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The advent of complex surgical procedures has driven the need for finite el-

ement based surgical training simulators which provide realistic visual and haptic

feedback throughout the surgical task. The foundation of a simulator stems from

the use of accurate, reality-based models for the global tissue response as well as the

tool-tissue interactions. To that end, ex vivo and in vivo tests were conducted for

soft-tissue probing and in vivo tests were conducted for soft-tissue cutting for the

purpose of model development.

In formulating a surgical training system, there is a desire to replicate the

surgical task as accurately as possible for haptic and visual realism. However, for

many biological tissues, there is a discrepancy between the mechanical characteristics

of ex vivo and in vivo tissue. The efficacy of utilizing an ex vivo model for simulation

of in vivo probing tasks on porcine liver was evaluated by comparing the simulated

probing task to an identical in vivo probing experiment. The models were then

further improved upon to better replicate the in vivo response.



During the study of cutting modeling, in vivo cutting experiments were per-

formed on porcine liver to derive the force-displacement response of the tissue to

a scalpel blade. Using this information, a fracture mechanics based approach was

applied to develop a fully defined cohesive zone model governing the separation prop-

erties of the liver directly in front of the scalpel blade. Further, a method of scaling

the cohesive zone parameters was presented to minimize the computational expense

in an effort to apply the cohesive based cutting approach to real-time simulators.

The development of the models for the global tissue response and local tool-

tissue interactions for probing and cutting of soft-tissue provided the framework

for real-time simulation of basic surgical skills training. Initially, a pre-processing

approach was used for the development of reality-based, haptics enabled simulators

for probing and cutting of soft tissue. Then a real-time finite element based simulator

was developed to simulate the probing task without the need to know the tool path

prior to simulation.
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Chapter 1

Introduction

The development of complex surgical procedures coupled with more stringent

regulations on medical education has driven the need to develop reality-based sur-

gical simulators for medical training. Regulations on the maximum working hours

permitted for medical residents limits the amount of time available to practice com-

mon surgical tasks such as needle insertion, probing, cutting, dissecting and electro-

cauterizing tissue. Additionally, fatalities related to surgical procedures constitute

the seventh highest mortality rate in the United States. In light of these facts,

simulators need to be developed to provide thorough training for common surgical

tasks.

Surgical simulators are now commonly classified into three categories: anatomy,

physics and physiology-based simulators [19]. The first category consists of simula-

tors based on the geometrical structure of the anatomy involved in the simulation

tasks. Simulators of this kind have been mainly used for endoscopic procedures

where little interaction with the environment is required [20]. Anatomy-based sim-

ulators do not incorporate any physical components, such as tissue deformations.

Physics and physiology based simulators have recently become the focus of several

research groups due to the push for more comprehensive surgical simulations. It

is essential to replicate a surgical procedure as accurately as possible; therefore,

1



physics-based approaches must be utilized to maximize the realism of the surgical

task, since visualization alone is insufficient.

The foundation of a physics-based simulator is centered on the accurate mod-

eling of the mechanical properties of the organ utilized in the simulation, as well as

the tool-tissue interactions. To this end, this study focused on the development of

reality-based models capable of accurately representing the force and deformation

resultant from deformation of the tissue sample derived through experimentation

on both ex vivo and in vivo porcine liver. Further, the scalpel cutting process has

been studied to derive a physics-based model to define the interactions between the

scalpel blade and the soft-tissue. This provided the foundation required for the de-

velopment of a surgical simulator capable of producing a realistic representation of

the forces and deformation involved with surgical procedures such as probing and

cutting of tissue.

1.1 Ex Vivo Modeling

The study began with the development of constitutive models for ex vivo

porcine liver through the analysis of tension, compression and pure shear (also

known as constrained tension or planar tension) tests. The mechanical properties

of very soft-tissues, i.e., tissues that do not bear mechanical loads, have only been

extensively investigated over the last decade. Most of the reported experiments and

models for soft-tissues under finite deformation were focused on compression [53][68],

indentation [7][18][36], uniaxial tension [13][14][54] and aspiration [33][59] tests. Ad-

2



ditionally, a limited number of shear tests were conducted on porcine kidney cortex

tissue [23] and human liver tissue [72]. The majority of the studies presented, how-

ever, were conducted via analysis of only one deformation mode. For a general

surgical simulation, various loading states are involved. Therefore to develop a re-

alistic soft-tissue model, characterization of the soft-tissue in various deformation

modes under low strain rate is required.

Miller and Chinzei were one of the first to study the properties of very soft in

tension [54]. Through this study they proposed a viscoelastic model based on the

generalization of the Ogden strain energy function for brain tissue with strains up to

30% in compression and 60% in tension. Additionally, Chui et al. proposed a model

for porcine liver tissue with a strain range of 40% in compression to 60% in tension.

During this test the displacement of the tissue sample was taken directly from the

fixture displacement upon which the tissue sample was attached. Studies have shown

that the stress-strain state on the tissue around the fixture-tissue interaction is

complicated, which can result in increased errors [9][31]. Additionally, the effect of

gravity makes the deformation field non-uniform, even on the central portion of the

tissue samples for tension, compression and pure shear tests, due to the very soft

nature of the tissue. Therefore, a study was derived to use digital image correlation

(DIC), a non-contact imaging technique, to accurately measure the non-uniform

strain of porcine liver tissue undergoing tension and pure shear tests. Additionally,

an image based approach was also utilized to determine the strain from measurement

of the sample deformation directly for the compression test. Using all of this data,

comprehensive models based on tension, compression and pure shear data were
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generated which could be used for simulation of general tissue deformation due to

the inclusion of all the deformation modes [27][28].

Studies have shown that the mechanical properties of liver tissue are strain rate

dependent [35][41][53][79]. However, at relatively low strain rate, e.g. 0.05 s−1, the

liver tissue has been reported to be relatively rate insensitive. Non-linear viscoelastic

modeling of liver tissue from in vivo experiments on Rhesus monkeys showed that

the contribution of time dependence for experiments with the slowest strain rate,

0.2 s−1, is negligible [53]. Also, varying the strain rate from 0.003 to 0.6 s−1 did

not have a significant effect on the stress-strain data for compression and elongation

experiments on porcine liver [13]. In this study, all ex vivo compression, tension

and pure shear tests were conducted at a nominal strain rate of 0.05 s−1, hence

viscoelastic properties were not taken into consideration. The models developed in

this paper are suitable for use as the quasi-static hyperelastic model, which is an

essential component of a viscoelastic material model.

1.2 In Vivo Modeling

The models developed during the ex vivo testing provide an excellent starting

point for development of a physics-based surgical simulator due to their generality.

The end goal of the surgical training system is to mimic the haptic and visual

depiction of a surgical task as precisely as possible. Therefore, the simulator should

be built upon models that accurately reflect the response of tissue in the in vivo

state. Previous studies have shown that the material properties of soft-tissue tend to
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vary between the in vivo and ex vivo settings [6][29][41]. To further the accuracy of

the simulator, an in vivo experiment was performed to study the variation between

the properties of the liver tissue in the ex vivo and in vivo settings.

Developing models based on in vivo soft-tissue response requires the utilization

of more accurate boundary conditions and approaches for non-contact methods of

measuring the tissue deformation. In vivo experimental testing, in contrast to ex

vivo studies, requires the use of the entire organ instead of a subsection of the

appropriate size and shape, as is used for compression, tension and pure shear

tests. In light of this fact, the techniques for in vivo tests are more varied than

that of standard ex vivo studies. Miller et al. studied the applicability of using a

hyperviscoelastic model derived from ex vivo experimentation for in vivo simulation

of brain tissue [52]. Realistic organ geometry was obtained by utilizing MRI images

to acquire an accurate representation of the brain. This study only utilizes the

MRI images to obtain the organ geometry, where tracking of displacement under

load is not achieved. Nava et al. developed a model based on an aspiration test of

in vivo human liver through a 2D axisymmetric process based on the local tissue

profile [59]. 3D ultrasound techniques were applied to an area directly under the

probe to develop a model based on volumetric tissue deformation and measured

force response of perfused ex vivo liver [39]. Ahn and Kim developed a material

model utilizing force and surface displacement data for ex vivo liver whereby full-field

deformation could be determined as well as accurate sample geometry [1]. The model

was built upon data obtained from the probing force using an axisymmetric inverse

finite element approach with simplified organ geometry. All of these techniques have
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been utilized to develop more accurate models for the biological tissue deformation

process. However, they do not present a method by which the force and displacement

can be measured and compared to a simulation with accurate geometry and realistic

boundary conditions throughout the entirety of the probing task.

The first question that arises when working with in vivo and ex vivo tissue

models concerns the degree of variation between the two models. As the ex vivo

experimental studies are much more straightforward, it would be beneficial to be

able to use a model generated from ex vivo experimentation for in vivo surgical

simulation. To this end, a method was developed for the acquisition of the surface

deformation in conjunction with the force-displacement profile and accurate bound-

ary conditions through the entirety of an in-vivo probing task on porcine liver. This

data was used to simulate the experiment utilizing an Ogden model developed from

ex-vivo compression, tension, and pure shear experiments. By comparing the simu-

lation results to the experimental data it was possible to determine the efficacy of

utilizing a model developed from ex-vivo techniques for in-vivo simulation of porcine

liver.

The next step was to develop a material model for porcine liver which more

accurately matched the in vivo tissue response. Currently reported in vivo and ex

vivo soft-tissue whole-organ tests are mainly split into indentation [1][7][10][36][39]

[41][52][69][71] or aspiration [40][50][59] experiments. In these tests, the material

parameters were usually extracted from finite element simulations coupled with an

optimization algorithm to fit either force-displacement data of the indenter or the

surface profile of the aspirated tissue. One exception to this trend is the study by
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Jordan et al. where both volumetric deformation data and the force-displacement

response of the indenter were used in fitting the material parameters [39]. Never-

theless, all of the above studies predefined a fixed format for the material model

and determined the best fit to the material properties. The method presented in

this study is different from the aforementioned approaches. Instead of modifying

material parameters in each iteration, material properties (underlying stress-strain

curves) were modified directly according to the comparison of the experiment and

simulation results. As a consequence, the fitting process can be more efficient and

the material model does not have to be a fixed format [45][46].

The modeling discussed thus far has focused on accurately representing general

finite material deformations, which is the first requirement for a surgical simulator.

If more complex tasks are required in the simulation, this level of modeling may

not be sufficient. For simulation of simple surgical tasks such as probing, the only

models required, as is shown in this study, are the general models developed from

the ex vivo or in vivo experiments. However, most medical procedures involve

more complex tasks such as cutting or dissecting the soft-tissue which can not be

completely defined through the previously developed material models. Therefore,

additional models must be developed to govern the specific tool-tissue interactions

as required for the medical trainer. In this light, the details of the scalpel-soft-tissue

interaction were studied in addition to the general tissue deformations.
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1.3 Soft Tissue Cutting

In studying the simulation of soft-tissue cutting, the current research can be

segmented in two distinct areas. From the simulation side, there is a focus on

the element segmentation aspects while the material research has focused on the

physics of the cutting process. In the simulation research, three main methods

are utilized to replicate the cutting or fracture process of soft-tissue. The first

approaches began by simply removing the elements that came into contact with

the cutting implement [16]. This approach, however, is not physically sound as

material is effectively being destroyed. Next, there were studies into the subdivision

of elements [51][58] and more recently adaptive meshing was utilized to preserve the

structure and volume of the mesh while maintaining elements with proper aspect

ratios [61][74].

For the course of this study, we are first interested in the physics-based model-

ing of the scalpel cutting procedure. The available literature on determining phys-

ically accurate models of soft-tissue cutting comprises a much smaller group. The

studies on fracture of soft-tissue are few and far between; also showing much varia-

tion in the methods used for the modelling process. Most of the models presented

are based on deriving the fracture toughness of the biological tissue tested, or the

energy required to create a fracture. The derivation of the fracture toughness has

been conducted using scissor cutting of human skin [64] and sheep skin, abdominal

muscle, liver and Achilles tendon [30]. Loading in a guillotine manner using a razor

blade was conducted on porcine liver by Mahvash et al. [49] and needle insertion
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into liver tissue was conducted by Azar et al. [3]. A slightly different approach was

used to determine the local effective modulus for cutting of liver tissue with a scalpel

blade [11]. These approaches do utilize fracture mechanics based methods, however,

only the threshold of the fracture process can be determined from the measured

values.

Cohesive zone modeling is a method based on fracture mechanics principles

that simplifies the fracture process into a straightforward analysis of the region

in front of the crack tip. Only three parameters define the model which governs

the onset of fracture and the subsequent propagation [75]. Cohesive base models

have been mainly utilized in studying the debonding process, where it represents

the strength of the adhesive between two materials [4][57][81][82]. The heavy focus

on the debonding problem stems from the inability of the cohesive zone model to

relate information pertaining to the direction of the fracture. In fact, the model

itself is designed under the assumption that all loading is confined to a line in

front of the crack [21]. While this makes the cohesive zone approach difficult for

many fracture-based studies, where the location and path of the fracture process is

unknown, it does not limit the application to the scalpel-tissue interaction. Based

on observation of experimental cutting studies, the fracture path during a scalpel

cutting procedure is a line formed by the scalpel trajectory. Because the cohesive

approach simplifies the physical mechanisms of the fracture process into a succinct

model, it is well suited as a staring point for the modeling of the scalpel-tissue

interactions where the parameters can be experientially determined through analysis

of cutting experiments. After the cutting model is developed, the combination of
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this model and the general deformation model derived from the in vivo experiments

provide the framework upon which a surgical simulator can be developed.

1.4 Real-Time Finite Element Simulations

Finite element models have become the focus of many surgical simulation ap-

plications due to their increased accuracy and continuous representation of volumet-

ric tissue deformation. The improvement in realistic deformation however, comes

at the cost of computational complexity. New techniques are required to solve the

finite element problem at speeds fast enough to produce real-time visual (30Hz) and

haptic (1000Hz) displays. Linear elastic finite element methods have been imple-

mented in various surgical simulators, including hepatectomy procedures [5][16].

However, simulations built upon linear elastic models can only be applied to small

deformations and are not applicable to general surgery procedures.

Real-time finite element methods involving non-linear material characteristics

have begun to gain attention in the research community. Picinbono et al. developed

a simulator for laparoscopic liver surgery based on a St. Venant-Kirchoff model [66].

A Mooney-Rivlin model was utilized in the simulation of eye surgery and liver

probing tasks [70][83]. An endoscopic simulator has been developed utilizing a Neo-

Hookean material law for the surrounding tissue [77]. Joldes et al. utilized a Neo-

Hookean material for the real-time simulation of brain tissue [38]. These studies

all utilized simplified non-linear material models in order to achieve the real-time

update rates required for simulation of the defined tasks. Although these models
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are superior to the linear elastic approach, they still do not accurately reflect the

true complexity of the soft-tissue deformation process.

The first generation simulator developed in the study presents a method to

create real-time, haptics-enabled soft-tissue probing and cutting simulators. These

simulators are governed by an Ogden model, derived directly from the ex vivo ex-

periments, and a reduced polynomial model, developed during in vivo experiments.

They produce a more accurate characterization of the soft-tissue deformation pro-

cess [44]. This simulator utilizes a preprocessed finite element analysis derived from

an accurate constitutive model of liver tissue and realistic geometry. The focus of

the first generation simulator was to show an ability to utilize the more compli-

cated non-linear models in conjunction with realistic tissue geometry to obtain a

more accurate representation of soft-tissue response to probing and cutting stim-

uli. Preprocessing the tissue response is a means to incorporate the more detailed

hyperelastic models and complex geometry in the simulation, resulting in improved

accuracy of the tissue response to a probing action.

The approach of using preprocessed information as the backbone of a surgical

simulator is limited in its applicability to many common surgical tasks due to the

need for knowledge of the defined tool paths prior to the simulator development.

This limitation prevents the method from being used for general, open surgical

tasks. Therefore, many modern simulation systems have been focusing on utilizing

the superior computational capabilities of modern computers to perform the finite

element simulation processes itself in the real-time setting.

An encompassing review of the history and trends of the medical simulation
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field, including the transition to real-time finite element approaches utilizing non-

linear models can be found in [56]. More modern works, as the field is evolving

quickly, are focused on the implementation and performance of real-time finite ele-

ment approaches utilizing both non-linear material models and non-linear geometry.

Miller et al. developed a total Lagrangian explicit dynamics (TLED) approach that

has recently been adopted and applied in many real time simulators [55]. This

approach allows for the calculation of all derivatives with respect to the original

configurations, which provides the capability to apply precomputation techniques.

Additionally, the method is structured to eliminate the need to assemble a global

stiffness matrix. Another approach presented in [62] uses a proper orthogonal de-

composition technique to reduce the order of the required stiffness matrix to decrease

computation times. This approach was successful in replicating real-time palpation

of human cornea models without the use of parallel architectures. A precomputa-

tion approach was also utilized by [65] to simulate St. Venant-Kirchhoff and Mooney

Rivilin models in liver deformations.

Advances are not only being made in the algorithms for solving the non-linear

finite element problems, but methods are simultaneously being made more efficient

through the use of parallel processing on graphics processing units (GPU). The

total Lagrangian explicit dynamics approach has been utilized to simulate the neu-

rosurgical procedures developed by Joldes et al. using a Neo Hookean material law.

Implementation of the process on a GPU resulted in a 20x overall increase of speed.

A similar study for the TLED based approach was conducted for compression and

pure shear simulations of a Neo Hookean material with anisotropic and viscoelastic
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effects added. This project showed a increase in speed of 56.3 times on average.

GPUs have also been adopted for other types of real-time finite element simulations

including an iterative based method [17], which showed a varying degree of increased

performance throughout the individual components of the code.

With these advances in the methodology for approaching the real-time fi-

nite element problem, combined with the efficiency provided by implementation

on graphical processing units, the medical simulation field is taking large steps to

close the gap between the trade-off of speed and accuracy in the simulation field.

The TLED approach in combination with an open source finite element code de-

veloped for surgical simulation (Simulation Open Framework Architecture - SOFA)

was adopted to further improve upon the first generation, preprocessor based sim-

ulators. This provided the means to study the possibility of developing real-time

simulations using the more accurate hyperelastic models in which prior knowledge

of the tool paths was not required.
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Chapter 2

Probing of Porcine Liver

2.1 Ex Vivo Modeling

To develop a surgical simulator with superior accuracy requires a more precise

foundation in the characterization of the underlying material properties of soft-

tissue. In most commercially available real-time simulators, simplifications have

been made which normally come down to the material model. Almost all simulation

systems for medial training use linear elastic material models due to the fact that

they simplify the computational complexity to a level that is manageable for real

time implementation. However linear elastic models are not sufficient to accurately

represent the loading and deformation of biological tissues. Therefore, to increase

the realism of a medical training system, the most logical course of action would

be to develop more accurate, reality-based constitutive models. In this context, we

were interested in developing realistic models irrespective of the implications on real

time simulation. As computational efficiency is continually increasing, there was a

good chance that a model too complicated to implement in real time at the start of

this project would be applicable after the modeling process was completed.

As a staring point, common tests used for material property characterization

were applied to ex vivo samples of porcine liver. The goal was to develop a model

based on tension, compression and pure shear (also known as constrained tension
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or planar tension) tests which could be used to simulate general loading of soft-

tissue, as is required for general surgical procedures. It is important to note that

the majority of studies involving soft-tissue modeling aim to model one deformation

mode at a time, for example, compression [53][68] or tension [13][14][54] of soft-

tissue. In this chapter, details on the development of the experimental device for ex

vivo studies, sample preparation, and experiments involving tension, compression

and pure shear are described in detail. Soft-tissue modeling based on the ex vivo

experimental data was done by Dr. Zhan Gao using some of the existing models in

the literature [13][18][27][28][63][68].

2.1.1 Ex Vivo Experimental Device

A test apparatus, Figure 2.1 was designed and constructed to perform tension,

compression and pure shear tests on samples of porcine liver. The device contains

only one translational degree of freedom (DOF) in the direction of the desired applied

load for the three tests. A rigid frame was constructed from aluminium to house the

sensors and actuators required for the three experiments. A Maxon A-max 32 motor

with a Maxon GP32 planetary gearhead connected to a lead screw assembly provided

the controlled linear motion. The lead screw assembly utilized an antibacklash nut to

prevent backdriving the motor under loading conditions. The motor was connected

to the lead screw assembly by way of a 300mm threaded rod. Owing to inherent

inaccuracies in machining practices, the alignment between the motor shaft and the

threaded rod requires the use of a mechanical coupling between the two shafts to
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account for the slight misalignment.

Figure 2.1: Experimental device for ex vivo experiments. c©2010 Springer.

The lead screw assembly had three major components attached: a linear bear-

ing, a linear encoder system and the force sensor. The linear bearing (NSK Ltd.)

was used in conjunction with the lead screw to translate the rotary motion of the

motor into linear motion by restricting the rotation of the lead screw assembly. The

bearing is constructed from hardened steel ball bearings with a corresponding linear

rail to reduce the friction within the system.

As seen in Figure 2.1, the motor utilized in the device contained an attached

encoder; however, this proved insufficient for the position measurement and an ad-

ditional linear encoder (US Digital EMI-0-500, 500LPI) was utilized. The problem

in using the rotary encoder attached to the motor arose from the use of the coupling

between the motor unit and the threaded rod. In determining a suitable coupling

for the task, it was discovered that all available options allow for a certain amount

of axial compression. When the deformation mode of compression is analyzed, the
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displacement of the lead screw assembly measured by the rotary encoder would be

incorrect as it would not sense the magnitude of the coupling compression. To rem-

edy this situation, a linear encoder was placed on the rigid frame while the optical

strip was attached to the lead screw assembly. Therefore, any motion of the assem-

bly relative to the rigid frame would be recorded, and compression or tension of the

coupling would not effect the readings.

The final connection to the lead screw assembly was the force sensor. In

this test, two different force sensors where used. For the compression test a 6-

axis force/torque sensor (JR3 Model No. 20E12A-I25) with a range of 0.05 - 50N

was used. For the tension and pure shear tests, where the loads were not as high, a

Transducer Techniques MDB-2.5 load cell, with a range of 0.01-11N, was used. Both

of the force sensors were attached to the lead screw assembly in the center between

the linear guide rail and the threaded rod. This allowed for a even distribution

of the load to the two support elements during testing to prevent any wedging

or build up of friction within the system. The entire device was controlled via a

dSPACE DS1103 controller board (dSPACE, Inc.) which also recorded the force

and displacement data throughout the experimental runs.

For testing each tissue sample, slightly different configurations were utilized

depending on the deformation mode. For compression and tension tests, two paral-

lel platens, with the tissue sample placed between, were utilized (Figure 2.2a). One

platen was directly connected to the rigid frame while the other was attached to the

force sensor. A slightly different setup was used for the pure shear tests, whereby

a tissue clamping system was added between the rigid frame and the moving force
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sensor (Figure 2.2b). This clamp allowed for the support of the larger sample ge-

ometry required for the pure shear test. The fixture utilized serrated teeth to clamp

onto the edges of the sample. The edges of the teeth were slightly rounded to pre-

vent shearing of the sample while providing the required grip on the tissue. It was

later determined that the clamping action on the tissue forced the sample around

the clamp to deform, resulting in a preloading effect prior to testing. Therefore,

additional shear tests were conducted using the parallel platen geometry as well.

Figure 2.2: Configuration for a) tension and compression and b) pure shear tests.

To obtain the information on the tissue displacement during the tension, com-

pression and pure shear tests, the experiments were recorded via still or video images.

The tension and pure shear tests utilized a Nikon D40 camera, a high resolution cam-

era which produced images sufficient for analyses by with digital image correlation

to determined the strain in the tissue sample. However, the Nikon only could ac-

quire images at 3 frames per second. For the compression test, this frame rate is

insufficient. Owing to the fact that the compression distance is much less than the

tension or pure shear tests, only a few frames would be captured with the low frame
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rate camera for the compression test. Therefore, a Sony PCR-PC120E digital video

camera was used to increase the number of frames captured (29.7 frames per second)

in the compression test.

2.1.2 Ex Vivo Experiments

Sample Preparation

Twelve fresh pig livers were collected from a slaughter house and kept frozen in

the laboratory. All tissue specimens were cut from frozen porcine liver and remained

frozen until the time of the test. Careful attention was given to the orientation of the

tissue samples. The samples were extracted perpendicular to the top surface of the

livers and tested in that direction. The liver’s outer layer of membrane (capsule) was

carefully removed. Samples with large blood vessels or obvious pores were discarded

in the experiments. Since the structural unit of liver, the hepatic lobule, is roughly

1 ∼ 2mm in size [32], the sample side length was chosen in the range of 7 ∼ 63mm

to ensure that the tissue property was relatively uniform throughout the specimen

volume and the average response of the tissue as a homogeneous continuum was

measured.

The samples for the tension test were in the shape of rectangular prism (Fig-

ure 2.3a) and cut from a partially thawed liver by using a long blade knife. As the

tissue thawed and deformed locally upon contacting the knife, it was difficult to

obtain a precise 90 degree relationship between the two adjacent faces of the prism.

Therefore, the dimensions of opposite faces of the samples could vary by 1 – 2mm.
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The samples were then individually wrapped in plastic wrap and kept in freezer

overnight until the tests were to be performed. The height of the sample for tension

test was approximately 25mm, while the width and thickness was approximately

15 – 17mm.

Figure 2.3: Initial sample geometry for a) tension, b) compression, c)pure shear

(clamp), d) pure shear (plates).

For the compression test, cylindrical samples (Figure 2.3b) were cut by using

an aluminum pipe (25.4mm diameter) with sharp edge. The faces of the cylindrical

liver specimens were trimmed manually. The diameter of a sample was ∼25.4mm.

The height was in the range of 9 – 17mm. The width of the sample for pure shear test

(Figure 2.3c and d) was approximately 50 – 63mm with a thickness of 7 – 11mm, and

a height of 13 – 15mm. The dimensions of the frozen samples were measured before

the test. Each dimension of a sample was measured at three different locations using

a Vernier caliper and the average value was recorded.
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Uniaxial Tension Test

Figure 2.4: Schematic of the uniaxial tension test. c©2010 Springer.

As shown in Figure 2.4, a frozen sample was attached to the bottom platen

by using cyanoacrylate (Super Glue). The glue was then applied to the top of the

sample. The upper plate of the testing apparatus was moved down slowly so that it

touched the upper surface of the sample. To assure proper attachment, the tissue

sample was compressed by approximately 1 – 2mm . The specimen was left for about

15 – 30 minutes to thaw. Water mist was sprayed 2 or 3 times during that time to

prevent dehydration of the tissue sample. Upon completion of the thawing process,

the tension test was performed by moving the top platen at 1.25mm/s, corresponding

to the nominal strain rate of approximately 0.05s−1. The tests continued until the

glue failed. Images of the deforming liver tissue samples in tension were acquired

for later analysis. A subset of the images are displayed in Figure 2.5. The sprayed

water mist may have some effect on the properties of the tissue, but due to the short

period of testing time (t<30 min), the potential influence was neglected.
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Figure 2.5: Sequence of images obtained during uniaxial tension test.

Unconfined Compression Test

The cylindrical tissue samples for the compression test were allowed to thaw

in Saran Wrap and overturned several times prior to placement on the platens. This

helped in maintaining the uniform shape of the sample prior to testing. The platens

was covered with a thin layer of petroleum jelly to minimize friction between the

plates and the tissue (Figure 2.6). The height of the sample before and after thawing

was measured. Both the digital video camera and the still camera were used to

obtain the image data from two perpendicular directions during the loading phase.

The images were used to identify the samples that had uniformly expanded in radial

Figure 2.6: Schematic of the compression test. c©2010 Springer.
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directions. A subset of the images obtained during one unconfined compression test

are displayed in Figure 2.7.

Figure 2.7: Sequence of images obtained during unconfined compression test.

