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Abstract

We present a direct adaptive tracking control scheme for nonlinear systems that do
not have a well defined (vector) relative degree and hence are not feedback linearizable.
This technique uses feedback and coordinate changes to transform a nonlinear system
with parameter uncertainty into an approzimate input-output linearized one. Our re-
sult is also applicable to slightly non-minimum phase nonlinear systems with unknown
parameters. We prove that the presented adaptive design scheme results in an asymp-
totically stable closed loop system and show that the controller can achieve adaptive
tracking of reasonable trajectories with bounds on the tracking error. We also present
a state regulation scheme based on state approximate linearization. We demonstrate
the adaptive approximate tracking results using a simplified model of an aircraft which
is slightly non-minimum phase. The usefulness of our approach is also illustrated on a
“benchmark” example that is not feedback linearizable.

I. Introduction

Over the last decade, geometric nonlinear control theory has provided powerful tools for
systematic design of nonlinear feedback systems [Isi89, Nvds90]. Most of the available meth-
ods for nonlinear tracking control system design are based on linearizing the input-output
response of a nonlinear system using state feedback, or exact state linearization using a co-
ordinate change z = T'(z) and a state feedback [HSM83, Isi89, Nvds90]. Major limitations
to these approaches come from the fact that they require certain regularity conditions such
as involutivity, existence of a (vector) relative degree, minimum phase property, and that
they rely on exact cancellation of nonlinear terms. Alternatively, there have been several
successful approaches that aim to approzimately linearize a nonlinear system by relaxing
one or more of these restrictions. Krener [Kre84, Kre86], Karahan [Kar88], and co-workers
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(KKHF87, KK92] first introduced the approximate linearization approach as an alterna-
tive to exact state linearization. This approach has recently been successfully applied to
chemical reactor control problem for non-involutive systems [DM90]

Using Taylor expansion, a nonlinear system can always be approximated by a linear sys-
tem to first degree. However, the idea here is to approximate a nonlinear system up to the
highest degree possible. This will increase the validity of the approximation to the highest
order possible with small error terms, causing minimal performance degradation that may
be ignored in some neighborhood of the equilibrium. In the extreme case, there is no error
term and exact state linearization is achieved. Other schemes include extended linearization
introduced by Baumann and Rugh [BR86] and Rugh [Rug86], pseudolinearization by Cham-
petier and Reboulet [CRM84, RC84], and recently by Wang and Rugh [WRS89], and uniform
system approzimation by Hauser [Hau91] and co-workers [HSK92]. A survey on general ap-
plicability and properties of these approximate linearization approaches vs. exact lineariza-
tion technique for chemical reactor control was reported in [DM92]. In [HSM89, HSK92],
it was shown that one can approximately (input-output) linearize a nonlinear system and
design a stable approzimate tracking controller under much weaker conditions than those
needed for tracking design based on eract feedback linearization schemes.

A major deficiency, however, in design schemes based on exact or approximate feed-
back linearization is caused by parametric uncertainty in the system dynamics where ex-
act cancellation of nonlinearities may not be possible. Parameter adaptive control theory
[NAS8S, SI89, TKMK89, KKM91b, TKKS91, BS91, KKM91a] has offered a promising ap-
proach to compensate for this parameter mismatch problem. Unfortunately, the available
geometric nonlinear adaptive control schemes are based on exact feedback linearization the-
ory and suffer from the same limitations due to stringent regularity conditions required
for exact feedback linearization. In this paper, we attempt to extend parameter adaptive
schemes developed for feedback linearizable systems to approzimate linearizable ones and
hence, avoid several restrictions that limit the general applicability of these schemes.

We first review the approximate linearization technique for nonlinear systems. In section
III, we present the design procedures for adaptive input-output approximate linearization
and tracking. The adaptive regulation counterpart using approximate state linearization
is addressed in section IV, and a systematic design procedure for adaptive quadratic lin-
earization is presented. In section V, we apply our adaptive scheme to a simplified model
of the Harrier aircraft studied in [HSM89] which is not a minimum phase system. We also
show the usefulness of our adaptive scheme on a “benchmark” example of adaptive control
design case where the system is not feedback linearizable and can not be transformed into
the so-called “parametric-pure-feedback form.”

II. Review of Approximate Linearization

Consider the following nonlinear system:

a(t) = f(fv)+i gi(z) - u; (2.1)
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where z € R" is the state, u € ™ is the input, and f(0) = 0. Krener [Kre84] gave necessary
and sufficient conditions for the existence of transformations:

z = z(x) .
2.2
= o(z,u) = als) + B(z) - u (22)
which transforms the nonlinear system (2.1) into an approzimate linear system:
2 = Az+4 Bv+ O(z,u)rt! (23)

A = 80), B=g4(0)

with an error of order p + 1, where p > 1 is the order of approximation!. This nonlinear
transformation can then be followed by linear transformations of the states to obtain any
canonical form representation of (2.3), such as the Brunovsky form, at the cost of loosing
the physical significance of the states.

Theorem 2.1 ([Kre84]) The nonlinear system (2.1) can be transformed into order p lin-
ear system (2.8) where (A, B) is a controllable pair with controllability indices ky > ... > k,

iff:

(i). Distribution D* has an order p local basis at 0 consisting of:

{adﬂfgj 10 <l < min(k;, k)5 = 1,,,,,m}

(3i). D*=1 is order p involutive at 0 forj=1,...,m,.

Note that it is always possible to find such transformation where p = 1 using the Taylor
expansion.

When an output is specified and control objective is output tracking for the system of

the form:
(1) f(z)+g(z) v
y(t) = h(z(?))
where 2 € R is the state, u € R™ is the input, h € R? is the output with F(0) =0,h(0) =
0, one seeks input-output linearization scheme [Isi89, Nvds90] in order to linearize the
input-output map v — y. To simplify the notation consider the SISO case. After taking
subsequent derivatives of the output until the control appears one gets:

fi

(2.4)

y) = Lih(w) + u - L,L h(z)

for some r > 0. Then if the relative degree 7 of this system is well-defined in a neighborhood
Ue (0), i.e. Vo € Ue (0)

Lol his(z)()

= 0 Vi<r
L:gﬁfh,«_l(a:)(w) # 0

(2.5)

'Recall that a function 9(z) is O(z)" if Iim|z|_.0J-'{’-zilf,,M exists and is not zero. O(z)? is referred to as
o(1).



the input-output linearization is achieved by applying the following control law:

uo D) (2.6)
LoLhe1(z)

However if the nonlinear system (2.4) does not have a well-defined relative degree in a

neighborhood of the nominal operating point of interest, control law (2.6) is not feasible. In

this case, one can proceed with approzimate input-output linearization scheme, introduced

by Hauser [HSK92], to seek a smooth function ¢1(z) that approximates output y:

y = h(z) = ¢1(2) + to()

where 1 is of second or higher order with respect to the equilibrium manifold. An approz-
imate input-output linearized system is obtained by ignoring the second or higher order
terms in subsequent Lie derivatives of the approximate output ¢;.

