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Videographic flow visualization and two-component particle image velocimetry

(PIV) measurements were performed to examine the developing vortical wake produced

by a two-bladed hovering rotor at a height of one rotor radius above a horizontal ground

plane. The experiments were performed with an isolated rotor and with three different

bodies placed in the wake below the rotor. The bodies examined had circular, elliptical,

and rectangular cross-sections, respectively. Flow measurements were taken in planes

that covered the nose and tail region of each body. The objective of the study was to

gain a better understanding of the nature of the flow at the ground plane and to assess the

overall effects of a body in the rotor wake, and in particular to document the nature of the

unsteady, turbulent boundary layer flow over the ground. The flow visualization and PIV

were performed using a Nd:YAG laser that illuminated a radial plane of the flow, with

imaging performed with a CCD camera. Measurements of the spatial locations of the tip

vortices as a function of wake age were obtained to quantify the wake distortion produced

by each body shape. The outward flow over the ground plane was shown to have similar

characteristics to a classical turbulent wall-jet; these similarities were especially apparent



further downstream on the ground plane away from the rotor. The results showed that the

flow over the nose of each of the bodies was similar to that of the isolated rotor, but with

some minor differences in the flow at the ground. The slipstream boundary was shown

to be severely disrupted by the tail of each body, and showed larger variations from that

produced by the isolated rotor. Wake impingement on the body was shown to cause catas-

trophic bursting of the blade tip vortices. The body with a rectangular cross-section was

generally found to produce the greatest differences in the overall flow characteristics near

the ground plane compared to that of the isolated rotor. The work has relevance to the

better understanding the problem of rotorcraft brownout, where the near-wall flow drives

the mobilization and uplift of dust.
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Chapter 1

Introduction

1.1 Preamble

Understanding the aerodynamic characteristics of a rotor operating in-ground-effect

(IGE) has been the subject of significant research over many years, and the overall behav-

ior is now well understood from the perspective of performance. However, recently there

has been interest in gaining an understanding of the behavior of the detailed flow struc-

tures near that ground that are produced by a rotor when operating IGE. In particular,

recent research has focused on how the flow beneath the rotor affects the mobilization of

dust particles as it influences the problem of “brownout.” Brownout is characterized by

the onset of a blinding dust cloud that occurs when a rotorcraft lands or takes off over

surfaces covered in loose material such as sand. However, there is currently very little

work that has quantitatively examined the nature of the rotor flow field at the ground, and

even less work that has examined the effect of placing a body (such as a fuselage or air-

frame) in the flow below the rotor. To this end, two main questions arise: Does the shape

of a body beneath the rotor affect the evolution of flow structures near the ground? If so,

will the effects obtained also influence the mobilization of dust, and hence the problem of

brownout?
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1.2 The Rotor In-Ground-Effect

When a rotorcraft enters ground effect, its rotor wake is significantly distorted by

the proximity of the ground, as shown in Fig. 1.1. As a consequence of this wake distor-

tion, the inflow velocities and angles of attack at the rotor blades are altered, which results

in reductions in the power required for the rotor to produce a given thrust. These effects

generally become more prominent as the rotor comes closer to the ground. Studies focus-

ing on measuring and calculating the performance or a rotor in-ground-effect [1–6] have

found that rotors at heights of less than one rotor diameter can experience significant ben-

efits in terms of overall performance. In general, rotors operating at low enough heights

above the ground to alter the rotor aerodynamic performance are defined as operating in-

ground-effect (IGE). Rotors operating away from the ground in clean air conditions are

defined as operating out-of-ground-effect (OGE)

Knight and Hefner [1] performed the first systematic study of the thrust and torque

characteristics of a rotor operating in ground effect. Cheeseman and Bennett [2] doc-

umented the decreases in the benefit of ground-effect with increasing forward airspeed.

Hayden [3] summarized the power decreases that were noted in flight test data for a va-

riety of helicopters that were operating IGE. However, there has been far less work done

towards the goal of understanding the fluid dynamics of a rotor operating IGE, includ-

ing the flow field produced near the ground [7–14]. It is toward this end that the present

research is directed.

Even less work has been done to investigate the nature of the rotor wake IGE as it

interacts with a surface covered by loose sediment or dust, i.e., to simulate the problem
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Figure 1.1: An example of the flow visualization of a rotor when operating IGE as per-

formed by Fradenburgh [4].
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of brownout [15, 16]. It is now known [16] that the action of the vortical aspects of the

rotor wake as it impinges on the ground is fundamental to the mobilization of sediment

particles, the uplift of dust, and the creation of brownout conditions. Therefore, to develop

a better understanding of the problem of brownout, a prerequisite is to understand the

evolution and dynamics of the rotor wake as it approaches and interacts with the ground.

While many aspects of the rotor design that can affect the detailed structure of the rotor

wake, the present work focuses on the aerodynamics a simple two-bladed rotor operating

in the presence of a bluff body that represents a fuselage of a helicopter that is situated in

the wake below the rotor.

Smoke flow visualization of the wake of a laboratory-scale rotor operating OGE is

shown in Fig. 1.2, which is taken from Ref. [10]. This image shows a radial plane through

the wake below the rotor. The flow was seeded with smoke and a thin laser sheet was

used to illuminate the flow with the blade locked to a given azimuthal position. Visible

in this image are the blade tip vortices, the turbulent vortex sheets from the inner parts

of the blades, and the slipstream boundary that demarcates the rotor wake from the more

quiescent outer flow. The blade tip vortices follow the path of the slipstream boundary for

two to three rotor revolutions before significant diffusion of the vorticity occurs. As the

far wake expands, the tip vortices increasingly diffuse their vorticity and become more

turbulent. Eventually, the downstream wake becomes more like a turbulent jet.

Figure 1.3 shows the same rotor when it is operated in IGE conditions. As for the

OGE case, the slipstream boundary experiences an initial contraction in the near field im-

mediately below the rotor. However, because of the presence of the ground, the slipstream

boundary is turned rapidly to flow in a more radial direction away from the rotor and more
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parallel to the ground. The wake then becomes a radially expanding turbulent jet. Fur-

thermore, when the rotor is operated IGE, the tip vortices do not become significantly

diffused until six to eight rotor revolutions after their creation, and much longer than for

when the rotor operates in OGE conditions. Previous work [17, 18] has found that as the

wake of a rotor approaches a ground plane, the tip vortex filaments are stretched and their

vorticity is reintensified. This stretching process can reduce, balance, or even counter the

normal diffusion of vorticity. The vortices then tend to persist in the flow to relatively

older wake ages. While there has been a recent increase in research focusing on the un-

derstanding the fluid dynamics of a rotor wake under IGE conditions [10–13,15,16], there

is still much to learn about the details of the flow environment there.

A schematic of the flow field of a rotor operating IGE is shown in Fig. 1.4. The

trailed tip vortices significantly affect the flow near the rotor, and potentially have large

influences on blade loads and rotor performance. In addition to the generation of un-

steady airloads and rotor noise [19, 20], the tip vortices can also cause rotor-airframe

interactions [21–23]. Studies of the near-field flow of the rotor wake have been per-

formed [24–36], much of it focused on documenting the structure of the blade tip vor-

tices [37–42]. However, there is a dearth of information on the structure of the rotor wake

at significantly older wake ages, and very little information on the detailed action of the

rotor wake upon the ground, which is highly relevant to the problem of brownout.

Lee et al. [10] have recently investigated the flow generated by a small-scale rotor

operating at different heights above a ground plane. This work described the evolution of

the wake and the dynamics of the tip vortices as they interacted with the ground plane. A

preliminary analysis of the development of the wall-jet flow was also given. Milluzzo et
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Figure 1.2: Representative flow visualization of a 2-bladed rotor wake when operating

OGE [10].
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Figure 1.3: Representative flow visualization of a 2-bladed rotor wake when operating

IGE [10].

al. [11] further explored the evolution of the blade tip vortices for a rotor in IGE conditions

and also for different blade tip shapes. The core size and velocity profiles of the tip

vortices were measured, as well as the effect that the tip shape had on the velocity profiles

at the ground plane. However, few studies have investigated, as the present study does,

the detailed interactions of the rotor wake and the ground when there is a fuselage or body

present in the flow below the rotor.

1.3 Effect of a Body on a Rotor In-Ground-Effect

Previous work has examined the effects that the presence of a bluff body in the

rotor wake may have in terms of rotor performance [4, 9]. In particular, Fradenburgh [4]

made performance measurements of rotors operating in both IGE and OGE. This work

examined the changes in performance experienced by rotors as they were brought closer

to a ground plane. In addition, Fradenburgh compared the performance of rotors operating

IGE with and without a body (in this case a circular disk) placed in the rotor wake. These
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Figure 1.4: A schematic of the rotor wake for hover in IGE conditions.

studies showed that the presence of an object in the rotor wake can augment the benefits

of ground effect through a so-called “thrust recovery effect.” When a rotor and body

are operated out of ground effect, the vertical drag on the body produces a net down-

force that counters the thrust of the rotor. However, at lower heights above the ground,

the body will begin to produce a net upward thrust or thrust recovery effect that can

augment the thrust produced by the rotor itself; see Fig. 1.5. The reason for this behavior

is because of the disruption of the separated wake below the body by the ground plane.

While Fradenburgh made some flow visualization of the rotor wake (see Fig. 1.1 for an

example), no quantitative measurements of the flow field were made.

Prior work has shown the wake below a rotor to be rather complicated [10, 11, 15–

17] because of the presence of various vortical flow structures, including the tip vortices

and regions of turbulence; see Fig. 1.4. It is reasonable to assume that the addition of

a body below the rotor will further alter the flow field, and will potentially have a large
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Figure 1.5: A plot of the vertical drag on a circular disk under a rotor at various heights

off a ground plane [4].
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Figure 1.6: Schematic of the wake of a rotor and body when operating IGE.

effect on the development of the flow. In the schematic in Fig. 1.6, it can be seen that

the presence of the body may distort the slipstream boundary of the rotor flow, and also

change the trajectories of the tip vortices. On the left of the schematic, the body extends

beyond the radius of the rotor. In this case, the slipstream boundary may be significantly

distorted and it is likely that the blade tip vortices will impinge directly upon the body.