Pure Shear Test

Figure 2.8: Schematic of the shear test using a) parallel plates and b) tissue clamp.

c©2010 Springer.

The most significant aspect of the pure shear test is that the specimen is much

shorter in the direction of stretching than in the width direction. This test has also

been called a constrained tension test or a planar tension test. The objective is

to create an experiment where the specimen is constrained in the lateral direction
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such that all specimen thinning occurs in the thickness direction. The pure shear

tests were conducted in two different ways, as illustrated in Figure 2.8. In the first

setup, the frozen sample was attached to the platens using glue (cyanoacrylate). To

assure proper attachment, the sample was compressed by approximately 2 – 3mm.

In the second setup, the sample was held by two sets of custom-made clamps. The

serrations inside the clamps provided a firm grasp to hold the tissue in place. The

frozen specimen was placed between the clamps by slightly tightening the screws.

Water mist was sprayed onto the specimen surface to prevent dehydration. During

the process of thawing, the two sets of screws in the clamps were tightened gradually

to ensure uniform clamping prestrain and also enough gripping force to hold the

tissue. The specimen was left for about 15 – 30 minutes to thaw at room temperature

(∼ 22 ◦C). The tests were performed at the nominal strain rate of 0.05s−1, or roughly

0.65 – 0.75 mm/s, depending on the height of the samples. A depiction of the pure

shear test using the parallel plates is shown in Figure 2.9 while the test conducted

using the tissue clamps is displayed in Figure 2.10.

Figure 2.9: Sequence of images obtained during pure shear test with sample glued

to the parallel plates.
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Figure 2.10: Sequence of images obtained during pure shear test with tissue clamps.

Testing Difficulties

Throughout the testing process many difficulties arose which greatly increased

the number of tests required for each deformation mode. For the pure shear and

the tension test, the tissue samples were being pulled apart. As previously men-

tioned, the samples for both of these tests were placed into the test apparatus while

they were still frozen to assure proper adhesion. In many cases, it was difficult to

determine if the sample was free of any defects, flaws or blood vessels while in the

frozen state or after the tissue had naturally thawed. Therefore, often during an

experimental run, an imperfection in the tissue sample would arise requiring the

test to be conducted again. Figure 2.11a and c show tissue for the pure shear and

tension tests after the thawing has completed that appear to be structurally valid

samples; however after the test has commenced it is easily seen that large defect

within the samples (Figure 2.11b and d) warrant them useless.

The other major problem that arose in this mode of testing came from the

fixation method of the tissue samples. After many trials it was determined that
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the best method of adhering the tissue to the test fixture was through the use of

cyanoacrylate, while the samples were still frozen. Despite the fact that this was

the best method of fixation, the bonding of the sample to the plates often failed

under little load. As with the previous problem, there was no way to determine the

validity of the bond prior to running the test. Figure 2.11e and 2.11f depict some

of the bonding difficulties that occurred.

Figure 2.11: Imperfections in tissue samples. Pure shear sample a) before loading

and b) after loading showing the blood vessel not previously seen. Tension sample

c) before loading and d) after loading revealing the defect. e-f) Improper adhesion

of tissue to the test fixture.

The compression test was more straightforward with respect to minimizing

errors. The only difficulty encountered during the unconfined compression test was

26



obtaining a sample that could be analyzed properly. This consisted mainly of pro-

ducing a run where the sample expanded uniformly in the radial direction without

translating between the two plates. If the top and bottom surfaces were not cut

parallel, or if internal imperfection existed in the tissue, the sample would translate

to one side during the compression test. Therefore, like the other two deformation

modes, many experimental runs were required to obtain a valid data set for analysis.

2.1.3 Analysis of Ex Vivo Experimental Data

The goal of the ex vivo experimentation was to determine a constitutive model

that could be used to predict deformations and forces induced by general loading of

the tissue samples. To derive the desired material models, an accurate stress-strain

relationship was required upon which the model would be constructed. By perform-

ing the tension, compression and pure shear tests, individual components of the

stress-strain relationship could be determined and combined to produce a complete

curve which could then be used to generate an appropriate material constitutive

model. In all of the experiments, the force induced on the load cells was collected

in addition to the still or video images. By combining the force and image data it

was possible to generate the stress-strain curve for each experiment.

The tension and pure shear tests were analyzed by Dr. Zhan Gao through

the use of a global digital image correlation (DIC) technique [27][28][25]. Dr. Gao

employed the non-contact DIC approach to determine the strain field within the

tissue sample, whereby the natural patterns on the liver tissue were used to track
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the tissue deformation. The compression test, on the other hand, could not use

DIC due to the fact that the front surface area decreased during testing. Therefore,

as the test progressed, the natural textures quickly became less distinguishable.

Also, during the compression, the texture on the surface was often obscured by the

excretion of blood from the tissue sample. To obtain the required strain information

a Canny edge detection algorithm was developed to detect the boundary of the tissue

and analyze the sample deformation.

The unit of measure for strain utilized throughout the analysis is the stretch

ratio. In the case of the compression, test the stretch ratio in the direction of the

compression is the required information. The stretch ratio is given by:

λ =
l

L

where l is the current length of the sample and L is the original length. For the un-

confined compression test there is a relationship between the three principle stretch

ratios given by:

λ2 = λ3 = λ
− 1

2

1

In this case λ1 is the stretch ratio in the direction of the compressive motion. λ2

and λ3 are the principle stretch ratios in the radial direction. The desire is to find an

accurate representation of λ1 for the tissue sample throughout the experimental run.

The simplest method to determine this quantity is to directly measure the motion

of the platens and assume the tissue conforms to the distance between the two

throughout the test. This approach, however, assumes uniform contact of the sample

throughout the entirety of the test. From preliminary testing it was discovered that
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difficulties arose in determining the starting point for the tissue-plate contact. An

incorrect starting point would cause a shift in the resultant stress-strain curve which

would decrease the model accuracy. Additionally, using only the plate displacement

would not provide any information on the validity of the test because there would

be no test for uniform radial expansion.

In light of these facts, a method was derived to calculate λ1 from λ2 which could

be directly measured through the captured image sequence for each compression test.

The relationship is given by:

λ1 =
1

λ2
2

(2.1)

To acquire the information for the stretch ratio in the radial direction, λ2,

a code was developed utilizing a Canny edge detection analysis to directly calcu-

late the stretch ratio. Using the equation above, the stretch ratio in the principle

compression direction could be determined.

The Canny edge detection algorithm is inherently sensitive to changes in the

image intensity; therefore while performing the compression test all surfaces facing

the camera were covered with white paper to maximize the contrast between the

tissue sample and the background. The original image can be seen in Figure 2.12a.

To assure robust detection of the outline of the tissue sample, a few steps were taken

to modify the contrast of the image. First, the original color image was brightened;

then the image was converted from color to greyscale as required for the Canny

edge detection algorithm written in Matlab. The contrast of the image was then

increased to make the detection of the outline of the tissue sample more robust
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Figure 2.12: a) Original image, b) Image after brightening, c) Conversion to

greyscale, d) Increase of contrast, e) Canny edge detection results, and f) Edge

detection superimposed upon original color image

when applying the edge detection algorithm. Finally, the Canny edge detection

algorithm was applied to the sample with the appropriate threshold level for the

given experiment, thereby finding the outline of the tissue sample. The entirety of

the process can be seen in Figure 2.12, where the final image shows an overly of

the edges discovered in the Canny process on top of the original, unmodified color

image. As can be seen, there is an excellent correlation between the two.

Upon completion of the edge detection process it was possible to determine

the sample width at the midpoint between the two parallel plates. An algorithm

was developed in Matlab that found the stretch ratio, λ1, by the following steps:

• Using the data from the edge detection, determine distance between two par-
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allel plates in units of pixels

• Find the center plane as the midpoint between the two plates

• Find the intersection of the center plane with the tissue profile determined in

the edge detection analysis in terms of pixels

• Convert the width of the sample to mm

• Calculate λ2 =
Width of Sample in Current Frame
Width of Sample in First Frame

• Determine λ1 from Equation (2.1)

The conversion from pixels to millimeters was determined from the first image

in the sequence along with some known camera information and calibration proce-

dures. Prior to testing, a circle of known dimension was recorded to be used for

calibration. Using this image and the camera resolution it was possible to get a

correlation between the relative length of a pixel in the horizontal and vertical di-

rection. This, together with a reference length in each particular experiment, would

yield the conversion between pixels and millimeters. In the case of the compression

test, the distance between the platens prior to the experiment was measured with a

pair of callipers. The calibration information along with the first distance reading

between the platens set the conversion factor for the experiment.

Using the above technique and the known frame rate of the camera system,

it was possible to determine a plot of the stretch ratio in the compression direction

versus time (Figure 2.13). As can be seen in the figure, there was a relatively linear

relationship which was expected as the plates moved at a constant speed throughout
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the compression test. The data is not smooth due to the limitations in the resolution

of the digital video camera. When calculating the width of the sample, the distance

is limited to steps of one pixel due to the image processing techniques.

Figure 2.13: Stretch ratio in the compression direction, λ1, versus time.

To calculate the stress in the tissue sample during the unconfined compression

test, the measured force data and information about the sample geometry were used.

The nominal stress is defined by:

σ =
F

Ao

where F is the force and Ao is the original cross-sectional area of the tissue sample.

To determine the original cross-sectional area of the sample, properties from the

frozen sample and initial height of the thawed sample were used. An assumption

was made that the volume of the tissue sample remained preserved through the

thawing process. The following relationship determined the original cross-sectional
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are of the thawed tissue sample:

Vf = πr2
fhf

Ao =
Vf

ho

where Vf is the volume of the frozen sample, rf is the radius of the frozen sample,

hf is the height of the frozen sample, and ho is the original height of the thawed

sample prior to compression. Using these relationships, it was possible to determine

the nominal stress in the tissue sample throughout the unconfined compression test

as seen in Figure 2.14.

Figure 2.14: Nominal stress in the tissue sample throughout the unconfined com-

pression test.

Combining the data from the stretch ratio and the nominal stress for each

individual test resulted in the desired stress-strain curves for the compression por-

tion of the total strain spectrum. Figure 2.15 shows the stress-strain curve for the

compression test detailed in Figure 2.14. The process was repeated for multiple

samples.
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Figure 2.15: Nominal stress in the tissue sample throughout the unconfined com-

pression vs the stretch ratio.

After determination of the individual segments of the stress-strain curve from

each deformation mode, the three different data sets can be combined to formulate a

complete characterization of the tissue response to loading conditions. Figure 2.16

shows the complete stress-strain curve for two sample runs for each tension, un-

confined compression and pure shear deformation modes. As can be seen in the

figure, the measured strain in the compression test was corrected by a factor which

is approximated by the ratio of the height before and after sample thawing to com-

pensate for the settling of the tissue due to gravity. This results in a shift of the

compression curve to the left.
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Figure 2.16: Experimental results for tension, compression and pure shear tests.

c©2010 Springer.

2.1.4 Ex Vivo Model Development

After the experimental stress-stain curves were derived for the various tissue

samples, the data was used to generate the hyperelastic constitutive models for

ex vivo porcine liver. The modeling process, was developed and implemented by

Dr. Zhan Gao using principles reported in [13][18][27][28][63][68]. Through this

process three constitutive models of differing forms were developed which accurately

represent the general loading of the tissue samples. The models are presented in

Table 2.1
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Table 2.1: Constitutive models for general loading of ex vivo porcine liver.

Model Type Strain Energy Density Function Model Parameters

Combined Logarithmic
−C1ln

`

1 − C2

`

λα
1

+ λα
2

+ λα
3
− 3

´´

C1 = 60 N

m2
, C2 = 0.632, α = −2.544

and Ogden Model

Combined Exponential
C1

“

eC2(λ
α

1
+λ

α

2
+λ

α

3 ) − 1
”

C1 = 10 N

m2
, C2 = 1.6, α = −3.068

and Ogden Model

Ogden Model

X

k

2µk

α2
k

`

λ
αk

1
+ λ

αk

2
+ λ

αk

3
− 3

´ µ1 = 7505.680 N

m2
, α1 = −2.773, µ2 = 0.155 N

m2
, α2 = 19.668

µ3 = −13856.8 N

m2
, α3 = −3.644, µ4 = 6421.31 N

m2
, α4 = −4.515
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2.2 In Vivo Modeling

When dealing with biological materials such as porcine liver, it is important

to look into the differences between the tissue response in the in vivo and ex vivo

states. Many previous studies have show that various biological materials behave

differently in the in vivo state due to a variety of conditions; the variation between

the response of the two states can vary drastically depending on the tissue type. For

that reason, a study of the in vivo tissue response to loading was undertaken. In

this study, two main goals were set forth. First, the efficacy of utilizing an ex vivo

based material model for simulation of an in vivo probing test would be evaluated.

This is an important aspect to research in that if the model is sufficiently accurate,

it may be possible to only perform the more straightforward ex vivo test to generate

the required material models used in surgical simulators. Second, if the response of

the tissue using the ex vivo based tissue model does not accurately represent the

actual tissue response, new models based on the in vivo experimental data should be

generated to determine a more accurate representation of the tool-tissue interaction

in the in vivo tests.

To test the validity of using the ex vivo based material models to simulate

an in vivo experiment, a testing device was designed and constructed to perform

a probing task on in vivo porcine liver with a hemispherical probe. The device is

capable of recording the force imparted on the probe as well as the deformation

of the tissue surface at discrete data points throughout the entirety of the probing

task. Additionally, the camera incorporated with the probing device can be used
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in a manner similar to a standard coordinate measuring machine (CMM) whereby

the shape of the organ can be determined. Using this information it was possible

to simulate the probing task in a standard finite element program, ABAQUS was

used throughout this study, where the only variable in the analysis is the definition

of the liver material characteristics. By using the ex vivo based constitutive model

as the material parameters, the efficacy using the model for in vivo simulation was

determined by comparing the simulation to the experimental force and displacement

profiles. Further, the model was modified to better represent the properties of the

in vivo tissue response.

2.2.1 In Vivo Experimental Device

The device designed and constructed for the collection of the in vivo exper-

imental data (Figure 2.17) was developed to perform a controlled probing motion

while recording the information required for accurate simulation of the probing task.

When designing the device, many aspects had to be included that would allow the

structure of the device to transform. This was due to the variability of many aspects

pertaining to the animal which would interface with the device. For instance, the

size of the pig could vary with each experiment, the shape and location of the liver

would be different and the lighting conditions would change throughout the probing

tests. In light of these facts, the design for the in vivo experimental set-up was made

to be as versatile as possible. In addition, the device was also intended to be used for

other tasks such as scalpel cutting and possibly needle insertion, therefore the design
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allows for multiple initial configurations to accommodate the various desired tasks.

Throughout this chapter, only the probing test will be explained, so the detailed

description about the device will be confined to the probing mode configuration.

Figure 2.17: In vivo experimental device configured for the probing task. c©2010

IEEE.

The frame of the test device was constructed from 1515 Lite framing material

(80/20 Inc.) to provide a rigid yet light support to connect the various sensors and

actuators. The dimensions of the frame were determined to fit the standard surgical

tables found in most pig laboratories. A clamp system was fabricated and attached

to the bottom of each leg for fixation to the handles on the side of the tables. The

device uses linear rails to provide the motion of the probe which will be discussed in

detail in the next few paragraphs. To mount the linear rails a frame consisting of two
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parallel supports with vertical reinforcements was utilized. This support assembly

could be raised or lowered as needed to provide the proper starting location for the

probe. An advantage of using the 80/20 framing material is the ability to alter the

connections at individual locations without the need to completely dismantle the

frame; providing the flexibility to raise and lower the linear rail starting positions as

needed during each individual experiment. In addition to the vertical adjustment,

the side rail assembly was designed such that the rails could slide horizontally to

any location. The combination of these two motions provided the required flexibility

to interface with animals of various sizes and organ locations. Figure 2.18 shows

the support assembly which houses the linear rails in detail and shows the possible

adjustments that can be made on the fly. On the sides perpendicular to the rails

a single support bar was added. This support was designed to house the camera

system and was also adjustable such that the bar could be raised or lowered without

taking apart the device to properly orient the cameras.

Two linear rail systems (Haydon Motion Solutions), connected by a support

beam containing the probing equipment, were rigidly mounted to the frame. The

rails consist of a stepper motor (Size 17 double stack with 0.015875mm per step

resolution), a wedge style anti-backlash nut, a optical encoder (US Digital E5S,

500 counts per revolution) and 305mm of total travel. They are controlled via a

TTL-compatible motor control unit (DCM 8028) which directly drives the stepping

motion of the motor. The speed of the motor is proportional to the frequency of

the input signal. For the current setup, the frequency signal range is set between

0 and 2KHz which corresponds to a traveller speed of 0 to 100 millimeters per
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Figure 2.18: Support assembly for linear rail systems with adjustment capability

possible during experimentation.

second. To generate a TTL-compatible signal, a control code was developed in C

and implemented in conjunction with a Sensoray data acquisition system (Model

626). The two linear rail systems were connected with a rigid beam upon which the

probe and sensors would be mounted.

The limitation of the proposed system occurs in the inability of the code to

generate a signal in excess of 1KHz due to hardware limitations of the computer

equipment. For the current application, an input signal in the range of 0 to 1KHz

was sufficient for the desired probing speeds. To generate the proper linear motion

of the probe itself, it was imperative that both linear rail systems moved in the

same manner such that wedging of the rigid support did not lock up the motion of

the system. Therefore, a proportional derivative based controller was implemented

to assure the position and velocity of the rails remained constant throughout the
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entire experiment. However, the addition of a control law used computational power

which limited the maximum frequency of the output signal to be on the order of

100Hz, thereby greatly decreasing the maximum speed of the system. To counteract

this limitation, a constant frequency is written to the motor controllers during a

given experiment which will cause the traveller to move a specified distance. The

distance of each rail is independently governed to assure proper movement in each

rail regardless of loading conditions or differing frictional force. The speed between

probing tests can be varied by changing the control signal frequency. This process

was extensively tested in the lab to verify that the system would not lock up during

experimentation.

Attached to the rigid beam connecting the two linear rail systems was the

probe assembly which consisted of a force sensor and the rigid probe. The rigid

beam was slotted such that the position of the probing assembly could be changed

easily during the experimentation process. This flexibility, in combination with the

ability to change the placement of the linear rails as previously mentioned, provided

the capacity to move the starting location of the probe to almost any point within

the frame of the testing device. The six-axis force/torque sensor (JR3 Model number

20E12A-I25) utilized in the experimental device records the force and torque data

with a resolution of 0.002N and 0.00025Nm respectively. The force sensor signal

was captured through the use of the Sensoray data acquisition board at a sampling

frequency of 62.5Hz. Attached to the force sensor was the rigid hemispherical probe.

Five different probes were constructed from aluminum with diameters of 6.5, 9.5,

12.5, 19 and 25mm respectively.
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Beneath the probe, a support system was fabricated upon which the lobe of

liver could be positioned. This support plate (200mm X 250mm) would isolate the

liver from the surrounding internal organs. By including this rigid support plate,

all measured tissue deformation could confidently be described as deformation of

the liver itself instead of a combination of liver, lung and stomach. The support

plate was connected to the rigid frame through a set of adjustable plates allowing

for the ability to move the plate directly under the liver without the need to move

the animal. By allowing the adjustments in all parts of the experimental device, the

test apparatus was successfully designed and constructed with minimal knowledge

of the size, shape or orientation of the animal with which it would interact.

The last major component of the experimental device was a camera system ca-

pable of recording the surface deformation throughout the probing task. In addition,

it must also be capable of determining the shape of the liver before experimenta-

tion, as this information is required for the accurate simulation of the probing task.

Various camera systems were evaluated for their applicability to the desired task in-

cluding: digital image/volume correlation devices, structured light systems, motion

capture systems and optical pose systems. The digital image/volume correlation

devices provide a means for non-contact measurement of the full strain field as was

implemented in the previous ex vivo study; however, problems would potentially

arise with loss of data from reflections and the requirement of the fine texture for

proper function. These issues in conjunction with the high price of the available

units at the time resulted in their removal from the list of possible camera systems.

Along the same approach, structured light systems project a unique light pattern
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(often a laser grid or speckled flash) onto the surface of a substrate which can then

be analysed with a stereo camera system to generate a three dimensional repre-

sentation of the surface. These devices are capable of reproducing very accurate

representations of the surface profile, however most systems are designed for quality

control inspection and have acquisition times on the order of one to three seconds.

The fastest structured light system contained a 2Hz imaging frequency, which was

too slow for our system.

The selection of the camera system came down to two different options: a

motion capture system by PhaseSpace Inc., and a optical pose system manufactured

by Claron Technologies. The motion capture system was designed and used mainly

for animation purposes. The system included a set of cameras mounted around

the desired field of view which interact with light emitting diode (LED) markers

which have a unique frequency profile. The spatial location of each marker can be

determined from the combination of the individual locations in each of the camera

frames. The unique frequency of each diode allows for active registration of the

marker in each camera frame for easy correlation between the various cameras.

This particular company developed markers that could be mounted on the face to

aid in the animation of facial details, making the markers small enough to mount

on the surface of the liver. The main advantage of using this system is the fact that

it is an active system. Each marker is uniquely sensed and the spatial locations are

automatically calculated for each point, making the surface tracking algorithm that

would need to be written relatively simple. Problems arose, however, when studying

the markers in more detail. Despite the fact that the makers were very small in size,
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they were all LED’s that needed to be wired for the system to work properly. When

it came to mounting the markers on the surface of the liver, the wires themselves

limited the number of markers that could be used before they began to be obscured

by the wiring. Also, it was very time consuming and difficult to fix the markers to

the liver surface making it infeasible for the current experimental protocol which

limited the interaction time with the pig to five hours. Therefore, the PhaseSpace

motion capture system was not selected for the imaging device.

The final camera chosen for the in vivo experiments was the MicronTracker

stereo camera system (Model H40) developed by Claron Technologies. The system

was similar to the motion capture system in that the spatial location of markers

on the surface of the liver could be tracked in real time, however these markers

were passive, meaning they did not emit a unique signature which distinguishes one

from another, making the data processing more difficult. Also, instead of using a

set of individual cameras, a stereo camera was utilized, which limited the field of

view. This optical pose system utilizes unique markers (Figure 2.19) which could be

detected by the camera system. Using the information for the location of the marker

in each image, the global position with respect to the camera can be calculated.

Testing of the markers revealed that the system worked properly with markers as

small as 5mm in diameter and had robust tracking with markers 7mm and above.

The markers themselves could be printed on paper and placed on the surface of the

object being tracked. Therefore, since no wires were required, a large number of

markers could be added to the surface of the liver without the registration problems

seen in the active tracking systems.
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Figure 2.19: Marker used in MicronTracker camera system.

In addition to the individual point tracking, the MicronTracker system could

be used to track tools. One such tool was developed that could be tracked and

through a simple coordinate translation, the location of the stylus tip could be

recorded. By using this technology with discrete data points it was possible to turn

the camera system into a coordinate measuring machine (CMM). Using the Micron-

Tracker in the CMM mode it was possible to generate a point cloud representation

of the liver surface which could be transformed into a three dimensional model of

the organ. Therefore, by choosing this imaging system it was possible to track the

surface displacement of the liver at the marker locations in addition to obtaining

an accurate representation to the starting organ geometry. The model purchased

had a field of view which was acceptable for the size of the experimental device,

an accuracy of 0.25mm on the volume and a sampling frequency of approximately

15Hz. Details pertaining to the specific use of imaging system in the experiments

and data analysis are presented in Sections 2.2.2 and 2.2.3.

After performing an intial in vivo experiment to root out any issues with

the device, two major modifications were made. First, as will be discussed in the

next few sections, when the probe contacts the liver surface large deformations

46



occur which resulted in the rotation of some of the markers placed on the surface.

Additionally, the probe itself acts to obscure the markers from the camera system.

Because the imaging system is stereo camera based, the marker must appear in both

frames to be tracked properly. Even a small diameter probe proved to cause a large

gap in the field of vision for the markers on the back side of the probe. In light of

these two facts, a second camera system was purchased that could be mounted on

the opposite side (as can be seen in Figure 2.17) to collect the data which would

be obscured or lost due to marker rotation. Also, it was difficult to determine

the point at which the probe comes in contact with the tissue surface. Details

about importance of the probe-tissue contact determination will be discussed in

2.2.3, however it is sufficient at this point to know that an accurate time of contact

was required. Therefore, a contact determination circuit was added to the in vivo

probing device.

Due to the soft nature of pig liver it is often difficult to determine the exact

contact point directly from the force profile. The reaction force on the probe gradu-

ally increases as the probe is driven into the tissue and there is no discernible jump

in the force profile upon initiation of probe-tissue contact. Various methods have

been implemented to solve this problem and determine the precise instant the probe

makes contact with the liver surface. Miller et al. utilized laser distance meter to

measure the radial displacement during ex vivo compression tests to determine the

initial contact location [52]. In this study, we propose an approach consisting of a

contact-determination probe whereby the probe-tissue contact point could be real-

ized similar to the method presented by Reilly et al. [67]. An electrode was attached
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to the probe itself and a second electrode was place between the tissue specimen

and the supporting plate. Contact between the probe and the tissue resulted in the

completion of an electrical circuit thereby producing a signal that could record the

time of contact. The electrical circuit was designed such that low current would

pass through the circuit to avoid damage to the tissue. Using this signal it was

possible to compare the measured experimental force and surface displacement with

the simulation of the probing test.

Through the use of this experimental setup it was possible to obtain, with

a high level of accuracy, the parameters required for a complete simulation of the

probing task as well as the experimental values with which to compare the simu-

lation. Given the tissue geometry, boundary conditions, and probe location along

with the force and displacement data, it was possible to perform a simulation of

the in vivo experiment whereby the only variable in the analysis consisted of the

material properties. Comparing the resultant force imparted to the probe and the

deformation of the surface from the simulation with the measured values resulted in

a method to validate the efficacy of the proposed constitutive model to simulation

of an in vivo probing task.

2.2.2 In Vivo Experiments

Two in vivo experiments have been performed at the George Washington Uni-

versity Medical Center pig lab. The tests were conducted on female pigs weighing

18 and 20.5kg under an approved protocol by Institutional Animal Care and Use
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Committee (IACUC). Throughout the entirety of each test, a trained veterinarian

and anesthesiologist were on staff to handle the animal and supervise the inter-

action of the testing device with the liver. The animal was sedated and properly

fixed to the surgical table where the abdominal cavity of the pig was opened by

the veterinarian to expose the liver. During this process the anesthesiologist also

supervised the administration of anesthesia as required, observed the vital signs

and maintained proper function of the attached respirator used to control the pig’s

breathing throughout the entirety of the experiment. Once the animal was situated,

the experimental device set up for the probing task was positioned above the animal

and one of the lobes of liver was placed on top of the support plate (Figure 2.20).

This plate was covered with a high grit, waterproof sand paper to prevent sliding of

the liver during the experiments. The support plate was positioned slightly above

the abdominal cavity leaving approximately a 3mm gap between the bottom of the

plate and the abdominal cavity at the apex of the breathing motion. The proper

positioning of the plate was important in that it allowed for the isolation of the liver

from the surrounding organs and prevented the relative motion of the organ due to

breathing. The liver was positioned such that a large portion of the lobe was housed

on the plate, leaving enough slack in the end connected to the diaphragm to absorb

the slight movements due to the breathing of the animal. During the first test, not

enough slack was given to the organ during placement on the support which resulted

in unwanted motion during the analysis process as will be shown in section 2.2.3.1.

After the liver was properly positioned on the support plate, it remained in that

orientation throughout the entirety of the testing. When the liver was not being
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used for an experiment, a damp cloth was placed over the surface to prevent the

organ from drying out, which could alter the response of the tissue to loading.

Figure 2.20: Positioning of the support plate with liver placement during first pig

lab.

