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Abstract

The contraction mapping method for frequency estimation in the presence of
noise, identifies the cosine of the frequency to be detected as a fixed point of
a certain correlation mapping. At its heart, the method provides a plan for
automatic self tuning of parametric filters. A variant of the method, called
the HK algorithm, produces recursive zero-crossing rates (normalized HOC
sequences) that converge to the frequency of interest. A statistical explana-
tion for the contraction mapping method as epitomized by the HK algorithm
is provided when the HOC sequences are produced by bandpass filters. The
outright consistency of the zero-crossing rate is not required. Examples show
that the method performs quite remarkably.

Abbreviated Title: “Contraction Mappings”

Key words and phrases: Stationary, Gaussian, bandwidth, fixed point,
parametric filter, convergence.
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1 Introduction

The iterative method for frequency detection discussed in He and Kedem
(1989) (HK), Yakowitz (1990) (Y), and Kedem and Yakowitz (1990) (KY),
locates discrete frequencies by iterations of a certain contraction mapping. If
w; is a frequency to be detected, then cos(wy) is a fixed point of the mapping,
and the method produces a recursive sequence that converges to the fixed
point. Thus, the essence of the method is the location of fixed points by
recursive sequences. In general, we refer to this method as the contraction
mapping (CM) method . A specific special case is the algorithm suggested
in HK. It makes use of the zero-crossing rate observed in filtered time series.

Suppose {L,,r € (—1,1)} is a parametric family of time invariant linear
filters defined from a real valued impulse response sequence h(n;r), n =
0,41, -- -, which satisfies a certain requirement about r. The HK algorithm
is given in terms of the recursion

Phtt = cos(7r,)

where ~, is the observed asymptotic zero-crossing rate after the application
of {£,}. 7» is an example of observed (normalized) higher order crossings
(HOC). If w; is the frequency to be detected, then under appropriate con-
ditions, 74 converges to cos(w;), so that 4., converges to wy, as k — co.
Looked at from a more general point of view, the HK algorithm provides a
sequence of self-tuned filters whose successive application yields a sequence of
convergent zero-crossing rates.

In this paper we discuss the strong consistency of the HK algorithm,
and illustrate its use through some examples. In particular, in Example 6,
the algorithm is applied in the search of a diurnal cycle in a well known
precipitation data set. Our analysis supports the hypothesis that tropical
rainfall contains a diurnal cycle.

After a short introduction to the CM method in section 2, we illustrate
the method in section 3 by appealing to two useful families of bandpass filters.
Section 4 discusses the statistical basis for the CM method as epitomized by
the HK algorithm, when a family of bandpass filters is used in generating
convergent (normalized) HOC sequences. The main result is Theorem 4.1,
formulated for the bandpass case. Basically it says that if the bandwidth 1s
made to shrink at a certain rate, 4,, — w; with probability one.



Our approach does not require an outright consistency of the Zero-crossing
rate. Successive narrowing of the bandwidth renders the zero-crossing rate
more and more accurate.

Experimental results in section 4, using a particularly convenient family
of bandpass filters, confirm what is suggested by the statistical analysis,
namely, the convergence of the observed (normalized) HOC sequences toward
the desired frequency is rather fast and precise as the bandpass is squeezed in
a controlled manner. The examples show that the CM method can provide
more precise estimates than does periodogram analysis.

1.1 Definition of HOC

Let {Z;},t = 0,+1,42,- -, be areal valued zero-mean stationary time series,
and let {£4} , 0 € O, be a parametric family of time invariant linear filters.
Denote by {Z,(0)} the filtered series,

Z(0) = Lo(Z):

Let Ij4 be the indicator of the event 4, and suppose {Z,(#)} is a real valued
process. The quantity

N
Do =3 iz o)z (o)<
t=2
gives the number of zero-crossings (in discrete time) observed in
Z (9)’ 22(0)a B ZN(G)

The family {Dy},6 € © is called a (observed) higher order crossings family, or
HOC. The corresponding expected HOC family is given by {E(Dy)},0 € ©.
The sample zero-crossing rate is defined from the normalized HOC,

. 7 Dg

When {Z,} is strictly stationary, the asymptotic zero-crossing rate is defined
by the almost sure limit of the sample Zero-crossing rate,

— v a1 TDg
= = N @

Note that E(49) = E(75)



2 The CM method

We shall adhere to the mixed spectrum model
Z, = Ajcos(wyt) + By sin(wit) + (; (3)

where, t = 0,4+1,42,--., A; and B; are uncorrelated normal random vari-
ables with E(A;) = E(B;) = 0, and Var(A4;) = Var(B;) = o?. Further,
suppose {(;} is colored stationary Gaussian noise with mean 0 and variance
o, independent of the A; and B;. The noise is assumed to possess an abso-
lutely continuous spectral distribution function F¢(w) with spectral density
fe(w), w € [, 7).

