
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: ADJUSTMENT FOR DENSITY METHOD 

TO ESTIMATE RANDOM EFFECTS IN 
HIERARCHICAL BAYES MODELS 

  
 Lijuan Cao, Doctor of Philosophy, 2018 
  
Dissertation directed by: Professor, Partha Lahiri, Department of 

Mathematics & Joint Program in Survey 
Methodology 

 
 
The Adjustment for Density Method (ADM) has received considerable attention in 

recent years. The method was proposed about thirty years back in approximating a 

complex univariate density by a density from the Pearson family of distributions.  The 

ADM has been developed to approximate posterior distributions of hyper-parameters, 

shrinkage parameters and random effects of a few well-known univariate hierarchical 

Bayesian models. This dissertation advances the ADM to approximate posterior 

distributions of hyper-parameters, shrinkage parameters, synthetic probabilities and 

multinomial probabilities associated with a multinomial-Dirichlet-logit Bayesian 

hierarchical model. The method is adapted so it can be applied to weighted counts. We 

carefully propose prior for the hyper-parameters of the multinomial-Dirichlet-logit 

model so as to ensure propriety of posterior of relevant parameters of the model and to 

achieve good small sample properties. Following general guidelines of the ADM for 

univariate distributions, we devise suitable adjustments to the posterior density of the 



  

hyper-parameters so that adjusted posterior modes lie in the interior of the parameter 

space and to reduce the bias in the point estimates. Beta distribution approximations 

are employed when approximating the posterior distributions of the individual 

shrinkage factors and Dirichlet distribution approximations are used when 

approximating the posterior distributions of the synthetic probabilities. The parameters 

of the beta or the Dirichlet posterior density are approximated carefully so the method 

approximates the exact posterior densities accurately. Simulation studies demonstrate 

that our proposed approach in estimating the multinomial probabilities in the 

multinomial-Dirichlet-logit model is accurate in estimation, fast in speed and has better 

operating characteristics compared to other existing procedures. We consider two 

applications of our proposed hierarchical Bayes model using complex survey and Big 

Data. In the first example, we consider small area gender proportions using a binomial-

beta-logit model. The proposed method improves on a rival method in terms of smaller 

margins of error. In the second application, we demonstrate how small area multi-

category race proportions estimates, obtained by direct method applied on Twitter data, 

can be improved by the proposed method. This dissertation ends with a discussion on 

future research in the area of ADM. 
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Chapter 1: Introduction

This dissertation advances the Adjustment for Density Method (ADM) in ap-

proximating the posterior distributions of hyper-parameters, shrinkage param-

eters, synthetic probabilities and multinomial probabilities associated with a

multinomial-Dirichlet-logit model and demonstrates its advantages over some

existing methods through real data examples and simulation studies. The

multinomial-Dirichlet-logit model is proposed to combine information from

multiple data sources. The ADM based on this model produces estimates

of the multinomial probabilities that are much more reliable than the direct

multinomial sample proportions for small areas. The individual shrinkage fac-

tors allow the small area proportion estimates to shrink away from the direct

proportion estimates towards the synthetic proportion estimates obtained by

the multinomial logistic regression. We carefully propose a hyper-prior for

the hyper-parameters of the multinomial-Dirichlet-logit model so as to ensure

propriety of posterior of relevant parameters of the model and to achieve good

small sample properties. Following general guidelines of the ADM for univari-

ate distributions, we devise suitable adjustments to the posterior density of

the hyper-parameters so that posterior modes lie in the interior of the param-

eter space and to reduce the bias in the point estimates. Beta distribution

1



approximations are employed when approximating the posterior distributions

of the individual shrinkage factors and Dirichlet distribution approximations

are used when approximating the posterior distributions of the synthetic prob-

abilities. Using Monte Carlo simulations and data analysis, we demonstrate

that the proposed ADM yields good point estimates, variance estimates and

approximate distributions for all parameters of interest. Compared with the

MCMC, the available program for the ADM is fast enough to be used in-

teractively for model checking purpose. The ADM introduces a third level

hyper-prior on the hyper-parameters to prevent infinite value for the variance

component estimate, which the MLE of the variance component occasionally

takes on. Through the restricted maximum likelihood (REML) type correction

to the posterior distribution function of the hyper-parameters, the bias in the

variance component estimate is corrected. The ADM approximations are ap-

plied when approximating the posterior distributions of the shrinkage factors

by beta distributions and the synthetic proportions by Dirichlet distributions.

The ADM generates closed-forms for the posterior means and the posterior

variances for the multinomial probabilities, with the variances in the hyper-

parameter estimates incorporated. The resulting wider interval estimates for

the multinomial probabilities partly explain the higher interval coverage rates.

The ADM improves on the operating characteristics (e.g., risk and coverage

rate) of the multinomial probability estimates compared with the EB plug-in

methods.
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Empirical Bayes and hierarchical Bayes models are useful in data analysis,

thus there exists an incentive to improve the parameter estimation procedure

for these models. This dissertation gives two data analysis examples using

hierarchical Bayes models. In one of the examples, we introduce the Twitter

direct gender proportion estimates as the auxiliary variable to the American

Community Survey (ACS) gender counts in small areas in a hierarchical bi-

nomial regression model. This example proposes an alternative method to

calculate the point estimates and variance estimates of the small area gender

proportions. The alternative gender proportion estimates have smaller mar-

gins of error than the direct small area estimates. In the other example, we

apply the proposed ADM in estimating the posterior means and posterior vari-

ances of the multinomial probabilities in a multinomial-Dirichlet-logit model

as mentioned above to a Twitter race count dataset. There are some small

areas in the Twitter data with small race counts and the direct proportion es-

timates for these areas cannot be trusted. The proposed procedure generates

synthetic proportion estimates by multinomial logistic regression on area-wise

predictors and permits the proportion estimates to shrink between the direct

estimates and the synthetic estimates. The extent of the shrinkages depend

on the small area sample sizes.

There are huge literature in small area estimation42. in empirical and hierar-

chical Bayes models. Ghosh and Rao (1994) reviewed the multi-level Bayes

models to estimate county population and small area per capita income (PCI)
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and to adjust for population undercount in the 1980 U.S. Census17. The esti-

mates in the examples of the small area PCI and the adjustment for population

undercount are weighted averages of the sample estimates and the synthetic

regression estimates. By introducing the synthetic regression estimates, the

updated estimates borrow strength from related areas. More recently, Rao and

Molina (2015) discussed the issues in empirical and hierarchical Bayes models

in small area estimation using the MCMC approach42.

There are papers on Bayesian and empirical Bayesian methods for multinomial-

Dirichlet models. Carlin and Louis (2010) briefly discussed the MCMC esti-

mation in multinomial-Dirichlet Bayes models9. In order to obtain reliable

estimates from American Community Survey (ACS) to determine whether to

provide language assistance during elections for designated language-minority

groups of citizens who are unable to speak or understand English well enough

to participate in the electoral process, Ashmead and Slud (2017) applied a

multinomial-Dirichlet model to carry out inference on the small area propor-

tions of four categories of voting-age citizens and proposed model selection

and model validation procedures1. Slud and Ashmead (2017) also developed

a hybrid method to estimate the variances of the proportion estimates in a

multinomial-Dirichlet hierarchical model47. Multinomial-Dirichlet-logit model

can also be applied to estimate small area multi-category proportions (e.g.,

race and employment status).

Because of the demand of analysis tools for multinomial data, we improve the
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parameter estimation for a multinomial-Dirichlet-logit model. The parameter

estimation method is extended from Morris and his team’s research in ADM.

The ADM generates estimates of random effects with good quality even when

the sample size is small with fast computation speed. However, they restrict

themselves only to the case of univariate distributions including normal, bi-

nomial and Poisson hierarchical models and they have not conducted research

on ADM for multivariate distribution such as the multinomial-Dirichlet-logit

model we consider in this dissertation. The ADM requires case by case de-

tailed extension to papers written by Morris and his collaborators to a new

model, including the selection of suitable hyper-prior, proof of conditions for

posterior propriety and selection of the suitable approximating distributions to

exact posterior distributions. All of the model-specific technical work involved

in ADM make this multinomial problem a non-trivial problem.

There are some existing methods to implement Bayesian methodology for

multi-level models. One of the most commonly used methods is MCMC.

This method requires checking the convergence of the MCMC and is com-

puter intensive. In case of big data, this method is extremely time-consuming.

Since MCMC is a stochastic procedure, estimates vary even when the same

model is applied to the same dataset repeatedly. This randomness is not fa-

vored by legal and public policy applications13;38. Moreover, MCMC is not

convenient in handling non-integer weighted counts as commonly observed

in survey data since some existing MCMC packages require integer counts
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for multinomial distribution. Another parameter estimation procedure is the

empirical Bayes (EB) procedure with the MLEs or the restricted maximum

likelihood (REML) estimates of the hyper-parameters plugged in. The two

EB procedures are denoted by EB-MLE and EB-REML, respectively. In the

multinomial-Dirichlet-logit model in this dissertation, the MLE and the REML

estimate of the variance component will occasionally occur at an infinite value

for small sample sizes. This is consistent with research obtained by Chris-

tiansen and Morris (1997)13. The infinite variance component estimate will

cause trouble in the inference of the multinomial probabilities. Also, these two

EB-plugin procedures are not ideal in the sense of low coverage rates for small

areas and coverage rates varying with area sample sizes. All these disadvan-

tages of the EB-MLE and the EB-REML methods have been observed in the

simulation studies in Chapter 4.

To address all the problems in the MCMC and EB procedures, we propose the

ADM to improve the parameter estimation in the multinomial-Dirichlet-logit

model. The ADM serving as an alternative parameter estimation procedure

to MCMC was introduced by Morris (1988)37. Ever since, Morris and his stu-

dents have written a series of papers in this field. They have developed the

ADM to estimate the first level random effects in multi-level Poisson13, nor-

mal and skewed-normal24;38 and binomial25 models. Morris and Tang (2011)38

summarize seven advantages of the ADM, some of which have become obsolete

(e.g., (4) in the conclusion is not true any more since MCMC can handle multi-
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level generalized linear models at the time of writing this dissertation). We

would like to summarize some advantages of ADM observed from our research,

including (1) the overwhelmingly fast speed of ADM compared with MCMC

permits it to be used repeatedly for model selection, model checking and op-

erating characteristics checking; (2) same results each time the procedure is

applied to the same dataset using the same software platform on the same ma-

chine while it is impossible for stochastic approximations13;38; (3) preventing

infinite values for the variance component estimate by adjusting the likelihood

of the hyper-parameters; (4) introducing the variance of the hyper-parameter

estimates to the random effect estimates and consequently increasing the cov-

erage rates to nearly the nominal coverage rates; (5) the closed-form approxi-

mations to the posterior distributions of all the parameters in the hierarchical

models; and (6) capability to handle weighted non-integer counts in Poisson,

binomial and multinomial models although this advantage is not emphasized

in the ADM since some hierarchical Bayes and empirical Bayes methods are

applied to non-integer survey-weighted estimates of integer counts22;32.

This dissertation is structured as follows. Chapter 2 is a review of the ADM

papers and dissertations and the readers can skip this chapter if desired. This

chapter may be useful to those who may not be familiar with ADM as the re-

search has mostly been conducted by Morris and his students. Chapter 3 and

Chapter 4 are the two most important chapters of this dissertation. Chapter 3

details the development of the ADM for a multinomial-Dirichlet-logit hierar-
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chical model. Chapter 4 is the study of the proposed ADM through real data

examples and simulation experiments. Chapter 5 contains two application ex-

amples using hierarchical Bayes models implemented by the ADM. Chapter

6 concludes the dissertation and briefly introduces future research. All the

proofs are deferred to the appendix.

Chapter 2 begins with an introduction to the theory of ADM proposed by

Morris37. The ADM approximates the distribution of the parameter of interest

by one of the Pearson family distributions. The selection of the Pearson family

distribution is guided the support of the distribution to be approximated.

When there are multiple Pearson distributions that satisfy this criterion, the

selection of the Pearson distribution can be made based on the performance

of the ADM for a particular inferential problem (e.g., the coverage rate as

discussed in Chapter 4 of this dissertation). The ADM approximation uses

the first two derivatives of the logarithm of adjusted posterior density function

of the parameter of interest. This is analogous to the normal approximation

with moment matching. Then Chapter 2 details the development of ADM for

multi-level Poisson, normal and skewed-normal and binomial models and ends

with a discussion of the advantages of the ADM in parameter estimation for

hierarchical Bayes models.

Chapter 3 develops the ADM for the multinomial-Dirichlet-logit model. As

mentioned earlier, the ADM uses a series of adjustments to the posterior dis-

tribution of the hyper-parameters, the shrinkage factors and the proportions.
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This chapter first describes the multinomial-Dirichlet-logit model in two math-

ematically equivalent forms - the descriptive form and the inferential form -

both of which have a third level hyper-prior on the hyper-parameters. Then

we provide a mild sufficient condition of the data for the posterior distribution

of the hyper-parameters to be proper. Once the mild condition of the data

is satisfied, the hyper-parameter estimates lie in the interior of the parameter

space. Then we use normal approximation to assign a joint normal distribu-

tion to the hyper-parameters. Our proposed approximations to the posterior

means and posterior variances of the multinomial probabilities take into ac-

count the variabilities of the hyper-parameters. Both the posterior means and

the posterior variances are functions of the posterior moments of the shrink-

age factors and the synthetic probabilities. The distributions of the shrinkage

factors are approximated by the beta distributions and the distributions of the

synthetic probabilities are approximated by the Dirichlet distributions using

ADM. In this chapter we extend the ADM to a multinomial-Dirichlet-logit

model. The detailed research includes the selection of the appropriate hyper-

prior, the proof of posterior propriety conditions for such a hyper-prior, the

approximation of the determinant of the Hessian matrix and the Dirichlet ap-

proximations to the posterior distributions of the synthetic proportions.

Chapter 4 compares our proposed ADM with the corresponding hierarchical

Bayes method implemented through MCMC and the EB methods. The com-

putational speed of our proposed ADM is overwhelmingly faster than that of

9



MCMC. For a dataset with 10 areas and 5 categories for each of 2 covari-

ates, the ADM is hundreds of times faster than the MCMC method. The

comparison with the EB methods by simulation studies demonstrates that our

procedure ensures parameter estimates to lie in the interior of parameter space

under a mild condition on the data and has better risks and better coverage

rates.

Chapter 5 gives two application examples using hierarchical Bayes models. The

first example introduces the Twitter direct small area estimates of the gender

proportions as an auxiliary variable to the ACS small area gender counts in a

binomial-beta-logit regression model. The small area gender proportion esti-

mates are generated by the ADM developed by Tak, Kelly and Morris (2016)25

and the estimation procedure is implemented using the Rgbp package25 in R.

It has been verified that our proposed small area gender proportion estimates

have smaller margins of error than the ACS estimates. The second applica-

tion example is to apply our proposed ADM for the multinomial-Dirichlet-logit

regression model to the Twitter small area race count dataset and calculate

the small area race proportion estimates. The estimated race proportions are

weighted averages of the direct race proportion estimates and the synthetic

race proportion estimates.

Chapter 6 concludes this dissertation by summarizing the ADM in parameter

estimation in hierarchical Bayes models and its application and discussing our

contribution to the area of ADM. Multinomial data is a widely observed data

10



type in both the public and the private sectors. The multinomial-Dirichlet-

logit regression model is useful in estimating small area probabilities. The

existing parameter estimation procedures for multinomial-Dirichlet-logit re-

gression model can either be slow in speed (e.g., MCMC) or generate undesir-

able estimates (e.g., EB). Our proposed ADM overcomes the problems in the

existing parameter estimation procedures.
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Chapter 2: Literature Review

This chapter is a literature review of the researches which have been conducted

in the area of ADM. It is for the readers who are not familiar with ADM. The

readers can skip this chapter if you are only interested in the work conducted

by the author of this dissertation. This chapter introduces the ADM in random

effect estimation in some hierarchical Bayes models and the research which has

been conducted mainly by Morris and his students. The ADM for different hi-

erarchical models all contain some adjustments to the posterior distribution of

the hyper-parameters and the ADM approximations to some posteriors of the

parameters of interest (e.g., the shrinkage factors). The ADM approximation

allows approximating the posterior distributions by a range of distributions in

the Pearson family. The ADM approximation provides convenience when the

density to be approximated is defined on a subset of the set of real numbers.

And the ADM have been implemented for several hierarchical Bayes models

because of their fast computational speed and good operating characteristics

(e.g., risk and coverage rate). This chapter is organized as follows. Section

2.1 introduces the theorem and the advantages of ADM in random effect es-

timation. Sections 2.2 to 2.4 detail the ADM approximation procedures for

random effect estimation in Poisson-gamma, normal-normal, and binomial-

12



beta hierarchical models. Section 2.5 discusses the possible research topics in

both theory and application in this area.

2.1 Adjustment for Density Method

ADM was first proposed by Morris37 in the year 1988. ADM provides an

extension to normal approximation and allows approximation by the Pearson

family of distributions37. The definition of the Pearson family of distributions

is given by Morris in his paper37.

Definition 2.1 (Pearson Family) The Pearson family is the natural expo-

nential family (NEF) with the quadratic adjustment factor function Q(x) =

q2x
2 + q1x+ q0 > 0, which has density:

f(x) = KQ(m,µ0)e−m
∫
x−µ0
Q(x) dx/Q(x)

with {x : 0 < Q(x) < ∞}. For fixed adjustment factor function Q(x), this

density is a two parameter distribution, denoted by

Pearson(m,µ0;Q) = Pearson

[
µ0,

Q(µ0)
m− q2

]
,

where µ0 and Q(µ0)
m−q2

are the mean and variance of the Pearson distribution,

respectively. The variance V ar(x) = Q(µ0)/(m− q2) is finite if m > q2.

Table 2.1 lists some distributions in the Pearson family and the relevant pa-

13



rameters and adjustment factors. As seen from the table, the Pearson family

contains distributions lying on various intervals. Usually, we select the ap-

proximating Pearson distribution with the same support as the density to be

approximated. The first column in Table 2.1 presents the Pearson distribution

with traditional parameters which are commonly used by statisticians and the

last two columns list the Pearson-type parameters µ0 and m. And the Q(x)

column gives the adjustment factor function.

Table 2.1: Some Pearson Families

Distribution Density p(x) ∝ Range(x) Q(x) q2 µ0 m

Normal(µ, σ2) e−(x−µ)2/2σ2 (−∞,∞) 1 0 µ σ−2

Gamma(a, b) xae−bx (0,∞) x 0 a/b b

Inv −Gamma(a, b) x−a−1e−b/x (0,∞) x2 1 a/(b− 1) b− 1

Beta(a, b) xa−1(1− x)b−1 (0, 1) x(1− x) −1 a/(a+ b) a+ b

F ∗(a, b) xa

(1+x)a+b−1 (0,∞) x(1 + x) 1 a/(b− 1) b− 1

tn (1 + x2

n
)−

n−1
2 (−∞,∞) n+ x2 1 0 n− 1

Consider approximating the density f(x) by a Pearson family distribution.

f(x) ≈ KQ(m,µ0)e−m
∫
x−µ0
Q(x) dx/Q(x) (2.1)

Then the goal is to estimate the parameters µ0 and m of the Pearson distri-

bution. By first multiplying both sides of equation (2.1) by Q(x) and then

14



taking the natural log on both sides, we have

log
(
f(x)Q(x)

)
≈ log

(
KQ(m,µ0)

)
−m

∫ x− µ0

Q(x) dx. (2.2)

Let l(x) = log
(
f(x)Q(x)

)
and take the first and second derivatives of l(x),

∂l(x)
∂x

= −mx− µ0

Q(x) (2.3)

∂2l(x)
∂x2 = − m

Q(x) + m(x− µ0)Q′(x)
Q2(x) . (2.4)

Set the first derivative in equation (2.3) to be 0 and get the solution x0 = µ0.

Thus, x0 = µ0 maximizes the adjusted density f(x)Q(x), which is the density

to be approximated f(x) multiplied by the adjustment factor function Q(x) of

the approximating Pearson distribution. Meanwhile, the Pearson distribution

parameter µ0 can be estimated by x0. That is, use the MLE of the adjusted

density to estimate the mean of both the density f(x) and the Pearson distribu-

tion and avoid integration. Then by inserting x0 = µ0 to the second derivative

in equation (2.4), we have −l′′(x0) = m/Q(x0). This is the Fisher informa-

tion of the adjusted density f(x)Q(x). And obviously, the second Pearson

distribution parameter m can be estimated by m = −l′′(x0)Q(x0). Thus, the

variance of the density f(x) can be estimated by the Pearson distribution vari-

ance Q(µ0)/(m− q2). Analogous to normal approximation, the Pearson-type

parameters are estimated by the first two derivatives of log adjusted density.

That is the reason that this approximation procedure is named ADM. The
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normal approximation is actually a special case of ADM with adjustment fac-

tor function equal to 1 and the Pearson-type parameters coinciding with the

commonly used parameters, that is, µ0 = µ and m = σ−2. The summary of

the procedures for Pearson approximation, also named ADM approximation,

are listed in Definition 2.2.

Definition 2.2 (Pearson Approximation) The Pearson approximation is

to approximate a density f(x) by a distribution in the Pearson family. Usually

one selects the distribution in the Pearson family which has the same support

as f(x).