As previously mentioned, an accurate simulation of the probing task requires

knowledge of the shape of the organ in addition to the proper boundary conditions

present during the testing process. To obtain the organ geometry, the MicronTracker

camera system was used in a manner similar to a CMM machine. A code interfaced

the camera with Rhinoceros R© 4.0 (a 3D drawing package manufactured by Robert

McNeel & Associates) and stored the location of the points as they were recorded.

A stylus was lightly traced by hand over the surface of the liver while the points

corresponding to the tool tip were recorded. This process was continued until the

entire surface of the liver was sufficiently sampled. The device displays the points

in real time through the Rhinoceros R© interface so it was possible during the reg-
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istration process to assure a proper sampling of the organ for future use. After

the process was completed, a point cloud representation of the liver surface repre-

sented the original shape of the organ. Figure 2.21 shows the raw point cloud data

corresponding to the liver geometry from the first pig lab shown in Figure 2.20.

Figure 2.21: Raw point cloud data obtained during first pig lab.

During this process of obtaining the point cloud representation of the organ

geometry, the camera needed to be located outside the testing frame to properly

track the stylus for a complete representation of the liver. However, during the

probing experiment, the camera needed to be moved inside the experimental device

for robust tracking of the individual markers placed on the liver surface. Therefore

additional reference markers were added to the system at locations on the support

plate and the testing frame. These markers could be measured in each of the two

camera locations to provide the information needed to transfer between the two

reference frames. The reference markers and the corresponding point locations can

be seen in Figures 2.20 and 2.21 respectively.

After completion of the geometry measurement, the device was set up to per-

form the probing task. Using the three adjustment options built into the experi-
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mental device, the probe was positioned over the desired location for the particular

test. Next, the markers that could be tracked with the MicronTracker system were

fixed to the surface of the liver. Markers on the order of 7mm in diameter were

printed on standard white paper and placed directly onto the surface of the liver.

Due to the fact that the surface is naturally moist, and kept moist throughout the

experiment, the papers markers naturally adhered and conformed to the shape of

the liver. The natural adhesion of the markers is useful in that it will not alter the

tissue response to the probing load as might be the case with the application of glue

or another material to the liver surface. A large number of markers were added to

the surface proximate to the probe location to maximize the number of points that

could be tracked on the surface. The marker layout for one of the probing locations

of the first experiment can be seen in Figure 2.22.

Figure 2.22: Location of markers during one test location in the first pig lab.
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After the markers were properly positioned on the surface around the probe,

the camera system was moved into position such that the surface markers and

at least three of the reference markers were recorded in the field of view of both

cameras constituting the stereo pair. This camera location provided the information

needed to track the surface markers throughout the deformation process as well as

correlate the displacement data with the initial organ geometry through the use of

the reference marker location. When everything was set properly, the probing task

was initiated whereby the probe was driven into the liver tissue, at a speed of 1.25

millimeters per second, while recording the displacement of the probe, the reaction

force on the probe and the stereo camera images for surface marker analysis. As

a safety precaution, the experiment would stop if the reaction force on the probe

exceeded a threshold force set to be 3N. Upon completion of the probing task, the

probe was moved to a different section of the liver and the process was repeated,

including placing new markers as needed to obtain a proper sampling of the liver

surface proximal to the new probe location.

2.2.3 Analysis of In Vivo Experimental Data

After the in vivo probing experiment was completed, the raw data recorded

from the test was analyzed to extract the information required to set up the sim-

ulation and compare of the experimental and simulated results. In this context,

the force and surface displacement data were acquired and the geometry for the

liver sample was derived for the simulation. The acquisition of the force profile was
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easily derived from the recorded raw force data. However, the analysis of the im-

age data was much more involved. As mentioned in the previous sections, various

changes were implemented in the device after the first experiment took place. The

differences were namely in the introduction of the contact determination system and

alterations in the imaging techniques. The reason for the changes will be discussed

in the presentation of the data from the first experiment.

2.2.3.1 First Experiment

The calculation of the force profile was initially determined directly from the

force sensor readings. During the first experiment there was no defined measure to

determine the instant when the probing process began. In setting up the probing

experiment, the probe was positioned slightly above the tissue surface to avoid

beginning the probing process prior to recording the relevant information. Therefore

the starting location for the probing test was estimated from the recorded still

images of the experiment. The beginning of the test was defined as the first frame

in which motion of any tissue was visually observable. A plot of the force profile in

conjunction with the probe displacement is presented in Figure 2.23.

After the force profile was acquired the next main set of data to obtain was the

displacement of the markers on the surface of the liver. Using the MicronTracker

camera system, it was possible to record the global position of each marker with

respect to the camera location. As previously mentioned, the system utilizes pas-

sive markers, therefore each marker is numbered depending on its location in each
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Figure 2.23: Force and probe displacement profile for one probing test during the

first experiment.

individual frame. The number is assigned through a raster scan of the image; if the

markers changed location with respect to one another the order could be altered

frame by frame. Throughout the experiment, reflections on the surface of the liver

or changes in the angle of the markers created many false reading for the markers or

prevented recognition of a particular marker. Due to these complications, the data

had to be filtered to determine the actual motion of each individual marker.

To determine the unique marker displacement, a code was developed in Matlab

to filter the raw point data recorded by the MicronTracker. A flow chart describing

the functionality of the code is presented in Figure 2.24 which is repeated for each

individual marker. Starting at the beginning of the probing task, the initial position

of the marker of interest was stored. For each frame a mask was established (a 6mm

spherical region around the starting position) which would be used to determine
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Figure 2.24: Steps for organizing the raw point data stored by MicronTracker into

an organized structure for each marker.

its location in the subsequent frame. Using the known position of the mask, the

program would look in the list of point locations for the next recorded frame for

a point within the defined mask. If a point was located in this region, it was

determined to be the next location of the marker and is stored as such. If no such

point was found, no data was stored for the marker during that frame. The process

was repeated for each frame using the last known location of the point as the center

of the mask. At the end of the process an additional filter was added whereby if

the marker was not recognized in a minimum number of frames (set to be at least

25 frames, which corresponds to approximately 20% of the duration of the probing

test) it would be disregarded entirely. By this technique, the displacement of each

marker could be uniquely determined and all spurious information relating to false
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readings and renumbering of the markers could be filtered out. After the algorithm

was implemented, a structured array contained the data for the location of each

unique marker throughout the entirety of the probing task.

Using the above approach the data for the probing test was evaluated. As can

be seen in Figure 2.25 the algorithm was successful in detecting and tracking the

majority of the markers on the surface. Some of the markers, including many on the

back side of the probe and a few in the foreground, were not recognized in enough

of the frames and were therefore ignored by the tracking algorithm. Figure 2.25b

shows a three dimensional plot of the displacement of the markers that were found

through the filtering algorithm. As can be seen in the plot, there was apparent

motion for the majority of the markers that were expected to move, whereas the

reference markers and those far away from the probe appeared stationary. Included

in the figure is a close up of the overall displacement of marker number five which

showed a great deal of movement as would be expected for a marker so close to the

location of the probe-tissue contact. It was not until each maker was looked at in

detail that the problems begin to arise.
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Figure 2.25: a) Marker location with labels defined for markers of interest b) Measured marker displacement throughout probing

task after filtering data.
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When looking into the details of the fifth marker displacement, it was apparent

that there was motion present in addition to the motion induced through the prob-

ing task. Figure 2.26a shows the magnitude of the displacement of the maker with

respect to the image frame number throughout the duration of the image record-

ing process. From visual inspection of the recorded images, the estimate for the

probe-tissue contact point was approximately frame number 120. However there

was significant motion of the marker, approximately 4mm, at various points prior

to the probe contact. This trend was seen in the majority of the markers. In all

of the markers the displacement also displayed a cyclical pattern which correlated

with the time period of the ventilator. Therefore, it was determined that the motion

recorded was relative motion of the liver do to the pig’s breathing. This fact led to

the realization that the placement of the plate and the liver location on the support

plate was a crucial part of the experimental set-up.

Figure 2.26: a) Sample marker displacement through the entirety of the test b)

Sample marker displacement vs probe displacement.
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Figure 2.26b shows a plot of the magnitude of the displacement of marker

number five with respect to the motion of the probe. After removing the unnecessary

information prior to the initiation of the probing experiment, it was observed that

the overall displacement was a function of both the breathing and the induced tissue

movement due to the probing task. There was once again a peak corresponding to

the breathing motion; however, during the settling process, the marker did not

return to the original location but began to displace due to the probing motion as

was expected. Overall the marker moved a total of 3.5mm due to the relative motion

of the tissue as a result of the probing process. After the probing was completed,

the probe remained in place and the tissue remained compressed with the marker

holding at 3.5mm of displacement even through the breathing cycle, as can be seen

in Figure 2.26a. It should also be noted that the probe-tissue contact point was

estimated from the recorded images. If this estimate is not correct there would be a

shift to the right or left in figure 2.26b. Even with a small discrepancy in the starting

frame number, the shift of the displacement curve would be substantial and could

lead to inaccuracies in the validity of the comparison between the experimental and

simulated data. Therefore, a method was devised to improve the accuracy of the

probe-contact determination.

The final issue that arose with the original approach was due to the camera

system itself. The MicronTracker system is not typically used with small, flexible

markers like those in this experiment. Therefore, some difficulties occurred in track-

ing all of the markers throughout the entirety of the probing task. One of the major

problems developed from the rotation of the markers due to large displacements
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arising in markers close to the probe. In studying the images themselves it was

apparent that the pattern used for the automatic recognition was severely altered

after it rotated away from the ideal perpendicular configuration. During this process

the marker displacement data was not collected automatically, however it was still

possible to visually detect the center of the marker. A plot of the typical results

for one of the markers during the test is shown in Figure 2.27. As can be seen, a

substantial amount of data was lost which is essential for proper comparison to the

simulated probing task. This dilemma was resolved by developing a new strategy

for acquisition of the marker displacement for subsequent experiments.

Figure 2.27: Typical marker tracking data for first experiment.

The next task that needed to be solved was the development of a geometrical

model of the organ based on the original shape of the the liver which could be used for

the foundation of the probing simulation task. This was generated by using the point

cloud data obtained during the experiment with the MicronTracker camera system.
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Upon completion of the surface registration procedure, a point cloud representation

of the tissue surface was generated in Rhinoceros R©. Using this point cloud data,

it was possible to create a surface patch to best fit the data points. Being that the

tissue is very soft, there is inherent error to the measurements and the accuracy of

the surface can be determined to within only a few millimeters. By changing the

parameters of the surface patch in Rhinoceros R©, different degrees of smoothing can

be applied to the surface to obtain the proper shape. The function that generates

the surface implements an algorithm which minimizes the error between the surface

and the points, therefore, it results in the equivalent of a midplane along all the

point cloud data. This is the ideal representation because there are unavoidable

errors in the measurement process due to the soft nature of the liver. Therefore,

during the generation of the point cloud, some of the points would be above the

surface, when the stylus is slightly above the surface, and some would be below the

surface, when the stylus slightly compresses the tissue during measurement.

Next, a plane was fit to the nodes that comprise the border of the tissue along

the edge of the supporting plate. The surface representing the liver geometry was

then extruded in the direction perpendicular to the plane, extending far enough

that the entire liver section is solid at the cross section of the plane. By using

a boolean split, the solid shape was split along the line of the plane creating two

disjoint shapes, one representing the liver and the other which was disregarded. The

solid model of the liver could then be used to generate the mesh for finite element

simulation or could be imported directly into ABAQUS for the simulation of the

probing task. A depiction of the point cloud data with the final three dimensional
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geometry used during the simulation process for the first experiment can be seen in

Figure 2.28

Figure 2.28: Solid geometry developed from measured point cloud data for first

experiment.

2.2.3.2 Second Experiment

After resolving the problems that arose during the initial testing of the de-

vice mentioned above, a second in vivo porcine experiment was conducted. In this

experiment probing was conducted at nine different locations on one lobe of liver.

After a study of the data it was apparent that three of the probing locations were

performed without any problems such as relative motion due to breathing or insuf-

ficient sample thickness at the probing location. All three of the tests that worked

properly were analyzed in detail to test the efficacy of utilizing the ex vivo based

models for in vivo simulation as well as implement improvements of the material

model based on the recorded data. These three tests will be presented in detail from

this point forth.
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During the second in vivo experiment, the reaction force on the probe was

recorded in the same manner as the initial test. Figure 2.29 shows a depiction of

the reaction force incident on the probe for each of the three probe locations. The

measured values that are plotted as the raw data points. As can be seen, the data

had some fluctuation due to the inherent noise in the force sensor. To provide a

more structured method for comparison to the outputs of the simulated probing

tests, all force data was fit with a continuous polynomial curve. The raw force data

along with the polynomial fits are both depicted in the Figure 2.29.

Figure 2.29: Measured force values and corresponding polynomial fits for the three

probing locations.

One of the major problems with the data analysis during the first experiment

was the inability to determine the instant at which the probe made contact with
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the tissue. This is the time when the simulation and the experimental data should

begin to be compared. To resolve this problem, an electrical circuit-based contact

determination system (previously described) was utilized to provided superior lo-

calization of the tool-tissue contact. A depiction of the results from the circuit can

be seen in Fig 2.30, plotted in conjunction with the raw force data. Seen in the

plot, the voltage jump occurred immediately upon contact with the tissue surface.

It should also be noted that there was no distinct change in the gradually increasing

force profile that would have indicated the start of the probing action. Therefore,

the use of the contact determination system allowed for an increase in accuracy

when comparing the experimental and simulated results. From this point on, all

data presented will be from the start of the probing task as defined by the contact

determination probe.

Figure 2.30: (Top) Raw force data obtained during probing task (Bottom) Measured

voltage levels throughout the probing task. c©2011 Springer.
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The other source of error that was overcome for the successive experiments was

the determination of the accurate surface displacement. The MicronTracker cam-

era system was still used to obtain the surface displacement information, however,

modifications to the process of obtaining data was required. One of the problems

that arose was the limitation of the marker locations that could be used while main-

taining registration of the marker in both the left and right images of the stereo pair

due to the probe itself. This limited placement of markers on the back side of the

tissue surface. To overcome this problem a second MicronTracker camera system

was purchased to mount on the opposite side of the probe. This camera, with the

addition of a separate firewire card capable of running both cards simultaneously

at 15Hz, provided a complete field of view of the entire liver surface. Modifications

to the camera code were implemented to allow for the acquisition of both camera

images.

The last obstacle arose from the lack of reliability of the MicronTracker sys-

tem to automatically detect every marker location throughout the probing process

regardless of lighting conditions or rotation of the marker itself. While it may have

been possible to develop a more robust tracking code for the markers, or use a

different shape altogether, the tracking algorithm implemented by MicronTracker

could not be altered in the currently available programming framework. To improve

this, a method for tracking the markers was developed whereby each marker loca-

tion could be uniquely determined throughout the probing process. In addition, the

approach allowed for the tracking of any point which was uniquely defined through

the entire experiment, which led to the ability to track not only the center of the
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markers but the corners of the paper themselves. As the paper adhered completely

to the moist surface of the liver, this increased the number of points on the organ

that were possible to track.

The method that was adopted for marker registration was a manual selection

technique. It was decided that the variety of the errors that arose in the images

due to changes in the light intensity of reflections on the surface, in addition to the

possibility for large marker rotations close to the probe, would be very difficult to

overcome in an automated image processing manner. Therefore a code was devel-

oped in Matlab whereby the pixel location of the points of interest, in both the right

and left image frame, could be selected with the mouse. In this process it was pos-

sible to magnify the image to obtain a more accurate selection of the point location

on the subpixel range to increase the selection accuracy. Through this process, a list

of pixel locations was developed for each point of interest at every frame throughout

the probing experiment. Then a second code was developed in C through the use

of the MicronTracker programming framework that would import the pixel location

data for each marker and transform the pixel information to the global location us-

ing the properties of the stereo camera configuration. After completing the process,

the location of the points of interest with reference to the camera location were ob-

tained as in the previous process; however the existence of data loss due to lighting

issues or rotation was greatly reduced.

Due to the fact that the new process was performed visually, there was the

possibility for larger variation in the accuracy of the pixel location throughout the

probing task. This variability is observed when looking at the raw data for one of
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the probing locations in the second attempt at the in vivo experiment. To make the

comparison to the simulated displacement more straightforward, the displacement

of each marker was fit with a polynomial curve which accurately represented the

data similar to the recorded force response. The marker displacement information

for each of the three probing locations is shown in Figures 2.31, 2.32, and 2.33 with

the polynomial approximations included in the plots. For each of the three tests

eight to eleven markers were chosen to represent the surface deformation in the area

proximal to the probing location. Markers further away proved to have movements

that were too slight to accurately track with the current imaging technique and were

not included in the analysis.

The next task is the extraction of the final three-dimensional geometry from

the point cloud representation recorded at the start of the experimental process.

The procedure remained unchanged from that presented during the first pig lab.

All three of the probe locations being analyzed occurred on the same lobe of liver;

therefore, when reconstructing the geometry of the organ, only one representation

is needed. Due to the limits imposed on the probing depth and maximum force

for safety reasons, at the end of an individual probing task, the liver returns to

its original starting shape. Figure 2.34a shows an image taken of the lobe of liver

after the position was finalized on the support plate. Figure 2.34b depicts the final

three dimensional solid model that was utilized as the basis for the simulation of

the probing experiments. Additionally, the location of the three probing tests being

analyzed are shown in the image.
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Figure 2.31: Presentation of the raw marker displacement data along with the poly-

nomial fits for first probe location.
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Figure 2.32: Presentation of the raw marker displacement data along with the poly-

nomial fits for second probe location.
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Figure 2.33: Presentation of the raw marker displacement data along with the poly-

nomial fits for third probe location.
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Figure 2.34: a) Image of the in vivo liver segment tested. b) Corresponding three

dimensional model developed from point cloud data with three probing locations

labeled.

2.2.4 Finite Element Simulation of In Vivo Experiment

Using the information obtained during the data analysis it was possible to

reproduce the probing experiment in the context of a finite element simulation where

the only variable in the analysis was the material properties of the liver tissue. To

perform this analysis the shape of the liver, location of the probe, probing depth,

boundary conditions and material properties all needed to be fully defined. Using

the data recorded during the experimental probing run, along with the information

processed after the experiment, it was possible to accurately define all of these

required characteristics.

The shape of the liver was derived from the point cloud data as previously

described. However, for proper use in a finite element simulation, a mesh must be

generated for use in the analysis instead of a solid model. Due to the large nature of

the liver organ and the small nature of the deformations and probe diameter (9.5mm

in all three proing locations) a refined mesh is required throughout the model which
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requires a large number of elements. To reduce the required computation time, and

negative effects due to volumetric locking, linear hexahedral elements are utilized in

the mesh. However, due to the complex nature of the organ, ABAQUS is not capable

of automatically generating a hexahedral mesh for the required geometry. A meshing

software, HyperMesh (manufactured by Altair Engineering), with a more powerful

mesh generation interface was utilized. Dr. Zhan Gao was able to successfully

mesh the accurate liver geometry with a total of 87,941 elements (Figure 2.35). The

final mesh consisted of 84,339 linear hexahedral (C3D8RH) elements and 3,602 linear

wedge (C3D6H) elements. Reduced integration and enhanced hourglass control were

utilized to prevent volumetric locking and eliminate instabilities. Hybrid elements

were chosen due to the incompressibility of biological tissues.

Figure 2.35: Mesh for lobe of liver used for finite element simulation. c©2010 IEEE.

Upon completion of the mesh, the information pertaining to the location of the

probe and probe displacement must be entered into the simulation. As mentioned

previously, the coordinate systems used for the generation of the liver geometry

and the acquisition of the surface displacement information were different since the

camera needed to be relocated for each probing run. However, reference markers
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that remained stationary throughout were recorded in both coordinate systems.

Therefore, a method for transferring the information between the reference frames

developed by Arun et al. was utilized to obtain all information in one reference frame

[2]. Due to the fact that transformation was required, an additional reference frame

was set up to simplify the finite element simulation process. In this reference frame

the X-Y plane was aligned with the bottom of the liver surface. This provided the

means to define the movement of the probe directly along the Z axis, simplifying

the set-up in ABAQUS. The method for representing the data in any coordinate

system is summarized below based on [2]:

Let the set of coordinates of the reference points in two different coordinate

frames be defined as {pi} and {p
′

i}. With pi and p
′

i being 3x1 column matrices, the

relationship between the two can be given by:

p
′

i = Rpi + T

where R is a 3x3 rotation matrix and T is a 3x1 translation vector. To find the

proper R and T the following error function needs to be minimized:

Σ2 =
N
∑

i=1

‖p
′

i − (Rpi + T ) ‖2

It has been previously shown that the centroid of {pi} and {Rpi} will be the same

point [37]. Therefore let us define the centroid of each set as p
′

and p:

p
′

=
1

N

N
∑

i=1

p
′

i

p =
1

N

N
∑

i=1

pi
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Next define the difference between the reference point location and the centroid as:

q
′

i = p
′

i − p
′

qi = pi − p

Then calculate the 3 x 3 matrix, H :

H =
N
∑

i=1

qiq
′t
i

Find the singular value decomposition of H :

H = UΛV t

Using the information from the singular value decomposition of H , define a term,

X, as:

X = UV t

If the det (X) = +1, then R = X. If the det (X) = -1, then R = V
′

U t The

translation vector T is found by:

T = p
′

− Rp

Using this approach it was possible to transform all information recorded per-

taining to the shape of the lobe of liver, marker information, probe position and

displacements to the newly defined simulation coordinate system. From this point

on all information presented will be in the simulation coordinate system previously

described. Additionally, the transformation of all data to the new coordinate sys-

tem provided the information required to place the probe in the proper location and

define the probe movement for the finite element simulation.
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The definition of the boundary conditions for the analysis which becomes

slightly more involved. Based on the fact that the lobe of liver was placed on

the sandpaper to prevent sliding or motion during the probing process, the bottom

surface of the liver was fixed in the simulation. The next information that needed to

be included was the contact definition between the probe and the tissue. Seeing as

how the surface of the liver was kept moist throughout the experimental only a small

amount of friction would be present between the probe and the liver. Experiments

were not conducted to determine the exact coefficient of friction which would vary

between each liver and depends on the quantity of water and blood on the surface.

For the purpose of this experiment, a coefficient of friction of 0.1 was assumed.

Using this information, a contact pair was established between the probe and the

liver, where the probe was defined as the master surface and the liver was the slave.

The analysis used a finite sliding, node to surface based approach to solve for the

contact iterations.

The final boundary condition that needed to be addressed was the effect of

gravity on the tissue. As in the ex vivo case, the tissue naturally settles due to

the existence of the gravitational force. Owing to the soft nature of the liver, the

settling of the liver due to gravity could have a large effect on the resultant force

and the accuracy of the surface displacements, depending on the liver geometry and

probe location. The shape of the liver that was measured to produce the point cloud

representation is the geometry after settling has occurred due to gravity. However,

in the current state the internal loads that should arise due to the settling process

are not represented. For an accurate portrayal of the probing task, the internal loads
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need to be accounted for prior to applying the probing action in the finite element

simulation.

An approach we developed to obtain the proper internal stress distribution was

to first determine the shape of the liver in an environment free of gravitational forces.

Then using this new geometry as the starting point, a gravitational load was applied

to cause the tissue to settle back to its original position. This process was studied

in detail after the first pig lab experiment and the data presented to validate the

approach will be from that study. To determine the shape in a gravity free state, a

simulation was run whereby a gravitational load was applied in the opposite direction

of the normal loading. This had the effect of stretching out the tissue sample as

can be seen in Figure 2.36b. From the output of the simulation it was possible

to create a new point cloud representation of the surface through extracting the

location of the surface nodes. This data can then be imported to Rhinoceros R© and

the process for defining a new solid model is repeated. The new shape that is

derived represents the organ in a gravity free environment (Figure 2.36d). Next,

the new shape is used as the starting point for a new simulation where the gravity

is applied in the proper direction. This has the effect of settling the tissue as is

observed in the in vivo experiment. Using a similar process, the final shape which

includes the internal stress configurations can be compared to the original point

cloud data (Figure 2.36g). In doing so it is apparent that the shape derived from

the gravitational loading process is indeed the same as the originally measured and

generated solid model.

A similar process was used for the gravity compensation in the second pig
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Figure 2.36: a) Original shape derived from point cloud data. b) Plot of shape

and displacement magnitude after inverse gravitational loading. c) Point cloud

representation of new tissue surface. d) New solid model for shape without gravity

derived from point cloud data. e) Shape after applying gravity back to the model.

f) Plot of shape after gravity process compared to point cloud data of gravity free

shape. g) Plot of shape after gravity process compared to originally measured point

cloud data.
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lab probing tasks. However, after the detailed verification above, it was determined

that the approach indeed worked as planned so the comparisons of the point cloud

data in Rhinoceros R© was unnecessary. To simplify the process, after the inverse

gravitational load is applied the results from the analysis are used directly in the

new simulation for the settling of the tissue. This can be achieved through some of

the added functionality in ABAQUS, whereby the deformed mesh from the inverse

gravity simulation can be imported directly and used as the starting mesh for the

subsequent analysis. This approach bypassed the need to create a new solid model

which would need to be remeshed prior to use. Figure 2.37 shows the stress distri-

bution resultant in the tissue model following the gravitational loading process for

the geometry used in the second experiment.

Figure 2.37: Organ geometry for second experiment after gravitational loading pro-

cess containing the required internal stresses. c©2011 Springer.

For the second in vivo experiment, a separate method for verifying the accu-

racy of the starting shape after the gravitational loading process was derived. This

process involved comparing the final shape after gravity loading to the initial posi-

tion of the markers being tracked for the various probing tasks. The approach was a
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more stringent check of the geometry formulation process because it uses data from

the second camera position where the points were actually on the organ surface, in-

stead of the data from the stylus which could be slightly above or below the tissue.

In this method the location of the measured marker points were projected on the

surface along the vertical (Z-axis) and the distance between the measured location

and the projected locations was measured. The measured distance ranged from

0.01mm to 1.8mm over the locations of all surface markers used in the in vivo prob-

ing tests, with an average distance of 0.556mm. This process verified that the CMM

measuring approach with the MicronTracker imaging system in conjunction with

the gravitational compensation did in fact result in a highly accurate representation

of the liver geometry.

Finally, the material model needs to be defined prior to the simulation of

the probing task. For this experiment various models were utilized. The start-

ing point for each of the probing locations was the four-term Ogden model, U =
N
∑

i=1

µi

αi

(λαi

1 + λαi

2 + λαi

3 − 3), developed through the ex vivo experimentation as the

bulk properties for the liver tissue. By using this model it was possible to determine

the efficacy of utilizing a reality-based, ex vivo constitutive model for the simulation

of in vivo tasks. After the material properties are defined in ABAQUS, the gravita-

tional loading procedure is enacted. Then, after the tissue has settled to the proper

state, the probe is driven into the tissue to the depth of the experimental test. It is

important to repeat the gravitational loading procedure every time a different ma-

terial model is used because the degree of settling will vary and the residual stress

levels after the settling process will differ depending on the properties of the liver.
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Inaccuracies in the force response as well as the surface deformations will arise if

the gravitational process is not repeated with the proper model. Figure 2.38 depicts

the displacement plots of the three probing locations after the probe was driven

into the soft-tissue sample. Upon completion of the simulation, the information for

the reaction force on the probe, probe displacement and surface deformation at each

surface node was calculated. These values can be directly compared to the measured

experimental values to determine the fit of the proposed material model.

Figure 2.38: Displacement plots after probing simulation for the a) first probe loca-

tion b) second probe location and c) third probe location.