The wake of the body may also create regions of eddies and turbulence of greater intensity

than those produced by the rotor itself

1.4 Problem of Rotorcraft Brownout

The phenomenon of “brownout” occurs when rotorcraft operate over unprepared

ground surfaces that are covered in loose sediment such as sand. When the rotorcraft

flies close enough to the ground such that the rotor wake impinges on the surface, the

fluid dynamic forces there can be sufficient to cause sediment particles to be mobilized

and uplifted, culminating in the rapid development of a dense dust cloud. In this context,

“dust” refers to small sediment particles that are more easily suspended.

An example of a helicopter encountering brownout conditions during a landing in
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Figure 1.7: A helicopter generating a brownout dust cloud while landing in the desert.

(Image courtesy of Optical Air Data Systems LLC.)

the desert is shown in Fig. 1.7. As the brownout dust cloud develops, it can interfere with

the pilot’s ability to see the ground, as well as creating spurious sensory cues and vection

(i.e., apparent motion) illusions. In particular, the sudden loss of visual references can

pose a serious safety of flight risk. It has been reported that brownout is the leading cause

of human-factor related mishaps during military operations [43]. Civil rotorcraft have also

been reported to suffer from the problem of brownout when operating over unprepared

surfaces [44], especially during MEDEVAC operations.

There have been several recent attempts [45–49] to mitigate the problem of brownout,

although none have yet addressed the problem from the perspective of rotorcraft design.

Pilots have developed strategies to reduce the severity of the problem, including flying

closer to the ground at higher airspeeds to outpace the developing dust cloud, or using an
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increased rate of descent to land before the dust cloud can fully form. These operational

strategies may, however, require the pilot to perform unsafe maneuvers and execute a hard

landing, and in practice they have served to mitigate brownout only to a limited extent.

While the factors responsible for creating different brownout cloud intensities is

still the subject of research, it is the fluid dynamics of the rotor wake that are directly

responsible for the production of the brownout dust cloud. The rotor wake in terms of its

strength and structure is known to vary depending on parameters such as number of rotors,

blade number, blade twist, blade tip shape, fuselage shape, and rotor height off the ground.

However, definitive conclusions on the sensitivities of these parameters are difficult to

draw because of a dearth of really useful measurements of rotorcraft experiencing actual

brownout conditions. While Refs. [47–49] provide at least some results on the topic, the

lack of comprehensive quantitative measurements still makes it difficult to understand the

physical mechanisms that underlie the brownout problem.

Attempts have still been made to understand why some rotorcraft generate more

intense brownout signatures than others. Milluzzo and Leishman [50] have investigated

the effect of rotor operating conditions on the relative severity of the brownout dust cloud.

For example, Fig. 1.8 shows how average downwash velocity of the rotor is related to the

total wake strength. This figure also shows three regions of severity of brownout, which

were determined by a subjective assessment of photographic and videographic evidence

of rotorcraft experiencing actual brownout conditions. Because the total wake strength

is a consequence of several factors, including blade chord, radius, blade number, blade

loading coefficient, and rotational tip speed, all of these parameters can, ultimately, affect

the problem of brownout.
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Figure 1.9 shows a schematic that summarizes the fluid dynamic processes involved

in the phenomenon of brownout. Particles will become mobilized if the forces that result

from the rotor flow interacting with the sediment bed become greater than those forces

caused by interparticle cohesiveness and weight. While significant previous work has

been done on wind-driven sands and riverine flows with the purpose of identifying the

mechanisms responsible for sediment mobility [52–54], only recently have studies begun

to examine the flow field beneath a rotor to investigate how sediment mobility and uplift

may differ from the wind-driven environment [15, 16]. In particular, Sydney et al. [16]

has identified several fluid dynamic mechanisms below a rotor that are pertinent to the

development of brownout conditions.

Another effect, and one not considered by Milluzzo and Leishman [50], is that

the shape of the airframe may also affect the flow and the ground and hence the de-

velopment of brownout conditions. Heavy-lift cargo and transport rotorcraft often have

fuselages with relatively bluff, rectangular cross-sections that can produce significant tur-

bulent wakes in the slipstream of the rotor. Most helicopters, however, tend to have

narrower and more elliptical fuselages, and would be expected to produce wakes that less

disturb the overall flow. Nevertheless, the effects of the fuselage shape on the flow near

the ground and problem of brownout, at least at this point, is unknown. The present work

addresses some of these issues by making detailed flow measurements near the ground.

From these foregoing studies, it is now known that the structure and composition

of the vortical rotor wake has a significant influence on the uplift of sediment particles.

Specifically, the development of a radial flow along the ground influences the initial mo-

bilization of the particles, while a majority of particle uplift and entrainment is caused
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Figure 1.8: Severity of brownout as a function of downwash velocity and total wake

strength. (From Milluzzo [51]. Cleared for public release.)

by the action of the tip vortices. If these uplifted particles remain uplifted long enough,

they may be reingested by the rotor. Once this occurs, the rotor wake bombards the parti-

cles back onto the sediment bed, ejecting many more particles in the process and rapidly

causing more severe brownout conditions [55].

1.5 Objectives of the Present Work

The goal of the present research was to perform a detailed investigation of the fluid

dynamic environment of a rotor wake interacting with a ground plane and, more specif-
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Figure 1.9: Schematic showing the fluid dynamic mechanisms and modes of sediment

particle motion produced by the rotor wake from a helicopter hovering over a sediment

bed.

ically, to examine the effect that the presence of a bluff body beneath the rotor would

have on the resulting flow field. The primary goal of the study was to investigate the fluid

dynamics of the wake produced by a rotor operating in-ground-effect. Specifically, the

work examined the alterations to the structure of the rotor wake and the flow at the ground

that were caused by the introduction of a body into the flow below the rotor.

Three body shapes with different cross-sections, but representative of those used

on contemporary helicopters, were examined in comparison to the baseline case without

a body in the flow. A detailed study of the flow was undertaken using particle image

velocimetry with a two-bladed rotor system operating in-ground-effect at one rotor ra-

dius above a ground plane. Planar cuts were made in the region beneath the rotor, and

discretized into specific regions of interest so that the flow could be examined in the near-

field of the rotor and at various wake ages as it convected toward the ground plane.
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1.6 Organization of Thesis

This introductory chapter has introduced the fluid dynamic aspects of a rotor op-

erating in ground effect conditions and also the closely connected problem of rotorcraft

brownout. A summary of prior research work on the two problems has also been given.

Chapter 2 gives a description of the experimental set up used in the present research,

and the techniques that were used to acquire the flow and performance measurements.

Detailed descriptions of the principles of flow visualization and phase-resolved PIV are

given. Chapter 2 also explains the technical challenges that were experienced during the

experiments, and how these challenges were addressed. Chapter 3 discussed the experi-

mental results, focusing on the characterization of the flow field and the presentation of

the flow measurements, especially near the ground. Finally, Chapter 4 discusses the con-

clusions that were drawn from the present study, and also suggests future experiments to

improve the understanding of the aerodynamic flow fields generated by rotors in-ground-

effect conditions.
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Chapter 2

Description of the Experiments

2.1 Introduction

To gain a better understanding of the flow below a rotor operating in-ground-effect

and in proximity to a bluff body, phase-resolved flow visualization (FV) and particle im-

age velocimetry (PIV) experiments were performed. This chapter describes the rotor sys-

tem, the body shapes that were used, the general experimental setup and instrumentation,

the experimental techniques, and the various technical challenges that were encountered

during the work.

2.2 Rotor System

The experiments were conducted using a two-bladed rotor system mounted on a

teetering rotor hub. The rotor had variable collective pitch capability, which allowed its

thrust to be changed. The blades were untwisted with constant chord from root to tip and

had a NACA 2415 airfoil cross-section. The rotor had a radius of 16 inches (0.408 m)

and a chord of 1.752 inches (0.0445 m), giving a solidity, σ, of 0.0694. A sketch of the

rotor blades used in the experiments is shown in Fig. 2.1. The rotor system was driven

by a 3-phase, variable speed electric motor. Thrust and power measurements were made

using an integrated load and torque cell.
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Figure 2.1: Rectangular rotor blade used for the present experiments with its characteristic

dimensions.

The rotor was operated in the hovering state at a rotational frequency of 35 Hz

(2,100 rpm), producing a blade tip speed of 89.72 ms−1 (294.36 fts−1). The tip Mach

number was approximately 0.27 and the tip chord Reynolds number, Retip, was 285,000.

For all of the experiments, the rotor was operated at a disk loading, T/A, of 0.756 lb ft−2

and a blade loading coefficient, CT /σ, of 0.0533. The IGE experiments were all conducted

with the rotor plane at a height of one rotor radius above a circular ground plane.

2.3 Ground Plane

The ground plane used in the experiments had a diameter that was twice the rotor

diameter. A schematic of the setup of the rotor, the ground plane, and one of the bodies is

shown in Fig. 2.2. Notice that the rotor was tested with its axis of rotation being horizontal

rather than vertical. While the current work focused on measurements at a single rotor

height, the ground plane could also be repositioned to allow experiments to be performed

at different rotor heights.

Flow diverters were installed around the periphery of the ground plane to redirect

the remnants of the wake behind the plane and so limit the recirculation of any flow in
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Figure 2.2: A schematic of the position of the rotor, the body, and the ground plane.
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the test cell. Taking measurements of the flow field close to the ground required that

reflections of the laser off of the ground plane needed to be reduced to acceptable levels.

This goal was accomplished by painting the ground plane with a flat-black paint, as well

as by judicious adjustment of the orientation of the laser sheet. Other challenges in dealing

with surface reflections are discussed later in this thesis.