The steps of the approximation are:

1. Let l(x) = log
(
f(x)Q(x)

)
, where Q(x) is the adjustment factor function

of the approximating Pearson distribution;

2. Solve l′(x) = 0. The solution x0 is the MLE of the adjusted density

f(x)Q(x) and the estimated mean of both f(x) and the approximating

Pearson distribution. Thus, the mean parameter µ0 of the approximating

Pearson distribution can be estimated by x0;

3. The parameter m in the approximating Pearson distribution is equal to

the second derivative of l(x) multiplied by the adjustment factor evaluated

at x0: m = −l′′(x0)Q(x0);

4. Solve for the estimates of the traditional parameters of the Pearson dis-

tribution based on the relationships between the Pearson-type parameters
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and the traditional parameters. The relationships can be found in the

last two columns of Table 2.1.

The ADM approximation has been successful in functioning as an important

part of estimating the parameters for a series of hierarchical Bayes models,

including Poisson-gamma model13, normal-normal model24;38, and binomial-

beta model25. It has been shown that ADM has multiple advantages over

MCMC and other procedures in estimating parameters in hierarchical Bayes

models13;38. ADM approximates the posterior mean and posterior variance of

all the parameters in a hierarchical Bayes model in closed-form. Closed-form

allows fast computation and the same estimate each time a model is applied

to the same dataset13;38. These features will be favored by some data practi-

tioners and cannot be achieved by stochastic approximation procedures such

as MCMC13. Directly giving closed-forms for the mean and variance estimates

avoids the burn-in period in the MCMC method, increasing the computation

speed significantly13. It is documented that in the Poisson-gamma case the

speed is 70 times faster13 than MCMC and, as reported in Chapter 4 of this

dissertation, we have observed a speed which is hundreds of times faster than

MCMC for the multinomial-Dirichlet-logit model. Fast computation makes

repeated simulations feasible when the operating characteristics of a proce-

dure are of interest. Past work has shown that ADM is superior in generating

good operating characteristics (e.g. coverage, interval width and risk func-

tions)13;24;38 compared with a range of parameter estimation methods. The
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rest of this chapter will detail the ADM in Poisson, normal and binomial

models. For the multinomial model, please refer to Chapter 3 of this disserta-

tion.

2.2 Poisson

Christiansen and Morris13 propose the procedure PRIMM which takes advan-

tage of ADM approximation when estimating the random individual Poisson

parameters in a hierarchical Poisson-Gamma regression model. In their data

example, this procedure provides shrinkage for individual data points and takes

the severity of case mix in an individual hospital into account when comput-

ing the mortality rate in hospitals14. There are two mathematically equivalent

methods to describe the hierarchical Poisson-gamma regression model, which

are called the descriptive model and the inferential model, respectively. The

two models are mathematically equivalent in the sense that they generate the

same joint distribution for the data and the individual Poisson parameters

conditional on the hyper-parameters.

There are three levels in the descriptive model. Level 1 concerns the distri-

bution of each observation {(zi, ei)}, i = 1, . . . , N , given the individual pa-

rameter {λi}, i = 1, . . . , N . The notation zi is the individual count and the

notation ei is the individual exposure. Level 2 gives the distribution of the

individual parameter {λi}, i = 1, . . . , N , conditional on the hyper-parameters

β = (β0, . . . , βr−1) ∈ IRr and ζ. Level 3 concerns the hyper-prior distribution
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of the hyper-parameters. The terms in the bracket notation [, ] are the mean

and the variance for each distribution.

Level 1: Individual Model.

zi|λi ∼ Pois(eiλi) = Pois[eiλi, eiλi], (2.5)

independently, i = 1, . . . , N .

Level 2: Structural Model.

λi|β, ζ ∼ Gam(ζ, ζ/µi) = Gam[µi, µ2
i /ζ], log(µi) = x′

iβ, ζ > 0, (2.6)

where x′
i ∈ Rr and β ∈ Rr.

Level 3: Distributions of the Structural Parameters. This hyper-prior approx-

imates a uniform distribution on the shrinkage.

h(β, ζ) = z0

(ζ + z0)2 . (2.7)

Equivalently,

B0 = ζ

ζ + z0
∼ Uniform(0, 1). (2.8)

There are also three levels in the inferential model. Level 1 in the inferential

model is the Gamma mixture (2.6) of the Poisson distributions (2.5) in the de-

scriptive model. And the distribution for the observation zi conditional on the
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hyper-parameters β, ζ happens to be Negative Binomial. Bi is the shrinkage

for each observation, which approaches 1 when the exposure ei approaches 0

and approaches 0 when ei approaches ∞. Level 2 here is the posterior distri-

bution for the individual parameters λi conditional on the hyper-parameters.

Since the gamma distribution is the conjugate prior of the Poisson distribu-

tion, the posterior for {λi} is still a gamma distribution, but with updated

parameters. As seen from the expression of λ∗i , when ei is large, the λ∗i shrinks

toward the observation and vice versa. Level 3 is the same as in the descriptive

model.

Level 1: Marginal model for the observations.

zi|β, ζ ∼ NB(ζ, 1−Bi) = NB[eiµi, eiµi/Bi], (2.9)

where

Bi = ζ

ζ + eiµi
. (2.10)

Level 2: Conditional model for the individual parameters.

λi|data,β, ζ ∼ Gam(zi + ζ, ei + ζ/µi) = Gam[λ∗i , (σ∗i )2], (2.11)

where

λ∗i = E(λi|data,β, ζ) = (1−Bi)yi +Biµi, (2.12)
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and

(σ∗i )2 = V ar(λi|data,β, ζ) = λ∗i (1−Bi)/ei. (2.13)

The distribution of the individual parameter λi|data is of ultimate interest. In

Level 2 of the inferential model, the conditional distribution of λi|data,β, ζ is

given. Combined with the joint distribution of the hyper-parameters β, ζ in

Level 3, it is possible to get the distribution of λi|data by integration with re-

spect to the hyper-parameters β, ζ. But this is computationally cumbersome.

To save the trouble of taking integrals while still making accurate estimation,

one important step in the procedure is to provide more accurate estimates

for the hyper-parameters β and ζ. There are two main reasons for this: (1)

λi|data can be approximated properly by gamma distribution once the esti-

mates for the hyper-parameters β, ζ are accurate enough because λi|data,β, ζ

is gamma distributed; (2) the first two moments E(λi|data) = E(λ∗i |data) and

V ar(λi|data) = V ar(λ∗i |data) + E((σ∗i )2|data) of the gamma distribution for

λi|data depends on the hyper-parameters β, ζ.

For the purpose of getting accurate estimates for the hyper-parameters and

avoiding an improper posterior, there are some adjustments made in the paper.

The first adjustment is to introduce a proper distribution for ζ in Level 3.

This adjustment is to prevent improper posterior for the hyper-parameter ζ.

Without this adjustment, the likelihood for β, ζ directly from Level 1 in the
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inferential model is

L(β, ζ) =
k∏
i=1

Γ(ζ + zi)
Γ(ζ)zi!

(1−Bi)ziBζ
i . (2.14)

The regular maximum likelihood estimate (MLE) for ζ using L(β, ζ) can occur

at infinity, which will cause problems in inference. Through this adjustment,

the posterior density for β, ζ is

p(β, ζ) = c0L(β, ζ)z0/(ζ + z0)2. (2.15)

It can be shown that p(β, ζ) is proper for both β and ζ provided that N−n0 ≥

r and the (N − n0) × r sub-matrix of non-zero count groups of X is of full

rank, where n0 is the number of observations with zero counts. Once the mild

condition of the data is satisfied, the mode will occur at finite values for both

β and ζ.

A second adjustment is to apply a restricted maximum likelihood (REML)

type correction19 to the posterior p(β, ζ) with transformation of variable by

setting τ = log(ζ),

p2(τ) = c2|Ĥτ |−1/2L(β̂τ , eτ )eτ/(eτ + z0)2. (2.16)

In p2(τ), Ĥτ is the second derivative of L (β, ζ) = log
(
L(β, ζ)

)
with respect
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to β evaluated at regular MLE for β with fixed τ ,

Ĥτ = −∂
2L (β, ζ)
∂(ββ′)

∣∣∣∣∣
β̂τ

= X ′DτX. (2.17)

In (2.17), β̂τ is the unique solution to ∂L (β,ζ)
∂β

= ∑k
i=1(zi − eiµi)Bixi with τ

fixed and D̂τ is the N ×N diagonal matrix with diagonal element eiBiλ
∗
i > 0,

with Bi in (2.10) and λ∗i in (2.12). This adjustment is to eliminate the bias in

the estimate of the hyper-parameter ζ caused by the estimation of the hyper-

parameter β.

A third adjustment is to approximate |Ĥτ |−1/r by a constant multiplied by the

geometric mean of the N values ζ/(ζ + eim0) with m0 = E(∑ zi/
∑
ei). This

adjustment simplifies the computation significantly and speeds up the proce-

dure. Then the natural log of the adjusted posterior p2(τ) is equal to

lR(β, τ) = log
{
L(β, ζ|data) eτ

(eτ + z0)2

k∏
i=1

(eτ/(eτ + eim0))−r/2k
}

= L (β, ζ) + (1− r/2)τ − 2log
(
exp(τ) + z0

)
+ r

2k

k∑
i=1

log
(
exp(τ) + eim0

)
.

(2.18)

After the adjustments, take the first and second derivatives of lR(β, τ) with

respect to β, τ . It is obvious that the first and second derivatives with respect

to β and the second cross-derivative are the same as in the likelihood case. It

follows that β̂τ does not change after the adjustments. The first and second
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derivatives of lR(β, τ) with respect to τ = log(ζ) are

∂lR(β, τ)
∂τ

= ∂L (β, ζ)
∂τ

− eτ − z0

eτ + z0
− r

2k

k∑
i=1

eim0

eτ + eim0
, (2.19)

and

− ∂2lR(β, ζ)
∂τ 2 = −∂

2L (β, ζ)
∂τ 2 + 2z0e

τ

(eτ + z0)2 −
r

2k

k∑
i=1

eim0e
τ

(eτ + eim0)2 . (2.20)

By inserting β̂τ , Newton’s method can be used to find the zero of (2.19) using

both (2.19) and (2.20). The zero of (2.19) denoted by τ̂ is the estimate of τ

and evaluate β̂τ at τ̂ to get the estimate for β. The covariance matrix for

(β, τ) can be estimated using the inverse of the Hessian matrix of lR(β, τ)

evaluated at the estimates (β̂τ̂ , τ̂). After some computation, the approximate

distribution for (β, τ) is multivariate normal:

β
τ

 |data ∼ Nr+1


β̂τ̂
τ̂

 ,Σ = σ̂2
τ

σ̂
−2
τ (X ′D̂τ̂X)−1 − v̂v̂′ v̂

v̂ 1


 . (2.21)

Here, v̂ = ∂β̂τ/∂τ and σ̂2
τ = V ar(τ |data) ≈ (−∂2lR(β, τ)/∂τ 2−v̂′(X ′D̂τ̂X)v̂)−1.

The next step is to use the distribution (2.21) and ADM approximation to

the distribution of the shrinkages Bi|data to get a distribution for the individ-

ual parameter λi conditional on the data. Assume the distribution (2.21) is

accurate enough so that treating λi|data as Gamma distributed is appropri-
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ate. Then the problem left is to estimate the first and second moments of the

Gamma distribution. The posterior mean for λi is

λ̂i = E(λi|data) = Eβ,τ [E(λi|data,β, τ)|data]

= Eβ,τ [(1−Bi)yi +Biµi|data]

=
(
1− Eβ,τ (Bi|data)

)
yi + Eβ,τ (Biµi|data).

(2.22)

The posterior variance for λi is

σ̂2
λi

= V ar(λi|data)

= V arβ,τ [E(λi|data,β, τ)|data] + Eβ,τ [V ar(λi|data,β, τ)|data]

= V arβ,τ [(1−Bi)yi +Biµi|data]

+ Eβ,τ ([(1−Bi)yi +Biµi][1−Bi]/ei|data)

= Eβ,τ ([(1−Bi)yi +Biµi]2|data)

+ Eβ,τ [(1−Bi)2yi +Bi(1−Bi)µi|data]/ei − λ̂2
i .

(2.23)

The subscript β and τ in (2.22) and (2.23) means the expectation and variance

are with respect to the posterior distribution of β and τ . Both (2.22) and (2.23)

are functions of Eβ,τ (µsiBt
i |data), s, t = 0, 1, 2. Hereafter, to simplify notation,

E stands for Eβ,τ if not specified. Introduce the notation EsB
t
i and it can be

proved that

EsB
t
i = EµsiB

t
i

Eµsi
= EBt

i(Bi/(1−Bi))sbi
E(Bi/(1−Bi))sbi

, (2.24)

with bi = Cov(x′
iβ, τ −x′

iβ)/V ar(τ −x′
iβ). This equation successfully trans-
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forms the two-dimensional expectation into a one-dimensional expectation.

Eµsi can be easily obtained from the moment generating function (MGF) of

normal distribution. Then, if the right side of (2.24) can be approximated,

EµsiB
t
i can be computed quickly without doing integrals. ADM approxima-

tion37 can be used to approximate the right side of (2.24). Since Bi has

support (0, 1), it is proper to choose beta distribution to do the approxima-

tion. Bi = ζ
ζ+eiµi = eτ

eτ+eie
x′
i
β = e

τ−x′
i
β

e
τ−x′

i
β+ei

= e
τ−x′

i
β

e
τ−x′

i
β+eln(ei)

= e
τ−x′

i
β−ln(ei)

1+eτ−x
′
i
β−ln(ei)

and

denote u = τ − x′
iβ − ln(ei) ∼ N(µ, σ2) from (2.21). Drop the subscript i for

Bi since the procedure will be the same for all i. Assume B = eu

1+eu , then B is

logit-normal distribution with density p(B). Now use the beta distribution to

approximate the logit-normal distribution by the following procedures.

B ∼ Beta(a1, a2) = Beta

[
B̂ = a1

a1 + a2
,
B̂(1− B̂)
a1 + a2 + 1

]
. (2.25)

Give the expression for l(B) = log(p(B)B(1 − B)) with B(1 − B) being the

adjustment factor for beta approximation. Compute B̂ which maximizes l(B)

and the second derivative of l(B̂).

l(B) = log(logit− normal(B)B(1−B)) ∝ (logit(B)− µ)2 (2.26)

∂l(B)
∂B

∝ logit(B)− µ
B(1−B) = 0⇒ B̂ = eµ

1 + eµ
(2.27)

− l̈(B̂) = − ∂2l(B)
∂B2

∣∣∣∣∣
B̂

= 1
B̂2(1− B̂)2σ2

(2.28)
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Then solve for the system of equations to get the expressions for the approxi-

mation parameters â1 and â2.

â1

â1 + â2
= B̂

â1 + â2 = 1
B̂(1− B̂)σ2

.

(2.29)

The solution â1 and â2 are

â1 = 1
σ2(1− B̂)

(2.30)

and

â2 = 1
σ2B̂

(2.31)

Now Bi can be approximated by Beta(â1, â2). And the right-hand side of

equation (2.24) can be computed fast by

EBt(B/(1−B))w
E(B/(1−B))w =

∫
Bt(B/(1−B))w Γ(a1+a2)

Γ(a1)Γ(a2)B
a1−1(1−B)a2−1dB∫

(B/(1−B))w Γ(a1+a2)
Γ(a1)Γ(a2)B

a1−1(1−B)a2−1dB

=
∫
Bt+w+a1−1(1−B)a2−w−1dB∫
Bw+a1−1(1−B)a2−w−1dB

=Γ(t+ w + a1)Γ(a2 − w)
Γ(t+ a1 + a2)

Γ(a1 + a2)
Γ(w + a1)Γ(a2 − w)

∫
Beta(t+ w + a1, a2 − w)dB∫
Beta(w + a1, a2 − w)dB

=Γ(t+ w + a1)
Γ(w + a1)

Γ(a1 + a2)
Γ(t+ a1 + a2) = (t+ w + a1 − 1)...(w + a1)

(t+ a1 + a2 − 1)...(a1 + a2)
(2.32)

This approximation simplifies and speeds up the computation of EµsiBt
i and

correspondingly, the computation of the posterior mean in equation (2.22) and
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the posterior variance in equation (2.23). And the posterior distribution for

λi can be determined as

λi|data
.∼ Gam[λ̂i, σ̂2

λi
] =

σ̂2
λi

λ̂i
Gam

 λ̂2
i

σ̂2
λi

, 1
 . (2.33)

2.3 Normal

Researches in ADM approximation to normal-normal model were mainly con-

ducted by Tang and Morris38. Kelly and Morris24 add the ADM approximation

to skewness in the normal model to this collection of literature.

There are two levels in the normal-normal hierarchical model. As in the Pois-

son case, there are also two mathematically equivalent models, the descriptive

model and the inferential model, in this normal case. In the descriptive model,

the first level specifies the individual normal distribution of the observed data

yi, given the individual parameters θi, i = 1, . . . , N . Level 2 specifies the nor-

mal distributions of θi, i = 1, . . . , N , given the hyper-parameters β and A.

The hyper-parameters β ∈ IRm are the regression coefficients.

Level 1: The individual observations yi conditional on the individual parame-

ters θi are independently normal with unknown mean θi and known variance

Vi, i = 1, . . . , N :

yi|θi ∼ N(θi, Vi). (2.34)
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Level 2: The individual parameters θi, i = 1, . . . , N , given the unknown hyper-

parameters β and A, are also independently normally distributed:

θi|β, A ∼ N(x′
iβ, A), (2.35)

in which xi ∈ IRm is known, β ∈ IRm is unknown and A is an unknown

scalar.

The inferential model also has two levels. Level 1 is derived by integrating

the individual parameter θi out. Level 2 is the posterior distribution of the

individual parameter θi conditional on the hyper-parameters β and A.

Level 1: This level is known as the marginal distribution of the data yi con-

ditional on the hyper-parameters β and A. The marginal distribution in this

level is still a normal distribution for each observation yi, i = 1, . . . , N ,

yi|β, A ∼ N(x′
iβ, Vi + A), (2.36)

independently.

Level 2: Posterior distributions of the individual parameters θi given the hyper-

parameters β and A are independent normal distributions.

θi|yi,β, A ∼ N
(
(1−Bi)yi +Bix

′
iβ, Vi(1−Bi)

)
, (2.37)

where Bi = Vi/(Vi + A) is the shrinkage factor and the conditional posterior
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mean and conditional posterior variance are

θ∗i = E(θi|yi,β, A) = (1−Bi)yi +Bix
′
iβ, (2.38)

and

V ar(θi|yi,β, A) = Vi(1−Bi), (2.39)

respectively. In the normal-normal model, the hyper-priors for the hyper-

parameters are flat for both β and A. That is,

f(β, A) ∝ 1. (2.40)

The likelihood of the hyper-parameters β and A is

L(β, A) =
N∏
i=1

N(yi|x′
iβ, Vi + A)

∝ exp
(
−

N∑
i=1

(yi − x′
iβ)2

2(Vi + A)

) N∏
i=1

(Vi + A)− 1
2

(2.41)

This likelihood can also be written in matrix-vector notation

L(β, A) ∝ |DV+A|−1/2 exp(−1
2(y −Xβ)′D−1

V+A(y −Xβ)), (2.42)

where DV+A is the N ×N diagonal matrix with diagonal terms Vi +A. Since

the hyper-prior of the hyper-parameters is flat, f(β, A) ∝ 1, the posterior of
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β and A is equal to the likelihood of β and A,

p(β, A|y) ∝ L(β, A)f(β, A) = L(β, A). (2.43)

It has been proved by Kelly24 that the sufficient data-dependent posterior

propriety condition is that N ≥ m+ 3 where N is the number of observations

in the sample and m is the rank of the N ×m covariate matrix X.

There are two cases in estimating the random effects θi in the normal model,

which are (1) equal variances with all the Vi = V for i = 1, . . . , N and (2)

unequal variances. It is possible to get exact moments for the shrinkage factors

Bi and the exact means and variances for the individual parameters θi in

the first case. Then the ADM approximation is only applied to the second

case.

Before moving on, they derive two useful distributions which will be used later.

The first is the conditional posterior distribution for β:

p(β|y, A) ∝ exp
(
− 1

2(y −Xβ)′D−1
V+A(y −Xβ)

)

= exp
− 1

2

(
(y −Xβ̂A) +X(β̂A − β)

)′

D−1
V+A

(
(y −Xβ̂A) +X(β̂A − β)

)
∝ exp

(
− 1

2(β − β̂A)′Σ−1
A (β − β̂A)

)
,

(2.44)

where ΣA =
(
X ′D−1

V+AX
)−1

and β̂A is the weighted least squares estimator

31



for β: β̂A = ΣAX
′D−1

V+Ay. In matrix-vector notation

β|y, A ∼ Nm(β̂A,ΣA). (2.45)

The other useful distribution is the posterior distribution for the hyper-parameter

A:

p(A|y) =
∫
β
p(β, A|y)dβ

∝
∫
β
|DV+A|−1/2exp

(
− 1

2(y −Xβ)′D−1
V+A(y −Xβ)

)
dβ

= |DV+A|−1/2|ΣA|1/2exp
(
− 1

2(y −Xβ̂A)′D−1
V+A(y −Xβ̂A)

)
.

(2.46)

Under the condition of equal variances Vi = V , equation (2.45) reduces to

β|y, A ∼ N(β̂, (V + A)(X ′X)−1), (2.47)

where β̂ = (X ′X)−1X ′y is the traditional least squares estimator. Then

equation (2.46) reduces to

p(A|y) ∝ (V + A)−(N−m)/2e−S/(2(V+A)), (2.48)

where S = ∑N
i=1(yi − x′

iβ̂)2. The conditional posterior distribution of the

random effect θi in equation (2.37) reduces to

θi|y,β, A ∼∼ N
(

(1−B)yi +Bx′
iβ, V (1−B)

)
, (2.49)
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where B = V/(V +A). The objective is to estimate the posterior mean E(θi|y)

and posterior variance V ar(θi|y) of the individual parameters θi. Apply the

Law of Total Expectation and the Law of Total Variance first over β,

E(θi|A,y) = E(θ∗i |A,y) = E
(

(1−B)yi +Bx′
iβ|A,y

)

= (1−B)yi +Bx′
iβ̂

(2.50)

where β̂ = (X ′X)−1X ′y and

V ar(θi|A,y) = V ar(θ∗i |A,y) + E
(
V (1−B)|A,y

)
= V ar

(
Bx′

iβ|A,y
)

+ V (1−B)

= B2(V + A)x′
i(X ′X)−1xi + V (1−B)

= BV x′
i(X ′X)−1xi + V (1−B).

