
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

MASTER’S THESIS

Efficient Methods to Compute, Store, and Manipulate
Aggregates Derived from Network Management Data
Using a Database Tool

by Albino S. Pinho
Advisor: John S. Baras

CSHCN M.S. 99-2
(ISR M.S. 99-2)

ABSTRACT

Title of Thesis: EFFICIENT METHODS TO COMPUTE, STORE, AND

MANIPULATE AGGREGATES DERIVED FROM

NETWORK MANAGEMENT DATA USING A

DATABASE TOOL

Degree candidate: Albino S. Pinho

Degree and year: Master of Science, 1999

Thesis directed by: Professor John S. Baras

 Department of Electrical Engineering

As telecommunications in the world grow exponentially in importance for

businesses, the sizes of networks grow, generating increasingly monitored

statistics. To handle this data, efficient systems are required to store and

manipulate it. This thesis investigates efficient methods to compute, store, and

operate the current and historical aggregates, derived from network management

data. The networks of interest are those with star architecture.

This thesis proposes a methodology to process the incoming data from the

network elements, store it in a database, and then use efficient techniques to

perform the aggregation through the various dimensions, namely by attributes,

network containment, and time. This procedure generates data with different

levels of granularity, which is suitable for the use of modern on-line analysis

iii

processing techniques, e.g., drill-downs and scale-ups, and for gradual bottom-

up data trimming without losing information, although coarsening it.

This thesis demonstrates that modern databases may be tuned and deployed

for the purposes of computing and storing network aggregates.

iv

EFFICIENT METHODS TO COMPUTE, STORE, AND MANIPULATE

AGGREGATES DERIVED FROM NETWORK MANAGEMENT DATA USING A

DATABASE TOOL

By

Albino S. Pinho

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment

of the requirements for the degree of
Master of Science

1999

Advisory committee:

Professor John S. Baras, Chairman/Advisor
Professor Nick Roussopoulos
Professor Michael O. Ball

v

Copyright by

Albino S. Pinho

1999

vi

ACKNOWLEDGEMENTS

While this thesis is a requirement for graduation of a single student, it is,

however, the result of the work of a team of people, who have made me feel very

lucky and proud for having the opportunity to work with them on such an

interesting topic. Therefore, I would like to express my sincere gratitude to Dr.

John S. Baras for giving me the opportunity to work with him on this project, for

his guidance and leadership, and for providing the needed resources making this

discourse possible. I would also like to thank David Whitefield of the Hughes

Network Systems, Inc., for his help in understanding the problem and for helping

on the solution design, refinement, and implementation. Also my thanks to Dr.

George Mykoniatis for the many professional discussions on the problem,

potential alternative solutions and results. Dr. Nick Roussopoulos for his analysis

of the problem, suggestions, and comments, and for joining my defense

committee and Dr. Michael Ball for accepting a position on my defense

committee. Further thanks goes to Spyro Papademetriou and Steve Kelley for

helping to establish the environment needed to make this research possible.

Hughes Network Systems, Inc., Germantown, MD, supported the research.

I am proud to be an Institute of Systems Research member and a University

of Maryland student, and this was possible only because of Mattie Riley’s

invitation. Dr. Barbara Goldberg, Dr. Stan Hunt, Dr. Mark Austin, thank you all for

your support at the difficult moments of my life as an ISR-UMCP student. Thanks

to America and the American people for developing such a good educational

vii

system, that contributes so much to the progress of science and enlargement of

the frontiers of human knowledge everyday.

Furthermore, I want to extend a special thanks to my wife, Ana, for

understanding that to have a better future and a better lifestyle, the holidays of

1998 had to be sacrificed.

Finally, I would like to thank my family and friends, because without their love

and friendship, I would never have had the needed motivation to study and work

hard enough to succeed in this and other life challenges.

viii

TABLE OF CONTENTS

ABSTRACT ..II

ACKNOWLEDGEMENTS .. VI

TABLE OF CONTENTS ... VIII

LIST OF FIGURES .. X

LIST OF TABLES... XIII

CHAPTER 1..1

INTRODUCTION ...1
1.1 The Systems Engineering Process ...1
1.2 Research Goals and Proposed Aging Schema3
1.3 Aggregates Dimensions and the Aggregation System4
1.4 Organization of Thesis Contents...7

CHAPTER 2..9

NETWORK MANAGEMENT DATA COLLECTION AND PROCESSING..............................9
2.1 The Network Model ...9
2.2 The Current System ..11

CHAPTER 3..16

THE PROBLEM ANALYSIS AND SYSTEM REQUIREMENTS..16
3.1 System Requirements ..17
3.2 Effectiveness Measures ...18
3.3 Expected Outputs ...19
3.4 Sequential Build and Test Plan..19

CHAPTER 4..22

ARCHITECTURE OF THE PROPOSED SOLUTION..22
4.1 System Physical Model ..26
4.2 Used Networks Configuration..29

CHAPTER 5..30

THE LOADING PROCESS ...30
5.1 Loading Process Parameters...30
5.2 Loading Process Sections ...31

ix

CHAPTER 6..34

THE AGGREGATION PROCESSES ...34
6.1 Views and Views Materialization ...35
6.2 Aggregation Process Sections ..37

CHAPTER 7..41

DEVELOPMENT AND TESTING ENVIRONMENT ..41
7.1 The OLAP Queries ..41
7.2 Typical OLAP Query Process ..42
7.3 OLAP Queries Set ...46

CHAPTER 8..48

OPTIONS AND ALTERNATIVES ANALYSIS ..48
8.1 Best Versus Worst Case ..49
8.2 Alternatives Standard Options ..51
8.3 Alternatives Comparison for the Actual Load59
8.4 Comparison of Alternatives Limits..62
8.5 Alternative 3 Tests of Scale ...63
8.6 Index-Only Tables Performance ..65
8.7 Temporal Aggregation..67

CHAPTER 9..70

EAGER VERSUS LAZY AGGREGATES COMPUTATION ...70
9.1 An Aging Schema for Historical Data ...74

CHAPTER 10..77

CONCLUSIONS AND FUTURE WORK ...77
10.1 Requirements and Achievements ...78
10.2 Potential Performance Improvements ..80
10.3 Innovative Concepts and Future Work ...81

REFERENCES ...83

x

LIST OF FIGURES

Figure 1.1 – From Oliver et al Engineering Complex Systems with Models and

Objects – FFBD of the systems engineering core technical process2

Figure 1.2 – Network aggregates dimensions...5

Figure 2.1 – Network statistics generation and processing...................................9

Figure 2.2 – Network conceptual structure ...10

Figure 2.3 – Network conceptual structure ...11

Figure 2.4 – Current aggregation system modules ...12

Figure 2.5 – Structure of functions to process statistics......................................13

Figure 4.1 – Architecture of the proposed solution ...22

Figure 4.2 – Network aggregates database system model23

Figure 4.3 – Entity-relationship diagram of the system24

Figure 5.1 – Loading-process behavior diagram...33

Figure 6.1 – Aggregation process behavior diagram ..38

Figure 7.1 – Typical query process behavior diagram ..45

Figure 8.1(a) – Averages of Best (left) versus worst case (right)50

xi

Figure 8.1(b) – Trend lines of best (left) versus worst case (right)50

Figure 8.2 – Performance of Alternative 3 with attributes defined as

NUMBER(12,3) (left) and the default FLOAT (126 digits) (right)...................52

Figure 8.3 – Trend lines of serial local and remote aggregation (left) versus

parallel local and remote aggregation processing (right)53

Figure 8.4 – Serial loading and aggregation results (left), parallel loading and

aggregation (middle), and total processing time (right)54

Figure 8.5(a) – Non-clustered indices ...55

Figure 8.5(b) – Indices clustered by snapshot ..55

Figure 8.6 – Alternative 3 loading and aggregation performance differences when

sessionstats table has no primary defined (left) and when it has a primary key

defined (right)..57

Figure 8.7 – Loading and aggregation times using Flat Tables for networks

configuration data in the top two charts, and using IOT tables in the two

charts at the bottom ..58

Figure 8.8 – Alternative 1, 2, and 3, loading, aggregation, and queries averages,

as well as averages total at the top; plus the trend lines at the bottom charts

for the same data ..60

Figure 8.9 – Loading plus aggregation capacity limits of the configuration used,

for Alternative 1 (left), Alternative 2 (center), and Alternative 3 (right)62

Figure 8.10 – Scalability of the proposed solution, from left to right network

configurations have 1,350, 13,500, and 135,000 sessions65

xii

Figure 8.11 – Temporal aggregation of six days of network aggregates using

standard SQL functions and time series cartridges.......................................68

Figure 9.1 – Eager (top) versus lazy (bottom) aggregates computation73

Figure 9.2 – Proposed network management data aging schema......................76

Figure 10.1 – In the left chart there is time available (in seconds), used, in the

right it has processing requirements in number of sessions, for every fifteen

minutes, and what was achieved ..78

xiii

LIST OF TABLES

Table 4.1 – Networks configuration used..29

Table 7.1 – Set of queries used on tests, frequency, number of runs, and type of

processing ..46

Table 8.1 – Loading, aggregation, and query average response time61

Table 8.2 - Maximum capacity - no intervals between runs, no queries, serial

loading, and aggregation processing ..63

1

Chapter 1

Introduction

Since networks now encompass the world, and their proliferation is bound to

increase in the near future, new tools to operate and administer them will be

needed. The quantity of statistical data generated is overwhelming operators,

network managers, network planners, and even the computers systems storing

statistics. The disk space required to store statistical data related to a short

period of a medium size network grows easily to the level of gigabytes and

terabytes. Therefore, new forms of processing and storage of network statistics

need to be developed to help the analysis, storage, and use of this data, not only

for the reactive network performance management but also to support the

proactive network planning.

1.1 The Systems Engineering Process

The study of the problem and its analysis follows the systems engineering

core technical process approach, introduced by David W. Oliver, et al. in the

book Engineering Complex Systems with Models and Objects. The core

technical process is part of a higher level model, which includes the systems

engineering process that covers all the issues of a typical systems development

life cycle. The core technical process is presented in Figure 1.1. Each box in the

system’s engineering core technical process is further detailed and refined, but

for a small team, and a short-term project such as this one, the level of detail

2

represented by the diagram, Figure 1.1, is enough, and does not require further

refinements. This element constitutes part of the beauty of the methodology,

because it can be applied to short-term and long-term, small or big projects. The

approach was especially useful to organize the earlier phases of the research

and development. During these phases, the current system was assessed, the

requirements were defined, the structure and behavior models were created, the

trade-off analysis was performed, and a build-and-test plan was developed.

Figure 1.1 – From Oliver et al Engineering Complex Systems with Models
and Objects – FFBD of the systems engineering core technical process

The following is a description of the six steps of the core technical process:

1. It evaluates available information, and missing information is gathered.

2. It defines a small subset of the requirements that will measure the success

or failure of the system. These requirements are the most important of the

system and the criteria for optimization.

3. It defines the desired behavior of the executable model.

4. It defines the alternative structure models with its components from which

the system will be built.

4.1

Assess
Available

Information

4.2

Define
Effectiveness

Measures

4.3

Create
Behavior

Model

4.4

Create
Structure

Model

4.5

Perform
Trade-Off
Analysis

4.6

Create Sequential
Build &Test

Plan

Feasible

Solution

No Feasible
Solution

Iterate to Find a Feasible Solution

AND

3

5. It performs the trade-off analysis and designates which alternative design

or architecture is best, based on the requirements and feasibility of the

solution. The best design is selected, based on effectiveness measured

values. This activity is part of the optimization process, when looking for a

feasible design Steps 1 to 5 are re-iterated; the requirements re-

evaluated, and sometimes relaxed so that a feasible solution can be

found. In situations where no feasible solution is found, after successive

re-iterations, the project may be terminated for reasons of budget restraint,

schedule overruns, or lack of candidate solutions.

6. It creates a plan to refine existing deemed-feasible solutions when they

are found, providing an implementation plan for the selected design. The

plan covers availability of resources, development of schedules, product

versions, and product validation, etc.

Steps 2, 3, and 4 of this process are concurrent, evolving with the results of

one affecting the other.

1.2 Research Goals and Proposed Aging Schema

In this study, efficient methods for computing, storing, and manipulating

current and historical aggregates, derived from network management data, are

investigated. The feasibility of using commercially available database software is

evaluated along with its newest tools to perform these tasks.

An aging schema is proposed to keep historical data with finer granularity for

recent data and coarser for older data. The nature of the network aggregates

granularity also changes from the bottom of the network structure to the top,

4

becoming coarser and coarser. Holding statistics for the lifetime of a network will

be possible without requiring storage of great quantities of data. Stored historical

data will be ready and helpful in managing, forecasting, and planning the current

and future network resources requirements and deployment. The work, besides

supporting the needs of two areas of the ISO network management model, fault

management, and performance management, by providing data with varied

granularity that is ready to be used and easily retrieved, takes a big step into

supporting network planning. For example, by comparing current traffic levels

with historical data, network operators and managers can easily determine

whether the traffic is normal or potentially faulty. The same information can be

used by network managers and planners to draw traffic trend lines, which will

indicate when specific resources capacity will be exhausted, and require

upgrading. Still, on network planning and deployment, it helps in determining

whether new traffic or new services can be absorbed by the current network

infrastructure. For sure, this information helps in making the right decisions to

achieve the best results.