2.2.5 Comparison of Experimental and Simulated Data

After all the data from the experimental side had been analyzed and the

simulation of the probing task was completed, it was possible to evaluate the efficacy

81



of using a reality-based ex vivo material model for the simulation of an in vivo

probing task on pig liver. To do so, both the force profile for the reaction force due to

the probing task and the overall surface displacement were studied. The generation

of the force profile was acquired through functionality built into ABAQUS, therefore

this response was directly compared to the experimental force profile. A comparison

of the force values for each of the three probing locations can be seen in Figure 2.39.

Figure 2.39: Comparison of the experimentally measured force profile and the sim-

ulated force response for the a) first probe location b) second probe location and c)

third probe location. c©2011 Springer.

For the purposes of a reality-based simulation used for medical training pur-

poses, a high degree of conformity between the experimental and simulated force

response is desired due to the perceptive nature of human touch. In the case of

using an ex vivo material model as the basis for a realistic simulation of in vivo
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tissue response, the precision of the simulated force response is somewhat lacking.

As can be seen in Figure 2.39, the simulation of the force is on the correct order of

magnitude and the trends for each of the three probing locations are similar to the

desired response. However, the error at certain locations can be as large as 0.5N.

One additionally troubling aspect is the fact that the simulated and experimental

force responses diverge so quickly in two of the three tests. Therefore, if the prob-

ing task were continued to an increased depth, the accuracy of the simulated force

response would continuously degrade. Previous studies have shown that changes in

force as small as 0.1N can be perceived by the human hand [8]. Therefore, in the

context of a realistic training simulator, the ex vivo based models would not be able

to accurately simulate the force response of an in vivo probing task.

To perform a comparison of the surface displacement data, some additional

postprocessing was required for proper comparison to the experimental data. Using

the coordinate transformation technique, the starting location of each surface marker

of interest could be determined in the simulation reference frame. Using a code

written in Matlab, it was possible to search through the list of all surface nodes

utilized in the ABAQUS simulation for the node closest to each surface marker.

Through this process a correlation between each individual experimental marker and

the corresponding finite element node was generated. Then, the displacement of each

node of interest was extracted from the output data developed during the ABAQUS

simulation to construct the displacement information that was compared to the

experimentally determined values. A comparison of the simulated surface node

displacements corresponding to the experimentally measured marker movement is
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presented in Figure 2.40, Figure 2.41 and Figure 2.42 for the first, second and third

probing locations respectively.

Inspection of the surface displacement figures shows some variation between

the fit of the simulation to the various markers. Many plots show the FEM nodes

following the trends of the experimental markers well with accuracy in the submil-

limeter range, while others show more of a divergence from the proper experimental

values and a large magnitude or displacement error. To better understand the

comparison of the surface displacements, a quantitative root mean square (RMS)

error approach was implemented. The RMS error was calculated for each of the

marker-node pairs throughout the entirety of the probing distance. Thus:

RMSEm =

√

∑n

i=0 (xs,i − xm,i)
2

n
(2.2)

where RMSEm is the RMS error of marker, m, n represents the total number of

sample points in the data set, xs,i is the node location from the FEM simulation

at sample point i, and xm,i is the marker location at sample point i. From these

values the average RMS error, RMSEave, can be calculated to represent the fit of

the simulated surface deformation to the measured surface deformation:

RMSEave =

∑M

i=0 RMSEi

M
(2.3)

where M is the total number of markers analyzed.

Using the above approach with the markers selected for the analysis of the

first probing location yields RMS values ranging from 0.118mm to 0.539mm for the

individual marker-node pairs. An average of all individual marker-node pairs gives
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Figure 2.40: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the first probe location.
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Figure 2.41: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the second probe location.
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Figure 2.42: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the third probe location.
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the overall fit of the simulated surface deformation to the experimentally measured

surface deformation. In the case of the first probing location it is 0.307mm, with

an average marker displacement of 0.564mm. Through previous studies, we have

observed a significant amount of variation in soft-tissue response to tension, com-

pression, and pure shear loading as well as tissue probing and cutting [26][25][36][11].

Hence, though the displacement error in this case may seem high, it is within the

bounds of acceptable error for soft-tissue deformation. Also, for the purposes of

simulation, it will be very difficult for the user to perceive a difference in tissue

displacement of 0.3mm. The second and third probing locations respectively yield

average RMS values of 0.237mm and 0.238mm.

The RMS error approach presented in Equation (2.2) is also used to develop

a quantitative unit of measure for the accuracy of the force response throughout

the entirety of the probing task. This approach yields RMS values of 0.42N, 0.17N

and 0.08N for the three probing locations. In the context of a simulator, there is a

large discrepancy between the magnitude of the errors that occur in the force and

displacement domains. Due to the nature of the tissue, the surface displacement is

on the order of a few millimeters in the region of interest surrounding the probe,

however the error values that are witnessed are on the submillimeter range. Due to

the relatively large reaction forces on the probe, the magnitude of the errors that

arise can be as large as 0.4N. As previously mentioned a change in force of 0.1N

is perceptible to the user, therefore the errors that arise due to the force response

will be much more noticeable than the displacement response. Hence, a method has

been developed to improve the system performance by focusing on improving the
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representation of the in vivo force response.

2.2.6 In vivo Model Development

The compressive property modification and corresponding algorithm (Fig-

ure 2.43) were developed by Dr. Zhan Gao via the following:

Ta(λ) = T (λ)
Fe(λe)

Fs(λe)
(2.4)

where Fe(λe) stands for the force measured from the experiment and Fs(λe) is the

force obtained from the simulation and T (λ) is the nominal stress. All the data fit-

tings were generated by using the material evaluation capability in ABAQUS/CAE.

The nominal stress and strain of compression data were entered as test data, and

the model parameters were fitted for the selected model type. The material sta-

bility was checked to make sure the selected model was stable in the experimental

strain range. There are more than five types of hyperelastic models one can choose

from, namely, Arruda-Boyce, Mooney-Rivlin, polynomial, Ogden, reduced polymo-

nial, etc. Ogden and reduced polynomial models have demonstrated their ability to

fit the adjusted compression data and achieve stability at the same time.

This modification algorithm was applied to all three probing locations to im-

prove upon the simulation response of the reaction force induced by the probe-tissue

contact. Details for each step of the modification process for the first probing lo-

cation follow. For each iteration of the algorithm, a new stress-strain curve was

generated which would be used in ABAQUS to generate the new material model.

Upon completion of the process, the new model was run through the probing sim-
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Figure 2.43: Method for modification of constitutive model. c©2011 Springer.
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ulation process and the results were compared to the in vivo experimental results.

Figure 2.44 shows the displacement results for the iterations of the first testing loca-

tion. A total of four iterations of the modification algorithm were complete and are

shown in addition to the original ex vivo model from the previous section. As can

be seen, the process resulted in a drastic change of the deformation response in the

tissue where the surface displacement becomes more localized as the modification

process progresses.

Figure 2.44: Displacement response from FEM simulation of probing task for a)

original ex vivo model b) first iteration c) second iteration d) third iteration and e)

final iteration of material modification procedure.

The resultant reaction force profiles, developed in collaboration with Dr. Zhan

Gao, for the four steps in the material model modification process compared to the

experimentally measured force response are depicted in Figure 2.45. As can be

seen, even after the first iteration there is a drastic change in the resultant force
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profile. Despite the fact that it does not entirely match the experimental values, it

does follow the proper trend and does not diverge as quickly as the original ex vivo

based simulation. As the modification process proceeds, the accuracy and trends

exhibited in the force response tend to the experimental values. After a total of four

iterations, the RMS error calculated from Equation (2.2) is reduced to 0.03N which

is well within the sensible range of 0.1N.

Figure 2.45: Comparison of the experimentally measured force and the simulated

force values for the various iterations of the material model modification procedure.

c©2011 Springer.

An assessment of the surface fit to the experimental marker displacements was

also conducted using Equation (2.3) for each of the iterations in the modification

algorithm. After the first iteration, comparison of the simulation and experiment

(Figure 2.46) resulted in RMS errors ranging from 0.133mm to 0.541mm, with an

average surface fit of 0.360mm. After the second iteration, comparison of the simu-

lation and experiment (Figure 2.47) resulted in RMS errors ranging from 0.027mm
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Figure 2.46: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the first iteration of the material model mod-

ification procedure.
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Figure 2.47: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the second iteration of the material model

modification procedure.

94



Figure 2.48: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the third iteration of the material model mod-

ification procedure.

95



Figure 2.49: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the final iteration of the material model mod-

ification procedure.
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to 0.890mm, with an average surface fit of 0.415mm. After the third iteration,

comparison of the simulation and experiment (Figure 2.48) resulted in RMS errors

ranging from 0.043mm to 0.847mm, with an average surface fit of 0.438mm. Fi-

nally, the last iteration (Figure 2.49) resulted in RMS errors ranging from 0.046mm

to 0.702mm, with an average surface fit of 0.340mm. After the fitting was complete,

the accuracy of the surface dispacement due to probing only slightly decreased from

0.307mm to 0.340mm, which is comparable to the original ex vivo model. However,

as previously mentioned, the force response accuracy was greatly improved. The

new hyperelastic model, based on the in vivo experimental data, produces a much

more accurate representation of the probing simulation than obtained using the ex

vivo material model. The error values obtained for the first probing location are well

within the values that would be noticeable to a user and are therefore applicable for

use in an in vivo medical training simulator.

The material modification process was repeated for the next two probing lo-

cations to improve the performance to acceptable levels for in vivo simulation. Fig-

ure 2.50 shows the displacement results for the final iteration of the material model

modification process compared to the original ex vivo based model for the two addi-

tional probing locations. As can be seen in the plots, the trends were similar to the

previous test where the final material properties, after the modification procedure,

reduced the magnitude of the surface displacement due to tissue probing.

The reaction force profiles obtained during the modification process for the

next two probing locations are presented in Figure 2.51. Once again, the force

profiles tend to the proper shape and magnitude over the course of only a few
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Figure 2.50: Displacement response from FEM simulation of probing task for original

ex vivo model and final iteration of material modification procedure for a) second

probe location and b) third probe location.

iterations. For the second location, the final iteration produced a reaction force

response with a RMS error of 0.015N over the depth of the probing action. The

third probe location yielded a final RMS value of 0.025N. Both of these values are

once again far below the 0.1N threshold.

Using Equation (2.3) to determine the RMS error for the surface marker dis-

placement information for the final iteration of the material model modification

procedure at the second and third probe locations shows similar results to the first

probe location. The final iteration for the second probing location (Figure 2.52)

resulted in RMS errors ranging from 0.099mm to 0.810mm with an average surface

fit of 0.402mm. The final iteration for the third probing location (Figure 2.53) re-

sulted in RMS errors ranging from 0.066mm to 0.767mm with an average surface
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Figure 2.51: Comparison of the experimentally measured force and the simulated

force values for the various iterations of the material model modification procedure

for the a) second probe location b) third probe location.

fit of 0.242mm. These values reflect a slight increase over the original ex vivo based

material model, however the difference is not significant and the overall surface

displacement errors will be difficult for a user to notice.

A summary of the model accuracy data can be found in Table 2.2. The

accuracy of the simulated force response is greatly improved due to the constitutive

model modification process. The average errors decreased by an order of magnitude

from 0.223N to 0.023N. In addition, while this drastic improvement could be seen

on the force side, the induced inaccuracies in the surface displacement measurement

only increased slightly from 0.261mm to 0.328mm. This amount of error would be

difficult to detect in the context of a surgical simulator. Based on this information,

the material models generated during the model modification procedure (detailed

parameters given in Table 2.3) are well suited for use in surgical simulation of in
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vivo based procedures on porcine liver.

Table 2.2: Comparison of ex vivo experimental data to the simulation of various

constitutive models.

Ex Vivo Material Model Modified Material Model

Displacement RMS Force RMS Displacement RMS Force RMS

First Probe Location 0.307mm 0.420N 0.340mm 0.030N

Second Probe Location 0.237mm 0.170N 0.402mm 0.015N

Third Probe Location 0.238mm 0.080N 0.242mm 0.025N

Average 0.261mm 0.223N 0.328mm 0.023N

Table 2.3: Constitutive models for general loading of ex vivo and in vivo porcine

liver.

Model Type Model Parameters

Ex vivo Four Term Ogden
µ1 = 7505.68 N

m2
, α1 = −2.773, µ2 = 0.155 N

m2
, α2 = 19.668

µ3 = −13856.8 N

m2
, α3 = −3.644, µ4 = 6421.31 N

m2
, α4 = −4.515

In vivo 1 Two Term Ogden µ1 = 1818.67 N

m2
, α1 = 3.277, µ2 = 4.752 N

m2
, α2 = −10.014

In vivo 2 Three Term Ogden
µ1 = −22740.362 N

m2 , α1 = 1.911, µ2 = 12578.797 N

m2 , α2 = 3.181

µ3 = 10686.170 N

m2
, α3 = 0.749

In vivo 3 Reduced Polynomial C10 = 781.898 N

m2
, C20 = −747.631 N

m2
, C30 = 426.135 N

m2
and C40 = 122.701 N

m2

Using the models developed from the in vivo experiments, simulations of tool-

tissue interactions capable of accurately displaying both the tissue deformation and

resultant reaction force were possible. In this study, three distinct models were de-
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Figure 2.52: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the final iteration of the material model mod-

ification procedure at the second probing location.
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Figure 2.53: Comparison of the experimentally measured marker displacement and

the simulated nodal displacement for the final iteration of the material model mod-

ification procedure at the third probing location.
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veloped which all result in a slightly different response to tissue loading. Many of

the previous soft-tissue characterization studies generate one model based on the av-

erage tissue response. However, biological tissue is inherently non-uniform in nature

resulting in large variations in the tissue response between samples and even within

the same organ. Therefore, in this work each test was independently analyzed and

distinct models were developed for each probing location. By developing multiple

models, all based on the measured tissue response, the variability witnessed in the

tissue can be replicated in the simulator by randomly selecting the model at the

beginning of the simulation, adding to the overall accuracy of the surgical training.

The models developed in this chapter are well defined to simulate the general

deformation caused by the interaction between a surgical tool and the soft tissue.

However, additional functionality needs to be added to the simulation to replicate

more complex surgical tasks resulting in a physical change to the organ. Surgical

techniques such as cutting, dissection, suturing, ablating or cauterizing tissue require

additional models to govern the changes to the tissue morphology. The next chapter

presents work on developing the additional techniques required to simulate scalpel

cutting of soft tissue.
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Chapter 3

Cutting Of Porcine Liver

One of the fundamental techniques used in surgical procedures is the act of

cutting or dissecting soft-tissue with a scalpel. Providing the ability to virtually

practice realistic scalpel cutting procedures will aid in preparing medical students

for many common surgical procedures. However to benefit from the surgical training,

the simulators must be as realistic as possible, both in the visual and haptic sense.

The state of the art consists of simplistic, mesh based models for cutting procedures

where the tissue separation occurs by simply removing or spiting elements. These

approaches are not physics-based and do not provide the capability to represent the

realistic reaction forces felt by the surgeon during the cutting process. To improve

upon the current trends, a fracture mechanics approach was implemented to model

and simulate soft-tissue cutting which takes into account the physical properties of

the tissue and results in a proper graphical and haptic representation of the scalpel

cutting process.

3.1 Modeling of Cutting Process

Selecting the appropriate means to model scalpel-tissue interaction was an

interesting task to undertake as there were many possibilities to chose from, all with

their own benefits and limitations. The general fracture process stems from many
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different contributions all working together, from material based aspects such as the

crystal structure, grain patterns, and intrinsic material imperfections, to external

stimuli such as temperature effects and loading conditions. Being as there are many

different types of materials exerting various behaviors under different conditions,

many different fracture-based models have been generated over the years. The

majority of these standard models, however, assume the use of common material; a

category which does not include biological tissues. Therefore, many of the models

are limited in their application to the scalpel-tissue interaction due to the inability

to measure the required parameters from standard testing procedures like a notched

bend test or a compact tension test [22]. Cohesive zone models, on the other hand,

provide a proven method for simplifying the fracture process in a way that can be

applied to soft-tissue.

3.1.1 Cohesive Zone Approach

The cohesive zone approach simplifies the fracture process into a form that

allows for modeling of a crack initiation as well as crack propagation into the ma-

terial [75]. It is a physics-based approach that utilizes three material specific pa-

rameters: the cohesive energy, cohesive strength and cohesive separation distance.

From these parameters a traction-separation curve is generated which represents

the tractions across the cohesive region from the initial loading through the mate-

rial degradation to ultimate failure. A schematic of a standard traction-separation

curve is displayed in Figure 3.1.
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Figure 3.1: Cohesive traction-separation curves for i) bilinear ii) trapezoidal and iii)

exponential models. c©2011 IEEE.

As can be seen in the depiction, various types of models have been used to

describe the cohesive response by changing the shape of the traction-separation

curves. The three most commonly used are the bilinear, trapezoidal and exponential

models [75][80][43]. Despite the different shapes, the three models displayed all have

similar features which correspond to the three specific parameters required to define

the cohesive zone. The cohesive strength, τmax, corresponds to the peak of the

traction-separation curve. The cohesive separation distance, δsep, defines the total

length of the curve (physically it is the width of the crack front at any given location)

and the cohesive energy correlates to the total area under the curve. Differing views

have arisen in the fracture mechanics community pertaining to the importance of

the shape of the traction-separation curves with some saying the focus should be
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placed on only the magnitude of the three characteristic parameters [12] and others

stressing the importance of the curve shape [75]. The degree of the effects appear to

be mainly material dependent and need to be investigated on an individual basis.

Physically speaking, the cohesive zone approach expresses all of the contribu-

tions that effect the fracture process in the simplified traction-separation character-

istics. When a material is loaded, a cohesive zone develops in front of the crack

tip. This zone starts at point A, in Figure 3.1, which correlates to the location in

the material where loading due to the crack begins to become apparent. This point

does not correspond with the location of the physical crack in the specimen but is

located ahead of that point where the effect of loading begins, as can be seen in

Figure 3.2. In the region from the physical crack tip, point C, to the mathematical

crack tip, point A, the traction-separation curve defines the loading of the material.

Point B is located between the mathematical and physical crack tips and represents

the location of maximum stress within the cohesive region. From point A to point

B, the sample is being loaded, at point B, the sample reaches it critical stress point

and starts to fail. In the region from point B to point C the sample degrades until

it reaches the point of complete physical separation at point C [75].

By using this approach it is possible to define the initiation and propagation

of the crack front by studying the loading properties in the region directly in front of

the crack tip. Once the material is loaded to a certain extent and the damage region

completes, the crack physically opens in the material. Implementation through the

use of the finite element method is direct as the parameters required for cohesive

zone calculations (stress, strain and energy) are directly available in the existing
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Figure 3.2: Cohesive zone region. c©2011 IEEE.

analysis [24]. By comparing the loading conditions in the finite element analysis to

those of the defined cohesive zone, it is possible to determine the degree of damage

within the material. At the critical level of damage, as defined by the cohesive mode,

the material is known to be degraded to the extent that separation exists. This is

then reflected in the simulation by physically separating the mesh itself, resulting

in the formation or propagation of the crack.

One major limitation of the approach is this assumption that the crack direc-

tion must be known, as the cohesive zone is defined in along this line [21]. This issue

is not detrimental to the scalpel loading problem because the direction of the crack

is assumed to be in the direction of the applied load. This assumption will hold in

the majority of cutting procedures on normal tissue barring any complications due

to large defects in the tissue.

The cohesive zone approach was selected as the preferred model for the scalpel

cutting process due to its ability to model the physical aspects of the fracture process

in a simple yet realistic manner. It has been used effectively in the simulation of crack
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growth in many different types of materials (metals, ceramic, polymers, etc.) and it

naturally lends itself to implementation directly in a finite element formulation. By

using the cohesive zone approach, an accurate representation of the tissue separation

and resultant cutting force profile could be simulated. After selecting the cohesive

zone method as the proper model to utilize, experiments were conducted on in vivo

porcine liver to determine the cohesive parameters required for implementation of

the model in a FEA simulation [47].

3.1.2 In Vivo Experiments

The experimental procedure for the collection of cutting data required for

derivation of the cohesive zone parameters was similar to the previously discussed in

vivo probing experiments. The test fixture developed for the in vivo experiments was

used for the cutting analysis by rotating the linear rails to the horizontal position,

as can be seen in Figure 3.3. An adapter was used to mount the force sensor and

the scalpel blade in the vertical orientation conducive to the cutting motion. The

cutting experiment was performed on the same 20.5kg pig as the second in vivo

probing test. Following the completion of the probing experiments, a new lobe of

liver, that had not been previously used for testing, was placed on the support plate

and used for the cutting task.

Previous cutting experiments have shown that many variables affect the cut-

ting process including the angle of the scalpel relative to the tissue, the depth of

the scalpel, the speed of the cutting process as well as the sharpness of the scalpel
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Figure 3.3: Experimental setup for the in vivo cutting test.

blade [11]. In order to reduce the effects caused by some of these conditions the

test was conducted with the scalpel blade fixed in the vertical position at a con-

stant speed of 1.25mm/s. A new scalpel blade was used during the test to avoid

any differences that might arise from a dull cutting edge. Finally, to account for

the depth of the blade, the tissue support system was oriented such that the tissue

profile was as flat as possible. There were some changes in the scalpel depth that

were unavoidable during the cutting tests, however, these changes in depth were

accounted for during the analysis process.

After the system was configured to minimize the scalpel variables, the Mi-

cronTracker camera system was set up to record the cutting process. To obtain an

accurate representation of the scalpel depth throughout the experiment, the shape of

the liver was required. The procedure described in Section 2.2.2 was used once again
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to record the point cloud representation of the organ geometry required to construct

the three dimensional model. As before, the camera needed to be mounted outside

the frame to aquire the surface information. Upon completion it was moved to the

proper location to record the cutting task. Reference marker locations were mea-

sured to allow the transformation of data between the two reference frames. Finally,

to record the tissue displacement information, markers were placed on the surface

of the liver. The markers used for the cutting task were much smaller in an attempt

to measure the local deformation around the scalpel blade to an extent that could

be used to determine the cohesive separation distance. The markers were placed on

the surface in two parallel lines encapsulating the scalpel blade (Figure 3.4). The

tracking procedure developed for the in vivo probing tests was used without mod-

ification to determine the individual marker displacement for the cutting task. A

marker was placed on the force sensor was used to track the scalpel displacement

throughout the test.

Figure 3.4: Marker placement for cutting test.

The goal of the cutting task was to extract the cohesive parameters required to
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properly characterize the cohesive zone approach. Of the three parameters discussed,

only two are required to fully characterize the cohesive zone. This allowed for some

error in the experimental procedure, however the goal was to measure all three

parameters directly. The cohesive separation distance was designed to be derived

from the surface marker displacement. To obtain the cohesive stress and cohesive

energy values, the force profile was recorded throughout the cutting task. The

experimental force profile was recorded via the six axis JR3 force sensor. The total

magnitude of the force imparted to the scalpel blade for one cutting location is

depicted in Figure 3.5. The force profile was then used to determine the cohesive

strength and the cohesive energy.

Figure 3.5: Magnitude of total cutting force throughout the experiment.

112



3.1.3 Generation of Cutting Model Parameters

After completion of the in vivo cutting tests, analysis of the collected data was

used to derive the parameters required for the definition of the cohesive zone model.

As was mentioned, only two of the three values defining the traction-separation curve

are required for the complete statement of the model. Based on the data collected,

it was apparent that the most accurate parameters to determine were the cohesive

strength and the cohesive energy. The cohesive separation distance is defined as

the critical width of the crack at the instant of complete failure. Despite the effort

to measure this parameter with the smaller markers, the tissue exhibited a large

amount of deformation due to the scalpel loading procedure. This deformation was

a combination of the crack width, elastic deformation due to loading and motion due

to settling processes influenced by the soft nature of the material under gravitational

loading after the tissue fracture. By the nature of the scale of the tissue deformation,

the crack width at the time of fracture was the smallest contributor, and the overall

deformation was dominated by the other modes. These additional deformations

made the measurement of the cohesive separation distance infeasible with the current

mode of data collection. The cohesive strength and cohesive energy, however, could

be derived from the measured force profile and tissue and scalpel geometries.

The approach utilized to determine the cohesive strength for the scalpel-tissue

interaction was derived to solve for the local loading along the scalpel profile. The

cohesive strength is a representation of the maximum normal and tangential trac-

tions that occur along the scalpel blade during the cutting process. Due to the
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non-linear nature of the scalpel geometry, the loading is different along the length

of the blade, resulting in a variation in the magnitude of the tractions. Ideally,

individual force sensors would be placed along the scalpel blade profile to provide

a continuous representation of the force acting on the cutting region as it occurs

during the actual cutting process. This would provide the ability to directly mea-

sure the maximum tractions along the blade. However, this approach is not feasible

in the experimental realm so a method was developed to segment the measured

cutting force profile into individual tractions acting along the blade. To do so, an

assumption was made whereby the measured force is said to act evenly along the

length of the scalpel blade in contact with the tissue. To mathematically distribute

the measured forces properly, a few key factors need to be determined, namely, the

depth of the blade at each fracture location, and a detailed representation of the

scalpel geometry.

When speaking of the fracture process, it should be noted that simulation is

desired to be as accurate as possible. During the scalpel cutting process, a distinct

cutting pattern is observed where the force profile resembles a sawtooth pattern as

can be seen in Figure 3.5. This pattern represents a series of local fracture processes

whereby the tissue is loaded to a critical value at which point the actual fracture

takes place. After the fracture propagation, which is nearly instantaneous, the

surrounding tissue that has not been ruptured begins to load again until another

critical point is reached. In this manner, the scalpel cutting procedure can be

broken down into a series of individual local fracture processes. Combined, they

form the sawtooth type force profile presented here and in other literature. The
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goal of this study is to model the fracture process at the resolution of the individual

loading segments to reproduce an accurate representation of the cutting force and

resultant tissue separation. To do so, the parameters of the cohesive zone model

are derived from each of the individual peaks observed in the fracture process.

Therefore, one complete scalpel test measured during the in vivo experiment actually

yields a significant number of fractures, providing a good data set to observe the

variability in the cutting process. Throughout this study, one complete scalpel cut

will be analyzed resulting in data for eighteen fracture segments.

The first step in the determination of the cohesive strength is to split the

entire force profile into individual loading segments. The six axis force sensor used

during the experiment recorded the force data in three directions: the direction of

the cutting motion (defined as the x axis), along the vertical direction of the blade

(defined as the z axis), and the direction perpendicular to the blade profile (defined

as the y axis). In this case, due to the scalpel geometry, the dominant recorded

forces are in the x and z directions. The measured forces in the y direction were

more than an order of magnitude lower, as is expected with the symmetric geometry.

With the goal being the derivation of the normal and tangential tractions, the force

profiles are analyzed separately at the beginning of the analysis and will be used

to solve for the required force values in the normal and tangential directions in the

future. Therefore, both the force in the x direction and the force in the z direction

are segmented into individual cutting segments and can be seen in Figure 3.6.

To perform the segmentation of the cutting forces, the profiles were first passed

through a low-pass Butterworth filter to reduce the noise. The recorded raw data
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Figure 3.6: Filtering of experimental force data in the a) x and b) z directions.

Polynomial fits to represent the eighteen individual cut segments for the c) x and

d) z directions.

and resultant filtered force profiles can be seen in Figure 3.6a and b for the force in

the x direction and z direction respectively. From this data, the individual cutting

segments could be determined. Throughout the entirety of this cutting process,

the force in the cutting, or x direction, is the dominate force. Therefore, it was

used to determine the extents of the individual fracture segments. By studying

the filtered force profile, eighteen segment of significant loading were determined

as the main fracture segments. These segments were fit with a polynomial curve

as a continuous mathematical representation made analysis later in the process

more straightforward. The polynomial representations of the cutting segments in

the x direction can be seen superimposed on the original measured force profile in
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Figure 3.6c. From these cutting segments it was possible to determine the force

acting in the cutting direction on the blade. Using the start and end points of the

fracture process for each of the eighteen cut segments, polynomial fits to represent

the forces in the vertical or z direction were derived for each segment, as can be seen

in Figure 3.6d. As the end goal is to determine the critical strength, or maximum

normal and tangential tractions, the critical force values were demerited for each

cut segment in both the x and z directions for each of the cutting segments at the

time of fracture (Figure 3.7).