(2.51)

Then apply the Law of Total Expectation and the Law of Total Variance over

A,

E(θi|y) = E((1−B)yi +Bx′
iβ̂|y)

=
(
1− E(B|y)

)
yi + E(B|y)x′

iβ̂,

(2.52)

and

V ar(θi|y) = V ar
(
(1−B)yi +Bx′

iβ̂|y
)

+ E
(
BV x′

i(X ′X)−1xi + V (1−B)|y
)

= (yi − x′
iβ̂)2V ar(B|y)

+ V x′
i(X ′X)−1xiE(B|y) + V

(
1− E(B|y)

)
.

(2.53)
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Then the remaining problem is to estimate E(B|y) and V ar(B|y). Since

the posterior distribution of A has been given in equation (2.48) and B =

V/(V + A) is a function of A, they perform a variable transformation. Then

the posterior distribution for B is

p(B|y) ∝
(
V

B

)−(N−m)/2
exp

(
−SB2V

)(
V

B2

)
I{0 < B < 1}

∝ B(N−m−2)/2−1exp
(
−SB2V

)
I{0 < B < 1}.

(2.54)

From equation (2.54), the exact posterior distribution of B is actually a gamma

distribution restricted to 0 < B < 1:

B|y ∼ Gamma
(N −m− 2

2 ,
S

2V
)
, (2.55)

where 0 < B < 1. Denote a = (N −m− 2)/2 and b = S/2V . Then, the exact

posterior moment of B for any power c is

E(Bc|y) =
∫ 1

0 B
cba(Γ(a))−1Ba−1e−bBdB

P (Ga,b < 1)

= b−c
Γ(a+ c)

Γ(a)
P (Ga+c,b < 1)
P (Ga,b < 1) .

(2.56)

From equation (2.56), the exact posterior mean E(B|y) and posterior variance

V ar(B|y) are

E(B|y) = ab−1P (Ga+1,b < 1)
P (Ga,b < 1)

= (N −m− 2)V
S

P (χ2
N−m < S/V )

P (χ2
N−m−2 < S/V ) ,

(2.57)
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and

V ar(B|y) = E(B2|y)−
(
E(B|y)

)2

= (a+ 1)ab−2P (Ga+2,b < 1)
P (Ga,b < 1) −

(
E(B|y)

)2

= N −m
2

N −m− 2
2 ( S2V )−2P (χ2

N−m+2 < S/V )
P (χ2

N−m−2 < S/V ) −
(
E(B|y)

)2

= (N −m)(N −m− 2)(V
2

S2 )P (χ2
N−m+2 < S/V )

P (χ2
N−m−2 < S/V ) −

(
E(B|y)

)2
,

(2.58)

respectively. Inserting the results from equation (2.57) and equation (2.58)

into equation (2.52) and equation (2.53), the posterior mean E(θi|y) and the

posterior variance V ar(θi|y) for the individual parameters are obtained under

the equal variance condition.

For the unequal variance condition, there are no exact values for the posterior

mean E(θi|y) and posterior variance V ar(θi|y), but the ADM approximation

can be applied to approximate E(θi|y) and V ar(θi|y). Apply the Law of Total

Expectation and the Law of Total Variance over β

E(θi|A,y) = E(θ∗i |A,y) = E
(
(1−Bi)yi +Bix

′
iβ|A,y

)
= (1−Bi)yi +Bix

′
iβ̂A,

(2.59)
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where β̂A =
(
X ′D−1

V+AX
)−1

X ′D−1
V+Ay, and

V ar(θi|A,y) = V ar(θ∗i |A,y) + E
(
Vi(1−Bi)|A,y

)
= V ar

(
Bix

′
iβ|A,y

)
+ Vi(1−Bi)

= B2
i x

′
i(X ′D−1

V+AX)−1xi + Vi(1−Bi)

= BiVi
[
x′
i(X ′D−1

V+AX)−1xi)/(Vi + A)
]

+ Vi(1−Bi).

(2.60)

Next, they evaluate β̂A and the quantity inside the bracket in the last line in

equation (2.60) at the optimal Â and then apply the Law of Total Expectation

and the Law of Total Variance over A to obtain

θ̂i = E(θi|y) ≈ E
(
(1−Bi)yi +Bix

′
iβ̂Â|y

)
=
(
1− E(Bi|y)

)
yi + E(Bi|y)x′

iβ̂Â,

(2.61)

and

si = V ar(θi|y) ≈ E
(
BiVipii + Vi(1−Bi)|y

)
+ V ar

(
(1−Bi)yi +Bix

′
iβ̂Â|y

)
= E(Bi|y)Vipii + Vi

(
1− E(Bi|y)

)
+ (yi − x′

iβ̂Â)2V ar(Bi|y)

=
(
1− (1− pii)E(Bi|y)

)
Vi + (yi − x′

iβ̂Â)2V ar(Bi|y),
(2.62)

where pii = x′
i(X ′D−1

V+ÂX)−1xi)/(Vi + Â).

There are two problems left to estimate E(θi|y) and V ar(θi|y) for the unequal

variance case. One is to find the optimal Â and the other is to approximate

the moments of Bi|y. To find Â, first conduct a change of variable α = log(A).
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This transformation of variable is made because the distribution of α is more

symmetric and has no boundary issues when applying MLE. The posterior

distribution of α is

f(α|y) = f(A(α)|y)eα, (2.63)

and α̂ = argmax
(
α + log

(
f(A(α)|y)

))
. Set Â = eα̂, and then approximate

the distribution of Bi|y by a beta distribution because Bi is between 0 and

1:

Bi|y ∼ Beta(ai1, ai2). (2.64)

. They use a similar procedure as used in the ADM in the Poisson model in

Section 1.2. We have

Bi = Vi
Vi + A

= Vi
Vi + eα

= Vie
−α

1 + Vie−α

= e−(α−log(Vi))

1 + e−(α−log(Vi))
∼ logit− normal

(
−
(
α̂− log(Vi)

)
, σ̂2

α

)
,

(2.65)

where σ̂2
α can be approximated by the reciprocal of the Fisher information of

f(α|y). Give the expression for l(Bi) = log
(
p(Bi)Bi(1−Bi)

)
with Bi(1−Bi)

being the adjustment factor for the beta approximation. Compute B̂i which

maximizes l(Bi) and the second derivative of l(Bi) evaluated at B̂i. Set µi =
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−
(
α̂− log(Vi)

)
to obtain:

l(Bi) = log(logit− normal(Bi)Bi(1−Bi)) ∝ (logit(Bi)− µi)2, (2.66)

∂l(Bi)
∂Bi

∝ logit(Bi)− µi
Bi(1−Bi)

= 0⇒ B̂i = eµi

1 + eµi
= Vi

Vi + Â
, (2.67)

−l̈(B̂i) = − ∂2l(Bi)
∂B2

i

∣∣∣∣∣
B̂i

= 1
B̂2
i (1− B̂i)2σ̂2

α

. (2.68)

The system of equations for the approximation parameters âi1 and âi2 is

âi1
âi1 + âi2

= B̂i,

âi1 + âi2 = 1
B̂i(1− B̂i)σ̂2

α

.

(2.69)

The solution to the system of equations is

âi1 = 1
σ̂2
α(1− B̂i)

, (2.70)

and

âi2 = 1
σ̂2
αB̂i

. (2.71)

Then

B̂i = Ê(Bi|y) = Vi

Vi + Â
, (2.72)

and

V̂ ar(Bi|y) = B̂2
i (1− B̂i)2

Iα + B̂i(1− B̂i)
, (2.73)

where Iα is the Fisher information of f(α|y). Inserting equation (2.72) and
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equation (2.73) into the equation (2.61) and the equation (2.62), they obtain

the mean and variance estimates of the random effect θi.

As mentioned at the beginning of this section, Kelly also applies ADM to

estimate the skewness in a normal model. So far the first two central moments

of θi|y, which are the posterior mean θ̂i and the posterior variance si, have been

estimated. Since the skewness must be estimated, the third central moment

of θi|y must be estimated. The third central moment of θi|y is computed as

follows under the assumption that βA has been estimated at Â.

µ3(θi|y) = E
(
µ3(θi|A,y)|y

)
+ µ3

(
E(θi|A,y)|y

)

+ 3Cov
(
E(θi|A,y), V ar(θi|A,y)|y

)

= 0 + µ3

(
(1−Bi)yi +Bix

′
iβ̂Â|y

)

+ 3Cov
(

(1−Bi)yi +Bix
′
iβ̂Â, Vi(1−Bi)|y

)

= −(yi − x′
iβ̂Â)3µ3(Bi|y) + 3Vi(yi − x′

iβ̂Â)V ar(Bi|y).

(2.74)

In equation (2.74), V ar(Bi|y) has been estimated in equation (2.73). Then

estimate µ3(Bi|y) by inserting the ADM estimates into the equation for the

third central moment of the Beta distribution,

µ̂3(Bi|y) ≈ âi3 = 2âi1âi2(âi2 − âi1)
(âi1 + âi2)3(âi1 + âi2 + 2)

√
âi1 + âi2 + 1

. (2.75)

Inserting µ̂3(Bi|y) into equation (2.74) results in the estimate of µ3(θi|y),

which is denoted by µ̂3i for notation simplicity.
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For normal distribution with skewness, there are three parameters and is de-

noted by skew − normal(ψ, ω, δ). Assume there is a random variable Y ∼

skew−normal(ψ, ω, δ). By matching the three central moments, it is possible

to estimate the parameters ψ, ω, δ in the Skew-Normal distribution.

E(Y ) = ψi + ωiδi

√
2
π

= θ̂i, (2.76)

V ar(Y ) = ω2
i

(
1− 2δ2

i

π

)
= si, (2.77)

skewness = 4− π
2

δ3
i

(π/2− δ2
i )3/2 = µ̂3i. (2.78)

Solve the system of equations

δ̂i = sign(γ̂i)

√√√√ π
2 |γ̂i|2/3

|γ̂i|2/3 + ((4− π)/2)2/3 , (2.79)

ω̂i =
√√√√ si

(1− 2δ̂2
i

π
)
, (2.80)

ψ̂i = θ̂i − ω̂iδi

√
2
π
, (2.81)

where γ̂i = µ̂3i/(s3/2
i ).

2.4 Binomial

The ADM approximation in the binomial-beta-logit model is mainly docu-

mented in the work by Tak, Kelly and Morris25. There are three levels in
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the binomial-beta-logit model. Level 1 specifies the binomial distribution for

the individual observed data {(yi, ni)}, given the individual parameters pi,

i = 1, . . . , N , where yi is the number of success out of ni trials. Level 2

specifies a beta distribution for the individual parameter pi given the hyper-

parameters β ∈ IRm and r. A beta distribution is used because it is the

conjugate prior for the binomial distribution. Level 3 assigns a hyper-prior to

the hyper-parameters.

Level 1: The individual observations yi given the individual parameters pi are

conditionally independent binomial(ni, pi) distributions

yi|pi ∼ Binomial(ni, pi). (2.82)

Level 2: The individual parameters pi given the hyper-parameters β and r

have conditionally independent beta distributions

pi|β, r ∼ Beta
(
rpEi , r(1− pEi )

)
, (2.83)

where pEi = E(pi|β, r) = exiβ/(1 + exiβ).

Level 3: This level specifies the distribution for the hyper-parameters. The

hyper-parameter β is assigned an improper flat distribution and the reciprocal

of the hyper-parameter r is uniformly distributed on the interval (0,∞):

β ∼ Uniform on Rm (2.84)
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and

1/r ∼ Uniform(0,∞). (2.85)

The inferential model also contains three levels. The marginal distribution of

the individual observations yi given the hyper-parameters β and r are inde-

pendent Beta-Binomial distributions with density:

f(yi|β, r) =

ni
yi

 B(yi + rpEi , ni − yi + r(1− pEi ))
B(rpEi , r(1− pEi )) , (2.86)

where B(a, b)(=
∫ 1

0 v
a−1(1 − v)b−1dv) denotes the beta function for positive

constants a and b.

Level 1: The individual observations yi conditional on the hyper-parameters

are independent beta-binomial distributions

yi|β, r ∼ f(yi|β, r). (2.87)

Level 2: The conditional posterior distributions of pi given the hyper-parameters

and the observed data y are conditionally independent beta distributions with

updated parameters

pi|β, r,y ∼ Beta(niȳi + rpEi , ni(1− ȳi) + r(1− pEi )), (2.88)

where ȳi = yi/ni. Thus, the conditional posterior mean and conditional pos-
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terior variance of pi are

p∗i = E(pi|β, r,y) = (1−Bi)ȳi +Bip
E
i (2.89)

and

V ar(pi|β, r,y) = p∗i (1− p∗i )
r + ni + 1 , (2.90)

respectively.

Level 3: This level is the same as in the descriptive model.

Tak and Morris51 give the data-dependent posterior propriety conditions of

Bayes beta-binomial-logit model for a series of hyper-priors of the hyper-

parameters β and r. Define a group whose number of success yi is neither

0 nor ni as an interior group and Ny as the number of interior groups in the

total N groups. According to Tak and Morris51, the full posterior distribu-

tion of random effects and hyper-parameters given the Level 3 hyper-prior is

proper if and only if there are at least two interior groups in the data and the

Ny × m covariate matrix of the interior groups is of full rank m (Ny ≥ m).

This condition is mild and can be satisfied in most application scenarios.

The likelihood of the hyper-parameters β and r is the product of N indepen-

dent beta-binomial distributions

L(β, r) =
N∏
i=1

ni
yi

 B(yi + rpEi , ni − yi + r(1− pEi ))
B(rpEi , r(1− pEi )) . (2.91)
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The posterior distribution of the hyper-parameters given the observed data

is

p(β, r|y) = L(β, r)/r2. (2.92)

Before moving on to the next step, they first conduct a transformation of vari-

ables on the hyper-parameter r. Let α = − log(r). The reason for this trans-

formation is that α is more symmetric than r and is distributed on (−∞,∞);

therefore, α is proper for MLE approximation while r is not. Then, we obtain

the transformed posterior distribution of β and α:

p(β, α|y) = L(β, r(α))eα. (2.93)

To correct the bias when estimating α, a restricted maximum likelihood (REML)

type correction is applied by using the Laplace approximation with the Lebesgue

measure on β:

L(α) =
∫
L(β, r(α))eαdβ

= c|Ĥα|−1/2eαL(β̂α, r(α)),
(2.94)

where Ĥα is the Hessian Matrix of log
(
L
(
β, r(α)

))
evaluated at β̂α, and β̂α

is the solution to:
∂ log(L(β, r(α)))

∂β
= 0 (2.95)

at fixed α. To solve equation (2.95), first set an initial value of α. It is easy

to get β̂α by optimizing the log-likelihood log
(
L
(
β, r(α)

))
. Inserting β̂α into

the equation (2.94) yields an updated optimized estimate of α. Repeating this

44



procedure multiple times will finally yield the estimates of β̂α and α̂ and also

the Hessian matrix of β̂ and α̂ evaluated at β̂α and α̂. It is assumed that the

hyper-parameters β and α are multivariate normally distributed.

The final goal is to estimate the posterior mean and posterior variance of the

random effect pi

E(pi|y) = E(p∗i ) = (1− E(Bi|y))ȳi + E(Bip
E
i |y), (2.96)

and

V ar(pi|y) = E(p
∗
i (1− p∗i )
r + ni + 1 |y) + V ar(p∗i |y). (2.97)

The assumption is that the hyper-parameters β and r are independent a pos-

teriori. Thus, both equation (2.96) and equation (2.97) are functions of the

posterior moments of Bi and pEi .

First use ADM to approximate the posterior distribution of Bi. Since Bi is

between 0 and 1, it is appropriate to approximate the posterior distribution

of Bi by a beta distribution:

Bi|y ∼ Beta(ai1, ai2). (2.98)

To calculate ai1 and ai2, they use a procedure similar to approximating the

shrinkage in the gamma-Poisson model. The shrinkage Bi is equal to e−α/(ni+

e−α) and the parameter α is approximately normally distributed by the pre-
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vious approximation. Then they have

Bi|y = e−α

ni + e−α
|y = e−α/ni

1 + e−α/ni
|y

= e−α−log(ni)

1 + e−α−log(ni)
|y ∼ logit− normal(−α̂− log(ni), σ̂2

α),
(2.99)

where α̂ and σ̂2
α can be obtained from the previous approximation.

Assume Bi|y has density f(Bi|y) so that the adjusted posterior distribution

is Bi(1 − Bi)f(Bi|y) for beta approximation and define L(Bi) = log
(
Bi(1 −

Bi)f(Bi|y)
)
. Take the first and second derivatives of L(Bi):

L(Bi) = log(logit− normal(Bi)Bi(1−Bi)) (2.100)

= constant− (logit(Bi) + α̂ + log(ni))2

2σ̂2
α

, (2.101)

∂L(Bi)
∂Bi

= logit(Bi) + α̂ + log(ni)
σ̂2
αBi(1−Bi)

= 0⇒ B̂i = e−α̂

ni + e−α̂
, (2.102)

−L̈(Bi) = − ∂2L(Bi)
∂B2

i

∣∣∣∣∣
B̂i

= 1
B̂2
i (1− B̂i)2σ̂2

α

. (2.103)

Then they apply the ADM approximation procedure. There are two equations

for the two unknowns ai1 and ai2. Solving the system of equations yields the

expressions for the approximation parameters âi1 and âi2:

âi1
âi1 + âi2

= B̂i,

âi1 + âi2 = 1
B̂i(1− B̂i)σ̂2

α

.

(2.104)

The solution is âi1 = 1
σ̂2
α(1−B̂i)

and âi2 = 1
σ̂2
αB̂i

. Now Bi|y can be approximated
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by Beta(âi1, âi2). The c-th moment of Bi|y is

Ê(Bc
i |y) = B(âi1 + c, âi2)

B(âi1, âi2) , (2.105)

where B denotes the beta function.

The next step is to approximate the posterior distribution for pEi . The un-

conditional posterior c-th moment of pEi is approximated by the conditional

posterior moment with α̂ substituted for α23:

E
(
(pEik)c|y

)
≈ E

(
(pEik)c|α̂,y

)
. (2.106)

Use another ADM by assuming the conditional posterior distributions of pEi

evaluated at α̂ are approximately beta distributions:

pEi |α̂,y ∼ Beta(bi1, bi2). (2.107)

Then,

pEi |(α̂,y) = ex
′
iβ

1 + ex
′
iβ
|(α̂,y) = Gi1

Gi1 +Gi2
, (2.108)

where Gi1 and Gi2 are independent random variables following Gamma(bi1, 1)

and Gamma(bi2, 1) distributions, respectively. Then,

ex
′
iβ|α̂,y ∼ Gi1

Gi2
. (2.109)
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The mean and variance of the ratio of two independent Gamma distributions

are

E(ex′
iβ|α̂,y) = E

(
Gi1

Gi2

)
= bi1
bi2 − 1 = ηi, (2.110)

V ar(ex′
iβ|α̂,y) = V ar

(
Gi1

Gi2

)
= ηi(1 + ηi)

bi2 − 2 . (2.111)

From the previous approximation, β is multivariate normally distributed with

mean β̂ and covariance matrix Σ̂. Then, the mean and variance of log−normal

distributions are easy to compute:

Ê(ex′
iβ|α̂,y) = exp(x′

iβ̂ + x′
iΣ̂xi/2) = η̂i, (2.112)

V̂ ar(ex′
iβ|α̂,y) = η̂2

i (ex
′
iΣ̂xi − 1). (2.113)

By matching the means in equation (2.110) and equation (2.112) and the

variances in equation (2.111) and equation (2.113), there are two equations for

two unknown bi1 and bi2

E(ex′
iβj |α̂,y) = Ê(ex′

iβj |α̂,y) (2.114)

and

V ar(ex′
iβ|α̂,y) = V̂ ar(ex′

iβ|α̂,y). (2.115)
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The solution for bi1 and bi2 are

b̂i2 = 1 + η̂i

η̂i(ex
′
iΣ̂xi − 1)

+ 2, (2.116)

and

b̂i1 = η̂i(b̂i2 − 1). (2.117)

Each pEi |α̂,y has approximately a beta(b̂i1, b̂i2) distribution. Then,

Ê
(
(pEi )c|α̂,y

)
= B(b̂i1 + c, b̂i2)

B(b̂i1, b̂i2)
, c ≥ 0. (2.118)

Now move back to the estimation of posterior mean and posterior variance

of pi. The assumption is that β and α are independent a posteriori; there-

fore

E(pi|y) = (1− E(Bi|y))ȳi + E(Bi|y)E(pEi |y), (2.119)

V ar(pi|y) = E
(p∗i (1− p∗i )
ni + r + 1 |y

)
+ V ar

(
p∗i |y

)
= E

(p∗i (1− p∗i )
ni + r + 1 |y

)
+ V ar

(
Bi(ȳi − pEi )|y)

≈ E
(p∗i (1− p∗i )(1−Bi)

ni
|y
)

+ V ar
(
Bi(ȳi − pEi )|y)

=
{

(1− ȳi)ȳi[1− E(Bi|y)]

+ (2ȳi − 1)E(Bi(1−Bi)|y)(ȳi − E(pEi |y))

+ E(B2
i (1−Bi)|y)E((ȳi − pEi )2|y)

}
/ni + V ar(Bi(ȳi − pEi )|y).