Definition 2.1 (Robust Relative Degree) A nonlinear system (2.4) has a robust rel-

ative degree of v about x = 0 if there exists smooth functions ¢;(z), i = 1....,75 such
that:
h(z) = ¢1(z) + o(z)
'Cf+gu¢z(l.) = ¢,+1(IL‘)+’(/}Z(IIJ,U) 1= 1777_ 1 (27)

Litgudpy(z) = i’("’) + () u+ Py(z,u)

where functions ¥;(z,u),i = 0,...,7 are O(z,u)? and d(z) is O(1). Also ¢;(a,u) = O(x)*+
O(z) - u.

Definition 2.2 (Uniformly Higher Order) A function ¥ : ®* x £ — R is said to be
uniformly higher order on U¢ X B, C " x R,¢ > 0, if for some o > 0, there exists a
monotone increasing function of €, K'(¢) such that:

[¥(z,u)| < eK(e)(|2] + |u])Va € Ue , [u| < o (2.8)

Remark 2.1 Asshown in [HSK92], the robust relative degree of system (3.1) is equal to the
relative degree of its Jacobian linearization. Moreover, the functions &;(z) = L'}_(ll,)h(l'), i =
1,...,7 are independent in a neighborhood of the equilibrium z..

The advantage of this scheme is that if the nonlinear system (2.4) does not have a
well-defined realive degree but it is linearly controllable we can approzimate (2.4) with an
input-output linearized one. Let’s say (2.4) has a singular point z; i.c. 5953}'111(:55) =0
[HD87], but that it has a robust relative degree of v in U (z;). Consider the following two
local diffeomorphism ®(z) of z € RN™:

(5~T,77T)T (fz =~£§~_1h($),i: 1,2,...,7‘, nla---’nn—-'r)T i
(£T7 f)T)T = (£T7£i = E}—lh(z),z =r+ 1) T & "71, s ?’f]n—fy):]

{l

(2.9)



We have for the true system when z € Ue(z;) :

& = &
ér_—l = {r
Lfr = €r+1 + r-1(z) -u
€1 = Eqpat¥n(z)-u (2.10)
;-y—l g», +¢'y—2(x) U

5(@:) +d(z)-u
= §(&mn)

dz;’f""

where 9;(z) are O(z)!, a(z) 2 Egﬁ}_lh(a:), b(z) 2 L}h(z), and a(z;) is O(1). The approx-
imate system is:

& = &
ér = E'r—’—l
: (2.11)
51—1 = §'7
£, = bo)+i(e) u
7 (&, 1)

This represents an approzimate input-output linearized description of the true system
(2.4) obtained by neglecting some high order terms in some neighborhood Uy of the singular
state z; (i.e. 2 € Ue(x;) ). When system (2.4) is operating in U¢ , where (2.11) is a
valid approximation, one may design a feedback control law to achieve approximate output
tracking [HSK92]. The control law will, in fact, be the exact tracking control law using the
approximate description (2.11). With the above notation in mind, we say (2.4) is slightly
non-minimum phase if the true system, described by (2.10), is non-minimum phase but its
approximate linearization, described by (2.11) is minimum phase [HSM89].

Approximate Tracking is achieved by choosing the control law u:

1 z ,
= —b(¢, 2.12
with: ) ]
v= yff) + aw—l(yé""l) &)+ .+ aolya— &) (2.13)

where «; are chosen so that s7 + a7_137_1 + ...+ ag is a Hurwitz polynomial. Thus the
control law u in (2.12) approximately linearizes the system (2.4) from input v to the output
y up to the order € (say O(z,u)?).

Theorem 2.2 ([HSK92]) Let Uc , be a family of operating envelopes and suppose that the
zero dynamics of the approzimate system are exponentially stable, § is Lipschit= in £ and 7
on ®(Uc ) for each €, and the functions y;(z,u) are uniformly higher order on Uc x B,.
Then, for € sufficiently small and for desired trajectories with sufficiently small values and



derivatives (yd,yd,...,yfﬁ)), the states of the closed loop system and control (2.12) will

remain bounded and the tracking error will be O(e).

The approximate feedback linearization results of theorems (2.1) and (2.2) are clear
design alternatives to the more restrictive schemes of exact feedback linearization approach.
These results have already been applied to the design of chemical engineering systems
[DM90, DM92], and automatic flight control systems [HSM89]. In the next two sections,
we present a direct adaptive tracking and adaptive regulation scheme for nonlinear systems
that are approrimately feedback linearizable in the sense of [Kre84, Hau91] and hence, are
subject to milder involutivity restrictions, and are not necessarily minimum phase with a
well-defined (vector) relative degree as assumed in most current adaptive control strategies
for nonlinear systems.

In this paper, for notational consistency, we use O(z,u)? to denote a uniformly higher
order function of the form O(z)? + O(z)?~! - u.

IIT. Adaptive Tracking

Consider a SISO nonlinear system of the form (2.4) under parameter uncertainty:

.’l?(t) f(:c,0)+g(x,0)-u
y(t) = h(z,0)

where z € R" is the state, u € R is the input, y € R is the output, § = [6,6,,---,68,]7 is
the vector of unknown constant parameters, f,g, and h are smooth functions on R”. We
assume (3.1) has relative degree r around the equilibrium 2., but not necessarily has a well

defined relative degree at z.. We further assume system (3.1) has a robust relative degree
in Ue(z,) :

fl

(3.1)

Assumption 3.1 (Relative Degree) System (3.1) has a robust relative degree of v on
Ue(z.) , an open neighborhood of the equilibrium point z.. i.e. Yo € Ue(a.) , V0 € U, (6):
ﬁg(z)ﬁij.(:v)h(:v) =0 1=0,---,r—2
Eg(z)ﬁjf(x h(z) are of order ¢  j=r—1,---,y -2
Eg(z)[:}(_z)h(x) #0
where 0 < r < 7 is the relative degree of (3.1) outside Ue(z.) but not necessarily well defined

at every point inside Ue(xe) . Moreover, terms of order ¢ could be either O(x)? or small
bounded terms when x € Ue(z.) .

Assumption 3.2 (Linear Parameter Dependence) The vector fields f and g in (3.1)
are unknown but may be parametrized linearly in unknown parameters 6:

<

f(z,8) = 6; - fi(z)

o
Il

(3.2)

M

.
Il
—

9(z,0) = 0; - gi(z)

[«



where vector fields f;, and g; are known functions of x.

By Frobenius theorem, there exists n —+ functions 7;(z,8) such that £, ¢n:(x,8) = 0.
The resulting local diffeomorphism of z € R™ is:

(gT, T]T)T = (51 = ( g)h(m)’z - 1 2 SRRT SR/ PR 'vnn—’Y)T (33)

transforms the system (3.1) to an approximate input-output linearized system given in
(2.11). However, this transformation can not be used directly in the design scheme since it
depends on unknown parameters §. We replace the transformation ¢ with its estimate {-C by
replacing all unknown parameters 6; appearing in £ by their estimates §;:

T R . . .
(€ = (E= L ph(a)i= 12 ms, M) (3.4)

The dynamics of (3.1) under this (time-varying) transformation along the solution trajec-
tories of (3.1) is:

él = Ef(l‘@)h(z)
éz = »Cf(xe) (zoh(i’:)+ §(z0) -0

bt = Liwplllshla )4 Leled)

f(=.0) 80 .