Let r be a parameter that takes values in (—1,1), and consider the para-
metric family of linear filters {£, } defined by the family of impulse response
sequences {h(n;r)}, n = 0,%1,--.. The corresponding family of trans-
fer functions is denoted by {H(w;r)}, w € [~7,7]. Let Zi(r) and ((r),
t = 0,%£1,---, be the filtered process and filtered noise, respectively. The
essential element of the CM method is the assumption that the real part of

the first-order autocorrelation of the filtered noise (4(r) is r. In symbols, we
assume that (HK,Y),

(25

where the overbar denotes complex conjugate. This means that we require
the fundamental property,

_ Jp cos() [ H(ws ) fe(w)do
I 1B (@) fe()de

The fundamental property ( 4) is exhibited by many filters of which the
AR(1) filter (also known as exponential smoothing)

(4)

Lo=1+aB+a?B 4. Jae(-1,1) (5)

where B is the backward shift, is the clearest example when used in conjunc-
tion with white noise (; (see HK).
Let pi(r) be the real part of the first order autocorrelation of {Z;(r)},

(B2 7))
’“(”‘%{ B2 }
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and assume that £, “passes w;”. That is, |H(w;r)]| is positive in a neighbor-

hood of wy for some r. Then ( 4) implies that (HK, Y),

o3| H(~wi; P + [H(wy; ) 2] cos(wr) + [J7, [H (wi; r)PdF(w)] r (
L2 ([H(—wi; )P + [H(ws; )P + 17 [H(wi; ) PdF (w)

pi(r) =

This function of r is a weighted average of cos(w; ) and r. It admits the more
compact representation,

p(r) ="+ C(r)(r — 1) (7)

where r* = cos(w; ), and
_ E|Ct(")|2 :
C(’f‘) - EIZt(T')P (8)

Clearly 0 < C(r) £ 1, and C(r) = 1 when the filter does not pass wy.
When C(r) < 1 in a neighborhood of r*, we identify the mapping ( 7) as a
contraction at r* with a contraction factor C(r). From the recursion

et = p1(7k) (9)

we obtain i
pre) =77+ []_I*I1 C(ry)l(r —r%)
If [15_, C(r;) — 0, then
Ty — 1" (10)

and

cos™(ry) — wy
as k — oo. We now summarize the preceding discussion in

Theorem 2.1 Let {Z;} be given by ( 3), and let {L,} be a parametric fam-
ily of time invariant linear filters for which the fundamental property ( 4)
holds, and one that passes wy. Let pi(r) be the real part of the first-order
autocorrelation of the filtered process Zy(r) = L,(Z);. Fixrg € (-1,1). If
Hfﬂ C(r;) — 0, then 1, defined by the recursion ryy1 = p1(ri), converges
to cos(wy ), and

cosI(ry) = wi

as k — oo.



The recursion ( 9) characterizes the CM method. It suggests the proce-
dure

i1 = p1(re) (11)

where p;(r) is a suitable estimator of p;(r) from a time series Zy,-- -, Zn, of
size N.

In the real Gaussian case, a natural estimator is obtained from the “cosine
formula” (see the discussion in Barnett and Kedem (1991))

p1(r) = cos(E(y))
and the algorithm takes the specific form (HK)

Prts = cos(7r,) (12)

where ~,, is the observed asymptotic zero-crossing rate as defined in ( 2). We
can now see that the HK algorithm ( 12) is a special case of the CM method.

In the Gaussian case there is a certain advantage for using an estimate
from zero-crossings. In the mixed spectrum case, the sample autocorrelation
is not necessarily a consistent estimator. Likewise, the sample zero-crossing
rate is in general not a consistent estimator for its expectation when the
spectrum contains jumps. However, the asymptotic zero-crossing rate falls
with probability one between the lowest and highest nonnegative frequencies
in the spectral support, so that its variability can be controlled by the ap-
plication of bandpass filters. See Kedem and Slud (1991) (KS) for a detailed
discussion regarding the consistency of the sample autocorrelation and the
sample zero-crossing rate.