(2.120)
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The approximation in equation (2.120) is a first-order Taylor approximation.

By inserting the shrinkage and expected probability moment estimates as

in equation (2.105) and equation (2.118) into equation (2.119) and equation

(2.120), the estimated posterior mean and posterior variance of the random

binomial probabilities can be computed.

Denote µ̂pi = Ê(pi|y) and σ̂2
pi

= V̂ ar(pi|y) and assume pi|y is approximately

beta(ti1, ti2) distributed. The estimates of ti1 and ti2 are as follows:

t̂i1 =
(
µ̂pi(1− µ̂pi)

σ̂2
pi

− 1
)
µ̂pi , (2.121)

and

t̂i2 =
(
µ̂pi(1− µ̂pi)

σ̂2
pi

− 1
)

(1− µ̂pi). (2.122)

Finally, the assumed unconditional posterior distribution of random effect for

the beta-binomial-logit model is

pi|y ∼ Beta(t̂i1, t̂i2) (2.123)

2.5 Discussion

The ADM provides an alternative method for parameter estimation in hierar-

chical Bayes models to MCMC and other procedures (e.g., EB-MLE or EB-

REML). It has been applied to Poisson-gamma, normal-normal, and binomial-
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beta models as discussed in Section 2.2 to Section 2.4 and has been proven

to have some attractive advantages over a range of parameter estimation pro-

cedures13;38. The advantage of the ADM compared to MCMC is firstly the

overwhelmingly fast speed while it still maintains the accuracy of the esti-

mates as observed in empirical studies. Another advantage over MCMC is

that the ADM generates the same result each time a model is applied to

the same dataset which MCMC does not do. And because the ADM adopts

appropriate adjustments to the likelihood function and includes the ADM ap-

proximation when estimating the first level parameters, it has better operating

characteristics (e.g., coverage rate, interval width and squared error risks), as

proven by previous studies13, compared to EB procedures. Multiplying the

likelihood by the third level hyper-prior of the hyper-parameters prevents pos-

terior impropriety, which can happen in the EB procedures when estimating

the posterior distribution of the hyper-parameters. Also, the ADM considers

the variance in the estimates of the hyper-parameters when estimating the

first level parameters, which EB-plugin procedures do not do. Thus, the ADM

generates wider intervals for the first level parameters, which partly explains

the higher coverage rate of the ADM compared to EB procedures. Because of

all the above favorable characteristics of the ADM, it is desirable to extend the

ADM to more hierarchical Bayes models with different distributions. We have

conducted a research on an ADM to estimate the multinomial probabilities in

the multinomial-Dirichlet-logit model in Chapter 3 of this dissertation.
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Chapter 3: Multinomial-Dirichlet-Logit Model

3.1 Introduction

This chapter proposes a procedure for multinomial data analysis. We start

with a description of the multinomial-Dirichlet-logit model in two mathemat-

ically equivalent forms13;24 and obtain closed-forms of the approximating pos-

terior distributions of the multinomial probabilities. Section 3.2 and Section

3.3 present the multinomial-Dirichlet-logit model in descriptive and inferen-

tial forms, respectively. These two forms are mathematically equivalent in the

sense that they generate the same joint distribution of the data and the first

level parameters conditional on the hyper-parameters. Section 3.4 explains

the selection of the hyper-prior distribution for the hyper-parameters, and

provides a sufficient condition on the data for the posterior distribution of the

hyper-parameters to be proper. Through careful adjustments to the likelihood

function, Section 3.5 approximates the joint distribution of the transformed

hyper-parameters by a multivariate normal distribution. Section 3.6 applies

the ADM to approximate the posterior distributions of the multinomial prob-

abilities. Section 3.7 briefly concludes this chapter.
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3.2 The Descriptive Model

The observed data is a set of vectors {yi}, i = 1, . . . , N , where yi = (yi1, . . . , yiK)T

and yik is the non-negative integer count for the k-th category, k = 1, . . . , K

with K ≥ 3. The condition that yik is an interger can be relaxed for the

ADM. An example of handling non-integer counts in a multinomial distribu-

tion with our proposed approach can be found in Chapter 5. There are three

levels in the multinomial-Dirichlet-logit model. Level 1 specifies the multino-

mial distribution for yi given the multinomial probabilities pi = (pi1, . . . , piK),

i = 1, . . . , N . The main goal of this dissertation is to make inferences about

the multinomial probabilities pi = (pi1, . . . , piK). Level 2 assigns the Dirichlet

distribution to pi given the hyper-parameters β = (β1, . . . ,βK−1) and r ∈ IR+,

where β ∈ IR(K−1)×q is the set of regression coefficient vectors for the first (K-

1) categories and βk ∈ IRq for k = 1, . . . , K − 1 with q being the number of

covariates in the regression. Level 3 states the hyper-prior distribution for the

hyper-parameters β and r.

Level 1: The observations yi = (yi1, . . . , yiK), i = 1, . . . , N , have independent

multinomial distributions given the individual parameters pi = (pi1, . . . , piK),

i = 1, . . . , N .

(yi1, . . . , yiK)|pi1, . . . , piK ∼ multinomial(ni, pi1, . . . , piK), (3.1)
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where ni = ∑K
k=1 yik and ∑K

k=1 pik = 1.

Level 2: The multinomial probabilities pi = (pi1, . . . , piK) follow conju-

gate Dirichlet distributions for i = 1, . . . , N independently, given the hyper-

parameters β = (β1, . . . ,βK−1) and r:

(pi1, . . . , piK)|β, r ∼ Dirichlet(rpEi1, . . . , rpEiK), (3.2)

where the synthetic probabilities pEi = (pEi1, . . . , pEiK) are given by

pEik = ex
′
iβk

1 +∑K−1
j=1 ex

′
iβj
, (3.3)

for k = 1, . . . , K − 1 and

pEiK = 1
1 +∑K−1

j=1 ex
′
iβj
, (3.4)

so that pEi satisfies the condition that ∑K
k=1 p

E
ik = 1 and βk ∈ IRq is the re-

gression coefficient vector for categories k = 1, . . . , K − 1. Here xi ∈ IRq is

the vector of known covariates for individual group i, for i = 1, . . . , N . The

hyper-parameter r accounts for between-individual variability. Following the

terminology Christiansen and Morris (1997)13, we call r the variance compo-

nent.

Level 3: For the hyper-prior, we assume a flat distribution for the hyper-
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parameter β and a flat distribution for the reciprocal of r:

βk ∼ Uniform on IRq, (3.5)

for k = 1, . . . , K − 1, and

1/r ∼ Uniform(0,∞). (3.6)

The choice of the improper hyper-prior distribution for β is standard. The se-

lection of the hyper-prior distribution for r is to correct the estimation problem

that the posterior mode (MLE in the classical terminology) of r can occur at

infinity. When this happens, the ADM approximation to the posterior mean

of the shrinkage Bi = r/(r + ni) occurs at the boundary point, which will af-

fect the accuracy of the ADM approximation. This hyper-prior will eliminate

the posterior impropriety under a mild condition on the data. This will be

discussed in detail in Section 3.4.

3.3 The Inferential Model

The marginal distributions of the observed data {yi}, i = 1, . . . , N , given

the hyper-parameters β and r, are independent Dirichlet-multinomial distri-

butions. They are derived by integrating the first level parameter pi out and
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the density is given by:

f(yi|β, r) = (ni!)Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
(yik!)Γ(rpEik)

, (3.7)

where the notation Γ(x) stands for the gamma function.

Level 1: The observations yi = (yi1, . . . , yiK), given the hyper-parameters β

and r, have independent Dirichlet-multinomial distributions for i = 1, . . . , N

with densities as in equation (3.7),

(yi1, . . . , yiK)|β, r ∼ DM(ni, rpEi1, . . . , rpEiK). (3.8)

For notational simplicity, we use DM to stand for the Dirichlet-multinomial

distribution.

Level 2: Because of conjugacy, the conditional posterior distributions for

the multinomial probability parameters pi = (pi1, . . . , piK), given the hyper-

parameters β and r and the data y, are independent Dirichlet distributions

with updated parameters:

(pi1, . . . , piK)|β, r,y ∼ Dirichlet(niȳi1 + rpEi1, . . . , niȳiK + rpEiK), (3.9)

where ȳik = yik/ni is the observed proportion of category k in group i, i =

1, . . . , N and k = 1, . . . , K. The means, variances and covariances of condi-
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tional posterior distribution for pi = (pi1, . . . , piK) are given by:

p∗ik = E(pik|β, r,y) = (1−Bi)ȳik +Bip
E
ik, (3.10)

V ar(pik|β, r,y) = p∗ik(1− p∗ik)
ni + r + 1 , (3.11)

Cov(pil, pim|β, r,y) = − p∗ilp
∗
im

ni + r + 1 with l 6= m, (3.12)

where Bi = r/(r + ni), known as the shrinkage factor for group i. The hyper-

parameter r > 0 can also be explained as the unobserved total hyper-prior

counts for group i.

Level 3 remains the same as in the descriptive model.

3.4 Posterior Propriety

The joint posterior density f(β, r|y) of the hyper-parameters β and r is given

by

f(β, r|y) ∝ L(β, r)/r2, (3.13)

where the likelihood function is the product of the N independent Dirichlet-

multinomial densities

L(β, r) =
N∏
i=1

 (ni!)Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
(yik!)Γ(rpEik)

. (3.14)

The propriety of the posterior is data-dependent. In this section, we provide a
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sufficient condition on the data for the posterior to be proper. This sufficient

condition is mild and can be satisfied in many application scenarios. The

lemmas and the theorems in this sections are all for integer counts yik. Some

extensions to non-integer counts are proved in Appendix A.5.

Definition 3.1 Let di, 1 ≤ di ≤ K(K ≥ 3), denote the number of non-zeros

in group i of the data. There can be three types of groups in the data: (1)

interior group (di = K) with yik ≥ 1 for all k = 1, . . . , K; (2) intermediate

group (2 ≤ di ≤ K − 1) with at least one zero and at least two non-zeros in

the group; and (3) extreme group (di = 1) with all the mass ni in group i

concentrating within one category. Let the symbol Wi denote the set of indices

of the categories with positive counts in group i, Wi ⊆ {1, . . . , K}, and let di

be the cardinality of the set Wi.

Definition 3.2 The symbol Wy ⊆ {1, . . . , N} denotes the set of indices corre-

sponding to interior groups in the data and Ny denotes the number of interior

groups, that is, the length of the set Wy. Use the symbol W c
y to denote the set of

indices of intermediate and extreme groups and let (N −Ny) be the number of

intermediate and extreme groups in the data. The notation X = (x1, . . . ,xN)T

refers to the N×q covariate matrix of all groups (N ≥ q) and Xy is the Ny×q

covariate matrix of the interior groups.

Lemma 3.1 The lower and upper bounds for the Dirichlet-multinomial prob-

ability mass function for interior group i with respect to β and r are given
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by
rni

(nmax + r)ni
K∏
k=1

(pEik)yik (3.15)

and
r2

(r + 1)(r + 2)

K∏
k=1

pEik, (3.16)

respectively, up to a constant multiple, where nmax = max{n1, . . . , nN}. Those

for intermediate group i are given by

rni

(nmax + r)ni
∏
k∈Wi

(pEik)yik (3.17)

and
r

r + 1
∏
k∈Wi

pEik, (3.18)

respectively, up to a constant multiple. Those for extreme group i are (pEij)ni

and pEij, respectively when j is the index of the category with yij = ni, up to a

constant multiple.

Proof. See Appendix A.1.

As can be seen from Lemma 3.1, both the lower and upper bounds of Dirichlet-

multinomial probability mass function can be factored into a function of β

and a function of r. The likelihood L(r,β) is the product of the individual

Dirichlet-multinomial probability mass functions; thus, the lower and upper

bounds of L(r,β) can also be factored into functions of β and r, respec-

tively.
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Lemma 3.2 When all groups are interior, L(r,β) can be bounded from below

and above by

c
(

r

nmax + r

)∑N

i=1 ni
N∏
i=1

K∏
k=1

(pEik)yik ≤ L(r,β) ≤ c
r2N

(r + 1)N(r + 2)N
N∏
i=1

K∏
k=1

pEik,

(3.19)

where c is a constant that does not depend on β and r.

Proof. See Appendix A.2.

Now we can show that with a flat prior on r, the posterior, which is propor-

tional to the likelihood, is improper. The integral of the part with respect to

r in the lower bound of equation (3.19),

∫ ∞
0

(
r

nmax + r

)∑N

i=1 ni

dr, (3.20)

does not converge. Thus, the posterior mode (MLE in the classical terminol-

ogy) of r can occur at infinity when the sample size is small. This explains

the selection of a hyper-prior on r other than a flat function. Theorem 3.1

below proves a sufficient condition for posterior propriety for a dataset with

all interior groups.

Theorem 3.1 When all groups are interior in the data, the posterior density

function of hyper-parameters p(β, r|y), equipped with f(r) ∝ 1/r2 and inde-

pendently an improper flat hyper-prior density on β, g(β) ∝ 1, is proper if the

covariate matrix X is of full rank q.
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Proof. See Appendix A.3.

Corollary 3.1 When interior groups co-exist with intermediate and/or ex-

treme groups, the propriety of the posterior can be determined solely by the

interior groups.

Proof. See Appendix A.4.

Thus the posterior density f(β, r|y) is proper provided that there is at least

one interior group (e.g., all yik’s, k = 1, . . . , K, are greater than or equal to 1)

in the data and that the Ny × q sub-matrix Xy of X is of full rank.

We also prove the bounds for the Dirichlet-multinomial probability mass func-

tion for interior and intermediate groups with non-integer counts in Appendix

A.5. The rest of the proof for the sufficient condition for the non-integer

counts are very similar to the case of integer counts and will not be given in

detail.

3.5 Distribution of Hyper-parameters

The likelihood function of the hyper-parameters β and r is the product of the

N DM densities as in equation (3.7):

L(β, r) =
N∏
i=1

 (ni!)Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
(yik!)Γ(rpEik)

. (3.21)
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The log-likelihood function of L(β, r) is given by

L(β, r) = C +
N∑
i=1

 log
(
Γ(r)

)
− log

(
Γ(ni + r)

)

+
K∑
k=1

(
log

(
Γ(yik + rpEik)

)
− log

(
Γ(rpEik)

))
= C +N log

(
Γ(r)

)
−

N∑
i=1

log
(
Γ(ni + r)

)

+
N∑
i=1

K∑
k=1

(
log

(
Γ(yik + rpEik)

)
− log

(
Γ(rpEik)

))
,

(3.22)

where C is a constant independent of β and r.

Fix r > 0 and define α = − log(r) throughout, because the distribution of α is

more symmetric than r and α is defined on the real line without any boundary

issues. Normal approximation would be more accurate for α than for r. The

log-likelihood of β alone, with r fixed, involves only the last term of (3.22).

Then the score function, the q-dimensional gradient of log-likelihood (3.22)

with respect to the regression coefficient vector βk for k = 1, . . . , K − 1, is

given by

∂L(β, r)
∂βk

=
N∑
i=1

rpEik

{[
ψ(yik+rpEik)−ψ(rpEik)

]
−

K∑
j=1

pEij
[
ψ(yij+rpEij)−ψ(rpEij)

]}
xTi ,

(3.23)

where ψ(x) = (d/dx) log Γ(x) is the digamma function. The second derivatives

of the log-likelihood function (3.22) with respect to βk, k = 1, . . . , K − 1, is
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given by

∂2L(β, r)
∂(βkβ′k)

=
N∑
i=1

{
r2(pEik)2(1− 2pEik)

[
ψ1(yik + rpEik)− ψ1(rpEik)

]

+ rpEik(1− 2pEik)
[
ψ(yik + rpEik)− ψ(rpEik)

]
+ r2(pEik)2

K∑
j=1

(pEij)2
[
ψ1(yij + rpEij)− ψ1(rpEij)

]

− rpEik(1− 2pEik)
K∑
j=1

pEij
[
ψ(yij + rpEij)− ψ(rpEij)

]}
xix

T
i ,

(3.24)

where ψ1(x) = (d2/dx2) log Γ(x) is the trigamma function. Writing the expres-

sion enclosed by the curly brackets in equation (3.24) as aik, equation (3.24)

can be written in matrix form:

∂2L(β, r)
∂(βkβ′k)

= X ′DkX, k = 1, . . . , K − 1, (3.25)

where Dk is the N × N diagonal matrix with the ith diagonal element being

aik, i = 1, . . . , N , and X is the N × q matrix of covariates. The mixed second

derivative with respect to the regression coefficients for the lth and the mth
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categories, βl and βm, is given by:

∂2L(β, r)
∂(βlβ′m) =

N∑
i=1

{
− r2(pEil )2pEim

[
ψ1(yil + rpEil )− ψ1(rpEil )

]

− rpEilpEim
[
ψ(yil + rpEil )− ψ(rpEil )

]
− r2pEil (pEim)2[ψ1(yim + rpEim)− ψ1(rpEim)]

− rpEilpEim[ψ(yim + rpEim)− ψ(rpEim)]

+ r2pEilp
E
im

K∑
j=1

(pEij)2
[
ψ1(yij + rpEij)− ψ1(rpEij)

]

+ 2rpEilpEim
K∑
j=1

pEij
[
ψ(yij + rpEij)− ψ(rpEij)

]}
xix

T
i ,

(3.26)

where l 6= m. Similar to the case for the second derivatives with respect to βk,

the mixed second derivative (3.26) can also be written in matrix form. Define

Dlm as the diagonal matrix with the ith diagonal term being ailm, i = 1, . . . , N ,

where ailm is equal to the expression enclosed by the curly brackets in equation

(3.26); then
∂2L(β, r)
∂βl∂β′m

= X ′DlmX. (3.27)

From above, the second derivative of the log-likelihood (3.22) with respect to

β = (β1, . . . ,βK−1) is ∂2L(β,r)
∂β∂β′

, which has second derivatives (3.24) for k =

1, . . . , K − 1 as the blocks in the diagonal. The closed-form first and second

derivatives with respect to r are complicated and are not necessary since the

optimal hyper-parameter estimates are computed using the optim() function

in R. The second derivative of the log-likelihood (3.22) with respect to β is

given because it is used as an adjustment to the likelihood function (3.21) in
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order to increase the computation speed without sacrificing the accuracy of

the estimates.

With the transformation α = − log(r), the posterior density of β and α is

given by

f(β, α|y) ∝ eαL(β, r(α)). (3.28)

In Section 3.2.3, we prove that this posterior is proper with the adjustment

of the Level 3 hyper-prior (3.5). Moreover, adjustment ensures that the mode

occurs at a finite value for α. The second adjustment is the restricted maximum

likelihood (REML) type correction by Laplace approximation with a Lebesgue

measure on β,

f2(β, α|y) =
∫
f(β, α|y)dβ = c|H|−1/2eαL(β, r(α)), (3.29)

where

H = −∂
2L(β, r(α))
∂(ββ′) . (3.30)

The REML type adjustment is used to correct for the bias in the posterior

mode (MLE in the classical terminology) of α, which results from ignoring

the loss of degrees of freedom when estimating β. This problem is severe

with small sample size N and large number of regressors q. This REML type

adjustment has been proved to produce a different and better estimate for α by

previous studies19;28. Because this REML correction |H|−1/2 is complex and

only approximate, we introduce the third adjustment. The geometric mean
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of the H eigenvalues, |H|1/(q(K−1)), is approximated by a constant multiple

of the geometric mean of the N(K − 1) values of aik. Thus, the approximate

logarithm of the adjusted posterior (3.29) is given by

LR(β, r(α)) = c2 + α + L(β, r(α))− q

2N

N∑
i=1

K−1∑
k=1

log(|aik|), (3.31)

where c2 is a constant independent of β and α. Then, the next analysis

is similar to that for maximum likelihood. The distribution of the hyper-

parameters β and α = −log(r) can be approximated by a joint multivariate

normal: β
α

 |data ∼ N(K−1)×q+1

µ̂ =
β̂
α̂

 , Σ̂
 , (3.32)

where µ̂ optimizes LR(β, r(α)) and Σ̂ is the inverse of the Hessian matrix

of −LR(β, r(α)) at µ̂. Both µ̂ and Σ̂ can be computed easily using the R

function optim().

3.6 Distributions of the Multinomial Probabilities

The parameters of interest are the multinomial probabilities pi = (pi1, . . . , piK)

in the multinomial distribution. Thus the ultimate goal is to approximate

the posterior distribution of (pi1, . . . , piK)|y and approximate the posterior

means E(pik|y) and the posterior variances V ar(pik|y) of the multinomial

probabilities. From the conditional posterior mean (3.10) and conditional
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posterior variance (3.11), we have

E(pik|y) = Eβ,α|y
(
E(pik|β, α,y)

)
= Eβ,α|y(p∗ik)

= Eβ,α|y
(
(1−Bi)ȳik +Bip

E
ik

) (3.33)

and

V ar(pik|y) = Eβ,α|y
(
V ar(pik|β, α,y)

)
+ V arβ,α|y

(
E(pik|β, α,y)

)
= Eβ,α|y

(p∗ik(1− p∗ik)
ni + r + 1

)
+ V arβ,α|y

(
p∗ik
)
.

(3.34)

We assume that the hyper-parameters β and α are independent a posteriori.

Under this assumption, both the posterior mean (3.33) and the posterior vari-

ance (3.34) are functions of the moments E(Bc
i |y) and E

(
(pEik)c|y)

)
, c being a

positive integer. Therefore, we want to approximate the distributions of Bi|y

and pEik|y.