1.3 Aggregates Dimensions and the Aggregation System

This project involves three dimensions of network management data,

attributes dimension, network containment dimension (session, port, etc.), and

the time dimension. Figure 1.2 depicts the network aggregates dimensions.

Aggregates of network elements are values computed from session statistics

collected from the network, through structured query language (SQL) functions

sum, average, etc.. After computed, the aggregates are associated with each

5

network element, according to the network configuration structure. For example,

by summing all the errors of all sessions, which use a specific port, a port

aggregate is computed, and it gives the number of errors of that specific port.

This type of aggregation is called aggregation by network containment or

containment aggregation. The other type of aggregation that is covered here is

temporal aggregation, which takes statistics collected by the minute and sums or

averages them by the day, month, or year. The operation of taking by the minute

or hourly attributes and aggregating them by day, week, or other coarser unit of

time is called temporal aggregation or a scale-up.

Figure 1.2 – Network aggregates dimensions

Computed aggregates are stored into the database and associated with the

network elements to which they are related. Each network element has twenty

Network

LIM

.

.

.

DPC

LIM

Port Port.
.
.

Port Port
.
.
.

.

.

.

DPC

LIM

Port Port.
.
.

Port Port
.
.
.

.

.

.
.
.
.

Ses
sio

n
PortLIM
DPCNet

workNetwork Containment
Dimension

Time Dimension

Attributes Dimension

Per
 N

et
wor

k E
lem

en
t

Agg
re

ga
te

s

...
Snapshot NSnapshot 2Snapshot 1

Network 1

Network N

6

different aggregates per snapshot. A snapshot is a collection of network statistics

related to a specific period. Each snapshot has an id, which is an integer with the

date in seconds of the moment when the generation of the session statistics for

the snapshot started. This choice aims to identify the snapshot with a meaningful

number.

The developed system simulates incoming network management data, loads

it into the database, and performs the aggregation by the network containment

dimension, covering eleven levels of aggregation. A set of iterative running

queries to simulate users query load also has been developed. The query set

comprehends simple queries run against any table of aggregates and complex

queries performing drill-downs. Temporal aggregation was also tested using

views with Oracle8 time series cartridges functions, and using only standard

queries features to compare the performance of both. The performance of

temporal aggregation is not as critical, since it is expected to run once a day,

weekly, monthly, and yearly, not every fifteen minutes as the aggregation by

network containment.

The system developed for the loading and aggregation of session statistics by

network element, network, inroute, and outroute will be referred to in this thesis

by the name of NADS (Network Aggregates Database System) or alternatively

NATS (Network Aggregates Time Series).

7

1.4 Organization of Thesis Contents

The remainder of this thesis will provide details of the aforementioned work

and is structured as follows. In Chapter 2, the architecture of the network used as

the basis for this research is described along with the network management data

collection model, as well as an abstraction of the current system model. The

network of interest is a star satellite network. Chapter 3 introduces the systems

engineering analysis of the problem and the derived system requirements. In

Chapter 4, the architecture of the proposed solutions to process, load, and

perform the network statistics aggregation is described. The behavior diagrams

of the proposed solution are presented here, also. Chapter 5 describes in detail

the process of generation and loading simulated network management data into

the database. In Chapter 6, the aggregation process is described in detail; it is

based on eager computation of aggregates using views materialization. Views

and views materialization concepts are also explained in this chapter. Chapter 7

describes the development and testing environment, the typical query process,

and the set of on-line analysis processing queries used to simulate users load

and test query performance. In Chapter 8, performance issues are addressed,

and test results are discussed. Results of tests of loading and aggregation of

1,300 sessions per snapshot running together with queries simulating network

operators’ load are presented. The results of three basic configurations are

compared, showing the one with better performance. Then this project shows the

test results to determine the capacity limits in megabytes and the number of

sessions per hour and the alternative’s best performer, which demonstrates the

8

proposed solution. These tests will also show the scalability of the three basic

alternatives. In Chapter 9, the advantages of using an eager aggregates

computation approach versus a lazy aggregates computation is analyzed. The

paper also explains what eager and lazy aggregates computation means. Finally,

Chapter 10 presents conclusions about the results of the developed research

work.

9

Chapter 2

Network Management Data Collection and Processing

This research is based on a satellite network with a star topology. Figure 2.1

presents an abstraction on the macro level of the network management data

generation, collection, and processing. The network contains elements that

compute statistics, which are sent to the network management software and

stored in a memory queue. Then, the statistics are transferred to a system that

processes them, computing aggregates and storing them in a database.

Figure 2.1 – Network statistics generation and processing

2.1 The Network Model

Figure 2.2 illustrates the conceptual network structure model of the network of

interest. The network contains local and remote elements. The local network

elements are data processing clusters (DPC), which contain LAN interface

modules (LIM), which then contain ports. The remote side contains remotes,

Network

Element

Statistics

Keeps

Network Management Systemrequests statistics from

receives

Statistics
Processing system

reads statistics from

Computes / stores aggregates

10

each of which contains remote data processing clusters (RDPC), which contain

remote ports. The sessions are established between local and remote ports.

The data is exchanged between remote sites through a satellite link to the

central hub of each network. The communication from the hub to the remote

travels through an outroute, and on the other way (from the remote to the hub),

through an inroute. There is only one outroute per network and many inroutes.

The outroutes use a much larger bandwidth than the inroutes. Typically an

outroute transmits data at a rate of 512 Kbps (kilo bits per second), while an

inroute (from a remote to the hub), transmits data at 128 Kbps.

Figure 2.2 – Network conceptual structure

Messages broadcasted by the hub are received by all remotes, but

acknowledged and processed only by those with the targeted destination

addresses being discarded by the others.

Network

Data
Processing

Cluster
Remote

Remote Data
Processing

Cluster

Remote Port

InrouteOutroute
LAN

Interface
Module

Port Session

11

All the network statistics generated and collected on this type of network are

related to sessions. From them, the statistics related to the other network

elements are derived.

2.2 The Current System

Currently, there is a system running, collecting, and processing statistics on

an hourly basis. This research was developed to allow a more frequent collection

and database loading of statistics, besides computing the aggregates by eleven

network levels and storing them on the same database. In Figure 2.3, the

diagram shows the current statistics collection and processing system.

Figure 2.3 – Network conceptual structure

Network 1

Network N

Proxy

Network
Management
Protocols

Poller
(raw stats)

Cooker
Deltas&Stats

Configurator

Configuration

Database

Garbage

Collector

Export
Network
Analysis

GUI

Other
Systems

Message
Queue

Raw
Statistics

Aggregates

Session
Deltas &
Rates

Network
Aggregates

Network
Configuration

1HWZRUN�6WDWLVWLFV�3URFHVVLQJ���&XUUHQW�6\VWHP

Research

Areas

Configurator

Interface

Simulated

Area

Simulated

Area

Network
Management
Protocols

12

In the diagram of the current system, the marked areas that the research

simulates and the areas wherein the research is focused may be found. Figure

2.4 presents a macro level structure of the current system modules, and Figure

2.5 provides more details about the functions of the process session statistics

module.

Figure 2.4 – Current aggregation system modules

The current system creates a dictionary of the network objects through the

“Create Network Dictionary” module, then the system creates the database

objects using the “Create Database Objects” module. In addition, after this

phase, it processes the statistics and associates them with each network

element. The “Process Network Statistics” module first obtains initial values

through the “Get First Response Time” module, and from that moment on, it

computes the session’s statistics, using data from two consecutive snapshots. It

is this way because the received counters from the network elements are

accumulators, and the statistics related to the most recent snapshot are obtained

by subtracting the current accumulated values from the previous ones. A more

Process
Session

Statistics

Current
System

Create
Network

Dictionary

Create
Database
Objects

Process
Network
Statistics

Compute
Time to
Process

Get First
Response

Time

13

detailed description of this module comes later. After computing the current

snapshot statistics, the “Process Session Statistics” module, computes statistics

related to the time spent processing the network statistics through the “Compute

Time to Process Statistics” function. Other than that, it contains various functions

that are depicted in Figure 2.5. The main function is called

“Stats_processSession,” and it processes session statistics response messages

by sending out a statistics processing request message to the “Poller,” which

stacks the incoming network messages in a queue and then processes the

statistics inside it.

Figure 2.5 – Structure of functions to process statistics

The “Stats_processSession” function processes statistics of every single

session. The values of each response message are placed in each session

statistics dictionary list before starting the aggregation with those values.

RemainComponents
Aggregation

Stats_performRemainingComponent
sAgg()OneComponentAggregation

Stats_performOneComponentAgg()

Perform Aggregation

Stats_performAgg()

CalculatePerSessionValue

Stats_calculatePerSessionAggValue()

Traffic rate (bps/pps)
Outbound user bit
Inbound user bit
Outbound spacelink bit
Inbound spacelink bit
Outbound spacelink packet
Inbound spacelink packet
Outbound spacelink packet loss
Inbound spacelink packet loss
Inbound fragmented user message
Low gear bit
High gear bit
Low gear user bit
High gear user bit
Low gear packet
High gear packet
Traffic conditions / hour

Outbound busy conditions
Inbound busy conditions
Flexroute gear shifts
Low gear busy conditions
High gear busy conditions

Stats_calculateAggValues()

Traffic Delta

Stats_calculateDelta
WithRollover()

ProcessSessionStatistics

Stats_processSession()

CalculateAggregates

Stats_calculateAggValues()

ComponentsAggregateStats

Stats_performAllComponentsAgg()

counters + 1

sessions

 4

14

The “Stats_calculateAggValues” function computes session statistics

aggregation values for a session. Aggregation operations are of two types in this

system: averages or sums. Session statistics aggregates are computed by taking

the difference in values (delta values) of two consecutive snapshot statistics

resulting from poll cycles. The poll cycle is the process of sending messages to

the network elements and requesting accumulated statistics. The computation of

aggregates is performed only when statistics related to a session are collected in

two consecutive poll cycles. The computation of the delta values, performed by

the function described next, takes into consideration the existence of roll over of

the network element counters, which are not reset.

The “Stats_calculateDeltaWithRollover” function computes single delta values

for session statistics, subtracting the current value from the previous one.

Rollover between the two values is taken into consideration. So, if the current

value is smaller than the previous one, there was a rollover that happens when

the maximum of the counter is reached, and the counter returns to zero. In this

case, the delta value is computed by determining the difference between the

maximum and the previous value and adding the result to the current value.

The “Stats_performAllComponentsAgg” function performs session statistics

aggregation (sums and averages) per network component, using per session

statistics collected from the network, once every session depends on and uses a

set of network elements.

15

The “Stats_performOneComponentAgg” function is responsible for retrieving

each aggregate of each network component , recalculating it with the last delta

value.

The “Stats_performAgg” function performs the aggregation either in two

distinct ways depending on the statistical attribute by computing a new weighted

average or simply by adding the new value to the existing one.

The “Stats_calculatePerSessionAggValue” function calculates a per session

aggregate value. This computation is a weighted average, wherein the current

average is multiplied by the number of previous snapshots, added to the new

value and divided by the previous number of snapshots, plus one, generating a

new average.

The “Stats_performRemainingComponentsAgg” function controls the

execution of the aggregation carried out by the

“Stats_performOneComponentAgg” function by calling it until the aggregation of

every session per inroute, outroute, and network element is completed.

The structure of the above-described functions and their associations are

pictured in Figure 2.5.

16

Chapter 3

The Problem Analysis and System Requirements

After studying the code of the current system, in order to understand the

problem and discuss it, three research alternatives were defined involving three

different architectures. As the study of the problem and software tools evolved, it

progressed to a unique architecture for three different alternatives. Some of the

reasons why only one architecture remained are explained next.

Following a systems engineering approach, to discard unpromising solutions,

the option of computing the deltas and rates after loading the network incoming

statistics on the database was discarded because it would clearly present an

undesired worse performance. Computing the deltas and rates when the network

statistics are in memory before loading them in the database is clearly better than

loading the raw statistics in the database then reading them back to memory in

order to compute the deltas and rates, finally storing the deltas and rates in the

database. After concluding that, the raw statistics (accumulators) would never be

used again after computing deltas and rates, this option was eliminated. Another

reason why the initial three different alternative architectures became one at the

end of the developed work is because it was found that time series cartridges, an

Oracle8 package, can use the same tables as the alternative of not using this

software at all.

17

3.1 System Requirements

The minimal requirements to consider using any proposed system are

1. The system shall do the following in 15 minutes or less:

1.1. Compute all the deltas and traffic rates for all the 20 attributes of 1,300

session’s statistics.