The bodies representing the fuselage of a helicopter were mounted on two steel

rods that extended horizontally from an independent support stand through holes cut in

the center of the ground plane. These rods were 0.5 inches in diameter and were located

below the axis of rotation of the rotor to minimize their influence on the flow. Both rods

were painted with anti-reflective paint to reduce surface reflections. The various bodies

could be positioned below the rotor at various heights and orientations, as required. For

the present experiments, the interest was in the flow around the front and rear parts of

each body.

2.4 Test Cell

The rotor was tested in a flow conditioned test cell. The cell consisted of a wooden

frame filled with aluminum honeycomb screens. The screens served as flow conditioners

that reduced turbulence in the air that entered the test cell upstream of the rotor. To

quantify the turbulence, several PIV measurements were taken in a region of quiescent

flow outside of the rotor wake, as shown in Fig. 2.3. The measured excursions from the

average flow velocity in this region are shown in Fig. 2.4. Such excursions represent

the value of free-stream turbulence and result in only small variations in the local flow
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Figure 2.3: A schematic of the region of interest (ROI) used to measure representative

turbulent velocities.

velocities. For the present experiments, the turbulence intensity of the incoming flow

found to be less than 1% of the rotor tip speed.

2.5 Body Shapes

Three different body shapes were used in the present experiments. A side view of

each body is shown in Fig. 2.5. The cross-sections of the bodies were circular, elliptical,

and rectangular, respectively.

The body dimensions and their placement relative to the rotor were determined

using historic data of existing helicopters [56]; see Fig. 2.7. Over 100 civilian and military

helicopters were examined, covering a wide range of vehicle gross weights and rotor

diameters. The dimensions and placement of the fuselage with respect to the rotor were
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Figure 2.5: Side view of the three bodies used in the present experiments: (a) circular, (b)

elliptical, (c) rectangular.
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Figure 2.6: Cross-sectional viewspf the body shapes: (a) circular, (b) elliptical, and (c)

rectangular.
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Cross-section m n1 n2 n3 a b Height (in) Width (in)

Elliptical 2 5 5 5 3.04 3.04 7.49 6.08

Rectangular 4 5 5 5 3.04 3.52 7.04 6.08

Table 2.1: Super-ellipsoid equation input values and resulting dimensions.

averaged to determine representative dimensions that were ultimately used for the bodies

that were tested in the present experiments.

Based on these historical data, the body length used was 0.9 rotor diameters, and

the body width was 0.19 rotor diameters. The top surface of each body was positioned

0.125 rotor radii from the rotor plane (0.875 rotor radii from the ground plane). The front

and rear of each body was 0.6 and 1.2 rotor radii from the rotational axis, respectively, as

shown in Fig. 2.8.

A super-ellipsoid was used to define the shapes of the elliptical and rectangular

body cross-sections by using the equation

r(θ) =
[∣∣∣∣cos(

1
4

mθ)/a
∣∣∣∣n2

+

∣∣∣∣sin(
1
4

mθ)/b
∣∣∣∣n3
]−1/n1

(2.1)

Table 2.1 shows the values used in Eq. 2.1 and the resulting dimensions of the cross-

sections of each body. The circular cross-section had a diameter of 6.08 inches (0.19

rotor diameters).

The bodies were manufactured using rapid prototyping from a honeycombed struc-

tural plastic with a high strength-to-weight ratio. They were painted with an ultra-flat

black paint and given a matt finish to reduce reflections from the laser light sheet. The

bodies could be mounted in two orientations with respect to the rotor, as shown in Fig. 2.8.

These orientations allowed for investigation of the flow over the front and rear of each
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Figure 2.7: Historical fuselage dimensions for helicopters and the chosen representative

dimensions of the bodies used for the current experiments.
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Figure 2.8: Schematic of the body location for the investigation of the flow field: (a) nose

and (b) tail.
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body without having to move the camera and optics.

2.6 Performance Measurements

To ensure that the rotor thrust and blade loading coefficient were constant through-

out the testing, both OGE and IGE, it was necessary to determine the relationship between

the rotor collective pitch angle and the rotor thrust. To this end, performance measure-

ments were taken to determine the thrust and power for the rotor system as a function of

collective pitch for the isolated rotor, as well as with each body in turn.

The rotor was mounted horizontally in a cantilevered position, so a load cell that

could withstand large extraneous loads was necessary. A combination load/torque cell

was installed that could measure up to 500 lb of thrust and 500 in-lb of torque. The

output of the load cell was conditioned and passed through a 32 bit analog-to-digital

(A/D) converter. The A/D converter was sensitive to small changes in the output voltage

from the load cell, allowing it to read small output signals without the use of an amplifier.

However, a low-pass filter was also employed to remove any noise.

The integrated load/torque cell was calibrated using known weights to determine a

relationship between the applied loads and the output voltages. Thrust and torque tares

were performed without rotor blades at rotational frequencies between 25 and 35 Hz;

the tares have been removed from all of the balance measurements that are shown and

discussed in this thesis.

A laboratory barometer and thermometer were used to measure the temperature

and barometric pressure, respectively, which were used to calculate the density of the air
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using the equations of the standard atmosphere. During testing, the collective pitch was

periodically adjusted to keep thrust and blade loading coefficient constant.

2.7 Instrumentation and Setup

The two measurement techniques used in the present experiments utilized the same

instrumentation and experimental setup. To illuminate the flow, a Nd:YAG laser that

emitted light with a wavelength of 532 nm with 200 mJ/pulse at a rate of 15 Hz was used.

A 4 mega-pixel (4 Mp) CCD camera that could capture 15 frames/second at a resolution

of 2,048-by-2,048 pixels was used to image the flow. The FV measurements used a wide

angle 28 mm camera lens with an f-stop of 2.8, and the PIV measurements used a 105 mm

lens with an f-stop of 2.8.

The laser light was thinned into a sheet to illuminate the desired region of interest

(ROI), as shown in Fig 2.9. To this end, the laser was fired off a mirror and through

spherical and convex lenses. The spherical lens converted the beam into a light sheet

and the convex lens thinned the sheet to a thickness of approximately 1 mm at its waist

[10, 57]. The viewing axis of the camera was oriented orthogonally to the plane of the

light sheet, and carefully focused on the desired region of interest in the rotor wake.

For both the FV and the PIV, the light sheet was aligned such that the cameras could

capture images of the flow along the longitudinal axis of each body. This position was

chosen because any effects in the flow that arises from differences in body shape are likely

to be most pronounced along the longitudinal axis compared to laterally.

Because the laser repetition rate (15 Hz) was less than the rotational frequency of
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the rotor (35 Hz), it was necessary to synchronize the rotor and imaging system using

a combination of electronics and software. The rotational frequency of the rotor was

measured with an infra-red sensor, which output a once-per-revolution signal. This signal

was converted into a square-wave signal and read into a timing hub that converted it

into a TTL signal to trigger the laser, which could also be modified with a phase delay.

This delay allowed for the selection of any blade azimuthal position, ψ, which enabled

measurements to be taken at different wake ages, ζ. Notice that wake age is defined as

the time in degrees of rotor rotation that has passed since the development of a vortex

element in the flow. In the present work an azimuthal increment of 30◦ was used, so that

for the present experiments the flow could be measured at wake ages of ζ = 30◦, 60◦, 90◦,

etc.

2.8 Seeding

To produce seed particles for both the FV and PIV, a mixture of pressurized nitrogen

gas and a mineral oil were heated until the oil vaporized. The vaporized mixture was

then ejected into the cooler ambient air, where the temperature decreased rapidly and the

mixture condensed into a thick white fog. Over 95% of the seed particles produced by

this method have been shown in previous work [58] to have diameters of 0.2 µm, small

enough to minimize the particle tracking errors.

The FV and PIV required different flow seeding techniques. For the FV, a large

amount of seed was injected quickly into the flow using a series of ducts. This technique

produced concentrated bands of seed particles that became entrained into the flow and

31



could be used to visualize the pertinent flow structures. For the PIV measurements, the

seeding was more uniformly dispersed. In this case, with the seed particles dispersed

throughout the flow, the flow structures were not easily identified. However, this seeding

produced the “star field” patterns needed to perform successful cross-correlations with

the images for making PIV measurements.

2.9 Flow Visualization (FV)

Detailed FV experiments were performed in the rotor wake with a wide-angle lens

that could view the entire plane of the wake illuminated by the laser sheet. The objective

here was to obtain a qualitative view of the rotor wake as it interacted with the ground

plane, as well as to compare the wake of the rotor in the presence of a body. Of particular

interest were the trajectories of the tip vortices as they convected towards the body and

toward the ground plane along a longitudinal plane passing through the body.

2.10 Particle Image Velocimetry (PIV)

While the FV provided good qualitative insight into the flow structures present in

the rotor wake, quantitative measurements were obtained using PIV. PIV is a non-intrusive

technique that allowed for the measurement of the flow velocities in a plane at a single

instant in time. PIV is also a planar measurement method and has a significant advantage

over other types of point-by-point flow field measurement techniques like laser Doppler

velocimetry (LDV) or hot wire anemometry.

Stereosopic PIV, which measures velocity components in all three dimensions would
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be the ideal measurement technique for these experiments. However, stereoscopic PIV

would require significant experimental complexity and processing time greater than that

available for the current experiment. Because this experiment was mainly a scoping ex-

periment to develop a fundamental understanding of the effect of body shapes on the flow

under a rotor, 2-D PIV was deemed to be sufficient for the current purposes.

To perform the PIV measurements, the flow was seeded with sub-micron particles.

The flow was illuminated by the laser twice over a short time, ∆t, on the order of micro-

seconds, and a pair of images is generated from the Mie scattering by the particles. To

extract the velocity fields, the images were sub-divided into many small interrogation

areas (i.e., 16x16, 32x32 pixels) [59]. To calculate the pixel displacements of the seed

particles between the two images, a cross-correlation algorithm was employed. The dis-

placements were calculated to sub-pixel accuracy for each interrogation area, assuming

the particles are displaced an equal amount between the two images. This process yielded

a single velocity vector for each interrogation area.