3.6.1 Posterior Distribution of Shrinkage Bi

Since the support of Bi|y is between 0 and 1, it is not appropriate to

approximate the distribution of Bi|y by a normal distribution and it

is more reasonable to approximate it by a beta distribution. In this

case, ADM approximation provides the solution. The density f(Bi|y)

67



is approximately a logit-normal distribution

Bi = r

r + ni
= e−α

e−α + ni
= e−α

e−α + elog(ni)
= e−α−log(ni)

1 + e−α−log(ni)

∼ Logit−Normal(−α̂− log(ni), σ̂2
α).

(3.35)

The last step in equation (3.35) is because α is distributed with normal(α̂, σ̂2
α)

from distribution (3.32). There is no analytical form for the moment

of a logit-normal distribution. We propose to approximate the logit-

normal distribution f(Bi|y) by the beta distribution with parameters

ai1 and ai2:

Bi|y ∼ Beta(ai1, ai2). (3.36)

We will follow the steps for ADM approximation to obtain the estimates

for ai1 and ai2. The adjusted density is Bi(1 − Bi)f(Bi|y). This is

the density to be approximated, f(Bi|y), multiplied by the binomial

distribution adjustment factor function Bi(1 − Bi). Now we define

L(Bi) = log
(
Bi(1 − Bi)f(Bi|y)

)
. Considering the first and second

derivatives of L(Bi)

L(Bi) = log(logit− normal(Bi)Bi(1−Bi))

= constant− (logit(Bi) + α̂ + log(ni))2

2σ̂2
α

;
(3.37)
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we obtain

∂L(Bi)
∂Bi

= − logit(Bi) + α̂ + log(ni)
σ̂2
αBi(1−Bi)

= 0⇒ B̂i = e−α̂

ni + e−α̂
, (3.38)

−L̈(Bi) = − ∂2L(Bi)
∂B2

i

∣∣∣∣∣
B̂i

= 1
B̂2
i (1− B̂i)2σ̂2

α

. (3.39)

We have two equations for two unknowns ai1 and ai2. Solving for the

system of equations yields the expressions for the estimated parameters

âi1 and âi2:

µ̂0 = âi1
âi1 + âi2

= B̂i,

m̂ = âi1 + âi2 = 1
B̂i(1− B̂i)σ̂2

α

.

(3.40)

The solutions are âi1 = 1
σ̂2
α(1−B̂i)

and âi2 = 1
σ̂2
αB̂i

. Now Bi|y can be

approximated by Beta(âi1, âi2). And the c-th moment of Bi|y is

Ê(Bc
i |y) = B(âi1 + c, âi2)

B(âi1, âi2) (3.41)

where B stands for the beta function.

3.6.2 Posterior Distribution of Synthetic Probabilities pEik

We approximate the unconditional posterior moments of pEik by the

conditional posterior moments with α̂ replacing α23:

E
(
(pEik)c|y

)
≈ E

(
(pEik)c|α̂,y

)
. (3.42)
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Then, assuming the conditional posterior distribution of (pEi1, . . . , pEiK)

with α̂ inserted is approximately independent Dirichlet,

(pEi1, . . . , pEiK)|α̂,y ∼ Dirichlet(bi1, . . . , biK). (3.43)

Then, we have

pEij|α̂,y = ex
′
iβj

1 + ex
′
iβ1 + . . .+ ex

′
iβK−1

|α̂,y = Gij

Gi1 + . . .+GiK

, (3.44)

where Gij, j = 1, . . . , K, are independent random variables following

gamma(bij, 1) distributions. Then,

ex
′
iβj |α̂,y = Gij

GiK

, j = 1, . . . , K − 1. (3.45)

The mean and variance of the ratio of two independent gamma distri-

butions are given by

E(ex′
iβj |α̂,y) = E

(
Gij

GiK

)
= bij
biK − 1 = ηij (3.46)

and

V ar(ex′
iβj |α̂,y) = V ar

(
Gij

GiK

)
= ηij(1 + ηij)

biK − 2 . (3.47)

From distribution (3.32), βj is multivariate normally distributed with

mean β̂j and covariance matrix Σ̂jj, j = 1, . . . , K − 1, which is the jth
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q × q block in the diagonal of the covariance matrix of β. The mean

and variance of log − normal distributions are easy to compute:

Ê(ex′
iβj |α̂,y) = exp(x′

iβ̂j + x′
iΣ̂jjxi/2) = η̂ij (3.48)

and

V̂ ar(ex′
iβj |α̂,y) = η̂2

ij(ex
′
iΣ̂jjxi − 1). (3.49)

By matching the (K − 1) means in equation (3.46) and equation (3.48)

and the sum of the (K − 1) variances in equation (3.47) and equation

(3.49), we have the following system of K equations:

E(ex′
iβj |α̂,y) = Ê(ex′

iβj |α̂,y), j = 1, . . . , K − 1 (3.50)

and
K−1∑
j=1

V ar(ex′
iβj |α̂,y) =

K−1∑
j=1

V̂ ar(ex′
iβj |α̂,y). (3.51)

Solving the above system of equations for (bi1, . . . , biK), we have

b̂iK =
∑K−1
j=1 η̂ij(1 + η̂ij)∑K−1

j=1 η̂2
ij(ex

′
iΣ̂jjxi − 1)

+ 2 (3.52)

and

b̂ij = η̂ij(b̂iK − 1), j = 1, . . . , K − 1. (3.53)

The posterior distribution of (pEi1, . . . , pEiK) is approximately aDirichlet(b̂i1, . . . , b̂iK)

71



distribution and each pEik|α̂,y is approximately a beta(b̂ik, b̂i0− b̂ik) dis-

tribution, where b̂i0 = ∑K
j=1 b̂ij. Then,

Ê
(
(pEik)c|α̂,y

)
= B(b̂ik + c, b̂i0 − b̂ik)

B(b̂ik, b̂i0 − b̂ik)
. (3.54)

3.6.3 Estimation of Random Effects

Under the assumption that β and α are independent a posteriori,

E(pik|y) =
(
1− E(Bi|y)

)
ȳik + E(Bi|y)E(pEij|y), (3.55)

V ar(pik|y) = E
(p∗ik(1− p∗ik)
ni + r + 1 |y

)
+ V ar

(
p∗ik|y

)
= E

(p∗ik(1− p∗ik)
ni + r + 1 |y

)
+ V ar

(
Bi(ȳik − pEik)|y)

≈ E
(p∗ik(1− p∗ik)(1−Bi)

ni
|y
)

+ V ar
(
Bi(ȳik − pEik)|y)

=
{

(1− ȳik)ȳik[1− E(Bi|y)]

+ (2ȳik − 1)E
(
Bi(1−Bi)|y

)(
ȳik − E(pEik|y)

)
+ E

(
B2
i (1−Bi)|y

)
E
(
(ȳik − pEik)2|y

)}
/ni

+ V ar
(
Bi(ȳik − pEik)|y

)
.

(3.56)

The approximation in equation (3.56) is a first-order Taylor approxi-

mation. By inserting the moment estimates of the shrinkage Bi and

the moment estimates of the expected probability pEik as presented in

equation (3.41) and the equation (3.54) into the equation (3.55) and the
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equation (3.56), we obtain the estimated posterior mean and posterior

variance of the multinomial probabilities, respectively.

3.7 Conclusion

This chapter develops the ADM to estimate the multinomial probabilities in

a multinomial-Dirichlet-logit model. The procedure starts from adjusting the

likelihood of the hyper-parameters by a third level hyper-prior on the hyper-

parameters. This adjustment removes the possibility that the variance com-

ponent r estimate occurs at an infinite value. The REML adjustment to the

posterior distribution of the hyper-parameters corrects the bias in the variance

component estimate. The adjustment to the determinant of the Hessian matrix

speeds up the computation. When estimating the multinomial probabilities,

we introduce the variance in the hyper-parameter estimates. In Chapter 4, we

discuss results from some simulation studies to check the performance of the

proposed estimates.

73



Chapter 4: Comparisons with Other Methods

4.1 Introduction

This chapter demonstrates the advantages of the ADM proposed in Chap-

ter 3 over other parameter estimation procedures, including sampling-based

approaches and empirical Bayes methods. As the previous studies in ADM

do, our proposed approach also provides some attractive features. First, the

proposed ADM is designed to provide reasonable point estimates and interval

estimates for all the parameters for all N observations, unlike some other meth-

ods. Second, although MCMC can also provide a full range of inferences, the

computation speed of our method is hundreds of times faster than the MCMC

procedure through RStan52 and thus permits its evaluation by repeated use in

simulations. Third, simulation studies have shown that the ADM has better

operating characteristics than the EB methods.

Section 4.2 compares estimates from our method with the corresponding es-

timates from the MCMC approach. The comparison with MCMC ensures

the accuracy of the ADM estimates and emphasizes the overwhelmingly fast

speed of the ADM. In Section 4.3, we compare the inferences from the ADM

with two alternative EB methods. The comparison with the two EB methods
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verifies the ill behavior of the MLE for the variance component and empiri-

cally demonstrates the better operating characteristics of the ADM estimates.

Finally, Section 4.4 presents a summary and discussion.

4.2 Comparison with MCMC

To make a newly proposed procedure useful, it must be accurate in estimation.

Thus, comparing the ADM estimates with the MCMC estimates will be of

interest. The data used in this study is a small random sample of 10 groups

from a race count data extracted from Twitter big data. Each observation

in the sample contains non-integer counts for five race categories in a small

area and the information of its state. The details about the Twitter data are

given in Chapter 5. This sample is used only for illustration and to verify the

accuracy of the estimates obtained from the ADM for a small sample. The

analysis of the complete Twitter data is given in Chapter 5. Since MCMC

implemented by RStan can only deal with integer counts, we first round the

counts in the sample to the nearest integers (yi1, . . . , yi5) in Table 4.1 to feed

into the MCMC package Rstan52. The variable xi1 is the code for state (1:

California; 0: Florida; -1: Texas). To be consistent, we also run the ADM on

the rounded sample data although the ADM can handle non-integer counts.

The results from the two approaches are presented in Table 4.1. The estimates

of both the hyperparameters β and r and the multinomial probabilities pi are

close to the corresponding estimates from MCMC. The standard errors for
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the multinomial probability estimates from the two procedures are also close.

But the difference between the speeds of the two methods on this sample data

is obvious. On the same laptop, the ADM is hundreds of times faster than

the MCMC approach (burns-in of 5000 samples, 5000 samples after burns-in

and 4 chains starting from 4 different sets of initial hyper-parameter values)

using the Rstan package52. The ADM directly gives the formulas for the point

estimates and the interval estimates of all the parameters, avoiding the trouble

of convergence checking as in the MCMC approach. One more advantage of the

ADM is that each time a model is applied to the same dataset, the estimated

results will be the same; while MCMC spits out different estimates each time it

runs on the same dataset if seed is not set. This randomness can be awkward

for some legal and public policy applications13.

Table 4.1: Comparison of Estimates Generated by MCMC and ADM

MCMC ADM

Data β̂ =
(

2.620 −0.207
1.102 −0.190
0.524 −0.022
1.535 0.071

)
, r̂ = 43.975 β̂ =

(
2.541 −0.201
1.051 −0.177
0.499 −0.019
1.470 0.071

)
, r̂ = 42.660

obs i yi1 yi2 yi3 yi4 yi5 xi1 p̂i1 p̂i2 p̂i3 p̂i4 p̂i5 p̂i1 p̂i2 p̂i3 p̂i4 p̂i5

1 289 62 45 108 19 1 0.551
(0.022)

0.119
(0.014)

0.086
(0.012)

0.208
(0.018)

0.037
(0.008)

0.549
(0.021)

0.119
(0.014)

0.086
(0.012)

0.208
(0.017)

0.037
(0.008)

2 261 65 46 187 19 1 0.457
(0.020)

0.113
(0.013)

0.080
(0.010)

0.317
(0.019)

0.034
(0.007)

0.456
(0.020)

0.113
(0.013)

0.080
(0.011)

0.317
(0.019)

0.034
(0.007)

3 2 0 1 4 1 1 0.474
(0.087)

0.098
(0.051)

0.086
(0.047)

0.281
(0.077)

0.062
(0.038)

0.470
(0.082)

0.102
(0.047)

0.090
(0.041)

0.275
(0.077)

0.063
(0.037)

4 233 45 19 58 13 0 0.625
(0.024)

0.123
(0.016)

0.054
(0.011)

0.162
(0.018)

0.036
(0.009)

0.626
(0.024)

0.123
(0.016)

0.054
(0.011)

0.161
(0.018)

0.036
(0.009)

5 172 41 10 43 9 0 0.619
(0.028)

0.146
(0.020)

0.041
(0.011)

0.161
(0.021)

0.034
(0.010)

0.617
(0.027)

0.146
(0.020)

0.041
(0.011)

0.161
(0.021)

0.034
(0.010)

6 159 28 12 19 8 0 0.682
(0.029)

0.124
(0.021)

0.056
(0.014)

0.102
(0.019)

0.036
(0.012)

0.681
(0.029)

0.124
(0.020)

0.056
(0.014)

0.101
(0.018)

0.037
(0.012)

7 7050 1589 712 1966 373 -1 0.603
(0.005)

0.136
(0.003)

0.061
(0.002)

0.168
(0.003)

0.032
(0.002)

0.603
(0.005)

0.136
(0.003)

0.061
(0.002)

0.168
(0.003)

0.032
(0.002)

8 862 155 65 115 39 -1 0.694
(0.013)

0.126
(0.010)

0.053
(0.006)

0.095
(0.008)

0.032
(0.005)

0.694
(0.013)

0.126
(0.009)

0.053
(0.006)

0.095
(0.008)

0.032
(0.005)

9 149 31 17 155 9 -1 0.434
(0.027)

0.091
(0.015)

0.049
(0.011)

0.400
(0.026)

0.026
(0.008)

0.432
(0.025)

0.091
(0.014)

0.049
(0.011)

0.401
(0.024)

0.027
(0.008)

10 3 1 2 0 0 -1 0.592
(0.082)

0.137
(0.055)

0.099
(0.049)

0.138
(0.057)

0.034
(0.028)

0.587
(0.073)

0.138
(0.050)

0.100
(0.064)

0.139
(0.057)

0.036
(0.027)
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4.3 Comparison with Empirical Bayes Methods

We also conduct a Monte Carlo simulation study comparing inferences from

the ADM with those from two alternative empirical Bayes (EB) methods: EB-

MLE and EB-REML. Five datasets with different combinations of (N,K, q)

are used in the simulation study. All scenarios are based on the Twitter race

count data. The complete Twitter dataset has a wide range of group sizes (ni),

from 1 to 51170. The covariate matrix X (with two covariates: the intercept

and the state) and the group sizes ni, i = 1, . . . , N , for the five experiments

are all sampled from the complete Twitter data. The simulated data and the

two alternative methods, EB-MLE and EB-REML, are introduced in Section

4.3.1 and Section 4.3.2, respectively. Section 4.3.3 summarizes the operating

characteristics of the ADM and the two EB procedures.

4.3.1 Simulated Data

There are five datasets with various combinations of (N,K, q) used in

this simulation study, all sampled from the complete Twitter dataset.

Only the covariate matrix X and the group sizes ni, i = 1, . . . , N , in

the Twitter sample are used. Different known values for the hyper-

parameters β and r are assigned to the five datasets. Please refer

to Method d in Table 4.2 (Column: avg. r̂ and Column: avg. β̂)

for the true values of the hyper-parameters for the five datasets. For
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each dataset, we first generated 100 replicates of probability vectors

pi ∼ Dirichlet(rpEi1, . . . , rpEiK), i = 1, . . . , N , and then generated 100

replicates of counts yi ∼ Multinomial(ni,pi), i = 1, . . . , N . We ran

the three approaches on each of the 100 simulated datasets generated

with the same X, ni and hyper-parameters. We computed the averages

of the 100×N shrinkages and the 100 sets of hyperparameter estimates

for 100 simulated datasets. The results are displayed in the last three

columns of Table 4.2.

4.3.2 Alternative Methods

Empirical Bayes methods are based on the first two levels as in (3.1)

and (3.2) of our three level model. The means and the variances of

the multinomial parameters are estimated using equation (3.10) and

equation (3.11) by plugging in the ML or REML estimates for the

hyper-parameters. In EB-MLE, the hyper-parameters are estimated by

maximum likelihood method and in EB-REML, the hyper-parameters

are estimated by maximum likelihood method on the REML corrected

likelihood. The two sets of estimates for the hyper-parameters are re-

ferred to as the MLE estimates and the REML estimates.
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4.3.3 Operating Characteristics

This subsection reports results on different operating characteristics

from our Monte Carlo simulation study. For illustration, we only re-

port results for multinomial probabilities for the first category pi1, i =

1, · · · , N.

Table 4.2 displays results for average operating characteristics, where

the average is over all the N groups. The second column in Table 4.2

displays the average coverage rates for the three estimation methods.

The coverage probability for group i is defined as

Pr(p̂i1,0.025 < pi1 < p̂i1,0.975|β, r), (4.1)

where Pr denotes the probability with respect to the joint distribution of

(yi, pi, i = 1, · · · , N). We approximate this probability using the 100

replicates generated from the multinomial-Dirichlet-logit model given

fixed values of the hyper-parameters β and r. For the two EB methods,

the endpoints p̂i1,0.025 and p̂i1,0.975 are the 2.5% and 97.5% quantiles of

the distribution:

Beta(yi1 + r̂p̂Ei1, (ni − yi1) + r̂(1− p̂Ei1), (4.2)

respectively. In equation (4.2), r̂ is the MLE estimate and the REML
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estimate of r for the EB-MLE method and the EB-REML method,

respectively; and p̂Ei1 is computed by inserting the ML and REML es-

timates of β for the EB-MLE method and the EB-REML method,

respectively. For the ADM, the endpoints p̂i1,0.025 and p̂i1,0.975 are the

2.5% and 97.5% quantiles of the Beta distribution:

Beta(b̂i1, b̂i2), (4.3)

where b̂i1 and b̂i2 are computed from the estimates p̂i1 = Ê(pi1|y) and

σ̂2
i1 = V̂ ar(pi1|y) by solving the following system of equations

p̂i1 = b̂i1

b̂i1 + b̂i2
,

σ̂2
i1 = b̂i1b̂i2

(b̂i1 + b̂i2)2(b̂i1 + b̂i2 + 1)
.

(4.4)

When computing the endpoints for the ADM, the uncertainty in the

estimates of the hyper-parameters r and β is taken into considera-

tion. This method of computing the coverage rate is named Rao-

Blackwellization and has improved the simulation accuracy substan-

tially13 under the condition when only 100 trials are available for each

i. Compute the average of all 100 × N coverage rates as the average

coverage rate for a procedure. From Table 4.2, ADM has better average

simulated coverage rate than the EB procedures. The under-coverage

rates for the EB methods can be explained by the fact that (1) occa-
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sionally r is estimated at ∞ making the variance (3.11) estimated at

0 and (2) the naive EB methods do not take into consideration the

uncertainty in the hyper-parameter estimates when assessing the pos-

terior variances. Even a method achieves the nominal average coverage

rate 0.95, the coverage rate for the method may vary over the groups

depending on the group sizes or other predictor variables. This is an

undesirable feature of a method. Figure 4.1 plots simulated coverage

rates against groups arranged in order of group sizes. We observe that

the coverage rate increases with group sample size (ni) for the two EB

methods. In contrast, the simulated coverage rates based on the ADM

are much more stable across different group sizes and stay around the

ideal 0.95 coverage rate. Our proposed ADM provides intervals that

are wider than those generated by the two EB methods (see Table 4.2).

These wider intervals, caused by the inclusion of additional uncertainty

due to the hyper-parameters by the ADM, are partly responsible for its

better coverage. For the case (N = 30, K = 5, q = 2) in Table 4.2, the

proposed ADM provides better coverage than EB-MLE method even

though its average interval width is narrower than that of the EB-MLE

method.

The loss function used to compare estimators is the sum of the squared

error losses,

L(p̂,p) =
N∑
i=1
‖p̂i − pi‖2 , (4.5)
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Figure 4.1: Average coverage rate of 100 replicates vs. group in-
dex, N=30, K=5, q=2. Group size increases from 10 to 139 from
group 1 to group 30. The average coverage rates for EB-MLE,
EB-REML and ADM for the complete data are 0.938,0.943 and
0.949, respectively.

where p̂ = {p̂i} and p = {pi}, i = 1, . . . , N , are the sets of estimated

multinomial probabilities and true multinomial probabilities for the 100

replicates, respectively. We compare risk or total mean squared error

(MSE), over all the groups, defined as E[L(p̂,p)], where the expecta-

tion is taken over the joint distribution of (yi,pi, i = 1, · · · , N) in

the multinomial-Dirichlet-logit model for given hyper-paraters β and

r. This is also a reasonable evaluation criterion under the classical EB

approach. The optimum estimator for this loss function is the mean

E(pi|data). Thus, p∗ik given by (3.10) is the best estimator when β and

r are known - method labeled (d) in Table 4.2 and gives a lower bound

to what is realistically possible. The risks, estimated as the average of

these 100 losses, are given in the column with heading Risk of Table
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4.2. The ADM estimator of {pi} has equally good or better risks than

the EB estimators and is stable in performance for the five datasets,

especially for the dataset with (N = 30, K = 5, q = 2).

The average of estimates of r over 100 replicates (Column: avg. r̂) by

the EB-MLE and the EB-REML in the first and the fifth examples

can occasionally occur at an infinite value, but the ADM does not

encounter such a problem for all five cases. We also observe that REML

adjustment effectively corrects the bias in the estimation of r. The

average of the estimates of β (Column: avg. β̂) are relatively insensitive

to the average of r, because r and β are relatively independent.