In the real nonGaussian case, when the HOC family is obtained from
bandpass filters with narrow bandwidth, the cosine formula provides an ex-
cellent approximation to the first order autocorrelation, and the HK algo-

rithm ( 12) performs remarkably well. Evidence of this is given in Examples
2 and 6 below.

3 Two parametric families of filters

This section discusses the CM plan relative to two useful parametric bandpass
filters. In addition, it is shown that the contraction factor can in fact be
controlled by the filter bandwidth.



3.1 The complex exponential filter

A useful example (Y,KY), that illustrates the contraction mapping algorithm
(9) and its key elements, is provided in terms of a parametric family of linear
filters defined by the impulse response

h(nsr, M) = { gz(p (znd(r))/vV2M + 1, {Z; E% (13)

where 0(r) = cos™!(2£1r) &~ cos~!(r). Because of the particular form of
this impulse response, we shall refer to this filter as the “complex exponential
filter”. The corresponding squared gain is

2 1 sinZ[%(QM + 1)(w — 8(r))]

s M = S T a0

—r<w<7T (14)

which we recognize as the Fejer kernel centered at 6(r). This parametric
family also motivates a certain assumption concerning the contraction factor
needed for the proof of our main result in the next section.

One can see that |H(w;r, M)|? assumes its maximum value, which is
2M +1, at w = 0(r). This filter is essentially a bandpass filter centered at
6(r), and its dominant lobe is supported over the interval

T = (8(r) — 2x/(2M +1),0(r) + 27 /(2M + 1))

For sufliciently large M, we can think of I as the effective bandwidth of the
filter. The complex case follows the footsteps of the real case except that
now we use the real part of the concerned autocorrelations. Thus, under the
assumption of white noise, the fundamental property ( 4) now takes the form

o B, M) T
"%{ EIG(r, 1P }

(15)

where (;(r, M) is the filtered noise (it is not white anymore). It is easy to
check that ( 15) holds for |r| < 2M/(2M + 1). Similarly, the correlation
mapping is now defined by

[ E[Zdr, MYZ (M)
”‘(’")‘%{ EIZr, M)P }
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where Z;(r, M) is the filtered process, and the dependence of pi(r) on M
is suppressed for notational convenience. Thus defined, pi(r) = pi(r, M)
satisfies

. _ ElG(r, M)P?

pl(T‘) -7 = E—Im(r - r*) = C(T)(T‘ — 7"*) (16)

which is a contraction mapping at r* = cos(w;), as long as w; passes, with
contraction factor (in the present complex case the gain is not symmetric;
when M is sufficiently large negative frequencies and in particular —w; are
suppressed )

2

C(r) =

= - - (17)
‘§‘|H(w1§7", M)z + ¢

where again, the dependence of C'(r) on M is suppressed for notational conve-

nience. The recursion r¢4+1 = p1(rx) yields the convergence ry — r*, provided
I_,C(r;) = 0, as k — co.

3.1.1 Bounding the contraction factor by the bandwidth

As is clear from the preceding paragraph, enhanced speed of convergence
towards r* can be obtained by decreasing the contraction factor C(r;) with
each iteration of the CM recursion (KY). This, however, can be achieved by
controlling the effective bandwidth of the filter. The following result, which
helps in motivating a certain assumption, renders this idea more precise.

Proposition 3.1 Under the assumption of white noise, let |H(wy;r, M)|* be
as in ( 14), and assume,

wy € [wa,Wb] C I
Define

A—Ewb——wa

Then there exists a C(M), which does not depend on r, satisfying
0<C(r)<C(M)<1

and C(M) is of order O(A) as A — 0.



Proof: By centering the filter at 0,
2M

; 2 __ _ . 2
IH(UJ],T,M)I —IH(WI 0(7')1 2M+1’M)|
Therefore, when wy, 0(r) € [w,,ws),
2M 5 2M

j——— H(w;, — 0(r); ——, M)|?
Define

C(M) = % (18)

= —
FH(A; 335, M)[2 4 o

Then in light of ( 17),
0<C(r)<C(M) <1

As A — 0, choose M = O(1/A). O

As a matter of fact, by minimizing ( 18) with respect to M, the optimal
value of M is approximately 1.165/A.