Figure 3.7: Critical force values for each of the eighteen cut segments in the a) x

and b) z directions.

Next, to generate the tractions along the length of the blade, a representation

of the profile is required. Using an image based approach to measure the shape

of the scalpel profile, a series of discrete data points along the scalpel edge were

determined. These points were fit with a curve to accurately represent the scalpel

shape. The shape of the scalpel blade used during the in vivo cutting tests is shown

in Figure 3.8
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Figure 3.8: Measured scalpel profile with corresponding polynomial fit.

Finally, the depth of the blade at each of the cutting segments is required

to define the contact region upon which the measured forces were distributed. To

determine the scalpel depth, information was required about the scalpel location

and the tissue geometry. Using the methodology presented in Section 2.2.2, a three

dimensional representation of the organ surface was generated. In addition, the

location of the markers placed on the surface of the liver were also determined.

Using this information, it was possible to estimate the height of the tissue sample

along the cutting path. To simplify the analysis, all data was transformed into a

reference system with the bottom of the tissue geometry representing the x-y plane

and the z direction pointing upward. This provided the ability to determine the

tissue height along the cutting path directly from the z coordinates.

118



The second piece of information required to determine the depth was derived

from the scalpel location. A transformation related the location of the tip of the

scalpel blade to the reference marker fixed to the force sensor during the experiment.

The tip location was converted into the new reference system; therefore, the value of

the z coordinate at any time would give the distance from the x-y plane, or bottom

of tissue sample, to the tip of the blade. The blade depth for each cutting location

was determined by subtracting the distance from the bottom of the tissue sample to

the tip of the blade from the height of the tissue sample at the location of maximum

loading for each of the eighteen cut segments. This depth value corresponds to the

vertical depth of the blade, or the length in the z direction and will hence forth be

referred to as Lz. The length of the blade in the x direction, or the width of section

in contact with the tissue was also required, defined as Lx

Figure 3.9: Sectioning of the scalpel blade for the first cut segment.

After the depth of the blade is determined for each of the cut segments, the

contact length is segmented into subsections such that the force can be distributed
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along the blade. This method provides the means to define the loading of the

blade in a more realistic fashion. An example of the output from the sectioning

procedure is depicted in Figure 3.9, where the first cut segment depth information

is used. This approach segments the scalpel tissue contact length into six equal

0.8mm sections with the residual length representing the final section. During the

process, the direction of the normal to the center of each section is also recorded.

Finally, the length of each section is projected to the depth, or z, direction and the

width, or x, direction. As mentioned previously, an assumption was made at this

point to evenly distribute the force along the contact length. Using the projection

of each section length, the forces in the cutting and vertical direction are distributed

along the sections. This method provides the formulation to account for the scalpel

shape, resulting in more of the load in the cutting direction being placed on section

6 than section 1 because section 6 has a larger projected length in the z direction.

Therefore, the components of the force acting on each of the sections becomes:

Fc = (ProjectedSectionDepth) ×
Fccrit

Lz

(3.1)

and

Fv = (ProjectedSectionWidth) ×
Fvcrit

Lx

(3.2)

Using this information, it is possible to determine the normal force and tan-

gential force acting on each of the sections of the scalpel blade. Figure 3.10 displays

a free body diagram of the force distribution of an individual section. Using this
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Figure 3.10: Free body diagram of force distribution on scalpel blade. c©2011 IEEE.

information for the direction of the section normal, θn, Fc, and Fv the magnitude of

the critical normal and tangential forces can be defined as:

Fn = Fccos (90 − θn) + Fvcos (θn) (3.3)

and

Ft = Fccos (θn) − Fvcos (90 − θn) (3.4)

This approach allows for the magnitude of the critical forces to be determined

for each section along the blade. Figures 3.11, 3.12 and 3.13 show the critical values

depicted numerically and graphically for each of the cutting sections of the first

cut segment. In this study, three different analyses were conducted to determine

the effect of the length of the cut section. Therefore, the data presented represents

sectioning of 0.2mm, 0.8mm and 2.0mm.
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Figure 3.11: Critical force values in the a) normal and b) tangential directions of each cut section using a 0.2mm section length.

c) Graphical representation of the normal and tangential force values.
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Figure 3.12: Critical force values in the a) normal and b) tangential directions of each cut section using a 0.8mm section length.

c) Graphical representation of the normal and tangential force values.

123



Figure 3.13: Critical force values in the a) normal and b) tangential directions of each cut section using a 2.0mm section length.

c) Graphical representation of the normal and tangential force values.
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Next, the critical force values in the normal and tangential direction need to

be converted to the critical normal and tangential tractions, as required by the co-

hesive zone modeling process. To do so, information about the cross-sectional area

of the scalpel was required. Using an optical microscope setup capable of measur-

ing distances from the acquired images, the cross-section of the scalpel blade was

measured for a total of nine different scalpel blades. An image of the cross-section

can be seen in Figure 3.14. The dimensions measured were the angle, the blade

thickness and the length of each edge. Only the blade thickness was required for

the stress analysis, however the other dimensions will be used in the future sections.

Table 3.1 displays the values for each of the measurements. The average thickness

of the scalpel blade was 0.365mm, so this value was used to calculate the cross

sectional area required to transform the critical force values to the corresponding

tractions.

Figure 3.14: Cross section of the scalpel blade.
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Table 3.1: Measurement of scalpel cross section data.

Scalpel Number Angle (Degrees) Blade Width (mm) Left Edge Length (mm) Right Edge Length (mm)

1 29.71 0.369 0.794 0.643

2 29.23 0.363 0.705 0.737

3 28.03 0.359 0.742 0.748

4 27.60 0.358 0.843 0.666

5 29.55 0.376 0.642 0.850

6 26.88 0.357 0.561 0.987

7 28.92 0.366 0.521 0.952

8 27.04 0.364 0.737 0.813

9 29.04 0.370 0.698 0.810

Average 28.44 0.365 0.693 0.800

To determine the tractions acting on each segment the following equations are

used:

τn =
Fn

SectionLength × BladeThickness
(3.5)

and

τt =
Ft

SectionLength × BladeThickness
(3.6)

Using the force values calculated for each of the sections, the resultant normal

and tangential tractions were determined for each segment of the eighteen cut seg-

ments. Figures 3.15 through 3.17 depict the magnitude of the traction distribution

across the contact area of the scalpel blade for the first cut segment. Similar trends
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were apparent in the other eighteen cut segments.

For the cohesive parameters, the largest normal and tangential traction values

constitute the cohesive strength parameter. For each of the eighteen individual cut

segments, the maximum tractions were determined for the sections of 0.2mm, 0.8mm

and 2.0mm. The values extracted using the three different sections were similar

in magnitude, however the values seem to begin to converge as the section size

decreases. By splitting the cutting data into the eighteen segments and analyzing

each of them individually a range for the critical strength value can be determined

which is based on a realistic, in vivo cutting experiment. The final cohesive strength

values for each of the eighteen cut segments for section lengths of 0.2mm, 0.8mm

and 2.0mm are presented in Figures 3.18 through 3.20.
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Figure 3.15: Critical traction values in the a) normal and b) tangential directions of each cut section using a 0.2mm section

length. c) Graphical representation of the normal and tangential traction values.
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Figure 3.16: Critical traction values in the a) normal and b) tangential directions of each cut section using a 0.8mm section

length. c) Graphical representation of the normal and tangential traction values.
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Figure 3.17: Critical traction values in the a) normal and b) tangential directions of each cut section using a 2.0mm section

length. c) Graphical representation of the normal and tangential traction values.
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Figure 3.18: Cohesive strength parameter for the a) normal and b) tangential direction for each of the eighteen cut segments

using 0.2mm sectioning. c) Table of exact values.
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Figure 3.19: Cohesive strength parameter for the a) normal and b) tangential direction for each of the eighteen cut segments

using 0.8mm sectioning. c) Table of exact values.
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Figure 3.20: Cohesive strength parameter for the a) normal and b) tangential direction for each of the eighteen cut segments

using 2.0mm sectioning. c) Table of exact values.
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Next, the parameter for the cohesive energy was determined from the cutting

force data as well. The cohesive energy is the energy required to complete the

fracture process; thus it encompasses a combination of the forces measured in the

cutting and vertical directions. Using the fits defined in Figure 3.6, the energy

parameters were derived for each cutting segment by integrating each of the curves

over the length of the individual fracture segment. This integration was performed

for both the cutting and vertical force profiles. Figures 3.21a and b show the energy

values for each of the segments for the cutting and vertical directions respectively.

The total cohesive energy for each cutting segment is a combination of the individual

energy parameters (Figure 3.21c). The numerical values for the energy parameters

are given in Figure 3.21d.

Using this information in combination with the cohesive strength values re-

sults in a fully defined cohesive model for the scalpel-tissue cutting procedure. The

analysis presented for the first in vivo scalpel cutting experiment was able to de-

rive cohesive parameters required to generate eighteen individual traction-separation

curves. Each of these curves will vary slightly as the biological tissue in and of itself

is slightly non-uniform in nature. By generating these distinct models, variation in

the resultant force profile can be implemented in the simulation by randomly select-

ing between the different traction-separation curves. This will enhance the realism

of the surgical simulator as the fluctuations in the cutting response will mimic the

trends seen in experimental procedures.
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Figure 3.21: Energy values for each cut segment from a) cutting force b) vertical

force c) total cohesive energy. d) Exact values for the various energy calculations.
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3.2 Simulation of Cutting

After the determination of the cohesive zone parameters, verification of the

force-displacement response arising from the implementation of the cohesive zone

model was required. To validate the accuracy of the cohesive zone approach, a de-

tailed study was conducted in ABAQUS [48]. Through this study, the functionality

of the cohesive zone approach, as applied in finite element based simulations, is

presented.

3.2.1 Cohesive Zone Model Verification

The simulation of the cutting process in ABAQUS consists of three distinct

subsections that are combined to form the fracture process. The first issue centers

around the definition of the material characteristics for the bulk tissue properties.

As the cohesive model deals directly with the stress and strain characteristics of

the material in front of the crack tip, a general material model must be specified

to govern the overall response of the tissue. Second, the loading of the tissue must

be conducted in the same manner as the scalpel cutting process. To assure the

validity of these boundary conditions, the most accurate representation is obtained

through the development of a contact analysis between realistic tissue samples and

scalpel geometries. This problem is made more difficult by the small, sharp nature

of the scalpel shape. Finally, the cohesive zone itself must be included in the finite

element simulation. The cohesive zone has mainly been utilized for simulation of

material delamination in ABAQUS, hence, the applicability to the direct loading of

136



the cohesive zone elements remains uncertain.

The first major component of the simulation process is the definition of the

material properties for the bulk tissue response. For the purposes of this simulation,

to maintain as much accuracy as possible, the reduced polynomial model, Ψ =

∑N

i=1 Ci0

(

Ī1 − 3
)i

+
∑N

i=1
1

Di
(Jel − 1)2i, derived from the in vivo experiments in

Section 2.2.6 was used to define the material properties.

The reduced polynomial model is by definition non-linear and hyperelastic,

which greatly effects the stability of the simulation. The nature of biological tissue,

and the reduced polynomial utilized in this simulation, produces a hardening type of

behavior under load, as can be seen in the model derivation sections previously pre-

sented. This does not present a problem in the small strain region. However, when

large strains are required, the implementation utilizing finite element approaches be-

comes more difficult. Under large strain conditions, the material begins to increase

in stiffness quickly enough that the material becomes infinitely stiff resulting in the

inability of an element to deform past its current state. This problem is caused

by a combination of the material model, the type and size of elements used, and

the method of simulation. Unfortunately, when attempting to simulate the scalpel

cutting process the large strain region can not be avoided. Implications pertaining

to these issues will be discussed shortly.

The second requirement for the simulation of the scalpel-tissue interaction is

the proper definition of contact for the analysis. In this case, contact properties

need to be established between the scalpel blade and the tissue, as well as the

tissue to itself. As the blade begins to pass through the tissue, it will part the liver
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surface into two regions. After the scalpel has traveled an extended distance, the

two surfaces will have the ability to contact one another in the wake of the scalpel.

Therefore, a contact definition needs to include the scalpel-tissue contact as well as

the tissue self intersection region.

Contact can be defined through multiple approaches in ABAQUS. The previ-

ous studies conducted under this research effort utilized a contact pair definition,

which provided the context for the probing simulation. A similar approach was

applied to the cutting simulation whereby a contact pair was defined between the

tissue and the cutting surface of the scalpel blade. However, additional contact

definitions were required to prevent the self intersection of the tissue after separa-

tion occurs. As one of the requirements for implementation of the cohesive zone

approach in ABAQUS is prior knowledge of the crack path, the two surfaces that

make up the new faces of the tissue following separation are known before the start

of the simulation. Therefore, a second contact pair definition was defined between

these two surfaces to prevent self intersection in the wake of the scalpel blade.

To obtain the proper contact between the scalpel and the tissue an appro-

priate geometry was required for the scalpel blade. During the analysis of the in

vivo experimental cutting data, both the profile and the cross section of the scalpel

blade were precisely measured. Based on these measurements a three-dimensional

representation of the blade was created. To prevent problems in the contact algo-

rithm due to sharp edges, the leading edge of the scalpel blade was filleted with a

small radius. Upon completion of the shape, the geometry was imported into the

ABAQUS simulation as a discrete rigid object due to the relative stiffness compared
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to the soft-tissue.

In addition to the scalpel geometry, a realistic representation of the lobe of

liver used during the in vivo cutting experiments was desired for the validation study

to most accurately replicate the cutting process for comparison to the experimental

results. The method of obtaining the shape of the lobe of liver for use in a finite

element simulation is the same as presented in Section 2.2.2. In brief, during the in

vivo experiments, the MicronTracker camera system was used to generate a point

cloud representation of the liver surface. A picture taken during the experiment

and the corresponding point cloud data are show in Figure 3.22a and Figure 3.22b,

respectively. Next a solid model representing the liver was developed (Figure 3.22c).

In this case, the solid model was split into two halves representing the two sections

formed by the scalpel cutting process. This method was applied to aid in the meshing

process as well as the definition of the cohesive zone parameters in ABAQUS.

After the geometry was developed, it was imported into HyperMesh, a powerful

independent meshing software application. For simulation purposes, a dense mesh

is desired in the region directly in front of the scalpel blade to fully define the stress

Figure 3.22: a) Image of liver from in vivo cutting experiments, b) point cloud data

fit with liver surface and c) solid model used in meshing process.

139



concentrations imparted to the tissue during the scalpel loading process. However,

the use of such small elements will increase the computation time required for the

simulation and bring about convergence issues caused by excessive distortion related

to the use of the hyperelastic constitutive model. Thus, a trade off in mesh density

is required. In the case of this validation study, the solid model was split into four

different sections; two corresponding to the bulk of the liver not directly loaded by

the scalpel blade, and two comprising the direct loading region in the cutting path.

Figure 3.23a shows the meshed liver geometry in its entirety while Figure 3.23b

depicts the line of dense elements constituting the cutting path. The elements used

in the larger bulk tissue sections were defined as C3D4 tetrahedral elements and the

elements along the cutting path were C3D8 hexahedral elements. The size of the

two different elements were determined through experimentation to maximize the

stable deformation in front of the scalpel blade during the loading process.

Upon completion of the mesh generation, all files were imported into ABAQUS

to begin the scalpel cutting simulation. Preliminary studies were conducted using

a standard implicit approach, however the final data presented here resulted from

a dynamic, explicit simulation. The switch from implicit to explicit methods was

driven by two conditions. First, the implicit studies involving the scalpel-tissue con-

tact resulted in stability issues regardless of mesh density. These instabilities were

still present in the explicit approach, but appeared later when larger deformation

and stress values were present. Second, the approach envisioned for the future real

time simulators was intended to be used with the Total Lagrangian Explicit Dy-

namics methodology to decrease the computation time. Therefore, it was logical to
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Figure 3.23: a) Full mesh for the cohesive zone validation study, b) Close up of

cutting path, c) Cross section of dense elements in the cutting path.

switch to the explicit modeling scheme in ABAQUS to increase the stability as well

as evaluate the ability to simulate the cohesive zone fracture approach using the

methods desired for future real-time simulation.

The final mesh layout used in the validation study can be seen in Figure 3.24.

It was modified slightly in ABAQUS to remove excess material in the liver prior to

the location in which the cut begins. Also, the elements at the start of the cutting

path were split into two C3D6 wedge element to facilitate the entry of the scalpel

blade into the desired cutting path. Simulations were conducted without the wedge

elements, but difficulties arose due to element buckling directly in front of the scalpel

loading. This caused instabilities in the simulation before the tissue could reach a

point where it would settle around the blade. The inclusion of the wedge elements
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facilitated the parting of the mesh around the blade and eliminated the buckling

instabilities. The final mesh consisted of 39,975 elements (35,344 hexaheral, 4,567

tetrahedral and 64 wedge).

Figure 3.24: a) Mesh for the cohesive zone validation study with contact regions

displayed in yellow, b) Close-up of mesh directly in cutting path.

With the constitutive model, mesh and contact conditions fully defined, the

final major component to the simulation is the addition of the cohesive zone. As

mentioned earlier, all previous parameters have a direct influence on the stability of

the overall simulation. With the use of the hyperelastic reduced polynomial model,

stability problems arise due to element distortion. Many different mesh designs of

various element types and densities were used in order to facilitate the maximum

stress and deformation within the tissue prior to the occurrence of instabilities in

the simulation. The aim was to use elements small enough to reach the stress levels

observed during the in vivo scalpel cutting experiments. However, to reach these

high stress levels very small elements were required, which resulted in instability

issues prior to achieving the proper stress and deformation levels.
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During the verification process, the most acceptable configuration was chosen

to maximize both the stress and deformation criteria. However, the element size in

the region in front of the scalpel blade was larger than desired. This result yielded

tissue deformations of the correct magnitude, but the internal stress conditions were

lower than experimentally observed due to the larger characteristic size of the mesh

in the region in front of the scalpel blade. To overcome this dilemma, the magnitude

of the cohesive parameters were in turn scaled down proportionately to the level

of the maximum stress within the cutting region prior to simulation instabilities.

While this will result in inaccurate internal stress distributions within the tissue, it

serves to relay accurate force and displacement characteristics through the cutting

process. For the purposes of a surgical simulator, the force and displacement are

the important signals to send to the end user, the internal stress will not be evident

and thus need not be weighed as heavily. A study depicting the validity of scaling

the cohesive zone parameters will be presented in Section 3.2.2.

The cohesive zone implementation in ABAQUS can be completed in two ways,

an element-based or a surface-based approach. As four distinct mesh sections were

already defined, including two making up the dense mesh region in front of the

scalpel blade, the surface-based approach was selected due to its direct application

to the existing model. A surface was defined along the cutting path on each of

the mesh sections constituting the cutting zone (the yellow and blue sections of

Figure 3.23b). Initially, the two surfaces coincide with one another, however, as

loading begins the attachment of the surfaces to one another are governed by the

cohesive parameters. Even though the surface definition is utilized to define the
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cohesive region, the implementation of the methodology in ABAQUS is applied to

the individual elements within the surfaces. Therefore, when the parameters of the

cohesive region are exceeded, the effects are applied on an element by element basis

to simulate individual local fractures, as naturally occur within soft-tissue cutting.

The complete setup for the ABAQUS simulation can be described with the

following parameters:

• Parts Definition

– Left bulk tissue - 1,970 tetrahedral elements (C3D4)

– Right bulk tissue - 2,597 tetrahedral elements (C3D4)

– Left cutting path - 17,672 hexahedral (C3D8) and 32 wedge (C3D6) ele-

ments

– Right cutting path - 17,672 hexahedral (C3D8) and 32 wedge (C3D6)

elements

• Material Definition

– Tissue - Reduced polynomial
(

Ψ =
∑N

i=1 Ci0

(

Ī1 − 3
)i

+
∑N

i=1
1

Di
(Jel − 1)2i

)

:

C10 = 781.898 N
m2 , C20 = −747.631 N

m2 , C30 = 426.135 N
m2 , C40 = 122.701 N

m2

and D1 = D2 = D3 = D4 = 0.0001m2

N
. Mass Density - 981 kg

m3 .

– Scalpel - Discrete rigid

• Step Definition

– Dynamic, explicit approach
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– Establish contact step - 0.1s time period, move blade 0.005m to establish

contact using a smooth step amplitude; Maximum permissible time step

of 2.5e−5s

– Cutting step- 0.6s time period, move blade 0.03m to establish contact us-

ing a smooth step amplitude; Maximum permissible time step of 2.5e−5s

• Interaction Definition

– General contact approach, selected surfaces (scalpel blade to cutting path

surfaces), frictionless contact

– Add individual property assignment to cutting surfaces for cohesive zone

definition

• Interaction Properties (Cohesive Zone Parameters)

– Normal Traction - 13.594kPa

– Tangential Traction - 6.414kPa

– Energy - 0.125mJ

• Constraint Properties

– Tie back side of cutting patch elements to the bulk tissue elements

• Boundary Conditions

– Fix blade rotation - constrain all DOF except translation in cutting di-

rection
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– Fix bottom of tissue - constrain all DOF along bottom tissue surface

– Move blade - blade motion as described in Step Definition above

Following the simulation, the main aspects of comparison between the simula-

tion and experiment were the functionality of the cutting process and the correlation

to the force profile trends seen in the in vivo cutting experiments. With regard to the

functionality aspect of simulating the cutting process, the desire was to provide the

capability for the scalpel blade to pass into the finite element mesh while separating

the elements within the blade’s path. In addition, the prevention of self intersection

in the wake of the blade was also an important aspect of the simulation. As can be

seen in Figure 3.25, the scalpel blade was able to replicate all aspects in a realistic

manner. In fact, the simulation behaves similar to the actual in vivo cutting tests

in that the tissue directly in front of the blade was locally loaded until failure where

it relaxed around the scalpel blade. This process was repeated through the entirety

of the cut to constitute individual loading and unloading segments as seen in real

life.
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Figure 3.25: Progression of the scalpel and resultant tissue displacement through the cohesive zone verification simulation.
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The next aspect to check was the similarity between the simulated and exper-

imental force profile. It should be re-emphasized that the aim is not to replicate the

exact force profile obtained in the in vivo experiment, but to develop a physically-

based method capable of mimicking the important characteristics of the force profile

itself. The three main aspects of the force profile required to accurately represent

the trend of the force data are the average cutting force, the magnitude of the cut-

ting peaks and the frequency of the individual loading segments. The force profile

generated by the simulation is displayed in conjunction with the experimentally

measured force in Figure 3.26.

Figure 3.26: Force profile acting on the scalpel blade during the in vivo experiment

and corresponding simulation. c©2012 CARS.

As can be seen, the use of the cohesive zone model in the finite element sim-

ulation resulted in a reaction force on the scalpel blade on a similar scale to the
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experimental data. The individual loading segments replicate the general sawtooth

pattern observed while cutting soft-tissue. The magnitude of the individual fracture

occurrences vary throughout the course of the simulation and the peak-to-peak load-

ing falls within the range of what is observed experimentally. Finally, the frequency

of the fracture events also maintains a high correlation between the simulated and

experimental data. Discrepancies between the two data sets are expected as the ex-

periment was conducted on a continuous liver sample and the simulation represents

a discrete approximation. The overall trends of the two force profiles, however, do

project a similar response, especially in the three main areas of interest for medical

training purposes.

The cohesive zone approach utilizes the stress, strain and energy values to

update the current fracture status (a depiction of the stress distribution within the

tissue during simulation is shown in Figure 3.27). The stress and strain values are

Figure 3.27: Depiction of stress distribution within tissue during scalpel cutting

process.
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already contained in the finite element simulation to update the nodal displacements.

Therefore the addition of a cohesive region to an existing finite element simulation

does not serve to greatly increase the complexity of the analysis. This promotes the

promise of the method for real-time, finite element based approaches. The major

limitation in the presented validation study to real-time application is the large

number of elements utilized in the region in front of the scalpel blade. To that end,

a study was conducted to determine the feasibility of scaling the parameters of the

cohesive model to accommodate larger mesh densities in the cutting region.

3.2.2 Cohesive Zone Scaling Study

During the course of the cohesive zone validation study it was noted that mod-

ification in the mesh size proved to change the internal stress in the tissue region,

however it did not significantly effect the reaction force response or maximum de-

formation. Therefore, the idea of scaling the parameters of the cohesive zone model

based on the mesh density arose. To determine the feasibility of such an approach,

a series of simulations were conducted to quantitatively measure the differences in

the force, displacement and stress values arising in a cutting analysis due to changes

in mesh density.

A simplified geometry (Figure 3.28) was utilized for the tissue substrate in

this study to facilitate faster computation times. This shape was meshed with three

different densities corresponding to 1467, 1671 and 16681 elements (referred to as

coarse, normal and dense respectively). The constitutive model, once again, was
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defined as the in vivo based reduced polynomial previously presented. Initially a

simulation scheme was set up without utilizing the cohesive zone method. The

surfaces instead were tied together to replicate loading of an intact tissue region.

This provided the ability to measure the maximum stable deformation due to scalpel

loading. At this point the the average stress value within the tissue and reaction force

acting on the scalpel blade were also measured. A depiction of the stress distribution

at maximum deformation for each mesh density is displayed in Figure 3.28.

Figure 3.28: Depiction of stress distribution within tissue during scalpel cutting

process for a) coarse, b) normal and c) dense meshes.

The results for the tissue displacement and the corresponding stress are shown

in Table 3.2. As can be seen, the maximum displacement for the normal and dense

element cases both showed a value of 1.5mm. In addition the reaction force acting on

the blade in the final stable time step also resulted the same magnitude of 0.018N

for these two mesh densities. The more coarse mesh, however, was not able to

achieve these force and displacement levels prior to reaching the instability limit

showing that there is a limit to the maximum size of the mesh that can be used

for simulating scalpel contact. Despite the fact that the force and displacement
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characteristics showed similar trends for the normal and dense elements, the stress

values differed significantly. This is expected due to the change in element size.

Table 3.2: Maximum deformation and stress values for cohesive zone scaling study.

Mesh Density Max Displacement Stress Reaction Force

1467 Elements 0.8 mm 0.3 kPa 1.3E-2 N

1671 Elements 1.5 mm 2 kPa 1.8E-2 N

16681 Elements 1.5 mm 20 kPa 1.8E-2 N

Using the results from the deformation simulation, the cohesive zone cutting

approach was included in the simulation to allow for scalpel cutting. The cohesive

parameters from the model derivation process were scaled proportional to the inter-

nal stresses that appear during the deformation analysis. This approach provided

the means to obtain very similar scalpel cutting properties in both the normal and

dense mesh configurations. Once again, some discrepancies arose with the coarse

mesh due to the inaccurate nature of the force-displacement response. The tissue

deformation during the cutting process is shown for the first node along the cutting

path for all three cases in Figure 3.29a. The normal and dense mesh had a high

degree of correlation in the nodal deformation prior to the point of fracture, which

was located at a displacement of 0.31 mm for each case. In addition, the force values

were very similar for the normal and dense mesh as can be seen in Figure 3.29b.

The magnitude of the force at the point of initial fracture was 1.12E-3 N for the
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normal case and 1.28E-3 N for the dense case. The magnitude of the force in this

study was lower than the previous simulations due to the smaller sample size and

the lower threshold set for the cohesive zone parameters. The average magnitude

cutting force throughout the test was also similar. Finally, the peak-to-peak indi-

vidual loading segments and frequency of individual fractures also showed the same

trends throughout the entirety of the simulated cutting process. As with the previ-

ous detailed cutting study, the exact force profile was not expected to match due to

the different mesh densities, but the important aspects of the force profile for the

simulation of scalpel cutting were preserved.