4.4 Discussion

This chapter demonstrates the advantages of the proposed ADM in parameter

estimation over the other commonly used approaches, including the MCMC

approach and two empirical Bayes methods. In our simulation experiment, the

ADM shows multiple advantages over the MCMC. Firstly, the computation

speed of the proposed ADM is hundreds of times faster than MCMC without

sacrificing the accuracy of the estimates. Secondly, the estimates stay the same

each time the ADM for a model is applied to the same dataset as observed

in previous studies13;38. This characteristic of the ADM is favored by some

data practitioners and cannot be achieved by the sampling-based procedures.

Through the comparisons with the empirical Bayes methods, our method al-
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Table 4.2: Operating Characteristics: Coverage Rate, Interval Width and Risk

Method Coverage Interval avg. σ̂1 Risk B̂ avg. r̂ avg. β̂

N=3, K=5, q=2

a EB-MLE 0.710 0.062 0.016 0.009 0.395 150.34*

(
3.16 −0.26
1.47 −0.93
0.88 0.36
1.91 0.79

)
b EB-REML 0.905 0.083 0.021 0.006 0.156 42.07*

(
2.91 −0.23
1.27 −0.87
0.75 0.31
1.71 0.76

)
c ADM 0.941 0.090 0.023 0.006 0.085 36.66

(
2.69 −0.20
1.12 −0.80
0.66 0.29
1.55 0.73

)
d Ideal 0.95 0.090 0.023 0.005 0.085 30

(
2.80 −0.30
1.20 −0.90
0.70 0.20
1.60 0.70

)
N=6, K=5, q=2

a EB-MLE 0.927 0.098 0.025 0.045 0.145 20.13
(

0.55 −0.71
1.33 −0.84
0.07 0.38
−0.47 1.04

)
b EB-REML 0.939 0.101 0.026 0.043 0.114 13.65

(
0.51 −0.66
1.26 −0.79
0.07 0.35
−0.44 0.98

)
c ADM 0.944 0.104 0.027 0.042 0.102 11.78

(
0.49 −0.64
1.23 −0.76
0.07 0.34
−0.42 0.94

)
d Ideal 0.95 0.105 0.027 0.040 0.093 10

(
0.50 −0.70
1.20 −0.80
0.10 0.30
−0.40 0.90

)
N=15, K=3, q=2

a EB-MLE 0.939 0.117 0.030 0.059 0.160 26.74
(

0.54 0.27
−0.45 2.49

)
b EB-REML 0.943 0.120 0.031 0.058 0.149 23.06

(
0.54 0.27
−0.44 2.45

)
c ADM 0.949 0.126 0.032 0.058 0.141 20.65

(
0.53 0.26
−0.43 2.42

)
d Ideal 0.95 0.121 0.031 0.051 0.141 20

(
0.50 0.24
−0.46 2.47

)
N=15, K=3, q=3

a EB-MLE 0.946 0.070 0.018 0.035 0.055 13.07
(

1.19 0.03 −0.17
0.31 2.11 0.96

)
b EB-REML 0.947 0.070 0.018 0.035 0.048 11.09

(
1.16 0.02 −0.16
0.30 2.05 0.93

)
c ADM 0.949 0.071 0.018 0.035 0.045 10.18

(
1.15 0.01 −0.16
0.30 2.02 0.91

)
d Ideal 0.95 0.071 0.018 0.034 0.044 10

(
1.20 0.00 −0.19
0.30 2.00 0.91

)
N=30, K=5, q=2

a EB-MLE 0.937 0.108 0.017 0.274 0.082 5.59*

(
0.72 0.77
1.22 1.85
2.11 0.98
−1.15 1.07

)
b EB-REML 0.940 0.069 0.018 0.133 0.042 5.29*

(
0.73 0.77
1.23 1.86
2.13 0.97
−1.15 1.07

)
c ADM 0.950 0.071 0.018 0.102 0.032 5.14

(
0.72 0.77
1.22 1.86
2.12 0.97
−1.15 1.07

)
d Ideal 0.95 0.070 0.018 0.101 0.031 5

(
0.69 0.74
1.19 1.83
2.08 0.94
−1.12 1.07

)
*The average is infinite. This value is the median.
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ways generates a finite estimate for the hyper-parameter r even for a small N

and the multinomial probability estimates obtained through the ADM have

better operating characteristics.

The proposed ADM includes a series of adjustments to the posterior distribu-

tion of the hyper-parameters and to some other posterior distributions. The

steps for the ADM for a multinomial-Dirichlet-logit model has been discussed

in Chapter 3. The successful performance of the ADM, as discussed above in

this section, relies on a series of adjustments to the posterior distribution of

the hyper-parameters and the ADM approximations to the posterior distribu-

tions of the shrinkage factors and the posterior distributions of the synthetic

proportions. Firstly, the exact posterior distribution of the hyper-parameters

is carefully adjusted so that adjusted posterior modes of the hyper-parameters

are always in the interior of the parameter space. This very first adjustment

to the posterior distribution of the hyper-parameters corrects the ill-behavior

in the MLE or the REML of the variance component estimate. Secondly, the

REML type correction to the posterior distribution of the hyper-parameters

reduces the bias in the variance component estimate, although the REML type

correction alone does not eliminate occasional infinite value for the variance

component estimate. Thirdly, the adjustment of approximating the deter-

minant of the Hessian matrix by its diagonal terms in the REML adjusted

posterior distribution of the hyper-parameters simplifies and speeds up the

computation. The first two adjustments to the posterior distribution of the
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hyper-parameters improve the approximation to the distribution of the hyper-

parameters for a small sample. The ADM approximations to the posterior

distributions of the shrinkage factors and the synthetic probabilities make the

approximations to the posterior means and posterior variances of the multino-

mial probabilities in closed-forms possible, avoiding sampling. The approxima-

tions in closed-forms save computational cost significantly. The computation

of the posterior means and posterior variances of the multinomial probabilities

incorporates the variance in the hyper-parameter estimates through the esti-

mates of the moments of the shrinkage factors and the synthetic probabilities

in the proposed procedure. The resulting interval estimates of the multinomial

probabilities in our proposed procedure are generally wider than those from

the EB-plugin procedures. The wider interval estimates partly explain the

higher coverage rates in the simulation studies.
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Chapter 5: Application

5.1 Introduction

In the previous chapters, we have either reviewed or developed the ADM to

estimate the parameters in a series of hierarchical Bayes models, including the

Poisson-gamma, the normal-normal, the binomial-beta and the multinomial-

Dirichlet regression models. This chapter will give two data analysis examples

using the hierarchical Bayes models. In the first example, we propose an alter-

native method to the ACS direct estimation method in calculating the point

estimates and the interval estimates for the small area gender proportions. We

introduce the Twitter direct gender proportion estimate as a covariate in the

binomial-beta logit model to analyze the American Community Survey (ACS)

small area gender count data. And the proposed method reduces the margins

of error for the small area proportion estimates. The second example analyzes

the Twitter non-integer small area race counts using the multinomial-Dirichlet-

logit model. The small area race proportion estimates generated by this model

are weighted sums of the direct estimates and the synthetic estimates from the

regression. The binomial-beta-logit model and the multinomial-Dirichlet-logit

model are implemented using the ADM as introduced in Chapter 2 and Chap-
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ter 3, respectively.

5.2 Small Area Gender Distribution

5.2.1 Introduction

The ACS is an annual nationwide survey in the United States. The

ACS data is used to allocate more than $675 billion in federal and

state funds6. Different stakeholders (e.g., public officials, planners and

entrepreneurs) rely on ACS data for timely precise estimates of different

socio-economic characteristics of its people at the national and different

small area levels.

Every year the Census Bureau releases ACS one-year and five-year Pub-

lic Use Microdata Samples (PUMS) on its website. The PUMS contain

records about individual people or housing units from all the states

in the nation7. The five-year PUMS data is obtained by merging five

one-year PUMS databases. National estimates can be computed from

these two sets of data, although there is a trade-off between the quality

and the timeliness of the estimates when using these two sets of data.

The five-year PUMS data contains enough sample points to generate

reliable five-year period estimates. These estimates are, however, not

appropriate for the most recent time frame. On the other hand, there

are fewer sample points in the one-year PUMS data compared with the
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five-year PUMS data. This results in estimates with large margins of

error using the method given by the Census Bureau4;54.

As an illustrative example, the margins of error for the direct survey-

weighted estimates of proportions of males (ri, i = 1, . . . , 2378) in the

year 2016 in all the 2,378 Public Use Microdata Areas (PUMAs)3 are

computed. The PUMAs are statistical geographic areas defined by the

Census Bureau in the year 2010. The histogram of the margins of error

is presented in Figure 5.1(a). The margins of error are computed using

the method documented by the Census Bureau4. This method is based

on the final weights and the 80 weight replicates for each record. In

the 2016 one-year PUMS data, male and female are coded as 1 and 2,

respectively. For computational convenience and notational simplicity,

we recode the female as 0. Then, the Census Bureau estimates of the

number of males yi and the proportion of males ri in the ith PUMA are

respectively given by

yi =
ni∑
j=1

wijyij (5.1)

and

ri = yi/
ni∑
j=1

wij, (5.2)

where ni is the sample size (e.g., the number of individual records in

the sample) in the ith PUMA, yij is the indicator value of being male

or not and wij is the weight for the jth individual in the ith PUMA.
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The estimated margin of error for the survey-weighted estimate of the

male proportion in each PUMA is given by (for notational simplicity,

the subscript i is dropped in this equation since the equation is applied

to all the PUMAs)

ME(r) = 1.96

√√√√ 4
80

80∑
k=1

(rk − r)2, (5.3)

where r is the male proportion computed using the final weights and the

80 rk’s are the direct survey-weighted estimates of the male proportions

computed using the 80 weight replicates. From Figure 5.1(b), Florida

and Texas are the two states that have the most PUMAs with margins

of error greater than the cutoff 3%. To solve this problem, in this

example we apply the ADM using a binomial-beta-logit model that

combines information from data derived from Twitter and ACS PUMS

data. We treat the weighted non-integer counts of males in the ith

PUMA as the observed count yi, the number of individual records in

the ith PUMA as ni and the Twitter male proportion in the ith PUMA

as the covariate xi1 in the binomial-beta-logit model (2.82). The goal

is to obtain estimate of pi, the proportion of males, and the associated

variance estimate.

With the popularity of social media50 and the tracking technology

Global Positioning System (GPS) embedded in mobile devices49 all

around the world, a large amount of data about social media users
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(a) (b)

Figure 5.1: Estimated margins of error for male proportion esti-
mates (year: 2016). (a) Histogram of estimates of margins of error
of direct estimates in the 2,378 PUMAs; (b) Number of PUMAs
with margins of error greater than 3% in selected states. The conti-
nental states not in this figure have 0 PUMA with margin of error
greater than 3%.

is accumulating. The information about social media users in this big

data set can include the location and the profile (e.g., gender, age,

occupation and interest) of each individual. Although at the current

stage, there are still a lot of open questions about this big dataset,

more and more researchers are joining in and conducting studies to get

an ever-improving picture of the social media population. There is al-

ready some work related to the social media population: (1) study of

the time evolution of social media demographics and comparisons with

the results from the U.S. Census35; (2) improvement of the accuracy

of location estimates of social media users11;12;26;27;31;43; (3) strengthen-

ing the capability of inferring social media users’ age, occupation and

socio-economic status40;41;46; and (4) application of statistical methods

to correct bias in the social media population33. It can be predicted that

with more sophisticated techniques developed in understanding the so-
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cial media users’ profiles, it is possible to get enriched and reliable sets

of distributions of different aspects about the social media population.

Thus, it is meaningful to develop useful statistical models to link the

social media estimates and the traditional data (e.g., ACS data). This

type of research is promising to reduce survey cost and to provide bet-

ter estimates. Thus, a growth in model-based small area estimation has

been observed and has been applied to different applications of social

sciences, including (1) poverty estimation15;36;39, (2) labor force esti-

mation10;30 and most recently (3) literacy rate estimation44. Schmid

et al.44 adopt the mobile phone data combined with survey data to

estimate literacy rate when census data is missing in developing coun-

tries. This chapter develops model-based small area gender proportion

estimates and their associated margins of error at the PUMA level by

using the ADM introduced in Chapter 2 implemented on a binomial-

beta-logit model. This methodology can be extended to estimation at

any geographic granularity (e.g. state, county, city) whenever there are

enough quality data points or reliable derived variables from alterna-

tive data resources, which can serve as the auxiliary variables in the

statistical model. This work differs from other papers that use big data

in small area estimation. First, we use a discrete binomial model on

non-integer survey-weighted counts, unlike normality-based models as-

sumed by other researchers. Secondly, we use the ADM as introduced

in Chapter 2 instead of classical EB methods used by others.
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This section is organized as follows. Section 5.2.2 introduces the data

collection method and the variables contained in the two datasets: Twit-

ter data and 2016 ACS one-year PUMS data, used in this work. Section

5.2.3 describes the data processing and information extraction proce-

dures and the binomial-beta-logit model. Section 5.2.4 presents the

improved estimates with smaller margins of error from the model. Sec-

tion 5.2.5 summarizes the contributions of this work and discusses pos-

sible application scenarios and possible future research in theoretical

model development. The development of ADM for more distributions

can make the proposed method fit into a wider set of data with a range

of distributions.

5.2.2 Data

There are two major datasets used in this work:

Twitter Data: This dataset is collected using Twitter Streaming API,

which returns 1% of real-time Tweets with the location filter set to be

bounded by the latitude-longitude box [124.7625, 66.9326]W× [24.5210,

49.3845]N33. This dataset contains 161,771,878 Twitter messages sent

by 3,670,604 active Twitter users between July 10, 2017 and October

20, 2017 in the continental United States (excluding Alaska, Hawaii,

and offshore US territories and possessions). The Twitter users in the

sample amount to more than 1.13 percent of the US population, which
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was 323,127,513 by July 1, 20165. Each tweet in the sample is composed

of information about the message (e.g., the content of the message, the

time the tweet is posted and the geo-tag) and the user (e.g., the self-

reported profile including name, location and company). And we note

that the Twitter users do not represent the US population at the time

we collect the data. Children and the elderly are unlikely to use Twit-

ter, and the teens and the young adults are more likely to use it. It is

also possible that one user has multiple accounts and some profiles may

be partly falsified.

2016 ACS Data: The ACS 2016 PUMS data is downloaded from

the U.S. Census Bureau website8. PUMS data provides anonymized

individual responses to questionnaire with variables covering different

aspects (e.g., social status, economic status, housing and demograph-

ics). Each record in the data with either household or individual as the

unit has a final weight and 80 replicate weights. The final weights are

used to compute the estimates as in equations (5.1) and (5.2) and the

replicate weights are used to compute estimates of margins of error as

in equation (5.3).

5.2.3 Methods

To obtain the gender distribution in each PUMA, we must first assign

gender and PUMA to each Twitter user based on the information in
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the tweets; then we can count the male in each PUMA.

Gender: We first extract the self-reported name from each tweet and

use the first name to infer about the gender of the Twitter user. To

get the name lists that represent male and female, respectively, we

aggregate the 1,000 most popular baby names in each year from 1918

to 2017 (100 years) from the Social Security website45. There are 2,774

male and 3,546 female names in the lists. As 503 names occur in both

lists, we remove 273 names with no separating power (e.g., shows up

equally often as male and female names), resulting in 2,397 male and

3,147 female names, which can be used to estimate a Twitter user’s

gender. We observe that there is a match for 43.7% of the users in the

sample and there are 836,510 identifiable males and 768,427 identifiable

females. That is, 52.1% male and 47.9% female in the sample. This

proportion matches the nationwide Twitter gender distribution48.

Location: Location information can be inferred from the geotags con-

tained in each tweet. A twitter user in our data can post multiple times

from different locations, which results in a set of geotags for a single

user. To pair a user with only one location, we first aggregate all the

geotags for a single Twitter user and then associate the user’s most

frequent geotag with the user. Based on our data, 3,521,887 Twitter

users (about 96% of all sample users) in the sample are geo-tagged.

From Figure 5.1(b), Florida and Texas are the two states that have the
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most PUMAs with margins of error greater than the cutoff 3%. For il-

lustrative purposes and low computational cost, we only selected users

from these two states based on the state information in the geotag. We

fed the geotag to Bing Maps API34 to get the longitude and latitude

for each user. There were 539,388 sample tweets in total in these two

states that were decoded successfully by API. Then we use the PUMA

shapefile53 (e.g., by checking whether the point longitude and latitude

of a user are inside the boundary of a PUMA) to assign a PUMA to

each Twitter user. There are 44,557 sample users who are successfully

geo-identified, in the PUMAs of large margins (e.g., greater than 3%)

in the two states.

Next we selected the 30 PUMAs with highest margins of error in Florida

and Texas and the Twitter users identified as being located within these

PUMAs. Finally, we summarized the Twitter male proportion (Col-

umn: Twitter), the sample size (Column: Size) in the PUMS data,

the weighted male count (ŷi, Column:Male) and the margin of error

for direct male proportion estimate (Column:Margin) in each of the 30

PUMAs in Table 5.1. The weighted male count ŷi is calculated using

the normalized weights following equation (5.4)

ŷi =
∑
j∈si

w∗ijyij , (5.4)
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where

w∗ij = wij∑
j∈si wij

ni (5.5)

is the normalized weight, si stands for the sample in the ith PUMA, wij

is the weight for the jth sample in the ith PUMA, ni is the sample size

in the ith PUMA, and yij is the indicator variable for being male. The

table is in descending order of the column Margin, which is the margin

of error for each PUMA.

Model: We model the weighted male counts (ŷi, Column: Male in

Table 5.1) in each of the 30 PUMAs by a binomial-beta-logit model.

The model has three levels as described in Section 2.4, Chapter 2:

ŷi|pi ∼ Binomial(ni, pi), (5.6)

pi|β, r ∼ Beta(rpEi , r(1− pEj )) , (5.7)

β ∼ Uniform on R2, 1/r ∼ Uniform(0,∞), (5.8)

where ŷi is the weighted number of males out of ni records in the ith

PUMA and pEi is the synthetic estimate of the random effect pi, defined

as:

pEi = E(pi|β, r) = ex
T
i β

1 + ex
T
i
β
, (5.9)

for i = 1, · · · , N. The vector xi contains the intercept term (xi0 =

1) and the covariate - the Twitter male proportion (xi1). The logis-
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Table 5.1: Twitter Data for the 30 PUMAs with Largest Margins of Error

State PUMA Male* Size*
Margin*

(%)
Twitter*

(%)

Florida 9501 562.61 1164 3.39 62.43

Florida 8604 497.51 972 3.38 55.57

Florida 1114 527.33 1093 3.38 55.22

Texas 2312 624.13 1172 3.36 48.36

Texas 2506 479.84 959 3.30 42.28

Florida 8602 414.37 837 3.28 56.33

Texas 2317 361.62 800 3.27 46.94

Texas 2319 489.59 1020 3.24 51.65

Florida 11101 455.49 930 3.23 48.28

Texas 2318 478.89 1026 3.16 47.40

Texas 4504 366.62 751 3.16 44.47

Texas 4620 415.69 843 3.16 50.00

Florida 7105 602.29 1193 3.13 47.87

Texas 4622 427.88 867 3.11 46.30

Florida 8302 434.31 884 3.10 48.64

Florida 9510 430.54 866 3.10 55.08

Florida 8614 489.36 1067 3.09 57.61

Florida 1103 556.45 1130 3.08 56.03

Florida 8617 430.24 938 3.08 52.75

Florida 1102 440.72 943 3.07 52.33

Texas 2512 474.22 951 3.07 51.08

Florida 1112 410.92 862 3.04 55.24

Florida 1108 720.44 1339 3.00 57.75

Florida 1107 402.41 901 2.98 46.50

Florida 9507 573.52 1221 2.98 56.14

Florida 8605 470.20 978 2.93 58.42

Texas 4503 383.73 803 2.90 52.04

Florida 9505 668.49 1266 2.89 54.01

Florida 9908 551.69 1169 2.86 50.40

Texas 6802 345.22 703 2.85 40.81

* Male: the weighted male count in the PUMS data; Size: the sample size
in the PUMS data; Margin: the margin of error for direct male proportion
estimate; Twitter: the Twitter direct male proportion estimate.
** The table is in descending order of the column Margin.
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tic regression coefficients β and the parameter r are unknown hyper-

parameters. From the model, it is clear how the PUMS data and the

Twitter male proportion are linked. The quantity of interest is the

random effect pi and the distribution of interest is the posterior distri-

bution of pi|data. Derived from model (5.6) and (5.7), the posterior

distribution of the random effect pi conditional on β and r is25:

pi|β, r,y ∼ Beta(niȳi + rpEi , ni(1− ȳi) + r(1− pEi )) , (5.10)

where ȳi = ŷi/ni. The mean and variance of the conditional posterior

distribution are given by25:

p∗i = E(pi|β, r,y) = (1−Bi)ȳi +Bip
E
i , (5.11)

V ar(pi|β, r,y) = p∗i (1− p∗i )
r + ni + 1 , (5.12)

whereBi = r/(r+ni) is the shrinkage factor. The goal is to approximate

the posterior distribution of pi|data.

Note that the counts in Table 5.1 are non-integers. Thus the bino-

mial model (5.6) is not appropriate. In our application we actually

applied an approximate binomial likelihood following Ghitza and Gel-

man (2013)16. For an evaluation of such approximation, readers are

referred to Janicki and Malec (2014)20. There are some other alterna-

tive approaches considered in the literature modeling survey-weighted
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counts or proportions. Liu, Lahiri and Kalton (2007)29, following up

on a general recommendation of Jiang and Lahiri (2006)21, offered a

few alternative approaches to model survey-weighted proportions. Ha

(2013) proposed an alternative approach for using binomial distribution

that involved rounding off both the effective sample sizes and survey-

weighted counts18.