1.2. Load the deltas and rates for each session into the database.

1.3. Perform the aggregation by network containment (Port, LIM, DPC,

Network), inroute and outroute.

1.4. Materialize the computed aggregates by writing them in database tables.

2. The system shall store the data in a format that allows a graphical user

interface (GUI) to provide updated reports or graphics of the network

resources utilization every 15 minutes.

3. The system shall support the storing of (temporal) aggregates for a long

period with different levels of granularity for network statistics, providing fine

data granularity for recent data and coarser data granularity for older data,

following an aging scheme.

4. The system shall handle huge quantities (at least gigabytes) of historical data.

5. The system shall be flexible to allow storage of data for new networks or

additional network elements with simple changes.

6. The system shall have SQL tools and allow their use to query the

summarized or non-summarized aggregates stored in a database.

7. The system shall provide SQL tools to list top ranked networks, network

elements, and sessions, etc.

18

8. The system shall compute and store aggregates in all dimensions correctly.

3.2 Effectiveness Measures

According to systems engineering principles, effectiveness measures,

establish the criteria by which alternative designs will be judged. Effectiveness

measures are a small subset of the system requirements that are so important

that if they are not met the system fails, and if they are met, the system is

successful. Based on this result the set of effectiveness measures for the

researched system at hand were defined as the following:

EM1 - The system shall compute all the aggregates in all eleven levels correctly

and write them into the database for all the 1,300 sessions with 20 attributes

each in fifteen minutes or less.

EM2 - The system shall store the data in a format that allows the graphical user

interface to access it to provide updated reports or graphics every 15 minutes.

EM3 - The proposed system tools shall provide means to query the data without

requiring any programming.

EM4 - The system shall handle huge quantities (at least gigabytes) of current and

historical statistical data.

EM5 – The system shall be more flexible, providing more tools and functionality

than the current system.

EM6 – The system must be user-friendly.

19

3.3 Expected Outputs

1. Efficient methods for the computation and storage of a large number of

aggregates of network elements, sessions, inroutes, and outroutes, across

network hierarchies and time.

2. A system with the capacity of handling a large number of aggregates, from a

variable set of networks, network elements, and sessions, defined by the

operators. This means a system with a flexible structure to handle new

networks with similar topology, network elements, sessions, inroutes, and

outroutes.

3. A set of tools that comes with Oracle8 Time Series Cartridges, a software

package, to query and manipulate the data.

4. A database of current and historical data, with different levels of granularity to

support network operation, network management, and planning.

5. Aggregates queries of the type: top 10 or top 20 only.

3.4 Sequential Build and Test Plan

1. Prepare Solaris 5.1 for Oracle8 installation.

2. Install Oracle8 Enterprise Edition (RDBMS), which includes PL/SQL.

3. Configure Oracle8.

4. Install Oracle8 Time Series Cartridges.

5. Configure time series cartridges package.

6. Define tables to store networks configuration according to the data diagram.

7. Define tables to store aggregates following the data diagram.

20

8. Develop and test a program in C using Proc*C to generate simulated network

statistics, compute deltas, and per session rates, loading them into the

database. The program will have to generate a report with processing times

and rates at the end of the processing of each snapshot, which must be

recorded outside the database.

9. Create the database views, to perform the aggregation and views

materialization.

10. Develop and test a program using C and Pro*C to compute all the aggregates

and to store them in database tables, following the network configuration

stored in the configuration tables. After the computation and storage of

aggregates on each level, the processing time must be reported for

performance analysis and must be recorded outside the database.

11. Develop a set of programs that iterate running queries at pre-determined

intervals to simulate the load generated by operators and network managers,

computing response times of these queries for later analysis. As stated

above, the processing times and statistics related to the performance of these

programs must be written outside the database to minimize the distortion

caused by these operations on the final processing results.

12. Run loading, aggregation, and queries using the many different alternatives to

determine which is the best solution.

13. Run loading and aggregation tests without intervals to determine the limits for

loading and aggregation processes for the configuration used.

14. Test time series cartridges related functions.

21

14.1. Define calendars table.

14.2. Define calendars.

14.3. Validate calendars.

14.3. Define metadata tables.

14.4. Define time series views.

14.5 Test time series functions.

15. Test eager versus lazy aggregates computation.

16. Analyze test results.

17. Prepare research presentation.

18. Prepare project (thesis) paper.

22

Chapter 4

Architecture of the Proposed Solution

As mentioned before, a unique system design was defined for the three

alternatives, after the analysis of the problem as well as the software tools. The

three alternatives and the testing results, determining the best one, will be

presented in the next chapters. Figure 4.1 shows the proposed system

architecture.

Figure 4.1 – Architecture of the proposed solution

Network 1

Network N

Proxy Poller
(raw stats)

Perform
Aggregation
by Network

Containment

GUI

Raw Statistics Message Queue

1HWZRUN�6WDWLVWLFV�3URFHVVLQJ���6\VWHP�$UFKLWHFWXUH

Research

Areas

Oracle8

Compute
Deltas & Rates
and Store them

on an Array.

Insert Rates on
the Database

Network

Configuration

Display Queries

Network
Management
Protocols

Network
Management
Protocols

Simulated

Areas
Network

Configuration,
Statistics &
Aggregates

23

The proposed system has a loading process, which generates simulated

network statistics, and loads them into the database. It also has an aggregation

process, which reads the loaded-per-session statistics and aggregates them by

network containment. To perform temporal (by time) aggregation two other

processes were developed, which are similar to the aggregation process

mentioned above. One uses standard queries, views, and views materialization,

and the other uses time series cartridges functions, on views to perform the

aggregates scale-up, before storing them in materialized views. Independent of

that some time series cartridges functions were tested. A dozen programs to run

queries, simulating the load generated by the ten operators expected to be using

the database, were also developed and run. All these processes iterate for as

many times as specified at given time-intervals, generating statistics about

response times and other performance information. These processes

architecture and functionality, will be described in more detail in the next

chapters. Figure 4.2 shows the associations of the system processes.

Figure 4.2 – Network aggregates database system model

Loading

Process

Aggregation

Process

Per Session

Statistics

Loaded
Per Session

Statistics

Network
Containment
Aggregates

Graphical
User Interface

(Queries)

Temporal
Aggregation

Process

Temporal
Aggregates

generates
loads

reads

Computes

and stores reads

Computes

and stores

query

query

24

C was the language of choice in developing the processes to be used in this

system, because among other reasons, it is deemed to be a suitable language

for this kind of application and has a very good performance record.

Figure 4.3 – Entity-relationship diagram of the system

The entity-relationship for the three alternatives, as well as the data schema,

are the same, using different database options, different types of tables, or

different processing approaches. Figure 4.3 depicts the entity-relationship

diagram of the system, showing the networks configuration entities and their

NETWORK
#NETWORK_ID
o NET_DESC_USE

DATA PROCESSING
CLUSTER
*NETWORK_ID
#DPC
o DPC_DESC_USE

REMOTE DATA
PROC. CLUSTER
*NETWORK_ID
#RDPC
o RDPC_DESC_USE

LAN INTERFACE
MODULE
#DPC
#LIM
o LIM_DESC_USE

PORT
#DPC
#LIM
#PORT
o PORT_DESC_USE

REMOTE LAN
INTERFACE MODULE
#RDPC
#RLIM
o RLIM_DESC_USE

REMOTE PORT
#RDPC
#RLIM
#RPORT
o RPORT_DESC_USE

OUTROUTE
#NETWORK_ID
#OUTROUTE
#SESSIONUM
o OUTROUTE_DESC_USE

INROUTE
#NETWORK_ID
#INROUTE
#SESSIONUM
o INROUTE_DESC_USE

SESSION
* SESSIONUM
* DPC
* LIM
*PORT
*RDPC
*RLIM
*RPORT
o SESSION _DESC_USE

has has

has

hashas

has

is part of

is part of

is part of is part of

is part of

is part of

uses

is used byis used by

uses

uses uses

are used by are used by

usesuses

are used by are used by

PORT AGGREGATES
#DPC
#LIM
#PORT
#SNAPSHOT_ID
*20 STATISTICS

REMOTE PORT AGGRS
#RDPC
#RLIM
#RPORT
#SNAPSHOT_ID
*20 STATISTICS

SESSION STATISTICS
#SESSION
#SNAPSHOT_ID
*OUT_USER_BIT_RATE
*19 STATISTICS

LIM AGGREGATES
#DPC
#LIM
#SNAPSHOT_ID
*20 STATISTICS

DATA PORT CLUSTER
AGGREGATES
#DPC
#SNAPSHOT_ID
*20 STATISTICS

LOCAL NETWORK
AGGREGATES
#NETWORK_ID
#SNAPSHOT_ID
*20 STATISTICS

REMOTE NETWORK
AGGREGATES
#NETWORK_ID
#SNAPSHOT_ID
*20 STATISTICS

NETWORK
AGGREGATES
#NETWORK_ID
#SNAPSHOT_ID
*20 STATISTICS

REMOTE DATA PORT
CLUSTER AGGRS
#RDPC
#SNAPSHOT_ID
*20 STATISTICS

REMOTE LIM
AGGREGATES
#RDPC
#RLIM
#SNAPSHOT_ID
*20 STATISTICS

has has

has

has

has

has

has

has

has

refers to

refers to

has

refers to

refers to

refers to

refers to

refers to

refers to

refers to

refers to

OUTROUTE
AGGREGATES
#NETWORK_ID
#OUTROUTE
#SESSIONUM
#SNAPSHOT_ID
*OUT STATISTICS

INROUTE
AGGREGATES
#NETWORK_ID
#INROUTE
#SESSIONUM
#SNAPSHOT_ID
*IN STATISTICS

has has

refers to
refers to

25

aggregates. The data diagram has a structure very similar to the entity-

relationship diagram, having a table for each entity. The data schema contains

tables for two main purposes. The first set of tables stores data describing the

network configuration and the other set stores session statistics and network

element aggregates. The writer will refer to the former tables as configuration

tables, and the later as aggregate tables.

Frequently, data warehouses use a star schema to represent

multidimensional data models. They have a central table called fact table, and

around it, the dimension tables. Herein, configuration tables play the role of the

fact table, and the aggregate tables, are the equivalent to dimension tables.

There are a total of ten configuration tables, eleven aggregate tables; in

addition, the session statistics table, which was named sessionstats. Besides,

the eleven aggregate tables mentioned above, a number of temporal aggregate

tables may be created, depending on the aging schema. To perform temporal

aggregation tests, nine aggregate tables were created to materialized data

derived from views. These tables are connected to the configuration tables as

are other aggregate tables. For temporal aggregation tests, no local or remote

network aggregate tables were created, only a network aggregate table.

There is a list of twenty attributes, common to any list of aggregates, not listed

in the entity-relationship diagram, to keep it to one page size and readable. The

list of attributes is referred to in this diagram as *20 STATISTICS and covers bit

rates, packet rates, transmission errors, and other network management

statistics.

26

4.1 System Physical Model

From the entity-relationship diagram presented in Figure 4.3, the physical

data model is derived, having 10 configuration tables, 11 aggregate tables, plus

the table sessionstats.

Before discussing the physical design, some database technical terms must

be introduced:

• Row - any set of fields (or a line) in a table also known as a record.

• Primary key - one or more columns uniquely identifying any non-null row

of a table. When defined, the primary key does not allow the creation of a

second row with the same identification.

• Foreign key - one or more columns whose values are based on the

primary or candidate key values of another table. It is used to associate

the row or rows of one table to the row of the other, establishing a

relationship. When defined it checks the existence of the primary or

candidate key in the parent table to authorize the creation of a row with a

specific foreign key in the dependent table.

• Aggregates – are attributes of network elements computed by using SQL

aggregation functions and the group-by clause.

Here is the list of the physical tables of the system and their contents:

• NETWORKS – contains network ids.

• DPCS – contains the local DPC names. Each DPC is associated by

means of a foreign key (network_id) to its network.

27

• LIMS – contains the network LIM numbers. Each LIM is connected to a

DPC by a foreign key, which, in this case, is the DPC number.

• PORTS - contains the port numbers. Again, each port is related to a DPC

and a LIM through a foreign key.

• REMOTES - is a table similar to the table DPCS containing remote

names. As for the DPCS tables, there is a foreign key, attaching each

remote to a specific network. The developed software may sometimes

name this table as RDPCS, and in that case, RDPCS is named as RLIMS.

• RDPCS - is the remote counterpart table of LIMS, containing the numbers

of the remote DPCs. Each one has a foreign key associating it to a

specific remote. The developed software may sometimes name this table

as RLIMS.

• RPORTS - is a table containing the list of existing remote ports and their

respective remotes and remote DPCs, which constitutes a foreign key,

pointing to the RDPCS table.

• SESSIONUMS – contains all valid session numbers and the respective

DPC, LIM, port, remote, remote DPC, and remote port.

By defining the tables with these foreign keys, the consistency of the network

configuration is assured. This way, the database does not allow a lower level

network element to be defined if the upper elements do not exist or are

incorrectly specified.

