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Abstract— We investigate the issue of path selection in multi-
hop wireless networks with the goal of identifying a scheme that
can select a path with the largest expected duration. To this end
we first study the distribution of path duration. We show that,
under a set of mild conditions, when the hop count along a path is
large, the distribution of path duration can be well approximated
by an exponential distribution even when the distributions of
link durations are dependent and heterogeneous. Secondly, we
investigate the statistical relation between a path duration and
the durations of the links along the path. We prove that the
parameter of the exponential distribution, which determines the
expected duration of the path, is related to the link durations
only through their means and is given by the sum of the inverses
of the expected link durations. Based on our analytical results we
propose a scheme that can be implemented with existing routing
protocols and select the paths with the largest expected durations.

|. INTRODUCTION

Multi-hop wireless ad-hoc networks have been the focus
of active research in recent years. Unlike a wireline network
with a fixed infrastructure, a wireless ad-hoc network can be
deployed with no infrastructure and mobile nodes can establish
and maintain a network in an autonomous manner. Due to
nodes’ mobility, links are expected to be set up and torn
down much more frequently than in a wireline network. As a
result, a network topology varies with time as the connectivity
between nodes changes dynamically. Frequent link failures
and network topology changes in mobile ad-hoc networks
(MANETS) render the routing protocols designed for wireline
networks (e.g., the Internet) rather inefficient. A suite of new
routing algorithms have been proposed for MANETS to deal
with frequent network topology changes [8], [12], [14], [15].
A detailed discussion of available routing protocolsis provided
in the monographs [13], [19].

Due to nodes mobility, links along a provided path may
become unavailable in an unpredictable manner. When one or
more links along a path in use become unavailable (which
we cal a path falure), the path is no longer valid and a
path recovery procedure is triggered to find an aternate path.
Detecting and recovering from a path failure can take a non-
negligible amount of time (from applications viewpoint),
during which service to on-going traffic will be disrupted.
Such a disruption in service can degrade the performance
of time-critical applications. Furthermore, an initiation of
path recovery incurs additional overhead. Therefore, from
the perspective of providing reliable network service and

minimizing control overhead, a good routing algorithm should
take into consideration the expected duration as well as other
requirements when selecting a path. The duration of a path
refers to the amount of time for which the path remains
available after its set-up until one of the links along the path
fals for the first time.

Intuitively the duration of a path should depend on the dura-
tions of the links along the path and their dependence structure.
Therefore, there is much interest in better understanding the
statistical properties of link and path durations and their
relation. Better understanding of their statistical propertieswill
alow us to approximate the frequency of disruption in service
and resulting overhead. Hence, it will help us evaluate the
performance of on-demand routing protocols and the adverse
effects of potentialy frequent disruptionsin service on the per-
formance of upper layers (e.g., Transmission Control Protocol)
without having to run time-consuming detailed simulations.
A numerical example using the Random Waypoint (RWP)
mobility model is given in [5, Section 8].

To the best of authors' knowledge there is very little known
about the distribution of path durations and its relation with
those of the links that provide them. Consequently, most of
existing routing protocol s select a path based on some heuristic
argument; the Dynamic Source Routing (DSR) protocol selects
the minimum hop path, whereas the Ad-hoc On-demand
Distance Vector (AODV) routing protocol selects the first
discovered path. Associativity Based Routing (ABR) protocol
selects the path with maximum average age of the links.
However, it is not clear how the hop count or the average age
of the links along a path is related to its (expected) duration.

Along this line Sadagopan et al. [18] presented a simu-
lation study of the distribution of multi-hop path durations
under various mobility models. Their study shows that the
distribution of path duration can be accurately approximated
by an exponential distribution when the number of hops is
larger than 3 or 4 for all mobility models considered. However,
no clear explanation was offered for the emergence of an
exponential distribution.

In order to correct the current state of affairs Han et al. [5]
developed an approximate framework for studying the distrib-
utions of path and link durations. They showed that, under
certain conditions, the distribution of path duration (under
appropriate scaling) converges to an exponential distribution
when the number of hops becomes large. This result isin line
with the simulation results provided in [18], and is obtained



as a simple application of Palm’s Theorem [7, Thm. 5-14, p.
157]. In addition, they explored the connection between the
expected duration of a path and the expected durations of the
links along the path. To be more precise, they showed that
when the number of hops is large, the inverse of the expected
duration of a path is approximately given by the sum of the
inverses of expected durations of the links along the path.

The results reported in [5] provide the first evidence that
when the hop count is large, the distribution of path duration
can indeed be approximated by an exponentia distribution.
The application of Pam’s theorem in [5], however, requires
that the link excess lives be mutually independent, which isin
general not true. The excess life of alink in a path refersto the
amount of time the link remains available until it is torn down
for the first time after the path set-up. Two neighboring links
aong a path, for example, share a common node. Clearly,
the excess lives of these two neighboring links depend on
the mobility of the shared node, introducing some level of
dependence in them. Moreover, such local dependencein link
excess lives may be more evident under group mobility models
where the mobility of a set of nodes may be correlated. There-
fore, it is of much interest to see if the same distributional
convergence to an exponential distribution holds without the
independence assumption and how the parameter of the limit
distribution (which decides the expected duration) is affected
by the dependence.

In this paper we extend the results in [5] by relaxing the
independence assumption on the link excess lives imposed
in [5]. Instead we only require that the dependence of link
excess lives go away asymptoticaly with increasing hop
distance between the links. This assumption can be stated
using what is known as a mixing condition (Section V-A). It
allows the possihility of strong local dependencein link excess
lives that can be exhibited, for example, by group mobility
models. We demonstrate that, under some mild conditions
(to be stated precisely), the same distributional convergence
to an exponentia distribution reported in [5] holds under
this much weaker condition (Section V-B). Relaxation of the
independence assumption necessitates a new set of tools for
proving the distributional convergence and complicates the
proof considerably; a suitable extension of Pam's theorem
that deals with dependent processes is not available.