Figure 3.29: a) Displacement and b) force plots for cohesive zone scaling test

Through this study it can be noted that the cohesive zone properties can be

scaled to fit a mesh of varying size presuming that the mesh is dense enough to

produce a stable response through the entirety of the desired deformation path. If

the element size is too large, as was the case in the coarse configuration, the initial

parameters for the force and displacement will be inaccurate, which will lead to an

incorrect cutting response. However, any mesh above the minimum threshold should
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be sufficient for use with the cohesive zone cutting response. As is seen in this case,

the size of the elements used in the normal density case is approximately twice the

width of the scalpel blade. Use of this relatively large element size along the fracture

line will be sufficient to fully define the cutting modality, while minimizing the total

number of elements required for the cutting simulation. This will result in decreased

computation times aiding in the ability to use the cohesive zone methodology in real-

time, finite element based simulations. Figure 3.30 shows the full cutting simulation

sequence for each of the three mesh densities used in this study.

The cohesive zone cutting methodology implemented in this section was re-

quired to add the scalpel cutting functionality to a surgical simulation system. Using

the previously developed constitutive models for soft-tissue response to general load-

ing in combination with the cohesive zone cutting models it is possible to simulate

a scalpel cutting task on soft tissue. Being that both the constitutive model and

the cutting model were developed directly from experimental data, the tissue de-

formation and forces induced by the scalpel blade are highly realistic. In addition,

the development of the cutting model parameters was performed for many different

cut segments. By randomly selecting one of these sets of model at the beginning of

the simulation, the variability observed in soft tissue can easily be replicated in the

training simulator further increasing the realism experienced by the user.
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Figure 3.30: Stress distribution throughout cutting process for a) coarse b) normal

and c) dense meshes.
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Chapter 4

Real-Time Simulation

Many different methods have been utilized to develop surgical simulators for

training of medical tasks; each have benefits as well as drawbacks. Surgical simu-

lators often utilize mass spring-models due to the simple implementation and fast

computation; however, these models do not provide the desired accuracy since they

use a linear elastic approach to govern the material characteristics of the biologi-

cal tissues, which is an inaccurate representation. This project aims to utilize the

finite element method (FEM) in conjunction with the more realistic hyperelastic

material models to develop more accurate, comprehensive simulation systems. Two

approaches are presented to deal with the complexity of the issues that comprise a

full FEM based approach with reality-based models and realistic geometry. First,

a preprocessor based approach was developed in which a real-time response was

developed for probing and cutting of liver tissue using experimentally determined

hyperelastic constitutive models. This method provides the framework required to

achieve real-time display rates for both visual and haptic iinformation. Second, an

open source, finite element based code was utilized to simulate soft tissue probing

using the hyperelastic approach where computations are done in real-time. This

provides more flexibility in the simulator in that all tool paths are not required

prior to simulation.
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4.1 Preprocessor Based Probing Simulator

The first approach to the solution of the reality-based, haptics-enabled sim-

ulation of liver probing in real-time makes use of preprocessed information. The

goal of this simulator was to use the reality-based material models, developed in the

previous ex vivo and in vivo experiments, as the basis for the probing simulation.

Many modern simulators make concessions in the accuracy of the material model to

simplify the complexity of the finite element approach. To attain the desired level of

realism, accurate hyperelastic models previously derived were used to improve upon

the overall system response. By using the reality-based models, the forces and de-

formations involved in the probing task will be much more realistic, thereby making

for a superior training system. To use the accurate material models in real-time, a

method of preprocessing the data has been developed for the implementation of an

Ogden model in a real-time simulation of soft tissue probing [44].

4.1.1 Fundamentals

In this version of the probing simulator, the Ogden model developed from

the ex vivo experimental process, U =

N
∑

i=1

µi

αi

(λαi

1 + λαi

2 + λαi

3 − 3), presented in

Section 2.1 was utilized. Despite the fact that the model is based on direct experi-

mental tests of fresh ex vivo porcine liver, the finite element approach may not yield

to correct results unless all other parameters involved in the analysis are accurately

set as well. Therefore, it was essential to develop a method to check the validity

of the settings used in the finite element approach. To do so, an analysis of an
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unconfined compression test was conducted with a simple cylindrical sample prior

to performing the probing task on a realistic organ geometry. The output of the

finite element simulation was compared to the theoretical derivation to assure that

all settings in the analysis, such as element type and size, were appropriate for use

in the analysis of the realistic tissue geometry. All FEA simulations were conducted

using ABAQUS software (Version 6.8 from Dassault Systèmes S.A.)

4.1.1.1 FEA Parameter Verification

The simulation set-up for the validation test consisted of a cylindrical test

sample that undergoes loading identical to an unconfined compression test. To

simplify the boundary conditions required for accurate analysis, only a quarter of the

2.54cm diameter cylindrical sample was modeled in ABAQUS. This is a technique

commonly used when performing FEA on symmetric samples. The sample was

constrained along the vertical planes to prevent motion perpendicular to each plane.

This approach has the property of keeping the sample centered at its original state

while allowing for radial expansion of the sample as is required for an unconfined

compression test. The sample was also constrained in the vertical direction on the

bottom surface to prevent movement while a displacement boundary condition (40%

compression) was applied to the top surface. Material properties were defined by a

two-term Ogden model developed for ex-vivo pig liver from the procedures presented

in Section 2.1. The geometry was meshed with 1329 quadratic tetrahedral elements.

The analysis was performed in 20 steps to generate the force vs. displacement
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Figure 4.1: Displacement plot for the unconfined compression test for a) original

sample b)vertical displacement c and d) radial displacements.

curves. Figure 4.1 depicts the displacement plots for the simulation of the unconfined

compression test. Figure 4.1a shows the original geometry of the tissue sample.

Figure 4.1b shows the vertical displacement after the loading of the sample has

concluded. As expected, the tissue displaced a total of 2.54mm which corresponds

to the desired 40% compression. Another important aspect to check to assure the

test is working properly is the radial expansion of the sample. As can be seen in

Figures 4.1c and 4.1d, the sample did expand uniformly in the radial direction as

the two deformation values are the same. The force vs. stretch ratio plot can also

be determined from the simulation (Figure 4.2). In this case, the final force value

must be increased by a factor of four to account for the whole sample diameter.

In the theoretical analysis, which was compared to the output of the ABAQUS

simulation to validate the accuracy of the approach, the Ogden strain energy density
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Figure 4.2: Resultant force vs. stretch ratio profile derived from ABAQUS simula-

tion. c©2009 IEEE.

function is defined as [76]:

U =
N
∑

i=1

µi

αi

(λαi

1 + λαi

2 + λαi

3 − 3) (4.1)

where µi and αi are constants. For incompressible material, the principal Cauchy

stresses can be determined by:

σj = λj

∂U

∂λj

− p (j = 1, 2, 3) (4.2)

Since the material is incompressible, the hydrostatic pressure, p, is decoupled

from the deformation and has to be calculated directly from the equilibrium equa-

tions. Substituting Equation 4.1 into Equation 4.2, the principal Cauchy stresses

for the Ogden model become:

σj =

N
∑

i=1

µiλ
αi

j − p (j = 1, 2, 3) (4.3)

For uniaxial compression, let λ1 = λ be the stretch ratio in the direction of

compression, and σ1 = σ the corresponding principal Cauchy stress. The other two
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principal stresses are assumed to be zero, since no lateral forces are applied in the

analysis. Because the material is incompressible, we have:

λ2 = λ3 = λ− 1

2 (4.4)

The stress can be expressed as:

σ =

N
∑

i=1

µiλ
αi − p (4.5)

and

0 =

N
∑

i=1

µiλ
−αi

2 − p (4.6)

Elimination of p from Equation 4.5 and Equation 4.6 yields:

σ =

N
∑

i=1

µi

(

λα1 − λ
−αi

2

)

(4.7)

In this case N = 2, as defined by the two-term Ogden model being utilized, which

yields:

σ = µ1

(

λα1 − λ
−α1

2

)

+ µ2

(

λα2 − λ
−α2

2

)

(4.8)

The nominal stress (defined as force per unit unstrained area of cross-section) is

given by:

T = σλ−1 (4.9)

Therefore:

T = µ1

(

λα1−1 − λ
−α1

2
−1
)

+ µ2

(

λα2−1 − λ
−α2

2
−1
)

(4.10)

Using the nominal stress we are able to determine the theoretical nominal force

applied to the tissue sample (where ACS is the original cross sectional area of the
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tissue sample and F is the nominal force):

F = ACS

(

µ1

(

λα1−1 − λ
−α1

2
−1
)

+ µ2

(

λα2−1 − λ
−α2

2
−1
))

(4.11)

Using this theoretical analysis it is possible to determine the validity of the

settings used for the ABAQUS simulation. First, the simulated sample displacement

can be compared to the theoretical analysis. As previously mentioned, the sample

deformed the proper amount in the vertical direction as was prescribed through

the boundary condition input. However, for an unconfined compression test the

stretch ratio in the principle directions follow the strict relationship represented by

Equation 4.4. Using this relationship, the 40% compression the stretch ratio in the

radial direction λr can be defined as:

λr = λ− 1

2

λr = (0.6)−
1

2

λr = 1.291 (4.12)

Using the radial stretch ratio in conjunction with the original sample diameter θD it

is possible to determine the length of sample expansion in the radial direction ∆r:

∆r = λrθD − θD

∆r = (1.291) (25.4) − 25.4

∆r = 7.3914mm (4.13)

Due to the fact that symmetry was used in the ABAQUS simulation, the

total magnitude of the radial expansion needed to be divided by two. Therefore,
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the radial expansion displayed in the simulation should be 3.6957mm, which is

the magnitude of the displacement shown in Figures 4.1c and 4.1d. This check

shows that the settings chosen in the ABAQUS simulation were appropriate for the

sample deformation. To further validate the settings, the force vs. stretch ratio has

been determined from Equation 4.11. The resultant plot is shown in Figure 4.3.

There is a high correspondance between the simulated force profile (Figure 4.2)

and the theoretical force profile. In fact, the largest error that occurs through the

unconfined compression task is 0.0003N. This shows that the ABAQUS simulation

is quite accurate and the parameters that were used in the analysis (such as element

type, boundary conditions, material properties, etc.) can be used for the simulation

of the whole liver geometry with a high degree of certainty.

Figure 4.3: Resultant force vs. stretch ratio profile derived from theoretical analysis.

c©2009 IEEE.
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4.1.1.2 FEA of Ex Vivo Tissue Sample

A lobe of soft-tissue was modeled using Pro/Engineer to develop a geometric

representation of the tissue sample to be analyzed (Figure4.4a). The size and shape

of the sample was within the range of lobes obtained during the experimental tests

(approximately 180cm X 115cm X 40cm at extremes).

Figure 4.4: a) Ex vivo geometry solid model b) Ex vivo mesh derived from solid

model. c©2009 IEEE.

The geometry was imported into ABAQUS and assigned material properties

defined by the Ogden model. It was constrained in all directions along the bottom

surface and meshed with 28,820 quadratic tetrahedral elements. The mesh was

implemented with an edge bias located along the centerline of the tissue sample

along which the probe would be contacting the tissue. This allowed for a higher

resolution deformation analysis in the proximity of the probe without the need for

refined mesh throughout the entirety of the sample, which would greatly increase the

simulation complexity. A 10mm hemispherical probe was then modeled as a rigid

body in ABAQUS. The rigid body assumption was utilized due to the fact that

a metallic probe will be much stiffer than the soft-tissue. The probe was aligned
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perpendicular to the surface of liver in the center of the sample.

A contact analysis was performed whereby the probe was displaced in the

vertical direction and introduced displacement conditions on the surface of the liver.

The contact between the probe and the tissue was assumed to be frictionless, which

mimics surgical procedures where blood would be present between the probe and the

tissue resulting in very low frictional effects. The simulation was implemented in two

steps. Initially, a uniform gravitational load was applied to the tissue sample. This

proved to be an essential step during the analysis because it allowed for the settling

of tissue that naturally occurs due to the compliant nature of the material. Without

this step, the calculated forces would be much lower than the actual measured values.

Finally, the probe was moved into contact with the tissue and continued to a distance

of 1.55cm which corresponds to 47.5% strain. The simulation was run in 40 equal

steps corresponding to 0.3875mm displacements where the equilibrium position is

found at each displacement condition. Upon completion of the analysis, the nodal

displacement values and the reaction force applied to the probe can be determined.

The results from the probing simulation procedure are presented in Figure 4.5.

It was apparent through analyzing the displacement plots that a great deal of set-

tling had occured throughout the tissue sample (an average of 0.5cm) during the

gravitational loading process as was expected for a soft biological material. Addi-

tionally, it was observed that through the probing deformation process, the area in

the vicinity of the probe experienced some local deformation and the tissue displace-

ment in the area surrounding the probe was increased. The reaction force on the

probe was also determined for each of the 40 steps solved for during the simulation.
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This displacement and reaction force information was then used for the formulation

of the reality-based, haptics-enabled ex vivo probing simulator.

Figure 4.5: Tissue displacement (m) in the vertical direction following the simulation

of the a) gravitational loading and b) probing action. c©2009 IEEE.

4.1.2 Implementation of the Simulator

A real-time, haptics-enabled probing simulator was developed using the data

collected during the finite element analysis. The simulator consists of a graphical

display, implemented through OpenGL programming framework, and a haptic dis-

play, through the use of a PHANToM haptic device (SensAble Technologies, Version

1.5A). The structure of the program is graphically depicted in Figure 4.6.

The graphical display is developed by rendering the surfaces of the elements

generated in ABAQUS. A collection of the nodal locations and connectivity informa-

tion at each step of the analysis is read into the OpenGL framework and displayed

on the screen. By selecting a step size of 0.3875mm in the finite element analysis,
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Figure 4.6: Structure of the real-time, haptics-enabled simulator.

the variation between steps is very small and visually approximates a continuous

representation of the tissue deformation. This prevents noticeable jumps between

states during the probing motion. A probe of the same shape as that used in the

finite element analysis is also displayed through the OpenGL framework. Simple

lighting conditions were added to the code to enhance the three dimensional as-

pect of the simulation as well as provide additional depth information that aids in

displaying the tissue deformation.

The simulator has been programmed to allow the user to toggle the display

of the probe on and off. This allows the user to get the detailed depiction of the

tissue deformation without being hindered by the display of the probe. The tissue

can also be rotated about all three axes and translated in all directions to provide

the user will all possible views of the tissue.

The PHANToM haptic device is the interface between the user and the simu-

lator. By moving the stylus the user is able to control the position of the probe in

the simulation. Additionally, the forces acting on the probe are relayed to the user
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in real-time to provide the sensation that the user would feel when probing a real

piece of tissue. The force data that was collected during the finite element simula-

tion needed to be modified prior to haptic display. Due to the sensitivity of human

touch, a simulation using the 40 discrete force states could result in a discontinuous

sensation that would not accurately represent the proper tissue response. Therefore

the discrete dataset was fit with an exponential curve that relates the reaction force

output to the displacement of the probe:

F = −0.009991e−373.6x (4.14)

F is the reaction force in Newtons and x is the displacement in meters. This

model has an R-square value of 0.9998, corresponding to a very close fit to the data

generated in ABAQUS. A plot of the function is shown in Figure 4.7 along with

the force values at each discrete step. Equation 4.14 is used in the simulation code

to determine a continuous representation of the force as the PHANToM stylus is

moved.

The detailed ABAQUS simulation is the foundation for the representation in

the real-time framework, and the preprocessing aspect allows for the inclusion of

many details that would not otherwise be possible. As previously mentioned, sim-

plifications are often made to the material model for real-time simulation purposes.

Another method used to reduce the computational complexity is to solve only for

the details of the surface deformation in the organ of interest. While this may be

a valid approach for some surgical tasks, the loss of information about the inter-
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Figure 4.7: Force data and resultant exponential fit derived from ABAQUS simula-

tion.

nal structure may be important for different modes, such as the tracking of tumor

movement in response to applied loads. This simulation framework, however, allows

for use of the detailed models in a full volumetric deformation study, as can be

seen in Figure 4.8. This image shows a cross section of the tissue sample obtained

directly from the real-time simulator display. The internal elements can easly be

viewed; when the probe loads the surface of the organ, the corresponding loads and

displacements are translated into the internal structure to produce a full volumetric

response.

The final version of the simulator is successful in displaying the graphics and

force feedback to the user in real time. An image of the set-up is shown in Fig-

ure 4.9, where a user is controlling the simulation through the PHANToM haptic

device. The current simulator provides the framework to efficiently display prepro-
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Figure 4.8: Cross section of the tissue sample captured from the real-time simulator

display.

cessed displacement and force data obtained from finite element analysis in real-time.

This approach greatly increases the accuracy of the tactile sensations and visual de-

formation when compared to the current trend of mass-spring models commonly

being utilized in surgical simulators.

4.2 Preprocessor Based Scalpel Cutting Simulator

The above simulation approach was utilized in a similar manner to develop a

real-time, preprocessor based simulation method for scalpel cutting of soft tissue. In

this case, an experimentally derived hyperelastic model was again the framework for

the soft tissue response. In the cutting simulator, however, the reduced polynomial

model derived from in vivo testing, Ψ =
∑N

i=1 Ci0

(

Ī1 − 3
)i

+
∑N

i=1
1

Di
(Jel − 1)2i,

was adopted. The simulator was based on the detailed execution of the ABAQUS

based finite element simulation of scalpel cutting presented in Section 3.2.1.

As in the probing simulator, the mesh deformation was updated by loading the
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Figure 4.9: Preprocessor based real-time, probing simulator with realistic display

and haptic feedback. c©2009 IEEE.

simulation step and connectivity information into the preprocessor code. Additional

functionality was added to handle multiple types of elements because tetraheral,

hexahedral and wedge elements were used in the ABAQUS simulation. The haptic

loop of the code was also modified for direct display of the force at each simulation

step to a PHANToM Omni haptic device. In this case, the shape of the force

profile obtained during the simulation was that of a saw-tooth pattern common to

surgical cutting tasks. Therefore, the development of an equation to govern the force

values at discrete steps was not an intuitive solution. Instead, the code directly

implemented the reaction force acting on the probe obtained from the ABAQUS
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simulation steps. When running the preprocessor based simulation, no lags or jumps

in the force are detectable to the user other than those intentionally instilled by a

local cutting action corresponding to a jump in the saw-tooth profile.

Once again, the simulator is able to display the full volumetric information

calculated in the ABAQUS simulation. A depiction of an interior tissue view can be

seen in Figure 4.10a. A full view of the entire setup with the user interfacing with

the PHANToM Omni haptic device is also seen in Figure 4.10b.

Figure 4.10: a) Internal view and b) system setup for preprocessor based cutting

simulator.

The technique presented for the preprocessor based simulators is well suited

for surgical procedures with a finite number of tool paths. The preprocessed ap-

proach, however, is limited in its scope for general surgical simulation because all

desired tool paths must be known prior to constructing the simulator. Thus, the

proposed simulator framework would not be advantageous for the majority of com-

plex surgical procedures. To allow for generality in the tool paths, real-time finite

element methods must be applied.
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4.3 Real-Time Simulation using SOFA Framework

The next logical evolution of the simulation process is to develop a real-time fi-

nite element based approach for performing surgical simulation. Many of the aspects

of a finite element solver will remain unchanged when altering only the parameters

of the underlying material mode. To allow for focus on the material model imple-

mentation itself, a standard open source framework is proposed for the foundation of

the real-time simulator. The Simulation Open Framework Architecture (SOFA) was

developed formulated for this reason. It is a highly segmented architecture designed

for the development of medical training systems. The SOFA framework presents a

method whereby the individual core components of a medical simulation are inde-

pendently defined to allow for easy implementation of various configurations. For

example, there are subsections of the code responsible for handling the underlying

material model, the collision detection, integration schemes, mappings, haptics, par-

allel processing, OpenGL based display, etc. Each of the subsections interact with

one another to create a complete simulation scheme, however the options for an in-

dividual component can easily be modified without effecting the other aspects. For

example, the collision models utilized in a simulator can be changed from spheres

to triangular meshes or distance fields without modifying any other aspects of the

simulation code.

To this end, the SOFA framework provides an excellent starting point for the

desired real-time probing simulator. The framework contains the implementation of

many aspects that will be unaffected by the type of material model used, such as the
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method of collision detection, graphical user interface and haptic implementation.

This allows for modification of the material model segment without necessitating

changes the other sections.

When the framework was first defined, it was configured to solve linear elastic

finite element problems in real-time with geometric nonlinearities [60]. In this case,

the approach decomposed the deformation of each element into a rigid motion and a

pure deformation to provide the capability to solve at real-time rates without parallel

processing. The linear elastic materials were utilized to create a general deformation

simulation of liver. Another linear based finite element method has also been used to

simulate respiratory motion of the lungs in real-time [42]. More recently, a non-linear

material based finite element simulation has also been conducted using the SOFA

framework [15]. In this study, the Total Lagrangian Explicit Dynamics (TLED)

approach was used to simulate a transversely isotropic visco-hyperelastic model. In

addition, the system was modified to allow for execution on a graphics processing

unit (GPU) through CUDATM programming. This study shows that the SOFA

framework is not only well conditioned for non-linear finite element simulation, it

can also be used along with GPU implementation to further increase the system

response. Finally, work on the haptic side has included the ability to utilize haptic

devises such as the PHANToM (SensAble) in the simulations [73].
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4.3.1 Theory of TLED Algorithm

The majority of the changes required for solving the finite element problem in a

real-time setting focused on updating the TLED approach to work with more more

complex hyperelastic models. The TLED algorithm was modified to include the

reduced polynomial model derived from the in vivo experimentation. The previous

work, and portions of code obtained contained in SOFA, utilized the Neo-Hookean

model. Changes were required to simulate the more accurate and complex reduced

polynomial mode. A detailed description of the TLED algorithm is presented in [55],

and an overview of the important concepts will be presented here.

The TLED algorithm utilizes the total Lagrangian method of solving finite

element problems. This allows the computations to proceed by relating all variables

to the original model configuration. By referencing the original configuration, as

opposed to the current configuration used in the updated Lagrangian formulation,

many of the variables required may be precomputed. Also, the assembly of a global

stiffness is not required, which greatly increases the speed of the calculations.

Using the approach presented in [55] and [78], the TLED algorithm can be

described in two steps. First, a pre-computation step is conducted whereby the vari-

ables referenced to the original configuration which will remain constant throughout

the simulation are calculated. Specifically:

• Load mesh information

• Calculate spatial derivatives of shape functions

• Calculate linear strain-displacement matrix BL for each element
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• Calculate mass matrix

Second, a time-loop phase is initiated, within which all components required

to update the nodal displacements are determined. The details of the second step

are as follows:

• Apply updated nodal load and boundary conditions

• Calculate deformation gradient F for each element

• Calculate full strain-displacement matrix BT
L for each element

(

BT
L = BLF T

)

• Calculate second Piola-Kirchoff stress S for each element

• Calculate total force acting on each node f̃ for each element

• Sum all nodal force components to achieve total force f

• Calculate new nodal displacements using central difference method

Specifically, the element nodal force components, f̃ , are found from:

f̃ =

∫

BT
LSdV

where V is the element volume. This expression can be modified for specific types of

elements, namely the reduced integration linear hexahedral and linear tetrahedral

elements to become:

f̃HEX = 8BT
LSdet (J) (4.15)

f̃TET = V BT
LS (4.16)

where J is the Jacobian matrix.
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4.3.2 Second PK Stress for Four-Term Reduced Polynomial

The majority of the computational complexity arises in the determination of

the second Piola-Kirchoff (PK) stress for each individual element. In this algorithm,

and code, the methods presented in [34] were used to split the strain energy density

function, Ψ, into two components, the volumetric and isochoric components:

Ψ (C) = ΨV OL (J) + ΨISO
(

C̄
)

where J is the Jacobian (J = detF ), C is the right Cauchy-Green deformation

tensor
(

C = FF T
)

and C̄ is the modified right Cauchy-Green deformation tensor

(

C̄ = J− 2

3 C
)

. This expression can also be presented in terms of the invariant as:

Ψ (C) = ΨV OL (J) + ΨISO
(

Ī1, Ī2

)

where Ī1 = trC̄ and Ī2 = 1
2

[

(

trC̄
)2

− tr
(

C̄
2
)]

are the first and second invariant of

C̄. Using the above representation of the strain energy density function, the second

PK stress can be decomposed into the volumetric and isochoric components as well

resulting in the following representation:

S = 2
∂Ψ (C)

∂C
= SV OL + SISO (4.17)

The two components of the second PK stress can be analyzed individually. Begin-

ning with the volumetric response:

SV OL = 2
∂ΨV OL (J)

∂C

SV OL = 2
∂ΨV OL (J)

∂J

∂J

∂C
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where

∂J

∂C
=

1

2
JC−1

so SV OL becomes:

SV OL = J
∂ΨV OL (J)

∂J
C−1 (4.18)

For the four-term reduced polynomial model, the volumetric component of the strain

energy density function is:

ΨV OL (J) =
4
∑

i=1

1

Di

(Jel − 1)2i (4.19)

In this case, Jel = J as defined by ABAQUS due to the fact that there is no thermal

expansion present. Hence:

∂ΨV OL (J)

∂J
=

∂

∂J

(

4
∑

i=1

1

Di

(J − 1)2i

)

∂ΨV OL (J)

∂J
=

4
∑

i=1

2i

Di

(J − 1)2i−1

So, the volumetric component of the second PK stress for a four-term reduced

polynomial becomes:

SV OL = J

(

4
∑

i=1

2i

Di

(J − 1)2i−1

)

C−1 (4.20)

Next the isochoric component of the second PK stress can be derived for the

reduced polynomial model. Using the approach presented in [34] again, the iscohoric

component can be derived from:

SISO = 2
∂ΨISO

(

C̄
)

∂C

or
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SISO = J− 2

3 Dev (s̄) (4.21)

where

Dev (•) = (•) −
1

3
[(•) : C] C−1 = (•) −

1

3
tr
[

(•)T
C
]

C−1 (4.22)

and

s̄ = 2
∂ΨISO

(

C̄
)

∂C̄
= γ̄1I + γ̄2C̄

with γ̄1 and γ̄2 defined as:

γ̄1 = 2

(

∂ΨISO
(

Ī1, Ī2

)

∂Ī1

+ Ī1

∂ΨISO
(

Ī1, Ī2

)

∂Ī2

)

γ̄2 = −2
∂ΨISO

(

Ī1, Ī2

)

∂Ī2

For the four-term reduced polynomial case, the isochoric component of the strain

energy density function is defined as:

ΨISO
(

Ī1, Ī2

)

=

4
∑

i=1

Ci0

(

Ī1 − 3
)i

(4.23)

For the above reduced polynomial model, the γ̄1 and γ̄2 coefficients can be derived

as follows:

γ̄1 = 2

(

∂ΨISO
(

Ī1, Ī2

)

∂Ī1

+ Ī1

∂ΨISO
(

Ī1, Ī2

)

∂Ī2

)

= 2
∂

∂Ī1

(

4
∑

i=1

Ci0

(

Ī1 − 3
)i

)

= 2

(

4
∑

i=1

iCi0

(

Ī1 − 3
)i−1

)

γ̄2 = −2
∂ΨISO

(

Ī1, Ī2

)

∂Ī2

= 0
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resulting in the following version for s̄:

s̄ = 2

(

4
∑

i=1

iCi0

(

Ī1 − 3
)i−1

)

I (4.24)

Using 4.22 and 4.24, the expression for Dev (s̄), particular to the four-term reduced

polynomial, can be determined:

Dev (s̄) = s̄ −
1

3
tr
[

s̄T C
]

C−1 but s̄ = s̄T since γ̄1 is a scalar

= γ̄1I −
1

3
tr [(γ̄1I) C] C−1

= γ̄1

(

I −
1

3
tr [IC] C−1

)

= γ̄1

(

I −
1

3
tr [C]C−1

)

= γ̄1

(

I −
1

3
I1C

−1

)

=

(

4
∑

i=1

iCi0

(

Ī1 − 3
)i−1

)

[

I −
I1

3
C−1

]

which, used in conjunction with 4.21, results in the final expression for the isochoric

component of the second PK stress:

SISO = J− 2

3

[

4
∑

i=1

iCi0

(

Ī1 − 3
)i−1

(

I −
I1

3
C−1

)

]

(4.25)

Finally, a full reperesentation of the second Piola-Kirchoff stress can be defined

using 4.20 and 4.25 as:

S = J

(

4
∑

i=1

2i

Di

(J − 1)2i−1

)

C−1 + J− 2

3

[

4
∑

i=1

iCi0

(

Ī1 − 3
)i−1

(

I −
I1

3
C−1

)

]

(4.26)

All calculations specified above for the second PK stress terms are required

for each element. In addition, the deformation gradient, full strain-displacement

matrix and the total force acting on each node are all required for each individual
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element. As all of these terms can be generated directly from manipulating the

nodal displacement for each element independently, the code can be generated in

a manner in which all elements are processed in parallel. This is possible due

to the fact that everything is computed for individual elements without need for

passing information between elements during the TLED calculations. Therefore,

these sections of the code were developed using CUDATM programming to run on a

graphics processing unit (GPU). This greatly increases the computational efficiency

as all elements can be analyzed simultaneously instead of sequentially. A copy of the

TLED code implementing the four-term reduced polynomial response is available in

Appendix A.

