank all my friends in the SEIL lab group and the Network
Management research grdup, especially Dr. George Mykoniatis, who provided help,
assistance and much needed comic relief throughout the course of this work.

This work was supported by the Center for Satellite & Hybrid Communication
Networks, a NASA Commercial Space Center (CSC), under NASA Cooperative
Agreement NCC3-528.

Prepared through collaborative participation in the Advanced

Telecommunications/Information Distribution Research Program (ATRIP) Consortium

il

sponsored by the U.S. Army Research Laboratory under the Federated Laboratory
Program, Cooperative Agreement DAAL01-96-2-0002.

The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.

This work was supported by Lockheed Martin Telecommunications, Sunnyvale,
CA.

Finally, this work is more a testament to my parent’s will than my own efforts.

Without their constant support and challenge it would not exist today.

iii

TABLE OF CONTENTS

List of Tables

...

List of Figures

1 Introduction

1.1 Data Compression vs. Reduction

...

1.1.1 Data Reduction

...

1.1.2 Dependant Variable Indexing

...

1.2 Databases in Network Management

2 Comparison of Relational and Temporal Databases

2.1 Discussion of Temporal Data Models

...................................

2.1.1 Definition of Terms

...

...

2.1.2 Temporal Data Model

2.2 Characteristics of Temporal Databases

..................................

2.2.1 Time Stamping

..

2.2.2 Requirements for the Query Language

..........................

3 Data Storage Schemes

3.1 Selection of Statistics, Development of Storage Scheme

.......

3.2 Description of the Storage Scheme

iv

3.2.1 Storage Scheme for Link Utilization and CPU Load

3.2.2 Storage Scheme for Device Reachability

3.3 Cost of Data Storage Scheme

4 Results

4.1 Network Simulation

4.2 Storage in Temporal Database

4.2.1 Data Reduction

...

4.3 Database Storage

4.4 Script for Storing and Retrieving Data from the Database

5 Applications of the Data Storage Scheme

5.1 Data ReAUCHIONoooeeieeieeeeeeee e,
5.2 Trend Identification

...

5.2.1 Proactive Approach to Network Management

6 Conclusion
6.1 Future Workccccooviiiiiiii e
A TCP and ATM (CBR and UBR) Simulation Source Code
B ATM (CBR and UBR) Simulation Source Codecceesunrevunne

133101 111700 1 0] 1 2P

LIST OF TABLES

2.1 An example of possible inconsistency in temporal databases. 14
2.2 Tllustration of heterogeneous and homogeneous attributes...................ooo. 15
2.3 Illustration of time stamps in temporal databases..................c..coooinn, 16
2.4 Snodgrass’ temporal database model ... 18
2.5 Attribute Time Stamping from Tansel’s Data Model ..., 19
2.6 Homogeneous tuples in temporal databases ..., 19
3.1 First resolution table for link utilization ... 25
3.2 First resolution table for link utilization ... 26
3.3 Second resolution table for link utilization ... 27
3.4 Third resolution table for link utilization ... 28
3.5 First resolution table for link/device reachability ... 29
3.6 Second resolution table for link/device reachability ... 30
4.1 Class 1 Queries on the Databases ... 50
42 Class 2 Query on Oracle 7, desired time point in database 51
43 Class 2 Query on Oracle 7, desired time point is not in database 52
4.4 Class 2 Query on the TIGER Database ... 53
4.5 Class 3 Query on Oracle 7 ..o 54
4.6 Class 3 Query on TIGER ... 54

LIST OF FIGURES

4.1 The Architecture utilized for both simulations
4.2 TCP and ATM simulation, data processed to second and third resolutions.... 39
4.3 TCP and ATM simulation, latter half of data processed to second resolution 40
4.4 Second resolution and original data, TCP and ATM simulation
4.5 Third resolution and original data, TCP and ATM simulation 42

4.6 ATM CBR simulation, data processed to the second and third resolution.... 43

4.7 ATM CBR simulation, later half of data processed to second resolution...... 44
4.8 Second resolution and original data, ATM CBR simulation......................... 45
4.9 Third resolution and original data, ATM CBR simulation.......................... 46
4.10 Loading data into TIGER................coccooviiiiiiiiiie e 50

vii

Chapter 1

Introduction

In recent years, the computer network has transformed from a tool used to speed
business processes to the very lifeline of the enterprise. An increasing number of
businesses, from the fast-paced such as financial services, to the less real-time, such as
gasoline service stations, are becoming reliant on computer networks for their day-to-
day operation.

It is ever becoming a higher priority that these networks remain in operation
100% of the time [13]. This has spurred growth in the field of network management. A
host of new companies have been born, producing an array of software and hardware
intended to assist in the management of a network in one fashion or another. For
example, there are software packages available commercially which simply create
trouble tickets based on alarms from network management suites.

Along with the increased need for network management in today's workplace,
the difficulties in performing network management have also grown. This can be
attributed in part to the heterogeneity prevalent in today’s computer networks, in areas
of physical transmission facilities, network devices, multi-media information
transmission, network protocols and objectives [4], and partly because industry
emphasis has been placed on development as opposed to research.

The development of a network management system typically involves addressing

the following four issues. 1) Developing an understanding of the network is necessary in
order to determine which set of statistics will prove most valuable for the purposes of
network management. 2) A method to collect these statistics must be identified. 3) A
scheme for the storage of the collected data must exist. This scheme is subject to the
finite memory space available, and involves defining a data query method or language.
4) How to process the data, in other words, what can be learned from the data. This is
related to step 1. Keeping in mind what information is desired from the network
management system can guide the selection process as to which statistics to collect.
There is a lack of clear understanding of which network statistics are “most
relevant” to proper management. The various standards bodies, such as the Internet
Engineering Task Force and ATM Forum, have specified Management Information
Bases (MIBs) which identify all possible network information which may be of value to
network management in one manner or another [1,24]. The size of these MIBs can grow
quite large especially as modern day networks span the globe. The heterogeneous
nature of today's networks is certainly a contributing factor to the size of databases, as
different networks have differing management requirements which must all be covered in
a “standard” database. For example, in ATM networks, where there are quality of
service (QoS) guarantees, monitoring the number of incorrectly delivered packets may
be worthwhile, whereas in TCP/IP networks without such QoS parameters, such a
statistic may prove less useful. Often, different requirements come from differing points
of view. Within an Internet service provider (ISP), the accounting staff may desire the

capability to monitor the network for billing purposes while network operations staff

may be more interested in the ability to detect and prevent security leaks.

Once statistics have been selected, there are a variety of means of performing
data collection. Network data can be gathered by any combination of traps, polls,
SNMP gets or other methods. The search for optimum means of performing data
collection on computer networks is an on-going area of research. This work, however,
does not deal with this issue and assumes the data has been collected by any means.

Similarly, this work does not discuss the nature of the network management
system acting upon the data. It deals with the development of means for storing the data
in a manner in which the information content of the data is readily accessible to the
network management system.

It is well documented in the literature that network management data can grow
quite large over a period of time. It has the potential to grow so large that the sheer
volume of data available to network managers can be overwhelming, severely
compromising their ability to administer the network [49,50]. For example, if a single
network statistic, such as link utilization, is collected by sampling every 30 seconds, then
86,400 samples will be collected in one month (30 days x 24 hours x 60 minutes x 2
samples per minute) and 1,051,200 samples will be collected in one year (365 days x 24
hours x 60 minutes x 2 samples per minute). As the volume of statistics grows, the
burden on the system’s memory increases as well as the delays to network managers
caused by the query process. In order to avoid these scenarios, it is necessary to
perform data reduction before storing the data. A process by which the information

content of the data can be retained without storing the actual data is proposed. This

information content will occupy significantly less memory space allowing faster query
response time (due to smaller database size), and the database to contain more historical
information (due to the nature of the storage scheme).

The storage scheme is designed for link utilization, and similar statistics which
vary by time and in which the trend is more important than the actual numerical value.
CPU load is another such statistic. A variation of the proposed scheme can also be
employed for Device Reachability. This is a statistic in which the value is boolean.
Either the device is reachable (1) or unreachable (0). The storing of data for long term
use raises issues in databases, often the storage vehicles of choice for storing data of

most any kind.

1.1 Data Compression vs. Reduction

The proposed scheme reduces the quantity of the data to be stored; it is not,
however, a ‘data compression’ scheme. Various schemes for data compression have
been presented in the literature and are in use today, a common compression scheme is
the UNIX compress utility. The goal of such compression schemes is to allbw a certain
amount of data to be stored in a smaller amount of disk space (typically measured in
bytes).

These schemes accomplish various levels of data compression and are essentially
two-step processes. Data is first compressed from its original form through a certain

algorithm. When the data is to be retrieved, it must be un-compressed. Compression

4

schemes are based on the principle that this un-compressed version is in some sense
functionally equivalent to the original data. The definition of functional equivalence is
determined by the requirements of the application and based on these requirements,
different schemes have been presented. Such schemes do not intend for the data to be
used while in the compressed form, indeed, compressed data is generally not human or
application readable.

This is a distinction between these schemes and the proposed algorithm. In the
proposed algorithm, classic “data compression” does not take place, in that there is no
attempt made to extract the original data after the algorithm has been applied. Instead,
the algorithm processes the data, causing a reduction and this reduced form is used in
further analysis. A second distinction is that compression schemes do not attempt to
preserve trends in the data, but merely store the data in a form requiring less disk space.
Finally, the proposed scheme is a one-step process as aggregation needs to take place
only once, as opposed to the compression scheme’s requirement to compress and

decompress the data.

1.1.1 Data Reduction

Data reduction techniques are utilized in applications where the quantity of data
generated can overwhelm efforts to analyze the data. The general approach to data
reduction has been to compare the data with standard, or previously identified,

distributions or curves, such as a cubic spline or linear regressions in order to highlight

5

subsets of data containing similarities to the previously known information [7,27,28,42].
These subsets are most critical to the experiment and can be stored and used for
analysis in place of the raw data.

For example, commercial data reduction packages exist to reduce data by
computing a non-linear curve of known concentrations (of various chemical properties
present in a particular solution). This curve is back fit onto the raw data (taken from
assays where the concentrations are not known) to determine the concentrations. This is
done by a logarithmic, non-linear curve fitting. Then the generated curve can be stored,
whlch can be significantly smaller than the raw data [7].

This a priori knowledge is based on the characteristics of the application from
which the data originates. Therefore, data reduction is highly application dependant. In
certain cases, data reduction techniques are used to remove potentially flawed data, data
that does not offer information about the underlying application, or can be attributed to
errors in the experiment, imperfections in the test subject, etc. One such instance of this
approach out of the Defense Research Establishment in Victoria, BC, a data reduction
tool is used to display time-series data from satellite images and replace data points with
the average of the power spectral density estimate over time intervals. This process
removes erroneous values from the raw data while reducing the size of the data to be
stored.

While there are distinctions between the proposed algorithm and standard data
reduction algorithms, this scheme falls in the category of a data reduction approach.

The differences will be further discussed in Section 4.2.1.

1.1.2 Dependant Variable Indexing

In the process of performing the data reduction, the proposed algorithm can
serve as a precursor to a dependent-variable indexing scheme [25,26]. Such a scheme
would, in this case, index the data on the link utilization or CPU load (dependent
variables) values as opposed to the time values (independent variable). With the current
indexing approach, the time sequence is scanned to process a queries. For queries, such
as computing the time when the value reaches a certain threshold, the entire time
sequence must be scanned in order to respond. In the literature [25,26], a method has
been proposed to perform inverse queries - queries based on indexes of the dependant
variable. These schemes can reduce the processing time of queries such as the one
discussed above [25,26].

The proposed algorithm, as will be seen in further chapters, naturally subdivides
the data into windows based on ranges along the dependant variable. These ranges have
an associated window along the time access - with a start time corresponding to the
initial point and an end time corresponding to the last data point in the range. These
ranges can be used either as an indexing scheme itself, or as the basis for an indexing
scheme. The proposed algorithm has a multiresolution approach, therefore, the indexing

scheme can also have multi-layered granularity of its index.

1.2 Databases in Network Management

Databases play a crucial role in network management. Databases in the
management arena are called Management Information Bases (MIBs). MIBs store all
data collected for network management. They also define the data storage model.

Traditional databases are designed to store the views of the data which comprise
the current snapshots of the system. In other words, databases store data for the
network at a present point in time. While this view of the network is certainly
important, past history is increasingly seen as crucial [1]. Past history can play a role in
determining trends in usage and patterns in network behavior, such patterns utilization
rates.

In order for databases to allow their users to access such information, all the data
values recorded through history of the network must be recorded. Clearly this presents
a problem as this quantity of data will certainly outgrow both any practical storage space
and the capability of competent network managers to sift through, as discussed above.

Therefore, there is a need to develop a storage scheme which can store the
network management data in a manner that allows the data’s information, i.e., the value
that can be drawn from that data, while not being required to store the full amount of the
data. This is the question of how to discount data over time.

In order to accomplish this, we need to look carefully at the data itself to
understand its defining characteristics. Data collected from computer networks for the

purpose of network management are valid at the time instant they were collected. (This

8

may include a small time interval around the measurement time as precise timing is
generally not possible and some flexibility in the ‘stated’ time of measurement is
accepted).

Given that network management data can define the state of the network (for at
least the network statistics collected) at the time of collection; network management
data can define the state of the network over a time period if all data measurements over
that time period are known.

Therefore, it is clear that relational databases which could store the complete
collection of network management data over the time period of interest - the entire
operation time of the network - could function as the repository, the MIB, for the
purposes of network management.

However, as stated above, storing this quantity of data is simply not practical.
The relational database model must be modified in some way so as to allow the
information of the data to be available while the data itself is no longer available. A
possible modification is evident upon closer inspection of the data.

Inherently, network data is valid over a period of time, say between two sample
times. We understand the data to be an accurate representation of the network
statistic’s value at the time instant it was collected and the time interval associated with
that time instant. We accept two values taken in two consecutive samples to define the
range in which that particular network statistic takes its value over that time period

defined by those two consecutive samples.

It is this temporal characteristic of the network that we intend to exploit. Given
that the value recorded in one sampling, conducted at one time instant, is the value
accepted over the range surrounding the time of measurement and that the values
recorded over consecutive measurements define the value range over that time interval,
then if those values are close enough to be considered equivalent (i.e., that the difference
between them is not significant to the management of the network such as the case of a
link having 42% utilization or 46% utilization, either rate being considered acceptable)
then the data points which are stored defining those measurements can be replaced with
one data point defining the value and the range over which that value holds.

For example, suppose at sample time t; link utilization is 42% and at time t, the
value is 46% and at time t, it is 44%. In place of recording all three readings in the
database, we can simply record one entry as the average of the above three and
designate it time t;. It will have to be made clear that the value of t; holds for three
samples.