. B 9€, (z.6) 5

& = Lyealn @)+ Lol k@) vt ! (3.5)
. _ o€ (z,0) }

b1 = Li@oLye @)+ Loaaly phle) - wt =050

. o (2d) -

y-1 = £f(avé’)m (@) + Lo( ”)Cf( e)h(w) E I

% _ 'y =1 357(”:’9;). 0

= {q ’77

From assumption (3.2), we have:

~ p ~
E24 D, (6= 0:) - Lyymyh(e)

£ =
1= 1

b = Gt Y () Lyl (e + 2D
=1

é.z' = £2+1+Z 0 _0) 'Cfc Ez(lg)h( )
i=1

+Ly( )Ll ) (@) -+ 58(;"’)-é i=7,. .y —1

f( 6)



From assumption (3.1), and applying the control law:

1
Ugd = [ ¥ h(:l!) + vad] (37)
Lo@pL f( 0)h(x) f( )
with: ) )
Vad = Y0 + 1 (BT = E) 4 o+ co(ym — E1) (3.8)

and a; chosen such that s” + 187! +... 4+ ag is a Hurwitz polynomial, we can rewrite
(3.5) in a more compact form with ¢ = 6 — 6:

& = Ltw(sb)-2
b = btwnf) ey Xded
gr = €r+1+wr(1‘ 6) (I’+8§ (z0) 0A+¢T(93’8>u)
af (3.9)
é_l = ¢ +w7_1(x,9)-¢+w-0A+¢7_1(m,9,u)
0 o] 36
E’y = Uad'*'w’y(xvéauad) (p+8€a(0ze é
n = ‘1(5»77)
where:
P
wv(z‘,O,u).(I):Z (6; - 0;) - [ﬁf‘,(m) e gh(m)-l-u L, ()C}Y(_;yé)h(:v)
i=1
and ¥;(z,u) = (xg)ﬁf( 0h(:1:) w. Finally:
f = A§+B u+W‘¢+M'w+qu) (3.10)
7= q(én)
where:
0 1 0 0 wy
0 0 1 0 211
0 0 0 1 w, (3.11)

U(z,u) =0, .., 9. (x),..cshy_1, 01T , M= _§<0—
]

The design objective is to force the output y of system (3.1) to asymptotically track a
known reference signal y,,. For this, the control law and the parameter update law must
be independent of unknown parameters § and initial conditions E(O) Moreover, all the
closed-loop signals must remain bounded. The error signal e is defined as:

ei=&—yli i=1,...4 (3.12)

with ey = fl Ym = Y — Ym- Therefore, for approximate tracl\mg, we require ¢1{t) — Be(0)
as t — oo.



Assumption 3.3 (Reference Signal) The reference trajectory y,, (1) and its first v deriva-
(1)

tives are bounded. i.e |yn'| < by i=0,1,...,7 for some by > 0.

Remark 3.1 Often, as in model reference adaptive control, the control objective is to force
the states £ to track the states £,, of an asymptotically stable linear reference model with
a relative degree equal to that of system (3.1):

£m =Ap En+ by -7
where A,, and b,, are in controllable canonical form and »(¢) is a bounded reference input.
2

In this case the error may be defined as: e = £ — &, with v = Z aifi + 7(t) replacing
=1

(3.8).

To determine a parameter update law § that assures the stability of the closed-loop
system we first construct a regressor like equation from (3.10) by cancelling 3 using an
auxiliary system in the adaptive loop and factoring € in ¥(z,u) . Let £ be a new signal
generated as the solution trajectory of the following state observer system which is a mod-
ified version of the system used in [PP89, Akh89] and the semi-indirect adaptive scheme of
[TKKS91]:

éi = ééi’Bvad+Mé+\il($7u7é)+A(g_é)
£€0) = & =¢&(0)
where £ € R from (3.4), M as in (3.10), \il(:v,u,@) is an estimate of ¥(x,u) in (3.11)
evaluated at 8 = 6, and:

(3.13)

0 1 0
A — . . . .
0 0 1

-0y —~a1 ... —OQy

with @; chosen as in control (3.8) and § still to be determined. In (3.13), if £(0) is not
available &, is set to an estimate of £(0). Let’s define the augmented error s(() as:

s=E€-¢ (3.14)

where £ is defined by (3.4) and its dynamics is given by (3.10) subject to control v = v,y
as in (3.8). Observe that s(¢) satisfies:

§ = A-S—W-@—{—‘il(:v,u,é)—\Il(m,u,O)

- Ao (3.15)

where Wy(z,u) is formed by factoring parameters 8 in ¥(-) and regrouping all parameter
dependent nonlinearities.

The following assumption is needed to provide the internal stability of the plant:



Assumption 3.4 (Zero Dynamics) The Zero Dynamics of the approzimate input-output
linearized system (2.11), or equivalently (3.10), are locally exponentially stable with ¢ locally
Lipschitz in € and 7.

Remark 3.2 The zero dynamics of the approximate system are a subsystem of the zero
dynamics of the true system. Assumption (3.4) does not ask for the plant (3.1) to be
minimum phase which is required in most adaptive control design schemes (e.g. [TKIS91,
BS91, KKM91a, SI89, TKMKS89]). In contrast, our scheme can handle slightly non-minimum
phase systems which by definition have minimum phase approzimate linearization.

We are now ready to state the main result of this section. The following theorem provides
a parameter update law that guarantees adaptive approximate tracking and gives an upper
bound on the tracking error.

Theorem 3.1 (Adaptive Approximate Tracking) Consider the system of (3.1) salis-
Jying robust relative degree assumption (3.1) and the zero dynamics assumption (3.4) with
the vector fields f and g parameterized as in assumption (3.2). Suppose that the system
(3.10) is formed and assume that ¥(z,uqq), W(z, uad,ﬁ) and M(z, uad,(?") are locally Lip-
schitz continuous. Then, given a reference trajectory y,, satisfying assumption (3.3) wilh
sufficiently small b,,, it follows that for € sufficiently small the control law w.q in (3.7)
achieves adaptive approzimate tracking of order ¢; i.e.,

[y — ym| < ke
for some k < 0o, with the parameter update law:
§=-0-Wl.P.s (3.16)

Furthermore, all the signals in the resulting closed loop adaptive system remain bounded.