The table sessionstats, which receives network session statistics, uses a

foreign key to assure the session number of the session statistics loaded is valid.

28

By assuring the validity of the session number, it can be sure that this data is

related to known network elements, and the network elements to which it relates

are known.

The session number is unique and is used to associate session statistics with

the right network elements, using the foreign keys and configuration information

stored in the table sessionums and the other configuration tables.

Each configuration table has one or more tables of aggregates associated

with it. These aggregates are related to the type of element the configuration

table describes. The aggregate tables contain, besides the twenty attribute

values, a valid foreign key, which connects each row to a valid network element

in the configuration table, plus a snapshot id. The foreign key to the configuration

table, plus the snapshot id, uniquely identifies each row of the aggregate tables.

The temporal aggregate tables rows are uniquely identified by the foreign key,

which connect them to the network elements, and a date, which can be one or

many fields, depending on the temporal aggregation model used.

At the top of this hierarchy, there is an aggregate table for the local

aggregates of networks and another table for the remote aggregates of networks.

These aggregates are then consolidated into one table, having aggregated

attributes by network.

The table sessiontstats, where session statistics coming from the network are

inserted, is at the bottom of this structure.

29

As part of the temporal aggregation schema, to perform temporal aggregation

tests, one table for each element type was created, similar to the aggregate

tables, where daily aggregates were materialized.

4.2 Used Networks Configuration

Four network configurations are defined for the tests, named NET01, NET02,

NET03, and NET04. Table 4.1 lists the components of each network

configuration used on the alternatives testing and validation. Other configurations

were used to test system capacity limits and scalability of the proposed solution.

Table 4.1 – Networks configuration used

Network DPCs LIMs Ports Sessions Outroutes Inroutes Elements
Total

NET01 2 11 19 152 1 10 195

NET02 4 16 34 272 1 16 343

NET03 6 44 90 720 1 44 905

NET04 2 16 32 256 1 16 323

Total 14 87 175 1,400 4 86 1,766

The total number of sessions is 1,400. The networks have dissimilar

configurations deliberately to try to reflect real network configurations. Initially,

network configurations were defined for the tests with one session per port. This

type of configuration is not the same as the real world and resulted in longer

aggregation times, mainly due to generation of more disk I/O, which then became

a bottleneck. In the end, the same aggregation process was tested for a

configuration with eight sessions per port and the processing times were, as

expected, much smaller.

30

Chapter 5

The Loading Process

The loading process was written in C and SQL Pro*C to generate simulated

session statistics, loading them into an Oracle8 database, reporting processing

times and database insertion rates after that. This information was used to

accomplish performance analysis to produce the tables and graphics presented

in this report. Usually the loading process iterates while running in the

background, generating statistics at pre-specified intervals and loading them into

the database.

Next, a complete description of the parameters and sections of the whole

process is attained.

5.1 Loading Process Parameters

The activity of the loading process is controlled by five different parameters,

which are read at the start. The parameters and their functions are

• Period – defines in minutes how often snapshots of session statistics

are generated. The default is 15 minutes.

• Records rate – determines the number of sessions per snapshot to be

generated. Default is 1,400 sessions per snapshot.

• Iterations – controls how many snapshots are to be generated before

resuming processing. Default is 96, which is the number of snapshots

for one day, when the period is 15 minutes.

31

• Percent active - indicates the percentage of the total number of

sessions (records rate) that will have a record generated and loaded.

This simulates non-responding sessions. Default is 95%.

• Serial - This last parameter is used on tests of capacity limits, where the

interval is zero. It determines where the loading and aggregation

processes are run serially or in parallel. Zero indicates that both

processes will run simultaneously; one indicates that loading and

aggregation processes run sequentially, one after the other.

5.2 Loading Process Sections

After defining C and SQL (Pro*C) variables, the process allocates memory

pointers, which will be used to allocate and store session statistics in memory.

Then the process reads the control parameters, validates them, and allocates

memory sufficient to store statistics for all the specified number of sessions per

snapshot. After these operations, the process connects itself to the database,

using a database-defined user name, and a valid password. Next it initializes

time variables then prints the starting date and time.

It is at this point that the loop generating session statistics starts. Every time a

random variable, between 0 and 100, is higher than the percentage of sessions

active, the generation of the session record is omitted. The process uses random

functions, and some formulas trying to generate attribute values for the session

statistics, at least proportional to the real world. To simulate the processing load

of a real situation, per session statistics are accumulated in memory, the

opposite of what happens normally but requiring the same memory and

32

processing power. After this operation, a session statistics row is inserted into the

database. Counters are updated and the generation of session statistics followed

by insertion goes on, until the specified number of session statistics per

snapshot is reached. The insertions are committed to the database in batches,

according to the value of a variable used for that purpose.

After all the session statistics for a snapshot are generated, accumulated, and

loaded into the database, the snapshot id is stored into a table called

last_snapshot_loaded. However, before this insertion is performed, this table is

locked into an exclusive mode, and its content is checked. This operation is done

to determine if there is an aggregation process running to avoid having more

than one aggregation process active at any one time. Activation of more than one

aggregation process simultaneously causes resources contention, degrading the

performance of all active processes. This disposition results in many problems

and longer snapshot aggregations with chances of overloading the system,

starting processes that never end, as experienced during system tests.

Therefore, if this table has any substance (snapshot id) before inserting the

snapshot id of the last snapshot loaded, it means that an aggregation process

must be running, so there is no need to start a new one. On the other side, the

aggregation process re-starts itself aggregating and deleting snapshot ids from

this table, until all snapshots loaded are aggregated. The locking mechanism is

to assure the perfect synchronization of these two processes.

After the previous operation and as soon as the process disconnects itself

from the database, statistics related to this run are computed and printed, the

33

locked table is released, and if appropriate, another aggregation process is

started. Then the loading process either enters a sleep state, waits for a started

aggregation process to end (for serial runs), or starts another snapshot session

statistics generation.

The last two sections of the loading process report statistics and handle SQL

errors, respectively.

The behavior diagram of this process is presented in Figure 5.1.

Figure 5.1 – Loading-process behavior diagram

Compute Deltas
and Accumulate
(Load simulation)

Generate Per
 Session
Rates

Insert Per Session
Statistics into

Database

Print processing
information

Wait for interval
time to expire

Lock Table
last_snapshot_loaded

Insert Snapshot_Id
into Table

last_snapshot_loaded

Start Aggregation
Process

Check contents of Table
last_snapshot_loaded

OR

Wait for
Aggregation end
when interval 0

OR

Unlock Table
(COMMIT)

last_snapshot_loaded

34

Chapter 6

The Aggregation Processes

The network containment aggregation process, as well as the temporal

aggregation processes, were written in C and SQL Pro*C. It aggregates session

statistics by port, LAN interface module (LIM), data processing cluster (DPC),

and network by the local side. Also tested running in parallel, it is suggested

running the remote aggregation by remote port, remote data processing cluster,

remote, and network (remote side) after the end of the local aggregation. Then

computing inroute and outroute aggregates takes place before the local and

remote per network statistics are consolidated.

At the end of each aggregation, the processing time is computed and printed.

This information was the basis used to accomplish the process performance

analysis and to produce the tables and graphics presented later in this thesis.

The aggregation process is either activated by the loading process or restarted

by itself at the end, when there are snapshots already loaded, but not

aggregated.

Two temporal aggregation processes, very similar to the process just

described, were developed to test temporal aggregation. One of these processes

uses the time series cartridges package functions to perform the aggregation by

time, the other uses standard SQL functions. The main difference here is that the

first, uses a date type field and time series scale-up functions to accomplish

aggregation by time, the second uses independently defined fields for year,

35

month, day, and hour in order to use the standard SQL group-by clause to

achieve the aggregation by time. Unlike the aggregation by network containment

process, these processes do not re-start themselves, since they are expected to

run, at most, once a day. As they do not run frequently, their performance is not

as critical. Meanwhile, two processes were developed using different tools to

compare and determine which one performs better.

The temporal aggregation processes to compute temporal aggregates use

aggregates of network elements computed previously, as the base data, for

performance reasons.

The aggregation process by network containment will be referred to as the

aggregation process, while the others will be referred to as temporal aggregation

processes.

6.1 Views and Views Materialization

In this research, a very practical approach involves bringing to life the solution

of real problems, using views and views materialization, described as “the most

important asset of the relational model,” as stated in “Materialized Views and

Data Warehouses” by Dr. Nick Roussopoulos.

Computation of aggregates in this system is based on views, and views

materialization.

Views are database objects in the form of queries that logically represent a

table. They do not have any stored data, and the data resulting from views is

derived from one or more physical tables that occupy their own storage and have

their own data. Many times, they are used as tables, but views have to derive the

36

data they represent every time they are used. This situation requires doing the

same I/O and the same computations repeatedly, and when this happens

frequently, against the same data, lots of resources are used to perform the

same repetitive work, making them inefficient.

Views materialization overcomes the problem of redoing the same process,

reading the same data every time a view is referenced by storing the results of

the view processing in a real table. In some instances, materializing a view has

the drawback of taking storage space. In the case studied herein, the used space

becomes an advantage. As views are materialized, the data from whence this

summarized or aggregated data was derived can be deleted without loss of

information, although losing in granularity but saving disk space.

The aggregation processes described here materialize views by inserting the

results of queries run against these views into tables. The views are extensive

queries, using SQL aggregation functions, and the group-by clause to compute

the aggregates, which are then materialized, as they are inserted into tables.

SUM and AVG (average) are the most common SQL aggregation functions used

in this system to compute the aggregates of rows grouped by the SQL group-by

clause, achieving in this way the results of aggregation by network containment

or by time. The operation of taking attributes and performing computations in

conjunction with a group-by to derive the next level attribute values of coarser

granularity is called a roll-up or a scale-up.

Besides aggregating attributes by grouping tables’ rows and using

aggregation functions, the aggregation by network containment process based

37

on views joins statistics of the previous network level with current network

configuration level data, producing the current level aggregates. The aggregation

processes use no parameters.

6.2 Aggregation Process Sections

The aggregation process begins by defining C and SQL (Proc*C) variables.

Then the process connects itself to the database, using a database-defined user

name and a valid password, as does the loading process.

Consequently, the program selects the oldest snapshot id from the

last_snapshot_loaded table where the loading process inserts them after each

snapshot is loaded. As mentioned, the snapshot id is an integer representing the

data in seconds of the starting time of the generation of the session statistics for

that specific snapshot. Once the snapshot id is retrieved, the table

snapshot_to_agregate is cleaned, and it is inserted in this table. This table has

only one row, a unique column, which is the id of the snapshot being aggregated.

All the aggregation views refer to this table to identify the rows of the snapshot to

be aggregated and perform the aggregation by network element. To store the

snapshot id, a table was chosen to simplify and speed up the queries of the

aggregation views.

Next the process initializes time variables and prints the starting date and

time. What comes next is the insertion into aggregate tables of the aggregates

derived from the views, materializing them. As mentioned earlier, serial

aggregation is suggested. The aggregation process first performs the

aggregation by local port, LIM, DPC, and network. Then by remote port, remote

38

DPC, remote, and network (remote side) by inroute and outroute. Finally, it

consolidates the local and remote per network aggregates by averaging them. At

the end of the aggregation by each network element, it reports the time spent

doing the aggregation.

Figure 6.1 – Aggregation process behavior diagram

Once the eleven classes of aggregates computation and materialization are

complete, the last_snapshot_loaded table is locked in exclusive mode. At this

point, the previously aggregated snapshot id is deleted from a table called

last_snapshot_aggregated, the latest is stored there. This way, there is no need

for the operators, network planners, and network managers to run a query

scanning the index of the aggregate tables to determine the snapshot id of the

last snapshot aggregated. Referencing this table in the where clause of their

queries to identify the last snapshot aggregated will be much faster and more

efficient. This is a suggestion to reduce disk I/O improving overall performance,

Perform Local
Aggregation per Port,

LIM, DPC, and Network

Insert Snapshot_Id
into table

snapshot_to_aggregate

Perform Aggregation
by Remote Port, DPC,
 Remote and Network

Insert Snapshot_Id
into

last_snapshot_aggregated

Select oldest
Snapshot_Id from

last_snapshot_loaded

Perform per Inroute
and Outroute
Aggregation

Lock Table
last_snapshot_loaded

Delete contents of
Table

last_snapshot_aggregated

Consolidate Local and
 Remote per Network

Aggregation

OR

Delete Snapshot_Id
from

snapshot_to_aggregate

Delete Snapshot_Id
from

last_snapshot_loaded

Check contents of
Table

last_snapshot_loaded

Unlock Table
(COMMIT)

last_snapshot_loaded

Print processing
information

Start new
Aggregation

Process

39

not to mention operators and other professionals’ time. From the

snapshot_to_aggregates table, the id of the last aggregated snapshot is then

deleted along with the last_snapshot_loaded table. Before committing all these

changes to the database, unlocking the last_snapshot_loaded table, and

disconnecting from the database, the existence of loaded snapshots not yet

aggregated is checked in the last_snapshot_loaded table.