This can be done in a straightforward manner in temporal databases. Temporal
databases, sometimes called historical databases, are essentially relational databases in
which the time interval, over which the stored data is valid, is specified.

In many applications, previous states are important, as are the changes in
state over time, the trend of the data. For example, in order to upgrade a network, it
may very well be helpful to understand how usage of the network changed over time.
To know which links are no longer used and which are getting more extensive use; to

know which services and applications are gaining popularity among network users and

10

which are losing favor.

The remainder of this thesis is organized as follows. Chapter Two introduces
the area of temporal databases. Chapter Three presents the storage scheme upon which
the work is based and Chapter Four presents and analyzes the results of the simulation
and comparison between a standard relational database, Oracle 7, and a temporal
databases, TIGER. The TIGER temporal database is a product of the computer science
department of Aalborg University in Denmark'. Chapter Five discusses few envisioned
applications of the proposed scheme and Chapter Six is the conclusion, which includes a
section on possible future direction for this research. Appendix A and B contain the

source code for the simulations used.

! The TIGER temporal database is a product of the computer science department of Aalborg University in
Denmark. It is accessible from the web dittp://www.cs.auc.dk/~tigeradm.

11

Chapter 2

Comparison of Relational and Temporal Databases

The need to view the change in data over time led to the concept of temporal
databases. Temporal, or historical, databases are essentially databases with an additional
dimension, the time dime_nsion. There has been a great deal of research into temporal
databases reported in the literature for applications in which the systems concerned have
data which varies over time, and therefore fits this time-dependant model. For example,
scientific and statistical data such as seismological data, CAD/CAM applications, and
also financial applications such as monitoring the value of a stock [8,10].

A number of temporal data models have been developed [9,17,40,41,51-54]
which support time varying information. The research community has taken the
approach of interpreting time as being discrete, mainly for the reason of simplicity and
relative ease of implementation. Time is represented as: T = {0, 1, 2,, now}, with 0
= start time and now = a constant to represent current time. In some literature, the term
Je is used to represent the largest possible time. The time units are application specific.

Any subset of T is considered the Temporal Set or Temporal Element [51-54].

2.1 Discussion of Temporal Data Models

A set of general requirements have been established for the data models. While

12

not all proposed models fulfill these requirements, omissions being made for the sake of

ease of implementation, reviewing them here is worthwhile.

2.1.1 Definition of Terms

A few terms should be identified before a full discussion of a temporal data
model can take place. A temporal atom is an ordered pair <t,v> where t is the temporal
set or an interval [t , T) and v is an atomic value from a specified domain. There can be

four types of attributes in temporal relations:

1. Simple valued (Atomic) e.g., 12 Tom

2. Set valued eg., {12,16} {Tom, Mary, John}
3. Triplet valued eg., <{12,16}, 47>

4. Set Triplet valued eg, {<{12,16}, 47>, <{18,20},55>}

Atomic attributes contain just one data point. Relational databases deal exclusively with
atomic attributes. Set valued attributes can have multiple data points. Triplet valued
attributes are formed through a concatenation of set valued or atomic attributes.

Likewise, set triplet valued attributes are multiple triplet valued attributes.

2.1.2 Temporal Data Model

Temporal data models should provide the ability to query the database for any

point in time (within the lifetime of the stored data). Also, the model should allow

13

querying the data for the current state of the database as if it were a traditional relational
database. This requirement essentially states that the addition of time into the database
should be transparent to the user. Certainly this is a desired characteristic, however, it
has proven difficult to achieve in practice [6,51-54].

The data model should be capable of modeling and querying the database at two
different time points. This is straightforward in relational databases if time is recorded
as a single valued attribute, i.e., restricted to time points. In temporal databases, the
goal is to have the database be able to distinguish between states for different, yet
overlapping intervals in time. For example, we want the database to be able to protect

its consistency under the condition in Table 2.1.

Link Start Time End Time Link Utilization

1 T, T4 72%
1 T Ts 75%

Table 2.1: An example of possible inconsistency in temporal databases.

The above tuples illustrate a danger with temporal databases. As the value for
link utilization is an average, both tuples may be accurate, i.e., that the average link
utilization from T, to T4 may well be 72%, while the average from T, to T be 75%.
However, this clearly offers conflicting values for T, and Ts. In this case, the second of
the tuples must be rejected and the operator flagged as to the inconsistency.

The data model should allow for different periods of validity in attributes within

a tuple, i.e., nonhomogeneous (heterogeneous) tuples. This condition is not always

14

agreed upon in the literature, and therefore not always proposed. Several proposals
restrict the temporal database to homogeneous tuples. Such a restriction does retard
performance, however it simultaneously increases ease of implementation [8,51-54].
Both heterogeneous and homogeneous tuples are illustrated in Table 2.2.

Link Utilization (%)

1 <[Ty, Ty, Ts, Ts, To, T1o), 57>
1 <[Ts, T4, Ty, Ts), 63>

A)
Link Utilization (%)

<[Ty, T>), 57>
<[Ts, Te), 57>
<[Ts, T1o), 57>
<[Ts, Ta), 63>
<[Ts, Ty), 63>

(B)

Pk ek ek ke

Table 2.2: Illustration of heterogeneous and homogeneous attributes. A) heterogeneous attributes
B) homogeneous attributes.

The data model should allow multiple valued attributes at any point of time.
This again is a point of disagreement in the temporal database community. Allowing
multiple valued attributes increases the effectiveness of the database, however, increases
the difficulty involved with implementation as well [S1-54]. Several approaches have
been made without allowing multiple valued tuples. Not only does this requirement
complicate implementation, but it also complicates the formation of an effective query

language, as will be shown later in this chapter.

15

2.2 Characteristics of Temporal Databases

2.2.1 Time Stamping

Time relations have been referred to as three dimensional cubes, with the third
dimension being time [39]. These three dimensional cubes are transformed into two
dimensional constructs by time stamping [39]. This time attribute being the major
distinction between temporal and relational databases.

Three methods for time stamping are illustrated in Table 2.3

Time-Stamps:

CPU Load CPU Load CPU Load

<Ty, 45%> <[Ty, Ts), 45%> <[T1-Ts, Tiz, T1a), 45%>
<T,, 48%> <[T4, Ts), 45%>

<Ts, 43%> <[Ts, now), 48%>

Time Points Intervals Temporal Set

A) B) C)

Table 2.3: Nllustration of time stamps in temporal database. A) is a time point, B) is a time interval
and C) is a temporal set.

Time points are closest to the static data currently maintained in relational
databases. They can be recorded simply as another attribute well within the relational

model.

Intervals and Temporal Set offer greater database size reduction, as multiple

16

tuples with the same data value and differing only in the time element can be reduced to
a single tuple as will be shown later. The difference between Interval time stamping and
Temporal Set time stamping is merely that a temporal set may contain discontinuous
time values. Essentially, a temporal set can be comprised of a concatenation of time
intervals.

The location of the time stamp is also an issue. That is a time stamp can either
be applied to the entire tuple or the individual attributes. The former is called tuple time
stamping and the later is called attribute time stamping.

In tuple time stamping, a relation is augmented with two time values, a start time
and an end time delineating the time interval. Such databases maintain First Normal
Form [9,41,51-54]. Therefore, such a scheme can benefit from traditional database
technology.

Snodgrass [41] introduced a data model employing tuple time stamping. This
model maintains static attributes, along with or including the primary key, as a separate
relation and time stamps each time-varying attribute individually in its own relation, as

shown in Table 2.4 [39,51-54].

17

E# ENAME E# SALARY VALID

FROM TO
121 TOM 121 20K 10 15
133 ANN 121 20K 15 17
147 JOHN 121 30K 17 18
133 35K 25 30
147 42K 18 now
E# DEPARTMENT VALID
From To
121 Sales 10 12
121 Mktg. 14 18
133 Sales 25 30
147 Toys 18 now

Table 2.4: Snodgrass' temporal database model.

While maintaining First Normal Form is certainly advantageous, there are
disadvantages to the above approach. The data is broken into several tuples and creates
smaller fragmented relations causing data redundancy resulting from duplication of the
static attributes and primary key. This scheme also complicates the management of
database consistency. If a static value is to be updated, it must be updated not only in
the static relation, but also in each relation in which it appears. For example, in order for
the Ann’s employee number to be changed, the change must be made simultaneously in
all three relations, in place of one. Maintaining database consistency becomes
significantly harder [51-54].

The database is in first normal form, however, SQL will require modification
before it can be directly applied to the database, as it must be clear that a query
requesting Salary for Employee Tom at time 17 should return 30K in place of 25K.

The alternative to tuple time stamping is attribute time stamping. In attribute

18

time stamping, the attributes themselves are given a time stamp. This method of time
stamping introduces a new domain of attribute values.

Tansel introduced a data model utilizing attribute time stamping [53]. In this
model, time stamped attributes consists of two components, the timestamp and the data
values, for example <(10, 12), Sales> would be one attribute as opposed to three. [See

Table 2.5 below]

E# ENAME DEPARTMENT SALARY
121 Tom <{[10, 12]}, SALES> <{[10, 15]}, 20K>
<{[14, 18]}, MKTG> <{[15, 17]}, 25K>
<{[17, 20]}, 30K>
133 Ann <{[25, 30]}, SALES> <{[25, 30]}, 35K>
147 John <{[18, now]}, SALES> <{[18, now]}, 42K>

Table 2.5: Attribute Time Stamping fromTansel's Data Model.

This scheme does not maintain first normal form, causing a break with traditional
database technology. Non-first normal form relations are more difficult to implement.
The case of homogeneous of tuples has been mentioned. A homogeneous tuple is one in
which every attribute of a tuple is time stamped with the same time interval or temporal

set. Gadia’s [18] approach includes homogeneous tuples, see Table 2.6.

E# ENAME DEPARTMENT SALARY
[10, 12) [10, 12) [10, 12) Sales [10, 12) 20K
121 Tom

[14, 18) (14, 18) [14, 18) Mktg. [14, 15)
[15,17) 25K
[17,18) 30K

[25,30) 133 [25,30) Ann [25,30) Sales [25,30) 35K

[18, now) 147 [18, now) John [18, now)Toys [18,now)42K

Table 2.6: Homogeneoustuples in temporal databases.

19

2.2.2 Requirements for the Query Language

The languages proposed in the literature fall into two categories, they are either
extensions of SQL, the defacto standard language among relational databases, or new
temporal query languages, such as Snodgrass’, TQUEL[40] and Tansel's Time-by-
Example[50,51]. Many of these new languages are also derived from, or inspired by,
SQL.

An ideal temporal query language is one which can address all of the above listed
data model requirements, can handle either method of time stamping, with any kind of
stamp. Certainly, choices must be made as to the nature of the language to employ. A
list of requirements for query languages has also been proposed in the literature.

The belief that the query language should have the capability to return the same
type of object that it operates on is fairly universally accepted [8,51-54]. This implies
that if the zllttribute(s) requested is (are) time stamped, then that complete time stamp
should be returned. However, if the value of an attribute(s) time stamped with either an
Interval or Temporal Set is requested at a particular instant in time, then that value
should be returned with just that time point and not the complete time stémp.

The language should be able to perform the same comparison tests on time
stamps (either of the three kinds of time stamps) that SQL and other relational database

languages can perform on standard single-valued attributes.

20

Similarly, the language should have the ability to regroup data according to
different criteria. Essentially, temporal query languages should have the ability to
perform the same actions on temporal databases as existing query languages can perform
on relational databases.

Temporal databases draw a distinction from relational databases in their query
languages as well. A relational query language need not treat the time element any
differently from other attributes stored in the database. Queries made against a
relational databases return values that are explicitly entered into the database. If time is
recorded as an attribute, and a query is made against a particular time or a set of time
values, the database will be capable of returning the values for time points that are
specified in the database, however, if the time points are not specified, it is as if the data
does not exist in the database and no values are returned. Temporal query languages
can read time as an interval therefore allowing queries to be made for time points that
are not explicitly specified in the database. This functionality allows the stored data to
represent movement through time, as opposed to merely a snapshot of data in time. The

benefits of this will be seen in the results described in Chapter 4.

21

Chapter 3

Data Storage Schemes

The scheme presented here are for storing link utilization, CPU load and device
reachability statistics. Link utilization is defined as the utilized bandwidth of individual
links throughout the network and is stored in terms of percentages. For ATM networks,
the utilization of individual Virtual Paths (VPs) can also be maintained. In this case, the
percentage of utilized bandwidth over guaranteed bandwidth in percentage is recorded.
CPU load is the amount of processor power currently engaged, also recorded as a
percentage. Device reachability is the ability to reach of network devices, such as
printers, servers, etc., regardless of the path (over logical or physical links) chosen.
Device reachability is a boolean value as the device is either reachable (value = 1) or
unreachable (value = 0). The data storage schemes are introduced and discussed below.
The data can be gathered by use of traps, probes or SNMP commands, however,
discussion of data collection techniques is beyond the scopevof this work. The schemes
for link utilization and CPU load are identical and that for device reachability has only a

slight modification.

3.1 Selection of Network Statistics, Development of Storage

Scheme

22

Before the discussion of the scheme itself, it is prudent to mention the rationale
that went into its development. The statistics for which this scheme is developed, Link
Utilization and CPU Load, are both time varying statistics, can be measured in
percentages and their overall trend is more important that their individual values in a
historical sense. As mentioned above, the individual numerical values of these statistics
take on lesser importance over time than the pattern in movement of the statistics. (This
point will be discussed in greater detail in section 3.3) Therefore, a storage scheme that
places greater emphasis on the trend of the data than the data itself is a prime candidate
for use in this application.

With this point in mind, the scheme was designed by noticing a parallel between
the network management statistics under examination and the quote price of publicly
traded stocks. For up to the minute, or real-time stock quotes, as reported on the
Internet?, the values are given in the same granularity with which they are measured but
are shown for the present day only. For historical values, say over the past week, stock
quotes are presented on V2 hour granularity. For longer term, say the past 3 months or
year, only the closing values are shown. Essentially, the granularity with which stock
quotes are reported decreases as the view window becomes larger. This multiple
resolution system accomplishes two things, first, the highest level of granularity does not

need to be recorded and retained in the database permanently and second, investors are

2 The value of publicly traded stocks are reported on several World Wide Web sites,
www.foxmarketwire.com andvww.quote.com are two examples.

23

able to see the movement of the stock price and obtain the information they seek.

This same multi-resolution approach can be employed in the storage of network

management statistics.