In this example, we use the R package Rgbp which implements the

ADM for the Gaussian, binomial and Poisson hierarchical models to

deal with the non-integer counts in the binomial-beta-logit model. The

package can return estimates and their standard errors instantly with-

out the burn-in period required by MCMC for Bayes models.

5.2.4 Results

The results from Rgbp are reported in Table 5.2, which is sorted in

descending order of the margins of error computed using the Census

Bureau method. The column y is the weighted number of male ŷi; n is

the sample size ni; ȳ is the observed male proportion ŷi/ni from PUMS

data; x1 is the Twitter male proportion xi1; p̂E is the synthetic estimate

of pi, which is an approximation to E(pEi |data); B̂ is our approximation

to E(B|data); p̂ is equal to E(pi|data); σp̂ is the standard error esti-

mate of the random effect and the last two columns are the margins of

error computed by Census Bureau method and the binomial-beta-logit
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model, respectively. As seen from the table, the shrinkage (Column

B̂) decreases when the sample size (Column n) in the PUMS data in-

creases. That is, when sample size increases, the model lets the PUMS

data explain more; otherwise, the posterior shrinks toward the informa-

tion contained in the Twitter estimates. The margins of error generated

by the binomial-beta-logit model are the standard errors (Column σp̂)

multiplied by 1.96 (z0.025) and are presented in the last column (Column

BB) of the table. Compared to the results computed by the Census Bu-

reau method (Column ACS), all the margins of error are reduced and

below the cutoff 3%.

5.2.5 Discussion

The contributions of this work can be summarized as :

1. We apply proper statistical models to link social media data or

other big data sets with survey data and, as an example, we sug-

gest an alternative to the method documented by the Census Bu-

reau to estimate gender distributions at the small area level. The

proposed method successfully reduces the margins of error for the

male proportion estimates in PUMAs with big margins. Social

media data is easy and relatively cheap to obtain compared with

survey data. With more and more researchers getting involved in

the research of the social media population, the quality of esti-
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Table 5.2: Male Proportion Data and Results Using Binomial-Beta Model

State Puma y n ȳ x1 p̂E B̂ p̂ σp̂ ACS
(%)

BB
(%)

Florida 9501 562.61 1164 0.483 0.624 0.486 0.533 0.485 0.0102 3.39 2.00

Florida 8604 497.51 972 0.512 0.556 0.489 0.577 0.499 0.0105 3.38 2.06

Florida 1114 527.33 1093 0.482 0.552 0.490 0.548 0.486 0.0102 3.38 2.00

Texas 2312 624.13 1172 0.533 0.484 0.493 0.531 0.512 0.0102 3.36 1.99

Texas 2506 479.84 959 0.500 0.423 0.496 0.581 0.498 0.0105 3.30 2.06

Florida 8602 414.37 837 0.495 0.563 0.489 0.613 0.491 0.0108 3.28 2.12

Texas 2317 361.62 800 0.452 0.469 0.494 0.624 0.478 0.0110 3.27 2.15

Texas 2319 489.59 1020 0.480 0.517 0.491 0.566 0.486 0.0104 3.24 2.03

Florida 11101 455.49 930 0.490 0.483 0.493 0.588 0.492 0.0106 3.23 2.07

Texas 2318 478.89 1026 0.467 0.474 0.494 0.564 0.482 0.0104 3.16 2.03

Texas 4504 366.62 751 0.488 0.445 0.495 0.639 0.493 0.0110 3.16 2.16

Texas 4620 415.69 843 0.493 0.500 0.492 0.612 0.493 0.0108 3.16 2.11

Florida 7105 602.29 1193 0.505 0.479 0.493 0.527 0.499 0.0100 3.13 1.96

Texas 4622 427.88 867 0.494 0.463 0.494 0.605 0.494 0.0107 3.11 2.10

Florida 8302 434.31 884 0.491 0.486 0.493 0.600 0.492 0.0107 3.10 2.09

Florida 9510 430.54 866 0.497 0.551 0.490 0.605 0.493 0.0107 3.10 2.11

Florida 8614 489.36 1067 0.459 0.576 0.488 0.554 0.475 0.0104 3.09 2.03

Florida 1103 556.45 1130 0.492 0.560 0.489 0.540 0.491 0.0102 3.08 1.99

Florida 8617 430.24 938 0.459 0.528 0.491 0.586 0.477 0.0106 3.08 2.08

Florida 1102 440.72 943 0.467 0.523 0.491 0.585 0.481 0.0106 3.07 2.07

Texas 2512 474.22 951 0.499 0.511 0.492 0.583 0.495 0.0105 3.07 2.06

Florida 1112 410.92 862 0.477 0.552 0.490 0.606 0.484 0.0108 3.04 2.11

Florida 1108 720.44 1339 0.538 0.577 0.488 0.498 0.513 0.0100 3.00 1.96

Florida 1107 402.41 901 0.447 0.465 0.494 0.596 0.475 0.0108 2.98 2.11

Florida 9507 573.52 1221 0.470 0.561 0.489 0.521 0.480 0.0100 2.98 1.96

Florida 8605 470.20 978 0.481 0.584 0.488 0.576 0.485 0.0105 2.93 2.06

Texas 4503 383.73 803 0.478 0.520 0.491 0.623 0.486 0.0109 2.90 2.13

Florida 9505 668.49 1266 0.528 0.540 0.490 0.512 0.509 0.0100 2.89 1.96

Florida 9908 551.69 1169 0.472 0.504 0.492 0.532 0.483 0.0101 2.86 1.97

Texas 6802 345.22 703 0.491 0.408 0.497 0.654 0.495 0.0112 2.85 2.20
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mates from social media data or other useful big data resources

is continuously improving. These estimates have a good prospect

of serving as reliable auxiliary variables to the survey data. In-

troducing big data resources in data analysis promises to reduce

survey cost and to produce better estimates in the future.

2. We use the existing Rgbp package, which adopts the ADM to carry

out the analysis and provide fast and reliable estimates of the pa-

rameters of interest and their associated margins of error without

using sampling-based methods. This proposed method can be ex-

tended to other scenarios. Since the Rgbp package can deal with

normal-normal, Poisson-gamma and binomial-beta models, a wide

range of continuous and count data can be handled using this pack-

age.

3. The proposed method can be applied to other geographic granu-

larities (e.g., county and city) other than PUMA, if necessary and

if proper auxiliary variables are available.

There is a limitation in this work. Since at the time of reporting the

results, the one-year 2017 PUMS data was not published, we used

the 2016 one-year PUMS data and 2017 Twitter data to illustrate the

method. To check whether the ACS data is comparable from one year

to another, we plot the histogram of the margins of error computed by

the Census Bureau method for the 2015 one-year PUMS data and also
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(a) (b)

Figure 5.2: Margins of error for the male proportion estimates
(year: 2015). (a) Histogram of the estimates of the margins of error
of direct estimates for the 2,378 PUMAs; (b) Number of PUMAs
with margin of error greater than 3% for each state.

count the number of large-margin PUMAs in each state. There is a

similar pattern in the two histograms for the margins of error between

the years 2015 and 2016. There are some PUMAs with margins of error

greater than the cutoff value 3%. For both of these two years, Texas

and Florida have the most PUMAs with margins of error greater than

the cutoff 3%. However, we can always test the method on the 2017

one-year PUMS data when it is available.

5.3 Small Area Race Distribution

5.3.1 Introduction

The data analysis example in this section is to apply the multinomial-

Dirichlet-logit model to estimate the Twitter small area race propor-

tions. The multinomial hierarchical model is implemented using the

ADM we developed in this dissertation. The data used in this exam-
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ple is the sample Twitter race counts for 570 PUMAs in three states

(California, Florida and Texas) in the United States. A common prob-

lem in small area estimation is that the sample sizes for some areas

are too small to be trusted. To solve this problem, a statistical model

can be built to allow these areas to borrow strength from the entire

dataset to obtain better estimates. In this data example, the small

area proportion estimates are the weighted sums of the direct propor-

tion estimates and the synthetic estimates obtained from regression on

the complete covariate matrix. The model can be extended to other

geographical granularities (e.g., county and city) with no limitation to

PUMA. A common problem in survey datasets is non-integer weighted

counts, which prevents integer-based models such as binomial, Pois-

son and multinomial models from being applied. For small areas, it

is not proper to round the non-integer counts to the nearest integers

since the decimal parts are non-trivial. Our proposed method in this

data analysis example can handle this non-integer count problem in the

multinomial model.

There are five races in our dataset, including Caucasian (non-Hispanic),

African-American, Asian or Pacific Islander, Hispanic and Other. Sec-

tion 5.3.2 provides a description of the data, including the data col-

lection and the information extraction procedures and also briefly in-

troduces the model for data analysis. Section 5.3.3 summarizes and
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discusses the Twitter small area race proportion estimates generated

by the multinomial-Dirichlet-logit model.

5.3.2 Data and Methods

In this example, we use the same Twitter data used in the example in

described Section 5.2. To obtain the race counts in each PUMA, we

must assign the race probabilities and the PUMA to each Twitter user

based on the information in the tweets.

Individual Race Distribution: We first extract the self-reported

name from each tweet and use the last name to infer the race distribu-

tion of the Twitter user. The United States Census Bureau provides a

list of all surnames appearing 100 or more times in the 2010 Census2.

There are 162,253 last names in the list, with race probabilities associ-

ated with each last name. For example, the surname ‘Taylor’ is 65.38%

Caucasian (non-Hispanic), 28.42% African-American, 0.56% Asian or

Pacific Islander, 2.46% Hispanic, and 3.18% other races. About 55.37%

of the Twitter users in our sample give self-reported last names, which

match last names in the list; that is, the race probabilities for 55.37% of

the Twitter users in our sample can be detected. The race probabilities

for the complete sample is 65.06% Caucasian (non-Hispanic), 12.06%

African-American, 6.61% Asian or Pacific Islander, 13.04% Hispanic,

and 2.32% other races.
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Location: Location information can be inferred from the geotags con-

tained in each tweet. A twitter user in our data can post multiple times

from different locations, which results in a set of geotags for a single

user. To pair a user with only one location, we first aggregate all the

geotags for a single Twitter user and then associate the most frequent

one with the user. Based on our data, 3,521,887 Twitter users, that

is, about 96% users in the sample are geo-tagged. For illustrative pur-

pose and low computational cost, we only select users from three states

(California, Texas and Florida) based on the state information in the

geotag. The reason we choose these three states is that California was

carried by the Democrats while Texas was by the Republicans in all

four elections from 2004 to 2016 and we saw an even balance by the

two parties in Florida in these four elections. It is interesting to know

how the Twitter race proportions vary with the predominant party. We

feed the geotag to Bing Maps API34 to get the longitude and latitude

of each user. There are 1,173,178 sample points in the three states that

were decoded successfully by the API. Then we use the PUMA shape-

file53 (e.g., by checking whether the point longitude and latitude are

inside the boundary of a PUMA) to assign a PUMA to each Twitter

user. There are 456,157 Twitter users successfully mapped to be in-

side the PUMAs in California, 312,986 in Texas and 216,462 in Florida.

There are 570 PUMAs in the three states.
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Race Counts: Once we have the set of the Twitter users in each

PUMA and the race distribution for each user in the list, we sum up

the probabilities for all the users in each PUMA for each of the five

race categories. In this way, we get the non-integer counts for the five

race categories in each PUMA. Let si denote the set of samples in ith

PUMA and djk denote the probability of race k, k = 1, . . . , K, in the

race distribution for the jth Twitter user in the sample si. Then the

count for race k in the ith PUMA, denoted by yik, is calculated as follows

yik =
∑
j∈si

djk. (5.13)

To deal with non-integer counts for categories in our hierarchical mod-

eling framework, we extend the binomial likelihood approach of Ghitza

and Gelman (2013) to multinomial likelihood16. We then directly feed

in the non-integer counts yik to the proposed ADM for the multinomial-

Dirichlet-logit model as in Chapter 3 to obtain point and interval esti-

mates of the small area proportions.

5.3.3 Results and Discussion

Although the model runs on the complete dataset with 570 PUMAs,

results for 50 out of the 570 PUMAs are presented in Table 5.3. In

the table, the categories from 1 to 5 are White (non-Hispanic), Black,

Asian, Hispanic and Other, respectively. We consider the state identi-
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fier as our covariate. State (Column xi1) 1 is California, 0 is Florida

and -1 is Texas. We observe from the table that the non-integer counts

yi = (yi1, . . . , yi5), i = 1, . . . , 50, do not affect the functioning of the pro-

gram. Keeping the data in its original state is important under certain

circumstances. Take the observation 34 in Table 5.3 as the example.

This is the Leon County (Outer) PUMA in Florida, which has the min-

imum group size in the sample in this table. If a multinomial model is

applied using MCMC or some other approaches which require integer

input, the rounded counts for this group will be (0, 0, 0, 1, 0) and the

observed proportion is ȳ = (0, 0, 0, 1, 0) after rounding, which is signifi-

cantly different from the original proportion (0.17, 0.04, 0.01, 0.78, 0.00).

Thus rounding will affect the accuracy of estimates when the sample

size is small. Our proposed procedure solves this problem and does not

require integer input for the multinomial model. To solve the prob-

lem of unreliability in direct estimates for PUMAs with small sample

sizes, our procedure estimates individual shrinkage Bi, i = 1, . . . , 50,

for each PUMA. As observed in Table 5.3, the shrinkage B̂i increases

as the group size ni = ∑5
i=1 yik decreases. That is, when group size is

small in a PUMA, the estimate p̂i will shrink toward the state mean

p̂Ei , which is determined by the logistic regression. The Leon County

(Outer) PUMA in Florida has the largest shrinkage in the sample, with

p̂i closer to p̂Ei . The results from the model indicates that the Twitter

White and Black percentages are the lowest in California and the high-

109



est in Texas while Asian and Hispanic percentages are the highest in

California and the lowest in Texas. In this example, we only have state

identifier as the covariate; however, it is possible to introduce covariates

other than the state identifier in the multinomial-Dirichlet-logit model

if the readers are interested in other factors that can affect the small

area race proportions and if such data is available.
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Table 5.3: Twitter Race Count Data and Analysis Results Using ADM

Data β̂ =
(

2.673 −0.036
1.129 −0.107
0.639 0.176
1.588 0.060

)
, r̂ = 59.420

obs i ni yi1 yi2 yi3 yi4 yi5 xi1 p̂Ei1 p̂Ei2 p̂Ei3 p̂Ei4 p̂Ei5 B̂i p̂i1 p̂i2 p̂i3 p̂i4 p̂i5

1 1583 959.66 173.41 116.95 282.56 50.41 1 0.554 0.110 0.090 0.206 0.040 0.036 0.604
(0.012)

0.110
(0.008)

0.074
(0.006)

0.179
(0.009)

0.032
(0.004)

2 1042 519.25 110.55 113.00 264.66 34.55 1 0.554 0.110 0.090 0.206 0.040 0.054 0.501
(0.015)

0.106
(0.009)

0.107
(0.009)

0.251
(0.013)

0.034
(0.005)

3 874 544.68 97.14 54.02 149.78 28.39 1 0.554 0.110 0.090 0.206 0.040 0.064 0.619
(0.016)

0.111
(0.010)

0.064
(0.008)

0.174
(0.012)

0.033
(0.006)

4 729 457.09 80.64 47.79 118.47 25.00 1 0.554 0.110 0.090 0.206 0.040 0.075 0.622
(0.017)

0.111
(0.011)

0.067
(0.009)

0.166
(0.013)

0.035
(0.007)

5 718 329.79 72.82 86.56 204.89 23.95 1 0.554 0.110 0.090 0.206 0.040 0.076 0.467
(0.018)

0.102
(0.011)

0.118
(0.012)

0.279
(0.016)

0.034
(0.006)

6 704 394.23 70.79 43.10 175.61 20.27 1 0.554 0.110 0.090 0.206 0.040 0.078 0.560
(0.018)

0.101
(0.011)

0.063
(0.009)

0.246
(0.016)

0.030
(0.006)

7 689 457.87 81.35 44.05 84.11 21.61 1 0.554 0.110 0.090 0.206 0.040 0.079 0.656
(0.017)

0.117
(0.012)

0.066
(0.009)

0.129
(0.012)

0.032
(0.006)

8 553 294.14 61.71 42.72 137.05 17.38 1 0.554 0.110 0.090 0.206 0.040 0.097 0.534
(0.020)

0.111
(0.013)

0.078
(0.011)

0.244
(0.017)

0.032
(0.007)

9 400 154.07 31.54 29.05 174.81 10.53 1 0.554 0.110 0.090 0.206 0.040 0.129 0.407
(0.023)

0.083
(0.013)

0.075
(0.012)

0.407
(0.023)

0.028
(0.008)

10 380 146.03 36.44 79.91 102.39 15.23 1 0.554 0.110 0.090 0.206 0.040 0.135 0.407
(0.023)

0.098
(0.014)

0.194
(0.019)

0.261
(0.021)

0.040
(0.009)

11 365 188.59 35.31 22.87 104.91 13.32 1 0.554 0.110 0.090 0.206 0.040 0.140 0.522
(0.024)

0.099
(0.014)

0.066
(0.012)

0.276
(0.022)

0.037
(0.009)

12 350 166.93 36.25 21.13 115.15 10.54 1 0.554 0.110 0.090 0.206 0.040 0.145 0.488
(0.025)

0.105
(0.015)

0.065
(0.012)

0.311
(0.023)

0.032
(0.009)

13 289 115.12 21.66 25.85 117.10 9.28 1 0.554 0.110 0.090 0.206 0.040 0.171 0.425
(0.027)

0.015
(0.015)

0.089
(0.015)

0.371
(0.026)

0.033
(0.010)

14 272 159.22 31.44 11.91 60.62 8.81 1 0.554 0.110 0.090 0.206 0.040 0.179 0.580
(0.027)

0.115
(0.017)

0.052
(0.012)

0.220
(0.023)

0.034
(0.010)

15 217 113.71 19.19 23.05 54.24 6.81 1 0.554 0.110 0.090 0.206 0.040 0.215 0.531
(0.030)

0.093
(0.017)

0.103
(0.018)

0.241
(0.026)

0.033
(0.011)

16 35 22.33 4.20 6.12 1.32 1.04 1 0.554 0.110 0.090 0.206 0.040 0.629 0.585
(0.051)

0.114
(0.033)

0.121
(0.034)

0.144
(0.039)

0.036
(0.019)

17 6 2.62 0.27 0.95 2.01 0.15 1 0.554 0.110 0.090 0.206 0.040 0.908 0.544
(0.064)

0.104
(0.039)

0.096
(0.038)

0.218
(0.055)

0.038
(0.024)

18 6840 3137.18 605.84 470.24 2436.03 190.71 0 0.571 0.122 0.075 0.193 0.039 0.009 0.460
(0.006)

0.089
(0.003)

0.069
(0.003)

0.355
(0.006)

0.028
(0.002)

19 4429 2830.48 554.18 276.12 625.07 143.14 0 0.571 0.122 0.075 0.193 0.039 0.013 0.638
(0.007)

0.125
(0.005)

0.063
(0.004)

0.142
(0.005)

0.032
(0.003)

20 3148 1643.04 297.33 245.14 866.82 95.67 0 0.571 0.122 0.075 0.193 0.039 0.019 0.523
(0.009)

0.095
(0.005)

0.078
(0.005)

0.274
(0.008)

0.031
(0.003)

21 1270 777.56 162.97 75.85 214.16 39.46 0 0.571 0.122 0.075 0.193 0.039 0.045 0.610
(0.013)

0.128
(0.009)

0.060
(0.007)

0.170
(0.010)

0.031
(0.005)

22 828 297.42 59.93 51.41 396.79 22.46 0 0.571 0.122 0.075 0.193 0.039 0.067 0.373
(0.016)

0.076
(0.009)

0.063
(0.008)

0.460
(0.017)

0.028
(0.006)

23 691 356.14 74.14 41.75 197.46 21.52 0 0.571 0.122 0.075 0.193 0.039 0.079 0.520
(0.018)

0.108
(0.011)

0.062
(0.009)

0.278
(0.016)

0.032
(0.006)

24 643 403.80 70.17 43.77 104.86 20.39 0 0.571 0.122 0.075 0.193 0.039 0.085 0.623
(0.018)

0.110
(0.012)

0.069
(0.010)

0.166
(0.014)

0.032
(0.007)

25 560 206.46 40.34 44.39 251.70 17.11 0 0.571 0.122 0.075 0.193 0.039 0.096 0.388
(0.020)

0.077
(0.011)

0.079
(0.011)

0.425
(0.020)

0.031
(0.007)

26 529 377.12 61.03 27.72 44.93 18.19 0 0.571 0.122 0.075 0.193 0.039 0.101 0.699
(0.019)

0.116
(0.013)

0.055
(0.009)

0.096
(0.012)

0.035
(0.008)

27 347 166.72 28.39 21.99 121.38 8.52 0 0.571 0.122 0.075 0.193 0.039 0.146 0.494
(0.025)

0.088
(0.014)

0.065
(0.012)

0.327
(0.023)

0.027
(0.008)

28 256 160.92 34.00 13.21 39.93 7.94 0 0.571 0.122 0.075 0.193 0.039 0.188 0.618
(0.027)

0.131
(0.019)

0.056
(0.013)

0.163
(0.021)

0.033
(0.010)

29 239 170.06 35.46 12.52 13.23 7.73 0 0.571 0.122 0.075 0.193 0.039 0.199 0.684
(0.027)

0.143
(0.020)

0.057
(0.013)

0.083
(0.016)