The cross-correlation was performed using a Fast Fourier Transform in the fre-

quency domain, and then converted to the spatial domain [60, 61]. Using the pixel dis-

placements ∆x and ∆y, the local velocity vectors are calculated using

(U,V ) =
(∆x,∆y)

M∆t
(2.2)

where M is the image magnification calculated by determining the number pixels in the

image that correspond to the size of an object of known dimensions (i.e., a scale). A

schematic of the process is shown in Fig. 2.10. This basic procedure was followed for all

interrogation regions.
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Figure 2.11: Regions of interest (ROI) in the present work, which encompassed the wake

near the rotor, the body, and the ground plane.

While PIV allows for quantitative analysis of the flow structures in the rotor wake,

the spatial resolution necessary to track the seed particles required that smaller regions of

the flow be investigated. As shown in Fig. 2.11, the area of investigation was subdivided

into ten ROIs. For each ROI, measurements were taken with the isolated rotor first, and

then with each body in sequence. Measurements were taken at the front and rear of each

body so that the flow beneath the rotor could be analyzed in both areas. These regions

provided a full coverage of the desired section of the rotor wake, and allowed for the

tracking of the wake down to the ground plane while still maintaining sufficient spatial

resolution with the 4 Mp camera to resolve the vortices in the flow. Using PIV, the flow

structures near the ground could be resolved to as close as 0.2% R (0.032 inches) from

the ground plane.

For each ROI, 500 PIV image pairs were taken at azimuthal increments of 30◦.

Previous work [62] has shown that 500 image pairs provide sufficient statistical data to
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ensure the accuracy of the measurements in a vortex flow. ROI 2–10 used interrogation

windows of size 24-by-24 pixels; this grid provided the necessary spatial resolution to

resolve the flow structures in the rotor wake. The flow analysis for ROI 1 was more

difficult, and will be discussed further in the next section.

An image deformation method with a 50% overlap was used for the cross-correlation

processing [63]. This method began with an interrogation window size of 48-by-48 pix-

els and iterated to a 24-by-24 pixel window size. Local vector validation was performed

using the universal median test with a 3-by-3 vector neighborhood, and output to a vector

conditioning program. The conditioning program used a local median test with 3-by-3

neighboring vectors. A Gaussian peak with a signal-to-noise ratio of 1.5 was used to

identify spurious vectors, and images with more that 5% spurious vectors were removed

from the analysis. Fewer than 1% of the images taken during the present experiments

were rejected because of spurious vectors.

A disadvantage of the PIV system used here was that only a small section of the

flow could be observed at one time. Therefore, the images could not yield flow mea-

surements that were temporally correlated. Furthermore, as with the flow visualization,

the PIV system could only acquire data at a sub-multiple of the rotor frequency, so the

developments of individual flow structures could not be tracked in time.

2.10.1 Challenges with PIV

Several challenges arose while performing PIV measurements, particularly when

measurements were taken near solid boundaries such as the body or a ground plane. One
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significant problem is the surface reflections produced by the laser sheet, which may be

of a higher intensity than the Mie scattering from the seed particles in the flow. Such

reflections can create difficulties in obtaining good cross-correlations. An example of

reflections off the ground plane is shown in Fig. 2.12.

During testing, several methods were found to reduce such reflections. Several

types of paints were tested to determine their reflective properties, and a specific anti-

reflective flat black paint was finally selected. Periodic cleaning of the surface also proved

to be an effective means of minimizing reflections; during testing some of the seed par-

ticles would condense on the ground plane and a thin film of oil would develop. Oil has

much stronger reflective properties than the paint, and so the oil was removed periodically

by wiping the surface with damp rags and then drying it with a lint-free cloth.

The most effective technique for reducing reflections was judicious laser alignment.

The laser optics were positioned such that the surface of the ground plane bisected the

laser light sheet. Therefore, the light rays were more parallel to the surface, significantly

reducing reflections. Figure 2.12 shows an example of the reduced reflections after the

laser alignment had been performed.

Reflections from the bodies and the body mounting structures were also of concern.

While the mounting rods supporting the bodies were painted flat black, there were still

some reflections. To remove these reflections, all surfaces were covered with a reflection

absorbing cloth. To remove reflections from the bodies themselves, it was necessary to

treat the body surface with an ultra-flat black paint with a matt finish similar to that used

for the ground plane. The outcome was that reliable PIV measurements could be taken

much closer to the surface of the body.
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(a) Before

(b) After

Figure 2.12: Reflections off the ground plane: (a) before and (b) after the implementation

of reflection reduction techniques [15].
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Figure 2.13: PIV image showing the two grid sizes.

A different cross-correlation technique was used for making PIV measurements in

ROI 1 [64] because this region had sections of both axial (downward) and radial (outward)

flows. To resolve both flow types, it was necessary to divide this ROI into two sections.

To this end, a primary cut was made approximately 20 mm above the ground plane;

see Fig. 2.13. Above this cut, the flow was primarily in an axial direction and contained

significant influences from the tip vortices. This region was analyzed with the same cross-

correlation technique as used in the other regions, as described in previously.

Below the cut, the flow had turned to form an outward moving wall-jet type of tur-

bulent flow along the ground plane with high wall-normal velocity gradients. To measure
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this flow, rectangular PIV interrogation windows were required to obtain the necessary

spatial resolution to resolve small-scale fluctuations in the boundary layer. To this end,

the interrogation windows were modified to a size of 8-by-24 pixels. Rectangular interro-

gation windows were not used for ROI 2. Although this region was also near the ground,

at these locations the flow was still in the process of turning outward and so they con-

tained significant axial (downward) velocities. When rectangular interrogation windows

were used in ROI 2, inaccurate cross-correlations were obtained.

2.11 Uncertainties in the PIV Measurements

There are several sources of measurement uncertainty that arise when using PIV

to measure the flow. These sources include particle tracking errors, laser reflections,

background noise, laser pulse separation time (from uncertainties in the software), and

interrogation window size. Errors occur when the seed particles do not accurately follow

the flow. In the present tests, however, the seed particles that were used have been shown

in previous work [58] to produce small tracking errors.

Background noise, which may result in inaccurate cross-correlations and erroneous

vectors, arises from electrical noise in the camera CCD that may create artificial inten-

sities in the image pair. Background noise errors were reduced by implementing a strict

signal-to-noise ratio when assessing vector validity.

To minimize the resulting errors, an image deformation method was implemented.

The estimated pulse separation uncertainty was 0.005% and the magnification factor error

was 0.95%. Along with the estimated pixel displacement uncertainty of 4.7%, these val-
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ues can be used to determine the total uncertainty in measurements of flow velocity (U)

by using the equation

∆U =

√(
∆ε∆x

∂U
∂∆x

)2

+

(
∆ε∆t

∂U
∂∆t

)2

+

(
∆εM

∂U
∂M

)2

(2.3)

where ε∆x,ε∆t , and εM are the pixel displacement, pulse separation time, and magnifica-

tion factor, respectively. The total error in the flow velocities was estimated to be approx-

imately 4.9% for the present experiments.

2.12 Summary

The present chapter has discussed the experimental setup, techniques, and method-

ologies used to obtain measurements of the flow below a rotor operating in-ground-effect

conditions. The rotor was examined in isolation, as well as in the presence of three bod-

ies with three different cross-sections namely circular, elliptical, and rectangular, respec-

tively. The body dimensions and placement were chosen based on historic data trends

from contemporary helicopters. The technical challenges encountered during the experi-

mental process were discussed, and estimates of the sources of error were presented. The

results obtained from the measurements are discussed in the following chapter.
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Chapter 3

Results and Discussion

3.1 Introduction

As discussed in Chapter 1, the structure and characteristics of the wake generated

by a hovering rotor in-ground-effect can be affected by the presence of a body in the

wake below the rotor. The resulting velocity field at the ground may also be affected

by the body, and so the body may potentially affect the brownout signature that would

be generated by the rotor if was operating over a mobile sediment bed. To this end, the

present study has measured the flow fields generated by a two-bladed rotor in isolation

over a ground plane and also in proximity to three bodies of different cross-sectional

shapes, the experimental setup having been described in Chapter 2.

3.2 Performance Measurements

Rotor performance measurements were taken, the procedures being discussed in

Section 2.6. Power polars for the isolated rotor and with the three body shapes are shown

in Fig. 3.1. It can be seen that the presence of the bodies had relatively small effects

on the thrust generated by the rotor or the power required for its operation. The trend

lines shown in this figure were calculated by using the momentum theory for a hovering
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Body Shape CP0 κ Cd0

Isolated Rotor 0.0001210 1.1394 0.01395

Circular 0.0001105 1.1459 0.01273

Elliptical 0.00012063 1.1704 0.01390

Rectangular 0.0001106 1.1906 0.01275

Table 3.1: Profile power coefficient and induced power coefficient, and profile drag coef-

ficient for the isolated rotor and the rotor with each body shape.

rotor [65], i.e.,

CP =CP0 +
kCT

3/2
√

2
(3.1)

where CP0 is the profile power coefficient and κ is the induced power factor. Confidence

in this fit, quantified as the coefficient of determination, R2, was over 0.995 for all cases.

The resulting values of CP0 and κ are presented in the Table 3.1. All cases had

similar values of CP0 and profile drag coefficient, Cd0 . The bodies caused an increase in

induced power coefficient, which is expected, as a body under the rotor must alter the

rotor inflow distribution to some degree. Inflow distribution is strongly linked to induced

power coefficient. The body with the rectangular cross-section was noted to require the

most power. The values of κ are typical of what might be expected from a rotor with

untwisted blades such as the one used in the present experiments.

Performance measurements were taken by varying the collective pitch while main-

taining the rotor a constant rotational frequency (in this case, a rotational frequency of

35 Hz or 2,100 rpm was used). This approach allowed for the relationship between the

blade loading coefficient, CT/σ, and the collective blade pitch, θ0, to be established,

43



which shown in Fig. 3.2. Using blade element momentum theory (BEMT) from Ref. [65],

a trend line was created using the equation

θ0 =
6CT

σClα

− 3
4

θtw +
3
2

√
CT

2
(3.2)

Notice that θtw = 0 in this previous equation because the blades are untwisted. A least-

squares fit was used to match the trend line to the data. The coefficient of determination

for each case was over 0.995. Using this relationship, collective pitch could be adjusted

as desired to ensure that such that all of the measurements were taken at a constant blade

loading coefficient, which in this case was CT/σ = 0.0533.