3.2 Description of the Storage Schemes

3.2.1 Storage Scheme for Link Utilization and CPU Load

The proposed scheme stores data in three resolutions. The first resolution stores

recorded data for the most recent period of time. This time period is sufficient only to

provide the current state of the network. The first resolution is illustrated in Table 3.1:

First Resolution Table

Link Utilization
01 <ty, 25>
01 <ty, 26>
01 <t3, 27>
01 <t4, 31>
01 <ts,29>

Table 3.1: First resolution table proposed for link utilization.

In this case, the past five (5) data points are stored in the first resolution. Data is

gathered every twenty (20) seconds, therefore the first resolution comprises one (1)

minute and forty (40) seconds. There is one such relation for each link in the network.

In an ATM network, utilization data may be collected for the physical link as well as the

logical VP links.

24

As this resolution stores only current data, old data is pushed out as new data is
collected. (Older, historical data is stored in the second and third resolutions.) For
example, after two further data collections, the relation in Table 3.1 may look like Table
3.2:

First Resolution Table

Link Utilization
01 <ts, 27>
01 <t4, 31>
01 <ts, 29>
01 <tg, 35>
01 <t, 38>

Table 3.2: First resolution table for link utilization.

Essentially, the first resolution holds the recent data and is updated every time a
new measurement is taken. In the format described, time stamps are used to attach a
time point to the data values, however, time can be considered another attribute and the
data can possibly be stored in a standard relational database. This applies only to the
first resolution data.

The second resolution stores aggregates of the data - as opposed to the actual
data - in tuples in the temporal database. The data values of the first resolution are
aggregated into tuples according to the following rules.

Rules for the creation of second stage resolution tuple:

The first data value creates a new tuple. After the first data value a new tuple is created
if
I ABS(v,-vy) > &

IL. Ifv, > High threshold (85%)
II. If v, < Low threshold (15%)

25

where v, is the value of the first data collection point of the current tuple, v, is the value
in the current data collection point and & = 5. A value for § has been selected by
considering that the exact value of the link utilization is less important than the trend of
the link utilization. Experimental results with values of 5, 10 and 20 show that significant
reduction in database size can be achieved while maintaining the trend of the data with a
0 =5. This value can be set more or less tightly depending on the application. An
appliction in which more precise records are necessary can reduce the value of 8,
* applications where less precision is necessary, or if greater data reduction is necessary
and increase 8. The amount of data reduction achieved by this aggregation is dependant
upon the value of 3 and the fluctuation of the data, as will be discussed in the following
chapter.

It is worthwhile to point out that the comparison above is performed between the
first point of the tuple (v,) and the current point (v,) and does not involve the value
currently stored in the data. This is to ensure that both upward and downward runs of
the system will be evident from the second resolution. Using the first point as the
reference point for a tuple ensures that any significant run in either direction will move
more than d from v, and create a new tuple allowing the run to be stored.

The second and third rules of the aggregation scheme are designed to retain all
information regarding the system operating in either a high or low utilization range.
While the purpose behind the scheme is to identify trends in the data, storing all data in

these periods is of value. With high utilization, it is possible that further spikes in usage

26

overload the system, bringing it down and defeating the purpose of network
management. In low utilization, resources are not being used; when resources are not
being used they cannot generate revenue, defeating the purpose of the network. This
lower threshold should be set lower than the typical off-hours usage of the network, in
the case of a corporate network, to avoid a situation where the lower threshold is
crossed each night. The values in the first resolution above will aggregate according to
the proposed scheme and fill the second resolution as in Table 3.3:

Second Resolution Table

Link Utilization

01 <[t tq), 26>
01 <[t4,t7), 32>
01 <[t7, tg), 38>

Table 3.3: Second resolution table for link utilization.

Again, there would be one such relation for each measured link. The time
interval above employs a closed left side and an open right side, indicating that the left
time point is included and the right time point is not. In this resolution, a time interval is
employed and offers a more stark contrast with the traditional relational model than the
first resolution. In the next chapter, the benefit of allowing a time interval to be
associated with the values of the database is discussed in detail.

The third resolution offers further aggregation, the rules for the creation of
tuples in the third resolution are similar to those in the second, the difference being a

larger value (€) used in place of 3.

27

Rules for the creation of third stage resolution tuple:
The first data value creates a new tuple. After the first data value a new tuple is created
if
I Abs(v,-v,) > ¢

II. If v, > High threshold (85%)

11 If v, < low threshold (15%)
where v, is the first value in the current time interval, va is the value in the current time
interval and € = 20. The determination of € = 20 follows the same argument for the
determination of & given above. In this resolution, the condition for the high and low
thresholds are maintained, so that there is a permanent record of all periods of over or

under utilization.

The values above will aggregate according to the purposed scheme as illustrated

in Table 3.4:

Third Resolution Table
Link Utilization
01 <[t, tg), 32>

Table 3.4: Third resolution table for link utilization.

There would be one such relation for each link.

3.2.2 Storage Scheme for Device Reachability

For the case of Link/Device Reachability, the value is boolean, either a device is

reachable (device is up, defined as value = 1) or the device is unreachable (device is

28

down, defined as value = 0). Due to the Boolean nature of the statistic, the scheme can
be modified to require only two resolutions. Data can be gathered, as before, by either
the use of traps, polling or SNMP commands. The data in the first resolution stores
only current values and purges old values as new value enters, once the capacity is filled.
A sample relation is shown below (see Table 3.5):

First Resolution Table

Link/Device _ Reachability

01 <t;, 1>
01 <t,, 0>
01 <t;, 1>
01 <ty, 1>
01 <ts,1>

Table 3.5: First resolution table for link/device reachability.

Again, one such relation is required for each link and device in the network.

As the value for Reachability is Boolean, there is no concept of value crossing a
high or low thresholds (it will be either zero or one). Therefore, the rule for the creation
of a tuple in the second resolution need only have one condition.

The second resolution for Device Reachability has slightly different tuple
creation rules. There is only one tuple for each device. That tuple contains the temporal
set in which the device was unreachable (value = 0). At other times, the device can be
assumed, with probability one (1), to be reachable. We choose to store the times when
the device was unreachable as we believe this will be a significantly lesser time than
when it is reachable, and therefore require much less storage space than the times when

the link or device is reachable.

29

Rules for the creation of second stage resolution tuple:
Store in single tuples the time intervals when device was unreachable.
The relation may look like the following (see Table 3.6):
Second Resolution Table

Device Time
01 <[t t3)>

Table 3.6: Second resolution table for link/device reachability.

There would be one such relation (tuple) for each device. No further resolution
is required. Nor is it necessary to utilize a single byte of memory to indicate that the link
was unreachable. As it has been determined that data will only be stored for the

downtime, it becomes redundant to store the Boolean attribute to that effect.

3.3 Cost of Data Storage Scheme

The proposed scheme will allow for data reduction, therefore some (possibly a
significant) quantity of data will be lost and replaced with an aggregate of this data. In
order to analyze the cost associated with this scheme, it is necessary to re-examine the
aggregation process.

Each tuple is established by the aggregation of consecutive data readings which
lie within the specified & of the first reading assigned to the tuple. The actual data and
the aggregated value, then, lies in a window of length 2 8. For applications requiring
precise data values, the value of 6 can be made very low so that the aggregation is

30

performed over a smaller range and a higher granularity is achieved. For applications
where such precision is not necessary, & can be set relatively high, offering less
granularity but significantly more data reduction.

The value of the lost data is dependant upon the application to which the data
belongs. In certain applications, such as seismology, the particular values of
measurements, as well as the trends, are of high importance as they can be used to
estimate location and severity of tremors and earthquakes. In financial applications,
such as the reporting of stock prices on the Internet, they again are of great importance
as large sums of money are traded on the actual values.

In network management, less of an emphasis is placed on actual values [36] and
therefore the cost associated with lost data is considerable less than in the above two
applications.

Recall, in this scheme, that any time the data rises above or drops below the high
or low thresholds, a new tuple is created. This is to ensure that the alarms due to both
high and low utilization are safeguarded. There is a concern that certain alarms may be
set within these two thresholds and further that they could be lost in the aggregation
process. The value of these alarms are implementation specific and must be evaluated
on a case by case basis. However, if they are deemed worth recording, then one
alternative is to add a flag attribute to the temporal database to record these alarms.
This attribute can store a number consisting of as many Boolean digits as possible alarms
(or at least prominent alarms). Each time an alarm is triggered within an interval, the

corresponding alarm bit in the flag attribute is set. This approach will reduce the cost of

31

the lost data while retaining information about the occurrence of alarms.

32

Chapter 4

Results

In order to illustrate the data reduction and the trend identification achieved by
the storage scheme discussed in the previous chapter, the following experimentation and
data analysis procedure has been identified. Data is gathered through two simulations
discussed in Section 4.1. This data is then processed in accordance with the proposed
scheme in Matlab. The output from Matlab is the second and third resolution of the
data. These resolutions, along with the original data appear in graphical form in Section
4.2 where the graphs are discussed in detail. The data is then loaded into an Oracle 7
and a TIGER temporal database. The functionality of these databases is compared and
contrasted by performing queries on both databases. The database loading and query
processes are both discussed in Section 4.3 where the added functionality afforded by

TIGER’s handling of the time element is illustrated.

4.1 Network Simulations

In order to generate data to test the proposed storage scheme, two network
simulations were designed and run. The simulations were performed with the NS
simulation package. This package is supported by the Van Jacobson group. The NS
simulation files are written in the TCL language. All simulations were conducted on the

Sun Ultra Sparc 2 machines in the Systems Engineering and Integration Laboratory of

33

the Institute for Systems Research. The architecture for both simulation appears in
Figure 4.1. The first simulation is of a varying number of TCP and ATM (CBR and
UBR traffic classes) sources generating packets of length between 100 bytes and 1000
bytes are simulated. Certain streams output packets continuously at a moderate rate
while others are active only for certain periods of time but output traffic at a higher rate.
The number of total sources for a particular run of a simulation is specified, however,
the number of active sources at a given time instance is determined by a uniform random
distribution between one and the maximum specified number of sources for that run of
the simulation. The length of time.é, TCP source is active is determined by a Pareto
random distribution and are drop-tail sources. The length of time an ATM source is
active is determined by an exponential random distribution.

The network configuration for the simulation is as follows. All sources are
connected to a router on one end of a link. The connection between the sources and this
router are error free, and are assumed to have unlimited buffer capacity. On the other
end of this link is the destination node. The buffer at the destination is also assumed to
be infinite.

The second simulation is programmed to demonstrate the aggregation possible
for ATM traffic by generating only CBR sources. This simulation has a similar network
configuration and similar parameters, with a key exception that only ATM CBR sources
are simulated.

In each of the above simulations, the link utilization of the link between the

router and destination node is measured and recorded along with the sample time.

34

Samples are taken every twenty seconds over the course of the simulation. Link
utilization is calculated by multiplying the number of packets generated per traffic stream
for a specified duration of time, by the number of bytes per packet and dividing by the

bandwidth of the link between the router and destination nodes.

Link under Examination

P

Destination Node

Packet Sources

Figure 4.1: The architecture utilized for both simulations.

4.2 Data Processing

The data generated from the simulations is processed in Matlab. The result of
this processing is the second and third resolution of the data storage scheme. As the

first resolution is merely the real time data for the current period of time, the data need

35

not be processed to generate this resolution.

The second and third resolutions are plotted against the original data in order to
illustrate both the data reduction and trend identification achieved by the storage
scheme. Again, the first resolution is not plotted as it is simply a storage of the most
recent data.

Figure 4.2 is a graphical illustration of the data generated by the TCP and ATM
simulation, along with the second and third resolutions of this data. In this simulation,
36 hours, seven (7) minutes and twenty (20) seconds of network time are simulated.
Data is gathered every twenty (20) seconds (of simulated time) for a total of 6502 data
points. The simulated data appears as the top plot. The middle plot represents the
second resolution of the data and the lower plot represents the third resolution. From
the graph, it can be seen that the contour of the processed data, at both resolutions,
closely resembles that of the simulated data while there is a significant data reduction.
The trends in the underlying data are preserved in both resolutions. Between the first
and second resolution the data reduction is approximately a factor of two (2), and
between the first and third, there is a data reduction of approximately a factor of six (6).
This graph shows the second resolution of the data taken for the entire generated data.
However, the proposed scheme recommends storing data in the second resolution only
for a limited time. Therefore, figure 4.3 illustrated the second resolution (middle plot)
for the last eight (8) hours of the simulation, or 1440 data measurements. The top and
lower plot are again the generated data and third resolution respectively. From this

graph the overall data reduction is more clear. The actual data represents 6502 data

36

points collected in over 36 hours. The second resolution (705 data points) and third
resolution (2173) combined amount to 2878 data points. This is a reduction of
approximately 55% in data volume. (As the first resolution stores data for only a brief
period of time, and serves essentially like a cache, its contribution to the data store can
be ignored as this amount will have negligible effect when considered over the long
term.) This reduction applied to the link utilization statistic mentioned in the
introduction can allow one year of history to be recorded in 462,528 data points,
substantially smaller than the generated number of data points, 1,051,200. (It is clear
that in this regard, adding the first resolution data in this case will have a negligible
overall effect on the magnitude of data reduction.)

Figures 4.4 shows the second resolutions (lower plot) against the actual data for
the time period from which it is derived. The fact that the trend in the data is preserved
in the aggregated form of the data can be seen by counting the peaks in the data. A
similar case for the third resolution data appears in figure 4.5.

The data reduction case for ATM CBR traffic is significantly greater, as was
anticipated. Due to the fact that the utilization rates are relatively stable and the
aggregation is far more significant. In this case, five (5) hours and seven (7) minutes of
network time are simulated. Again, data is gathered in twenty (20) second intervals for
a total of 921 data points. Figure 4.6 shows the generated data (top plot) along with the
second and third resolutions (middle and lower plots, respectively) taken from the entire
data stream. From 921 data points in the first resolution, there are only forty-six (46)

data points in the second resolution while the overall trend remains. The third resolution

37

has 26 data points. The aggregation is even more significant when the second resolution
is taken over only the last half of the data, or two (2) hours and thirty (30) minutes.

This is illustrated in figure 4.7, where the top plot again represents the collected data and
the lower plots represent the second and third resolution values. This period of time
constitutes 450 data points and is represented in twenty-two (22) data point. Therefore,
the overall reduction for the ATM CBR traffic case is from 921 data points to merely
forty-eight (48) data points. The level of reduction in this case, while expected to be

high due to the nature of the underlying data, exceeds expectations.