After committing all these changes and unlocking the last_snapshot_loaded

table, the total aggregation time is computed and printed, and, if there are

snapshots loaded to be aggregated, another aggregation process is started

before resuming this process execution. The process is designed in this manner

to catch up on aggregation by network containment after a delay. A server

problem, a system congestion due to running daily or monthly temporal

aggregation, or system and database maintenance are examples of possible

causes for delaying the aggregation process.

As it happens in the loading process, the last section of the aggregation

process is the one that handles SQL errors. The behavior diagram of this

process is presented in Figure 6.1.

6.3 Temporal Aggregation Process Sections

The temporal aggregation processes developed are very similar to the

aggregation process, except that they do not use any auxiliary tables, since they

perform the aggregation by time, of all the contents of the network elements

aggregate tables. They were developed to provide examples of how aggregation

40

by time can be accomplished, to test time series cartridges performance against

standard SQL tools, and to provide performance data for temporal aggregation.

The temporal aggregation process has to be refined to meet the aging

schema requirements, not clearly defined at the current time.

One suggestion is to break the aggregation by time in three independent

processes, started one at a time, after aggregation by network containment is

complete, at appropriate hours, probably soon after midnight. The suggestion to

break this process in three, is to reduce the chances of running containment and

temporal aggregation together. Therefore, the temporal aggregation should be

broken in local, remote, and routes plus network aggregation. In this manner, it

will be possible to run temporal aggregation in between aggregations by network

containment.

41

Chapter 7

Development and Testing Environment

This research was developed using the following software: Solaris 2.6,

Oracle8 Enterprise Edition 8.0.5 (including Time Series Cartridges), C, Pro*C,

and embedded SQL. The hardware used was a Sun Workstation Ultra 10 with

a Sun Ultra5_10 sparc sun4u processor, 128 MB of RAM Memory, and one

disk. The disk has a practical capacity of approximately 50 I/Os per second,

depending on the characteristics of the I/O. One gigabyte of the disk space was

dedicated to the database, which was called Network Aggregates Database

System (NADS). NADS is the name also of the tablespace used. The allocated

SWAP area size occupies 217MB of disk space.

7.1 The OLAP Queries

To simulate the load and to test the response time of network management

data analysis queries, a set of processes was developed to try to emulate the

load of a real day-by-day network operation. As with the loading process, these

processes iterate at specified intervals of time for as many times as required,

according to a specified list of parameters. Still following the same track after

each run, these processes compute and report processing statistics of response

time and number of fetched rows. They were also developed in C and SQL

(Pro*C).

42

The queries on these processes run always against the data of the last

snapshot aggregated. The id of that snapshot is retrieved from the table

last_snapshot_aggregated, instead of being derived every time it is required.

This reduces disk I/O, processing, and load in general, providing better

performance.

The on-line analysis processing (OLAP) queries, developed to simulate the

operator’s work, query top sessions, ports, LIMs, and DPCs. Four programs also

perform drill-downs from local and remote DPCs, down to LIMs, then to ports,

and some of them to sessions, selecting the DPCs within which a chosen

attribute has the highest rate or sum per session, and then choosing the network

element with highest value, for that attribute. The drill-down operation is the

reverse of a rollup or aggregation.

To compare the performance of queries against materialized views with

queries without using materialized views, a similar set of processes were

developed to generate the same output results, performing the aggregation each

time the queries were run. The results will be discussed later in the performance

issues and eager-versus-lazy computation of aggregates sections.

Next, a thorough description of the parameters and different sections of a

typical query process will be provided.

7.2 Typical OLAP Query Process

As with other processes, query processes begin by defining C and SQL

(Pro*C) areas and variables. For each class of network elements queried, a

different structure with different header fields and one attribute is defined. The

43

header fields are the ones that vary according to the element type; the list of

attributes is common to all types. Following the definition of the data structures

and working variables, memory to store data fetched from the database is

dynamically allocated.

The next step is to connect the process to the database, using a valid

database user identification and a password.

These processes were designed to query any one of the twenty attributes

common to any network element, but one at a time. Therefore, after the

connection to the database, the process displays a list of the twenty attributes

available for queries, asking for three parameters:

• Interval – to determine how often the process (queries) will run.

• Number of iterations – which defines the number of iterations or how many

times the process will run.

• Attribute – a number from 1 to 20, corresponding to one of the attributes

on the displayed list.

After reading and validating the parameters, the processes select the correct

queries to query the right tables, retrieving the header fields and the chosen

attribute values.

The next operation these processes perform is to start a loop that runs for the

given number of iterations. Inside the loop in some cases, this process begins by

initializing variables like top DPC, top LIM, and top port. They are used to select

top network elements by any of the twenty attributes. Using a drill-down as an

example, what is usually done - and this can be done using other methods - is to

44

compute a per session rate or attribute sum of each DPC. Then the one with the

higher per-session value is determined. The LIMs of these DPCs are then

queried, and the top one selected using the same method, doing the same for

port, finally querying and listing the top sessions of the top port. This way the

sessions that are responsible for the highest values of the chosen attribute can

be found.

Typically, the query text is copied to an SQL area in memory, and then a

cursor is prepared, declared, and opened. After this, the header of the query

report is printed before entering an insider loop, which fetches the rows selected

by the cursor from the database and then prints them on the report. In this loop, it

also computes the per session values of the specific attribute to determine the

uppermost LIMs, ports, or sessions. When the insider loop ends, the cursor is

closed, and another cursor is opened to perform the queries, retrieving data of

the uppermost network element on the next lower level, and the process goes

on. Other criteria can be used to select specific network element statistics,

depending on the needs.

A query simply looking for the top elements of a specific class of network

elements is completed by querying and sorting them in descending order, then

fetching from the top only as many as desired. SQL is not used to select the

uppermost elements because it would require more resources than simple

fetches. It is suggested to have this type of query pre-formatted, which will

provide better performance with lower use of resources, leaving it to the user to

write queries that are not as frequent and common.

45

At the end of the query or drill-down response time information and number of

fetched rows is printed for performance analysis, and the process enters sleep

state until the running interval of time expires.

Once the query loop is run for as many iterations as required, the process

disconnects itself from the database and stops. As on any developed process, at

the end there is the section that handles SQL errors.

It was not the purpose of this research to test and use a graphical user

interface tool, and as it was not available, text reports were printed with the

results of the queries instead.

Figure 7.1 presents the behavior diagram of a typical query process,

developed for the purpose of this research.

Figure 7.1 – Typical query process behavior diagram

Display list of attributes
asking for parameters
and attribute number

Connect
to the database

Validate parameters
and select right

queries

Print statistics data

Allocate memory for
data structures

Prepare, declare,
and open cursor

Fetch rows of data
from the database

Determine element
with highest value

Print report header

OR Close cursor

OR

Close cursor and
Print processing

statistics

Wait for interval of
time to expire

46

7.3 OLAP Queries Set

A set of queries was put together to simulate operators, managers, and

network planners query load, and further to assess queries performance, either

using or not using materialized views. Table 7.1 lists the set and type of queries

used, running frequency of the queries in minutes, along with the number of runs

used to compute the average response times. The last column indicates that

queries were run in parallel (P) with loading and aggregation and incidentally with

one another. As in the real world, aggregation runs in sequence (S) and after the

loading process ends.

Table 7.1 – Set of queries used on tests, frequency, number of runs, and
type of processing

Process
Type

Frequency
(e.g. every
15 minutes)

Number
Of
Runs

Sequential
or Parallel
Processing

Loading 8 96 S*
Aggregation 8 96 S*
Queries:
Top Local DPCs 2 406 P
Top LIMs 5 162 P
Top Local Ports 5 162 P
Top Remotes 2 406 P
Top Remote DPCs 5 162 P
Top Remote Ports 5 162 P

Top 20 Inroutes 5 162 P
Top Outroutes 5 162 P
Top 20 Sessions 5 154 P
Drill Down by DPC, LIM, Port 5 162 P
Drill Down by DPC, LIM, Port, Session 8 101 P

* - Loading and Aggregation run in sequence, but both in parallel with queries.

47

Top queries, when using materialized aggregates, extract data from one

table. Drill-downs perform a sequence of queries against many tables of

aggregates.

For the tests not using materialized views, the set of the queries used was the

same, but the data was aggregated by each query, every time it was run.

To gather the processing and response times while comparing the different

alternatives, they were run by processing the equivalent to one day of the

session statistics, which is equivalent to 96 snapshots. Loading and aggregation

were run every 8 minutes, instead of 15 to accelerate the collection of statistics.

This operation makes it harder than the system requirements, meaning that for a

real situation the results are expected to be even better, since queries running

together with the loading and aggregation processes happen less frequently.

Since the running frequency for the processes and the many queries are

different, more response times for those queries running more often were

gathered and used.

An average of 63 queries were run every 15 minutes, which means 4.2 single

queries per minute.

48

Chapter 8

Options and Alternatives Analysis

Three basic alternatives were defined to compare their performance.

Variations of these alternatives were tested, and all the test results are presented

here.

The following is a description of main characteristics of the three alternatives,

which differ mainly by the type of tables used or by the combination of tables with

logging or nologging:

v Alternative 1

• Flat Relational Tables, which are referred to as Flat Tables.

• LOGGING – on the aggregate tables. This database option indicates

that objects creation and transactions against these objects will be

logged in the redo log files. Logging is useful mainly to undo

transactions not committed to the database, and to redo transactions

lost after a backup, made before these transactions were run, is

restored over the database to fix a problem.

v Alternative 2

• Index Organized Tables – also known as Index-Only Tables or IOT.

These tables are a new type of tables provided by Oracle8, having

very distinctive characteristics. They keep their data sorted by primary

key; all data is stored in the index as a standard Oracle B*-tree; no

additional indices can be created (only primary key unique indices are

49

allowed). IOT requires a primary key constraint, and pseudo column

RowID cannot be selected. As indices are not kept separately, this

does happen for flat tables, disk space is saved, mainly when a good

part of the rows is part of the primary key.

• LOGGING – is mandatory because the nologging option is not yet

available for this type of table.

v Alternative 3

• Flat Relational Tables.

• NOLOGGING - Since restoring aggregate tables updates through log

files usually would be less efficient than re-aggregating them from the

base data stored in the sessionstats table; aggregate tables do not use

logging. The sessionstats uses logging because it receives the data

coming from the network, which is not recoverable from anywhere

else, the aggregate tables use nologging. This way, it was assured that

no unrecoverable data is lost, while reducing database overhead.

8.1 Best Versus Worst Case

Later in this chapter, graphical results of the tests will be used to prove, why

the Alternative 3 was found to be the best one. To make a best-versus-worst

case comparison, an alternative considered the worst was tested with

• Flat tables.

• Primary keys not clustered.

• Snapshot id as date type.

• Logging.

50

• Sessionstats without primary key.

The results are in the graphs of Figure 8.1. The meaning of some of these

options, not explained until now, will soon be described.

Figure 8.1(a) – Averages of Best (left) versus worst case (right)

Figure 8.1(b) – Trend lines of best (left) versus worst case (right)

In Figure 8.1(a) the average times used to perform the loading and

aggregation of 96 snapshots, the average query time of the set of queries,

Worst Case - Flat Tables, Primary Key
NOT Clustered, Snapshot_Id as Date,

Logging, sessionstats without Primary Key

9.86

506

2.94

518.80

0

100

200

300

400

500

600

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Loading Aggregation
Queries Total

Alternative 3 - Flat Tables, Primary Key
Clustered & Integer, NOLogging,

sessionstats with Primary Key & LOG

9.15 10.05 0.12
19.32

0

100

200

300

400

500

600

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Loading Aggregation
Queries Total

Alternative 3 - Trends

0

100

200

300

400

500

600

S
ec

on
ds

Loading Aggregation
Queries Total

Worst Case - Trends

0

100

200

300

400

500

600

S
ec

on
ds

Loading Aggregation
Queries Total

51

previously defined, and the averages total is displayed. At the left side of Figure

8.1 (a) and (b), the graphs of the best alternative with the worst at the right are

shown. The trend charts clearly show that while the average times of the best

alternative tend to remain constant, the average times of the worst alternative

keep degrading steadily at a high rate.