Proposition 2.1 can be demonstrated graphically as well. Figure 1 (a)
shows the graph of p;(r,20) when w; = 0.8 radians per unit time, and o2 =
0 = 1. In a neighborhood of r* = cos(0.8) = 0.697, we can see from the

figure that the derivative p;(r,20) is very close to 0, and this is already with
M = 20. Therefore, in a neighborhood of r*,

P1 ("'7 20) -

r—r*

0~ p(r*,20) ~ = C(r, 20)

However, the effective bandwidth of the filter in a neighborhood of § = 0.8
is considerably greater than 0, as can be seen from Figure 1 (b).

3.2 A complex filter
He and Kedem (1989) considered the parametric filter defined by,

Zi(r; M) = (1 + eie(’)B)M Zs



where M is a positiveinteger, r € (—1,1), and 6(r) € (—=, 7). For sufficiently
large M, for example M = 30, this filter acts as a bandpass filter with impulse
response and squared gain given by, respectively,

M\ oen o,
h(n;r, M) = ( n )e , p=0,-, M (19)
0, otherwise
and,
|H(w;r, M)|? = 4M cos?M (f;f?’_)) (20)

The fundamental property is obtained by defining,

J7, cos?™M (22501) cos(A)dFy(A)
- [T cos?M (f\"—g(ﬂ) dF¢())

r

When {(;} is white noise (HK),
r — cos(d(r)), M — oo

and we have the approximation (r) = cos™!(r). As in the previous case, it is
easy to see that this approximation holds true for any continuous spectrum
noise, provided the spectral density is sufficiently smooth. For sufficiently
large M, e.g. M = 100, when the filter is centered at 8(r) near wy, it only
passes a band of frequencies in a neighborhood of w; (see Figure 2 (b)) and
we obtain from ( 21) the mapping,

p1(r) = cos(wy) + C(r)(r — cos(wi))

with
ElG(r)I”
F|H(wi;r, M)? + E|G(r)]?
In Kedem and Lopes (1991) it is shown that there exists an increasing se-
quence { M} such that

C(r) =

Tee1 = p1(re, My) — cos(wy), k — oo

9



Figure 2 (a) shows the graph of py(r) = p1(r,100), for M =100, w = 0.8,
and o7 = 07 = 1. As with the complex exponential filter, the derivative of
p1(r,100) near cos(0.8) is close to 0, so that C(r) = C(r,100) is rather small,
much smaller than the bandwidth given in Figure 2 (b), and we can see that
pi(r) is a contraction at r* = cos(w;) = cos(0.8). Furthermore, the figure
gives additional evidence that the contraction factor can be bounded by the

bandwidth in a neighborhood of r*.

Remark 3.2.1 In the multiple frequency case, it was proved in HK that in
the purely discrete spectrum case (o7 = 0), for fized 8, p;(6) (obvious nota-
tion) converges to the frequency closest to 0, as M — oo. However, when
white noise is present, the convergence is toward cos(#). In other words, by
shrinking the bandwidth without “sliding the filter”, the frequency closest to
the center of the frequency is lost. The frequency, however, is not lost if we
decrease the bandwidth and slide the gain toward the frequency at the same
time. This is the essence of the CM method.

4 Convergence in the bandpass case

Suppose the parametric family {£,} defines a family of bandpass filters sat-
isfying ( 4), where £, has bandwidth of size W, stretching from .w to w*,
[«w,w*] C [0,7]. Let {D,} be the corresponding HOC family obtained from
a time series of length N. Consider the asymptotic zero-crossing rate,

o . mD,
el St v
From (KS) we know that -, is most likely a random variable (mixed spectrum
in a Gaussian process), but that it (and hence also its expected value) falls in
the bandpass with probability one. Thus, by controlling W,, we can control
the variability of 4., and make it arbitrarily small. Because this fact is of
vital importance in the following development, we state it formally.

Proposition 4.1 (KS). Assume that the real-valued, stationary, zero-mean

Gaussian process {Z;} has normalized spectral measure v supported on J U
(=J) where
J = [w,w*] C [0,7]

10



Then, whether v has atoms or not, the asymptotic zero-crossing rate =, lies
in J with probability one.

Thus, 7, falls with probability one between the lowest (,w) and highest (w*)
nonnegative frequencies. As a consequence also E(7,) falls in [.w,w*], and
we have the following fact.

Corollary 4.1 Let a be any number between v, and E(7,), and let W, be
the length (bandwidth) of the interval [\w,w*]. Then

1% = E(v:)|| sin(a)| < W,
with probability one.