38

Link Utilization

TCP and ATM CBR, UBR case

100

I RIS

50t . -
' !. | (s
(110 Y | TRLLA R
13 IR -t .
; | y o e
00 1000 2000 3000 4000 5000 6000 7000
T T
¢ . 1 | B
|I .!l' “ ;‘1 |! ’: ‘
2 }’ 3“' B pEm e
L ,‘ ‘ "o- ll! ! I
1
2500 3000 3500

200 400 600 800 1000 1200
The time period for the three graphs is the same, 2,167 minutes and 20 seconds

Figure 4.2: TCP and ATM simulation, data processed to second and third resolutions.

39

Link Utilization

Simulated data (top plot) and aggregated data (bottom two plots)
100

50

0 1000 2000 3000 4000 5000 6000

7000

0 100 200 300 400 500 600 700

800

0 500 1000 1500 2000 .
The time period for the three graphs is identical, 2,167 minutes and 20 seconds

2500

Figure 4.3: TCP and ATM simulation, latter half of data processed into second resolution.

40

Simulated data (top plot) and Second Resolution data (lower plot)

100 = T

60

40

100

500 1000

1500

80

60

Link Utilization

Link Utilization
3 3

1

40
20
0 1 L
)

100 200 300 400 500

600

The time period for the plots is identical, 480 minutes

Figure 4.4: Second resolution and original data, TCP and ATM simulation.

41

800

Link Utilization

Simulated data (top plot) and Third Resolution (lower plots)

I

A

7000
Il i .'l:\l \' ; il
‘ \I i { \Z (" ;.ll I(ikh ’ i
1 i : “ g ' W ’ it |1§, N
Fite i sk \ |!:i-" I i |
bR o ~
0 500 1000 15:00 2600 2500

The time period for the plots is identical, 2,167 minutes and 20 seconds

Figure 4.5: Third resolution and original data, TCP and ATM simulation.

42

Link Utilization

100

ATM CBR data. Simulated data (top plot) and aggregated data (bottom two graphs)

S0r

T

T T T T T T T

100

100

200 300 400 500 600 700 800

900

50

100

10 15 20 25 30 35 40

45

80
60

40}

20
0

Figure 4.6: ATM CBR simulation, with data processed to the second and third resolution.

10 15 - 20
The time period for the three graphs is identical, 307 minutes

43

25

ATM CBR data. Simulated data (top plot) and aggregated data (bottom two graphs)

T T T T T

100 T T T T

50

0 100 200 300 400 500 600 700 800 900

100 T T

1000

801

Link Utilization

40

100 T T T

25

80

60

20 [1 i 1 1

0 5 10 15 20 25
The time period for the three graphs is identical, 307 minutes

30

Figure 4.7: ATM CBR simulation, with later half of data processed to second resolution.

44

Link Utilization

ATM CBR Simulated data (top plot) and Second Resolution data (lower plot)
100 T . T T

T T T T

S0

80

70

60

50

T

40
0

100 T T

50 100 150 200 250 300 350 400

SO

80

70

60

40 I - 1 1 1

0 5 10 15 20
The time period for the plots is identical, 150 minutes

Figure 4.8: Second resolution and original data, ATM CBR simulation.

45

25

ATM CBR Simulated data (top plot) and Third Resolution data (lower plot)

0 100 200 300 400 500 600 700 800 900

1000

Link Utilization
o o
6 6 o

T T 1

H
o
T

w
o
T

1 1 1 1

n
(o]

5 10 15 20
The time period for the plots is identical, 307 minutes

Figure 4.9: Third resolution and original data, ATM CBR simulation.

46

25

4.2.1 Data Reduction

As seen above, the proposed algorithm affects a 55% reduction in the raw data
collected. The means by which the algorithm achieves this reduction draws some
contrast with the methods used in commercially available data reduction packages. In
such data reduction packages, there is a reliance on a priori information based on an
understanding of the application space as well as the characteristics of the entity being
monitored or examined. This requirement for a priori information can be quite costly,
especially in newly developing fields where the necessary research is yet to be conducted
and the requisite base of knowledge has not been developed [7,27,28,42]. As an
example of data reduction scenarios where information of the application space is
necessary, consider the StatLIA product introduced in Chapter 1. For the product to
effectively reduce data, the application must have curves of known concentrations of
various chemicals iﬁ the solution in order to perform the back fit. Without such curves,
the data reduction package cannot be effective [7].

The proposed algorithm does not share this dependency as it does not attempt to
back fit known statistical distributions on the collected data, but observes the movement
of the data itself to determine the time intervals over which to perform the aggregation.
Removing the need for a priori information greatly simplifies both the algorithm itself as
well as its usage. While knowledge of the network and the particular component from

which the network statistic is generated can help in establishing the values of 8 and ¢, it

47

is not necessary to have any historical values when processing the data. This fact can
allow the algorithm to be modified so as to be applicable to networks and statistics
different from those discussed in this paper.

Commercially available schemes are also highly complex as compared to the
proposed algorithm. The back fitting of known data curves onto raw data is typically a
complex mathematical process. As mentioned above, the proposed algorithm does not
require any such curve fitting. At its core, this algorithm repeatedly performs
comparisons of two values and aggregation of two values. The complexity of such
operations is significantly less than a back fit onto a data set of a cubic spline or a
logarithmic, non-linear curve as in the examples in the Introduction [7].

The proposed algorithm has these two benefits as compared with commercially
available data reduction schemes. These benefits, along with the percentage of data
reduction achieved make this an attractive and simple way of reducing the size of the

network management data to be stored.

4.3 Database Storage

The data reduction caused by the scheme is further apparent upon examination of
data when stored in the databases. One hundred (100) consecutive data points
generated from a running of the TCP and ATM simulation is stored in an Oracle 7
database in original form and in its second resolution form in the TIGER database. This

data represents thirty-three (33) minutes of simulation time. Both sets of data are

48

queried to ensure the accessibility of the data as well as the benefits of temporal
databases. Queries of the Oracle database are made in SQL while queries of the TIGER
database are made in ATSQL, a query language derived from SQL with temporal
capabilities. The databases are utilized through a web-based GUI which serves as a
front-end. The database script used to enter data, along with the results appears in
Section 4.4.

The particular applications and scenarios that are investigated here are instances
where network managers are interested in the values of link utilization over variable
length periods of time. For example, managers may wish to examine the link utilization
of links in question for a certain time interval before a server failure, or before a
suspected denial or service attack occurred to determine attack signatures.

The following categories of queries can be executed to retrieve this information:
1) Show the entire table for link utilization
2) What is the value of link utilization at t = <specified time point>
3) What is the value of link utilization over time interval t = <specified time interval>

Figure 4.11 illustrates how data is entered into TIGER, and shows the GUI
interface for the Oracle and TIGER databases. The left hand column shows the SQL or
ATSQL commands used to enter data or make queries and the right column shows their

results.

49

';';gATSOL Tour - Guidelines & Initialization

I"{+] Migration
MLS DATE FORMAT = 'YYVY/K}{/DD-HH24:Mi:SS': : "[“1Aggregates
vt delete frem Res2; : I ~[+] Timestamps
period '1998/3/09-10:00: 199843408-10:01: ins] —{+] Coalescing
period ‘1938/3/09.10:03: 1998734/09-18:01: *] DML
period '1898/1/09-18:01: 1%98/4/09-10:01: DJIC
pericd '1998/4/89 01 1998/1/09-10:02: t%

+] Miscaliunso:us
+]ATSQL Tour

period '1%98/4/69-10:02: 199874705~
period '199871709-10:02: 19334409~
period '19%6/3/09.10:0): 199873709
period '1998/4/69-18:03: - 1998/4409~
period '1993/4709 103: 199871709
period '1998/4/89-10:08: 199874409
period ‘199874469 108 1998/4409~
period '1993/3/09 115: 159874708
period ‘1998/4/89-18:16: ~ 19987/4/09
period '1%938/4/6910:17: 199874709
perrod '1998/4/09 HD W 199871709~
peraod 1199874709 118 199874/069
period ‘199374703 11818 1998£4/09
period '1990/4/09.10:18: - 1990/4/09-
veriod '1998/4/69 : 199874/09
period ‘189874769 : 199074709
period ‘199873789 . H 1888/3/09
prriod '1933714709 f 199874709
period '1998/4/09. H 159874709 .
pertod '1998/74/09 H - 199874409

 Figwe4.11, Loading data into TIGER.

The first class of queries, shown below in table 4.1 as well as in next section,
returns the entire table.
Table 4.1 Class 1 Queries on the Databases
select * from orig; seq vt select * from Res2;

(A) (B)

Table 4.1: Class 1 Queries on the Databases. (A) illustrates the query on Oracle 7 and B)
illustrates the query on TIGER.

The results are shown in the following section.. They show the size of the database, i.e,

the number of tuples required to illustrate the thirty-three (33) minutes of simulated

50

network time. For relational databases, 100 tuples will be required to store data for the
100 individual data points generated over this period. However, under the proposed
scheme, the information of that data can be compressed into forty-six (46) data points
and the temporal database allows the time interval over which they are valid to also be
identified. These figures illustrate that both databases can accurately respond to these
queries; they also show that the relational database is significantly larger than the
temporal database covering the same time period.

A distinction between temporal and relational databases becomes apparent in the
second class of queries - querying for the value at a particular time instant. As long as
the time instant desired is explicitly specified in the relational database, the correct value
can be returned. Such a query appears in table 4.2. In this case, the relational table
‘orig’ is queries for the value of link utilization at time point *10:32:20". Data was taken
at this time point, therefore it exists in the database and the requested value can be
returned.

Table 4.2 Class 2 Query on a Relational Database
select U from orig where t1 ='10:32:20",

Response:

¥**x Executing an UC statement ***.
U

23.3766

Table 4.2: Class 2 Query on a Oracle 7, desired time point is in database.

However, if the time point of interest is not specified in the relational database, the

desired response is not retrieved, as shown in table 4.3. In this case, the relational

51

database table, orig, is queried against the time point ‘10:19:10'. However, this point
does not exist within the database as data was taken every twenty (20) seconds [data
was taken at time points ‘10:19:00' and ‘10:19:20'].
Table 4.3 Class 2 Query on a Relational Database.
select U from orig where t1 ='10:19:10";
Response:

J** Executing an UC statement ***,
U

Table 4.3: Class 2 Query on a Oracle 7, desired time point is not in database.

A temporal databases, however, can answer a query for time points explicitly specified
as well as time points which are not explicitly specified. Temporal databases allow
queries to be made against time points that lie within defined time intervals, therefore,
time points not explicitly stated in the database but contained within any defined interval
can be successfully queried against. For example, in table 4.4(a), below, the table in the
temporal database is queried for utilization at time ‘10:32:20', a point that is in the
database. The correct value of 23.3766 is returned. In table 4.4(b), a query is made for
utilization at time ‘10:19:10', a point not explicitly in the database. Again, the correct
value of 4.8485 is returned. In this case, the database took the value from the tuple in

which the time interval that contained the point 10:19:10 existed.

52

Table 4.4 Class 2 Queries on the TIGER Database

seq vt period '1998/4/09~10:32:20' select U from Res2;
Response:
VT U

1998/04/09~10:15:20-1998/04/09~10:15:20 23.3766
A)

seq vt period '1998/4/09~10:19:10' select U from Res2;

Response:
VT U

1998/04/09~10:19:10-1998/04/09~10:19:10 4.8485
(B)

Table 4.4: Class 2 Queries on the TIGER Database. (A) the queried time point is in the database
and (B) the queried time point is not in the database.

In the third class of queries mentioned above, TIGER, and temporal databases,
again distinguish themselves from relational databases. As relational databases store
snapshots of data, querying for data over several time instants implies multiple queries.
For example, table 4.5 illustrates the queries necessary to retrieve link utilization from

time 10:15:00 to 10:20:00.

53

Table 4.5 Class 3 Queries on an Oracle 7 Relational Database

select U from orig where t1 ='10:15:00";
select U from orig where t1 ='10:15:20";
select U from orig where t1 ='10:15:40";
select U from orig where t1 ='10:16:00";
select U from orig where t1 ='10:16:20";
select U from orig where t1 ='10:16:40";
select U from orig where t1 ='10:17:00",
select U from orig where t1 ='10:17:20";
select U from orig where t1 ='10:17:40";
select U from orig where t1 ='10:18:00',
select U from orig where t1 ='10:18:20";
select U from orig where t1 ='10:18:40";
select U from orig where t1 ='10:19:00',
select U from orig where t1 ='10:19:20";
select U from orig where t1 ='10:19:40',
select U from orig where t1 = '10:20:00",

Table 4.5: Class 3 Queries on an Oracle 7. ‘U’ is the name of the Utilization attribute, ‘orig’ is the
name of the table, and‘t]l' is the name of the time attribute.

The database must be separately queried for each time point specified within the interval
of interest. In temporal databases, this is not the case. As time is stored as intervals,
time can be queried as intervals. TIGER requires only one query to retrieve the link
utilization data over a specified time interval, as in Table 4;6.
Table 4.6 Time Interval Queries on the TIGER Database.
seq vt period '1998/4/09~10:15:00 - 1998/4/09~10:20:00" select * frém Res2;

Table 4.6: Class 3 Query on Tiger. Res?2 is the name of the table, and * specifies to retrieve the
entire database between the specified time points.

The responses to the queries in the above two tables are presented in an entire
script appearing in the next section of this chapter. In the Oracle case, the data is

presented one query at a time. Therefore, the format is not as convenient for network

54

managers as the format for the response to a single query made against the temporal
database where all the data can be presented in a single view.

There are many benefits to this single time interval query as opposed to multiple
time point queries against relational databases. With multiple queries, there are multiple
hits on the database server, multiple searches on the database, and multiple responses
returned to the user. Each of these delays information being presented to the user. This
is even more pronounced in distributed databases where queries may be generated at
remote sites from the central server. The capability of employing single, time interval
queries allows this delay to be minimized.

Also, single queries are more user-friendly as network managers can specify the
time period of interest in one query as opposed to generating several queries requesting

data over the desired period.