Proof. Consider the following Lyapunov candidate function for the system (3.15):
V(s,¢)=sTPs+ 370 'o (3.17)

where Q is a constant dl:«L%w onal gain matrix and P = PT is the positive definite solution to
the Lyapunov equation A” P+ PA = —\ - I with A > 0, and A asymptotically stable as in
(3.13). The derivative of V along the solution trajectories of (3.15) is:

V=T s+ 2T PWT® + 2070 19

From (3.16), we have: '
V==)s?<o0
Hence:
s(t) € Lo N Ly (3.18)

10



To establish a bound on |s(t)| and |®(t)], let Apin(P) > 0 be the minimum eigenvalue of P
in (3.17). Then Vt > 0:

Amin(P) - s> < sT(8)Ps(t) < V(s(t), ®(2)) < V(s(0), (0))
< L. |‘I)(0)l2 + Amas(P) - |SO|2

Imin

where ¢, > 0 is the minimum gain entry in . Hence:

ls(t) < A

B < s (3.19)

where A4 and A; are some positive constants with magnitudes depend on the error in initial
estimates §(0) and £ of @ and £(0). Note that if £(0) is available we have s(0) = 0, A, =
(gmin * Amin(P))™H2 - |®(0)], and Ay = (gmaz/Gmin)'/? - |®(0)|. Hence, with the update
law (3.16), 6(t) remains bounded. To show convergence ®(t) — ¢ for some constant c,
not necessarily zero, we need to show that s(t) — 0 as t — oco. A sufficient condition for
this is that 5(¢) € L. We also need to show boundedness of states 2 and wu.q(2) so that
Wa(z,u,0) in (3.15) and (3.16) remains bounded. This will be shown next together with
approximate tracking requirement in (3.12).

The tracking error signal e defined in (3.12) satisfies the following differential equation:

é

il

fi-e+WT-<I>+M-5+\II(x,u)

- 3.20
= A-e+WT-<I>—M-Q-W2T-P~3+\Il(a;,u) ( )

To show e; — B¢(0), let’s consider the total error defined as:
rSets (3.21)

or equivalently r; = £, — yﬁ—l), and note that from (3.20) and (3.15), r(1) satisfies the

following differential equation:
(3.22)

Remark 3.3 Equation (3.22) may be interpreted as a linear time-varying filter under small
perturbation ¥(:) with bounded input s(¢) (from (3.18)) and subject to the internal dy-
namics: 7 = g(z,8) driven by 7. Let’s define the output of this filter, from (3.21). as:

T = /i-r—[M-Q-WZ,T-P]-s(t)-{—\il(w,u,él)

e(t) T — s(t) ) (3.23)
0 q(z,0) = q(€,n,6)

Il

Next we will analyze the stability properties of this filter in order to show ¢; — B¢(0).
More specifically we establish e(t) as the output of an asymptotically stable linear filter
(3.23) with stable internal dynamics ¢(z, #). This requires that z is bounded, or equivalently,

11



f and 7 are bounded. To show £ and 7 are bounded, we will first show that » and 7 are
bounded using a suitable Lyapunov candidate function for (3.23):

V(r,n) = rT Pr+ poy(n) (3.21)

where p > 0 is a constant to be determined later, P > 0 is such that A~ P+ PA = —I, and
v2(n) is a Lyapunov function for the system % = ¢(0, 7). From assumption (3.4). a converse
Lyapunov argument assures the existence of vy with following properties:

kin)? < wva(n) < kalnl?

%24(0,n) < —ksln)? (3.25)
G2l < kan|

for some positive constants ky, ks, k3, and k4. The time derivative of V(r,7) along the
solution trajectories of (3.23) is:

V=-—lr?=2,TP[M-Q- W P]-s+ 2 TP + ,u%—?;;q(f, ”) (3.26)

From (3.12) and assumption (3.3) we have:
€] < le] + by (3.27)
and from the definition of r in (3.21):

lel < Ir| + Is] (3.28)

Since z is a local diffeomorphism of (é, 7n), we have:

||

< L€+ Inl) 3.29
< (el + bm + |0l) 1520

Since W is assumed locally Lipschitz continuous we have:
|2P[M - Q- W - P < lwlz| + e (3.30)
where ¢; > 0 is a constant.

Because ¥(z,u) is O%(z,u), we have for some constants l¢ > 0 and & > 0:

2P¥(z,u)| < lez|? Ve:|z|<elul <6 .
(3.31)

< lee|2|

Note that since u is a function of z(t) and y,(t), size of § depends on ¢ and b,,. This

immediately suggests that a;s in (3.8) should be chosen such that the assigned poles are

not too far left. Otherwise, the resulting higher control magnitude |u| will push the state

|z| outside its approximating region.

From assumption (3.4): h
l9(€,m) — ¢(0,n)| < Ll¢]

12



Hence:

S2q(é,m) = 52q(0,m)+ 32(a(€,n) - q(0,7)) (3.32)
< —kalnlz+k4l Inl(l |+ bi)
Substituting above inequalities in (3.26) yields:
Vo< =+ Irl(wla] + er)ls] + elelrllz]
+u(—ks|n|? + kalg|nl(le] + b))
< =P+ Llwlr|(|r] 4[] + b + [9])]s]
terlrlls| + elelr|le] + p(=kalnl* + kalg|nl(Ir] + Is] + b))
A
Let ¢ = b, + l—ff‘;, then:
. 2
Vo< - (5= twla(ls+ e)lsl)” + (wlo(ls] + e2))?s]?
2
+ (I = (wlels| + elele + phalg)|n]) " + Uwlals| + elel + pkal,y )
R 2
— (5 =~ elelalls] + b)) + (elela(]s] + bm))?
2
ks (1 = £1y(1s] + b)) + £ (kaly(Is] + b))?
~(1/4 = lwly|s| = elely)|r|* — Spuks|n|?
< —(1/4 = lwlphs — elely)|r|* = [3puks — (lWl Ao + €lely + pikaly)?)|n)?
(lle(’\s + 02))2/\32 + (délx(/\s + bm))2 k3 (lv4l (/\ + bm))
Define: i
= 3 (3.33)

A(lwly + kalg + el ;)?
Then for g < po,e < mzn{m ,u} and |®(0)] and |s(0)| small enough such that
As < € we have:

Vo< IR kg £ Ghaly (A + b7

- 8

+(Iwle( s +02))2/\ + (elels(As + bn))?

Hence when |r| and |n]| are large V < 0. Therefore, |r| and || are bounded which by (3.28)
implies that |e| is bounded. From (3.27), this shows that |¢| is bounded and from (3.29),
|z| is bounded. This guarantees that M and W, are bounded which by (3.15) implies that
§ is bounded. This together with (3.18) implies that s — 0 as ¢t — co. We have shown that
(3.23) is an exponentially stable linear filter with stable internal dynamics ¢(x,#) under
bounded e-order perturbation ¥ and input s — 0. Hence , its output ¢ converges to a ball
of order €. i.e. |y — ym| < ke for some constant k. This completes the proof. a

The adaptive design scheme developed in this section can also be applied to the multi-
input multi-output (MIMO) nonlinear systems of the form:

z(t) = f(z,0)+ Z gi(z,0) - u;
=1
yi(t) = hi(z) i=1,.

(3.34)
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where the vector relative degree (r1,...,7,) at some point of interest is ill-defined, or that
the decoupling matrix A,:

Lo, L7 h(z) ... Lo L7 ha(a)
A, = : : : (3.35)

Lo L7 (&) e L £ i (2)
is almost singular due to the presence of small terms. In this case, with assumptions (3.1)-
(3.4), we first apply the dynamic extension algorithm [Isi89, Nvds90] to the approximate
model in order to get a nonsingular decoupling matrix A, in (3.35) with robust vector
relative degree (v1,...,7¥m). The same procedure as in the SISO case can then be applied
to the resulting extended system. We demonstrate these procedures in the section V' where

we apply our adaptive design scheme to a simplified model of an aircraft which is slightly
non-minimum phase with an almost singular decoupling matrix.