The purpose of the corollary is to motivate Assumption A2 below.
The Gaussian assumption and the contraction mapping ( 7) give

pi(r) = cos(E(y,)) ="+ C(r)(r —r7)

where now C(r) depends on the bandwidth parameter W,. The Mean Value
Theorem implies

cos(y) — cos(E(v,)) = — (v — E())sin(z)

where z, is between v, and E(v,). If we define y, = —(v, — E(v,)) sin(z,),
then we obtain the observed contraction mapping

cos(3r) = 1 + O(r)(r = 1) + 3y (22

This expression identifies the exact error incurred by replacing cos( E(v,)) by
cos(7y;). Now consider the HK algorithm

riss = cos(7,) (23)
This and ( 22) give
(24)
rht1 =17+ [_ﬁl Crjl(r —r") + [_lr'kI2 Crilyn + -+ C(re)yri_y + yr,
p -

11



To achieve convergence, the bandwidth must go to 0 at a certain rate. To
uncover this rate, we resort to the following assumptions.

Al. Motivated by Proposition 3.1 and Figures 1,2, we assume that in
a neighborhood of r*, C(ry) is smaller than the bandwidth times a constant.
Formally we assume that there is a positive constant K such that

0« C(Tk) < KW,
A2. Motivated by Corollary 4.1, we assume that
Iyrkl < I&’Wk

where, for simplicity, K is as in Al..

Remark 4.1. Figures 1,2, indicate that there are cases where C(ri) is very
close to 0 in a neighborhood of r* in addition to being much smaller than
the bandwidth. Thus, Al is very plausible. Note however, that we stress
the requirement of being in a neighborhood of r*, for otherwise, when the
frequency “is not captured,” C(ry) is equal to 1 (case of ideal bandpass) and
convergence toward the frequency does not occur.

Remark 4.2. In light of Corollary 4.1, A2 is very plausible also. However,
it should be noted that in Corollary 4.1, the parameter r is fixed, while it is
random in A2.

So, under these assumptions,

s = 77| S KWi {14 KWi_y + - + (KW, - KWy 1)}

+{ﬁKWj}(r1—-—r*+1) (25)

J=1

We can now shrink the bandwidth Wy, as k — oo, at a rate (for example at
a rate of 1/k) that guarantees the almost sure convergence of r; to r*. In
this case,

77": - wl

almost surely. In summary we have.

12



Theorem 4.1 Let {Z,;} be given by ( 3), and let {L,}, r € (=1,1), be a
parametric family of time invariant bandpass linear filters, with bandwidth
W,, for which the fundamental property ( 4) holds, and one that passes w;.
Assume that the filtered process {Zi(r)} is real valued for all r € (~1,1).
Consider the recursion

T4t = C05(7r)
and suppose W,, is of the order O(1/k). If Al and A2 hold, then

Yrp — W1 (26)
with probability one.
4.1 Connection between C(r) and the SNR
The signal to noise ratio (SNR) for the process ( 3) is defined by
SNR = 20log,, —~dB
o¢

In general, the SNR is defined by,

Variance of the filtered signal

SNR = 10log,, dB

Variance of the filtered noise
from which it follows that the SNR can be expressed in terms of the contrac-

tion factor,

SNR = 101og10{5%;_) _1 (27)

Thus, the SNR and C(r) are inversely related:
SNR — 00 < C(r)—0

SNR — —0 < C(r)—1

Because we can control y, by varying the bandwidth, and in addition in
practice y, is rather small (KS), ( 27) shows that the speed of convergence
of rt, depends primarily on the contraction factor C(r). The smaller C(r)
is, the faster is the speed of convergence.

13



4.2 Examples

The HK algorithm ryy; = cos(4,) was applied to time series of length
N = 2000 from the process ( 3) with Gaussian white noise (;, unless stated
otherwise, using the real counterpart of the complex filter ( 13),

h(n;r, M) = { gt)s(nﬂ(r))/\ﬂM +1, IIZII § A]Vj (28)

We refer to this filter as the “cosine filter”. The corresponding squared gain,
| H(w;r, M)|?, is closely related to |H(w;r, M)|? in ( 14) for w > 0,

1

[ (s, M) = 7 H (w5, M) + O(37)

(29)
Figure 3 shows the graph of |H(w;r, M)|?, w > 0, with (M; = 20,0(ry) =
1) and (M; = 40,6(r2) = 1.1). The figure illustrates a shift in location
accompanied by a reduced bandwidth.