4.4 Script for Storing and Retrieving Data from the Databases

The script for storing and retrieving data into both the Oracle 7 relational and
TIGER temporal databases is below.

drop table orig;

create table orig (U float, t1 char(14));
insert into orig values (3.1169, '10:00:00";
insert into orig values (3.1169, '10:00:20");
insert into orig values (7.1948, '10:00:40");
insert into orig values (14.6234, '10:01:00";
insert into orig values (20.7792, '10:01:20";
insert into orig values (29.6104, '10:01:40";
insert into orig values (18.1818, '10:02:00");
insert into orig values (21.2987, '10:02:20"),

55

insert into orig values (27.0130, '10:02:40");
insert into orig values (36.3636, '10:03:00");
insert into orig values (20.2592, '10:03:20";
insert into orig values (5.3766, '10:03:40";
insert into orig values (7.7922, '10:04:00");
insert into orig values (4.6753, '10:04:20");
insert into orig values (4.6753, '10:04:40";
insert into orig values (4.6753, '10:05:00";
insert into orig values (4.6753, '10:05:20";
insert into orig values (4.6753, '10:05:40";
insert into orig values (4.6753, '10:06:00";
insert into orig values (4.6753, '10:06:20");
insert into orig values (4.6753, '10:06:40");
insert into orig values (4.6753, '10:07:00";
insert into orig values (6.2338, '10:07:20");
insert into orig values (9.3506, '10:07:40");
insert into orig values (17.6623, '10:08:00";
insert into orig values (6.2338, '10:08:20");
insert into orig values (4.7635, '10:08:40");
insert into orig values (5.1311, '10:09:00";

b

insert into orig values (4.5378, '10:09:20";

b

insert into orig values (4.6753, '10:09:40";

b

insert into orig values (4.6753, '10:10:00";

2

insert into orig values (4.6753, '10:10:20";

b

insert into orig values (4.6631, '10:10:40";
insert into orig values (4.6744, '10:11:00";
insert into orig values (4.8454, '10:11:20";
insert into orig values (4.6465, '10:11:40";
insert into orig values (4.6752, '10:12:00;
insert into orig values (4.7586, '10:12:20";
insert into orig values (4.9553, '10:12:40";
insert into orig values (4.9463, '10:13:00");
insert into orig values (4.6752, '10:13:20";
insert into orig values (4.2666, '10:13:40";
insert into orig values (4.6985, '10:14:00";
insert into orig values (6.2338, '10:14:20";
insert into orig values (10.9091, '10:14:40";
insert into orig values (3.6364, '10:15:00";
insert into orig values (6.2338, '10:15:20";
insert into orig values (36.3636, '10:15:40";
insert into orig values (1.5584, '10:16:00";
insert into orig values (1.5584, '10:16:20";
insert into orig values (1.5584, '10:16:40";
insert into orig values (2.5974, '10:17:00";
insert into orig values (9.3506, '10:17:20";
insert into orig values (16.1039, '10:17:40";
insert into orig values (23.8961, '10:18:00";

56

insert into orig values (31.1688, '10:18:20";
insert into orig values (21.2987, '10:18:40";
insert into orig values (5.7143, '10:19:00";
insert into orig values (1.5584, '10:19:20";
insert into orig values (7.2727, '10:19:40");
insert into orig values (14.5455, '10:20:00";
insert into orig values (21.8182, '10:20:20",
insert into orig values (31.0649, '10:20:40";
insert into orig values (40.0000, '10:21:00";
insert into orig values (43.1169, '10:21:20";
insert into orig values (46.7532, '10:21:40');
insert into orig values (54.0260, '10:22:00');
insert into orig values (60.7792, '10:22:20'),
insert into orig values (69.0909, '10:22:40");
insert into orig values (76.8831, '10:23:00");
insert into orig values (82.0779, '10:23:20');
insert into orig values (82.5974, '10:23:40");
insert into orig values (60.2597, '10:24:00);
insert into orig values (43.1169, '10:24:20');
insert into orig values (41558, '10:24:40");
insert into orig values (1.5584, '10:25:00");
insert into orig values (2.0779, '10:25:20");
insert into orig values (7.727, '10:25:40");
insert into orig values (14.5455, '10:26:00");
insert into orig values (21.2987, '10:26:20");
insert into orig values (23.3766, '10:26:40");
insert into orig values (1.5584, '10:27:00";
insert into orig values (1.5584, '10:27:20");
insert into orig values (1.5584, '10:27:40");
insert into orig values (1.7297, '10:28:00";
insert into orig values (2.3634, '10:28:20");
insert into orig values (4.6753, '10:28:40");
insert into orig values (10.3896, '10:29:00');
insert into orig values (17.6623, '10:29:20');
insert into orig values (25.3766, '10:29:40";
insert into orig values (33.8442, '10:30:00";
insert into orig values (24.4156, '10:30:20");
insert into orig values (1.5584, '10:30:40");
insert into orig values (1.5584, '10:31:00";
insert into orig values (3.1169, '10:31:20";
insert into orig values (8.7532, '10:31:40");
insert into orig values (16.1818, '10:32:00";
insert into orig values (23.3766, '10:32:20";
insert into orig values (31.6883, '10:32:40");
insert into orig values (36.8831, '10:33:00";

/* Create Temporal Table

57

*/

delete table Res2;
create table Res2 (U float) as vt;
ALTER SESSION SET

NLS DATE_FORMAT = YYYY/MM/DD~HH24:Mi:SS";
seq vt delete from Res2;
set vt period '1998/4/09~10:00:00 - 1998/4/09~10:01:00" insert into Res2 values (4.4762);
set vt period '1998/4/09~10:01:00 - 1998/4/09~10:01:20" insert into Res2 values (14.6234);
set vt period '1998/4/09~10:01:20 - 1998/4/09~10:01:40" insert into Res2 values (20.7792);
set vt period '1998/4/09~10:01:40 - 1998/4/09~10:02:00' insert into Res2 values (29.6104);
set vt period '1998/4/09~10:02:00 - 1998/4/09~10:02:40" insert into Res2 values (19.7402);
set vt period '1998/4/09~10:02:40 - 1998/4/09~10:03:00' insert into Res2 values (27.0130);
set vt period '1998/4/09~10:03:00 - 1998/4/09~10:03:20" insert into Res2 values (36.3636);
set vt period '1998/4/09~10:03:20 - 1998/4/09~10:03:40' insert into Res2 values (20.2592);,
set vt period '1998/4/09~10:03:40 - 1998/4/09~10:08:00' insert into Res2 values (5.5130);
set vt period '1998/4/09~10:08:00 - 1998/4/09~10:08:20" insert into Res2 values (17.6623);
set vt period '1998/4/09~10:08:20 - 1998/4/09~10:15:40'" insert into Res2 values (5.1240);
set vt period '1998/4/09~10:15:40 - 1998/4/09~10:16:00' insert into Res2 values (36.3636);
set vt period '1998/4/09~10:16:00 - 1998/4/09~10:17:20" insert into Res2 values (1.8182);
set vt period '1998/4/09~10:17:20- 1998/4/09~10:17:40" insert into Res2 values (9.3506);
set vt period '1998/4/09~10:17:40- 1998/4/09~10:18:00' insert into Res2 values (16.1039);
set vt period '1998/4/09~10:18:00 - 1998/4/09~10:18:20" insert into Res2 values (23.8961);
set vt period '1998/4/09~10:18:20 - 1998/4/09~10:18:40' insert into Res2 values (31.1688);
set vt period '1998/4/09~10:18:40- 1998/4/09~10:19:00' insert into Res2 values (21.2987);
set vt period '1998/4/09~10:19:00 - 1998/4/09~10:20:00' insert into Res2 values (4.8485);
set vt period '1998/4/09~10:20:00 - 1998/4/09~10:20:20" insert into Res2 values (14.5455);
set vt period '1998/4/09~10:20:20 - 1998/4/09~10:20:40" insert into Res2 values (21.8182);
set vt period '1998/4/09~10:20:40 - 1998/4/09~10:21:00' insert into Res2 values (31.0649);
set vt period '1998/4/09~10:01:00 - 1998/4/09~10:01:20" insert into Res2 values (14.6234);
set vt period '1998/4/09~10:01:20 - 1998/4/09~10:01:40' insert into Res2 values (20.7792);
set vt period '1998/4/09~10:01:40- 1998/4/09~10:02:00' insert into Res2 values (29.6104);
set vt period '1998/4/09~10:02:00 - 1998/4/09~10:02:40' insert into Res2 values (19.7402),
set vt period '1998/4/09~10:02:40 - 1998/4/09~10:03:00' insert into Res2 values (27.0130);
set vt period '1998/4/09~10:03:00 - 1998/4/09~10:03:20' insert into Res2 values (36.3636);
set vt period '1998/4/09~10:03:20 - 1998/4/09~10:03:40' insert into Res2 values (20.2592),
set vt period '1998/4/09~10:03:40 - 1998/4/09~10:08:00' insert into Res2 values (5.5130);
set vt period '1998/4/09~10:08:00- 1998/4/09~10:08:20' insert into Res2 values (17.6623);
set vt period '1998/4/09~10:08:20 - 1998/4/09~10:15:40" insert into Res2 values (5.1240);
set vt period '1998/4/09~10:15:40- 1998/4/09~10:16:00' insert into Res?2 values (36.3636);
set vt period '1998/4/09~10:16:00 - 1998/4/09~10:17:20" insert into Res2 values (1.8182);
set vt period '1998/4/09~10:17:20 - 1998/4/09~10:17:40' insert into Res2 values (9.3506);
set vt period '1998/4/09~10:17:40 - 1998/4/09~10:18:00' insert into Res2 values (16.1039);
set vt period '1998/4/09~10:18:00- 1998/4/09~10:18:20' insert into Res2 values (23.8961);
set vt period '1998/4/09~10:18:20- 1998/4/09~10:18:40' insert into Res2 values (31.1688);,
set vt period '1998/4/09~10:18:40 - 1998/4/09~10:19:00' insert into Res2 values (21.2987);
set vt period '1998/4/09~10:19:00- 1998/4/09~10:20:00' insert into Res2 values (4.8485);

58

set vt period '1998/4/09~10:20:00 - 1998/4/09~10:20:20" insert into Res2 values (14.5455);
set vt period '1998/4/09~10:20:20 - 1998/4/09~10:20:40" insert into Res2 values (21.8 182);
set vt period '1998/4/09~10:20:40 - 1998/4/09~10:21:00" insert into Res2 values(31 .0649);
set vt period '1998/4/09~10:21:00 - 1998/4/09~10:21:40" insert into Res2 values (41.5585);
set vt period '1998/4/09~10:21:40- 1998/4/09~10:22:00' insert into Res2 values (46.7532);
set vt period '1998/4/09~10:22:00 - 1998/4/09~10:22:20" insert into Res2 values (54.0206);
set vt period '1998/4/09~10:22:20 - 1998/4/09~10:22:40" insert into Res2 values (60.7792);
set vt period '1998/4/09~10:22:40 - 1998/4/09~10:22:40" insert into Res2 values (69.0909);
set vt period '1998/4/09~10:23:00 - 1998/4/09~10:23:20" insert into Res2 values (76.883 1);
set vt period '1998/4/09~10:23:20- 1998/4/09~10:24:00" insert into Res2 values (82.3376),
set vt period '1998/4/09~10:24:00 - 1998/4/09~10:24:20" insert into Res2 values (60.2597),
set vt period '1998/4/09~10:24:20 - 1998/4/09~10:25:00" insert into Res2 values (43.1169);
set vt period '1998/4/09~10:25:00 - 1998/4/09~10:25:40" insert into Res2 values (3.7662);

set vt period '1998/4/09~10:25:40 - 1998/4/09~10:26:20" insert into Res2 values (14.5455);
set vt period '1998/4/09~10:26:20 - 1998/4/09~10:27:00" insert into Res2 values (22.3377),
set vt period '1998/4/09~10:27:00 - 1998/4/09~10:29:00' insert into Res2 values (2.0037);

set vt period '1998/4/09~10:29:00 - 1998/4/09~10:29:20" insert into Res2 values (10.3896);
set vt period '1998/4/09~10:29:20 - 1998/4/09~10:29:40" insert into Res2 values (17.6623);
set vt period '1998/4/09~10:29:40 - 1998/4/09~10:30:00" insert into Res2 values (25.3766);
set vt period '1998/4/09~10:30:00 - 1998/4/09~10:30:20" insert into Re2 values (33.8442)
set vt period '1998/4/09~10:30:20 - 1998/4/09~10:30:40" insert into Res2 values (24.4156);
set vt period '1998/4/09~10:30:40 - 1998/4/09~10:31:40' insert into Res2 values (2.0779);

set vt period '1998/4/09~10:31:40 - 1998/4/09~10:32:00' insert into Res2 values (8.7532);

set vt period '1998/4/09~10:32:00 - 1998/4/09~10:32:20" insert into Res2 values (16.1818);
set vt period '1998/4/09~10:32:20 - 1998/4/09~10:32:40" insert into Res2 values (23.3766);
set vt period '1998/4/09~10:32:40 - 1998/4/09~10:33:00' insert into Res2 values (31.6883);
set vt period '1998/4/09~10:33:00 - 1998/4/09~10:33:20' insert into Res2 values (36.8831);

/* Query Class 1) Retrieve the entire table.

Relational Database
*/

select * from orig

/* Temporal Database
*/

seq vt select * from Res2;

/* Response of the aboe two queries, respectively.
*/

¥ Executing an UC statement ***

U Tl

59

3.1169 10:00:00
3.1169 10:00:20
7.1948 10:00:40
14.6234 10:01:00
20.7792 10:01:20
29.6104 10:01:40
18.1818 10:02:00
21.2987 10:02:20
27.013 10:02:40
36.3636 10:03:00
20.2592 10:03:20
5.3766 10:03:40
7.7922 10:04:00
4.6753 10:04:20
4.6753 10:04:40
4.6753 10:05:00
4.6753 10:05:20
4.6753 10:05:40
4.6753 10:06:00
4.6753 10:06:20
4.6753 10:06:40
4.6753 10:07:00
6.2338 10:07:20
9.3506 10:07:40
17.6623 10:08:00
6.2338 10:08:20
4.7635 10:08:40
5.1311 10:09:00
4.5378 10:09:20
4.6753 10:09:40
4.6753 10:10:00
4.6753 10:10:20
4.6631 10:10:40
4.6744 10:11:00
4.8454 10:11:20
4.6465 10:11:40
4.6752 10:12:00
4.7586 10:12:20
4.9553 10:12:40
4.9463 10:13:00
4.6752 10:13:20
4.2666 10:13:40
4.6985 10:14:00
6.2338 10:14:20
10.9091 10:14:40
3.6364 10:15:00

60

6.2338 10:15:20
36.3636 10:15:40
1.5584 10:16:00
1.5584 10:16:20
1.5584 10:16:40
2.5974 10:17:00
9.3506 10:17:20
16.1039 10:17:40
23.8961 10:18:00
31.1688 10:18:20
21.2987 10:18:40
5.7143 10:19:00
1.5584 10:19:20
7.2727 10:19:40
14.5455 10:20:00
21.8182 10:20:20
31.0649 10:20:40
40 10:21:00
43.1169 10:21:20
46.7532 10:21:40
54.026 10:22:00
60.7792 10:22:20
69.0909 10:22:40
76.8831 10:23:00
82.0779 10:23:20
82.5974 10:23:40
60.2597 10:24:00
43.1169 10:24:20
41558 10:24:40
1.5584 10:25:00
2.0779 10:25:20
7.727 10:25:40
14.5455 10:26:00
21.2987 10:26:20
23.3766 10:26:40
1.5584 10:27:00
1.5584 10:27:20
1.5584 10:27:40
1.7297 10:28:00
2.3634 10:28:20
4.6753 10:28:40
10.3896 10:29:00
17.6623 10:29:20
25.3766 10:29:40
33.8442 10:30:00
24.4156 10:30:20
1.5584 10:30:40

