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Measurement of time-variant linear channels is an important problem in com-
munications theory with applications in mobile communications and radar detection.
Kailath addressed this problem about half a century ago and developed a spread-
ing criterion for the identifiability of time-variant channels analogous to the band
limitation criterion in the classical sampling theory of signals. Roughly speaking,
underspread channels are identifiable and overspread channels are not identifiable,
where the critical spreading area equals one. Kailath’s analysis was later generalized
by Bello from rectangular to arbitrary spreading supports.

Modern developments in time-frequency analysis provide a natural and power-
ful framework in which to study the channel measurement problem from a rigorous
mathematical standpoint. Pfander and Walnut, building on earlier work by Kozek
and Pfander, have developed a sophisticated theory of ”operator sampling” or ”oper-
ator identification” which not only places the work of Kailath and Bello on rigorous
footing, but also takes the subject in new directions, revealing connections with other

important problems in time-frequency analysis.



We expand upon the existing work on operator identification, which is restricted
to the real line, and investigate the subject on elementary locally compact abelian
groups, which are groups built from the real line, the circle, the integers, and finite
abelian groups. Our approach is to axiomatize, as it were, the main ideas which have
been developed over the real line, working with lattice subgroups. We are thus able
to prove the various identifiability results for operators involving both underspread
and overspread conditions in both general and specific cases. For example, we pro-
vide a finite dimensional example illustrating a necessary and sufficient condition for
identifiability of operators, owing to the insight gleaned from the general theory.

In working up to our main results, we set up the quite considerable technical
background, bringing some new perspectives to existing ideas and generally filling

what we consider to be gaps in the literature.
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Chapter 1:

Introduction

1.1 Background and Motivation

The main mathematical problem that we address is motivated by a classical
problem in communications engineering, that of measurement of time-variant linear
channels. In simple mathematical terms, a time-invariant linear channel (or operator)
A is one that commutes with translations: T, A = AT,. Translation invariant opera-
tors are known to be equivalent to convolution operators; the precise formulation of
this statement and the difficulty of its proof depend on the choice of function space.
Since the Dirac distribution is the identity of the convolution operation, measurement
of time-invariant linear channels is well understood.

Time-variant linear channels arise, for example, in mobile communications [Str06]
and radar detection [BGE11]. The time-variant nature of the problem is due to the
time delays and Doppler shifts effected during the transmission of a signal. The proper
mathematical formulation of a time-variant operator is suggested by the definition of
a convolution operator. The convolution operator g — 7 % g can be expressed as the

integral operator

g / (-~ y)g(y) dy.



In order to obtain a time-variant operator, we simply let 7 vary with time:

g—a/dw—ymwmy

Setting x(x,y) = 7(z,z — y), we obtain

géjkmwmw@.

Therefore, time-variant operators are those defined via integration against a kernel
function. Although we derived the form a time-variant operator should have, due to
the Schwartz kernel theorem, every reasonable operator is necessarily of this form.
Moreover, defining o as the Fourier transform of 7 in the second variable, we obtain
the expression
g— /0(~,w)g(w)62”<w"> dw,

making contact with classical pseudodifferential operators. See [Str06] for a detailed
discussion of pseudodifferential operators in the context of mobile communications.

The form of a time-variant operator that is most suitable for our purposes is
the spreading representation. We define the spreading function 7 via the change of
coordinates k(z,y) — k(y,y — z) followed by the Fourier transform in y. We then

obtain the expression
g— /n(a:,w)Mwag dx dw,

where M, is the modulation operator f — e*™“"f In other words, we take a
weighted sum of time-frequency shifts of g. The translation operator represents time

delays, and the modulation operator represents Doppler shifts.



In [Kai62], Kailath considered the measurement (or identification) problem for
time-variant operators. He proposed a measurement scheme whereby the parameters
of a time-variant operator are to be determined by reading its response to a Dirac
impulse train (or Dirac comb). More generally, he considered under what conditions a
time-variant operator can be identified by reading its response to a single judiciously
chosen input signal. Given a family of time-variant operators whose spreading func-
tions are all supported in some fixed rectangular region of the time-frequency plane,
Kailath conjectured, based on counting and linear independence arguments, that the
family of operators is identifiable if and only if the rectangle has area less than or
equal to one. In [Bel69], Bello argued that one can take the common spreading sup-
port to be any region of the time-frequency plane, not necessarily a rectangle, and
the same identification criterion applies.

More recently, the operator identification problem has been the subject of re-
newed interest in light of modern developments in time-frequency analysis during the
last few decades. In [KP05], Kozek and Pfander rigorously formulated and proved
Kailath’s conjecture more or less exactly as Kailath had stated it. Specifically, for a
rectangular support set of area less than or equal to one, they proved identifiability of
a given operator family by a Dirac comb just as Kailath had proposed. On the other
hand, they proved that no signal, no matter how cleverly chosen, suffices to identify
if the rectangle has area greater than one. Technically, certain continuity criteria
are also part of these identification results, and one needs to work with appropriate
function spaces.

Shorty thereafter, in [PWO06a], Pfander and Walnut generalized the methods in



[KP05] and proved Bello’s stronger version of Kailath’s conjecture; see also [PW0Gb].
However, one needs to be careful about the particulars of the spreading support.
Here is a convenient formulation of the main results in [PWO06a]: If the spreading
support is compact with area less than one, then the family of operators is identifiable
by a periodically weighted Dirac comb, that is, a signal of the form ), _, cida,
where ¢, = ¢y, for some positive integer L [PW06a, Theorem 3.1]. If the spreading
support is open with area greater than one, then no signal suffices to identify [PW06a,
Theorem 4.1].

In recent years, Pfander and Walnut have expanded upon their earlier work
and developed a robust theory of sampling of operators [Pfal3b; PW15b]. The term
"sampling” reflects the similarity between probing an operator with a weighted Dirac
comb and the classical sampling theory of functions. In [WPKI15], the two authors
together with Kailath give an excellent survey of the subject going back to Kailath’s
early investigations.

All of the above work has been carried out on the real line and, more generally,
on Euclidean space. We are interested in the extension of the theory of operator iden-
tification to more general groups. Specifically, we focus here on elementary locally
compact abelian (ELCA) groups, that is, groups which are products of any combina-
tion of finitely many copies of R, T = {z € C : |z| = 1}, Z, and finite abelian groups,
e.g., R? x T x (Z/4Z) or T x Z3. We were originally interested in T, partly encour-
aged by the possibility that a periodic version of the theory of operator identification
could be relevant to applications. Upon resolving the problem on T, motivated by

[FK98], we decided that it was logical to try to extend the theory to ELCA groups.



Interestingly, the abstraction that is necessary to carry out the theory in this general
setting is very illuminating and renders the theory conceptually simpler.