As can be seen from the tables in the following examples, the convergence
is very fast, and the frequency is never lost when M} increases at a linear
rate such as {5,15,25,35,---}. Roughly, this is equivalent to a bandwidth
that shrinks at the order of O(1/k). Also note that the sequence of observed
zero-crossing rates {4y, } s monotone, with a possible exception of the very
beginning, as is well expected from ( 7) and ( 9).

Very similar results were obtained by a variety of other bandpass filters.

It should be noted that in Y and KY the autocorrelation was estimated
from the sample autocorrelation of the filtered processes, while here the es-
timates are obtained from the observed zero-crossing rate after filtering as
suggested from HK and KS. Evidently, the two methods of estimation, in
conjunction with the CM method, give very similar frequency estimates for
sufficiently long data sets.

More precisely, for a given M, the zero-crossing count is computed from time series
of length 2000 + 2M;.

14



4.2.1 Example 1: A simple case
wy = 0.8, f(ro) = 0.4, A, = —0.91333, B, = 0.06975, SNR = 0dB,

M| ™ Yre

5 |0.92106 0.65221
15 | 0.79475 0.75279
25 | 0.72979 0.79994
35 | 0.69675 0.79994
45 | 0.69675 0.79994
55 | 0.69675 0.79994

Ot o O N = Of

w; = 0.79994

For comparison, the five highest periodogram ordinates, ordered by mag-
nitude, were at the frequencies:

0.80185, 0.80485, 2.26793, 0.74201, 0.83776

with the maximum occurring at 0.80185.

4.2.2 Example 2: NonGaussian and colored noise

When the fundamental property ( 4) holds for white noise, it also holds ap-
proximately for slowly varying continuous spectral densities, as long as the
bandwidth is sufficiently narrow. In this respect, it is of interest to apply
the HK algorithm with the cosine filter and colored Gaussian noise. It is
also interesting to run the algorithm when the noise is white but nonGaus-
sian. Accordingly, we have applied the algorithm when (; is Gaussian white
noise (GWN), lognormal white noise (LNWN) (with parameters 0,1 , and
properly centered and scaled), and a first-order moving average (MA(1)),
vy = (; — 0.8(;_1, and (; Gaussian white noise. In all three cases the si-
nusoidal component was identical. The results are given in the following
table, and show identical convergence. Evidently, in the bandpass case, the
algorithm is quite robust.

13



w = 0.71, 0(r) = 1.1, A; = —0.954817, B; = 1.00687,

SNR = 0dB,
GWN LNWN MA(1)
k| M 'S'Tk Yr 'Ayrk
0 5 0.993240 0.913089 0.997955
1115 0.920947 0.897373 0.928805
2125 0.812508 0.766932 0.848654
335 0.766932 0.710355 0.748073
4| 45 0.719785 0.710355 0.710355
51 55 0.710355 0.710355 0.710355
6| 65 0.710355 0.710355 0.710355
w; = 0.710355 | @, = 0.710355 | w; = 0.710355

16




4.2.3 Example 3: Mixed spectrum noise

In this example we compare the convergence of the HK algorithm in two
cases when the noise (; is Gaussian white noise, and then when it is Gaussian
white noise plus a random Gaussian sinusoid (mixed spectrum noise) with
frequency 2.5. In both cases the “signal” is a random Gaussian sinusoid with
frequency w; = 1.25, and the search starts at 8(ro) = 0.5. We have: A; =
0.30041, B; = —1.44635, the amplitude of the sinusoidal noise component is
0.947085, and SNR = 0dB. Again, from the table, the convergence is very
satisfactory.

This example shows that our algorithm can be applied separately to each
frequency using bandpass filters. In fact when 8(rg) = 2.3 the 4,, converges
to 2.50039, and the other frequency is detected as expected.

GWN Mixed Spectrum Noise

k Mk ’A)/'rk 'A)'rk

0] 5 0.93509 1.09854
1115 1.05296 1.23684
21|25 1.16140 1.24941
31 35 1.16454 1.24941
4| 45 1.22426 1.24941
51 55 1.24941 1.24941
6| 65 1.24941 1.24941
7175 1.24941 1.24941
81 85 1.24941 1.24941

wy = 1.24941 w; = 1.24941

With Gaussian white noise, the highest peaks in the periodogram, ordered
by magnitude, occur at the frequencies,

1.25366,1.25068,1.18815,1.09286,1.30726

with the highest peak occurring at 1.25366. This is the periodogram estimate.