61

1.5584 10:31:00
3.1169 10:31:20
8.7532 10:31:40
16.1818 10:32:00
23.3766 10:32:20
31.6883 10:32:40
36.8831 10:33:00

/* Temporal Database
*/

VT U

1998/04/09~10-1998/04/09~10:01:00 4.4762
1998/04/09~10:01-1998/04/09~10:01:20 14.6234
1998/04/09~10:01:20-1998/04/09~10:01:40 20.7792
1998/04/09~10:01:40-1998/04/09~10:02:00 29.6104
1998/04/09~10:02-1998/04/09~10:02:40 19.7402
1998/04/09~10:02:40-1998/04/09~10:03:00 27.013
1998/04/09~10:03-1998/04/09~10:03:20 36.3636
1998/04/09~10:03:20-1998/04/09~10:03:40 20.2592
1998/04/09~10:03:40-1998/04/09~10:08:00 5.513
1998/04/09~10:08-1998/04/09~10:08:20 17.6623
1998/04/09~10:08:20-1998/04/09~10:15:40 5.124
1998/04/09~10:15:40-1998/04/09~10:16:00 36.3636
1998/04/09~10:16-1998/04/09~10:17:20 1.8182
1998/04/09~10:17:20-1998/04/09~10:17:40 9.3506
1998/04/09~10:17:40-1998/04/09~10:18:00 16.1039
1998/04/09~10:18-1998/04/09~10:18:20 23.8961
1998/04/09~10:18:20-1998/04/09~10:18:40 31.1688
1998/04/09~10:18:40-1998/04/09~10:19:00 21.2987
1998/04/09~10:19-1998/04/09~10:20:00 4.8485
1998/04/09~10:20-1998/04/09~10:20:20 14.5455
1998/04/09~10:20:20-1998/04/09~10:20:40 21.8182
1998/04/09~10:20:40-1998/04/09~10:21:00 31.0649
1998/04/09~10:01-1998/04/09~10:01:20 14.6234
1998/04/09~10:01:20-1998/04/09~10:01:40 20.7792
1998/04/09~10:01:40-1998/04/09~10:02:00 29.6104
1998/04/09~10:02-1998/04/09~10:02:40 19.7402
1998/04/09~10:02:40-1998/04/09~10:03:00 27.013
1998/04/09~10:03-1998/04/09~10:03:20 36.3636
1998/04/09~10:03:20-1998/04/09~10:03:40 20.2592
1998/04/09~10:03:40-1998/04/09~10:08:00 5.513
1998/04/09~10:08-1998/04/09~10:08:20 17.6623
1998/04/09~10:08:20-1998/04/09~10:15:40 5.124
1998/04/09~10:15:40-1998/04/09~10:16:00 36.3636

62

1998/04/09~10:16-1998/04/09~10:17:20 1.8182
1998/04/09~10:17:20-1998/04/09~10:17:40 9.3506
1998/04/09~10:17:40-1998/04/09~10:18:00 16.1039
1998/04/09~10:18-1998/04/09~10:18:20 23.8961
1998/04/09~10:18:20-1998/04/09~10:18:40 31.16838
1998/04/09~10:18:40-1998/04/09~10:19:00 21.2987
1998/04/09~10:19-1998/04/09~10:20:00 4.8485
1998/04/09~10:20-1998/04/09~10:20:20 14.5455
1998/04/09~10:20:20-1998/04/09~10:20:40 21.8182
1998/04/09~10:20:40-1998/04/09~10:21:00 31.0649
1998/04/09~10:21-1998/04/09~10:21:40 41.5585
1998/04/09~10:21:40-1998/04/09~10:22:00 46.7532
1998/04/09~10:22-1998/04/09~10:22:20 54.0206
1998/04/09~10:22:20-1998/04/09~10:22:40 60.7792
1998/04/09~10:22:40-1998/04/09~10:22:40 69.0909
1998/04/09~10:23-1998/04/09~10:23:20 76.8831
1998/04/09~10:23:20-1998/04/09~10:24:00 82.3376
1998/04/09~10:24-1998/04/09~10:24:20 60.2597
1998/04/09~10:24:20-1998/04/09~10:25:00 43.1169
1998/04/09~10:25-1998/04/09~10:25:40 3.7662
1998/04/09~10:25:40-1998/04/09~10:26:20 14.5455
1998/04/09~10:26:20-1998/04/09~10:27:00 22.3377
1998/04/09~10:27-1998/04/09~10:29:00 2.0037
1998/04/09~10:29-1998/04/09~10:29:20 10.3396
1998/04/09~10:29:20-1998/04/09~10:29:40 17.6623
1998/04/09~10:29:40-1998/04/09~10:30:00 25.3766
1998/04/09~10:30-1998/04/09~10:30:20 33.8442
1998/04/09~10:30:20-1998/04/09~10:30:40 24.4156
1998/04/09~10:30:40-1998/04/09~10:31:40 2.0779
1998/04/09~10:31:40-1998/04/09~10:32:00 8.7532
1998/04/09~10:32-1998/04/09~10:32:20 16.1818
1998/04/09~10:32:20-1998/04/09~10:32:40 23.3766
1998/04/09~10:32:40-1998/04/09~10:33:00 31.6833
1998/04/09~10:33-1998/04/09~10:33:20 36.8831

/* Query Class 2 Query against a particular time point.

The queries from the Relational and Tiger Proof.
*/

select U from orig where t1 = '10:32:20";
2+ Executing an UC statement ***,

U

63

23.3766

select U from orig where t1 ='10:19:10";
+* Executing an UC statement *.

U

/* Temporal
*/

seq vt period '1998/4/09~10:32:20" select U from Res2;

VT U

1998/04/09~10:15:20-1998/04/09~10:15:20 23.3766

seq vt period '1998/4/09~10:19:10" select U from Res2;

VvT U

1998/04/09~10:19:10-1998/04/09~10:19:10 4.8485

/* Query Class 3. Request the values over a range of times.
*/

select U from orig where t1 ='10:15:00';
select U from orig where t1 ='10:15:20;
select U from orig where t1 = '10:15:40',
select U from orig where t1 = '10:16:00";
select U from orig where t1 ='10:16:20';
select U from orig where t1 ='10:16:40";
select U from orig where t1 ='10:17:00";
select U from orig where t1 = '10:17:20';
select U from orig where t1 ='10:17:40/,
select U from orig where t1 ='10:18:00',
select U from orig where t1 ='10:18:20;
select U from orig where t1 ='10:18:40',;
select U from orig where t1 ='10:19:00;
select U from orig where t1 ='10:19:20";

64

select U from orig where t1 ='10:19:40";
select U from orig where t1 ='10:20:00;

*xx Byxecuting an UC statement ***,

U

3.6364
*** Executing an UC statement ***.

U

6.2338
% Executing an UC statement ***.

U

36.3636
% Executing an UC statement ***.

U

1.5584
% Executing an UC statement ***.

U

1.5584

k% Executing an UC statement ***.

U

1.5584
% Bxecuting an UC statement ***.

U

25974

J*x Executing an UC statement ***.

65

U

9.3506

¥+ Executing an UC statement ***.

U

16.1039

+*x Executing an UC statement ***,

U

23.8961

** Executing an UC statement ***,

U

31.1688

2+ Executing an UC statement ***.

U

21.2987

*** Executing an UC statement ***,

U

5.7143

¥ Executing an UC statement ***,

U

1.5584

x Executing an UC statement *.

U

7.2727

66

xx Executing an UC statement ***,

U

14.5455

seq vt period '1998/4/09~10:15:00 - 1998/4/09~10:20:00" select * from Res2;

1998/04/09~10:15-1998/04/09~10:15:40 5.124
1998/04/09~10:15:40-1998/04/09~10:16:00 36.3636
1998/04/09~10:16-1998/04/09~10:17:20 1.8182
1998/04/09~10:17:20-1998/04/09~10:17:40 9.3506
1998/04/09~10:17:40-1998/04/09~10:18:00 16.1039
1998/04/09~10:18-1998/04/09~10:18:20 23.8961
1998/04/09~10:18:20-1998/04/09~10:18:40 31.1688
1998/04/09~10:18:40-1998/04/09~10:19:00 21.2987
1998/04/09~10:19-1998/04/09~10:20:00 4.8485

67

Chapter 5

Applications of the Data Storage Scheme

The scheme proposed here for data storage in temporal databases has two
advantages. These advantages are the scheme’s ability to affect a reduction in the
quantity of data stored in memory as well as the ability to highlight the movement of the
data over time.

While past or historical network management data is valuable in the management
of a network, as the data ages, it does lose its individual value in the sense that
knowledge of the precise utilization rate of a particular link at a particular time (7:00am
on January 19th, 1998, for example) in the past is in itself an unimportant piece of
information. What is important, what is of value to the process of network
management, is knowing how the utilization rate at that time point fits into the link
utilization pattern taken around that time point. In other words, knowing that the data
point in question is part of a sudden rise in link utilization can be useful.

This implies that storing the trends minimizes the need for storing the
voluminous data generated in network management. Applications of the scheme’s data

reduction and trend identification are discussed in the following sections.

5.1 Data Reduction

68

It is clear from inspection of a MIB from any of the various standards bodies
(e.g., IETF, ATM Forum) that networks have the capacity to generate enough data over
time to exceed the storage and retrieval capabilities of most databases. Therefore, any
data storage scheme needs to preserve the information contained in the overall data
without having to store all collected data points. The proposed scheme has this
characteristic. It reduces the amount of historical link utilization data by partitioning the
data into groups (size determined by & and €) and taking the aggregate of the data that
falls within each group. This aggregation has its most pronounced effect when network
links are stable and experience constant utilization.

These conditions arise in the case of ATM constant bit rate (CBR) traffic. An
example of this is demonstrated by simulations in the previous chapter. Also, traffic
shaping can force links to exhibit constant and stable utilization through manipulation of
the shaping parameters. These parameters can be selected such that the traffic will be
stable and relatively constant, essentially, the parameters can be selected so as to
optimize data aggregation.

Other scenarios in which this scheme can effectively reduce historical data is in
the link utilization for a corporate Intranet environment when the network typically
experiences low off-hours (e.g., evenings, weekends, and holidays) usage.

Also, in large scale networks, the large number of users can balance out the
overall link utilization so that it appear stable and constant, even if the individual users

streams are not constant but varying. This is a design goal of ATM traffic and a

69

property of statistical multiplexing.

5.2 Trend Identification

Another area in which the proposed scheme can be applicable is that of
developing baseline models of the network. Baseline models are used often in proactive
network management [15,20,24,30,31,33,34]. The capability of this scheme to highlight

trends in the data is directly applicable to this endeavor.

5.2.1 Proactive Approach to Network Management

For companies that demand their computer networks remain in operation 100%
of the time, where even one second of downtime can be disastrous, there is a growing
consensus within the network management industry that proactive management must be
employed to meet this requirement [15,20,24,30,31,33,34]. Proactive network
management is, in its most simple definition, taking action to avert a critical situation
before a situation becomes critical, similar in concept to preventive medicine.

In order to effectively perform proactive network management, some sort of
knowledge of the behavior of network users, as well as the usage trends and patterns
experienced by the network must be available to the network manager

[15,20,24,30,31,33,34]. Typically, this data is stored in views in a database.

70

The first step in proactive management is to perform a long term study of the
network and gather relevant network statistics; analyze them off line to determine
performance and quality of service (QoS) thresholds for the network.

These baselines are used to develop models of network behavior for various
operations. A particular model may, for instance, detail a user log in process. These
models, or profiles are used, along with the baseline performance levels developed, for
simulating the network under particular conditions. A common use of such a simulation
is to determine the effect of adding new applications to the existing network
infrastructure [16,22,30].

The task of baselining the network as described can be time-intensive, involving
long man-hours of the network management staff as it often requires a long-term study
of the network, involving data collection over weeks, possibly months [16,22,30,36].
The scheme discussed here can be used as a means of determining this baseline value on-
line possibly saving a tremendous amount of time and manpower.

‘Several examples of situations in which such an analysis of network trends can
help prepare managers to respond quickly and effectively to adverse situations in the
network exist in the literature. For example, when there is prior knowledge that an
adverse situation is going to arise, such as the common pattern of increased electronic
mail activity towards the end of the business day or the spike in hits to the server at the
start of business when employees are logging onto their accounts [16,22]. These events
can be recorded through the procedure of baselining and characteristics of their

occurrence along with strategies for dealing with them can be integrated to the network

71

management approach.

As another example, if a network link or set of links in close proximity are being
overloaded during the same hours each day leading to congestion, then the network
manager may decide to hire a high speed, high bandwidth satellite link for that duration
of time to eliminate the congestion and increase productivity. A common theme amongst
such cases is that having the trend of the data present and available is an important first
step in this sort of management scheme.

A typical approach to implementing a proactive management scheme is to
perform the baseline and apply various proactive management algorithms on the
identified trends. The various algorithms proposed in the literature allow such
functionality as described above. In [46,47] Bakshi and Stephanopoulos describe
procedures to apply induction decision trees to trends identified from process data in
order to gain insight into the chemical process itself and assist with the supervision of

the process. Similar scenarios can exist in the network management arena.

72

Chapter 6

Conclusions

The proposed scheme retains the information contained within the data while
being able to discard the actual, measured data values. This is accomplished by taking
aggregates of the data over time. Therefore, the overall trend in the data will be retained
while reducing the quantity of information to be stored. This alleviates the problem of
storing network management data, which can easily grow quite large over time,
overwhelming network managers.

This thesis has demonstrated that temporal databases can serve the needs of
network management and that the data storage scheme proposed allows a reduction in
the necessary amount of data to be stored, as well as it facilitates the baselining of the
network for the purposes of proactive management.

A framework for the use of temporal databases along with a temporal query
language in network management has also been identified. With this temporal query
language, ATSQL, it is possible to load data into and query the TIGER temporal
database in an effective manner. The rich functionality of temporal databases has also
been demonstrated and compared to the functionality of the standard (Oracle 7)
relational database.’> Temporal databases can employ time ranges to retrieve multiple

values in a single query, whereas relational databases need to formulate multiple queries

3 The script used to store and query the data into and from both databases has been added to the TIGER web
site maintained by the Computer Science Department of the University of Aalborg.