We also show that the parameter of the emerging exponen-
tial distribution is the same whether the link excess lives are
mutually independent or not. In other words, the parameter
of the exponential distribution is given by the sum of the
inverses of the expected link durations. This suggests that
for a sufficiently large hop count the dependence of link
excess lives does not significantly affect the path duration
distribution. Based on this observation, we outline a scheme
that can be implemented in existing routing protocols to select
the path with the largest expected duration with minimal
communication overhead (Section VI).

The paper is organized as follows. A basic framework for
modeling path durations is given in Section Il. Section Il
introduces the set-up under which the asymptotic distribution
of a path duration with increasing hop count is studied. In
Section 1V we study a simpler case in which link durations

have the same distribution and their dependence is limited to
a finite neighborhood. This is followed by a study of more
general cases in which the link duration distributions may be
heterogeneous and the dependence is not limited to a finite
neighborhood in Section V. We outline how our results can
be used to implement a scheme for selecting a path with the
largest expected duration during a path discovery phase in
Section VI.

A word on the notation and convention used throughout:
We find it convenient to define al the random variables (rvs)
of interest on some common probability space (€2, 7, P). Two
R—valued rvs X and Y are said to be equal in law if they
have the same distribution, a fact we denote by X =, Y.
The independence between two rvs X and Y is denoted
by X L Y. If G is a probability distribution on R, let
m(G) denote its first moment which is always assumed to be
finite. Convergencein distribution (with n going to infinity) is
denoted by —,,. For any « in R?, with components (z1, z:2),

set ||x|| = /2% + 2.

Il. A BASIC FRAMEWORK

This section describes the same basic framework that we
borrow from [5] for our analysis. Consider a MANET where
a set of nodes creates and maintains network connectivity.
We assume that an on-demand algorithm is used and a path
between a source node and a destination node is set up only
when a request is made.

Let V = {1, ..., N} denote the set of N mobile com-
municating nodes. Each node moves across a domain D of
R? or R? according to some mobility model. Due to nodes
mobility, links between nodes are set up and torn down
dynamically. We assume that a link between two nodes is
either up or down. Two nodes without a link between them
establish such a link as soon as they become reachable,
e.g., when they come within a transmission range of each other
or when the signal to interference and noise ratio (SINR) at
the receiver exceeds certain threshold, and packets from each
other can be successfully decoded. The latter case captures the
characteristics of the physical layer (e.g., path loss and channel
fading) more accurately. Although this is not needed for
the analysis, communication links are assumed bidirectional
since such bidirectional communication is typically required
between two nodes for reliable forwarding of packets, for
instance, by means of acknowledgmentsfor each transmission.

Establishing a path from a source node to a destination
node requires simultaneous availability of a number of com-
munication links that are up at the time of path request
and collectively provide the desired connectivity between the
source and the destination. The duration of a path provided by
the underlying routing protocol is then defined as the amount
of time that elapses until one of the links along the path goes
down for the first time after the path set-up. A link may go
down (which we call a link failure) due to either mobility or
degradation in channel condition. For simplicity of analysis,
path set-up delays are assumed negligible.



A. Reachability processes

We model the situation outlined above as follows: For a pair
of distinct nodes 7 and j in V/, we introduce a {0, 1}-valued
reachability process {¢;;(t), t > 0} with the interpretation
that &;;(t) = 1 (resp. &;;(t) = 0) if the unidirectional link
from node i to node j, denoted by “link” (i, 7), is up (resp.
down) at time ¢ > 0. Since the communication links are
assumed bidirectional, we must have §;;(t) = &;:(t). The
process {&;;(t), t > 0} is simply an alternating on-off
process, with successive up and down time durations given
by the rvs {U;;(k),k =1,2,...} and {D;;(k),k =1,2,...},
respectively.

The reachability processes can be defined in a number of
ways. For example, for each ¢ in V, let {X,(¢), t > 0}
describe the trajectory of node i, i.e., X ;(t) denotes the
position of node i at time ¢ > 0. If we do not explicitly model
channel fading between nodes, it is reasonable to assume that
two nodes can communicate with each other reliably if the
distance between them is smaller than some fixed transmission
range r.;, > 0. Hence, a link between two distinct nodes i
and j in V existsat time ¢ > 0 if and only if their distance is
smaller than r,,,;,,, leading to the definition

Eij(t) =1 [||X7(t) - Xj(t)ll S Tmi,n] )

In the literature this model is known as the protocol model
(4], [16].

Alternative models can take into account the physical layer
characteristics of the channel. For instance, two nodes ¢ and
J in'V can maintain a link between them at time ¢t > 0 if and

only if ® ®
. ([ P;-Fj(t) P;-Fy(t
i ( w0 > -
for some threshold I" > 0, where P; is the maximum transmis-
sion power of node ¢, and F'(t) = (F;;(t)) denotes the channel
gain matrix (including fading) at time ¢ with F;;(¢) > 0 and
F;;(t) =0,14,5 =1,...N. Different choices of ¥,(¢) in (2)
lead to different physical layer models. In the simplest form,
one can assume that a node i can decode the packets from
node j if and only if the received signal power exceeds some
threshold " > 0 [2], [17]. In this case the reachability process
between nodes i and j is given by (2) with ¥ ,;(¢) = 1 as the
numerators give the largest achievable received signal power
at the nodes.

Similarly, if one assumes that packets can be successfully
decoded if and only if the achieved SINR exceeds the threshold
T" [3], [4], then the reachability process between nodes i and
Jj isagain given by (2) with

D

keTX(H\{7}

t>0. (1

)

Uy(t) = W; + Py(t) - Fri(2) , ©)

where W; is the noise variance at node 7, TX (¢) is the set
of transmitters at time ¢ and Py (¢) denotes the transmission
power of node k. The right hand side of (3) represents the
sum of noise power and interference at node 7 at time ¢. This
implies that nodes i and j have connectivity if and only if the
achieved SINR value using the maximum transmission power
exceeds I' in both directions.