17



4.2.4 Example 4: Moderately low SNR

wy = 0.4, 0(rg) = 0.2, A, = —0.537689, B, = —0.423486, SNR = —6.0206dB,

The highest periodogram ordinates correspond to the frequencies

0.40392, 1.93283, 0.46376, 2.01660, 2.05550

The largest peak occurs at 0.40392.

18

k| M Tk Hri

0| 5 [0.98007 0.33160
1 15 |0.94552 0.40075
21 25 |0.92077 0.40075
31 35 ]0.92077 0.40075
41 45 |0.92077 0.40075
51 55 |0.92077 0.40075

w = 0.40075




4.2.5 Example 5: low SNR
wy = 1.95, 6(ro) = 1.8, Ay = 0.174937, B; = —0.263656, SNR = —13.9794dB.

M; Tk Yry

5 1-0.22720 1.87647
15 | -0.30094 1.89690
25 1-0.32035 1.91576
35 |-0.33816 1.93776
45 | -0.35878 1.95191
55 | -0.37195 1.94876
65 | -0.36903 1.94876
75 | -0.36903 1.94876
85 | -0.36903 1.94876

G I O UL W N~ Of X

wy = 1.94876

The five highest peaks in the periodogram are at
2.18584,2.36873,1.27729,0.51327, 1.02655

where the highest power is given to 2.18584.

4.2.6 Example 6: Detection of a diurnal cycle

GATE stands for GARP (Global Atmospheric Research Program) Atlantic
Tropical Experiment (see Simpson (1988)). The experiment, conducted in
1974 in the eastern Atlantic off the coast of west Africa, produced large
snapshots of instantaneous tropical rain rate collected in 15 minutes intervals.
The experiment was conducted in stages of which the first is referred to as
GATE 1. The hourly GATE I data?, averaged over a region of 280 x 280 km?,
are plotted in Figure 4.

®Thanks are due to Dr. Tom Bell, NASA, Goddard SFC, for kindly supplying the
hourly GATE data.
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From an atmospheric dynamics point of view, it is useful to know whether
tropical rainfall contains a significant diurnal cycle (Simpson (1988), p. 40).
It is believed that the GATE I data set does contain a significant diurnal
cycle. However, so far, the detection of the diurnal cycle in GATE has not
been quite decisive.

We have applied the HK algorithm, using the cosine filter, to the centered
hourly GATE I data in search of a diurnal cycle. As can be seen from the
following table, starting from various points, the convergence is toward the
value 0.262675 radians per hour. This gives a period of

27

m = 2392 hours

which gives more credence to the the existence of a diurnal cycle in GATE I.

9(7’0) = 0.50 9(7‘0) =0.45 0(7‘0) = 0.30

k| My ;?"'k ’?"'k ;}/7‘k

095 0.483322 0.441294 0.273182
1] 56 0.420280 0.441294 0.262675
21 57 0.367745 0.399266 0.262675
3| 58 0.346731 0.346731 0.262675
4159 0.304703 0.304703 0.262675
51 60 0.294196 0.294196 0.262675
6] 61 0.283689 0.283689 0.262675
7| 62 0.262675 0.262675 0.262675
81 63 0.262675 0.262675 0.262675
91 64 0.262675 0.262675 0.262675

wy = 0.262675 | @, = 0.262675 | w; = 0.262675
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4.2.7 Example 7: Comparison between two filters

The real counterpart of the complex filter defined by ( 19) is obtained from
the real impulse response,

s, M) = { ( M ) cos(B(r)n), n=0,--, M 0)

0, otherwise

We refer to this filter as the “cosine-binomial” filter. To achieve a degree of
precision comparable to the one achieved by the cosine filter ( 28), usually a
larger M is needed for the cosine-binomial filter ( 30).

The following table compares the performance of the cosine filter with
that of the cosine-binomial filter considering only six iterations of the HK
algorithm. Here w; = 1.0, 6(ro) = 0.6, A; = —0.181463, B; = —1.01382,
SNR = 0dB.