73

for the same purpose. This single query can be beneficial to overall network
management as it places a lesser burden on network bandwidth, which often is of
consideration in a distributed environment. Single queries are also easier for the
network managers to use as in one (1) query, network managers can get the information
they are after, as opposed to having to generate several individual queries.

It is worthwhile to mention the place of query processors in connection with
databases. Often, these processors can be configured to extrapolate from the data
present in the database. For instance, it may be possible for a distributed Oracle 7
database to operate through query processors and return values for time points that are
not explicitly mentioned in the database. In some cases, these processors have the ability
to take single queries and construct the multiple queries that are required to respond to
the query. However, these processors add another layer of processing and can add a
significant source of delay to network managers [8,31]. Temporal databases do not
require any query processors to offer the functionality of responding to queries of time
points that are not explicitly stated, or to allow queries against time intervals. This saves
organizations the cost of query processors in terms of development time and monetary
expense.

The following section details possible research that can build upon the issues

presented in this thesis.

6.1 Future Work

74

Future work towards the goals of this thesis can be tobdevelop storage schemes
for different network statistics. As has been mentioned, link utilization, CPU load and
device reachabiliy were selected based upon certain characteristics they possess.
Different network statistics can be expected to have different characteristics which can
be exploited to accomplish data reduction and on-line trend identification. For example,

for CPU memory usage, which may vary significantly from one measurement to the
next as it depends on the requirements of the application currently being run, it may be
sufficient to record high and low threshold crossings.

Further, the correlation between these statistics may be exploited to some
degree. For example, when the number of packets transmitted on a particular link rises
dramatically, one would expect the utilization across that link to also rise. Such a
relationship may allow the creation of symbolic variables which can be stored in place of
separately storing both the utilization rate and the number of packets of various types of
traffic.

Examination of the data storage issue may also be worthwhile. As the amount of
data to be stored has been reduced, often significantly, it can be expected that the overall
storage space requirement also be reduced in a temporal database following the
proposed scheme as compared to a traditional relational database. The techniques for
data storage in relational databases may be applicable to temporal databases allowing

even further storage space reduction.

75

An area of growing interest, both in academia and industry, is in designing
strategy for the use of the trends, i.e., past history [16,22,30-32,35,36,44-47].
Mentioned above were a few basic application of trend analysis. Determining more
sophisticated trends of the network, and how to implement an enterprise-wide system
employing these trends in its maintenance is being actively pursued and holds promise
[16,22,30-32,35,36,44-47].

The use of expert systems in network management is also drawing greater
attention from the research and industrial communities in recent years. An expert system
or a belief network, can be used to set, and modify as needed, the parameters of the
aggregation bounds in this scheme (the § and €). This can allow the aggregation stages
to better represent the characteristics of the particular network.

The application of trend analysis in network resource planning is also only
recently been examined. Clearly there is tremendous benefit envisioned in this area. The
need to upgrade networks periodically will likely be high for the next several years,
(with, in some cases, the time between upgrades shrinking). It is clear that resources
can be more effectively managed, upgrades can more appropriately be performed with
knowledge of the network’s usage [16,22,30-32,35,36]. Managers who are aware that
any portion of their network routinely becomes taxed at certain times, may decide to
arrange for a high bandwidth, possibly satellite link for that portion. ISP's and other
network providers for whom maintaining profitability, hence the network, is a high
priority, can follow the network to ensure that packet streams which are flooding the

network in one area can be transfered, or re-routed to flow over another area which is

76

being underutilized. This and other such actions can be taken to maximize the
profitablity of the network.

The scheme presented here can be optimized to serve a particular network.
ATM networks have been mentioned above. In ATM networks, it may indeed be of
more relevance to network management to collect VP and VC utilization in place of
physical link utilization. While in corporate networks or virtual LANS, logical link

utilization may be of more importance.

77

Appendix A

TCP and ATM (CBR and UBR) Simulation Source Code.

#for the purpose of random number generation
global jran
set jran [ns random O]

proc create_testnet2 num {
#building up the network with $num nodes and a single backbone link
global r1 r2 s akn
set r1 [ns node]
set r2 [ns node]
change numbers after expr to change bandwidth of backbone link
set L [ns_duplex $r1 $r2 1.54Mb 20ms drop-tail]
#queue-limit for the queues
[lindex $L 0] set queue-limit 25
[lindex SL 1] set queue-limit 250

for {seti 1} {$i <= $num} {incri} {
set ii [expr $num+8§i]
set s($1) [ns node]
set s(8ii) [ns node]
#parameters for the outer links
set L1 [ns_duplex $s($i) $r1 10Mb 100ms drop-tail]
set L2 [ns_duplex $s($ii) $r2 10Mb 4ms drop-tail]
set akn($i) 0

proc finish1 file {

#

split queue/drop events into two separate files.
we don't bother checking for the link we're interested in
since we know only such events are in our trace file

#
set awkCode {
if(($1 = ll+" $1 —_— ll_“) &&\

78

(85 == "tcp" $5 == "ack" $5=="cbr"))
print $2, $8 + (311 % 90) * 0.01 >> "temp.p";
else if ($1 == "d")
print $2, $8 + (311 % 90) * 0.01 >> "temp.d";

}

set f [open temp.rands w]
#puts $f "TitleText: $file"
#puts $f "Device: Postscript"
exit 0

proc openTrace { stopTime testName } {
global r1 k1
set traceFile [open out.tr w]
ns at $stopTime \
"close $traceFile ; finishl $testName"
set T [ns trace]
$T attach $traceFile
return $T

}

#returns uniformly dist. numbers between 0.0 and 1.0
proc urand {} {

global jran

set jran [expr $jran*4096+150889]

set jran [expr $jran%714025]

set ran [expr $jran/714025.0]

return $ran

}

#returns numbers with a Pareto dis.
proc prand beta {
set ran [urand]
set pranda [expr 1-$ran]
set beta [expr 1/$beta]
set pranda [expr pow($pranda,$beta)]
#assuming minimum file size is 1024 bytes
set pranda [expr 1024/$pranda]
return $pranda

79

returns exponentially dist. numbers
proc erand mean {
set ran [urand]
set eranda [expr -log($ran)]
set eranda [expr $eranda*$mean]
return $eranda
}
calculating utilization
proc checkingnow {num time prin} {
global tcp cbr cbrmon akn fip band
set timel [expr $time*1000000]
foreach num_fip [array names ftp] {
set akn($num_ftp) [expr [$tcp($num_fip) get ack]- $akn(Snum_fip)]
set band($num_fip) [expr $akn($num_ftp)*8000.0/$timel]
#puts "$band($num_fip) is tcp"
}

foreach num_cbr [array names cbr] {
set akn($num_cbr) [expr [$cbrmon($num_cbr) set bytes_] - $akn($num_cbr)]
set band($num_cbr) [expr $akn($num_cbr)*8.0/$timel]
#puts "$band($num_cbr) is cbr"
}

set sum 0

for {seti1} {$i <= $num} {incri} {
set sum [expr $sum+$band(5i)]

}

#puts $sum
set sum [expr $sum*100/1.54]
set f [open main file a]
if {$sum > 100} {
set sum 100.00
}

if { $prin <=1 && $sum > 0} {
puts $f "$sum"
}

close $f

foreach num_fip [array names fip] {

set akn($num_fip) [Stcp($num_fip) get ack]
}

foreach num_cbr [array names cbr] {
set akn($num_cbr) [$cbrmon($num_cbr) set bytes_]
}

80

}

#to check continually on the fip connection to see if packets exhausted
denotes the source and r_fils denotes if addtl files remain to be sent
proc check {ir_fils} {
global tcp fip
#next lines return present ack and the pkts to be sent in this connection
#puts "tcp ack is [$tcp(8i) get ack]"
#puts "Maxpackets for source $i is [$ftp(31) set maxpkts]"
if {[$tcp($i) get ack] >= [expr [$fip(5i) set maxpkts_] - 2] && $r_fils} {
set stopftp [ns now]
#if here means that the session hasn't ended yet, so schedule new time
set start [expr $stopfip + [erand 5]]
} else {
#return negative start time if connection not yet finished
set start -1000
}

return $start

#checks every connection to see if finished and then schedules new start time
proc checking {} {
global rl r2 s tcp fip http fip_files htp_page htpar number start
foreach num_fip [array names ftp] {
#check only if session has started and has not yet ended
if {[$tcp($num_fip) get ack] >= 0 && $ftp_files($num_fip)} {
#puts "At [nS nOW] ***********FTP***********"
#puts "$num_ftp th user's ftp connection”
set start_new [check $num_fip $ftp_files($num_fip)]
if {$start_new > 0 && $ftp_files($num_fip)} {
#enter here only if connection ended but session not finished
#connection ended indicated by start_new >0 and
#session ended indicated by fip_files(present user) >0
incr ftp_files($num_fip) -1
#to decide the new connection start time
set add_new [erand 200]
#to decide the new connection file size
$fip($num_fip) set maxpkts_ [expr [$fip($num_fip) set maxpkts_]+
$add new]
if {$fip_files(Snum_fip)} {
ns at $start_new "$fip(Snum_ftp) start"
set $start($num_ftp) $start_new

81

#puts "At time $start_new start source $num_fip"
} else {
#to decide the new session starting time
#deciding new session time from start_new
#can also decide new session time from time now
#in that case use ns now instead of start_new
set new_session [expr $start_new + [erand 5]]
ns at $start _new "initialize $num_ftp $new_session"
ns at [expr $start new -0.01] "unset fip(Snum_fip)"

}

#to initialize a connection by selectingeither tcp or cbr and then the rest of the
parameters
proc initialize {i startn} {
global r1r2 s tcp fip http fip_files htp_page htpar number cbr cbrmon
set ii [expr $number +8i]
set decide [urand]
#change the decide cutoff values to select different applications
puts
puts "source $i starts at $startn”
if {$decide <0.5} {
setting up the FTP connection
set tcp($i) [ns_create_connection tcp-reno $s($i) tep-sink $s(Sii) $i]
set fip(8i) [Step($i) source fp]
#next set the packet sizes for tcp
$tcp($i) set packetSize_ 1000
The maximum number of packets in the first pass of FTP
$ftp($i) set maxpkts_ [expr [prand 0.5]/1000]
number of passes for fip being between 1 and 8
set fip_files($i) [expr int([expr [urand]*8 + 1])]
#puts "no of fip passes is $ftp_files($i)"
ns at $startn "$ftp($i) start”
} else {
#this is to model traffic like Cu-See-Me
puts cbr
#set cbr($i) [ns_create_cbr $s($i) $s($ii) 500 0.01 3i]
#remove the comments if you need to monitor cbr pkt losses etc

82

set cbr($i) [ns create-agent $s($i) cbr $i]

set cbrmon($i) [ns create-agent $s($ii) loss-monitor $i]
ns connect $cbr($i) $cbrmon($i)

$cbr(8i) set interval 0.05

$cbr($i) set packetSize 150

set stop [erand 100]

set stop [expr $startn + $stop]

#puts $stop

ns at $startn "$cbr(8i) start"

ns at $stop "$cbr($i) stop"

#to determine time of new session for this source
set new_session [expr $stop + [erand 25]]

ns at $stop "initialize $i $new_session"

ns at [expr $stop -0.01] "unset cbr($i)"

#the main program
We can set the time duration of the simulation here (stoptime)
proc test_num num {
global rlr12 s tcp fip http fip_files htp_page htpar number start dns cbr
set number $num
create_testnet2 $num
set rng [new RNG]
$rng seed 0
#set stoptime [$rng uniform 250 400]
set stoptime 500
#set stoptim [expr 4*$num]
set testname test_num
set start(0) 0.0
#to initialize the different sources
for {seti1} {$i <= $num} {incri} {
set eran [erand 0.3]
#deciding the start times for the source
set start($i) [expr $start([expr $i-1]) + $eran]
initialize $i $start($i)

#next starts the continual checking part to see if connection has finished
#granularity right now is 0.1s can be made further fine

83

#for this change the increments on chec below
if {[array size fip]} {

set nftp 1

for {set chec $start($nftp)} {$chec <= $stoptime} \

{set chec [expr $chec+0.1] } {
ns at $chec "checking"

)

}

set ainterval 1

set perturb $ainterval

set sam_time $perturb

set inter [expr $stoptime/$perturb]

puts Sinter

for {seti 1} {$i <= Sinter} {incri} {

ns at $perturb "checkingnow $num $sam_time 1"

set perturb [expr $perturb+Sainterval]

}

set sam_time [expr $stoptime - $inter*$perturb]

#ns at [expr $stoptime-0.001] "checkingnow $num $sam_time 1"
#ns at [expr $stoptime-0.001] "checkingnow $num $sam_time 1"
trace only the bottleneck link

ns at $stoptime "[ns link $r1 $r2] trace [openTrace $stoptime $testname "

puts seed=[ns random 0]
ns run
}

if { $argc =21} {
puts stderr {usage: ns $argv [two]}
exit 1
}
setj 0
foreach i $argv {
set arg($j) $i
incr j

}

if { "[info procs test_$arg(0)]" != "test_$arg(0)" } {
puts stderr "$argv: no such test: $argv"

}
test $arg(0) Sarg(1)

84

Appendix B
ATM CBR Simulation Source Code.

set randseed O
proc create_testnet2 thresh {
#building up the network with $num nodes and a single backbone link
global r1 sl s2 s3 s4 s5 s6 akn
set r1 [ns node]
set s1 [ns node]
set s2 [ns node]
set s3 [ns node]
set s4 [ns node]
set s5 [ns node]
set s6 [ns node]
#set capa [expr 0.4*$thresh]
#THE BACKBONE LINK PARAMETERS TO BE ADJUSTED HERE
set L [ns_duplex $r1 $s6 1.54Mb 999ms drop-tail]
#queue-limit for the queues
[lindex $L 0] set queue-limit $thresh
[lindex $L 1] set queue-limit $thresh
PARAMS FOR RED Q MGT
[lindex $L 0] set thresh [expr $thresh/6.0]
[lindex $L 0] set maxthresh [expr $thresh/2.]
set L1(1) [ns_duplex $s1 $r1 SMb 30ms sfq]
set L1(2) [ns_duplex $s2 $r1 SMb 10ms sfq]
set L1(3) [ns_duplex $s3 $r1 SMb 1ms sfq]
set L1(4) [ns_duplex $s4 $r1 SMb 1ms sfq]
set L1(5) [ns_duplex $s5 $r1 SMb 1ms sfq]
for {setil} {$i <=5} {incri} {

set akn($i) 0
}
}
proc finish1 file {
#

split queue/drop events into two separate files.
we don't bother checking for the link we're interested in

since we know only such events are in our trace file
#

set awkCode {

{

85

if (31 =="+") && \
(85 =="tcp" $5=="ack" $5=="cbr"))
print $2, $8 + ($11 % 90) * 0.01 >> "temp.p";
else if (§1 == "d")
print $2, $8 + ($11 % 90) * 0.01 >> "temp.d";