IV. Adaptive Regulation

When the objective is state regulation, the design procedure becomes simpler. In this
case, we attempt to approximately (state) linearize the nonlinear system and then design
a controller such that the closed loop system is asymptotically stable. The key here is to
linearize the system to the highest order possible. Consider a nonlinear system with no
output specified:

i) = f(z,0)+) gi(z,0)- u (4.1)
1

where z € R" is the state, u € ®™ is the input, # = [6,,6s,- - -, HP]T is the vector of unknown
constant parameters, f and g; are smooth functions on ®" with f(0,8) = 0. The parameter
update law for our adaptive regulation scheme is assumed to be of the following form:

0= g(z,0,u) (4.2)
where g(-) is O(z,u)?s and will be determined later.

Lemma 4.1 Consider system ({.1) satisfying assumption (3.2). Let 0y bc the unknown
nominal value of 8 and assume that V8 € B,(6y):

i. Distribution D* has an order py local basis at 0 consisting of:
{adlfgj 10 <l <min(k,k;);5=1,.. .,m}
for a set of ky,...,k,,, controllability indices.

i. D¥=1 is order py involutive at 0 for j = 1,...,m.

Then there exists a local transformation z = T(z,0),T(0,8) = 0 and a nonlinear fecdback
ui(z, ) such that with the choice of the parameter update law in (4.2) the nonlinear system

14



(4.1) is transformed into the following regressor form approzimate linear system, with p 2
min{pa, py)+

3 = { Ziy1 + w]T(m,é)(HO —0)+0(z,u)?* ifjE k4. 4k

n n 4.3
v 4 b wlo-0)+0Eut ifj=kb .tk

Proof It is clear from theorem (2.1) that for a fixed parameter § and any p; > 0, conditions
(2) and (4i) are necessary and sufficient for the existence of a transformation » = 1'(x, )
which transforms (4.1) into the following form:

é._{zj_*_l + O(:l:’,u)"d+1 ifiFki+...+ k&
;=

o 1.4
v; ifj=ki+...+k (1.4)

When parameter vector § is not known and is replaced by an estimate § with an update
law of the form (4.2), which is of order py, we get:

Ziy1 + w]T(z',é)(Oo — é) + O(z, u)Pet! + 8_2;(%0) -g(z,u,0)
ifitkt.. .k

% = . ) . (41.5)
v+ ol (8- 0)+ 2D g(e,u0)
ifi=ki+... 4k
where we used the fact that in (4.4): zj41 = Ly0)2 J# k1 + ...+ ki, and:
(ﬁfl(x)zjv--aﬁfp(x)zj') ifj#ki+.. ks
T _ s m o
Wi = L)z + Z Ui Lg) i()%i 1> Loy + Z U; - ,Cgp’l(x)zj‘) (-1.6)
=1 1=1

tfi=ki+...+k

Finally, since z = z(z) is a diffeomorphism with 2(0) = 0, we have a term O(x,u)' if and
only if it is O(z,u)!. This together with the fact that g(-) is O(=,u)?s results in (1.3). 0.

The transformed system can be written as:
t=A-z+B-v+WT. .8+ 0(z,u)t (4.7)

where W is a matrix with columns w; defined in (4.6), and (A, B) are in Brunovsky form.
The following control law can then be used to assign stable poles:

v = Z ;2 (4.8)
i=kj_1+1

where a; ; chosen such that ski 4 ak]_l,jskf”l + ...+ ay; is a Hurwitz polynomial. The
resulting feedback system is of the form:

t=A-24+WT .8+ 0(z)"! (.9)

where A is an asymptotically stable matrix. Let P be the unique solution to the Lyapunov
equation ATP 4+ PA = —T which is guaranteed to exist. The following theorem provides
the regulation counterpart of the tracking result in theorem (3.1).
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Theorem 4.2 (Adaptive Regulation) Consider system (4.1) satisfying assumption (3.2)
and conditions of lemma (4.1) on U¢(0), an open neighborhood of the origin, with:

g(z,0,u)=-Q-WT.pP. (4.10)

Then there exist an open neighborhood B(6o) such that V0(0) € B, (o) and ¢ sufficiently
small, 8 remains bounded, x — 0 ast — oo and the equilibrium z = 0, 6 =6, of the resulting
closed-loop adaptive system is uniformly stable.

proof Consider the following Lyapunov candidate function:
V(z,9) = 2T P2+ 6TQ 19

where 2 is a constant diagonal gain matrix. Derivative of V along the solution trajectories
of (4.9) is:

(AP + PA)z + 2:TPWTD + 2:TP - O(2)7*! + 6TQ-10

VvV =
< =Tz 4 0(2)rt?

(4.11)
Since p > 1, by definition there exist a constant ! > 0 such that: O(z)PT? < [|z]*+? <

le’|z|> V2 € Be(0). Hence: .
V< (=1+4+1-¢)-]z)? (4.12)

which is negative semidefinite for:

Ve s.t. € < ¢ 2 %
This shows that for € and |®(0)| sufficiently small, 2(t), #(¢) and z(t) remain bounded and
z € Ly. Also, from (4.7), # is bounded and by Barbalat’s Lemma 2z(¢{) — 0 as ¢t — oc.
Hence, since z = T(z) is a diffeomorphism on Be(0) € Ue with T(0) = 0, x(t) ~ 0 as
t — oo. This proves that the regulation of state z(t) is achieved for all initial conditions:
®(0) € B,(6),z(0) € T~1(B¢(0)). Tt is also clear that the equilibrium:

(4.13)

=0 5 9:00

is uniformly stable. This completes the proof a.

Remark 4.1 Due to the approzimate nature of our nonlinear analysis, the feasibility do-
main of our adaptive scheme is generally local. We, however, note that in the proof of the
above theorem, the feasibility domain obtained for regulating z(¢) depends monotonically
on the order p of our approximation. This is true since for € small, €” is a decreasing function
of p > 1 and consequently (4.13) holds for a larger range of e.

We now consider the case where p = 2 for a single input nonlinear system:
&ty = f(z,0)+9(2,0) u (4.14)

Kang and Krener [KK92] proved that any linearly controllable nonlinear system is feedback
linearizable to second degree by a dynamic state feedback. This is in contrast to the
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results of [CLM88] showing that if a single input nonlinear system is not ezactly feedback
linearizable, then it is not linearizable by a dynamic state feedback. We next remove the
linear parameter dependence assumption of theorem (4.2) and give a systematic design
scheme for adaptive quadratic regulation which can be applied to any linearly controllable
nonlinear system. The following definition and theorem is due to [KK92]:

Definition 4.1 (Quadratic Linearization) If we can find a dynamic state feedback for
system (4.14) such that the resulting extended system is linearly controllable and it can be
transformed into:

= Fz4 Gv+0(z,v)? (4.15)

by a change of coordinates:

[ - ] =z + 902 (4.16)

where 9[2(z) is a polynomial vector field of order two, then system (4.14) is called quadrat-
ically linearizable by a dynamic state feedback.