In Chapter 2, we give a coherent account of Fourier analysis on ELCA groups
from the perspective of distributions and with an eye toward time-frequency anal-
ysis. This chapter establishes the technical background necessary for our further
investigations.

In Chapter 3, we emphasize the special role that the space M*, known as Fe-
ichtinger’s algebra, plays in time-frequency analysis, and we develop the theory of
operators based on this space and its dual.

In Chapter 4, we discuss the theory of operator identification on ELCA groups

and prove our main results.

1.2 Main Results and Technical Contributions

Our main results consist of the extension of the theory of operator identifica-
tion developed by Pfander and Walnut from the real line to ELCA groups. The
starting point is the interplay between two periodization concepts: the Zak trans-
form and quasi-periodization. The latter concept was introduced in [PW15b]. As
Proposition 4.3.1 and Proposition 4.3.6 show, the two periodization concepts are
closely linked via the action of a pseudodifferential operator. This close link is pre-
dicted in Section 4.2, where one sees that the two concepts enjoy parallel properties.
Proposition 4.3.6 is the key discretization result which allows reduction of the infinite

dimensional theory to the finite dimensional theory discussed in Section 4.1. In The-



orem 4.4.1 and Theorem 4.4.5, we characterize spreading supports for which operator
identification by a given periodically weighted Dirac comb is possible, generalizing
[PW15b, Theorem 2.8]. In Section 4.1, we give a finite dimensional example provid-
ing numerical verification of Theorem 4.4.5. It is interesting to note that we were
able to think of this example only after formulating and proving Theorem 4.4.5 in
general. Corollary 4.4.4 gives a general sufficient condition for operator identification,
generalizing [PW06a, Theorem 3.1] and proving that Bello’s underspread condition
is sufficient for identifiability of operators on ELCA groups.

In Section 4.5, we study the opposite side of the coin, and attempt to generalize
[PWO06a, Theorem 4.1] and prove that Bello’s underspread condition is necessary for
identifiability of operators on ELCA groups. The idea essentially is to restrict the
identification problem to a subspace synthesized from a very simple class of operators
over which we have good control, thereby simplifying the left hand side of the identi-
fication problem, and to simplify the right hand side via an appropriate analysis map,
thereby obtaining an infinite matrix which is easy to work with. We abstract out the
mechanics involved in this scheme. We are then able to obtain the non-identifiability
results on both T and R (Theorem 4.5.12 and Theorem 4.5.14) by specializing this
general scheme. The corresponding result on Z follows from a duality principle akin
to the Plancherel theorem (Theorem 4.5.2). We then consider product groups. As
of the writing of this work, we have not fully generalized [PW06a, Theorem 4.1] to
ELCA groups, but we do prove a relevant result (Theorem 4.5.17).

Aside from our main results, we perform a substantial amount of work giving

a coherent account of harmonic and time-frequency analysis on ELCA groups from



the point of view of distributions, a treatment which does not seem to exist in the
literature in this form. In the presentation of this material, we offer several new
insights and fill some gaps in the literature. We next emphasize the most important
aspects of our technical contributions in this regard.

The tensor product construction plays a significant role in our rigorous develop-
ment of the technical tools needed to address our main objectives. Proposition 2.2.5,
an old result of Nachbin, gives a version of the Stone-Weierstrass theorem in the
smooth category. We use this theorem to prove the important convergence result
in Proposition 2.2.7. We think this result should be well-known, but we were not
able to find an existing proof. This convergence result is later used to prove Proposi-
tion 2.3.34, which in turn plays a key role in proving Proposition 3.1.11, which itself
is vital for the soundness of some of the arguments in Section 3.5 and Section 4.2.
In this connection, we also note the entirety of Section 3.1, where we carry out the
work of extending many technical results from the setting of the Schwartz space to
the setting of M, for which we have not found a self-contained treatment in the
literature. It is here that we also reconcile various ostensibly different definitions of
the short-time Fourier transform encountered throughout the text.

Example 2.4.5 and Proposition 2.6.21 are results where a space which a priori
is only known to consist of distributions turns out to be a bona fide function space.
It is an oversight we have occasionally come across in the literature whereby a distri-
bution is assumed to be a function throughout the proof of such a result before it is
demonstrated as one. For technical correctness, it is necessary to insert an argument

confirming that a distribution is indeed a function before one can treat it as such.



We have devised Proposition 2.1.31 to take care of this subtle issue.

Theorem 3.2.1, a result of Bonsall, gives criteria for the decomposability of
a Banach space into atomic elements. We have found this result to be of great
utility in our investigations in Section 3.4 and Section 3.5 concerning quantization
of operators (the Schwartz kernel theorem) and the spreading representation. The
approach found in the standard literature utilizes Wilson bases, a construction which
we find unintuitive and would therefore like to avoid if possible. Since T and Z
afford convenient orthonormal bases, the issue here is with R, over which there is no
naturally occurring orthonormal basis suitable for time-frequency analysis. However,
we found that the atomic decomposition theorem can be a sufficient replacement.
It is featured prominently in the proofs of Proposition 3.4.4, Proposition 3.4.5, and
Proposition 3.5.2, a perspective we have not seen in the literature. The first two results
and the discussion that follows them constitute a complete proof of one direction of

the Schwartz kernel theorem in the setting of M?.



Chapter 2:

Fourier Analysis on Elementary Locally Compact Abelian Groups

In Section 2.1, we give an exposition of the theory of Schwartz functions and
tempered distributions. One of the main goals of this section is to establish language
and notation. Most of the results and their proofs can be found in [Rud91, Chapters
6 and 7] and [Fol99, Chapters 8 and 9]. We also recommend [Hor90].

In Section 2.2, we discuss tensor products of tempered distributions. The tensor
product construction is indispensable to the proper development of time-frequency
analysis, and we use it throughout. The main reference for the material in this section
is [Hor90, Chapter 5].

In Section 2.3, we begin our study of time-frequency analysis and specifically
the short-time Fourier transform, which is the main tool on which all of our work is
based. The main reference for this section is [Gro01, Chapters 3 and 11].

In Section 2.4, we study modulation spaces, which are very suitable for time-
frequency analysis, owing to their myriad invariance properties. The main reference
for this section is [Gro01, Chapter 11].

In Section 2.5, we give a very general account of the critically useful concept of
periodization, variants of which will feature most prominently in Chapter 4.

In Section 2.6, we study Wiener amalgam spaces. Although we shall not make



use of the full theory, some of its consequences will be relevant. The main references
for this section are [Hei03] and [Gro01, Chapter 12].

Generally, we prove results whenever they are nontrivial and not readily avail-
able in the literature, or when we are not fully satisfied with existing proofs, or when
the inclusion of a proof is warranted for clarity. Otherwise, the reader is referred
to the standard literature. We also do not necessarily prove formulas which can be

obtained through straightforward algebra.