The vertical force acting on each of the bodies that were beneath the rotor was also

measured. Figure 3.3 shows the variation of the body forces as a function of blade loading

coefficient. The body force coefficient was calculated using

CFb =
Fb

ρAVtip
2 (3.3)

where Fb is the vertical force on the body and the other symbols have their usual meaning.

It is interesting to note that for Fig. 3.3, the bodies with circular and elliptical cross-

sections experienced similar loads for at the same values of CT/σ. Furthermore, at the

higher values of CT/σ both bodies develop an up-force, which is an indication of the

Fradenburgh “thrust recovery effect.” The difference in the loads between the circular

and elliptical cross-sections is likely a result of differences in wake shape caused by the

different curvature of the cross-sections. In particular, the body with the elliptical cross-

section has more shallow curvature, causing the flow to stay attached longer to the body

and resulting in a smaller wake. However, the body with the rectangular cross-section

showed a different trend in the vertical force over the same range of CT/σ. After an
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initial small increase in up-force at low blade loading coefficients, the body developed

a downforce as CT/σ increased. In this regard, the circular and elliptical cross-sections

are more similar in shape, so that the force on the body with rectangular cross-section

expected to behave differently when it is located inside the rotor wake. The wake structure

below each of the bodies is discussed later in this chapter.

3.3 Rotor Wake Structure

Before investigating the details of the rotor wake, it was first necessary to examine

the general structure of the wake as a whole. To this end, phase-resolved flow visualiza-

tion of a large section of the rotor wake was conducted. The flow visualization produced

images of the rotor wake as it convected towards the ground plane. It is important to note

that the field of view for the flow visualization images covered all of the ten ROIs used

for the PIV; see Fig. 2.11.

To provide a baseline for comparison, flow visualization (FV) was first conducted

on the isolated rotor. Figure 3.4 shows and example of FV that was taken at a blade

azimuth angle, ψb, of 0◦. Each blade trails a wake dominated by helicoidal tip vortex

that intersects the light sheet at wake ages ζ = (ψb + 360◦)/Nb, where Nb is the number

of rotor blades. Recall that a 2-bladed rotor was used, therefore, for ψb = 0◦ the present

rotor produced vortex filaments that intersected the light sheet at ζ = 180◦, 360◦, 540◦,

etc.

The tip vortices could easily be distinguished by the dark seed “void” that forms

because of the small centrifugal accelerations acting on the seed particles at the center of

45



Momentum theory

Figure 3.1: Plot of power polars for the isolated rotor and for the rotor with the three body

shapes, with curve fits from momentum theory.
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BEMT

Figure 3.2: Plot of thrust coefficient versus collective pitch with curve fits from the BEMT.
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Figure 3.3: Vertical loads on each of the three body shapes over a range of rotor blade

loading coefficients.
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Figure 3.4: Flow visualization image of the isolated rotor wake at a blade azimuth angle

of ψb = 0◦.

the vortex flow. Although there appear to be no seed particles in the vortex core as seen in

the flow visualization, this area can still be seeded sufficiently to make PIV measurements,

i.e., to enable successful cross-correlations of the PIV image pairs.

From an examination of the results shown in Figs. 3.5, 3.6 and 3.7, it is evident that

the rotor wake is qualitatively similar as it approaches the nose of each body as compared

to the wake obtained with isolated rotor. Both the trailed tip vortices and turbulent wake

sheet can be clearly seen. Notice that apparent differences in the size of the seed voids

do not necessarily reflect any variations in the strength or structure of the tip vortices

because seeding distributions can vary between the various tests. (Consistency of seeding
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Figure 3.5: Flow visualization of the rotor wake over the nose of the body with the circular

cross-section at a blade azimuth of ψb = 0◦.

is almost impossible to achieve.) In all cases, the wake then convects towards the ground

plane, where it then turns radially outward to become more of a wall-parallel flow as it

develops over the ground.

Further examination of the flow visualization shown in Figs. 3.5–3.7 reveals that

the tip vortices obtained with the bodies with the circular and elliptical cross-sections fol-

lowed similar trajectories as they convected towards the ground. However, with the body

with the rectangular cross-section, the tip vortices were clearly located farther inboard

radially with less overall expansion of the rotor wake.

Using a number of instantaneous PIV realizations of the flow, it was possible to
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Figure 3.6: Flow visualization of the rotor wake over the nose of the body with the ellip-

tical cross-section at a blade azimuth of ψb = 0◦.
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Figure 3.7: Flow visualization of the rotor wake over the nose of the body with the rect-

angular cross-section at a blade azimuth of ψb = 0◦.

52



calculate the average spatial locations of the vortices in terms of their axial displacements

below the rotor (or height from the ground plane) and distance from the rotational axis of

the rotor. The centers of the vortices (i.e., the place where vorticity is at a maximum) were

identified using the two-dimensional Q-criterion, which is discussed in Appendix A. This

method was chosen because it can be used to accurately calculate the center of a vortex

flow when using a minimum number of PIV realizations [12]. Using this method, vortex

centers could be located to wake ages in excess of 1000◦.

Figures 3.8 and 3.9 show the rotor wake geometry in terms of the radial and axial

locations of the tip vortices at various wake ages. As shown in Fig 3.8, the radial locations

of the wake were very similar for each of the three body shapes, as well as for the isolated

rotor. However, the wake geometry produced with the body with the rectangular cross-

section are located further inboard radially compared to the isolated rotor or the other

bodies; these differences are particularly evident from ζ = 450◦ to ζ = 900◦. As shown

in Fig. 3.9, the axial displacements of the wake in all cases are similar over a the range of

wake ages that were measured.

Figure 3.10 shows the radial and axial locations of the vortices with respect to the

rotor for the isolated rotor and beyond the nose of each of the body shapes. It can be seen

that the wake in all cases is typical of a hovering rotor IGE. As was previously noted, a

significant portion of the wake boundary for the body with the rectangular cross-section

was noticeably further inboard compared to the wake boundaries that were obtained with

the isolated rotor or with the other two bodies.

Flow visualization at the tail of each body in the rotor wake, which is given in

Figs. 3.11 through 3.13, showed that the tip vortices impinged on the body in this case.
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Figure 3.8: Tip vortex radial locations as a function of wake age, ζ, for the isolated rotor

and at the nose (front) of each body. See Figs. 3.4–3.7.
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Figure 3.9: Tip vortex axial locations as a function of wake age, ζ, for the isolated rotor

and at the nose (front) of each body. See Figs. 3.4–3.7.
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Figure 3.10: Axial and radial locations of the vortex centers along the wake boundary for

the isolated rotor and at the nose (front) of each body. See Figs. 3.4–3.7.
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Figure 3.11: Flow visualization of the rotor wake over the tail (rear) of the body with the

circular cross-section at a blade azimuth of ψb = 0◦.

For the bodies with circular and elliptical cross-sections, the tip vortices could be seen

to impinge upon the upper part of the body and then convect a short distance radially

outward along the body surface. With the body with the rectangular cross-section, the

vortices directly impinged upon the top of the body and then were very rapidly diffused,

i.e., they effectively burst. In each case, there was a large area of turbulent flow below the

body that resulted from the disrupted rotor wake.
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Figure 3.12: Flow visualization of the rotor wake over the tail (rear) of the body with the

elliptical cross-section at a blade azimuth of ψb = 0◦.
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Figure 3.13: Flow visualization of the rotor wake over the tail (rear) of the body with the

rectangular cross-section at a blade azimuth of ψb = 0◦.
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3.4 PIV Measurements

Using time-resolved ensemble averages of the PIV realizations in each ROI, it was

possible to mosaic the different ROIs together to produce time-averaged velocities in a

larger region of the rotor wake, similar to the larger ROI obtained using the FV. The time-

averaging process can be used to calculate the average wake velocities over a full rotation

of the rotor. Time-averaging was performed by first calculating the phase-resolved en-

semble averages for each wake age, and then performing an ensemble average over the

range of wake ages, i.e., using

U =
ψfinal

∑
ψ=0

Ni

∑
n=0

−→
U (3.4)

where U is the time-averaged velocity, ψ is the wake age, Ni is the number of images, and

−→
U is the instantaneous velocity at each point in the flow. In this case, the value of ψfinal

was 330◦, representing one full revolution of the rotor. It was also necessary to position

the separate ROI’s together to establish a full flow field. For ROI positioning, the axial and

radial locations of each ROI were measured and recorded. Small positioning adjustments

were made by relocating the ROI’s such that the velocity gradients in overlapping regions

matched for different ROI’s. The results in Fig. 3.14 show a time-averaged contour plot

of the wake of the isolated rotor, the color of the contour corresponding to the magnitude

of the velocity at that point.

The results shown in Figs. 3.15 through 3.17 indicate that the flows over the front

of the bodies were similar to that of the isolated rotor. However, the flow over the bodies

with the circular and elliptical cross-sections had slightly higher velocities as the flow

neared the ground. In the case of the bodies with elliptical and circular cross-sections, the
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V/Vtip: 0.011 0.022 0.033 0.044 0.055 0.066 0.077 0.0880

Figure 3.14: Time-averaged PIV measurements of the rotor wake for the isolated rotor.
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flow appeared to separate from the body surface approximately midway down the body

and close to its longitudinal centerline. flow separation was a consequence of the adverse

pressure gradient that is generated as the body curves away from the flow. The wake

around the body with the rectangular cross-section, however, showed regions of higher

flow velocity over the body surface, which is expected as the rectangular cross-section

does not curve away from the flow until near the bottom of the body. Clearly, the onset of

this flow separation poses a significant modelling difficulty. As the flow neared the ground

plane and turned more radially outward, regions of higher flow velocity were also found

closer to the ground plane than with the isolated rotor or with the other body shapes. It is

also important to note that the flow remained attached to the surface of the body with the

rectangular cross-section for a greater downstream distance and, therefore, it separated

later and produced a different wake size.