Theorem 4.3 ([KK92]) Any linearly controllable system (4.14) is quadratically lincariz-
able by an (n-1)-dimensional dynamic state feedback of the form:

W =Aw+ Bv, u=w;+yMz,w)+ 3@, w) (1.17)

where (A, B) is in Brunouvsky form.

We now give a systematic design scheme to achieve quadratic regulation under parameter
uncertainty:

Step One: Construct the second jet of system (4.14) around the reference point 0. This
will give an approximate system up to the second order:

& = A(f)z + B(O)u + f[zl(a:,é) + ¢(z,8) - v+ O(a, u)? (4.18)

where f2(-) and g[}(-) are n-dimensional polynomial vector fields of order two and one
in the components of z. Note that in this series expansion, all the unknown parameters
6 of system (4.14) now appear, possibly after reparameterization to 8, linearly in the
approximate model (4.18), i.e. in linear and quadratic terms: Az, Bu, [(2) and
gM(z) - u of system (4.14).

Step Two: Since (4.14) was assumed linearly controllable, the pair (A, B) is a controllable
pair. Perform the following linear change of coordinates and linear state feedback:

-1
2 = Bst(T)-s, T [BeAcBe,..., A B - [B,AB,....A""'D

u = (2,0 +p (1.19)

to transform (4.18) into:

2= Fz+ Bop+ fO0(z) + gM(2) - (/1 + p) + Wi(2) - @ + O(z, p)? (4.20)
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where ¢ = 6 — 4, (F, B,) is in Brunovsky form, and f12(z), g[l(z) are of the form:
e 3 wpese, =3 by (4.21)
7=1,k=1 =1

Since, in general, transformation above T' depends on some unknown parameters 6,
we used its estimate with parameter update laws still to be determined. Note that
these parameter update laws will be some order 3 smooth functions in the state and
have been included in O(z, ) terms.

Step Three: Apply the following p-dimensional dynamic state feedback to (4.20):

& =Aw+ Bu, p=w +7Hz,w,b) (4.22)
where (A, B) is in Brunovsky form with dimension p:
pémam{j—i;aijk;éo,n-{-l—i;bij#O} (4.23)

where a;;; and b;; are as in (4.21). The resulting extended system is in the form:

[ z ] B Anw{ Z) ]+Bn+p'v+l i ]+[ PG }—F[ e ].(MO(%W v)”

w 0 0 0
(4.24)
where fl2(z,w) = f2(2) + gltl(z) - (70(z) 4 wy).

Step Four: Consider the following change of coordinates:

&
&k

21

e

Linear and quadratic parts of 3x_1 except terms containing ¢ (+.25)
2<k<n

where we ignore all the terms containing ¢ and 8 since they will be of order 3. Also:
h=Wkn n+1<k<n+p (4.26)
The resulting system is transformed to:

€:1 = &L+ wi(z,w)d
62 = £3+W2(ZU,W)¢+O(E,#)3

: (+.27)
én—.l = &+ wn—l(xaw)¢+ O(é‘all’)S
£7L = w +’)’[2](£)+¢[2]($,W1,,wn)+ wn((L’,W)QS‘}‘O(g,H)B
where zb[Z](z,wl, ...,wy) is a homogeneous polynomial of second degree. Let:
YB(2) & [z 0, . .., w0)] (4.28)
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then we have: .
L = &L+ wi(z,w)é
£2 = &+ waz,w)p+ O(€,0)°

én—‘l : En + wn—l(zaw)¢ + O(é‘v 'U)S
. £n = £n+1 + wn(waw)¢+ 0(57 U)3
§n+l £n+2

(4.29)

£n+p = v
which can be rewritten in the following compact form:

£=F&+Gv+W(e,w,u) ¢+ 0(E,v)° (4.30)
where (F,G) is in the n + p dimensional Brunovsky form.

Step Five: Choose the control law v and the parameter update law as:

v = —K:¢

4.31
b = —Q -Wl(z,w,u)-P-£ ( )
where K is such that F 2 (F -G -K) <0, Pis the solution to F¥' P + PF, = -1,
and € is a constant n X n diagonal gain matrix.

Remark 4.2 The procedures indicated above in obtaining the transformation £(z) are
similar to those of [KK92], where all parameters are assumed known and the system is
assumed to be in the extended quadratic controller normal form. Here, with an additional
integrator, we avoid solving the set of linear equations [KK92]:

(2
2+ Gl +91(2,0)), 61z, 0)] + 2= = G, + #0040 4500 )

where under parameter uncertainty a solution is not feasible.

The following theorem summarizes our results in this section on adaptive quadratic
regulation. The adaptive quadratic model following can also be shown using the observer
system (3.13).

Theorem 4.4 (adaptive quadratic regulation) For any linearly controllable nonlinear
system (4.14) with unknown parameters 8, adaptive quadratic regulation can be achicved
following the steps described above.

Proof The resulting closed-loop system can be written in the following compact form:
€= Fb+W(z,w,u)- ¢+ 0(,0)° (132)

and an argument analogous to the one used in the proof of theorem (4.2) holds. Hence, {or
|2(0)| and |®(0)| sufficiently small, z(t) and 6(t) remain bounded and a(t) — 0 as t — oo.
Moreover, the equilibrium:

z=0 5 é = 00
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is uniformly stable. d.

In section V.2, we will demonstrate the usefulness of the above scheme with the help
of a “benchmark” example of state regulation problem where the system is not feedback
linearizable. We also illustrate the case where unknown parameters do not appear linearly
in the system.

V. Simulations

In this section, we illustrate the features of our adaptive design scheme with the help of three
examples. First, we consider a simplified model of the Harrier aircraft studied in [HSMS89)
under some parameter uncertainty in mass and moment of inertia. We compare the perfor-
mance of our adaptive tracking controller to the performance of the non-adaptive tracking
controller. In the second and third examples, we discuss adaptive nonlinear regulation of a
system that violates the conditions of some other adaptive schemes.