B. Path duration

Next we endow V' with a time-varying graph structure by
introducing a time-varying set E(¢t) of directed edges through
the relation

Et):={(,5) e VxV: &;(t) =1},

where by convention we set &;;(t) = 0 for each ¢ in V' and al
t > 0. Thus, a path can be established (in principle) between
nodes s and d at time ¢ > 0, if node d is reachable from node
s by a path in the undirected graph derived from the directed
graph (V, E(t)). Let Pyy(t) € 2E®) denote the set of paths
from node s to node d providing this reachability. This set of
paths is empty when the nodes s and d are not reachable from
each other at time ¢. When non-empty, this set P4(t) may
contain more than one path since multiple paths may exist
between nodes s and d. In such a case, the routing protocol
in use selects one of the pathsin P4 (t) and let £44(¢) denote
the set of links in the selected path.

For each link ¢ in L44(t), let T;(t) denote the time-to-live
or excess life after time ¢, i.e., Ty(t) is the amount of the time
that elapses from time ¢ onward until link ¢ is down. The
time-to-live or duration Z,,(t) of the established path from
node s to node d using the links in L,(t) is defined as the
amount of time that elapses from time ¢ until one of the links
in L44(t) goes down, at which point a path recovery procedure
is initiated. This quantity is simply given by

t>0 (4

Zsq(t) :=min (Ty(t) : £ € Lga(t)), t>0. (5)

I1l. THE SET-UP AND MODELING ASSUMPTIONS

In this paper we are interested in studying the distribution
of path duration as the number of hops becomes large. In
the following subsection we first describe the set-up used to
model this scenario. Then, we state the modeling assumptions
under which the distributional convergence of path duration is
established with increasing hop count.

A. The set-up

In order to study the distribution of path duration with a

large hop count, we investigate the asymptotic distribution
of path duration (under appropriate scaling of link excess
lives) as the number of hop count increases. This is done
by introducing a parametric scenario with a sequence of
networks in which both the number of communicating nodes
and the domain across which they travel increase:
For each n = 1,2,..., let V(® = {1 ... N™} and D"
denote the set of mobile nodes and the domain across which
the nodes move, respectively. For each node i in V (™), the
D(™-valued process { X ™ (t), ¢t > 0} denotes the trajectory
of node 7 in D™, The stochastic process that governs the
arrival of path requests is assumed to be independent of these
trajectory processes.

1. Scaling — We are interested in the situation where

N ~nN®  and  Area(D™) ~n - Area(DV)  (6)



asn goes to infinity; it is customary to reparameterize so that
N = n. When in force, the scaling (6) guarantees
N () N@D
Area(D™) " Area(DD)’
so that the density of nodes, i.e., the number of nodes per
unit area, is asymptotically constant.

2. Stationarity — As the system is expected to run for a long
time, we can assume that steady state has been reached. This
possibility is captured by taking the NV (™) trgjectory processes
to be jointly stationary. Joint stationarity of the trajectory
processes also implies that the % reachability
processes are Jomtly stationary. For distinct i < j in V' ("),
let the rvs {(U(" (k), DEJ’?)(k:)), k = 2,3,...} denote the
sequence of up and down times for the reachability process
{€(#), ¢ > 0}. Writing

WO k) = (U (), DS (k). i <, ij e V)

k = 1,2,..., we require that the sequence of rvs
(W (k), k = 2,3,...} be strictly stationary. In partic-
ular, for distinct i < j in V(") the sequence {(U(")( k),
DEJ’.L)(I{)), k = 2,3,...} congtitutes a stationary sequence
with generic marginals ( Z(j”), D(”)) We denote by GZ(.;’) the
cumulative distribution function (CDF) of U . This model
is general enough that link dynamics due to both mobility and
channel fading can be captured by a suitable choice of the
CDFs for U}".

Well-known results for renewal processes and independent
on-off processes in equilibrium [7, Sections 5-6] can be gen-
eralized as follows: With ¢ = (4, j), in the notation introduced
in Section |1, we have

P [Te(”)(O) < fc‘fi(f)(o) = 1} —F"z), zeR (7)

where the conditional probability Fz(”)(x) is given by

P = m(G;;w)fogc(1—G§")(y)) dy ifz>0
0 if 2 <0

for some link duration CDF Gé”) with support in R. In
other words, Fe(") is simply the distribution of the forward
recurrence time associated with U e(”). From (8) it is easy to
see that the duration of a one-hop path has a non-increasing
probability density function (PDF). If X \™ denotes any R, -
valued rv distributed according to F(”) then the relation (7)
simply states, with a little abuse of notat|on that

[7070) < 2|e0) = 1]
The rv (5) can now be viewed as the rv Z (™ defined by
H(”)) 9)

where H™ = |£{")(0)|. Due to the underlying stationarity
assumptions, it clearly suffices to consider only the caset = 0
as we do from now on.

(8)

= X",

Z™ .= min (Xé”) l=1,...,

1From now on we omit this qualifier in all asymptotic equivalences.

B. Modeling assumptions

There are a few sources of difficulty in modeling and
studying the distribution of path durations: First, the set £ 44(0)
of linksin the selected path is arandom subset of £(0), which
depends on the reachability processes at ¢ = 0. Second, the
reachability processes are usually not mutually independent.
This is clear from either formulation (1) or (2). In this
subsection we explain how we handle these issues.

1. Asymptotics of the random set £§,§>(0) — With increasing
network size under scaling (6) the average number of hops
in a path between two randomly selected nodes is expected
to increase with n. For example, consider the protocol model
(1) with a fixed domain.?2 We first select the locations of a
source and a destination according to some stationary spatial
distribution of the nodes. Then, for each n = 3,4,.. ., place
the remaining n — 2 other nodes on the domain according to
the same stationary distribution while decreasing the transmis-
sion range of the nodes as 1/+/n. If minimum hop routing
is employed, the number of hops along the shortest path
will increase approximately as /n. Thus, we assume that
a pair of nodes s and d in V(") can be selected such that
limy, o0 |£§Z> (0)| = oo, where for convenience the sequence
{1£"(0)], n=1,2,...} is assumed to be deterministic.