4.3.3 Comparison of SOFA Implementation to ABAQUS

After the portions of the TLED algorithm were modified, a simulation im-

plemented in SOFA was compared to an identical analysis solved via ABAQUS to

validate the accuracy of the SOFA approach. In this case, a cube was instanta-

neously subjected to a gravitational force and the transient response was recorded

using both simulation systems for comparison.

The geometry of the test sample consisted of a cube measuring 10cm along each

side. The cube was split into a uniform mesh of 1,000 reduced integration hexahedral

elements (C3D8R) with 1,331 corresponding nodes. The material model used was

that of the in vivo based, four-term reduced polynomial presented in Section 2.2.6.

A dynamic, explicit approach was used in both simulations with a time step of
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Figure 4.11: Results for SOFA simulation of a cube under gravitational load.

0.00095s. Displacement boundary conditions were applied to the nodes along the

bottom face of the cube to prevent motion in any direction. Rayleigh damping

was applied with α = 25 and β = 0. Finally a gravitational load was applied

instantaneously at the first time step with a magnitude of -9.81N. The simulation

was allowed to progress for a total of 1s until the new equilibrium condition was

achieved. A depiction of the cube deformation resultant from the SOFA simulation

is presented in Figure 4.11. In the figure, the mesh is displayed in wire-frame with

the yellow elements while the pink squares represent the nodes along the bottom

surface where the static displacement condition was applied. As expected, the mesh

compressed a significant amount under the influence of the gravitational load. This

was similar to the effects discovered during the model generation testing due to the

highly compliant nature of soft tissue.

Using ABAQUS as the simulation engine, a similar response can be observed
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(Figure 4.12). A contour plot of the displacement magnitude is displayed where it

can be seen that the bottom surface remained stationary and the top of the cube

moved approximately 12mm due to the gravitational load.

Figure 4.12: Results for ABAQUS simulation of a cube under gravitational load.

From the two simulations, data was extracted for individual node locations to

compare the tissue response throughout the entirety of the motion induced by the

gravitational loading. A depiction of the nodal response is shown in Figure 4.13.

Displacement values in the X,Y and Z directions as well as the total magnitude of

the nodal displacement are compared. The two different simulators showed simi-

lar trends in the tissue response, with slight differences as seen in the figure. The

ABAQUS simulation resulted in a final displacement of 11.85mm while the SOFA

simulation yielded a displacement value of 11.69mm. This results in an error of

1.35% for the steady state response after equilibrium is reached. The largest error

observed is during the transient response at the peak of the tissue displacement.

This resulted in difference of 0.534mm for a short moment of time. As the simu-

lation progressed, the error stabilized around the stead state point. Differences are
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expected as SOFA utilizes the total Lagrangian method and ABAQUS is based on

the updated Lagrangian method, however the errors are small and within the limits

that would be noticeable to the operator of the simulator.

Figure 4.13: Comparison of the SOFA and ABAQUS simulations.

4.3.4 Effect of Reduced Polynomial on SOFA Frame Rate

With the accuracy of the reduced polynomial model implemented using the

TLED algorithm established, the next step was to determine the change in com-

putation time required for the additional complexity of utilizing the hyperelastic

representation of the tissue. To determine the speed decrease an example code

distributed with the SOFA framework for testing the functionality of the TLED

algorithm was utilized. This code also simulates the response of a cube to gravita-

tional loading, but only the nodal response is displayed. In this test, the speed of
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the simple Neo-Hookean model distributed with the code was compared to that of

the more accurate four-term reduced polynomial. Two units of measure were used

for comparison of the simulation speed. First, the average frequency at which the

entire code runs is calculated for each of the two models. Then an investigation into

the time required to implement the modified TLED portion of the code is observed.

A study of the frame rate at which the simulation as a whole runs will deter-

mine the ability to update both the display and haptic feedback in real-time. The

simulation frame rate will be discussed in detail in the next few sections when the

complexity of the task increases, however they will be presented here as well for

comparison. The simulation computer used throughout this study consisted of a

2.33GHz Dual Core Processor, 2GB RAM, running Windows XP with a NVIDIA

Quadro 570 programmable graphics card. This computer configuration is far from

optimal from the standpoint of computational ability, but it provides a starting point

for analysis into the real-time simulation of medical tasks. For the most simplis-

tic simulation possible, the deformation of a unit cube (1000 nodes), the simulator

based on the Neo-Hookean model is able to run at an average speed of 301Hz with

our current computer configuration. When switching to the more complex reduced

polynomial the update rate reduces slightly to 283Hz.

A more detailed investigation can be conducted by using some of the evalua-

tions metrics built into the SOFA code. A diagnostic tool allows for the display of

the total time taken for each component in the simulation during each time step or

over the entirety of the simulation. An image of the diagnostic tool as well as the

simulation screen shot for both the Neo-Hookean and reduced polynomial model are
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included in Figure 4.14. Through this analysis, the average time required to com-

pute the TLED portion of the code was determined. In the figure, this correlates to

item number 5, CudaHenahedronTLEDForceField(FEM), and the cyan color on the

pie chart breakdown of total step time. The average time required for the TLED

code in the Neo-Hookean case is 0.1186ms. The reduced polynomial implementation

does increase the total amount of time required for the TLED algorithm, however

it is a very small increase to 0.1205ms. This is a total increase of 0.0019ms per sim-

ulation step. When it comes to simulation accuracy, the reduced polynomial model

is far superior with regard to simulation accuracy, and as shown here, the increase

in computational complexity is minimal.
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Figure 4.14: Comparison of the simulation speeds for the Neo-Hookean and reduced polynomial models.
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4.3.5 Probing Simulator with SOFA Framework

After the accuracy and the speed of the reduced polynomial version of the

TLED code was validated, the next step was to develop a simulation system for

the probing of soft tissue. The first part of this process was the development of

an appropriate geometry for the organ of interest. Throughout this study all work

was performed on the liver, therefore a three dimensional model of the liver was

developed and meshed for use in this real-time simulator. The mesh consisted of

708 reduced integration hexahexral elements (C3D8R) with a total of 1010 nodes.

This mesh was then imported into the SOFA code through use of a mesh loader. As

previously stated, the SOFA framework was built in a modular manner to allow for

versatility when developing a surgical simulator. Therefore much of the functionality

required to develop the probing simulator was used directly. The mesh loader acted

as a means to load the nodal locations and connectivity information required for

the full definition of the mesh characteristics. Using this information, along with a

fixed boundary condition module, simulation of the liver deformation due to gravity

was achieved.

A screen shot of the simulator including the realistic liver shape is displayed in

Figure 4.15a. Not only has the shape been updated, but the surface of the model has

been skinned to provide a more realistic display. The wire frame mesh is included

and displayed in yellow in addition to the organ surface. Also, the pink boxes along

the bottom edge represent the fixed boundary condition applied along the bottom

surface of the organ. The inclusion of the additional sections of code required to
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Figure 4.15: a) Screen shot of simulator with realistic geometry and b) performance

characteristics with realistic geometry.
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set up this version of the simulator do come at the expense of the simulation speed.

Using the same methods as the previous examples, the timing for the new simulator

results in an average refresh rate of 234 frames per second. Additionally, utilizing

a full hexahedral mesh representation of the liver, instead of simply using the node

locations as in the speed test, proves to slow down the TLED loop within the code

to 0.1298ms. Despite being somewhat slower than the previous simple example, the

user is still unable to perceive any lag in the display as it is updated at well above

the 30 frame per second requirement.

To make the simulation appear more realistic, additional components were

added to the scene around the liver organ (Figure 4.16). A skeleton, with the

breast plate partially removed to grant complete access to the liver was included

along with a components resembling a human torso. The additional components

greatly enhance the feel of the simulator and aid in the orientation of the user

to the shape, size and orientation of the liver. However, it comes at the cost of

computational speed. The average update rate when adding the reference geometry

drops to 170 frames per second. In this case, the additional computation time

comes from displaying the new components and the averave speed of the TLED

implementation loop remains similar at 0.1290ms.

The next step was to add the functionality required for the probing action.

This consisted of developing the probe geometry, including it in the scene, controlling

the probe position, establishing the collision parameters required to simulate the

tool-tissue interaction, and relaying the haptic feedback to the user. The probe

itself was developed in a computer aided design (CAD) package and saved as a
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Figure 4.16: a) Screen shot of simulator with additional components and b) perfor-

mance characteristics with additional components.
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Wavefront object file. The Wavefront object file was directly imported into the

scene through the mesh loader built into the SOFA framework. Once loaded into

the simulation, the probe location was set to be controlled through the use of a

PHANToM Omni haptic device. The PHANToM was linked to the code and set

up similar to a mouse input where the location and orientation of the stylus was

mapped to the location and orientation of the probe within the simulator display.

The linking of the PHANToM Omni to the virtual probe provided the means for

the user to interact with and control the location of the probe in a logical manner.

The haptic device was programmed to align the physical stylus orientation to that

of the probe so the movements on the screen directly follow the users input.

The development of the interaction between the probe and the tissue was a

more complex procedure. Collision parameters must be added to the probe and

the tissue independently. After the collision models were implemented, the rules

for contact between the two were added which govern the tool-tissue interaction.

The contact definition used for the probe was a spherical based collision algorithm

which was added to each node on the probe geometry. The main parameter utilized

in spherical based contact in the SOFA framework was the diameter of the sphere

at each nodal location. For this surgical simulator, the sizes of the spheres were

chosen so they were large enough to slightly overlap one another. This assured the

entire probe surface that would interact with the liver was covered to achieve proper

contact. The distribution of the spheres can be seen in Figure 4.17.

When determining the collision definitions for the liver model, some additional

aspects must be considered. First, to speed up the simulator it is important to note
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Figure 4.17: a) Contact model setup and b) contact between probe and tissue

surface.

that in the case of a probing simulator the tool-tissue contact region will always be

on the surface of the liver. Therefore, the collision model should only be defined

on the surface to minimize the additional computations added to the simulator as

a whole. This approach was utilized in drawing the surface representation of the

liver. The hexahedral element can be automatically segmented into quadrilaterals

representing the liver surface and then split into triangles for display purposes.

Ideally, the triangles representing the surface of the liver would then be used for a

surface based collision response. This would provide the support needed to analyse

the collision response between the spheres on the probe and the corresponding organ

surface. However, the functionality required for more complex collision models, such

as the triangular surface interaction, has not yet been achieved in SOFA for codes

using GPU acceleration. Since the TLED algorithm implemented on the GPU is

essential to achieve the update rates required for a real-time simulator, the more
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sophisticated contact model can not be used. Therefore, the collision definition for

the liver was also defined by using a spherical approach as shown in Figure 4.17.

Using this approach, the collision spheres were attached to each node, including the

interior nodes.

The effect that the collision models had on the performance of the overall

simulation was drastic compared to the other aspects of the code. When the collision

models were defined in the code, a large decrease in the simulator frame rate was

observed. Even when the probe was not in contact with the tissue, while the code

was only working to verify if contact had occured, the simulation rates droped to 137

and 83 frames per second for the liver only and whole body simulation respectively.

This represented approximately one half of the speed observed without the collision

definitions. However, it was still sufficient for graphical display.

An even larger disturbance was observed when a contact state existed be-

tween the probe and the tissue. In this case, additional computations were required

to determine the effect of the collision response and impose the displacements to

the effected areas. Figures 4.18 and 4.19 show a depiction of the simulator and

corresponding performance characteristics for both the liver only and full graphical

display cases. As can be seen, the spherical contact models did interact as intended.

Yet this functionality came at a very high cost to the frame rate. In the simulation

containing only the liver, the update frequency dropped to a range of 23-50 frames

per second, depending on the severity of the probe penetration depth. When the

torso representation was included the range dropped to 17-42 frame per second. This

decrease moved the simulation, in both cases, to the range where visual artifacts
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may be noticeable to the user if the update rate drops below 30 frames per second.

Looking into the details during the contact phase (Figures 4.18b and 4.19b),

the reason for the drastic slow down was evident. The collision pipeline in both cases

fell with the 20-30ms range. This was approximately thirty times larger than the

next longest component in the SOFA based simulation. A loop in the code running

at 25ms would limit the frame rate to a maximum of 40Hz. Adding the fact that

many additional computations were required in addition to the collision pipeline,

the ability to simulate the task in real-time was questionable.
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Figure 4.18: a) Simulation with collision response for liver only and b) performance

characteristics with collision response for liver only.

196



Figure 4.19: a) Simulation with collision response with torso and b) performance

characteristics with collision response with torso.
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In addition to the change in computation time induced by the simulation of

the collision response, the accuracy of the tool-tissue interaction was also evaluated.

The reaction force acting on the probe due to the tool-tissue interaction for a stan-

dard probing task was recorded and compared to the previous in vivo experiments

(Figures 4.20). As shown in the figure, the response in the SOFA simulation re-

sulted in a stiffer tissue response and a higher force on the probe. This inaccuracy

may have been cause by errors induced by the spherical collision definition. Due to

the sphere-to-sphere based setup, the spheres representing the tissue surface must

be large enough to overlap. Without some overlapping of the spheres, the probe

pushed the tissue spheres apart until it penetrated into the organ. With the selec-

tion of spheres of this size, an accurate representation of the surface geometry was

not possible. In addition, due to the fact that the spheres were required to overlap

to prevent penetration into the tissue, an additional force is imparted to each tissue

node defined by the collision between the neighboring nodes. This may result in

increasing the reaction force observed on the probe. As the probing occurs the tis-

sue is compressed from the probe from above and the internal collision spheres from

below, resulting in additional compression and higher reaction forces. To prevent

the apparent increase in tissue stiffness, a more appropriate collision response is

required.

The final aspect to add to the probing simulator was the haptic response.

When contact between the probe was established, the reaction forces acting on the

probe were relayed directly to the PHANToM Omni haptic device. The forces were

only calculated when the probe makes contact with the tissue and the simulator
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Figure 4.20: Reaction force acting on probe during SOFA simulation and in vivo

experiments.

began slowing down below the 50Hz range. This resulted in the display of unwanted

and inaccurate vibrations to the haptic device. In order to operate properly, the

update rate for real-time haptic simulation must be greatly increased.

Overall, the SOFA based simulation was able to accurately represent the de-

formation of tissue governed by the reduced polynomial model, as shown by the

SOFA-ABAQUS comparison study. Implementation of realistic geometry for both

the liver shape and reference information in the body was possible without signifi-

cant detriment to the overall simulator performance. However, the addition of the

collision detection algorithms to define the contact between the probe and the soft

tissue had a negative effect on both the speed and accuracy of the simulated re-

sponse. Details of the limitations of the SOFA approach are presented in the next

section. The complete .xml file controlling the SOFA based probing simulator with

haptic response is presented in Appendix B.
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4.3.6 SOFA Framework Discussion and the Implications on Cutting

Simulation

The SOFA framework is a very useful tool for developing finite element based

simulation systems. The highly modular design adds versatility to the code that is

required for simulation of various surgical tasks. A vast array of options are available

for material models, solvers, boundary conditions, graphical display and collision

models when working towards developing a simulation based on linear models. The

major limitation in the code comes when using the TLED algorithm and the GPU

based methodology. The SOFA framework is an open source code developed by

researchers in the surgical simulation field as a tool for others to use to quickly

and efficiently develop their own simulation systems. The work to include GPU

based methods has only recently begun, so all of the various modules existing for

the linear support have yet to be converted to interface properly with the TLED

algorithm. Once the additional functionality becomes GPU compatible, the ability

to reach real-time, haptics enabled simulation rates with the SOFA framework will

be achievable.

The major limitations that arose in the development of the probing simulator

came from the contact models. The general deformation response using the TLED

algorithm with the reduced polynomial model worked well for both accuracy and

speed of calculations, even with an outdated processor and GPU. However, the ad-

dition of collision to the simulation drastically decreased the speed of the simulation

to a point at which it was not feasible to use with haptic feedback. An alternative for
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smoothing out the haptic response was presented in the SOFA documentation. The

approach involved placing a fictitious spring between the simulated probe and the

mapping of the haptic device. By including this spring force in the simulation, there

would in effect be two springs in series, the tissue itself and the fictitious spring. If

the spring constant of the fictitious spring is set high enough, the response will be

purely from the deformation of the tissue. The aim is to tune the spring constant

parameters to each simulation to effectively dampen out the vibrations felt on the

haptic display. While this approach may smooth the haptic display, it will greatly

effect the accuracy of the force response felt by the user, negating the benefit of

using a more accurate hyperelastic material model.

When looking to implement the cohesive zone based cutting models into the

SOFA simulation, additional complications arise in the area of collision response.

Neglecting the large decrease in speed, the sphere-to-sphere based contact is simply

not accurate enough to be used for cutting simulation. As seen in Section 3.2.1,

the cutting model requires a high resolution contact response between the scalpel

blade and the tissue surface. While sphere based collisions are relatively simple

to implement, they have a major limitation in that the spheres are not able to

replicate the proper surface shape unless a very dense mesh is utilized. By using

such a dense mesh, any increase in computational speed achieved from the use of the

GPU accelerated TLED approach will be negated. Additionally, using sphere-to-

sphere contact will act to skew the direction of the applied stress as the two sphere

shift around one another trying to reach the minimum energy state. An inaccurate

stress distribution will result in an incorrect response in the cohesive zone and will

201



alter the desired force output. For these reasons, the cutting methods previously

developed were not implemented in the SOFA framework.

Once the problem of solving collisions in an accurate and timely method is

developed, the addition of cohesive zone based cutting should be relatively simple

to include in existing simulation systems. The parameters required for using the

cohesive zone are simply the stress, strain and/or energy terms. All of these values

are calculated to some extent during each time step of the finite element based

simulation. An additional segment of the code would be needed only to compare

the stress, strain and/or energy terms to the cohesive model. If they fall below

the damage threshold, the simulation progresses normally. However, if they are

above the threshold, the new nodal displacement can be directly calculated from the

cohesive zone theory and passed into the subsequent step of the TLED algorithm.

This would provide the ability to add cutting simulation in the real-time system

with very little added computational expense.

202



Chapter 5

Conclusions and Future Works

The aim of this project was to develop a surgical simulator capable of accu-

rately representing the haptic and visual information required for training medical

professionals in probing and cutting tasks. The foundations of this project are

generally split into two research areas: the derivation of reality-based models for

biological tissue deformation and cutting tasks, and the development of real-time

simulations of the medical procedures. A list of the current contributions in these

two areas of study are listed below.

• Ex Vivo Soft Tissue Modeling

– Designed and fabricated a test apparatus capable of performing compres-

sion, tension and pure shear tests on biological samples.

– Generated an image-based method to track tissue deformation during

compression tests to verify uniform expansion of tissue sample.

– Analyzed data from the compression test, which was used by Dr. Zhan

Gao, to develop models which describe the tissue response to general

loading for the purpose of surgical simulation.

• In Vivo Modeling of Probing

– Developed and constructed a testing fixture for probing and cutting of
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soft tissue used in the operating theater.

– Devised a method to measure the shape of a liver sample for the genera-

tion of a full three dimensional model through the use of a stereo camera

system which resulted in geometric realism with errors on the order of

1.5mm.

– Formulated a technique to accurately account for the effects of tissue set-

tling due to gravity during simulation of surgical tasks for more realistic

results.

– Established an approach for validating the efficacy of proposed consti-

tutive models through both force verification and surface deformation

assessment.

– Collaborated with Dr. Zhan Gao to establish a method whereby existing

ex vivo material models could be improved upon, resulting in increased

model accuracy.

• Cutting of Porcine Liver

– Performed in vivo scalpel cutting tests on porcine liver to obtain data

required for modeling of the scalpel cutting process on soft biological

tissues.

– Developed a method that utilizes a cohesive zone, fracture mechanics

approach to describe the fracture process occurring during scalpel-tissue

contact.
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– Extracted model parameters from experimental cutting data to fully char-

acterize the cohesive zone model.

– Validated the cohesive zone approach for cutting simulation through a

dynamic, explicit analysis which was able to show a high correlation

between the force and displacement characteristics of an experimental

and simulated scalpel cut.

• Real-Time Simulation

– Pre-Processor Base Simulator

∗ Developed a reality-based, haptics-enabled simulator for probing of

ex vivo porcine liver based on an experimentally determined nonlin-

ear constitutive model through the use of pre-processing techniques.

∗ Volumetric deformations and reaction forces were calculated directly

from hyperelastic material models without need for simplification

which resulted in increased realism.

∗ Extended pre-processor based code to simulation of scalpel cutting

using the cohesive zone approach capable of real-time haptic and

graphic display.

– Real-Time Simulation using SOFA Framework

∗ Implemented the GPU based Total Lagrangian Explicit Dynamics

approach for the in vivo based reduced polynomial model using the

SOFA framework to increase the accuracy of tissue deformations in
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surgical simulators.

∗ Using the Simulation Open Framework Architecture (SOFA), devel-

oped a finite element based probing simulator capable of real-time

visual display for any arbitrary probe position and orientation.

5.1 Future Work

While the presented work was able to more accurately replicate the tool-tissue

interactions seen in common surgical tasks due to the foundation in physics based

modeling, the simulations can be further improved upon with some additional focus

in the following areas:

• Model Development

– The inclusion of viscous terms to the existing hyperelastic models will

further increase the simulation accuracy. Surgical procedures are under-

taken at various rates and soft tissue has been shown to have a rate

dependent response.

– The dynamic effects arising due to the scalpel-tissue contact should be

studied in detail to improve upon the overall resolution of the cutting

model.

– Frictional effects between the scalpel blade and the soft-tissue during

cutting can be analyzed to determine its effect on the cutting process.
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• Real-Time Simulation

– The computational efficiency of the collision response in the SOFA frame-

work should be increased to a state that will allow for real-time haptic

display, possibly through GPU programming.

– Methods of collision detection are needed in addition to sphere-to-sphere

contact that are compatible with the TLED algorithm.

– Following the improvements to the contact definitions, the cohesive zone

method of scalpel cutting should be added to the SOFA framework.

Once the above mentioned advancements are developed, the ability to sim-

ulate probing and cutting tasks on liver tissue with real-time graphics and haptic

display could be achieved using the SOFA framework. It should be noted that many

aspects of the future works listed in this section are SOFA framework specific. The

models developed throughout this study are general in nature and can be applied in

any finite element based simulation code. Therefore, inclusion of the reality-based

models governing the soft-tissue response to tool-tissue interactions may also be

applied to existing commercially available simulators to improve the overall system

performance.
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Appendix A

TLED Code for Reduced Polynomial Model
g l o b a l void CudaHexahedronTLEDForceFie ld3f calcForce kernel0 ( f l o a t Lambda ,

f l o a t Mu, i n t nbElem , f l o a t 4 ∗ F0 gpu , f l o a t 4 ∗ F1 gpu , f l o a t 4 ∗ F2 gpu , f l o a t 4 ∗
F3 gpu , f l o a t 4 ∗ F4 gpu , f l o a t 4 ∗ F5 gpu , f l o a t 4 ∗ F6 gpu , f l o a t 4 ∗ F7 gpu )

{
i n t index0 = umul24 ( blockIdx . x , BSIZE) ;
i n t index1 = threadIdx . x ;
i n t index = index0+index1 ;

i f ( index < nbElem)
{

// Shape f unc t i on d e r i v a t i v e s matrix
f l o a t 4 Dh0 a = tex1Dfetch ( texDhC0 , 2∗ index ) ;
f l o a t 4 Dh0 b = tex1Dfetch ( texDhC0 , 2∗ index+1) ;
f l o a t 4 Dh1 a = tex1Dfetch ( texDhC1 , 2∗ index ) ;
f l o a t 4 Dh1 b = tex1Dfetch ( texDhC1 , 2∗ index+1) ;
f l o a t 4 Dh2 a = tex1Dfetch ( texDhC2 , 2∗ index ) ;
f l o a t 4 Dh2 b = tex1Dfetch ( texDhC2 , 2∗ index+1) ;

i n t4 NodesPerElement = tex1Dfetch ( texNodesPerElement , 2∗ index ) ;
CudaVec3f Node1Disp = getX ( NodesPerElement . x ) − getX0 ( NodesPerElement . x ) ;
CudaVec3f Node2Disp = getX ( NodesPerElement . y ) − getX0 ( NodesPerElement . y ) ;
CudaVec3f Node3Disp = getX ( NodesPerElement . z ) − getX0 ( NodesPerElement . z ) ;
CudaVec3f Node4Disp = getX ( NodesPerElement .w) − getX0 ( NodesPerElement .w) ;

NodesPerElement = tex1Dfetch ( texNodesPerElement , 2∗ index+1) ;
CudaVec3f Node5Disp = getX ( NodesPerElement . x ) − getX0 ( NodesPerElement . x ) ;
CudaVec3f Node6Disp = getX ( NodesPerElement . y ) − getX0 ( NodesPerElement . y ) ;
CudaVec3f Node7Disp = getX ( NodesPerElement . z ) − getX0 ( NodesPerElement . z ) ;
CudaVec3f Node8Disp = getX ( NodesPerElement .w) − getX0 ( NodesPerElement .w) ;

/∗∗
∗ Computes the transpose o f deformation grad i ent
∗
∗ Transpose o f di splacement d e r i v a t i v e s = transpose ( shape f unc t i on

d e r i v a t i v e s ) ∗ ElementNodalDisplacement
∗ Transpose o f deformation grad i ent = transpose o f di splacement d e r i v a t i v e s

+ i d en t i t y
∗/
f l o a t XT[ 3 ] [ 3 ] ;

//Column 1
XT[ 0 ] [ 0 ] = Dh0 a . x∗Node1Disp . x + Dh0 a . y∗Node2Disp . x + Dh0 a . z∗Node3Disp . x

+ Dh0 a .w∗Node4Disp . x +
Dh0 b . x∗Node5Disp . x + Dh0 b . y∗Node6Disp . x + Dh0 b . z∗Node7Disp . x

+ Dh0 b .w∗Node8Disp . x + 1.0 f ;
XT[ 1 ] [ 0 ] = Dh1 a . x∗Node1Disp . x + Dh1 a . y∗Node2Disp . x + Dh1 a . z∗Node3Disp . x

+ Dh1 a .w∗Node4Disp . x +
Dh1 b . x∗Node5Disp . x + Dh1 b . y∗Node6Disp . x + Dh1 b . z∗Node7Disp . x