8.2 Alternatives Standard Options

Some of the tested options were incorporated by all alternatives, once they

proved to be the best, to better compare the performance of the different

characteristics. The tests of some of the incorporated options are, most of the

times, presented as a variation of the same alternative to more clearly show the

difference in performance. The results presented in this section, except when

otherwise stated, were collected from 288 processed snapshots with

approximately 1,350 sessions each. Examples of options incorporated by all

alternatives are

• Definition of attribute precision as NUMBER (12,3), instead of simply as

FLOAT with 126 digits of precision – the default – was one of the first

changes applied to all aggregate tables, as well as to the table sessionstats,

which had its attributes defined as NUMBER (10,3). NUMBER data type

variables defined with this specific precision are still floating-point variables,

although with less accuracy, which takes less disk storage and computer

memory and requires also less computing power to operate them. NUMBER

(12,3) means the attribute has 12 digits of precision with three of them being

decimal places. This precision is considered good enough not to lose network

52

management data accuracy. The precision reduces memory and storage

requirements by approximately half. The difference in performance was very

clear when testing the database with a configuration having one session per

port, which is not close to reality. Anyway, with a configuration of eight

sessions per port, more similar to the reality, it was observed, as shown on

Figure 8.2, a longer aggregation time, with the loading and aggregation time

clearly going up, affecting the scalability of the system. The charts in Figure

8.2 compare the Alternative 3 using the default FLOAT precision for

aggregate tables attributes, and sessionstats table, with NUMBER (12,3)

precision for aggregate tables, and NUMBER (10,3) for sessionstats table.

Figure 8.2 – Performance of Alternative 3 with attributes defined as
NUMBER(12,3) (left) and the default FLOAT (126 digits) (right)

• Serial processing of aggregation for local and then remote network

elements – was defined also as a standard option for all three alternatives,

but it was tested running in parallel. To perform the tests, the aggregation

Alternative 3 - Capacity Limit Trends
288 Snapshots - 1,350 Sessions / Snapshot

Attibutes defined as NUMBER(12,3)

0

10

20

30

40

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends
288 Snapshots - 1,350 Sessions / Snapshot

Attibutes defined as FLOAT(126)

0

10

20

30

40

S
ec

on
ds

Loading Aggregation Total

53

process was broken in two, one performing the aggregation by local

network elements containment, and the other performing the aggregation

by network containment of the remote network elements. At the end, the

local and remote results by network are consolidated. Once more, it was

clearer on the preliminary tests with a network configuration with one

session per port that performing local and remote aggregation in parallel

was much worse than when done serially. As it happened on the parallel

loading and aggregation tests, what is still clear on the tests with the last

network configuration with eight sessions per port is the steadily growing

loading and aggregation time. This demonstrates that doing local and

remote aggregation in parallel does not scale well. These tests were also

run as part of a set of tests to determine the maximum capacity of the

proposed solution. The charts in Figure 8.3 exhibit the results of the tests.

Figure 8.3 – Trend lines of serial local and remote aggregation (left) versus
parallel local and remote aggregation processing (right)

• Serial processing of loading and aggregation – this is expected to happen

on a daily basis. Loading and aggregation were tested in parallel by

A lternat ive 3 - Capac ity L im it Trends for
S erial Loading & A ggregat ion

Loc al & Rem ote A ggregation run in P ara lle l

0

10

20

30

40

S
ec

on
ds

L oad ing A gg rega tion To ta l

A lternative 3 - Capac ity L im it Trends
S eria l Loading & A ggregation

S eria l Loc al & Rem ote A ggregation

0

10

20

30

40

S
ec

on
ds

Load ing A gg regation To ta l

54

having loading and aggregation running continuously without interval. This

procedure is part of the tests to determine the capacity limits of the

system. Again, the results were not as drastically different as the ones

observed in the tests with the network configuration having one session

per port. Therefore, the loading and aggregation time could be observed

growing uniformly, again demonstrating that this processing would not

scale as well, if such processing were possible. Figure 8.4 presents the

results of this operation. The total processing time for serial processing is

slightly higher, due to introduced delays to synchronize the loading and

aggregation processes.

Figure 8.4 – Serial loading and aggregation results (left), parallel loading
and aggregation (middle), and total processing time (right)

• Clustered indices – after the initial tests, it was observed that the

aggregation time was growing as the number of rows per table was going

up. These results were showing that the indices were not used or were not

effective. Upon aggregation process and data analysis, it was concluded

that placing the snapshot id as the first column of the primary keys of the

sessionstats and aggregate tables should make the difference. This

Alternative 3 - Capacity Limit Trends for
Loading & Aggregation run in Parallel

0

10

20

30

40

S
ec

on
ds

Loading Aggregation

Alternative 3 Total Processing Time

of Loading & Aggregation

Serial Processing X Parallel Processing

88.7 87.2

0

25

50

75

100
M

in
u

te
s

Serial Parallel

Alternative 3 - Capacity Limit Trends
Serial Loading & Aggregation

0

10

20

30

40

S
ec

on
ds

Loading Aggregation Total

55

conclusion was impressive because it was known that when the

aggregation is done by network containment, it always processes the rows

of one specific snapshot. Therefore, placing this column as the first

column of the index, clusters all the data normally used during aggregation

by network containment, reading and writing it together. This procedure

makes the indices updates also easier. Figure 8.5 depicts the difference of

the indices tree structure, for both situations. In Figure 8.5(a), there is the

non-clustered indices, and in Figure 8.5(b), the clustered indices are

shown.

Figure 8.5(a) – Non-clustered indices

Figure 8.5(b) – Indices clustered by snapshot

• Snapshot id as integer – was another option, which was also incorporated

by the three alternatives, instead of using a database date type field. On

Session 1

Snapshot 1 Snapshot 2 Snapshot 96...

Index

...

...

Session 1300

Snapshot 1 Snapshot 2 Snapshot 96...

Snapshot 1

Session 1300...

Index

...

...

Snapshot 96

Session 1 Session 2 Session 1300...Session 1 Session 2

56

the best-versus-worst case that is presented in Figure 8.1, this option was

one of those used by the worst case. What makes it so unfavorable, is

first, its size (a long character type field), and second, the frequent

conversions required to compare it to the desired snapshot id, during the

aggregation of a specific snapshot. The snapshot id used is not only

shorter, nine digits, but is also an integer, which performs better on

comparison operations. Besides, this integer is still a date, the date the

snapshot loading into the database started in seconds, although as said it

is not defined on the tables as a date-type, but as an integer. The date,

using a date-type field, although not used by the aggregation process to

identify the rows of a specific snapshot to be aggregated, was maintained

because it is required for this purpose by a new package provided with

Oracle8, called time series cartridges. This package can be used to

perform temporal aggregations. Meanwhile, it was determined by this

research that time series cartridges package has performance problems to

accomplish massive data temporal aggregation using views and views

materialization. It performs reasonably well, aggregating one attribute at a

time of a limited number of rows, so it should be restricted to perform ad

hoc queries. Test results about this investigation are presented later on

this chapter.

• Sessionstats table with primary key – was clear after the initial tests that

the definition of a primary key, and consequently the creation of indices

was increasing the loading time by thirty percent or approximately three

57

seconds. The increase in time was due to updates of the indices as the

insertion of session statistics was made on the table. Meanwhile, it was

later found that without indices on the sessionstats table, the average

aggregation time for the first day was, on average, six seconds higher,

and growing as the number of rows of the table sessionstats grew. This

led the researcher to the decision of incorporating the primary key for the

table sessionstats in all alternatives. Figure 8.6 shows the difference of

performance of the Alternative 3 by using or not using a primary key on

the table sessionstats.

Figure 8.6 – Alternative 3 loading and aggregation performance differences
when sessionstats table has no primary defined (left) and when it has a

primary key defined (right)

• Flat Relational Tables for networks configuration data – is another option

adopted as standard. When fully realized, the strengths and weaknesses

of Index-Only Tables (IOT) they were deemed perfect for storing the

network configuration data. Surprisingly, the actual test results did not

confirm this fact. Using IOT tables to store the network configuration is in

A lternative 3 - Capac ity Lim it Trends

0

10

20

30

40

50

60

S
ec

on
ds

Load ing A ggregation To ta l

A lternative 3 - Capac ity Lim it Trends

0

10

20

30

40

50

60

S
ec

on
ds

L oading A ggregation To ta l

58

fact clearly unfavorable. Figure 8.7 depicts the actual difference in

performance of Alternative 3, using the two types of tables.

Figure 8.7 – Loading and aggregation times using Flat Tables for networks
configuration data in the top two charts, and using IOT tables in the two

charts at the bottom

On the left side of the figure, there is the test results for snapshots with

1,350 sessions per snapshot and on the right side for 13,500 sessions per

snapshot. Not only is the performance poor when IOT tables are used to

store network configuration, but it also does not scale well because the

Alternative 3 - Capacity Limit Trends
Config on Flat Tables - (288 Snapshots)

0

10

20

30

40

50

60

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends
Config. in IOT - 13K Sessions (64 Snapshots)

0

100

200

300

400

500
1 7 13 19 25 31 37 43 49 55 61

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends
96 Snapshots - 13K Sessions / Snapshot

0

20

40

60

80

100

120

140

160

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends
Config. in IOT Tables (Only 45 Snapshots)

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45

S
ec

on
ds

Loading Aggregation Total

59

aggregation times keep on growing strongly. The trend was so clear and

steady that there was no need to run these tests for the usual 288

snapshots. On the top right side, a slight increase in aggregation and

loading time can be observed for the standard Alternative 3, when

processing snapshots with approximately 13,500 sessions. But it is

important to realize another important result this same chart shows: that

is, although there are ten times more sessions per snapshot, the total

processing time is not ten times the first. The scalability of Alternative 3 is

therefore proven.

• Aggregate tables without foreign keys – was also adopted as standard,

once their definition would not add value to the system, performing

redundant checking repeatedly.

8.3 Alternatives Comparison for the Actual Load

Alternative comparison is threefold: Loading process, aggregation process

performance, along with queries response time. In Figure 8.8, the top graphs

show the average processing and response times, as well as the averages total.

The lower charts of this figure show the trend lines of the same data. These lines

indicate the solution scalability, and it is clear that Alternative 3 is better than

Alternatives 1 and 2. On the graphics seen before, to determine loading and

aggregation capacity limits, where no queries were running, Alternative 1 seems

to have a similar performance, if not better than Alternative 3. However, here, it

is easy to see how much better Alternative 3 is, than Alternative 1. The averages,

totaling 19.32 seconds in Alternative 3, compared with the 37.73 seconds of

60

Alternative 1, says it all. However, this observation is worthwhile, showing that

the aggregation time for Alternative 1, with queries running in parallel, is almost

three times the aggregation time of Alternative 3. Alternative 1 queries

processing time is also fifty percent longer. As can be noticed, Alternative 2 has a

comparable performance to Alternative 1 for loading and aggregation, but

increasingly worse on queries response time. As Alternative 2 has no data

separate from indices, it has the best loading performance of the three

alternatives. Alternative 3 is what is proposed as a solution for network

management data aggregation by network containment.

Figure 8.8 – Alternative 1, 2, and 3, loading, aggregation, and queries
averages, as well as averages total at the top; plus the trend lines at the

bottom charts for the same data

Alternative 1 - Flat Tables, Primary Key
Clustered & Integer, Logging,
sessionstats with Primary Key

9.10

28.45

37.73

0.180

10

20

30

40

50

60

A
ve

ra
g

e
 t

im
e

 in
 s

e
c

o
n

d
s

Loading Aggregation
Queries Total

Alternative 3 - Flat Tables, Primary Key
Clustered & Integer, NOLogging,

sessionstats with Primary Key & LOG

9.15 10.05

19.32

0.120

10

20

30

40

50

60

A
ve

ra
g

e
 t

im
e

 in
 s

e
c

o
n

d
s

Loading Aggregation
Queries Total

Alternative 1 - Trends

0

10

20

30

40

50

60

Loading Aggregation
Queries Total

(s) Alternative 3 - Trends

0

10

20

30

40

50

60

Loading Aggregation
Queries Total

(s)

Alternative 2 - IOT Tables, Primary Key
Clustered & Integer, Logging,
sessionstats with Primary Key

8.75

28.73

38.36

0.880

10

20

30

40

50

60

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Loading Aggregation
Queries Total

Alternative 2 - Trends

0

10

20

30

40

50

60

Loading Aggregation
Queries Total

(s)

61

The statistics presented in this section were gathered by loading and

aggregating 96 snapshots, while running the set of queries presented in Table

7.1 in Chapter 7. That table also shows the frequency and number of queries run

to assemble the results presented in Figure 8.8. Table 8.1 shows response times

of processes and queries. Only the response times for a subset of the query set

is shown. Response times of the queries by remote network elements, as the

configuration used is symmetric, are similar. This reason reflects why it is not

worth showing both. The overall average was obtained by adding the loading,

aggregation, and query average time dividing the total by 3.

Table 8.1 – Loading, aggregation, and query average response time

Average processing times in secondsProcess or query name

Alternative
1

Alternative
2

Alternative
3

Loading 9.10 8.75 9.15
Aggregation 28.45 28.73 10.05
Queries:
Top DPCs 0.00 0.03 0.01
Top LIMs 0.05 0.44 0.02
Top Ports 0.04 1.03 0.03

Top Sessions 0.59 2.68 0.44
Top Inroutes 0.04 0.43 0.03
Drill Down by DPC, LIM, Port 0.04 0.78 0.01
Drill Down by DPC, LIM, Port, Session 0.50 0.78 0.29

Overall Average 12.58 12.79 6.44

62

8.4 Comparison of Alternatives Limits

The capacity limits of each alternative were determined, based on their hourly

loading and aggregation capacity. Loading is measured in megabytes per hour

and aggregation in session statistics per hour. No queries were run in parallel,

and there were no intervals between runs. The test results are based on 288

snapshots processing, each one having 1,350 session statistics to aggregate.