V.I Applications to Flight Control Systems

The equations of motion for the prototype PVTOL (planar vertical takeoff and landing)
aircraft considered in [HSM89] are given by:

mi = —sinf-uy;+€cosb-uy

my = cosf-uy +esinf-uy + myg (5.1)
JO = uy '
= 2,492 =Y

where outputs z and y give the position of the aircraft center of mass, 6 is the angle of the
aircraft relative to the z-axis, uy and wug are the thrust and the rolling moment, ¢ is the
gravitational acceleration normalized to —1, and € is a small coupling coefficient between
the rolling moment u; and the lateral acceleration of the aircraft # and §. The objective is
to find a feedback law that decouples outputs z and y under some parameter uncertainty
in m and J. We require & to track a smooth trajectory while y remains at zero. The
decoupling matrix for system (5.1) is:

_1_[ —sinf ecosé } 2)

(W24

(

m cosf esinf

which is nonsingular with a small determinant —e/m. This will result in a relatively large
decoupling control law:

u | —sinf cosd . vy (5.3)
up | cosf/e sinf/e vy + 1 o
which input-output linearizes system (5.1):
& = 1
i = v (5.4)
0 = #g(sinﬂ+cos€-v1+sin0-v2)
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Since € is small (typically around 0.01), the exact decoupling control (5.3) will require a
large control effort and hence is not feasible in practice. Moreover, this control law renders
an unstable internal dynamics since the resulting input-output linearized system (5.4) is
non-minimum phase and there is no global tracking controller that can be designed for such
a system. Hauser [HSM89] proposed a tracking controller design scheme for this system
by ignoring the e-dependent terms in the model (5.1). The resulting approximate system
overlooks the small coupling between rolling moments and lateral acceleration (set ¢ = 0 ):

mi = —sind-u

mj = cosf - uy + mg (5.5)
Jo = Uog ’
Wi = T,% =Y

We now, following the procedures in section III, design an adaptive approximate tracking
controller for system (5.1) under parameter uncertainty in m and J.

Remark 5.1 The neglected nonlinearities in (5.5) are not O(z,u)? which is required for
approximate linearization analysis. However, since € is a small parameter, one may still
apply the approximate linearization technique to achieve approximate tracking. In this
case, the loss of performance is less for smaller values of ¢, and as shown in [IISM89], this
approximation gives desirable results for € up to around 0.6. The same argument holds for
our adaptive tracking scheme.

In order for output y to be independent of the neglected nonlinear terms used in our
approximation, we first remap the controls u; and wu;. This is mainly done to provide
eract tracking of the altitude (y) where PVTOL aircraft are designed to be maneuvered
close to the ground. Note that under parameter uncertainty in mass m, which is common
in aircrafts due to the fuel consumption and load variation, good tracking in y-output is
not possible unless the controller is robust against this uncertainty and can adapt to the
parameter variations in the system dynamics. Let 4; and iy be new controls such that:

=6 ) ]

then (5.1) can be rewritten as:

& _ 0 —sin@ €/ cosf iy
IR Y R e H ) I

é = 92'112

(5.6)

where for simplicity we have redefined the unknown parameters in (5.1) with the help of
the following notation:

6, 21/m , 6,21/J (5.8)

The approximate system is then given by:
L _ 0 —sinfd 0 U
[?/] - [“JHI [ cos 0] {“2}
é - 92 . '1712
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which has a singular decoupling matrix. Therefore, we first need to apply the dynamic ex-
tension algorithm where we consider %; as a new state. The resulting extended approximate

system is:

Y

Up)
—617m7sin 75
N4
=14 61m7cos 5
U
0

N8
0

-771
| 13

|l == =R = R o B e B o i )

cC oo oo

S

(5.10)

FaN . . P . .
where = (z,%,9,9,0,6, 4,4 )" .This system has a robust vector relative degree (4,4) and
is therefore, a minimum phase system. Consider the following local diffeomorphism of 7:

&1
&2
€3
€4
€5
€6
€
€s

m
2

{l

3
N

= —1+4601n7cosns
= —O1menrsin ns + 1ngcos s

—0ysin 577
—01men7c08 N5 — By ngsin 75

(5.11)

which transforms the approximate system (5.10) into the following input-output linearized

system:
&
£
&
€a
&
2
44
€8

fl

i

fi

&2
&3
€4

61sin nsmrne? — 201c08 NsMens — B1sin N - w — 1 03c08 577 - iy

€6
134
€s

61 cos nsmrne? — 261sin n5nens — 01008 15 - w — 0109510 M50 - iy

Since transformation (5.11) depends on unknown parameters 6;, we consider the following

local diffeomorphism which is an estimate of the transformation in (5.11):

U
7]2

l

73
Yz

22

—0;sin 7577 A
—81men7cos s — Oy mgsin s

-1+ 61 m7c08 75 )
= —0i1menrsinns + O115c0s 75

(5.13)



where the update laws for 6, and 6, will be determined later. The equations describing the
dynamics of £ are given by:

2 0 0
—91 sin 9577 0 0
“91 N67)7€C0S 775 - 917785111 s 0 0
I 0151n N5M7M6% — 201cos 57678 —bOisinny  —6,02m7c0s 15 . { w }
£ = + .
N4 0 0 Uy
~1+ 01mrcos 15 0 0
—01 NeN7sin 75 + 6, 78OS 7)s ) 0 ) 0
| —6, cos nsmrme? — 26;sin nsnens | L Gicosms  —610m7sins |
) 0 -
0
—77sin s
+ ~eTreos 778 ~ Tssin s -51 (5.14)
0
17C08 N5
| —7e77sin 75 + njzcos M

The approximate linearizing control is given by:

P o -1
[ w ] _ [ —AHISln 75 —9}02777005 75 ] . [ v — 01777176 sin 75 + 201776778(105 5 (5.15)

Ug Oicosns  —0,02m7sin s 01 N7ne2cos s + 260, NgNgsin 1
with:
v=al) +az(z) - &) +... + ao(em — &)

and a3 = 6,2 = 13,1 = 12,0 = 4 so that the resulting poles are at —1 and —2. The
parameter update law is:

% N R
[52}— [0 g2] Wy P (€~ €) (5.16)

where g1 and g, are adaptation gains, P is the solution to AP+ PA=—I lasin (3.13)
with @; given above, and W5 and ¢ are given by:

W, = 0 —nsinys + enrcosns 0 ) 0 0 nrcosms + etigsingys 0 0
0 0 0 —0yn7iizcosns 0 0 0 Buyrassings
(5.17)
and:
[ 2 0 0 7
—01 77sin 75 0 0
—01776777cos N5 — 91 Ngsin 75 A 0 o 0
i o= f1m7me?sin s — 201 nenscos s + —bisinns  —b16zn7cos s | [ w ]
Tl m 0 0 iy
-1+ 46 17€08 75 0 0
—01 776777s1n 75 + 6y 18COS 15 0 0
| —B1m7m62cos ns — 261 1enssin s | L bicosns  —6162mrsinns |
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I 0 ] 3 0 7
0 €b1 12/ cos s
—n7sin 75 0
4 | —mercos 773 —mesinms | g g LAE-§ (5.18)
0 0
177C0S 15 0
| —7e778in 75 + Mgcos s | I 0 !
with £(0) = 0.

Figures (1) and (2) show the performance of the (non-adaptive) nonlinear controller of
[HSM89] for € = 0.1 and € = 0.4 with %25 uncertainty in M and J. While the tracking
objective in the z-direction is achieved, the altitude (y) deviation is unacceptable for ver-
tical takeoff and landing purpose which the PVTOL aircraft system design was originally
meant for. On the other hand, the decoupling is much improved with the adaptive con-
troller as shown in figures (3) and (4). The altitude deviation is about %90 better and the
convergence is faster. The orientation of the PVTOL aircraft, for small ¢, is the same in
both adaptive and non-adaptive case. The simulations demonstrate the advantage of the
adaptive controller proposed in section III.