An examination of the time-averaged flow over the rear of the bodies, as shown

in Figs. 3.18 through 3.20, helps to clarify and quantify the observations made with the

FV. For the bodies with circular and elliptical cross-sections, an area of separated flow

can be seen with the point of flow separation occurring close to the bottom of the body

at a height of approximately z/R = 0.5 from the ground plane. Near the ground, there

is a large region of lower-speed flow, which eventually reorganizes to form a wall jet

flow with similar velocities to the wall-parallel flow found below the nose of the bodies;

see Figs. 3.15 through 3.17. With the body with the rectangular cross-section, the flow

separated from the upper corner of the body (Fig. 3.20), and remained separated thereafter.

At more radially outboard locations the flow at the ground plane below the body with the

rectangular cross-section was found to be of lower velocity than was obtained with the
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Figure 3.15: Time-averaged PIV measurements of the rotor wake over the nose of the

body with the circular cross-section.
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Figure 3.16: Time-averaged PIV measurements of the rotor wake over the nose of the

body with the elliptical cross-section.
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Figure 3.17: Time-averaged PIV measurements of the rotor wake over the nose of the

body with the rectangular cross-section.

65



Figure 3.18: Time-averaged PIV measurements of the rotor wake over the tail of the body

with the circular cross-section.

isolated rotor or with the other two bodies Figs. 3.18 and 3.19.

3.5 Details of the Flow at the Ground Plane

Figure 3.21 shows a schematic of the general flow field observed as the rotor wake

convected toward the ground plane. This figure shows the ROIs where PIV measurements

were performed, as well as the positions where velocity cuts were made. In this region

near the ground, the rotor wake interacts with the ground plane causing the flow to rapidly
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Figure 3.19: Time-averaged PIV measurements of the rotor wake over the tail of the body

with the elliptical cross-section.
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Figure 3.20: Time-averaged PIV measurements of the rotor wake over the tail of the body

with the rectangular cross-section.
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Figure 3.21: Schematic of the flow as it interacts with the ground plane showing the ROIs

and positions where velocity profile cuts were made.

turn and flow outward, as well as stretching and intensifying the vortex filaments [11].

As the flow convects radially outward, it begins to develop into a wall jet type of flow.

Previous work has shown that if the wall jet is viewed as boundary layer region supplied

with momentum from the rotor, the local velocities are greater than the velocities in the

upstream flow [66, 67]. In this case, the wall jet also contains significant vorticity that

originated in the rotor wake, i.e., the tip vortices and the turbulent vortex sheets.

Time-averaged and instantaneous wall-parallel velocity profiles were obtained close

to the surface of the ground. Figure 3.23 shows the time-averaged measurements of the

radial flow velocities generated by the rotor at several downstream distances beyond the

nose of each of the three body shapes. The slight discontinuities seen in these results are

because of the change of the grid near the ground plane; the grid was altered as needed to

obtain higher spatial resolution at locations very close to the ground.
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At more radially inboard locations, the velocity profiles do not yet resemble those of

a fully-developed turbulent wall jet, i.e., the profile shown in Fig. 3.22. At these locations,

the flow is still turning from a mostly downward to an outward direction as it begins to

interact with the ground plane. As the flow moves farther outward along the ground

plane, the velocity profiles begin to resemble a more classical type of wall jet profile

[68, 69]. As shown in Fig. 3.23, the velocity profiles below the nose of each of the three

bodies are similar in shape to the velocity profiles generated by the isolated rotor. It

is interesting to note that at r/R = 1.6, the bodies with the circular and elliptical cross-

sections also produce velocities that are very similar in magnitude and form to those

produced by the isolated rotor. However, it can be seen that at all radial locations the

body with the rectangular cross-section produces a wall-parallel velocity of noticeably

higher magnitude.

In Fig. 3.24, the time-averaged, wall-parallel velocity profiles near the ground at

the tail of each body are shown. In this case, the profiles at the ground obtained with each

body shape differed significantly from those obtained with the isolated rotor. Specifically,

at the more inboard radial locations the flow under the bodies showed higher velocities

near the ground plane. These differences are a result of the large scale disruption of the

rotor wake that is caused by the presence of the body.

As the flow then moves radially outward along the ground plane, the flow begins

to develop into a profile that is more similar to a classical wall jet. For each of the three

body shapes, the profile develops more slowly and still shows some differences to the

fully developed wall jet flow at r/R = 1.6. It is interesting to notice, however, that the

maximum velocities at r/R = 1.6 are similar to the maximum wall-parallel velocities that
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Figure 3.22: Wall-parallel velocity profile of a classical wall jet.

were obtained with the isolated rotor, as well as to the flow that was measured downstream

of the nose of each body.

Figure 3.25 shows instantaneous velocity profiles of the wall-parallel velocity for

the isolated rotor and at the nose of each body. These profiles now include stochastic

effects such as those produced by the localized turbulence and the tip vortices that have

been removed in the time-averaging process. For each body shape in turn, the instan-

taneous image with the largest velocity excursions was selected. This means that each

velocity profile corresponds to a different wake age, and so the flows are not necessarily

temporally correlated. The magnitude of the maximum fluctuations was found to be sim-

ilar for the isolated rotor and for each body shape. The largest fluctuations shown in these

profiles the consequence of a blade tip vortex present in the flow. The smaller fluctuations

shown in Fig. 3.25 are the result of eddies and turbulence produced by the interactions of
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.23: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

Grid Size: 24 x 24
Grid Size: 8 x 24

(d) r/R = 1.3

Figure 3.23: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(e) r/R = 1.4

Grid Size: 24 x 24
Grid Size: 8 x 24

(f) r/R = 1.5

Figure 3.23: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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Grid Size: 24 x 24
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(g) r/R = 1.6

Figure 3.23: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.24: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

Grid Size: 24 x 24
Grid Size: 8 x 24

(d) r/R = 1.3

Figure 3.24: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(e) r/R = 1.4

Grid Size: 24 x 24
Grid Size: 8 x 24

(f) r/R = 1.5

Figure 3.24: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(g) r/R = 1.6

Figure 3.24: Time-averaged measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.

79



the rotor wake with the ground. It is interesting to note that for each case, the velocity

profiles at r/R = 1.6 are dominated by turbulence in the flow rather than the effects of any

coherent vortices.

In Fig. 3.26, the corresponding instantaneous velocity profiles of the wall-parallel

velocity downstream of the tail each body are shown. As mentioned previously in Sec-

tion 3.3, the tip vortices impinge on the rear of the body just below the rotor tip, and

quickly diffuse thereafter. Therefore, as shown in Fig. 3.26, the velocity profiles to the

rear of the bodies become dominated by the effects of turbulence. In this case, however,

the fluctuations from turbulence are larger than was seen in front of each of the bodies;

this turbulence is a consequence of the disruption of the slipstream boundary of the rotor

and the turbulent wake produced below the bodies.

Measurements were also made of the wall-normal (axial) velocities at the various

radial locations near the ground. Figure 3.27 shows the normalized wall-normal velocity

at the points of interest. At inboard radial locations, the rectangular and circular cross-

sections produce higher velocity magnitudes near the ground than the isolated rotor and

the body with the elliptical cross-section. At farther downstream radial distances, the

wall-normal velocity profiles converge. This suggests that the effects of a body below the

rotor is limited to inboard radial locations.

In Fig. 3.28, the wall-normal velocity profiles are shown for near ground locations

at the rear of each body. It is immediately clear that the wall-normal flow below the

tail of the bodies with the circular and elliptical cross-sections produce lower velocity

magnitudes than for the isolated rotor at inboard radial locations. The profiles obtained

with these two body shapes are very similar. The body with the rectangular cross-section
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.25: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

(d) r/R = 1.3

Figure 3.25: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(e) r/R = 1.4

(f) r/R = 1.5

Figure 3.25: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(g) r/R = 1.6

Figure 3.25: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.26: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

(d) r/R = 1.3

Figure 3.26: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(e) r/R = 1.4

(f) r/R = 1.5

Figure 3.26: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(g) r/R = 1.6

Figure 3.26: Instantaneous measurements of the wall-parallel flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.27: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

Grid Size: 24 x 24
Grid Size: 8 x 24

(d) r/R = 1.3

Figure 3.27: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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Grid Size: 24 x 24
Grid Size: 8 x 24

(e) r/R = 1.4

Grid Size: 24 x 24
Grid Size: 8 x 24

(f) r/R = 1.5

Figure 3.27: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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Grid Size: 24 x 24
Grid Size: 8 x 24

(g) r/R = 1.6

Figure 3.27: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R

= 1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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produces a different profile with smaller velocity magnitudes. Interestingly, the body with

the rectangular cross-section produces slightly positive velocities at various points. While

the profiles become much more similar at greater downstream distances, some differences

still remain, suggesting that the effects of the body shapes are longer lasting beyond the

tail section.

Figure 3.30 shows the Reynolds shear stress, −ρu′v′, at at the ground plane at

several radial locations downstream from the nose of the bodies. In these results, the

Reynolds stress has been normalized by the tip velocity squared, i.e., by −u′v′/V 2
tip. Pre-

vious work [70–72] has shown that the Reynolds stresses are primary contributors to the

stresses acting on a sediment bed and, therefore, they have a primary effect on particle

mobilization and uplift. Figure 3.30 shows a schematic of a classical wall jet with the

typical Reynolds stress profile. It is important to note that in Fig. 3.30, Reynolds stress is

given as u′v′/V 2
tip and as such the values are of opposite sign to those shown in the current

experiments, meaning that the profile will be “mirrored” about its vertical axis. However,

the general shape of the profile is still very similar.