}

#set f [open temp.rands w]
#set f1 [open temp.drop w]
#puts $f "TitleText: $file"
#puts $f "Device: Postscript"

exec rm -f temp.p temp.d
#exec touch temp.d temp.p
exit 0

exec awk $awkCode out.tr

proc openTrace { stopTime testName } {
global r1 k1
set traceFile [open out.tr w]
ns at $stopTime \
"close $traceFile;finishl $testName"
set T [ns trace]
$T attach $traceFile
return $T

}

proc checking { thresh time prin} {
global tcp3 tcp2 tepl cbrmond cbrmon5 akn
exec rm -f out.tr
set akn(1) [expr [$tcpl get ack]- $akn(1)]
set akn(2) [expr [$tcp2 get ack] - $akn(2)]
set akn(3) [expr [$tcp3 get ack] - $akn(3)]
set akn4 [expr [$cbrmon4 set bytes] - $akn(4)]
set aknS [expr [$ScbrmonsS set bytes] - $akn(5)]
set time [expr $time*1000000]
set band1 [expr $akn(1)*800.0/$time]
set band2 [expr $akn(2)*800.0/$time]
set band3 [expr $akn(3)*800.0/$time]
set band4 [expr $akn4*8.0/$time]

86

set band5 [expr $akn5*8.0/$time]

set sum [expr $band1+ $band2+ $band3+ $band4+ $bandS]
set f [open main file a]

if { $prin <=1} {

puts "$time $band1 $band2 $band3 $band4 $band5 $sum”
puts $f "[expr $sum*100/1.54]"

}

close $f

#set akn(1) [$tcpl get ack]

#set akn(2) [$tcp2 get ack]

#set akn(3) [$tcp3 get ack]

set akn(4) [$cbrmon4 set bytes]

set akn(5) [$cbrmon5 set bytes]

}

#the main program

proc test_num thresh {
global r1 sl s2 s3 s4 s5 s6 tcp3 tcpl tcp2 cbrmon4 cbrmon5 randseed
set thresh [expr $thresh *1]
create_testnet2 $thresh
set rng [new RNG]
$rng seed 0
#set stoptime [$rng uniform 250 550]
set stoptime 500
#puts $stoptime
set testname test_num

setting up the FTP connection

set tcpl [ns_create_connection tcp $s1 tcp-sink $s6 1]
set fip1 [$tcpl source fip]

$tcpl set window_ 500

$tcpl set packetSize 100

set tcp2 [ns_create_connection tcp $s2 tcp-sink $s6 2]
- set fip2 [$tcp2 source fip]

$tcp2 set window_ 500

$tcp2 set packetSize_ 100

set tcp3 [ns_create_connection tcp $s3 tcp-sink $s6 3]
set fip3 [Stcp3 source fip]

$tcp3 set window_ 500

$tcp3 set packetSize 100

#was 100

87

set cbr4 [ns create-agent $s4 cbr 4]

set cbrmon4 [ns create-agent $s6 loss-monitor 4]
ns connect $cbr4 $cbrmon4

$cbr4 set interval 0.015

#pktsize is in bytes here and above

$cbr4 set packetSize 275

set cbr5 [ns create-agent $s5 cbr 5]

set cbrmon5 [ns create-agent $s6 loss-monitor 5]
ns connect $cbr5 $cbrmon5

$cbrS5 set interval_ 0.15

$cbrs set packetSize_ 250

ns at 0 "$ftp1 start"
ns at 0 "$ftp2 start"
ns at 0 "$ftp3 start"
ns at 0 "$cbrS5 start"
ns at 0 "$cbr4 start"

set perturb 20

set sam_time $perturb

set inter [expr $stoptime/$perturb]

puts Sinter ‘

for {seti 1} {$i <= Sinter} {incri} {

ns at $perturb "checking $perturb $sam_time 1"

set perturb [expr $perturb+20]

}

set sam_time [expr $stoptime - Sinter*$perturb]

#ns at [expr $stoptime-0.001] "checking $thresh $sam time 1"

trace only the bottleneck link

ns at $stoptime "[ns link $r1 $s6] trace [openTrace $stoptime $testname]"
ns run

#ns at $stoptime "finish1 $testName"

if { $argc =2 } {
puts stderr {usage: ns $argv [two]}
exit 1

88

}

setj O

foreach i $argv {
set arg($)) $i
incr j

}

if { "[info procs test_$arg(0)]" 1= "test_$arg(0)" } {
puts stderr "$argv: no such test: $argv"

}
test_$arg(0) Sarg(1)

89

[1]

[2]

[3]

(4]

[3]

6]

[7]

8]

[9]

[10]

[11]

[12]

BIBLIOGRAPHY

ATM Forum Specification, M4 Network View CMIP MIB Spec v1.0
af-nm-0073.000, Jan. 1997

J. Baras, M. Ball, N. Roussopoulos, J. Haritsa, A. Datta. Design of the
MANDATE MIB, Integrated Network Management III, Elsevier Science
Publishers, North-Holland, 1993.

J. Baras, M. Ball, R. Karne, S. Kelley, K. Jang, C. Plaisant, N. Roussopoulos, K.
Stathatos, A. Vakhutinsky, J. Valluri, D. Whitefield. Integrated Network
Management of Hybrid Networks, 1996.

J. Baras, M. Ball, R. Karne, K. Jang, S. Kelley, C. Plaisant, N. Roussopoulos,
K. Stathatos, A. Vakhutinsky, J. Valluri, D. Whitefield. Hybrid Network
Management. 1996.

J. Baras, G. Atallah, M. Ball, S. Goli, R. Karne, S. Kelley, H. Kumar, C.
Plaisant, N. Roussopoulos, B. Schneiderman, M. Srinivasarao, K. Stathatos, M.
Teittinen, D. Whitefield. Next Generation Network Management Technology,
American Institute of Physics. 1995.

J. Baras, T. Charuhas. Hybrid (Satellite and Terrestrial) Communication
Networks: Object Oriented Generic Tools for Simulation and Management,
IEEE Military Communications Conference, 1992.

Brendan Scientific Information Center, http://www.brendan.com.

James Clifford, Alexander Tuzhilin. Recent Advances in Temporal Databases.
Springer, 1995.

E. Codd, A Relational Model of Data for Large Shared Databanks,
Communications of the ACM . 13(6), June 1970.

S. Conrad, M. Hoding, G. Saake, I. Schmitt, C. Turker. Schema Integration with
Integrity Constraints; /5th British National Conference on Databases. July
1997.

X. Delannoy. Understanding the Tension Between Transition Rules and
Confidentiality; /4th British National Conference on Databases. July 1996.

Werner Dreyer, Angelika Cittrich, Duri Schmidt. An Object-Oriented Data
Model for a Time Series Management System, /EEE Transactions on

90

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Knowledge and Data Engineering, 9(5), September/October 1997.

B. Eaglestone. Keeping Time in Musical Database, 6th British National
Conference on Databases. July 1996.

L. Ellison. Introduction to SQL, Oracle Corporation, 1989.

G. Flach H. Meyer, Integration of Load Measurement Parameters into the Cost
Evaluation of Database Queries, /4th British National Conference on
Databases. July 1996.

Jim Foxworthy. Capacity Planning, Summit OnLine.
wysiwyg://44/http://www.summitonline.com/netmanage/papers/landmark1.html.

A Freitas, S. Lavington. Speeding up Knowledge Discovery in Large Relational
Databases by Means of a New Discretization Algorithm, /4th British National
Congerence on Databases. July 1996.

S. Gadia, J. Vaishnav. A Query Language for a Homogeneous Temporal
Database, Proc. ACM SIGACT SIGMID Symposium. Principles of Database
Systems. 1985.

A. Griffiths, B. Theodoulidis. SQL+: Adding Temporal Indeterminacy to the
Database Language SQL, /4th British National Conference on Databases. July
1996.

S. Gupta, J. Baras, S. Kelley, N. Roussopoulos. Managing File Subsystem Data
Streams for Databases on Networked Systems. 1996.

J. Haritsa, M. Ball, N. Roussopoulos, A. Datta, J. Baras. MANDATE: Managing
Networks Using Database Technology. IEEE Journal on Selected Areas in
Communications. 11(9), December 1993.

Steve Hoyt. Network Resource Planning for the Enterprise, Summit OnLine.
wysiwyg://44/http://www.summitonline.com/netmanage/papers/make1.html.

Dimitry Haskin, Steve Onishi. Management Information Base for IP Version 6,
ICMPv6 Group of the Internet Engineering Task Force.
http://search.ietf.org/internet-drafts/drafi-ietf-ipngwg-ipv6-icmp-mib-02.txt, Jan.
1998.

Innes Jelly, Jon Kerridge, Chris Bates. Benchmarking Parallel SQL Database
Machines, Lecture Notes in Computer Science, /2th British National

91

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Conference on Databases, July 1994.

Ling Lin, Tore Risch. Using a Sequential Index in Terrain-Aided Navigation.
Sixth International Conference on Information and Knowledge Management.
November 1997.

Ling Lin, Tore Risch. Querying Continuous Time Sequences. Proceedings of the
24" VLDB Conference. 1998.

Glenn E. Miller. The Data Reduction Expert Assistant, Space Telescope Science
Institute, http://www.stsci.edu/~miller/draco/draco-aldb.html.

Glenn E. Miller, Felix Yen. DRACO: An Expert Assistant for Data Reduction

and Analysis, Space Telescope Science Institute, asp Conference Series, Vol. 61,
1994,

Nikos Lorentzos, Yannis Mitsopoulos. SQL Extension for Interval Data, /JEEE
Transactions on Knowledge and Data Engineering, 9(3), May/June 1997.

Network General Corporation. Proactive Solutions to the Five Most Critical
Networking Problems. SummitOnLine.

wysiwyg://44/http://www.summitonline.com/netmanage/papers/netgen2.html.

Network General Corporation. How to Optimize Network Performance While
Avoiding Unnecessary Investments, Summit OnLine.
wysiwyg://44/http://www.summitonline.com/netmanage/papers/netgenl.html.

Network General Corporation, Oracle Corporation. How Oracle7 Databases
Impact Your Network’s Performance, Summit OnLine.
wysiwyg://44/http://www.summitonline.com/netmanage/papers/netgen4 html.

W. Ng, C. Ravishankar. Block-Oriented Compression Techniques for Large
Statistical Databases, IEEE Transactions on Knowledge and Data Engineering,
9(2):314-328, March-April, 1997.

P. Nobecourt, C. Rolland, J. Lingat. Temporal Management in an Extended
Relational DBMS, 6th British National Conference on Databases. July 1996.

Oracle Technical White Paper, http://www.oracle.conv... , June 1997.
Richard Ptak, Jasmine Noel, D. Brown/ Managing Complexity Trends and Issues

in Distributed Management, Summit OnLine.
wysiwyg://44/http://www.summitonline.com/netmanage/papers/brown2.html.

92

[37] B. Rosenbach, J. Soref. RMON The Enterprise Management Standard, Data
Communications, pp 67-72, March 21, 1996.

[38] N. Roussopoulos, Incremental Computation Models for Al-Database Systems
October 1986.

[39] R Sadeghi, W. Samson, S. Deen. HQL - Historical Query Language; 6th British
National Conference on Databases. July 1996.

[40] S. Schwiderski and G. Saake. Expressing temporal behaviour with extended
ECA rules; 12th British National Conference on Databases, July 1994.

[41] R. Snodgrass. The Temporal Query Language TQuel, ACM Transactions on
Database Systems. 12(2), 1987.

[42] Softbase Systems, Inc. http://www.softbase.com.

[43] K. Stathatos. Physical Organization and Indexing of Time-Series Collections,
October, 1995.

[44] G. Stephanopoulos, J. Cheung. Representation of Process Trends - Part I A
Formal Representation Framework, Computers Chemical Engineering,
Pergamon Press, 14(4/5): 495-510, 1990.

[45] G. Stephanopoulos, J. Cheung. Representation of Process Trends - Part IT The
Problem of Scale and Qualitative Scaling, Computers Chemical Engineering,
Pergamon Press, 14(4/5):511-539, 1990.

[46] G. Stephanopoulos, B. Bakshi. Representation of Process Trends - Part IV
Induction of Real-Time Patterns from Operating Data for Diagnosis and
Supervisory Control, Comupters Chemical Engineering. 18(4):303-332, 1994.

[47] G. Stephanopoulos, B. Bakshi. Representation of Process Trends - Part ITI
Multiscale Extraction of Trends From Process. Comupters Chemical
Engineering. 18(4):267-302, 1994,

[48] S. Soukeras, P. King. Temporal databases: an event-oriented approach; 72tk
British National Conference on Databases. July 1994.

[49] System Management Arts. InCharge Systems Product Information Sheet.
Accessed from corporate web site, http://www.smarts.com.

93

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

System Management Arts. Root Cause Analysis and its Role in Event
Management. Accessed from corporate web site, http://www.smarts.com.

Abdullah Uz Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie Segev,
Richard Snodgrass. Temporal Databases, Theory, Design, and Implementation.
The Benjamin/Cummings Publishing Company, Inc. 1993.

Abdullah Uz Tansel, Erkan Tin. The Expressive Power of Temporal Relational
Query Languages, /EEE Transactions on Knowledge and Data Engineering,
9(1), January/February 1997.

Abdullah Uz Tansel, M. Erol Arkun, Gultekin Ozsoyoglu. Time-by-Example
Query Language for Historical Databases, /IEEE Transactions on Software
Engineering, 15(4), April 1989.

Abdullah Uz Tansel. Temporal Relational Data Model, IEEE Transactions on
Knowledge and Data Engineering, 9(3), May/June 1997.

Paolo Terenziani. Integrating Calendar Dates and Qualitative Temporal
Constraints in the Treatment of Periodic Events, IEEE Transactions on
Knowledge and Data Engineering. 9(5), September/October 1997.

J. Valluri. Database Models and Architectures for Hybrid Network Management.
MS Thesis 96-2. Institute for Systems Research. University of Maryland. 1996.

V. Venkatasubramanian, R. Vaidyanathan, Y. Yamamoto. Process Fault
Detection and Diagnosis Using Neural Networks -- I. Steady-State Processes.
Computers and Chemical Engineering, 14(7):699-712, 1990.

P. Viswanathan. Automated Network Fault Management. MS Thesis 96-14.
Institute for Systems Research. University of Maryland. 1996.

94