2. Dependence of the reachability processes and link excess
lives — As mentioned earlier, the link excess lives {X ",
¢ =1,...,H™} in (9) are not mutually independent in
general. The authors of [5] skirted this difficulty by assuming
that the reachability processes {¢;;(t),t > 0} are mutually
independent so that the rvs {X (™, ¢ =1,..., H™} are mu-
tually independent. They provided a simulation study (Section
9 in [5]) using the RWP mobility model without pause to
justify this assumption; it shows that the correlation coefficient
of link excess lives in (9) decays rapidly with increasing hop
distance between the links. More specifically, it indicates that
the correlation coefficient of link excess lives between two
neighboring links is small and that of two links separated by
intermediate link(s) is almost negligible.

This observation provides some evidence that the depen-
dence of link excess lives may indeed decrease quickly with
hop distance in some cases. However, the observed fast
decrease of correlation in hop distance may be a consequence
of the fact that the mobility of a node in the RWP model
is independent of other nodes, and if the mobility of a set
of nodes is strongly correlated (e.g., soldiers in a platoon
partaking in a mission), this may no longer be true. In the
following sections we relax the independence assumption of
the reachability processes in [5] and replace it with what
are commonly known as mixing conditions. These conditions
impose a form of asymptotic independence as the hop distance
between links increases, while allowing dependence in an
(unbounded) neighborhood.

?Decreasing the transmission range while keeping the domain fixed has
the same effect as increasing the domain size while keeping the transmission
range fixed.



IV. FINITE DEPENDENCE WITH HOMOGENEOUS LINK
DURATION DISTRIBUTION

In this section we consider a simpler case where link
durations have the same CDF G with support in R and
the dependence in link excess lives is limited to a finite local
neighborhood. First, in order to model the link excess lives,
we introduce a stationary sequence of rvs {X;,i = 1,2,...}
whose CDF is given by

) dy, ifxz>0
F(x){OGfo .

fe<0 - (10)
We let X = X, foral n € Z := {1,2,...} such that
¢ < H(n),i.e, rv Xy isused to model the excess life of the ¢-
thlink in an H (n)-hop path. The path duration of an H (n)-hop
path is modeled by rv Z(™ := min(X{" : ¢ =1,..., H(n)).
Thervs X;,i = 1,2,..., are identically distributed from the
stationarity assumption, but may not be mutually independent.

The aforementioned assumption of finite dependence of link
excess lives is given by the following:

Assumption 1: (m-dependence [20]) The rvs X,;, i =
2,..., satisfy

Xe L X if 0=V >m,
where m is a finite positive integer.

This assumption is consistent with the findings in [5, Fig.
9], where the dependence in link excess lives under the
RWP mobility model appears to be limited to a very small
neighborhood.

Assumption 2: For every x > 0 and any given ¢ > 0, there
exists an integer n* = n*(x;€) such that

c(2)=e

Assumption 2 is equivalent to saying that a link duration
is strictly positive with probability one, i.e., lim,,_.. G(z/n)
= G(0) = 0. Itisobviousthat this assumption holds trivially if
the CDF G is continuous (i.e., link durations can be modeled
as continuous rvs). Therefore, it is a reasonable assumption.

n=n"n"+1,...

Theorem 1. Suppose that Assumptions 1 and 2 hold for the
stationary sequence {X,,i = 1,2,...} and the CDF G. If the
condition

lim —— PlX; X
B < s, P X< e Xy <

=lim max P[X; <c|X; < (12)
cl0 |i—j|<m
=0
holds, then
— Az i
. _7(n) N 1—e , If x>0
Jim P [H(n)- 2 Sx}_{ 0, it +<0®?
where A = (m(G))~!.
Proof: A proof is provided in Appendix I. m

Theorem 1 tells us that as the number of hops H(n)
along a path increases the distribution of path duration can
be well approximated by an exponential distribution with
parameter H(n) - A for al sufficiently large H(n). Note that
v 20 = min(X™ : ¢ =1,...,H(n)) tends to decrease
with increasing H(n). This is also obvious from the fact that
H(n) -\ — 0o asn — oo. Thus, in order to keep Z (™) from
converging to a constant rv with value zero as H (n) increases,
rv Z(") is scaled by the hop count H(n) in (12).

It is interesting to note that the parameter of the emerging
exponential distribution is given by the same A = 1/m(G)
whether the rvs {X,,i = 1,2,...} are assumed to be locally
dependent as here or mutually independent as assumed in [5].

The condition in (11) implies that as ¢ | 0, the rare events
{X; < ¢} do not occur in clusters in a local neighborhood
of node i. One interpretation of this condition is as follows:
Assume a very small ¢. Rare events of link excess lives being
smaller than ¢ are primarily caused by nodes being close to
the edge of their transmission range and about to move out
of the transmission range at the time of path set-up (rather
than one or both of the nodes moving at an extremely high
speed). Condition (11) implies that one pair of neighboring
nodes being about to leave the transmission range of each
other at the time of path set-up, does not mean the same is
true for other pairs of neighboring nodes along a path, which
is reasonable.

V. GENERAL DEPENDENCE WITH HETEROGENEOUS LINK
DURATION DISTRIBUTIONS

In the previous section we considered the simpler case
where the dependence in link excess livesis limited to afinite
neighborhood. As mentioned earlier, this may be reasonablein
some cases. However, we show that it can be relaxed consider-
ably. To be precise, the same distributional convergence can be
obtained even when the dependence of link excess lives goes
away only asymptotically with increasing distance between
links and the link duration distributions are heterogeneous.

In this section we first define the mixing conditions that
describe the manner in which the dependence of link excess
lives decays with the hop distance between the links. Then,
we establish the distributional convergence of path duration in
more general cases under the mixing conditions.

A. Mixing conditions

Suppose that W := {Wi("),n =1,2,...;i=1,...,h(n)}
isan array of R-valued rvs, where {h(n),n > 1} isasequence
of positive integers with lim, .. h(n) = oo. Denote the
joint CDF of rvs {w ™ w™ .. w™}y by 30, . For
notational simplicity wewnteJ(”) (u )forJ(”) (U, ).