The highest shear stresses occurred in the shear layer that forms along the slipstream

boundary, where the high-speed flow inside the wake interacts with the low-speed flow

outside the wake. Performing a simple ensemble average of the flow measurements tends

to smooth the effects of coherent vortical structures, causing the averages to resemble a

more classical turbulent jet flow [68, 69]. However, the average shear stress in the shear

layer is still greater because of the remnants of the tip vortices [72]. It can be seen that

in all the radial cuts, the bodies with the circular and elliptical cross-sectional shapes

produced similar levels of Reynolds stress. These bodies showed Reynolds stress profiles
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.28: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

Grid Size: 24 x 24
Grid Size: 8 x 24

(d) r/R = 1.3

Figure 3.28: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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Grid Size: 24 x 24
Grid Size: 8 x 24

(e) r/R = 1.4

Grid Size: 24 x 24
Grid Size: 8 x 24

(f) r/R = 1.5

Figure 3.28: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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Grid Size: 24 x 24
Grid Size: 8 x 24

(g) r/R = 1.6

Figure 3.28: Time-averaged measurements of the wall-normal flow for the isolated rotor

and below the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R =

1.1; (c) r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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that are similar to those obtained with the isolated rotor, although some differences did

appear at the most inboard radial locations. However, the body with the rectangular cross-

section produced noticeably different Reynolds stresses at locations inboard of 1.3R. The

difference was particularly significant at 1.0R and 1.1R where the flow was still turning

and the wall jet flow had not yet fully developed. This difference is likely a result of the

wake distortion by the body with the rectangular cross-section that was mentioned earlier.

Notice that the differences in Reynolds stress profiles were limited to inboard radial

locations. Beginning at r/R = 1.4, all the Reynolds stress profiles began to converge

toward a more classical wall jet profile. At 1.6R, all body shapes produced similar values

of Reynolds stress. The trends shown suggest that at downstream distances greater than

about r/R = 1.6 the different body shapes may indeed produce similar effects near the

ground in terms of sediment mobilization and uplift.

In Fig. 3.31, the normalized shear stress is shown for several radial locations below

the tail of each body. At the more inboard radial locations, it can be seen that the flow

velocities below the bodies produce very different values of shear stress than was ob-

tained with the isolated rotor. In particular, the levels of shear stress in the shear layer that

were obtained with the bodies with the circular and elliptical cross-sections are notice-

ably lower than for the other cases. There is generally a large variation in the Reynolds

stresses between the isolated rotor and each body at locations inboard of r/R = 1.3. These

differences are likely a result of the disruption of the slipstream boundary and the tur-

bulent wake of the bodies. As the flow moves radially outward, it can be seen that the

Reynolds stress profiles begin to take on the features of classical turbulent jet flow. How-

ever, this effect occurs at a slower rate than for the flow at beyond the nose of the bodies;
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(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.29: Measurements of normalized Reynolds stress for the isolated rotor and below

the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

(d) r/R = 1.3

Figure 3.29: Measurements of normalized Reynolds stress for the isolated rotor and below

the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(e) r/R = 1.4

(f) r/R = 1.5

Figure 3.29: Measurements of normalized Reynolds stress for the isolated rotor and below

the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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Figure 3.30: Schematic of representative flow velocities and Reynolds stresses of a clas-

sical wall jet [69].

see Fig 3.30.

At r/R = 1.6, the Reynolds stresses in the flow on the ground with each of the

bodies differ from those obtained with the isolated rotor. Most notably, the body with

the rectangular cross-section produced significantly higher levels of Reynolds stress com-

pared to those produced by the isolated rotor or the other bodies. The fact that at r/R =

1.6, the Reynolds stress profiles for the various cases showed significant differences from

each other suggests that the effects of the tail of the body may be experienced to larger

downstream distances. Ultimately, these outcomes may affect sediment mobilization and

uplift at larger downstream distances away from the rotor.

It is interesting to notice at radial positions on the ground further downstream from

the rotor the velocity profile resembles a classical wall jet profile, including the formation
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(g) r/R = 1.6

Figure 3.30: Measurements of normalized Reynolds stress for the isolated rotor and below

the nose of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.

103



(a) r/R = 1.0

(b) r/R = 1.1

Figure 3.31: Measurements of normalized Reynolds stress for the isolated rotor and below

the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(c) r/R = 1.2

(d) r/R = 1.3

Figure 3.31: Measurements of normalized Reynolds stress for the isolated rotor and below

the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(e) r/R = 1.4

(f) r/R = 1.5

Figure 3.31: Measurements of normalized Reynolds stress for the isolated rotor and below

the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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(g) r/R = 1.6

Figure 3.31: Measurements of normalized Reynolds stress for the isolated rotor and below

the tail of each body at several downstream distances: (a) r/R = 1.0; (b) r/R = 1.1; (c)

r/R = 1.2; (d) r/R = 1.3; (e) r/R = 1.4; (f) r/R = 1.5; (g) r/R = 1.6.
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of a viscous sublayer [68]. The measurements made closest to the ground in the present

experiments were determined to be in the viscous sublayer, shown by the schematic in

Fig. 3.32.

To verify that the measurement point was in the viscous sublayer, the velocity pro-

files were converted into wall units [68] using the equations

z+ =
zu?
ν

(3.5)

and

u+ =
u
u?

(3.6)

as shown in Fig. 3.33, where z is the height from the ground, ν is the kinematic viscosity,

and u? is the friction velocity.

Using the PIV measurements in the near-wall region, it was possible to estimate the

friction velocity, u?, from the shear stress, τw, using

u? =
√

τw

ρ
(3.7)

where

τw = µ
(

∂u
∂z

)
z→0

(3.8)

and where
(

∂u
∂z

)
z→0

is calculated using the closest reliable measurements to the ground

plane. Using the assumption that the velocity gradient in the viscous sublayer is linear, an

extrapolation to the no-slip condition at z/R = 0 was made.

Figure 3.34 shows the friction velocities on the ground plane at several radial lo-

cations for the isolated rotor and beyond the nose of each of the three body shapes. It

can be seen that in all cases, the friction velocities at a given downstream distance are
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Viscous sublayer

Linear velocity profile

Figure 3.32: Schematic showing a velocity profile and velocity gradient at the ground.
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Logarithmic Region

r / R = 1 . 6

Viscous Sublayer

Figure 3.33: Close to the wall, showing the measurements taken in the viscous sublayer.
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approximately equal. Similar results can be seen in Fig. 3.35, which shows the friction

velocities on the ground plane at several downstream locations to the rear of each body.

The results seem to indicate that, once the flow has developed more into a wall jet, body

shape had little subsequent effects on the friction velocities and, therefore, will also have

similar effects on the mobilization of sediment.
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Figure 3.34: Friction velocities close to the ground of the isolated rotor and below the

nose of each body at several downstream locations.
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Figure 3.35: Friction velocities close to the ground of the isolated rotor and below the tail

of each body at several downstream locations.
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Chapter 4

Conclusions

4.1 Summary

In the present research, flow visualization and particle image velocimetry experi-

ments were conducted on a two-bladed rotor operating over a ground plane to understand

how the presence of a body beneath the rotor would affect the development of the vortical

wake, as well as the flow over the ground. Bodies of three different cross-sectional shapes

were used, namely circular, elliptical, and rectangular, respectively. Detailed flow mea-

surements were made in radial planes in the rotor wake and along the longitudinal axis of

each body at both its nose and its tail.

The spatial locations of the tip vortices were tracked as a function of wake age

as they convected in the flow, with measurements being made of both the instantaneous

(phase-resolved) and time-averaged velocity fields. Detailed wall-parallel velocity and

Reynolds stress profiles were obtained at various distances along the ground plane to help

understand how the body shape affected the flow there.

The longer term goals of the work were to better understand how the presence of a

body (representing the airframe of a helicopter) would affect the flow at the ground, and

hence influence the problem of rotorcraft brownout. To this end, future experiments with

the rotor and the different body shapes could be performed in the presence of sediment

(i.e., two-phase flow measurements could be done with dust particles). It is recognized,
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however, that this latter goal is clearly a much more ambitious one.

The following conclusions have been drawn from the present research:

1. Performance measurements made with each body under the rotor were found to be

very similar to those obtained from the isolated rotor. Comparable power polars

were measured in each case, suggesting that for the configuration studied the effect

of the body shape on the flow at the rotor was relatively small. However, some

increase of induced power factor was noted. Furthermore, the relationship between

blade collective pitch and blade loading coefficient was only minimally affected by

changes in body shape. Nevertheless, the effects obtained were significant enough

so that the collective blade pitch needed to be adjusted to keep the rotor thrust

constant with the different body configurations.

2. The vertical force on the three bodies under the action of the rotor flow showed dif-

ferences for a given rotor thrust. At lower blade loading coefficients all three bodies

produced a downforce. The bodies with the circular and elliptical cross-sections,

which had similar cross-sections, both showed evidence of the Fradenburgh thrust

recovery effect at higher blade loading coefficients. The body with the rectangu-

lar cross-section exhibited different trends in vertical force over the same range of

blade loading coefficients but showed no evidence of a thrust recovery effect. The

results obtained suggest that the cross-section of the body will most likely affect

the development of the wake below the body in ground effect operation, and so the

Fradenburgh thrust recovery effect may not always be obtained.

3. The development of the rotor wake around the nose (i.e., the short end) of each
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body was found to be similar in each case to the wake that was produced by the

isolated rotor. However, the locations of the tip vortices obtained with the body with

the rectangular cross-section were located noticeably more inboard with a lower

overall radial expansion of the wake boundary. The different trajectories in this

case occurred because the flow remained attached to the nose of the body with the

rectangular cross-section to greater downstream distances compared to the other

two bodies. However, at older wake ages and downstream distances, the locations

of the tip vortices were found to be similar in all cases.

4. The tail of each body (i.e., the long end) severely disrupted the development of

the rotor wake, and the locations of the tip vortices here differed considerably from

those that were produced by the isolated rotor. In this case, the blade tip vortices im-

pinged upon the rear of the body surface just below the rotor, followed by stretching

and bursting as it wrapped around the body contour. The bursting of the vortices led

to rapid diffusion of the vorticity and the creation of new turbulence. Consequently,

the flow below the tail of the body was dominated by smaller-scale turbulence from

the disrupted rotor wake combined with the turbulent body wake itself, with little

in the way of coherent vortical structures being seen at this location in the flow.