2.1 Theory of Distributions

Let G =R4x T x Z¢ x A, d,d’,d’ > 0. Here, A is a finite abelian group. By
the classification theorem for finite abelian groups, A is a direct sum of finite cyclic
groups where each summand has order the power of a prime. The Haar measure on R?
will be the standard Lebesgue measure. The Haar measure on T? will be normalized
to have total measure 1. The Haar measures on Z% and A will be the counting
measure. The Haar measure on G will be denoted by ug. Recall that R = R4,
T¢ =74 74 =T and A = A.

Let (z,2z,1,A) € G and (w,&,y,T) € G. The pairing between G and G will
be defined by (7,w) = €% (2,¢) = 25, (1,y) = v, and (\,7) = e2™*/N for
A\, T €Z/NZ.

The symbols «, 8, and v will denote multi-indices. Multi-indices for differen-
tiation may include any combination of directions along R% or T¢. The subscript R

denotes the component along R?. For example, if a = (x,2,1,\) € G, then ag = .

10



Similarly for T and Z.

Let F' be a complex function on GG. We define the translation operator as
T.F(t) = F(t — a) for a,t € G. We define the modulation operator as M;F(t) =
(t,a)F(t) for a € G and t € G. Note that T,M; = (—a,a)M,T,. We define F(a) =
F(—a) for a € G. We define F*(a) = F(—a) for a € G. We define X?F(a) = a2 F(a)
and K"F(a) = a}F(a) for a € G.

We state two basic results relating convolution and differentiability.

Proposition 2.1.1. Let k > 0. Let f € LY(G) and g € C*(G). Suppose that 9%g
is bounded for all || < k. Then f*g € C*G), and 0%(f * g) = f * (0%g) for all

a < k.

Proposition 2.1.2. Letk > 0. Let f € L} (G) and g € C*(G). Then fxg € C*(G),

loc

and 0°(f = g) = f * (0%) for all |a| < k.

We shall now define the space of Schwartz functions. The utility of Schwartz
functions in Fourier analysis stems from the agility that they offer in integration owing

to their rapid decay properties together with the following integrability results.
Lemma 2.1.3. Leta >0 and 1 < p < oo. If s > d/p, then (a + |z|)~* € LP(RY).

Lemma 2.1.4. Let € > 0. The sum Y, 5a(1 + |z + ¢|)""¢ is uniformly convergent

for x € R,

For f € C®(G), let ||fllap, = [[K'XP0%f|l. Let S(G) be the set of all
f € C*(G) for which these seminorms are finite. The space S(G) is a Fréchet space

under this separating family of seminorms; we call it the Schwartz space on G. The

11



dual space S'(G) with its weak™ topology is the space of tempered distributions on
G. Clearly, S(G) C Cy(G) and S(G) C LP(G) (1 < p < o0). In particular, Schwartz

functions are uniformly continuous.

Remark. We can equally well use the separating family of seminorms
[ fllasy = K70 X  flloe  (f € CX(G)).

Proposition 2.1.5. Differentiation is a continuous linear map from S(G) to S(G).
Let f be a C* function on G all of whose derivatives have polynomial growth (on
RY x Z%" ). Multiplication by f is a continuous linear map from S(G) to S(G). Mul-

tiplication by f is a continuous linear map from S'(G) to S'(G).
Proposition 2.1.6. If f,g € S(G), then f*x g € S(G).

It follows from a standard theorem on approximate identities that C°(G) is
dense in Cy(G) and in LP(G) (1 < p < o0). It follows from the next result that

C>(@) is dense in §(G); see [Rud91, Theorem 7.10].

Proposition 2.1.7. Let ¢ € OX(G) with ) =1 on U x T x U" x A, where U and
U" are open balls about 0. Let e (x, 2,1, \) = ¢(ex, 2, [¢t/n], N) fore >0, n > 1, and
(x,2,1,\) € G. Here, |-| is truncation towards 0. For every f € S(G), Yenf — f in

S(G) as e — 0 and n — oo.

Let f be a complex function on G. If f € LP(G) (1 < p < o0), or f is measurable
and has polynomial growth, then f defines a tempered distribution via integration.
The following result shows that we can consistently identify f with its associated

tempered distribution.

12



Proposition 2.1.8. Let f € L}, (G). If [, fé =0 for all ¢ € CZ(G), then f =0

loc

almost everywhere.

Similarly, if u € M(G), then u defines a tempered distribution via integration,

and consistency is not an issue.
Proposition 2.1.9. If [, ¢du =0 for all € CZ(G), then p = 0.

Note that the inclusions S(G) C LP(G) C §'(G) (1 < p < o0) are continuous.

We now define derivatives of tempered distributions. Let u € §'(G). We define
0%u(¢) = (=1)lu(9*¢) for ¢ € S(G). If u is a C* function all of whose deriva-
tives have polynomial growth, integration by parts shows that 0%u as just defined is

consistent with 0% in the calculus sense.

Proposition 2.1.10. Differentiation is a continuous linear map from S'(G) to S'(G).

Fourier Transforms

Let G = R4 x T4 x Z% x Ay and Gy = R®2 x T% x Z% x A,. We shall define

the partial Fourier transform on G; x (G5 with respect to G.

Lemma 2.1.11. Let ay € Go. The linear map ¢ — ¢(-,a2) from S(G1 x G3) to

S(Gy) is continuous.

Lemma 2.1.12. Let ¢ € S(G; x Gs).
(a) The map ay — ¢(-,as) from Gy to L'(Gy) is uniformly continuous.
(b) The map as — ||¢(+, az)||1 on Go is in Cy(Gs).

13



Let ¢ € S(Gy x G3). We define Fi¢(a1,as) = ¢(-,az) (a1) for a, € 6’1 and

as € (G, i.e., we take the Fourier transform in the first variable.

Proposition 2.1.13. The transform Fy is a Fréchet space isomorphism from S(G1 X

Gs) onto S(Gy x Gs). We have
~F~1ac’[1¢(w7 57 e ) = (27”:(’0)&1’]1{ (27”6)&1’?;1@25(("}7 57 e )7 flaa2¢ - 8C!2-F'1¢7
and O Fi¢ = Fi[(—2mi X)) R (=2mi K)* T ).
Corollary 2.1.14. The transform Fi of Proposition 2.1.13 extends to a weak™® iso-
morphism from S'(G1 x G3) onto S’(@l x Gg).
Theorem 2.1.15 (Plancherel Theorem). The transform Fy of Corollary 2.1.14 is an
isometric isomorphism from L*(Gy x G3) onto L*(Gy x Gy).