Let {u,,n > 1} bea%quence of real numbers (which typ-
icaly increases with n) and A := {a, m,n=1,2,...;m =
1,...,h(n)} be an array of non-negative real numbers such
that, for any integers

1<izg < - <ip<j1<--<jg<h(n)

where j; — i, > m, we have

Jq(::l.)..qipjl...jq (un) — JE?)% (UTL)J;?.)..jq (13)

(Un) < Qnp.m -



Definition 1: (D(u,,) condition [10], [11]) Suppose that
we can find a sequence {m(n),n = 1,2,...} and an
array A of real numbers satisfying the condition in (13)
such that (i) lim,—.om(n) = oo, (i) m(n) = o(h(n)),
i.e, lim, oo 7:((”)) = 0, and (iii) hrn 1, (n) = = 0. Then,
we say that the array W satisfies the condition D(uy).

The condition D(u,,) imposes a form of “dependence de-
cay”: As n increases, the dependence of two events {W("’) <
Up, - . W(n) < up} and {W(n) < Uy, .. W(") < up}
decreas&e as the distance Jj1 — i, between the two ‘sets of rvs
increases. However, since m(n) — oo, it alows dependence
in an unbounded neighborhood. One can easily verify that
a sequence that satisfies the m-dependence condition in As-
sumption 1 satisfies the condition D(u,,) with any sequence
{un,n > 1}. The interpretation and role of this condition in
our problem will be stated shortly.

In order to state the definition of the second mixing con-
dition, we first need to introduce some notation. Let k& be a
fixed positive integer. We divide the interval {1,2,...,h(n)}
into k -+ 1 digoint subintervals®: The first k subintervals have
alength n’ := |h(n)/k|, where |x] denotes the integer part
of z, and the last interval has a length smaller than k. For

j=1,2,....k, define
I =G~ 1) 0+ Lo}

and
I = k' + 1, h(n)}

Note that [1")| = n’ for j =1,....k and 0 < |I{"), || < k,
where |I| denotes the cardi nallty of I

Definition 2: The array W is said to satisfy the condition

D' (uy,) if
nler;O( S [W(") >y, WS > un] ) =0 <%>

i eI i<t

fordl j=1,....k. (14

A sufficient condition for the condition D’(u,,) to hold is
that

lim (L@JQ

n—oo

()

The interpretation of the condition D’ (u,,) in the context of
our problem will be given shortly.

sup
i €I i<t

P [Wi(”) > 1w, Wi > un} )

fordl j=1,...,k. (15)

B. Distributional convergence

Define W,@ — (x"™)y"1 0 =1,...,H(n). Let W :=
Wi n = 0 = 1,...,H(n)}. We denote the
CDF of rv W, ”) by ”). We first make the following two

3We call afinite set of consecutive integers {i, . . .
Iength 9 — 11 + 1.

,i2} an interval with

assumptions. They are the same assumptions imposed in [5,
Assumptions 1 and 2] for independent link excess lives cases.
Assumption 3: For every = > 0,4
max

. (n) z _
nlggo (g:L,,.,H(") GZ (H(n)>) -0

A more concrete way to express Assumption 3is asfollows:
For every = > 0 and any given € > 0, there exists an integer
n* = n*(x;€) such that

(n) x * %
max G <e, m=n " n"+1,...
=1, (H(n)) -

It is clear that the interpretation of this assumption is the same
as that of Assumption 2 and states that a link duration is
strictly positive with probability one.

—1
Assumption 4: (scaling) Let )\§”) = m(Gf))) . There
exists some positive constant A such that
H(n)
=A. (16)

n—oo

Assumption 4 simply means that the link excess lives
are scaled (by the average of the inverses of expected link
durations divided by \) so that we can define the parameter
of the limit distribution. Under Assumption 3, one can show
that Assumption 4 is equivalent to the following assumption.

Assumption 4A: There exists some positive constant A such
that, for any fixed = € (0, 00), we have

Sl 223 (- ()
H(n)

— A asn— oo .

For the cases with dependent link excess lives, we introduce
two additional assumptions.

Assumption 5: For any sequence {1 .n = 1,2,...}
of sets of consecutive positive integers, where (™ c

(..., Hn)},
1 (™)
Ty 2 _O<H(n)> -

teim)

A sufficient condition for Assumption 5 to hold is that
there exists some arbitrarily small positive constant ¢ such
that the expected link durations satisfy m(G ”)) > ¢ for dl
n=1,2...and ¢ =1,...,H(n). The interpretation of this
assumption is that the 9<pected link durations do not decrease
to 0 with increasing network size. Since the link durations are
likely to depend on the nodes’ mobility and their transmission
ranges but not directly on the network size, thisis a reasonable

4In [5] the rvs X( ™ are implicitly scaled by H(n), while in this paper
this scaling is carrled out explicitly.



assumption.

Assumption 6: The array W = {W/’),n =1,2,...:0 =
1,...,H(n)} satisfies the conditions D(u,,) and D’(u,,) with
u,, = 2% for any = € (0,00).
implies that, as n increases,

the two events &; := {Xi(l") > x/H(n),... ,Xi(;”) >
w/H(n)} and & = {X\" > a/H(n),..., X" > 2/H(n)}
become asymptotically independent, i.e,, P [£1 N &) —P [&1]-
P [&;] — 0, as the distance j; — i, between these two sets of
link excess lives becomes larger. However, this condition holds
trivially under Assumption 2 in our problem. The details are
provided in Appendix I1.

The condition D (un - M)

The condition D’ (un = @) implies that the rare events
{X ](.”) < 77tz [ in aneighborhood are not strongly correlated

asn — oo (hence 7~ — 0). The role and interpretation of
this condition are similar to those of condition (11) in the
m-dependence case (stated at the end of Section 1V).

Theorem 2: Suppose that Assumptions 3 - 6 hold. Then,
we have

1—e ™ if 2>0

i AL —
Jim P [H(n) -2 <4{ 0. ita<o @
Proof: The proof is given in Appendix I1I. ™

Theorem 2 states that the distribution of an h-hop path can
be well approximated by an exponential distribution for all
sufficiently large h. As a byproduct it also tells us that if
the link duration distributions are given by G4,¢ = 1,...,h,
the expected duration of the path can be approximated by
1/(X 1. (m(Ge)™"). Somewhat surprisingly, the para-
meter of the emerging exponential distribution in (17) is the
same as that of the exponential distribution with independent
link excess lives [5, Theorem 2]. This holds with any arbitrary
local dependence that may exist, and is consistent with the
similar observation made in Section IV. This again suggests
that the distribution of path duration is not significantly
affected by the dependence of the reachability processes and
link excess lives when the hop count is sufficiently large.