5. Below the nose of each body, the maximum instantaneous excursions from the av-

erage wall-parallel velocity profiles were caused by the presence of the tip vortices.

The peak in these excursions was found to be similar for all body shapes although

the phase angle (wake age) at which they occurred was different. The excursions

in the velocity field close to the ground is known to be important in regard to the
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magnitude of the shear stress that is produced at the wall and, ultimately, the mobi-

lization of any loose sediment by the boundary layer flow.

6. On the ground below the nose of each body (i.e., the short end), the flow quickly

developed in a manner that resembled the development of a classical wall jet type

of flow. In this regard, the flows over the ground plane in each case showed very

similar wall-parallel and wall-normal velocities, Reynolds stresses, and friction ve-

locities at further downstream distances from the rotor. This observation suggests

that the nose shape of the body (at least with the ones measured in the present

work) may not have much effect on the mobilization and uplift of dust as it affects

the rotorcraft brownout problem.

7. The flow on the ground below the tail of each body (i.e., the long end), including

wall-parallel and wall normal velocities, and Reynolds stresses, did not develop to

resemble that of a classical wall jet and varied noticeably from those produced by

the isolated rotor. In this case, the catastrophic disruption of the rotor wake by the

presence of each body caused lasting effects on the flow that could be observed

further downstream along the ground plane. In particular, the body with the rectan-

gular cross-section shaped produced significantly higher Reynolds stress in the wall

region than was shown for the other bodies or for the isolated rotor. In this case, it

is likely that the resulting boundary layer flow over the ground would most likely

have some effect on the mobilization and uplift of dust, if it were to be distributed

there.
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4.2 Suggestions for Future Work

The present study of the flow generated by a rotor operating above a body and a

ground plane has yielded a greater understanding of the aerodynamic environment that

might be produced by a helicopter when it was operating in-ground-effect. The path of

the tip vortices as they convected in the rotor wake was determined using flow visualiza-

tion and PIV, and the effects of three body shapes on the wake distortion was measured.

The details of the boundary layer flow as it developed along the ground plane was also

measured. However, there is clearly further research that could be pursued to expand

upon the results obtained the present work and to provide more measurements that could

further the understanding of the rotor in ground effect problem and, eventually, to obtain

a better understanding of the brownout problem.

The measurement resolution of the PIV system used in the present research was

limited by the sheer number of separate experiments that were required, by the avail-

able equipment and instrumentation, and by the volume of data that could be practically

stored. In the current work, a camera with a 4 Mega-pixel resolution was used. A cam-

era with higher resolution could better resolve the details of turbulent flow around the

bodies and the flow in the cores of the vortices, with the recognition that the volume of

data would commensurately increase. Data management (i.e., collection, storage and pro-

cessing) is clearly an issue for these types of measurements. But the main advantage of

using a camera with a higher resolution camera is that a larger region of interest could be

imaged without loss of spatial resolution. The number of image pairs would be reduced,

decreasing the required time for data collection and processing. While the problem of
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data storage limitations can never actually be “solved,” increases in drive storage space as

technology progresses will raise the ceiling on the quantity of data that can be successfully

stored and manipulated.

In the current work, measurements were taken at temporal increments of only 30◦,

which could obviously be made finer to obtain higher temporal fidelity. Such measure-

ments would allow for a more thorough investigation of the tip vortices and turbulent

structures at various stages of their development of the rotor wake. In addition, a contigu-

ous time-history of the flow could be established using time-resolved flow visualization

and PIV with a high speed laser and camera. At the cost of resolution, time-resolved

methods could be used to examine the temporal evolution of the wake and track individ-

ual flow structures and eddies as they were convected in the rotor and body wake toward

the ground plane. Of particular interest in would be the temporal evolution of the blade

time vortices as they impinge upon the tail of a body and burst. While the present work

has given a qualitative overview of the process, it does not give quantitative analysis of

the actual vortex characteristics. Understanding of blade tip vortices at the nose of the

body could also be expanded by examining the temporal evolution of core growth, peak

swirl velocity, and circulation that occurs while the vortices interact with the body.

The rotor wake is clearly a very complex, unsteady, three-dimensional, vortically

dominated flow. Further PIV experiments can be performed to better quantify aspects of

the three-dimensionality, particularly in the vicinity of each of the body shapes. To better

understand the overall flow field, the flow field could also be dissected into several radial

cuts made at different azimuth angles around the ground plane and PIV performed. While

the current experiments investigated only a single radial plane along the longitudinal axis
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of the body, changes in the flow can be expected everywhere to some extent. These further

experiments would be particularly useful for investigating the three-dimensional effects

of a body shape in the wake of the rotor.

Further measurements could be made using three-component PIV. To this end, two

cameras are required with this technique to be able to simultaneously measure all three

velocity components. Such an approach would allow for the measurement of azimuthal

velocities at each radial plane, and would help to quantify the three-dimensional (and

perhaps aperiodic) aspects of the wake. In particular, three-component PIV could be used

to more accurately resolve the turbulence characteristics in the flow. As shown in the

current experiments, a body placed below the rotor significantly increases the turbulence

of the flow at the ground. Turbulence is inherently three-dimensional, and is known to be

an important factor in sediment mobilization. Therefore, to properly understand brownout

it is necessary first to understand the nature of the turbulence at the ground.

The inflow distribution at the rotor is known to affect rotor performance as well as

the wake flow and the flow at the ground. Testing rotors with different blade shapes—and

hence inflow distributions—would help to increase the understanding of how the effect

of a body shape on the wake is altered by changing the rotor. In particular, blade twist

is known to create a more linear inflow distribution. Performing additional experiments

with blades of various twist would help to quantify the evolution of the wake with a body

under the rotor as inflow changes. This work would be useful as it would expand the

knowledge of another parameter that may affect sediment mobilization and, therefore,

the problem of brownout.

Obviously, there are many other body shapes that could be examined, as well as
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more complex shapes that are more representative of actual helicopter fuselages. In par-

ticular, nose and tail shapes more representative of realistic fuselages found on actual

helicopters (or rotorcraft, in general) should be examined. Examination of several dif-

ferent cockpit shapes, and comparison of their effects on the flow below the rotor, could

yield important information on the flow at the ground and how that flow may, in turn,

affect the mobilization and uplift of dust in the pilot’s primary field of view.

Other investigations could be done on bodies that incorporate a long, narrow tail

boom and perhaps also a tail rotor, although the latter is clearly a more ambitious goal.

Several different tail structures (e.g., H-tail, fenestron, traditional tail rotor) could be in-

vestigated, as required. Ultimately, a comparison of the effects produced by a series of

different body types could help to determine the effect of different candidate airframe de-

signs on the rotor wake structure and, potentially, the potential for the mobilization of dust

from a brownout perspective. At this point, based on the results of this thesis, it seems

unlikely that airframe design would be a primary consideration in the minimization of

brownout severity.

All bodies used in the present experiment were similar in size, i.e., they had the

same lengths and similar aspect ratios. However, to further investigate the effect of body

size on the rotor wake, several bodies of different size could be investigated. Body length,

width, and height (i.e., to study the effect of fuselage aspect ratio) could each be varied

separately to determine their effect on the rotor wake and the resulting flow at the ground

plane. For each body, rotor performance and body force measurements should be taken,

which will help to assess whether particular bodies may have adverse effects on rotor

performance.
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In the current work, measurements at a single height of one rotor radius from the

ground plane were made because it was a representative operational condition for a heli-

copter; sustained hovering flight, especially during landing and takeoff, occurs at or about

this rotor height off the ground. It is known, however, that the structure and development

of the rotor wake depends critically on the height of the rotor above the ground. Therefore,

additional experiments will be required to assess the effects of body shape on the rotor

wake at different heights off the ground. Performance measurements should be taken at

several heights above a ground plane, ranging from out-of-ground-effect conditions (i.e.,

with the rotor in free air) to a simulated “landing” situation. To better understand the

flow effects produced by a body, time-resolved and phase-resolved flow measurements

should be made at each height over a range of wake ages to quantify how the structure

and development of the rotor wake is changed as the rotor is brought closer to the ground.

While further experiments can give much information about the development of the

rotor wake as it interacts with a body in the vicinity of a ground plane, understanding

the consequences on the development of brownout will required that future tests also be

conducted in the presence of sediment. To this end, two-phase flow measurements using

particle tracking velocimetry should be used in conjunction with PIV to simultaneously

track the motion of both the air and the sediment particles that are mobilized by the flow

field. While it is recognized that this is a much more ambitious goal, the quantification

of particle density fields in the two-phase flow will help in the understanding of particle

transport and sediment concentration in areas below the rotor where it would affect the

pilot’s visibility of the ground.
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Chapter A

Q-criterion Algorithm

The Q-criterion is defined in Ref. [62] as the discriminant of the velocity gradient

tensor as given by

Q =
1
4

S2−q (A.1)

where S and q are the trace and determinate of the velocity gradient tensor, respectively.

S and q are given by

S =
∂u
∂x

+
∂v
∂x

(A.2)

and

q =
∂u
∂x

∂v
∂y
− ∂u

∂y
∂v
∂x

(A.3)

The velocity gradients were calculated using Richardson extrapolation using the

equation

(
∂ f
∂xi

)
≈ fi−2−8 fi−1 +8 fi+1− fi+2

12∆X
(A.4)

The accuracy of the Richardson extrapolation was O(∆X3), and the uncertainty was ≈

0.95ε/∆X .
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The Q-criterion algorithm was applied to each instantaneous PIV image to identify

vortex centers in each image. Vortex centers were identified using local maximum values

of Q. The resulting vortex center locations were manually matched with the correspond-

ing wake age. A mathematical mean of the vortex center locations was found for each

wake age.
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