If p € M(G), there are two definitions of the Fourier transform of p, one in the
abstract harmonic analysis sense, and one in the sense of Corollary 2.1.14; these two
definitions are consistent with each other.

We state some simple identities involving the Fourier transform. Let F' be a
complex function on Gy x Gy. We define Ry F(ay,as) = F(—ay,as) for a; € Gy and

as € Gs.

Proposition 2.1.16. Let u € S'(Gy x G3).
(a) FiM@a, oyu = Ta, 0y F1u.
(b) ]:1T(a1,0)u = M(—al,O)-Flu-

(C) flRlu = R1F1U.

14



(d) Rlﬂ:Rlu.
(6) ]:lﬂ = le

Proof. The proof consists of straightforward calculations which we carry out for the

purpose of elucidating some of the definitions that are implicit in our discussion so
far. Let ¢ € S(G1 x Gs) and ¥ € S(Gy x Gs).

(a)

FiM@, 0yu(@) = M, oyu(Fi1¢) = u(Ma, 00 F10) = u(F1T(—a,,009)

= Fru(T—a,,09) = Tiar,0)F1u(e).
(b)

-FlT(al,o)U(¢) = T(al,O)U(}—W) = U(T(fal,O)quﬁ) = U(]‘—lM(fal,o)éﬁ)

= ~7:1U(M(7a1,0)¢) = M(*al,O)Flu(aS)'

(c)

FiRu(p) = Riu(Fi9) = u(R1F1¢) = uw(Fi1R19)

= .F1U(R1¢) = R1f1U(¢>

(d)

Riti(y) = u(R1yp) = u(R1¢) = u(R1¢))

= Ryu(¥) = Ryu(v).

15



(¢)

Fru(p) =u(F19) = u(F19) = u(R1F19)

= Riu(F16) = FrRu(6) = RaFru(9)

The following Fourier transform is of fundamental importance.

Proposition 2.1.17. Let 1 be the constant polynomial 1 on G. Let 65 be the Dirac

distribution on G. Then 5@ = 1g.

Proof. Let ¢ € S(G). We have

5a(6) = 65(8) = H(0) = /G o(t)(—t,0) dt = / o(t) dt = (16, 6).

Convolutions

We state an identity, which follows from the binomial theorem, that is useful

for establishing certain estimates; see [Gro01, Lemma 11.2.1].

Lemma 2.1.18. Let f € C*(G). Then

Kva]gma%TX'BM(WO7§o7y07To)T(~’00720,L07>\0)f =

T T (7)) () )smaromer

1,R 1,T 2
p1rZaR p1,1<ar p2<f p3<y P, P, p P3

Y—p3 QAR TPLR OT —PL,T v B—p2
M(Wo,£O7y0,T0)T(x07Z07L07>\0)K a]R a’ﬂ‘ X I

16



The following result, whose proof uses Lemma 2.1.18, is fundamental to the

time-frequency analysis of tempered distributions; see [Gro01, Corollary 11.2.2].

Proposition 2.1.19. Let ¢ € S(G). The map (a,d) — MyT,¢ from G x G to S(G)

18 continuous.
The following technical result is useful; see [Rud91, Lemma 7.17].

Lemma 2.1.20. Let ¢ € S(G). Let e be the first standard basis vector in RY. Then

T'—heﬁZS B ¢ .

. Oy — 0

in S(G) as h — 0. There is an analogous result for differentiation on T .

We now extend the definition of convolution. Let u € §'(G) and ¢ € S(G). We

define (u * ¢)(a) = u(T,¢) for a € G.

Proposition 2.1.21. ux¢ € C*(G), and 0% (u*x¢) = (0%u)*¢ = ux(0“¢). Moreover,
u * ¢ has polynomial growth, so ux ¢ € S'(G).
Proposition 2.1.22. Let u € §'(G) and ¢ € S(G). Then 1@ — &t and gb/\u = 0.
If Y € S(Q), then (u* @) * 1) = ux (¢ x ).
Corollary 2.1.23. Let u € S'(G) and ¢ € S(G). Then @(d) =u(M_z0).

Let u € §'(G). We say that u vanishes on the open set V' C G if u(¢) = 0 for
all ¢ € C*(V). If W is the union of all such open sets, then a partition of unity

argument shows that u vanishes on W. The complement suppu = G\ W is called

the support of u.
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Compactly supported distributions are of special interest, so we turn to the
space C*(G). Let {K;} be a sequence of compact sets in R? such that K; C K¢,

and R? = UKj~ Let Fy C F, C --- C Z% be finite sets whose union is Z%'. For

feC>G), let
| fllay = sup{0°f(b), b€ Ky x T? x Fy x A}.

The space C*(G) is a Fréchet space under this separating family of seminorms; the
topology is independent of the chosen {K} and {F;}. The inclusion S(G) C C*(G)
is continuous. The next result shows that a compactly supported distribution on G

extends uniquely to a continuous linear functional on £(G) = C=(G).

Proposition 2.1.24. C°(G) is dense in C*(G). There is a one-to-one correspon-

dence between E'(G) and the set of all compactly supported distributions on G.

The Fourier transform of a compactly supported distribution has a simple de-

scription.

Proposition 2.1.25. Letu € £'(G). Thent is a C* function all of whose derivatives

A~

have polynomial growth. Moreover, u(a) = u((-, —a)).

We can now further extend the definition of convolution. Let v € S'(G) and
v e &'(G). We define u x v (or v *u) to be that tempered distribution on G whose

Fourier transform is 94.
Proposition 2.1.26. Ifu € £'(G) and ¢ € S(G), then ux ¢ € S(G).

Proposition 2.1.27. Let u,v,w € §'(G).
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(a) If at least one of u and v has compact support, then supp(uxv) C supp u+supp v.
(b) If at least two of u, v, and w have compact support, then (u*xv)*w = u* (vV*w).
(¢) 0% = (0%¢) * u

(d) If at least one of u and v has compact support, then 0*(u x v) = (0%u) x v =

* (0%).

Approximation Results

Proposition 2.1.28. Let {1;} be a sequence in CZ*(G) such that 1; >0, [,v; =1,

and supp ¢; — 0.
(a) For every f € C(G), f*1; — f uniformly on compact sets.
(b) For every ¢ € S(G), ¢p*1; — ¢ in S(G).
(¢) For everyu € §'(G), uxy; = u in §'(G).