V1. AN OUTLINE OF A PROPOSED SCHEME

Detecting a link failure and finding an alternative path
can take a non-negligible amount of time in practice. This
is because link failures are often detected through a failure
to receive/exchange a control message over a pre-determined
period. When local recovery is unsuccessful after alink failure,
packets queued at the originator of the failed link and addi-
tional packets on the way to the node which were to be routed
using the link, will eventually be dropped by the node and
must be retransmitted by their senders. These dropped packets
lead to a waste of wireless resources. Moreover, losses of
consecutive packets cause the transport layer protocol to back
off, reducing its transmission rate. This may cause senders to
rely on timeout to detect the packet losses, which can take
more than a few seconds. Hence, frequent link failures along
the pathsin use will result in disruptionsin service and degrade

the performance of applications, especialy that of time critical
applications. For these reasons a routing algorithm should
consider its expected duration in addition to other qualities
(e.g., estimated available bandwidth or congestion level) when
choosing a path .

In alarge scale MANET the hop distance between a source
and a destination is likely to be large [4]. Our results in the
previous sections tell us that when hop counts are large, (i)
the distribution of path duration can be well approximated by
an exponential distribution and (ii) the inverse of the expected
duration of a path is approximately given by the sum of the
inverses of the expected durations of the links along the path.
Thus, in order to approximate the expected duration of a path,
a source needs to know only the sum of the inverses of the
expected link durations.

Unfortunately, accurate estimation of the expected link
durations along a path is difficult in practice. Instead, we
approximate them using average link durations experienced by
the nodes. Under our scheme each node maintains the average
duration of the links that it establishes with other nodes. These
average link durations are used as estimates to the expected
link durations along a path and are provided to the source
during a path discovery phase. Suppose that a node has routing
information for a requested destination. Then, it generates a
reply message and specifies the inverse of its estimate of the
expected duration of the path to the destination in a field
inverse_path_duration_ (IPD) in the reply. A node that receives
a reply message, first adds to the IPD value the inverse of its
average of link durations, and then forwards it to the next
upstream node. Finaly, when the source receives the reply
message, it adds the inverse of its average link duration to the
IPD value. Then, the source chooses a path with the smallest
IPD value, i.e., the largest estimated expected duration.

Path Request Path Request
—————— > s
7\4 (n2,D) S P R— nl ) —— @ @
Reply Reply
+A (n1,n2)
7\’ I8 (n2,D) A (n2,D)
+ Asny A
+ (n1,n2)

Fig. 1. An example of an estimation of expected path duration.

Let us explain this procedure using the example shown in
Fig. 1. The source node S wants to find a path to destination
node D and broadcasts a path request to its neighbors. Assume
that node n1 does not have routing information for D and
forwards the request to its neighbor, node n2. When node n2,
a neighbor of D, receives the request, it generates a reply
with the initial IPD value of A(,2 py, Which is the inverse of
its average link duration. Here node n2's average link duration
isused as its estimate of the expected duration of the link with
D. Then, it forwards the reply to node n1. Upon receiving the
reply, node n1 adds the inverse A, ,2) Of its average link
duration to the IPD value and forwards the reply to source
node S. Again, node nl's average link duration is used in
place of the expected duration of the link with n2. When S
receives the reply, it first adds \(s,,1) to the IPD value of
An2,0) + Am1,n2) in the reply. Then, it uses the inverse of



the final IPD value as an estimate of the expected duration of
the discovered path {(S,n1), (nl,n2), (n2,D)}. As only the
sum of the inverses of average link durations is collected, this
proposed modification can be easily implemented in available
on-demand routing algorithms with minimal overhead.

It is also possible with our scheme to classify neighbors
with whom nodes establish links and to maintain a separate
average link duration for each type of neighbors. The reason
for maintaining separate averages is as follows. A large scale
MANET is likely to comprise many different types of nodes.
For example, a Future Combat System (FCS) will include dif-
ferent types of vehicles (e.g., jeeps, tanks, etc.), soldiers, and
possibly aerial vehicles. Clearly, the duration of alink between
two nodes will depend on their mobility and capabilities. Thus,
the durations of links a node sets up with its neighbors over
time will be dependent on their types, i.e., their mobility and
capabilities, as well as its own type.

VIlI. CONCLUSION

We studied the issue of designing a scheme for selecting
paths with the largest expected durations with the am of
providing reliable network services in MANETs. To this
end we first investigated the distributional properties of path
duration in multi-hop wireless networks. We extended the
results in [5] and proved that, under certain conditions, the
distribution of path duration (appropriately scaled) converges
to an exponential distribution as the number of hops increases
even when link excess lives are not mutually independent.
Moreover, we showed that under the given conditions, the
parameter of the emerging exponential distribution is not
affected by the dependence of the link excess lives. Based on
these results we proposed a new scheme that can be easily
incorporated into existing routing protocols. The required
information under our scheme can be be piggybacked in reply
messages, introducing only minimal communication overhead.
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APPENDIX |
PROOF OF THEOREM 1

The proof of the theorem follows directly from the theorem
in [20]: Define W, = (X,)~1,¢ = 1,2,.... Then, {W;,{ =
1,2,...} is a sequence of rvs unbounded above that satisfies
the m-dependence assumption and

lim

ST — PWi>c,W; =
I e s max P[W; >c¢,W; >¢]=0

li—jl<m

from (11).
Fix x > 0 and let ¢, (z) = 2

x’

n=1,2,.... Firs, note that

. n
dim - P [Wl > m]
~ Jim P {Xl <M]
n—oo n
1 w-nj(G)
= lim n- ——— 1-G d from (10
A n- @ s ( (y)) dy  (from (10))
L n z-m(G) 1
~ i (5 (3)
=X .