0.034
(0.010)

30 203 136.32 22.54 9.11 28.64 6.40 0 0.571 0.122 0.075 0.193 0.039 0.226 0.649
(0.030)

0.114
(0.020)

0.052
(0.014)

0.153
(0.022)

0.033
(0.011)

31 139 91.23 12.23 5.97 26.12 3.46 0 0.571 0.122 0.075 0.193 0.039 0.299 0.631
(0.034)

0.098
(0.021)

0.052
(0.016)

0.189
(0.028)

0.029
(0.012)

32 100 39.86 5.76 5.23 46.30 2.86 0 0.571 0.122 0.075 0.193 0.039 0.373 0.463
(0.040)

0.082
(0.022)

0.061
(0.019)

0.362
(0.040)

0.033
(0.014)

33 5 3.68 0.16 0.06 0.99 0.11 0 0.571 0.122 0.075 0.193 0.039 0.922 0.067
(0.030)

0.115
(0.042)

0.070
(0.033)

0.193
(0.049)

0.038
(0.024)

34 1 0.17 0.04 0.01 0.77 0.00 0 0.571 0.122 0.075 0.193 0.039 0.983 0.564
(0.095)

0.121
(0.045)

0.074
(0.035)

0.203
(0.116)

0.039
(0.026)

35 2173 1363.53 289.14 188.84 261.40 70.10 -1 0.585 0.134 0.062 0.180 0.039 0.027 0.626
(0.010)

0.133
(0.007)

0.086
(0.006)

0.122
(0.007)

0.032
(0.004)

36 924 597.88 129.85 81.52 83.59 31.17 -1 0.585 0.134 0.062 0.180 0.039 0.060 0.643
(0.015)

0.140
(0.011)

0.087
(0.009)

0.096
(0.009)

0.034
(0.006)

37 914 582.47 137.04 44.49 119.65 30.34 -1 0.585 0.134 0.062 0.180 0.039 0.061 0.634
(0.015)

0.149
(0.011)

0.049
(0.007)

0.134
(0.011)

0.034
(0.006)

38 735 482.61 106.24 43.77 78.90 23.47 -1 0.585 0.134 0.062 0.180 0.039 0.075 0.651
(0.017)

0.144
(0.012)

0.060
(0.008)

0.113
(0.011)

0.032
(0.006)

39 541 293.81 93.08 54.47 78.78 20.86 -1 0.585 0.134 0.062 0.180 0.039 0.099 0.547
(0.020)

0.168
(0.015)

0.097
(0.012)

0.149
(0.015)

0.039
(0.008)

40 498 303.62 62.41 33.04 82.17 16.77 -1 0.585 0.134 0.062 0.180 0.039 0.107 0.607
(0.021)

0.126
(0.014)

0.066
(0.011)

0.167
(0.016)

0.034
(0.008)

41 489 310.25 65.24 22.29 76.74 14.47 -1 0.585 0.134 0.062 0.180 0.039 0.108 0.629
(0.021)

0.134
(0.015)

0.047
(0.009)

0.159
(0.016)

0.031
(0.007)

42 426 288.39 69.29 23.34 28.39 16.58 -1 0.585 0.134 0.062 0.180 0.039 0.122 0.666
(0.021)

0.159
(0.017)

0.056
(0.010)

0.080
(0.012)

0.039
(0.009)

43 272 182.33 39.24 8.90 33.45 8.09 -1 0.585 0.134 0.062 0.180 0.039 0.179 0.655
(0.026)

0.142
(0.019)

0.038
(0.011)

0.133
(0.019)

0.031
(0.010)

44 254 163.88 35.83 14.79 31.75 7.74 -1 0.585 0.134 0.062 0.180 0.039 0.190 0.634
(0.027)

0.140
(0.020)

0.059
(0.013)

0.135
(0.019)

0.032
(0.010)

45 214 142.98 27.61 13.10 23.00 7.32 -1 0.585 0.134 0.062 0.180 0.039 0.217 0.650
(0.029)

0.130
(0.020)

0.061
(0.015)

0.123
(0.020)

0.035
(0.011)

46 150 99.12 23.53 8.58 14.18 4.59 -1 0.585 0.134 0.062 0.180 0.039 0.284 0.639
(0.033)

0.150
(0.025)

0.059
(0.016)

0.119
(0.022)

0.033
(0.012)

47 67 36.84 9.64 2.99 15.83 1.70 -1 0.585 0.134 0.062 0.180 0.039 0.470 0.566
(0.044)

0.139
(0.031)

0.053
(0.020)

0.210
(0.036)

0.032
(0.016)

48 64 36.23 8.79 2.91 13.03 3.04 -1 0.585 0.134 0.062 0.180 0.039 0.481 0.575
(0.045)

0.136
(0.031)

0.053
(0.020)

0.192
(0.035)

0.043
(0.018)

49 61 37.49 8.78 3.60 9.07 2.06 -1 0.585 0.134 0.062 0.180 0.039 0.493 0.600
(0.045)

0.139
(0.032)

0.060
(0.022)

0.164
(0.034)

0.036
(0.017)

50 3 1.78 1.03 0.02 0.07 0.10 -1 0.585 0.134 0.062 0.180 0.039 0.952 0.585
(0.062)

0.144
(0.057)

0.059
(0.031)

0.172
(0.055)

0.039
(0.024)
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Chapter 6: Discussion and Future Research

6.1 Discussion

Morris and his students developed the ADM for a number of univariate dis-

tributions mentioned in Chapter 2. This dissertation fills in an important

research gap by extending the ADM beyond univariate distributions, specif-

ically the important multinomial-Dirichlet-logit hierarchical distribution. We

have demonstrated results from the ADM and MCMC are virtually the same.

However, the computational speed of ADM is hundreds of times faster than

that of MCMC. When compared to the classical EB procedures, the ADM is

superior to the EB methods in terms of criteria used in the EB framework,

especially for small samples. All the advantages we have observed in the ADM

for random effect estimation in the multinomial-Dirichlet-logit model have also

been reported by Morris and his students in their studies of the ADM for a

series of hierarchical univariate Bayes models. We now discuss our plan for

future research.
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6.2 ADM for COM-Poisson Bayes Model

We would like to extend the ADM to the hierarchical COM-Poisson model.

The COM-Poisson distribution can be used for both over-dispersed and under-

dispersed data. We now present the descriptive and inferential forms of the

conjugate hierarchical COM-Poisson model in Section 6.2.1 and Section 6.2.2

and discuss the questions to be solved in developing the ADM for the hierar-

chical COM-Poisson model.

6.2.1 The Descriptive Model

The COM-Poisson distribution has the density

f(yi|λi, ν) = λyii
(yi!)ν

· 1
Z(λi, ν) , yi = 0, 1, 2, . . . , (6.1)

where

Z(λi, ν) =
∞∑
j=0

λji
(j!)ν . (6.2)

We assume that ν is known and is the same for all observations for the

time being.

Level 1 (The individual model) : The count yi given the unknown

individual parameter λi has the following density

yi|λi ∼ COM − Poisson(λi, ν), (6.3)
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with the parameter ν known.

Level 2 (The structural model) : The conjugate prior for the individual

parameter λi given the hyper-parameters a and b is given by

h(λi|a, b) ∝ λa−1
i Z−b(λi, ν), (6.4)

with the parameter ν known.

Before deciding upon a third level hyper-prior to prevent posterior im-

propriety, the inferential model must be given for the purpose of ob-

taining the likelihood function of the hyper-parameters.

6.2.2 The Inferential Model

Level 1 (The marginal model for the observations). The observation

counts yi given the hyper-parameters a and b with the individual pa-

rameter λi integrated out is distributed with density

f(yi|a, b) =
∫ ∞

0
f(yi|λi, ν)h(λi|a, b)dλi

= κ−1(a, b)
∫ ∞

0

λyii
Z(λi, ν)λ

a−1
i Z−b(λi, ν)dλi

= κ−1(a, b)
∫ ∞

0
λyi+a−1
i Z−(b+1)(λi, ν)dλi

= κ(yi + a, b+ 1)
κ(a, b) ,

(6.5)

where κ(a, b) =
∫∞

0 λa−1
i Z−b(λi, ν)dλi.
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Level 2 (The conditional model for the individual parameters). The

conditional posterior distribution for the individual parameter λi has

the same distribution as in equation (6.4) with updated parameters

h(λi|a, b, data) ∝ λyi+a−1
i Z−(b+1)(λi, ν), (6.6)

where the updated parameters are yi + a and b+ 1.

From equation (6.5), the likelihood L(a, b) is

L(a, b) =
N∏
i=1

κ(yi + a, b+ 1)
κ(a, b) . (6.7)

6.2.3 Discussion

To decide upon whether a third level adjustment is necessary, the work

in the next step is to prove whether there exists a sufficient condition of

the observed data for the likelihood (6.7) to be proper, that is to prove

whether ∫ ∞
0

∫ ∞
0

∞∏
0

κ(yi + a, b+ 1)
κ(a, b) dadb (6.8)

converges. Direct integral is hard. The common method is to find

integrable bounds for the individual equation (6.5). If the lower bound

of the likelihood (6.7) is improper, a third level adjustment is needed

and the form of the third level hyper-prior must be decided. Then,

the questions to be solved include whether there are closed-forms or
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approximate closed-forms of the mean and variance for the Level 2

distribution (6.4) in the descriptive model. This is important because

the mean of this distribution can be linked with a regression on the

covariates in some way. And the closed-forms of the mean and variance

for the Level 2 distribution (6.6) in the inferential model are promising

in introducing the individual shrinkage factors, which are convenient in

explaining the results. Once the posterior propriety is guaranteed and

there are closed-forms for the mean and variance in equation (6.4) and

equation (6.6), it is possible to develop the ADM for this COM-Poisson

distribution.
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Appendices

A.1 Proof of Lemma 3.1

If the group i is interior (di = K, ni ≥ K, K ≥ 3), we can derive lower

and upper bound for the Dirichlet-multinomial probability mass function with

respect to β and r as follows. All the bounds in this proof are up to a constant

multiple.

p(yi|r,β) ∝ Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
Γ(rpEik)

= 1
(r + ni − 1) · . . . · r

K∏
k=1

(rpEik + yik − 1) · . . . · rpEik

= rK
∏K
k=1 p

E
ik

r(r + 1) · . . . · (r +K − 1) ·
∏
k:yik≥2(rpEik + 1) · . . . · (rpEik + yik − 1)

(r +K) · . . . · (r + ni − 1)

≤ r2

(r + 1)(r + 2)

K∏
k=1

pEik

(9)

The inequality holds considering K ≥ 3 and 1 ≤ yik ≤ ni − 1 for k=1,. . . ,

K.
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A lower bound for the Dirichlet-multinomial probability mass function is

p(yi|r,β) ∝ Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
Γ(rpEik)

= 1
(r + ni − 1) · . . . · r

K∏
k=1

(rpEik + yik − 1) · . . . · rpEik

≥ 1
(r + ni − 1) · . . . · r

K∏
k=1

(rpEik)yik

= rni

(r + ni − 1) · . . . · r

K∏
k=1

(pEik)yik

≥
(

r

r + nmax

)ni K∏
k=1

(pEik)yik

(10)

where nmax = max{n1, . . . , nN}. The first inequality holds because all yik ≥ 1

for interior group i.

Similarly, for intermediate group i (2 ≤ di ≤ K − 1), the upper bound for

the Dirichlet-multinomial probability mass function with respect to β and r

is r
r+1

∏
k∈Wi

pEik, up to constant multiple, given di ≥ 2.

p(yi|r,β) ∝ Γ(r)
Γ(ni + r)

∏
k∈Wi

Γ(yik + rpEik)
Γ(rpEik)

= 1
(r + ni − 1) · . . . · r

∏
k∈Wi

(rpEik + yik − 1) · . . . · rpEik

= rdi
∏
k∈Wi

pEik
r(r + 1) · . . . · (r + di − 1) ·

∏
k:yik≥2(rpEik + 1) · . . . · (rpEik + yik − 1)

(r + di) · . . . · (r + ni − 1)

≤ r

r + 1
∏
k∈Wi

pEik

(11)
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And a lower bound for intermediate group i is

p(yi|r,β) ∝ Γ(r)
Γ(ni + r)

∏
k∈Wi

Γ(yik + rpEik)
Γ(rpEik)

= 1
(r + ni − 1) · . . . · r

∏
k∈Wi

(rpEik + yik − 1) · . . . · rpEik

≥ 1
(r + ni − 1) · . . . · r

∏
k∈Wi

(rpEik)yik

= rni

(r + ni − 1) · . . . · r
∏
k∈Wi

(pEik)yik

≥
(

r

r + nmax

)ni ∏
k∈Wi

(pEik)yik

(12)

For extreme group i (di = 1), assume the total mass ni (ni ≥ 1) fall in the

category j. That is, yik = ni when k = j and yik = 0 when k 6= j. The upper

bound for the Dirichlet-multinomial probability mass function of the group i

with respect to β and r is

p(yi|r,β) ∝ Γ(r)
Γ(ni + r) ·

Γ(yij + rpEij)
Γ(rpEij)

= Γ(r)
Γ(ni + r) ·

Γ(ni + rpEij)
Γ(rpEij)

=
(rpEij + ni − 1) · . . . · (rpEij + 1)rpEij

(r + ni − 1) · . . . · (r + 1)r

= pEij ·
(rpEij + ni − 1) · . . . · (rpEij + 1)

(r + ni − 1) · . . . · (r + 1)

= pEij

ni−1∑
s=1

rpEij + s

r + s
≤ pEij

(13)

The inequality holds because the ratios rpEij+s
r+s , s = 1, . . . , ni− 1, in the second
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term are less or equal to 1. A lower bound for extreme group i is

p(yi|r,β) ∝ Γ(r)
Γ(ni + r) ·

Γ(yij + rpEij)
Γ(rpEij)

= Γ(r)
Γ(ni + r) ·

Γ(ni + rpEij)
Γ(rpEij)

=
(rpEij + ni − 1) · . . . · (rpEij + 1)rpEij

(r + ni − 1) · . . . · (r + 1)r

=
rpEij + ni − 1
r + ni − 1 · . . . ·

rpEij
r

≥ (pEij)ni

(14)

The inequality holds because each ratio in the product is greater than or equal

to pEij.

A.2 Proof of Lemma 3.2

With no intermediate or extreme groups in the data, an upper bound for the

likelihood function L(β, r) is the product of the upper bound for the individual

Dirichlet-multinomial probability mass functions as in equation (9):

N∏
i=1

(
r2

(r + 1)(r + 2)

K∏
k=1

pEik

)
= r2N

(r + 1)N(r + 2)N
N∏
i=1

K∏
k=1

pEik (15)

The upper bound factors into a function of β and a function of r. And a lower

bound for the likelihood function L(β, r) is the product of the lower bound for

the individual Dirichlet-multinomial probability mass functions as in equation
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(10):

N∏
i=1

(
r

r + nmax

)ni K∏
k=1

(pEik)yik =
(

r

r + nmax

)∑N

i=1 ni
N∏
i=1

K∏
k=1

(pEik)yik (16)

A.3 Proof of Theorem 3.1

The posterior density p(β, r) = L(β, r)/r2 is bounded from above, up to a

multiple constant

p(β, r) ≤ r2N−2

(r + 1)N(r + 2)N
N∏
i=1

K∏
k=1

pEik (17)

The posterior density is proper if

∫
IR(K−1)×q

∫ ∞
0

r2N−2

(r + 1)N(r + 2)N
N∏
i=1

K∏
k=1

pEikdrdβ

=
∫ ∞

0

r2N−2

(r + 1)N(r + 2)N dr
∫

IR(K−1)×q

N∏
i=1

K∏
k=1

pEikdβ <∞
(18)

First consider the integral with respect to r in the upper bound. When N ≥

1,

∫ ∞
0

r2N−2

(r + 1)N(r + 2)N dr =
∫ ∞

0

r2N−2

(r + 1)N−1(r + 2)N−1
1

(r + 1)(r + 2)dr

≤
∫ ∞

0

1
(r + 1)(r + 2)dr = log(2)

(19)

Then consider the integral with respect to β. Choose q sub-groups, whose

index set is denoted by Wsub, such that the q × q covariate matrix of the
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sub-groups is still of full rank q.

N∏
i=1

K∏
k=1

pEik ≤
∏

i∈Wsub

K∏
k=1

pEik =
∏

i∈Wsub

∏K−1
k=1 e

x′
iβk

(1 +∑K−1
j=1 ex

′
iβj)K

(20)

The integration of this upper bound with respect to β factors into (K−1)× q

separate integrations after linear transformations, hik = x′
iβk for all i ∈ Wsub,

whose Jacobian is a constant:

∫
IR(K−1)×q

∏
i∈Wsub

∏K−1
k=1 e

x′
iβk

(1 +∑K−1
j=1 ex

′
iβj)K

dβ

∝
∏

i∈Wsub

∫ ∞
−∞

. . .
∫ ∞
−∞

∏K−1
k=1 e

hik

(1 +∑K−1
j=1 ehij)K

dhi,1 . . . dhi,K−1 = ( 1
(K − 1)!)

N .

(21)

A.4 Proof of Corollary 3.1

Regarding the sufficient conditions for posterior propriety, an upper bound for

L(β, r) up to a constant multiple is

L(β, r) ∝
N∏
i=1

Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
Γ(rpEik)

<
∏
i∈Wy

Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
Γ(rpEik)

≤
∏
i∈Wy

r2

(r + 1)(r + 2)

K∏
k=1

pEik = r2Ny

(r + 1)Ny(r + 2)Ny
∏
i∈Wy

K∏
k=1

pEik

(22)

The first inequality holds because both the upper bound for intermediate group

i, r
r+1

∏
k∈Wi

pEik, and the upper bound for extreme group i, pEij, are less than

1.

The upper bound for L(β, r) in equation(22) is the same as the upper bound

122



if all the intermediate and extreme groups are removed from the data. There-

fore, the sufficient condition can be determined by the interiors groups in the

data.

A.5 Bounds with Non-integer Counts

Since we hope to apply the ADM for the multinomial-Dirichlet-logit model to

non-integer counts, we also prove the upper bound for the Dirichlet-multinomial

function for groups with non-integer counts. Before proving the bounds, we

will first prove a lemma.

Lemma A.1 For any y > 0, there exists positive constants 0 < c1 ≤ c2 <∞,

which only depend on y such that

c1r(r + 1)y−1 ≤ Γ(r + y)
Γ(r) ≤ c2r(r + 1)y−1, (23)

for any r > 0.

Proof: Let

g(r) = Γ(r + y)
rΓ(r)(r + 1)y−1

= Γ(r + y)
Γ(r + 1)(r + 1)y−1 .

(24)

From this expression, g(r) is well-defined and continuous on (0,∞). Since

lim
x→∞

Γ(x+ α)
Γ(x)xα = 1, (25)
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for any α ∈ C;

lim
r→∞

g(r) = lim
r→∞

Γ(r + y)
Γ(r + 1)(r + 1)y−1 = 1, (26)

for any y > 0. And g(r) > 0 for any r ∈ (0,∞). Then, g(r) is bounded from

both below and above in (0,∞). That is,

c1 ≤ g(r) ≤ c2; (27)

thus,

c1r(r + 1)y−1 ≤ Γ(r + y)
Γ(r) ≤ c2r(r + 1)y−1. (28)

Use this lemma, for interior group i (di = K, ni ≥ K, K ≥ 3):

p(yi|r,β) ∝ Γ(r)
Γ(ni + r)

K∏
k=1

Γ(yik + rpEik)
Γ(rpEik)

≤ 1
(r + ni − 1) · . . . · r

K∏
k=1

rpEik(rpEik + 1)yik−1

≤ 1
(r + ni − 1) · . . . · r

K∏
k=1

r(r + 1)yik−1(pEik)min(yik,1)

= rK(r + 1)ni−K
(r + ni − 1) · . . . · r

K∏
k=1

(pEik)min(yik,1)

≤ r2

(r + 1)(r + 2)

K∏
k=1

(pEik)min(yik,1),

(29)

up to a constant.
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Similarly, for intermediate group i (2 ≤ di ≤ K − 1):

p(yi|r,β) ∝ Γ(r)
Γ(ni + r)

∏
k∈Wi

Γ(yik + rpEik)
Γ(rpEik)

≤ 1
(r + ni − 1) · . . . · r

∏
k∈Wi

rpEik(rpEik + 1)yik−1

≤ 1
(r + ni − 1) · . . . · r

∏
k∈Wi

r(r + 1)yik−1(pEik)min(yik,1)

= rdi(r + 1)ni−di
(r + ni − 1) · . . . · r

∏
k∈Wi

(pEik)min(yik,1)

≤ r

r + 1
∏
k∈Wi

(pEik)min(yik,1),

(30)

up to a multiple constant.

Finally, for extreme group i (di = 1):

p(yi|r,β) ∝ Γ(r)
Γ(ni + r) ·

Γ(yij + rpEij)
Γ(rpEij)

= Γ(r)
Γ(ni + r) ·

Γ(ni + rpEij)
Γ(rpEij)

≤ rpEik(rpEik + 1)ni−1

(r + ni − 1) · . . . · (r + 1)r

≤ r(r + 1)ni−1(pEik)min(ni,1)

(r + ni − 1) · . . . · (r + 1)r

≤ (pEik)min(ni,1)

(31)

From all the three upper bounds (29), (30) and (31) for the Dirichlet-multinomial

probability mass function with non-integer counts, the r functions are the same

as in the condition of integer counts. The only difference for the β functions

is that when the count 0 < yik < 1, pEik is replaced by (pEik)yik in the upper

bounds and the posterior propriety still holds when Xy is of full rank. Thus,
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the sufficient condition for posterior properiety does not change for data with

non-integer counts.
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