Proof. (a) Let A be a compact subset of G. We have

(f ;) (a |</|fa—t (@)l (8) dt
- [ 1a=0 - r@p 0 a

<sup|f(a—1) = f(a)].

teK

Here, K is a compact neighborhood of 0 containing the support of ¢; for j sufficiently

large. Therefore,

sup |(f * ¢;)(a) — f(a)| < sup sup|f(a —t) — f(a)|.

acA acA tekK
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Since f is uniformly continuous on the compact set A — K, the RHS can be made
arbitrarily small by making K sufficiently small.
(b) Tt suffices to show that Y2?((¢ x 1;)(a) — ¢(a)) — 0 uniformly for a =

(x,-,t,-) € G. We have

125 (6% ) (a) — $(a))] < / 28 (B(a — ) — $(a))[4(t) dt
- /K 1028 (da — 1) — B(a)) iy (1) dt

< fg]}? |L7xﬂ(¢(a —t) — ¢(a))l.

Here, K is the same as before. By Proposition 2.1.19, this last quantity can be made
arbitrarily small, uniformly for a € G, by making K sufficiently small.

(c) Let ¢ € S(G). We have

u(@) = (ux §)(0) = lim(u * ¢; % $)(0) = lim(u * ;)(9).

Lemma 2.1.29. Ifu; — u in §'(G) and ¢; — ¢ in S(G), then uj(p;) — u(p).

Proof. Since the sequence {u;(1))} is convergent and hence bounded for all ¥ € S(G),
the collection {u;} of continuous linear functionals on S(G) is equicontinuous by the
uniform boundedness principle (the Banach-Steinhaus theorem). In particular, there

exist uniform constants C' and N, independent of j, such that

@I<C Y D D Wlass (@ €SG)),

| <N BISN |v|<N

Setting ¢ = ¢; — ¢, we see that u;(¢; — ¢) — 0. ]
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The following density result is of fundamental technical importance.

Proposition 2.1.30. Every tempered distribution on G is the weak™ limit of a se-

quence of functions in CX(G).

Proof. The following proof is inspired by [H6r90, Theorem 4.1.5]. Let u € §'(G). Let
Xj = Y15, Where 1)y, ; is as in Proposition 2.1.7. Let {1);} be as in Proposition 2.1.28.
Let u; = (x;u) * ;. Then u; € C°(G). We claim that u; — w in S'(G).

Let ¢ € S(G). We have

u; (@) = ((xgu) * 1) (@) = ((xyu) * 15+ 9)(0) = (xju) (¥ * 9)-

By Proposition 2.1.7, x;u — u in S'(G). By Proposition 2.1.28, 1; * ¢ — ¢ in S(G).

The claim follows from Lemma 2.1.29. OJ

The following technical result is useful for determining that a tempered distribu-
tion is defined via integration. This result will be used in the proofs of Example 2.4.5

and Proposition 2.6.21.

Proposition 2.1.31. Let {V;} be a sequence of precompact open sets in G whose
union is G. Let {1;} be a sequence in C2(G) with ¢¥; =1 on V. Let u € §'(G).
Suppose that P;u is a complex measurable function for all j. There exists a locally
integrable f : G — C such that u(¢) = (f,¢) for all ¢ € CX(G). In particular, ¢pu

and ¢f coincide as tempered distributions for all ¢ € CX(G).

Proof. If ¢ € C*(V; N'V},), then

(Yju)(9) = u(¥;9) = u(¢) = u(Vrd) = (Yru)(¢).
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It follows that ¥;u = 1,u almost everywhere on V; N Vj. Therefore, there exists a
complex measurable f : G — C such that f = v¢;u almost everywhere on V. Let

{g;} be a C* partition of unity on G subordinate to {V;}. We have

u(@) = u(}_ 9;9)
= u(g;0)
= ulthig;0)
= > (Wju)(g;0)
=Y (£,9;9)
= (£, 9i9)

=(f,0) (¢ CX(G).

Since ¢ is compactly supported, the sums run over a fixed finite index set. O

2.2 Tensor Products

Let f; € C(Gy) and f; € C(Gs). We define (f1 ® fa)(a1,a2) = fi(aq)fa(az) for

a € G1 and as € Gg.

Proposition 2.2.1. The bilinear pairing (¢1, ¢2) — ¢1 ® ¢o from S(G1) x S(G3) to

S(Gy x Gy) is continuous.

Lemma 2.2.2. Let u € §'(G X Gg). Let Vi and V4, be open subsets of G1 and G,
respectively. If u(i; @ y) = 0 for all v € C°(Vy) and ¢y € C°(Va), then u =10 on

Vi x Va.
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Proof. Let {¢;} and {¢7} be sequences in C*(G1) and C°(Gy), respectively, as
in Proposition 2.1.28. Let ¢; = ¢; ® ¥?. Then {1;} satisfies the hypotheses of

Proposition 2.1.28 on G; x G, so u*; — u in §'(G; x G3). However,
(U’ * ¢j)(a1’ a2> - u(T(alya/Q)r(Lj) = U(Talzzjl' ® Ta2¢j2') =0 (al € ‘/1’ az € ‘/2)
for 5 sufficiently large. O

Lemma 2.2.3. Let u € §'(G;) and ¢ € S(Gy x G2). The map ay — u(P(-, az2)) on

Gy is in S(Ga), and 9g,u(¢(-, az)) = u(9g,9(-, az)).

Proposition 2.2.4. Let vy € S'(Gy) and uy € S'(G2). There exists a unique u =
w ® uy € §'(G1 x G) such that u(yr ® o) = ui(¢r)ua(the) for all P € CX(Gh)
and Py € CX(Gy). We have u(¢) = ui(uz(p)) = ua(ui(@)) for all ¢ € S(Gy x Gs).
Moreover, supp u = supp u; X supp us. Let Cy and Ny be such that

(@) < > DY D lbillasm (61 € S(Gh)).

|1 |[<N1 |B1|<N1 [m|<N:
Let Cy and N5 be such that
ua(62) < Co > Y Y bollaspere (62 € S(Ga)).
|2 | <Na |B2|<Na |y2| <N2

Then

[u(¢)| < G102 Z Z Z H¢H(041,042),(51,52)7(’717’}'2) (¢ € S(G1 x Ga)).

|a1|<N1 |B1|<N1 [71]<Ny
|aa| <N3 |B2|<N3 |y2|<N2
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Differentiable Stone-Weierstrass Theorem

We now state a differentiable version of the Stone-Weierstrass theorem suitably

phrased for our purposes.

Proposition 2.2.5 (Nachbin [Nac49)). Let A be a (not necessarily unital) subalgebra

of C*(Q) with the following properties:
(a) A is closed under complex conjugation.
(b) For every a € G, there ezists f € A with f(a) # 0.
(¢) For every a,b € G with a # b, there exists f € A with f(a) # f(b).

(d) For every a € G and direction e along R* x T, there exists f € A with

8e<a) 3& 0.

In this case, for every g € C*(G), € > 0, compact K C G, and N, there ezists f € A

such that

Y supld(g - f)a)] < e
‘a|§Na€K

Compare the next result to Proposition 3.2.5.