Since the conditions in the theorem in [20, pp. 798] are



satisfied by {W;,i=1,2,...},
lim P[Wig ﬁ;i:l,...,n}
x

n—oo

= lim P{Xizf;izl,...,n}
n

n—00

= lim P{min(Xi:izl,...,n)>£}

n—00

= lim P [n-min(Xi;izl,...,

n—oo

= lim P[n-min(X;;i=1,...,

n—00

= exp(— (18)

L)
m(QG)
=exp(—Az) .
where (18) follows from the theorem in [20].

APPENDIX |1
CONDITION D(uy,)

First, recall the definition of the events.
& ={Xy, >2/H(n),...,X;, > x/H(n)}
E ={X;, >x/H(n),...,X;, >x/H(n)} ,
From the well known bounds, we have

Note that both izlP[Xi(:)<x/H(n)} and

i P [X](»,”) <x/H(n)} go to 0 as n — oo because
x/H(n) — 0. Therefore, the lower boundsin (19) convergeto
1. Therefore, it is clear that |P [(‘:1 n 82] -P [51] P [52] | — 0
asn — oo.

APPENDIX |11
PROOF OF THEOREM 2
In order to prove the theorem, we show that, for any fixed
z € (0,00),

lim P [H(n) AR a:} =exp(—Az) . (20)
n—oo
To prove (20) we show the following equivalent statement.
H
lim P { max W[(n) < ﬂ} =exp(—Az) (21)
n—00 (=1,...,H(n) = T
from the equality
lim P [H(n) .z > x}
= lim P TP ¢ QUpa—
nl—>nolo |:€=1,I.I.l.1,rl%1(n) ¢ - H(’I’L):|
= lim P [ max Wg(n) < (n)} .
n—0o0 (=1,...,H(n) x

Before doing so, we first need to introduce some notation
used in the proof. Let F be a set of positive integers. We
define M (E) := max(W," : j € E). If E = {ji,...,j2}
and E' = {ji,...,j5} are two intervals with j; > ja, we say
that £ and E’ are separated by ji — ja.

Let k& be afixed positive integer. For eachn = 1,2,..., we
first divide the interval {1,..., H(n)} into k + 1 consecutive
disoint subintervals as done Section V-A. Then, we further
divide each of the first & subintervals into two digoint subin-

tervals: Let n’ := |H(n)/k|. For j =1,...,k, define
LY ={(G-1)n'+1,....5-n},
and
I ={k-n'+1,...,Hn)} .

Let {m(n),n = 1,2,...} be a sequence of integers such
that, for all sufficiently large n, £ < m(n) < n’,

: m(n)
lim m(n) =oc0 and lim =0.
For j = 1,...,k, we divide the subinterval I,i"j) into the
following two disjoint subintervals.
LY ={G=1)n'+1,..j-n' = m(n)}
and I[") = {j-n' —m(n)+1,....5-n'} .

It is clear that |1{")| = n' — m(n) and |I\")| = m(n).
We denote M(”>(I(")) j=1,...,k by M('; for nota-
tional convenience. To prove (21) we WI|| first show

k(n)
nlln;o H P [Mli?n)] < un} = exp(—Az) ,

where u,, = H(n)/x from Section V-B. Then, we will prove

} H P {M,i?n)] < un} ‘

asn— oo.

‘P { max
Z:l,...,H(n)

— 0
From the definition,

(M > uy = | (W

il

> Up} forj=1,...,k.

Hence, we have the following lower and upper bounds.

PR ALARES™
ier")
-

i €I i
P 1" > ]

PR ALARES™

ier")

P {Wi(") > U, W >y,

IN

(22)

IN



From these bounds in (22) we obtain

INA

—
/N

—

)
=
&2

Vv

e

I§—l
N—

Il
—

)

A

o

<

Il
a
<.

Il
_

(23)

INA
=
/N
—
|
)
=
2
V
£

<.
Il
—

_l_

>

i,i’e[li"j),i;éi’

P {Wi(") > U, Wi(,”) > un} ) )

Now take a sequence {k(n),n =1,2,..
gers such that (i) lim,,— k(n) = oo, (ii) lim,
(iii) limy, oo k(1) 0t () = 0, @0d (iV) limy, oo
0. The existence of such a sequence is guaranteed W§1en the
condition D(u,, = ) holds. We can show that

>

(n)
1€y oy 4

.} of positive inte-
k(n) _ 0
m(n) !
m(n)-k(n) _

P {Wi(") > un] -0 from Assumption 5 (24)

and

k(n)
Z P {Wi(") > un} — A (25)

j=1 (n)
zEIMM j

from Assumptions 4A and 5. The first claim in (24) can be
proved as follows.

> P suw]= Y P[Xi(")<%}

zez,g';g) ; zezg’(ﬁ) ;
< > A(”) x 5 from (8)
zE11(67(1") J

i 5!

—z.0 | 2 from Assumption 5
H(n)

_ .0 (Hm/E®)]

H(n)

Since k(n) — oo as n — oo, the claim (24) follows.

We first state a well known convergence result without a
proof. We will make use of it shortly.

Lemma 1. Consider an array {c,:,n = 1,2,...;i =
1,2,...,k(n)} of non-negative real numbers, where c,,; < 1
and lim,, .o k(n) = oo. Suppose that max;—1 .. x(n) Cn,i — 0
and ¥ ¢, ; — X asn — oo. Then, the following holds.

k(n)

lim H (1 —cpi) =exp(—A)
i=1

10

Egs. (24) - (25) and Lemma 1 imply
k(n)

1im T (1 - Y P [W}’” > un} ) = exp(—\z) . (26)
=L eny

By the same argument, we also have

Jm [T(1- 32 p[w>w)
j=1

ier™

k(n),j
+

i, EI,ET(LM J,z;éz’

{Wi(n) > Up, Wi(,n) > un} )

= exp(—Az) 27)

because Assumption 6 (more specifically condition D’ (u,, =
An)y) tells us

Z P{W()>un,W()>unD=o(ﬁ).

i, EI](;(]") j RE

Since both the lower and upper bounds in (23) converge to
exp(—Az) from (26) and (27), we obtain

(n)
JLH;OH( M < v

We introduce a lemma used to complete the proof of the
theorem. The proof of the lemmais provided in Appendix IV.