Figure 8.9 – Loading plus aggregation capacity limits of the configuration
used, for Alternative 1 (left), Alternative 2 (center), and Alternative 3 (right)

As already mentioned, Alternative 1, with logging, performs slightly better

than Alternative 3, but only when no queries are run in parallel. Alternative 3, as

can be seen, scales slightly better as aggregation time of Alternative 1 grows

faster. Alternative 2, using IOT tables, does not perform well. The analysis of the

reasons why IOT tables do not perform well is in the next section. Table 8.2

presents the numbers related to the statistics used to produce Figure 8.9 charts.

On Table 8.2, the first column has the process type and the corresponding

number of the Alternatives (1 to 3), column two has the average processing time

per snapshot, in column three there is the capacity limit for each option. Loading

capacity is expressed in megabytes per hour, and aggregation capacity is

Alternative 2 - Capacity Limit Trends

0
10
20
30
40
50
60
70
80
90

100

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends

0
10
20
30
40
50
60
70
80
90

100

S
ec

on
ds

Loading Aggregation Total

Alternative 1 - Capacity Limit Trends

0
10
20
30
40
50
60
70
80
90

100

S
ec

on
ds

Loading Aggregation Total

63

measured in sessions per hour. The number of snapshots processed and the

total number of session statistics processed comes next. The last two columns

indicate the type of tables used by each alternative, Flat (F) or IOT (I), and

whether LOGGING or NOLOGGING is used. *N, for Nologging means,

aggregate tables were defined with the NOLOGGING option, and sessionstats,

as well as the configuration tables are defined with LOGGING.

Table 8.2 - Maximum capacity - no intervals between runs, no queries,
serial loading, and aggregation processing

Process type
and

Alternative
number

Average
time per
snapshot

(secs)

MB or
sessions

per Hour

Number of
snapshots

Total
number of
sessions

processed

Flat or
IOT

tables

LOG
Or

NOLog

Loading 1 8.43 62MB 288 387,089 F L

Aggregation 1 9.55 269,110 288 387,089 F L
Loading 2 9.17 19MB 288 387,089 I L

Aggregation 2 49.14 82,980 288 387,089 I L
Loading 3 8.23 61MB 288 387,089 F N*

Aggregation 3 10.15 263,254 288 387,089 F N*

The capacity limits and aggregation rates achieved for the similar to actual

load are much higher than the minimum requirements of the project. The final

chapter will present the requirements compared to the achievements.

8.5 Alternative 3 Tests of Scale

To validate the capability of the proposed solution of handling network

statistics of tens of thousands or hundreds of thousands of sessions, Alternative

3 was run with a network configuration of 13,500 sessions, and the

corresponding network elements, as well as for a network configuration with

64

135,000 sessions. As can be verified by the charts of Figure 8.10, the solution

not only scales well but also scales with economies of scale from the network

with a configuration for 1,350 sessions to the network with 13,500 sessions. The

economies of scale occur because on the bigger network configuration, there are

relatively more sessions per LIM, DPC, and network. From the configuration with

13,500 sessions to the configuration with 135,000 sessions, the loading and

aggregation process times are slightly higher then ten times, but less than one

hundred times the configuration with 1,350 sessions. Therefore, as can be seen

in the graphs, the total processing time does not go up significantly as the

snapshot session statistics are loaded, the aggregates computed and inserted

into the database. The loading and aggregation tests with 135,000 sessions per

snapshot were run until the database disk space was completely full, degrading

the performance. Consequently, the results, as can be seen, were good. This

indisputably proves the scalability of the proposed solution. Figure 8.10, on the

top, has graphs showing loading average in KB/h (Kilobytes per hour),

computation of aggregates in S/h (sessions per hour), and the total number of

sessions processed to derive these statistics for network configurations with

1,350, 13,500, and 135,000 sessions, from left to right. A trend line connecting

the number of handled sessions per hour gives a perspective of the scalability.

The bottom charts of Figure 8.10 show for the three configurations, the loading,

aggregation, and total trend lines. Due to limits of disk space, the number of

snapshots processed for each configuration was different. From left to right, 288

snapshots for the network configuration with 1,350 sessions, 96 snapshots for

65

the network configuration with 13,500 sessions (in the middle), and only 11

snapshots for the configuration with 135,000 sessions.

Figure 8.10 – Scalability of the proposed solution, from left to right network
configurations have 1,350, 13,500, and 135,000 sessions

8.6 Index-Only Tables Performance

Disregarding the fact that performance of IOT tables was surprisingly poor, it

can be explained. What can be concluded is that they do not perform well in the

problem to be solved. Besides expecting that their performance may be improved

in the future, what must be understood that explains the inferior performance

compared to flat tables is

Alternative 3 - Capacity Limit Trends
288 Snapshots - 1,350 Sessions/Snapshot

0

5

10

15

20

25

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends
96 Snapshots - 13,500 Sessions / Snapshot

0

20

40

60

80

100

120

140

160

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Capacity Limit Trends
11 Snapshots - 135,000 Sessions / Snapshot

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

S
ec

on
ds

Loading Aggregation Total

Alternative 3 - Maximum Limits

677361
261 318 293387

1300
1500

0

500

1000

1500
T

h
o

u
sa

n
d

s

Loading KB / h Aggregation S/h
Sessions Total Linear (Aggregation S/h)

66

• As indices and data are stored together, a smaller quantity of index data is

stored per disk block.

• The aggregation process depends on indices to locate the snapshot

session statistics to be aggregated.

• Queries also need to use indices to locate the data to be read.

• In addition, data and indices are stored together. When indices are

needed alone, as in the two frequent cases mentioned above, more disk

blocks must be read to retrieve the same amount of indices.

• Requiring more disk I/O to retrieve the same amount of index data is

disastrous because disk I/O is the resource taking more time,

consequently, causing the biggest performance degradation in the system.

It is imperious to reduce I/O to the minimum to reach the best performance

of this system.

• Finally, as the data is stored in index format, the table rows have to be

reconstructed from the indices when they are read, causing additional

overhead.

Following a careful analysis and after observing the results presented in

Figure 8.7, shows the performance results of IOT tables storing networks

configuration data, it was concluded that IOT tables are definitely not a good fit

for this type of system with this kind of application.

67

8.7 Temporal Aggregation

Temporal aggregation performance is not as critical as the performance of

aggregation by network containment, which aggregates statistics used in

continuously monitoring the network traffic and performance. It is not as critical

because temporal aggregation is expected to run sparsely. Once a day, or even

once a week to perform aggregation by day, once a month to perform monthly

aggregation, and so on. This is very different than running it every fifteen minutes

or less, as it needs to be done for network containment aggregation.

Anyway, tests were run to perform aggregation by day using standard SQL

and time series cartridges. The option using standard SQL functions used

standard sum, and average functions plus group-by year, month, and day, which

were defined as independent fields. Time series cartridges used scale-up

functions of date type fields, plus sum and average functions. Both alternatives,

of course, used also network element ids to accomplish the temporal aggregation

by each network element or network. The same techniques used to perform the

aggregation by day, can be used to perform aggregation by the hour, month, and

year.

Six days of aggregates (576 snapshots with 1,350 sessions each) were used

to perform the computation and materialization of daily aggregates. The daily

aggregates of each network element class were derived from the aggregates

computed by the aggregation by network containment, of the same network

element class. It was observed that the aggregation time for the option using

68

standard SQL grows linearly with the quantity of aggregated rows, while the

aggregation time for the option using time series cartridges grows exponentially.

Figure 8.11 – Temporal aggregation of six days of network aggregates
using standard SQL functions and time series cartridges

The aggregation by port, LIM, remote port, and remote LIM, and inroutes, using

time series cartridges, aggregating six days of data would never end. It would

require much more memory than the 128MB of RAM available on the testing

system configuration. The aggregation option using standard SQL, performs the

aggregation by day of the six days of data, in approximately eighteen minutes. If

ran daily it will not take more than three minutes to perform the daily aggregation

of attributes by port, LIM, DPC, remote port, remote DPC, remote, inroute,

outroute and network. If it is decided to run the process weekly it is suggested to

break it in three, local, remote, and inroute, outroute, and network aggregation.

Once it is broken in three, each one should be run at the end of the aggregation

by network containment process. In this manner, the temporal aggregation will

Temporal Aggregation
Standard SQL versus Time Series Cartridges

16 4 15 4 6 1 0
69 65

10 10

490
552

0

200

400

600

800

1000

Port LIM DPC RPort RDPC Remote Inroute Outroute Network

Ti
m

e
in

 s
ec

on
ds

Standard SQL Time Series Cartridges

- 6 days of data
- 576 snapshots

69

not compete for resources with aggregation by network containment, running in

between them. Figure 8.11 shows some of the results. The columns going over

1,000 represent those aggregations that would never end. They were run for

more than twelve hours never ending.

It is obvious that, for big quantities of data, which is common in this kind of

application, using a schema that allows the use of standard SQL functions to

perform temporal aggregation is the only feasible solution.

70

Chapter 9

Eager versus Lazy Aggregates Computation

Eager and lazy aggregates computation strategy is a technique introduced

and discussed by many specialized papers, some of which are mentioned in this

report and listed in the references. These two techniques are related to another

popular organization for summary data, and data warehouses, the data cube.

Presenting the aggregation dimensions, this work followed the popular data cube

multidimensional structure, which contains at each point an aggregate value.

Data cubes use a hierarchical organization, and the aggregates on the lower

levels of the hierarchy are used to compute aggregates with coarser granularity

at the higher levels.

It is to compute higher level aggregates with coarser granularity that one

of the two strategies, eager or lazy, has to be chosen. These strategies use

different approaches to compute the coarser aggregates.

The lazy strategy does not pre-compute aggregates, deriving them from

the cube base data, in this case sessions statistics, only when the aggregates

are referenced by a user. This means that if the same data is referenced by

many users or by the same user many times, the same reads, computations,

writes are repeatedly performed. While no disk space is permanently used to

materialize aggregates, once the results are not saved for future use, the base

data, with finer granularity and consequently bigger volume, has to be

maintained. It has to be maintained to generate the coarser aggregates as they

71

are requested, and to keep the only existing information available about network

traffic and resources utilization, which often cannot be done for a period big

enough to satisfy, namely, network planning activities.

The eager strategy uses a different approach, pre-computing all the

aggregates up-front, materializing them by inserting them into real tables saved

onto a disk. This means the data is aggregated once for all operators, network

managers, and planners to use. When this strategy is deployed, the queries

against the higher network levels are very light and fast because the bulk of the

work was done in advance. The results obtained by this research prove that, on

average, the queries are eight times faster when using the eager-computation-of-

aggregates approach. Another very important aspect is that once the eager

strategy is used, there is no need to keep the base data to derive the coarser

aggregates, once they are already saved on disk. This leads to disk storage

savings with the ability to keep network management data, covering longer

periods.

The focus of this research was to prove, as was proven, that the eager

computation of aggregates can be used to derive the data cube for network

management data, using commercially available software. This project focused

on the practical aspects of the data cube implementation to materialize and store

network management data. It is realized that the materialization of the data cube

with eleven different planes, or levels, is completed in about ten seconds. It takes

less than twenty seconds to load and compute all the aggregates, using an eager

72

strategy. This achievement makes it possible to gather network statistics often,

providing frequent updates by any of the eleven defined dimensions.

The bottom line is an efficient sharing of resources, and resources sharing

implies savings by reusing materialized aggregates. By sharing pre-processed

information, the reduced competition for resources leaves more system power

available, increasing the overall system capacity.

As network operations do not allow analysis of all the fine-grain data

generated by a big network, the eager approach provides the means to easily

control the higher network levels without losing the ability to drill-down and

perform a detailed analysis, when a problem or abnormality is detected on higher

levels.

A lazy approach requires the aggregation all the way up to control the higher

network levels, partly repeating the same aggregation operations to perform a

drill-down analysis, when a problem is detected.

Materialized views make queries processing simpler, faster, and lighter,

saving resources while optimizing network operations, management, and

planning. Figure 9.1 presents the results of comparing performance using eager

and lazy strategy for aggregates computation. On the top left side, there is the

averages of loading, aggregation, and queries of the eager approach. The chart

on the bottom left shows the average loading, and query time with the

aggregation time being zero for the lazy approach. A total of the averages is

shown on both graphs. On the right side, Figure 9.1 shows the total loading,

aggregation, and query time for a typical fifteen minutes period, as well as the

73

total processing time of all of them. It evidently shows, that even for a load as

small as two queries of average complexity per minute, the total processing time

for the eager approach on the top right graph is much smaller. The benefits of

using an eager computation of aggregates only grows as the query rate

increases.