Corollary 2.2.6. Let A be the linear span of

{o1® 022 1 € C(G), 2 € C°(G)}-
Then A is dense in S(Gh x G3).

Proof. Let ¢ € S(G1 % Gz). Since C°(G x G9) is dense in S(G1 x G), we can choose

1 € CX(Gy x Gy) arbitrarily close to ¢ in the topology of S(G; x G3). Let V; and V;
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be precompact open subsets of G; and G, respectively, such that suppy C V; x Vs.

Let Ay, v, be the linear span of

{1 @ ¢y 1y € CF(V1), ¥p € CF(Va)}.

It is clear that Ay, 1, is a (not necessarily unital) subalgebra of C*(G; x Gq) satis-
fying the hypotheses of Proposition 2.2.5. It follows that we can choose f € Ay, v,

arbitrarily close to ¢ in the topology of S(G; x Gs). O

The following result will be used in the proof of Proposition 2.3.34. Note the

similarity between the proofs of this result and Proposition 3.2.7.

PI'OpOSitiOIl 2.2.7. ]fULj — Uy in S,(Gl) and U5 — U m S/(Gg), then u1,j®u2’j —

UL Q Uy in Sl(Gl X Gg)

Proof. In view of the identity

UL]‘ (029 u27j — U & Uy = (UL]‘ — ul) & (Ug’j — Ug) s

+u ® (UQ,j - UQ) + (ULj - U1) X Ug,

it suffices to consider the cases u; = uy = 0, u; = 0, and uy = 0.
We can argue as in the proof of Lemma 2.1.29 and appeal to the last part of
Proposition 2.2.4 to conclude that there exist uniform constants C' and N, indepen-

dent of j, such that

|(u1,; @ ug)(¥)] < C Z Z Z HwH(0‘1,042)7(517,32)’(71,“/2) (v € S(G1 x G2)).

|a1|<N |B1]|<N |y1|<N
|a2| <N |B2| <N [y2|<N

Let ¢ € S(G1 x G3). Let f = >0 | o1 ® ¢oy for some ¢y, € CP(Gy) and
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Pa i € C(G2). We have

(w15 @ g3} (9)] < [(ury @ uag) (0 — ] + [(wr; @ uz)(f)]

< ¢ Z Z Z ||¢ - f”(0‘17‘12)7(/31”32),(71,’72) T

|a1|SN |B1|SN [m|SN
|a2| <N |B2| <N 72| <N

+ ) Jun(d1x)uz,(da)].
k=1

Let ¢ > 0. By Corollary 2.2.6, we can choose f so that the first term is less than
€/2. Since f is now fixed, the second term can be made less than €/2 by choosing j

sufficiently large. O

2.3 The Short-Time Fourier Transform

Let X and Y be complex vector spaces. Let (-, -) be a pairing on X x Y which is
linear on X and conjugate-linear on Y. Suppose that there exist translation operators
T, (a € G) and modulation operators M; (a € G) on X and Y satisfying the canonical
commutation relations T, M; = (—a, a)M;T,. Suppose that (T, f,g) = (f,T_.g) and
(Maf,g9) = (f,M_sqg) for all f € X and g € Y. We define the short-time Fourier
transform (STET) as V, f(a,a) = (f, MT,g) for f € X and g € Y. The prototypical
examples for (X,Y) are (§'(G),S(GQ)) and (L*(G@), L*(G)).

The following identity is called the covariance property of the STFT.

Proposition 2.3.1. Let f € X andg €Y. Then
V,MTyf(a,a) = (=b,a — b)V, f(a—b,a—b).

We shall need the following more general version of the covariance property.
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Proposition 2.3.2. Let f € X and g €Y. Then
VarrgMi Ty f (a,4) = (=b,a — b+ é)(a, &)V, f(a —b+¢,a — b+ ¢&).
Corollary 2.3.3. Let f € X and g €Y. Then
Virerg My T f = (=b,=b+ )M )T,y oVal

and

Vg ToMy f = (=b+e é)]w(@,*b)j—’(bfc,éfé)vgf‘
Corollary 2.3.4. Let f € X andg €Y. Then
T(b,i))vgf = VoM f

and

Mol = Vagr o MyTsf.

Proposition 2.3.5. Let (X,Y) = (§'(G),S(G)) or (X,Y) = (L*(G), L*(G)). Let

feXandgeY.
(CL) VIJ?(G’? d) = ‘%f(m _d)'

(b) ‘/fif(aa d) = V§f<_a7 _d>'

L? Theory

Proposition 2.3.6. Let f,g € L*(G). Then V,f is uniformly continuous and ||V, f]loo <

£ 112llg]l2-
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The following identity is called the fundamental identity of time-frequency anal-
ysis.

Proposition 2.3.7. Let f,g € L*(G). Then V,f(a,a) = (—a,a)V;f(a,—a).

We shall need the following more general version of the fundamental identity

involving partial Fourier transforms.

Proposition 2.3.8. Let f,g € L*(Gy x G3). Then
Vaflay, ag, a1,a2) = (—ar,a1)Vr g Fi1 f (@1, az, —ai, az).

We state some alternate formulas for the STFT.

Proposition 2.3.9. Let f,g € L*(G). Then

Vyfa,a) = (f1.9) (a) = (—a,a)(f * Mag*)(a) = (—a,a)(fT2g) (—a).

We shall obtain yet one more description of the STFT which is necessary for

establishing certain results.

Lemma 2.3.10. The sesquilinear pairing (f,g9) — V,f from L*(G) x L*(G) to

L>(G x @) is conlinuous.

Lemma 2.3.11. The sesquilinear pairing (f,g) — f ® g from L*(G) x L*(G) to

L*(G x G) 1is continuous.

Let F' be a complex function on G x GG. We define the asymmetric coordinate
transform as T F(a,t) = F(t,t —a) for a,t € G. Note that T, 'F(a,t) = F(a—t,a).

We define Zg F(a,b) = F(b,a) for a,b € G.
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Proposition 2.3.12. Let f,g € L*(G). Then V,f = FTa(f ®7) almost everywhere.

Proof. The equality is obtained by direct calculation when f, g € S(G). By Lemma
2.3.10, the pairing on the left is continuous into 8'(G x G). By Lemma 2.3.11 and
the Plancherel theorem, the pairing on the right is continuous into &'(G % é) Since

S(@G) is dense in L*(G), the result follows. O

Corollary 2.3.13. The sesquilinear pairing (f,g) — V,f from S(G) xS(G) to S(G x

~

G) is continuous.

Corollary 2.3.14. Let f1, f2, 91,92 € L*(G). Then (Vy, f1,Vy, f2) = (f1, f2){g1, g2)-

Corollary 2.3.15 (STFT Inversion Theorem). Let f,g,h € L*(G). Suppose that

(h,g) #0. Then
1

f:—/ V,f(a,a)M;T,hdada,
<hvg> GxG I ( )

where the right hand side is an L*(G) valued integral.