+ Dh1 b .w∗Node8Disp . x ;
XT[ 2 ] [ 0 ] = Dh2 a . x∗Node1Disp . x + Dh2 a . y∗Node2Disp . x + Dh2 a . z∗Node3Disp . x

+ Dh2 a .w∗Node4Disp . x +
Dh2 b . x∗Node5Disp . x + Dh2 b . y∗Node6Disp . x + Dh2 b . z∗Node7Disp . x

+ Dh2 b .w∗Node8Disp . x ;

//Column 2
XT[ 0 ] [ 1 ] = Dh0 a . x∗Node1Disp . y + Dh0 a . y∗Node2Disp . y + Dh0 a . z∗Node3Disp . y

+ Dh0 a .w∗Node4Disp . y +

208



Dh0 b . x∗Node5Disp . y + Dh0 b . y∗Node6Disp . y + Dh0 b . z∗Node7Disp . y
+ Dh0 b .w∗Node8Disp . y ;

XT[ 1 ] [ 1 ] = Dh1 a . x∗Node1Disp . y + Dh1 a . y∗Node2Disp . y + Dh1 a . z∗Node3Disp . y
+ Dh1 a .w∗Node4Disp . y +

Dh1 b . x∗Node5Disp . y + Dh1 b . y∗Node6Disp . y + Dh1 b . z∗Node7Disp . y
+ Dh1 b .w∗Node8Disp . y + 1.0 f ;

XT[ 2 ] [ 1 ] = Dh2 a . x∗Node1Disp . y + Dh2 a . y∗Node2Disp . y + Dh2 a . z∗Node3Disp . y
+ Dh2 a .w∗Node4Disp . y +

Dh2 b . x∗Node5Disp . y + Dh2 b . y∗Node6Disp . y + Dh2 b . z∗Node7Disp . y
+ Dh2 b .w∗Node8Disp . y ;

//Column 3
XT[ 0 ] [ 2 ] = Dh0 a . x∗Node1Disp . z + Dh0 a . y∗Node2Disp . z + Dh0 a . z∗Node3Disp . z

+ Dh0 a .w∗Node4Disp . z +
Dh0 b . x∗Node5Disp . z + Dh0 b . y∗Node6Disp . z + Dh0 b . z∗Node7Disp . z

+ Dh0 b .w∗Node8Disp . z ;
XT[ 1 ] [ 2 ] = Dh1 a . x∗Node1Disp . z + Dh1 a . y∗Node2Disp . z + Dh1 a . z∗Node3Disp . z

+ Dh1 a .w∗Node4Disp . z +
Dh1 b . x∗Node5Disp . z + Dh1 b . y∗Node6Disp . z + Dh1 b . z∗Node7Disp . z

+ Dh1 b .w∗Node8Disp . z ;
XT[ 2 ] [ 2 ] = Dh2 a . x∗Node1Disp . z + Dh2 a . y∗Node2Disp . z + Dh2 a . z∗Node3Disp . z

+ Dh2 a .w∗Node4Disp . z +
Dh2 b . x∗Node5Disp . z + Dh2 b . y∗Node6Disp . z + Dh2 b . z∗Node7Disp . z

+ Dh2 b .w∗Node8Disp . z + 1.0 f ;

/∗∗
∗ Computes the r i gh t Cauchy−Green deformation tensor C = XT∗X ( in f a c t we

compute only 6 terms s i n c e C i s symetr i c )
∗/
f l o a t C11 , C12 , C13 , C22 , C23 , C33 ;
C11 = XT[ 0 ] [ 0 ] ∗XT[ 0 ] [ 0 ] + XT[ 0 ] [ 1 ] ∗XT[ 0 ] [ 1 ] + XT[ 0 ] [ 2 ] ∗XT[ 0 ] [ 2 ] ;
C12 = XT[ 0 ] [ 0 ] ∗XT[ 1 ] [ 0 ] + XT[ 0 ] [ 1 ] ∗XT[ 1 ] [ 1 ] + XT[ 0 ] [ 2 ] ∗XT[ 1 ] [ 2 ] ;
C13 = XT[ 0 ] [ 0 ] ∗XT[ 2 ] [ 0 ] + XT[ 0 ] [ 1 ] ∗XT[ 2 ] [ 1 ] + XT[ 0 ] [ 2 ] ∗XT[ 2 ] [ 2 ] ;
C22 = XT[ 1 ] [ 0 ] ∗XT[ 1 ] [ 0 ] + XT[ 1 ] [ 1 ] ∗XT[ 1 ] [ 1 ] + XT[ 1 ] [ 2 ] ∗XT[ 1 ] [ 2 ] ;
C23 = XT[ 1 ] [ 0 ] ∗XT[ 2 ] [ 0 ] + XT[ 1 ] [ 1 ] ∗XT[ 2 ] [ 1 ] + XT[ 1 ] [ 2 ] ∗XT[ 2 ] [ 2 ] ;
C33 = XT[ 2 ] [ 0 ] ∗XT[ 2 ] [ 0 ] + XT[ 2 ] [ 1 ] ∗XT[ 2 ] [ 1 ] + XT[ 2 ] [ 2 ] ∗XT[ 2 ] [ 2 ] ;

/∗∗
∗ Computes determinant o f X
∗/
f l o a t J = XT[ 0 ] [ 0 ] ∗ ( XT[ 1 ] [ 1 ] ∗XT[ 2 ] [ 2 ] − XT[ 2 ] [ 1 ] ∗XT[ 1 ] [ 2 ] )

− XT[ 1 ] [ 0 ] ∗ ( XT[ 0 ] [ 1 ] ∗XT[ 2 ] [ 2 ] − XT[ 2 ] [ 1 ] ∗XT[ 0 ] [ 2 ] )
+ XT[ 2 ] [ 0 ] ∗ ( XT[ 0 ] [ 1 ] ∗XT[ 1 ] [ 2 ] − XT[ 1 ] [ 1 ] ∗XT[ 0 ] [ 2 ] ) ;

/∗∗
∗ Computes second Piola−Ki r cho f f s t r e s s
∗/
f l o a t SPK [ 6 ] ;
f l o a t RPD10=0.001;
f l o a t RPD20=0.001;
f l o a t RPD30=0.001;
f l o a t RPD40=0.001;
f l o a t RPC10=781.8981;
f l o a t RPC20=−747.6308;
f l o a t RPC30=426.1348;
f l o a t RPC40=122.7012;

// Determinant o f C
f l o a t invdetC = f d i v i d e f ( 1 . 0 f , C11∗(C22∗C33 − C23∗C23)

− C12∗(C12∗C33 − C23∗C13)
+ C13∗(C12∗C23 − C22∗C13) ) ;

// C inve r s e
f l o a t Ci11 , Ci12 , Ci13 , Ci22 , Ci23 , Ci33 ;
Ci11 = (C22∗C33 − C23∗C23) ∗ invdetC ;
Ci12 = (C13∗C23 − C12∗C33) ∗ invdetC ;
Ci13 = (C12∗C23 − C13∗C22) ∗ invdetC ;
Ci22 = (C11∗C33 − C13∗C13) ∗ invdetC ;
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Ci23 = (C12∗C13 − C11∗C23) ∗ invdetC ;
Ci33 = (C11∗C22 − C12∗C12) ∗ invdetC ;

// 4Term Reduced Polynomial
f l o a t J23 = powf (J , −( f l o a t ) 2/3) ;
f l o a t I1bar = J23 ∗(C11+C22+C33) ;
f l o a t RPp1 = I1bar −3.0 f ;
f l o a t RPp2 = pow ( ( I1bar −3.0 f ) , 2 . 0 f ) ;
f l o a t RPp3 = pow ( ( I1bar −3.0 f ) , 3 . 0 f ) ;
f l o a t x1 = J23 ∗2 .0 f ∗(RPC10 + 2.0 f ∗RPC20∗RPp1 + 3.0 f ∗RPC30∗RPp2 + 4.0 f ∗RPC40

∗RPp3) ;
f l o a t x4 = f d i v i d e f (−x1 ∗(C11+C22+C33) , 3 . 0 f ) ;

f l o a t RPj1 = J−1.0 f ;
f l o a t RPj3 = pow ( ( J−1.0 f ) , 3 . 0 f ) ;
f l o a t RPj5 = pow ( ( J−1.0 f ) , 5 . 0 f ) ;
f l o a t RPj7 = pow ( ( J−1.0 f ) , 7 . 0 f ) ;
f l o a t RPv1 = f d i v i d e f ( 2 . 0 f , RPD10) ;
f l o a t RPv2 = f d i v i d e f ( 4 . 0 f , RPD20) ;
f l o a t RPv3 = f d i v i d e f ( 6 . 0 f , RPD30) ;
f l o a t RPv4 = f d i v i d e f ( 8 . 0 f , RPD40) ;
f l o a t x5 = J∗(RPv1∗RPj1 + RPv2∗RPj3 + RPv3∗RPj5 + RPv4∗RPj7) ;

// E l a s t i c component o f the r esponse ( i s o c h o r i c part + vo lumetr i c part )
f l o a t SiE11 , SiE12 , SiE13 , SiE22 , SiE23 , SiE33 ;
SiE11 = x4∗Ci11 + x1 ;
SiE22 = x4∗Ci22 + x1 ;
SiE33 = x4∗Ci33 + x1 ;
SiE12 = x4∗Ci12 ;
SiE23 = x4∗Ci23 ;
SiE13 = x4∗Ci13 ;

f l o a t SvE11 , SvE12 , SvE13 , SvE22 , SvE23 , SvE33 ;
SvE11 = x5∗Ci11 ;
SvE22 = x5∗Ci22 ;
SvE33 = x5∗Ci33 ;
SvE12 = x5∗Ci12 ;
SvE23 = x5∗Ci23 ;
SvE13 = x5∗Ci13 ;

SPK [ 0 ] = SiE11 + SvE11 ;
SPK [ 1 ] = SiE22 + SvE22 ;
SPK [ 2 ] = SiE33 + SvE33 ;
SPK [ 3 ] = SiE12 + SvE12 ;
SPK [ 4 ] = SiE23 + SvE23 ;
SPK [ 5 ] = SiE13 + SvE13 ;

// Gets the Jacobian determinant
f l o a t detJ = tex1Dfetch ( texDetJ , index ) ;
SPK [ 0 ] ∗= 8∗detJ ;
SPK [ 1 ] ∗= 8∗detJ ;
SPK [ 2 ] ∗= 8∗detJ ;
SPK [ 3 ] ∗= 8∗detJ ;
SPK [ 4 ] ∗= 8∗detJ ;
SPK [ 5 ] ∗= 8∗detJ ;

/∗∗
∗ Computes s t r a i n−displacement matrix
∗/
F0 gpu [ index ] = computeForce hex (0 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,

Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,
Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK

, index ) ;

F1 gpu [ index ] = computeForce hex (1 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;
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F2 gpu [ index ] = computeForce hex (2 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;

F3 gpu [ index ] = computeForce hex (3 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;

F4 gpu [ index ] = computeForce hex (4 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;

F5 gpu [ index ] = computeForce hex (5 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;

F6 gpu [ index ] = computeForce hex (6 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;

F7 gpu [ index ] = computeForce hex (7 , Dh0 a , Dh0 b , Dh1 a , Dh1 b , Dh2 a ,
Dh2 b , Node1Disp , Node2Disp , Node3Disp , Node4Disp ,

Node5Disp , Node6Disp , Node7Disp , Node8Disp , SPK
, index ) ;

}

/∗∗
∗ Function to be c a l l e d from the dev i ce to compute f o r c e s from s t r e s s e s
∗ => a l l ows us to save r e g i s t e r s by recomputing the deformation grad i ent
∗/
d e v i c e f l o a t 4 computeForce hex ( const i n t node , const f l o a t 4 Dh0 a , const f l o a t 4

Dh0 b , const f l o a t 4 Dh1 a ,
const f l o a t 4 Dh1 b , const f l o a t 4 Dh2 a , const

f l o a t 4 Dh2 b , const f l o a t 3 Node1Disp ,
const f l o a t 3 Node2Disp , const f l o a t 3

Node3Disp , const f l o a t 3 Node4Disp ,
const f l o a t 3 Node5Disp , const f l o a t 3

Node6Disp , const f l o a t 3 Node7Disp ,
const f l o a t 3 Node8Disp , const f l o a t ∗ SPK,

const i n t t i d )
{

f l o a t XT[ 3 ] [ 3 ] ;

//Column 1
XT[ 0 ] [ 0 ] = Dh0 a . x∗Node1Disp . x + Dh0 a . y∗Node2Disp . x + Dh0 a . z∗Node3Disp . x +

Dh0 a .w∗Node4Disp . x +
Dh0 b . x∗Node5Disp . x + Dh0 b . y∗Node6Disp . x + Dh0 b . z∗Node7Disp . x +

Dh0 b .w∗Node8Disp . x + 1.0 f ;
XT[ 1 ] [ 0 ] = Dh1 a . x∗Node1Disp . x + Dh1 a . y∗Node2Disp . x + Dh1 a . z∗Node3Disp . x +

Dh1 a .w∗Node4Disp . x +
Dh1 b . x∗Node5Disp . x + Dh1 b . y∗Node6Disp . x + Dh1 b . z∗Node7Disp . x +

Dh1 b .w∗Node8Disp . x ;
XT[ 2 ] [ 0 ] = Dh2 a . x∗Node1Disp . x + Dh2 a . y∗Node2Disp . x + Dh2 a . z∗Node3Disp . x +

Dh2 a .w∗Node4Disp . x +
Dh2 b . x∗Node5Disp . x + Dh2 b . y∗Node6Disp . x + Dh2 b . z∗Node7Disp . x +

Dh2 b .w∗Node8Disp . x ;

//Column 2
XT[ 0 ] [ 1 ] = Dh0 a . x∗Node1Disp . y + Dh0 a . y∗Node2Disp . y + Dh0 a . z∗Node3Disp . y +

Dh0 a .w∗Node4Disp . y +
Dh0 b . x∗Node5Disp . y + Dh0 b . y∗Node6Disp . y + Dh0 b . z∗Node7Disp . y +

Dh0 b .w∗Node8Disp . y ;
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XT[ 1 ] [ 1 ] = Dh1 a . x∗Node1Disp . y + Dh1 a . y∗Node2Disp . y + Dh1 a . z∗Node3Disp . y +
Dh1 a .w∗Node4Disp . y +

Dh1 b . x∗Node5Disp . y + Dh1 b . y∗Node6Disp . y + Dh1 b . z∗Node7Disp . y +
Dh1 b .w∗Node8Disp . y + 1.0 f ;

XT[ 2 ] [ 1 ] = Dh2 a . x∗Node1Disp . y + Dh2 a . y∗Node2Disp . y + Dh2 a . z∗Node3Disp . y +
Dh2 a .w∗Node4Disp . y +

Dh2 b . x∗Node5Disp . y + Dh2 b . y∗Node6Disp . y + Dh2 b . z∗Node7Disp . y +
Dh2 b .w∗Node8Disp . y ;

//Column 3
XT[ 0 ] [ 2 ] = Dh0 a . x∗Node1Disp . z + Dh0 a . y∗Node2Disp . z + Dh0 a . z∗Node3Disp . z +

Dh0 a .w∗Node4Disp . z +
Dh0 b . x∗Node5Disp . z + Dh0 b . y∗Node6Disp . z + Dh0 b . z∗Node7Disp . z +

Dh0 b .w∗Node8Disp . z ;
XT[ 1 ] [ 2 ] = Dh1 a . x∗Node1Disp . z + Dh1 a . y∗Node2Disp . z + Dh1 a . z∗Node3Disp . z +

Dh1 a .w∗Node4Disp . z +
Dh1 b . x∗Node5Disp . z + Dh1 b . y∗Node6Disp . z + Dh1 b . z∗Node7Disp . z +

Dh1 b .w∗Node8Disp . z ;
XT[ 2 ] [ 2 ] = Dh2 a . x∗Node1Disp . z + Dh2 a . y∗Node2Disp . z + Dh2 a . z∗Node3Disp . z +

Dh2 a .w∗Node4Disp . z +
Dh2 b . x∗Node5Disp . z + Dh2 b . y∗Node6Disp . z + Dh2 b . z∗Node7Disp . z +

Dh2 b .w∗Node8Disp . z + 1.0 f ;

f l o a t BL [ 6 ] ;
f l o a t FX, FY, FZ;
f l o a t 4 HG read ;

f l o a t Dh0 , Dh1 , Dh2 ;
switch ( node )
{

case 0 :
Dh0 = Dh0 a . x ;
Dh1 = Dh1 a . x ;
Dh2 = Dh2 a . x ;
break ;

case 1 :
Dh0 = Dh0 a . y ;
Dh1 = Dh1 a . y ;
Dh2 = Dh2 a . y ;
break ;

case 2 :
Dh0 = Dh0 a . z ;
Dh1 = Dh1 a . z ;
Dh2 = Dh2 a . z ;
break ;

case 3 :
Dh0 = Dh0 a .w;
Dh1 = Dh1 a .w;
Dh2 = Dh2 a .w;
break ;

case 4 :
Dh0 = Dh0 b . x ;
Dh1 = Dh1 b . x ;
Dh2 = Dh2 b . x ;
break ;

case 5 :
Dh0 = Dh0 b . y ;
Dh1 = Dh1 b . y ;
Dh2 = Dh2 b . y ;
break ;

case 6 :
Dh0 = Dh0 b . z ;
Dh1 = Dh1 b . z ;
Dh2 = Dh2 b . z ;
break ;

case 7 :
Dh0 = Dh0 b .w;
Dh1 = Dh1 b .w;
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Dh2 = Dh2 b .w;
break ;

}

// Computes X component
BL [ 0 ] = Dh0 ∗ XT[ 0 ] [ 0 ] ;
BL [ 1 ] = Dh1 ∗ XT[ 1 ] [ 0 ] ;
BL [ 2 ] = Dh2 ∗ XT[ 2 ] [ 0 ] ;
BL [ 3 ] = Dh1 ∗ XT[ 0 ] [ 0 ] + Dh0 ∗ XT[ 1 ] [ 0 ] ;
BL [ 4 ] = Dh2 ∗ XT[ 1 ] [ 0 ] + Dh1 ∗ XT[ 2 ] [ 0 ] ;
BL [ 5 ] = Dh2 ∗ XT[ 0 ] [ 0 ] + Dh0 ∗ XT[ 2 ] [ 0 ] ;
FX = SPK[ 0 ] ∗BL[ 0 ] + SPK[ 1 ] ∗BL[ 1 ] + SPK[ 2 ] ∗BL[ 2 ] + SPK[ 3 ] ∗BL[ 3 ] + SPK[ 4 ] ∗BL[ 4 ] +

SPK[ 5 ] ∗BL [ 5 ] ;

// Computes Y component
BL [ 0 ] = Dh0 ∗ XT[ 0 ] [ 1 ] ;
BL [ 1 ] = Dh1 ∗ XT[ 1 ] [ 1 ] ;
BL [ 2 ] = Dh2 ∗ XT[ 2 ] [ 1 ] ;
BL [ 3 ] = Dh1 ∗ XT[ 0 ] [ 1 ] + Dh0 ∗ XT[ 1 ] [ 1 ] ;
BL [ 4 ] = Dh2 ∗ XT[ 1 ] [ 1 ] + Dh1 ∗ XT[ 2 ] [ 1 ] ;
BL [ 5 ] = Dh2 ∗ XT[ 0 ] [ 1 ] + Dh0 ∗ XT[ 2 ] [ 1 ] ;
FY = SPK[ 0 ] ∗BL[ 0 ] + SPK[ 1 ] ∗BL[ 1 ] + SPK[ 2 ] ∗BL[ 2 ] + SPK[ 3 ] ∗BL[ 3 ] + SPK[ 4 ] ∗BL[ 4 ] +

SPK[ 5 ] ∗BL [ 5 ] ;

// Computes Z component
BL [ 0 ] = Dh0 ∗ XT[ 0 ] [ 2 ] ;
BL [ 1 ] = Dh1 ∗ XT[ 1 ] [ 2 ] ;
BL [ 2 ] = Dh2 ∗ XT[ 2 ] [ 2 ] ;
BL [ 3 ] = Dh1 ∗ XT[ 0 ] [ 2 ] + Dh0 ∗ XT[ 1 ] [ 2 ] ;
BL [ 4 ] = Dh2 ∗ XT[ 1 ] [ 2 ] + Dh1 ∗ XT[ 2 ] [ 2 ] ;
BL [ 5 ] = Dh2 ∗ XT[ 0 ] [ 2 ] + Dh0 ∗ XT[ 2 ] [ 2 ] ;
FZ = SPK[ 0 ] ∗BL[ 0 ] + SPK[ 1 ] ∗BL[ 1 ] + SPK[ 2 ] ∗BL[ 2 ] + SPK[ 3 ] ∗BL[ 3 ] + SPK[ 4 ] ∗BL[ 4 ] +

SPK[ 5 ] ∗BL [ 5 ] ;

// Writes i n to g l oba l memory
r eturn make f l oat4 ( FX, FY, FZ, 0) ;

}
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Appendix B

Scene File for SOFA Probing Simulator
<?xml ve r s i on =”1.0”?>

<Node name=”Root” dt=”0.00095” showBehaviorModels=”1” g r av i ty=”0 −9.81 0”>

<LCPConstraintSolver name=”LCPConstraintSolver1 ” displayTime=”0” i n i t i a l g u e s s =”1”
bu i l d l c p =”1” to l e r ance =”1e−010” mu=”0.7” group=”0” />

<BackgroundSetting co l o r =”1.0 1 . 0 1 . 0” />
<De f au l tP i pe l i n e name=”C o l l i s i o n P i p e l i n e ” verbose =”0” />
<BruteForceDetect ion name=”N2” />
<DefaultContactManager name=” c o l l i s i o n r esponse ” r esponse=”de f au l t ” />
<NewOmniDriver s c a l e =”1” omniVisu=” f a l s e ” permanent=”1” f o r c e S c a l e =”10” />
<MinProx imi tyInter s ect i on name=”proximity ” alarmDistance=”0.0001” contactDi s tance

=”0.00005” />
<Cent r a lD i f f e r enc eSo l v e r name=”c en t r a lD i f f e r e n c eS o l v e r 1 5” rayle ighMass =”50” />

<Node name=”Omni” g r av i ty=”0 −9.81 0” showVisualModels=”1” >

<MechanicalObject template=”Rigid” name=”DOFs” />
<UniformMass template=”Rigid” name=”OmniMass” showAxisS izeFactor=”0”

separateGrav i ty=”1” />
<Mechan i ca lStateContro l l e r template=”Rigid” name=”de f au l t 40 ” l i s t e n i n g =”1”

handleEventTriggersUpdate =”1” mainDirect ion=”0 1 0” />

<Node name=”USPromeVisualModel”>
<OglModel template=”ExtVec3f ” name=”Probe” f i l eMesh=”mesh/

USProbePhantomSmall . obj ” />
<RigidMapping template=”Rigid , ExtVec3f ” name=”ProbeVisualMapping”

input=”@. . /DOFs” output=”@Probe” />
</Node>

<Node name=”RefModel” >

<MeshLoader name=”de f au l t 41 ” f i l ename=”mesh/USProbePhantomSmall .
obj ” />

<MeshTopology name=”de f au l t 42 ” />
<MechanicalObject template=”Vec3d” name=”in s t r umentCo l l i s i onS ta t e ”

/>
<LineModel name=”l ineModel1 ” group=”1” />
<PointModel name=”pointModel1” group=”1” />
<TSphereModel template=”Vec3f” name=”tSphereModel1 ” rad ius =”0.0025”

c o n t a c t S t i f f n e s s =”0.01” />
<RigidMapping template=”Rigid , Vec3d” name=”ProbeMM−>CMmapping”

mapForces=”1” mapConstraints=”1” mapMasses=”1” index=”0” />
</Node>

</Node>

<Node name=”Liver ” >

<MeshGmshLoader name=”loader ” f i l ename=”mesh/ S imp l i f i e dL i v e rMete r s .msh” />
<MechanicalObject template=”CudaVec3f ” name=”Volume” po s i t i o n=”@loader .

p o s i t i o n ” showObjectScale =”0.1” showInd i cesSca l e =”0.0001”
t r an s l a t i o n=”@loader . t r a n s l a t i o n ” r o ta t i on=”@loader . r o ta t i on ” s ca l e 3d
=”@loader . s c a l e 3d ” />

<UniformMass template=”CudaVec3f ” name=”uniformMass18” mass=”0” tota lmass
=”1.0” />

<HexahedronSetTopologyContainer name=”HexaContainer ” f i l eTopo l ogy=”mesh/
S imp l i f i edL i v e rMete r s . msh” hexahedra=”@loader . hexahedra” />

<HexahedronSetGeometryAlgorithms template=”CudaVec3f ” name=”HexaGeoAlgo”
showInd i cesSca l e =”0.0001” drawHexa=”1” drawColorHexahedra=”1 1 0 .3”
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/>
<FixedConstraint template=”CudaVec3f ” name=”f ixedCons t ra i nt11 ” i nd i c e s=”1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201” />

<CudaHexahedronTLEDForceField name=”FEM” youngModulus =”3000” po i s sonRat i o
=”0.45” i s V i s c o e l a s t i c =”0” i sAn i s o t r o p i c=”0” p r e f e r r e dD i r e c t i o n=”0
0.707 0.707”/>

<Node name=”Shpe r eCo l l i s i on ” >

<MeshLoader name=”MeshLoaderSphere” f i l ename=”mesh/
S imp l i f i edL i v e rMete r s . obj ” />

<MeshTopology name=”MeshTopologySphere ” />
<MechanicalObject template=”Vec3d” name=”Co l l i s i onS ta t eSphe r e ” />
<TSphereModel template=”Vec3d” name=”tSphereModelLiver ” rad ius

=”0.009” c o n t a c t S t i f f n e s s =”0.01” />
<IdentityMapping template=”CudaVec3f , Vec3d” name=”LiverMM−>

CMmapping” mapForces=”1” mapConstraints=”1” mapMasses=”1” />
</Node>

<Node name=”QuadMesh” >

<QuadSetTopologyContainer name=”QuadContainer ” />
<QuadSetTopologyModif ier name=”QuadModifier ” />
<QuadSetGeometryAlgorithms template=”CudaVec3f ” name=”QuadGeomAlgo”

showInd i cesSca l e =”0.0001” />
<Hexa2QuadTopologicalMapping name=”HexaQuadMapping ” input=”@. . /

HexaContainer ” output=”@QuadContainer ” />
<Node name=”TriangleMesh” >

<TriangleSetTopologyContainer name=”Tr iContainer ” />
<Tr iang l eSetTopo logyModi f i e r name=”Tr iModi f i e r ” />
<TriangleSetGeometryAlgorithms template=”CudaVec3f ” name=”

TriGeomAlgo” showInd i cesSca l e =”0.0001” />
<Quad2TriangleTopologicalMapping name=”QuadTriMapping”

input=”@. . / QuadContainer ” output=”@TriContainer” />
<Node name=”Sur fV i sua l ” >

<OglModel template=”ExtVec3f ” name=”Tr iV i sua l ” />
<IdentityMapping template=”CudaVec3f , ExtVec3f ” name

=”TriIdentMap ” input=”@ . . / . . / . . / Volume” output
=”@TriVisual” />

</Node>
</Node>

</Node>
</Node>

<Node name=”TorsoSkel ” >

<OglModel template=”ExtVec3f ” name=”SkeletonVisMod ” f i l eMesh=”mesh/
tor soske l cutr ibsmeter sphantom . obj ” />

</Node>

<Node name=”TorsoSkin” >

<OglModel template=”ExtVec3f ” name=”SkinVisMod ” f i l eMesh=”mesh/
torsoskinopenmetersphantom . obj ” />

</Node>

</Node>
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