Figure 9.1 – Eager (top) versus lazy (bottom) aggregates computation

The results presented on Figure 9.1 were collected from processing 96

snapshots and a set of queries as defined on Table 7.1. The eager approach

used materialized views, while the lazy approach performed all the aggregate

computations every time a query was run. The query output generated was

similar; while the loading time for the lazy option is slightly better, the query

response time is eight times longer.

Alternative 3 - Flat Tables, Primary Key
Clustered & Integer, NOLogging,

sessionstats with Primary Key & LOG

9.15 10.05

0.12

19.32

0

10

20

30

40

A
ve

ra
g

e
 t

im
e

 i
n

 s
e

c
o

n
d

s

Loading Aggregation
Queries Total

Processing Times per Snapshot
Running 2 Complex Queries / Minute

All Aggregates Materialized

9.15 10.05

3.56

22.76

0

10

20

30

40

A
ve

ra
g

e
 t

im
e

 i
n

 s
e

c
o

n
d

s
Loading Aggregation
Queries Total

Processing Times per Snapshot
Running 2 Complex Queries / Minute

No Materialized Aggregates

8.97

0.00

29.62

38.58

0

10

20

30

40

T
im

e
 in

 s
e

co
n

d
s

Loading Aggregation
Queries Total

N o A gg re ga te s M a te ria liz a t ion - F la t Ta b le s ,
P rim a ry K e y C lu s te re d & In teg e r, N O L og g in g ,

s e s s io ns ta ts w ith P rim ary K e y & L O G

8 .9 7

0 .0 0 0 .9 9

9 .9 6

0

1 0

2 0

3 0

4 0

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

L oad ing Agg regation
Q ue ries T o ta l

74

A crucial advantage of the eager strategy over the lazy approach is the

capability provided by the eager strategy to implement easily an aging schema of

historical data, which is one of the proposals here.

9.1 An Aging Schema for Historical Data

Network planning without historical data would be an inaccurate divining

exercise, if possible at all. Long-term resources allocation cannot take advantage

of existing idle resources without using historical data. Therefore, network

planning, as well as an efficient long-term resources allocation, is highly

dependent on historical data. Nevertheless, there is no way to keep all detailed

network statistics related to a long period for a small to medium size network. To

solve the trade-off between the data that can be stored versus the data needed

an aging schema is proposed. The aging schema may assume different forms,

covering different periods with varied data granularity for each schema. The

aging schema ultimately will depend on the needs of the institution implementing

it. The initial aging schema, presented here, may cover very long periods. The

top network level statistics, that are equivalent to the top planes of the cube,

have coarser granularity. The lower and lower levels have finer and finer data

granularity covering shorter and shorter life spans. However, some managers

may need statistics with coarser granularity and longer life spans for the low-level

network elements on this research case ports and sessions. An aging schema

can address this and other needs. Any aging schema requires additional

aggregation by the time dimension, which is expected to be accomplished once a

75

day or a week, plus once a month, etc.; in other words, the temporal aggregation

need not to be done so often.

The proposed aging schema maintains

• Data on the base level of the cube, in this case, session statistics for a

week. No further aggregation is required. Session statistics data is

dropped afterwards.

• On the next level, by port, the data is aggregated daily, from the already-

calculated aggregates (for every fifteen minutes) to hourly aggregates.

These aggregates are then kept for three months.

• LIM aggregates, are aggregated once a day to daily granularity, from

previously computed LIM aggregates and stored for one year.

• For the DPC level, the proposal is to use LIM daily aggregates to calculate

monthly DPC aggregates, once a month, keeping them for five years.

• On the top level, the network level, monthly network aggregates are

computed from monthly DPC aggregates, once a month, and stored for

the life span of the network or more.

• Per snapshot aggregates at all levels are maintained for a week, then

dropped.

• Please note that the researcher sometimes suggests using previous level

aggregates to compute the coarser aggregates of the current level, to

reduce the quantity of data read and processed.

This schema reduces the data to a minimum, while maintaining information

on all levels with different granularities. This proposal fits those situations where,

76

after some time has passed, the network lower level detailed data loses

importance. Figure 9.2 depicts the proposed aging schema, showing that

although covering a shorter period, detailed data is more voluminous.

Figure 9.2 – Proposed network management data aging schema

Depending on the requirements, successive temporal aggregations can be

performed at all levels, if it is important to keep a historic record for the lower

network elements also. This option has to be treated in a case-by-case basis;

nevertheless, the suggestion here is to keep not hourly aggregates but daily

aggregates minimum, average, maximum, and the variance. This method is a

sure-fire approach to avoid heavy processing and at the same time, bulky data

storage.

Network

LIM
.
.
.

DPC
LIM
Port Port.

.

.
Port Port

.

.

.

.

.

.

DPC
LIM
Port Port.

.

.
Port Port

.

.

.
.
.
.

.

.

.
Network Life Monthly Network Aggregates

5 Years of Monthly Data Port Cluster Aggregates

1 Year of
Daily LIM Aggregates

1 Quarter of
Hourly Port Aggregates

1 Week of
every

15 Minutes
Session

Aggregates

77

Chapter 10

Conclusions and Future Work

The competition to provide network services is becoming fiercer among

telecommunications businesses with larger and larger investments. Resource

allocation of high bandwidth networks, as well as network planning and

management, must be further developed. This research proves that data cube

techniques, using views and views materialization, can be used to compute,

manipulate, and efficiently store current and historical network aggregates, which

are of primary importance to achieve higher stages of development in these

areas.

It is also proven that using an eager approach for computation of aggregates

is a better strategy for this kind of application than the lazy approach, and this

can be done using Oracle8database software.

Finally, this study demonstrates that the proposed solution of using flat

relational tables, primary keys clustered on sessionstats, and aggregate tables;

furthermore, using snapshot ids as integers and nologging for the aggregate

tables, not only is a solution, but it is a solution that performs and scales

proficiently very well.

All the basic requirements of the project were met. A list of effectiveness

measures follows in order to compare what was required to accomplished

results.

78

10.1 Requirements and Achievements

EM1 - The system shall compute all aggregates at all eleven levels correctly and

write them into the database for all the 1,300 sessions with 20 attributes each in

fifteen minutes or less.

The system involves loading the session statistics and computing the

aggregates correctly at all nine levels, for 1,300 sessions with 20 attributes each,

and storing them into the database in 19.2 seconds. Figure 10.1 depicts goals

versus achievements in a graphical format.

Sixty thousand sessions can be processed by this system in up to fifteen

minutes.

Figure 10.1 – In the left chart there is time available (in seconds), used, in
the right it has processing requirements in number of sessions, for every

fifteen minutes, and what was achieved

EM2 - The system shall store the data in a format that allows the graphical user

interface to access them and provide updated reports or graphics every 15

minutes.

Processing Time
(1,300 Sessions)

900

19.2
0

300

600

900

1200

T
im

e
in

 s
ec

on
ds

Maximum Time Used

Number of Sessions
(Under 15 Minutes)

1,300

60,000

0

40000

80000

T
im

e
in

 s
ec

on
ds

Minimum Goal Achieved

79

Data is stored in the database in a format readable by queries and is

consequently readable by a graphical user interface. Updated reports and

graphics may be provided every fifteen minutes.

EM3 - The proposed system tools shall provide means to query the data without

requiring any programming.

All the database standard tools, including SQL, are available to query the

data. Specifically, all the standard Oracle8 tools plus times series cartridges are

at hand.

EM4 - The system shall handle huge quantities (at least gigabytes) of current and

historical statistical data.

Oracle8 database can handle databases with terabytes of data. The tests

prove that up to 61MB of statistics can be loaded and aggregated by the system

in up to fifteen minutes.

EM5 – The system shall be more flexible, providing more tools and functionality

than the current system.

The system has more flexibility than the current system and provides more

tools, e.g., standard SQL tools, time series cartridges, and aging capabilities.

EM6 – The system must be user-friendly.

The system is simple and has the entire modern user-friendly tools provided

by Oracle8 software.

80

10.2 Potential Performance Improvements

Potential improvements of the presented results may be achieved by

investing in the following areas:

v Disks:

• Disks with independent paths

• Faster disks

• More cache memory

• Disks exchangeable on the fly are strongly recommended for this type

of application.

v Processing unit:

• More RAM memory

• More processing power.

v Database software:

• Reconfiguration, separating in different disks with different paths, data

extents, software extents, and log

• Reconfigure the database to use a bigger database page size, which is

highly recommended for data warehouse systems.

v With more powerful configurations, especially with more than one processor

and multi-disk-paths, local and remote aggregation in parallel shall be

considered.

81

10.3 Innovative Concepts and Future Work

It is clear to the writer that network planning needs are growing and

increasing in importance. Therefore, what is proposed here is the creation of a

new functional area on the ISO model for network management, and this area is

network planning. Network planning will go beyond network management by

performing network resources administration and allocation not for the next

minute, not for the next hour, but for the next month, the next year, and years to

come.

The proposed historical data model is a tool that makes it possible to gather

data not only to be used in resource allocation but also to forecast their

exhaustion and the need for more or to add more capacity to the existing

resources. What has recently been often mentioned as a requirement of the

modern network management policies is a proactive network management, to

the extent possible, minimizing the requirements, urgencies, and emergencies of

the reactive network management.

Some research was conducted to discover the best methods and techniques

to perform temporal aggregation, but they need additional development to refine

and complete the optimal aging schema. Part of the aging schema is deleting

undesired data, which performance will depend on the model used. From the

results observed during the course of this research, conclusions infer that the

best strategy is to develop a model in which data cleaning is based on dropping

tables of unnecessary data and creating new empty tables, rather than deleting

specific rows from the tables, whenever possible.

82

Implementing a data cleaning schema based on table profiles defined in a

table in the database, which would hold maintenance information such as how

many snapshots or how long data should be maintained in each table, is

probably a sound idea worth pursuing, implementing, and testing. Such a plan

would support a self-maintained database for historical data. A spinning circular

database with new data coming in and aged data going out would probably be a

well-founded abstraction of such a database.

83

References

[1] N. Roussopoulos. Materialized Views and Data Warehouses. In SIGMOD

Record, ACM Press, Volume 27, Number 1, 1998.

[2] I. Mumick, D. Quass, B. Mumick. Maintenance of Data Cubes and

Summary Tables in a Warehouse. In Proceedings of the 1997 ACM

SIGMOD, International Conference of Management of Data, Tucson,

Arizona, USA, 1997.

[3] D. Barbara, M. Sullivan. Quasi-Cubes: Exploiting Approximations in

Multidimensional Databases. In SIGMOD Record, ACM Press, Volume 26,

Number 3, 1997.

[4] S. Guha, R. Rastogi, K. Shim. CURE: An Efficient Clustering Algorithm for

Large Databases. In Proceedings of the 1998 ACM SIGMOD,

International Conference on Data Management, Seattle, Washington,

USA, 1998.

[5] C. Dyreson. Information Retrieval from an Incomplete Datacube.

Proceedings of the 22nd VLDB Conference Mumbay (Bombay), India,

1996.

[6] C. Dyreson. Using an Incomplete Data Cube as a Summary Data Sieve.

Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 1997.

84

[7] Y. Kotidis, N. Roussopoulos. An Alternative Storage Organization for

ROLAP Aggregate Views Based on Cubetrees. In Proceedings of the

1998 ACM SIGMOD, International Conference on Management of Data,

Seattle, Washington, USA, 1998.

[8] N. Roussopoulos, Y. Kotidis, M. Roussopoulos. Cubetree: Organization of

and Bulk Incremental Updates on the Data Cube. In Proceedings of the

1997 ACM SIGMOD, International Conference of Management of Data,

Tucson, Arizona, USA, 1997.

[9] S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP

Technology. In SIGMOD Record, ACM Press, Volume 26, Number 1,

March 1997.

[10] G. Kock, K. Loney. Oracle8 the Complete Reference. Osborne/McGraw

Hill, 1997.

[11] D. Oliver, T. Kelliher, J. Keegan Jr.. Engineering Complex Systems with

Models and Objects. McGraw Hill, 1997.

[12] A. Alomari. Oracle8 & Unix Performance Tuning. Prentice Hall PTR, 1999

[13] Hughes Network Systems, Inc. - Integrated Satellite Business Network

(ISBN), LANAdvantage Reference Manual, Release 7.6B, 1993.

[14] Hughes Network Systems, Inc. - Integrated Satellite Business Network

(ISBN), Statistics Report and Database Description, Revision B, 1991.

85

[15] J. Valluri. Database Models and Architectures for Hybrid Network

Management. Center for Satellite and Hybrid Communications Networks,

University of Maryland, 1996.

[16] P. Viswanathan. Automated Networks Fault Management. Center for

Satellite and Hybrid Communications Networks, University of Maryland,

1996.

[17] Oracle8 Time Series Cartridges. Release 8.0.4 User’s Guide. Oracle.

Oracle Corporation, 1997.

[18] T. Connolly, C. Begg, A. Strachan. Database Systems – A Practical

Approach to Design, Implementation, and Management. Addison-Wesley,

1998.