Proof. Let ¢ € L*(G). We have

1 ) o o
9 /Gx@ V, f(a,a){M,T,h,$) dada = W/Gx@ V,f(a,a)Vio(a,a) dada
1
1 _

= W<f,¢><97h>

= ([, ).
[
Corollary 2.3.16. Let g € L*(G). Then V, is a bounded linear map from L*(G) to
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LX(G x G). We have

VIE = / F(a,a)M;T,gdada
axad

for all F € L2(G x G), where the right hand side is an L*(G) valued integral.

Corollary 2.3.17. Let g,h € L*(G). Suppose that (h,g) # 0. Then

V. =1.
gy s

Distributional Theory
For the rest of this section, a = (z,-,¢,-) € G and @ = (w,&,-,-) € G.

Proposition 2.3.18 ([Gro01, Theorem 11.2.3]). Let f € 8'(G) and g € S(G). Then
V, [ is continuous. Moreover, |V, f(a,a)] < C(1+|x|+ |w|+ || +[£])N. In particular,
Vof is a tempered distribution on G X G. The constants C and N can be chosen

uniformly for f in a pointwise bounded collection of tempered distributions on G.
Proposition 2.3.19. Let f € S'(G; x G3) and g € S(G1 x G3). Then
Voflay, ag,ar,az) = (—ay, a1) Ve g F1f(a1, ag, —ay, az).
Proposition 2.3.20. Let f € S'(G) and g € S(G). Then
Vof(a,a) = (fT.g) (@) = (—a,a)(f * Mag®)(a) = (—a,a)(fTag) (—a).
We shall obtain the distributional version of Proposition 2.3.12.

Lemma 2.3.21. Let g € S(G). If f; — f in S/(Q), then V,f; — V,f in 8'(G x G).
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Proof. We can assume without loss of generality that f = 0. Let ¢ € S(G x CAJ)

Then

(‘/gfju¢)—/ A<fj,MaTag>¢(a,d) da da.

GxG

It is clear that the integrand goes to 0. By Proposition 2.3.18, the dominated con-
vergence theorem applies. O
Lemma 2.3.22. Let g € S(G). If f; — [ in S'(G), then f;,®7 — f®7G in S'(GXG).
Proposition 2.3.23. Let f € S'(G) and g € S(G). Then V,f = FTa(f ®7).
Proof. The equality is true when f € S(G) as already established in Proposition 2.3.12.
The general case follows by taking a sequence in S(G) converging in §'(G) to f
(Proposition 2.1.30), and then appealing to Lemma 2.3.21 and Lemma 2.3.22. 0
Corollary 2.3.24. Let f, € S'(G) and f2,g1,92 € S(G). Then (Vy, f1, Vg fo) =
(1. F2) {91, 92)-

Corollary 2.3.25 (STFT Inversion Theorem). Let f € S'(G) and g,h € S(G).
Suppose that (h,g) # 0. Then

1
f:—/ V, f(a,d) My T,h da da,
<hvg> GxG I ( )

where the right hand side is an S'(G) valued integral.
The next result gives a way to manufacture Schwartz functions.
Proposition 2.3.26. Let g € S(G). Let F be a complex measurable function on

G x G such that |F(a,a)| < Cp(1 4 || + |w| + |¢| + €))% for all k > 0. The map

p:t— F(a,a)M;T,g(t) dada
GxG
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on G is in S(G). We have the estimate

1K79° X gl < Caﬁﬁ/ _NF(a,)|(1+ 2] + Jw] + [¢] + €)Y da da.

GxXG

Moreover,

(f, ) :/G _F(a,a)V,f(a,a)dada

xXG

for all f € §'(G). In other words,

@ :/ F(a,a)M;T,gdada,
Gx@G
where the right hand side is an S(G) valued integral.

Proof. See [Gro01, Proposition 11.2.4] for the proof of the estimate. We indicate
the proof of the last assertion. The equality is obtained by direct calculation when
f € S(G). The general case follows from Proposition 2.1.30, Proposition 2.3.18, and

Lemma 2.3.21. O

The following result characterizes Schwartz functions; see [Gro01, Theorem

11.2.5).

Corollary 2.3.27. Let g € S(G) be nonzero. Let f € S'(G). The following state-

ments are equivalent:
(a) f€S(G).
(b) V,f € S(G % Q).
(c) Vyf(a,a)] < Cu(1+ || + |w| +[¢ + [€])7* for all k > 0.

The next result gives a way to manufacture tempered distributions.
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Proposition 2.3.28. Let g € S(G). Let F be a complex measurable function on

G x G such that |F(a,a)] < C(1+ |z| + |w| + |¢| + |€)N. The linear map

fio— | F(a,a)(MT.g,¢)dada
GxG

on §(G) is continuous. In other words, f € §'(G), and

f= F(a,a)M;T,gdada,
Gx@

where the right hand side is an S'(G) valued integral. For h € S(G), we have the

pointwise estimate |V, f| < |F| % |[Vag].

Proof. Choose M large enough so that F(a,a)(1+ |z|+ |w|+ ||+ |€])™™ is integrable.
Suppose that ¢; — 0 in S(G). By Corollary 2.3.13, Vy¢; — 0 in S(G x G). In
particular, |V,¢;(a,a)| < (1+ |z| + |w| + || +1£]) ™ for j sufficiently large. It follows
from the dominated convergence theorem that (f,¢;) — 0. The pointwise estimate

is obtained by direct calculation. O]

Additional Useful Properties and Formulas

The following result shows that the STFT preserves tensor products.

Proposition 2.3.29. Let f, € S'(G1), fo € S'(G2), g1 € S(Gy), and g2 € S(G2).
Then

‘/91®92(f1 ® f2) = (‘/glf]-) ® (‘/ng?)
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Proof.

Viyeg (1 ® fa)(ar, ag, a1, a2) = (fi @ fa, M(ay a0)T(ay,a0) (91 @ G2))
= (f1 ® fa, (Ma,To,91) ® (M, T, 92))
= <f17 Mﬁ1Ta1gl><f27 MézTa292>

= Vg filar, a1)Vy, fa(as, az).
]

The following three formulas can be found in [CG03]. Proposition 2.3.31 will be
used in the proof of Proposition 2.6.28. Proposition 2.3.32 will be used in the proof

of Proposition 3.1.13.
Proposition 2.3.30. Let f; € S'(G) and f2, g1, 92 € S(G). Then
(Vo iV F2) (0,6) = (Vi [1 Ve 91) (=, b).

Proof.