Lemma 2: For the sequence m(n),n > 1, satisfying the
condition D(u,, = H;")) and k(n) satisfying the aforemen-
tioned conditions, we have

} ) =exp(—Az) . (28)

[P M < ) H P (M < w]| =0,
. (n) (n)
where M, := max(Wy ™, ..., W)
Eq. (28) and Lemma 2 now tell us
lim P [H(n) Lz > x}
n—oo
H
= lim P [ max Wg(n) < (n)}
n—00 {=1,...,H(n) €
= lim P [M, < u,]
k(n)
T (n)
= Jim ][ P {Mk(m i s “n}
j=1
= exp(—Az)
and the theorem follows.
APPENDIX IV

PROOFS OF LEMMA 2

We first introduce some auxiliary results used to prove the
lemma.

Lemma 3: Suppose that A = {a,m,n = 1,2,...;m =
1,...,H(n)} is an array of non-negative real numbers that
satisfies condition (13). Let n, r, and m be fixed positive



integers and F, ..., E, subintervals of {1,...,H(n)} such
that any two subintervals £; and E;, i # j, are separated by
at least m. Then, we have

[ﬂ{MW ) <u }] - H P [MW(Ej) < un}
j=1

<(r—1)-anm -

Proof: For notational convenience, we write A§") =
{M(">( ) <wup}. Let By = {kj,...,l;}, where k; <13 <
ko < gl Then, smcek:g—ll > m, we get

e 17 042 - [ 4]

_ |g(n) (n) (n)
*‘ka A1k lz(“n) ‘]k? zl( )Jk:L lz( n)
S Un.m -

By the same argument
[P lar na? 4] - 4] P [457] P (4]

|
<[P Al naf? nal] - P Al nal?| P [al]|

+|P AP 4l - P[] Plas]|-
<2 anm

P [A;3]

since By U By C {ky,...,l2} and ks — I3 > m. By applying
the same argument repeatedly, the lemma follows. ™

Lemma 4: Suppose that the condition D(w,,) holds. For any
fixed k, the following statements hold. A proof is provided in
Appendix V:

(29)
j=1
+P [U <M™ (Ilink)+1)} ;
(if)
k k
P [ﬂ (M) < u}] ~TIP [ ) < wl
j=1 j=1
< (k - 1) *Onom(n)
(iii)

Lemma 5: Suppose that condition D(u, = @) holds.
Let {k(n),n = 1,2,...} be a sequence that satisfies the
conditions in Appendix Ill. Then, for every j =1,2,...,

(n)7(n) _ 1
) < un < MO, )] =0 (k:(n)> ’

P (MO,

11
for dl sufficiently large n.
Proof: Under Assumption 5,

k(n),j
=P ( ﬂ {Wz'(n) < un}) ﬂ ( U {Wz'(n) > Un})
zElg:(]')t) J 7'6[7(%7(7')0 J

< 2 P

(")
Unp,
=(n)
zelk(n) j

_ | k(n)ul

from Assumption 5

where the last eguality follows from the assumption m(n) -
k(n) = o(H(n)). |

We now proceed with the proof of Lemma 2. First, by
rewriting the difference, the following bound holds.

k(n)

‘ (M, < u,] — HP[M“”

k(n),j < u”:|

k(n)

< ‘P (M, < u,]—P [ﬂ {M(")(lﬁfw,j) < u}] ‘

J=1

k(n)
+‘P [ﬂ {M(n)(I](:(LL)J) < un}:|
j=1

~TI P [M™ay),) ) < w

J=1

(30)

k(n)

+ TP [y

(n),5) = “n}

- H P {M(?r)l) Jj = u”}

We now upper bound each term in (30) using the bounds
derived in Lemma 4.

k(n)

Z p [ My I(n) ) Sun < M(n)(Ilg?r)z) )}

k(n),
+(k(n) = 1) - an ()
k(n)
+ H (1 +P [MW(EJ{)) ) S up < M(n)(I(T(Lr)I)J)} )
j=1

w ()
P fun < MO ()

(31)

—-1.
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In order to complete the proof, it suffices to show that (31) In order to prove claim (iii), we first note that, for j =
converges to 0: First, note that 1,...,k,
P (M) < | —P[M) <

P [un < MOUIE, iy 10)]

- [M(”)( 1) < u, < M<”>(1<">)} . (39)
_ (n)
=P . )U {Wi - u”} Now the claim follows from
€L )k (n)+1 i &
< Y P s @ 1P [ < - TP [ < w)
=1 =1
€L iyt ! A ’
-0 =TI (P [ < ]
from Assumption 5 because =1
o | +P ML) < < MOV
. k(n),k(n)+1 . (n)—1
limsup ————— < limsup ——— =0 . k
nooo  H(n) n—oo  H(n) ~-II» [M,g_';? < Un}
Second, Lemma 5 tells us j=1
k
) [T (1 +P (M) < u, < MEOT)] ) ~1
(n n k, — ¥n k, ’
nlinéozp[ (L) S un < MO ) jl( [ ' ’ D
k() where the first equality follows from (36) and the inequality
(n)
. Z 0( ) (33 olds because PGTM,W. <un| <1.
n—oo

=0.

Similarly, Lemmas 1 and 5 and (33) imply
k(n)
Jm, TT (14 PO ) < v < MO ] )
k(n) 1
= lim 1+o0 (34
=1.

From (32) - (34) with the assumption lim,,_ k(n) -
Qp.m(n) = 0, theright hand side of (31) goesto 0 asn — oc.
This completes the proof of Lemma 2.

APPENDIX V
PROOF OF LEMMA 4

Claim (i) of Lemma 4 follows from the observation that

k
(M < up} € (UMD < up}
j=1
and their difference is given by the event

k

( U {M(”) 1) <y < M(”>(I<">)})

U < MO DY (35)

The probability of the event in (35) can be bounded using the
union bound in (29).
Claim (ii) follows directly from Lemma 3 by replacing £ ;
with 7{™)
_k’j .