V.II Example 2

We now consider a “benchmark” example of adaptive nonlinear regulation:

i‘l = T9+ 033:23
3:'2 = I3 (5]())
(ifg = U+ a3

which violates the conditions of [NA88, SI89, TKKS91, KKM91b]. In fact, this system is
not feedback linearizable. It is, however, linearly controllable and as shown in [KK92], it
is feedback linearizable to second degree by a dynamic state feedback. The linear part of
(5.19) is already in Brunovsky form. Applying steps 3 and 4 in section IV gives for the
extended system (with a 2-dimensional dynamic state feedback):

T = 9+ 022
i‘g = I3
Zi?g = u-+ 123 = T4 + ’)’[2](IB) + T1T3 (520)
Ty = Tp
.’i)5 = v
Then:
& = 2y )
&, = Lin. & Quad. part of & = x4 + 022
& = Lin. & Quad. part of §'2 = xz3 + 29A0;39;4 (5.21)
4 = 24
s = z5
& = 24 4 2321 + v(2) + 2022 + 202325 (5.22)
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Hence, 7?)(z) may be chosen as:
vB(z) = —(z321 + +202% + 20z325) (5.23)

Therefore, the resulting system is transformed into:

f:l = &+3-¢
& = &+0(E)
& = &+ 0( ) (5.24)
§4 = &
& = v
which is in the form given by (4.30). Finally, let:
= -K-
H ¢ (5.25)
§ = —g-WT.P-¢

where W7 = [22,0,0,0,0], g is an adaptation gain, and K is the gain vector that specifies
the closed-loop poles. We note that the poles should be chosen not too far left in the left
half plane since this will increase the initial magnitude of the control v due to nonzero initial
states. This could in turn introduce large perturbations in the system and the approximate
model will no longer stays a valid approximation of the true system.

Figure (5) shows the response of the adaptive quadratic regulator (5.25) for the initial
state z(0) = [3,0,0)7, 6 = 2, and %25 uncertainty in the initial estimate of the parameter
8. The Jacobian approximation, in comparison, resulted in an unstable system even when
there was no parameter uncertainty present in the system. The non-adaptive quadratic
approximation resulted in an unstable system in the presense of this uncertainty. The
simulations illustrate the usefulness of the adaptive quadratic control scheme proposed in
section IV in providing a parameter robust control for regulation of nonlinear systems that
violate the regularity conditions needed to apply adaptive schemes based on exact feedback
linearization.

V.III Example 3

Consider the following nonlinear system with unknown parameters 6; and 6,:

1 = o+ 01(17% + ef2%s
C'CQ = I3 (52())
.’i?g = u+4+Ti23

which is not feedback linearizable but it is linearly controllable and hence, can be quadrati-
cally feedback linearized with dynamic state feedback. We now apply the design scheme of
section IV. The approximate quadratic system of equation (4.18) is:

01 6 0 (61 + 162)a3
d=100 1 [+]0]|-u+ 0 + 0(z)? (5.27)
0 0 O 1 123
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which has all eigenvalues at zero. The transformation T of (4.19) is (z = est. (T') - «):
1 0
T=(0 1 0 (5.28)
0 1

which results in the following Brunovsky form quadratic system with 8, = 0y +0.56’§, 6, = 0,:

010 0 6,22 T3
2=100 1|[+|0| -u+ 0 +1 0 | ¢+ 0(2) (5.29)
000 1 123 0

Applying steps two and three, similar to the last example, suggests the following linearizing
transformation and control law:

&L = m1= ?1 - é2562
& = z+ 91}%
€3 = 23+ 201230
& = w (5.30)
& = wo
= w41 8(w)
7[2](33,0.)) = —201(w12 + 23w ) — T321

which transforms (5.26) into:

5:1 = &+ (23,23) -0+ O(&,v)°

£2 = &+O0(E )

& = £+ 0(&0)° (5.31)
§4 = &

& = v

with ¢ = (6; — 61,6, — ég)T. This system is in the form given in (4.30). Control law v and
update law given in (5.25) can then be used here with slight modification in W (z). Figure
(6) shows the response to the non-adaptive controller with 8; = 2,6, = 1 for the initial
state z(0) = [1,0.3,0.3]7. In comparison, figure (7) shows the performance of the adaptive
controller which provided a better result for a wider range of uncertainties in 6; and 6.
The Jacobian linearization, however, resulted in an unstable response for this initial state
even when there is no parameter uncertainty present.

VI. Conclusion

In this paper we have presented an approach for the adaptive approzimate feedback lineariza-
tion of nonlinear systems under parameter uncertainty. The significance of this approach
was demonstrated with its potential application to flight control systems where exact lin-
earization approach fails and the non-adaptive controller produces undesirable performance.
Compared to adaptive schemes that are based on exact state or input-output linearization,
this approach avoids several restrictions such as involutivity, existence of a relative degree,
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and minimum phase property which are not often met in most complex engineering sys-
tems. In section IV, a systematic procedure for adaptive quadratic regulation of any linearly
controlable nonlinear system was presented. The quadratic approximate model and the re-
sulting parameter update laws are computed directly in terms of the Taylor series expansion
and a simple change of coordinates, and can easily be generated by symbolic programming
tools. It is also important to note that the uncertain parameters in the system are not
required to appear linearly in the system dynamics since they always appear linearly in
the approzimate model possibly after a reparametrization. The feasibility domain of this
scheme is local, in general, around a nominal operating point. This limitation is intrinsic of
the local nature of approximate feedback linearization technique. The broad applicability
of this scheme coupled with its systematic approach motivate its use by control engineers
in parameter robust control design for nonlinear systems.
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Non-Adaptive: E=0.1,Poles:-1,-2, Uncertainty=%25
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Figure 1: X-Y trajectories and orientation of the PVTOL aircraft in response to the noun-

adaptive controller with ¢ = 0.1 under %25 parameter uncertainty.
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Non-Adaptive: E=.4, Poles:-1,-2, Uncertainty=%25
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Figure 2: X-Y trajectories and orientation of the PVTOL aircraft in response to the nou-

adaptive controller with ¢ = 0.4 under %25 parameter uncertainty.
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Adaptive: E=0.1, Poles:-1,-2, Uncertainty=%25, gains=0.1,20
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controller with € = 0.1 under %25 parameter uncertainty.
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12 Adaptive: E=.4, Poles:-1,-2, Uncertainty=%25, gains=.15,.01
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Figure 4: X-Y trajectories and orientation of the PVTOL aircraft in response to the adaptive
controller with € = 0.4 under %25 parameter uncertainty.
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4 Adaptive, Quadratic, Uncertainty=%25 Poles=-1,-2 th=2, g=1
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Figure 5: Example 2; state trajectories in response to the adaptive quadratic controller
under %25 parameter uncertainty.
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Figure 6: Example 3; state trajectories in response to the non-adaptive quadratic controller
under %10 parameter uncertainty.
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Adaptive, Quadratic, Uncertainty= %60, th1=2, th2=1 poles=-.5, g=.01
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Figure 7: Example 3; state trajectories in response to the adaptive quadratic controller
under %60 parameter uncertainty.
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