Cosine filter Cos-bin filter

k| My Yra Yri

0 5 0.89580 1.04667
1] 10 0.99953 1.04039
2115 0.99953 1.03096
31 20 1.00110 1.01210
41 25 1.00110 1.00581
5| 30 1.00110 1.00424

wy = 1.00110 | &, = 1.00424
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5 Summary

Our observation is that for sufficiently long data records (e.g. N > 1000),
and for a reasonable signal to noise ratio (e.g. SNR > 0), the original
CM algorithm, as given in HK in terms of HOC from zero-crossings, per-
forms remarkably well when the method employs bandpass filters. Further-
more, the method requires O(NN) computational complexity, compared with
O(N log N) complexity associated with FFT based methods. In almost all
the cases considered in the above examples, the HK algorithm outperformed
the periodogram. This has been the case with numerous other examples,
using a variety of filters. However, combining both methods may result in
the improvement of both.

We emphasized the single frequency case. However, an extension to the
multiple frequency case is rather straightforward because the CM method,
when employing bandpass filters, can be applied independently to nonover-
lapping frequency bands as done in KY. That this is indeed feasible was
already seen in Example 3. As such, this scheme is ideal for parallel process-
ing.

We have used only a few filters in connection with the CM method, but
of course many more are available. Results concerning different filters will
be dealt with elsewhere.

There is one more thing. We have mentioned earlier that for a zero-
mean stationary Gaussian process with a mixed spectrum, the observed zero-
crossing rate is not necessarily consistent for its expectation. More precisely,
in KS it is shown that if the spectrum contains two or more atoms (that
is, two or more jumps in the spectral distribution function), then %, does
not converge to a constant as N — oo. However, when the spectrum is
a mixture of an atomic component with a single atom, and an absolutely
continuous component (noise), 4, is almost surely consistent provided both
the sinusoidal component and the noise component have the exact same first
order autocorrelation. This, rather esoteric, case is precisely what the HK
algorithm gives in the limit. To see this, consider the process ( 3), and let

X = Ay cos(wit) + By sin(wit)
Then
Zy=Xe+
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Let {£,} satisfy ( 4). Then for r = r* = cos(w, ), we have,
Lr(Z)e = Lre(X)e + Lro(C):

Because r* is a fixed point of p;(r), L.+(X); and L.+({), have r* as their first
order autocorrelation, and so

Yo = E(7pe) = w1

almost surely. This means that when the HK algorithm converges (bandpass
filters or not), the limiting zero-crossing rate is almost surly a constant.

Acknowledgement. The authors are grateful to Eric Slud for helpful com-
ments.

Figures

Figure 1. (a). An attracting fixed point that practically coincides with
c0s(0.8) in p;(r,20), w; = 0.8, M = 20, from the complex exponential filter.
The derivative of p1(a,20) in a neighborhood of cos(0.8) is very close to 0.
(b). The squared gain ( 14) with M = 20, and centered at 6 = 0.8.

Figure 2. (a). An attracting fixed point that practically coincides with
cos(0.8) in p1(a,100), w; = 0.8, M = 100, from the complex filter in HK.
The derivative of p;(a,100) in a neighborhood of cos(0.8) is close to 0. (b).
The normalized squared gain ( 20) with M = 100, and centered at § = 0.8.

Figure 3. The squared gain of the cosine filter centered at § = 1, with
M = 20, and centered at # = 1.1 with M = 40.

Figure 4. GATE I data: interpolated hourly rain rate averaged over a
280 x 280 km? area in the eastern Atlantic. N = 450.
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Figure 1. (a). An attracting fixed point that practically coincides with
c0s(0.8) in py(r,20), wy = 0.8, M = 20, from the complex exponential filter.
The derivative of p;(a,20) in a neighborhood of cos(0.8) is very close to 0.
(b). The squared gain ( 14) with M = 20, and centerd at 6 = 0.8.
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Figure 2. (a). An attracting fixed point that practically coincides with
c0s(0.8) in p1(a,100), w; = 0.8, M = 100, from the complex filter in HK.
The derivative of pi(c,100) in a neighborhood of cos(0.8) is close to 0. (b).
The normalized squared gain ( 20) with M = 100, and centerd at 8 = 0.8.

ro(r) From Complex Filter: M=100, cos (0.8)=0.697
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Figure 3. The squared gain of the cosine filter centered at § = 1, with
M = 20, and centered at § = 1.1 with M = 40.
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Figure 4. GATE I data: interpolated hourly rain rate averaged over a
280 x 280 km? area in the eastern Atlantic. N = 450.

Rain Rate Hourly data from GATE 1
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