(Vir 1 Vieu J2) (0,0) = (Vi f1, M Vi fo)
= <‘/£]1f17 VMngbgzMBT—bf2>
= (f1, My T_p f2) (g1, M;T_pg2)

~

= (Vi f1Vog1) (=0, 0).
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Proposition 2.3.31. Let f € §'(G) and g, € S(G). Then

vaap‘/gf(a, &7 87 b) = (_bv d)vﬁﬂf(_ba a+ B)VQOg(_a - b7 B)
Proof.

VVwW‘/jgf<a7 dv ZA)? b) = <Vj9f7 M(l;,b)T(‘lv&)V‘PSO>
= (Vo f, M(i)’b)VT—aSﬂMd(P>
= (Vof Vi_ooMag) (b,D)

~

= Vityo f (=0, D)V og(—b, b)

~

= (=b,a)V,f(=b,a+ b)V,g(—a — b, b).

]
Proposition 2.3.32. Let f € §'(G) and g, € S(G). Then
Voo (f % g)(a,a) = (—a,a)(f * Map™ x g Map™)(a).
Proof.
Voo (f % 9)(a,a) = (—a,a)(f * g+ Ma(p * ¢)")(a)
= (—a,a)(f * g* Ma(¢" * ¢"))(a)
= (—a,a)(f * g * Map* * Map*)(a)
= (—a,a)(f x Map* x g Mzp™)(a).
]

We now expand the scope of the STFT. We define V,f = FTq(f ® g) for
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f,9 € 8(G).
Lemma 2.3.33. Let f,g € L*(G). Then V,f(a,a) = (—a,a)Vig(—a,—a).

Proof. We have

V;;f(aw &> = <f> M&Tag>
= <T—aM—dfv g>
= (—a,a)(M_aT_.f,9)

= (—a,a)Vig(—a,—a).
]

Note the subtlety in the proof of the following seemingly obvious result. This

result will be important when we study the spreading representation in Section 3.5.

Proposition 2.3.34. Let x(a,a) = (a,a) for a € G and a € G. Let f,g € S'(G).

Then
XVyf = Vig.
Proof. The result holds when f, g € S(G) by Lemma 2.3.33. The general case follows

by taking sequences in S(G) converging in §'(G) to f and g, and then appealing to

Proposition 2.2.7. [

2.4 Modulation Spaces

The theory of modulation spaces in full generality depends on the theory of

mixed-norm IP-spaces. Much of the theory of mixed-norm LP-spaces parallels the
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theory of ordinary LP-spaces. We refer to [BPG1] for an extensive treatment and for
notation. Here, we shall content ourselves with the definition of the mixed-norm.
Let (X1, 1), .-+, (Xn, ptn) be o-finite measure spaces. Let 1 < py,...,p, < oo and
p=(p1,...,pn). Let f: Xy x---xX, = [0,00] be measurable. We define || f||, =

IHTF N 2er (x| 2p2(x2) - - = | on (x,)- For example, if pi, ..., p, < 0o, then

P3/p2 1/pn

p2/p1
= [ (L (L mam) ™ ),
Xy, X2 \JXx;
In the sequel, we shall not need the full scope of the theory of modulation spaces.
Nevertheless, our account will be as general as possible without obscuring the essential

ideas.

Definition 2.4.1. A submultiplicative weight function on G is a continuous function
v: G — (0,00) such that v(a; + az) < v(aj)v(ay) for all aj,as € G. A v-moderate
weight function on G is a continuous function m : G — (0, 00) such that m(a; +as) <
Cv(a;)m(ay) for all ay,ay € G. We shall consider only weight functions with the
property that both the weight function and its reciprocal have polynomial growth;
this restriction allows us to stay within the framework of Schwartz functions and
tempered distributions. In much of the sequel, we shall dispense with weight functions
altogether in order to keep the discussion focused on the applications that we have in

mind.

Let g € S(G) be nonzero. Let v and m be weight functions on G X G as in
Definition 2.4.1. Let 1 < p,q < oo. Here, p and ¢q are tuples with as many components

as the number of factors of G; how one chooses to factorize G is flexible. For the
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rest of this section, g, p, and ¢ will be fixed unless otherwise specified. For example,
certain arguments will require p and ¢ to be numbers. (In this case, G will have only
one factor, namely, G.)

We define || f{[yme = ||Vyfllee for f e S'(G). Let MP9(G) be the set of all
f € 8'(G) such that || f||yms < 0o. We establish below that the definition of MP9(G)

is independent of the chosen window function g up to norm equivalence.

Remark. In the definition of the modulation space norm, we take the p-norm on G
("time” variable) followed by the g-norm on G ("frequency” variable). For example,

if p and ¢ are finite numbers, then

1 lasge = (/é (/G Vo (a,a)m(a, a)f” da) " d&)

We shall denote by W24 the norm where we take the p-norm on G (" frequency”

1/q

variable) followed by the g-norm on G ("time” variable). All of the results in this
section involving M2 hold for WP with little or no modification. The space MP4(G)
is called a modulation space whereas the space W24(G) is called a Wiener amalgam

space. We define M? = MPP? and WP = WPP. Note that MP = WP.

The following result generalizes Young’s inequality and sheds some light on

Definition 2.4.1.

Proposition 2.4.2. Let v and m be weight functions on Gy X --- x G, as in Defi-
nition 2.4.1. Let 1 < P,Q,R < oo with 1/P+1/Q = 1/R+ 1. Here, P, Q, and R
are n-tuples. Let f € LE(Gy x -+~ x Gy) and §j € LE(Gy x -+~ x Gy,). Then f* § is

defined almost everywhere and || f * gl r < 5HfHL13||§||LQ.
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Remark. Note that the inclusions S(Gy x -+ x G,,) C LE (G x -+ x G,,) € §'(G; x

- x G,,) are continuous.

Proposition 2.4.3. The definition of M?%(G) is independent of the chosen window

function g up to norm equivalence.

Proof. Let h be another window function. Let f € §'(G). By Proposition 2.3.28 and
the STFT inversion theorem for tempered distributions, |V, f| < |lgll32|Vyf] * [Vagl.

By Proposition 2.4.2,

Vi g < PHthHL Vo fllzge.

The result is obtained by reversing the roles of g and h. O]

Example 2.4.4. The function v,(a,d) = (1+|ag|+|ag|+|az|+|az])*, s > 0, on Gx G

is a submultiplicative weight function. By Proposition 2.3.18 and Corollary 2.3.27,

= ﬂ M2 (G) and U 170, (G
s>0 s>0

Example 2.4.5. M*(G) = L*(G) up to norm equivalence.

Proof. We can assume that ¢ is compactly supported and g = 1 on B(0,1) x T¢ x

{0} x A. Let f € M?*(G). We have

Hf||?mz/ |V, f(a,a)|* dada
GxG

- / (T (@) dada
GxG

- | [t @F dida

39



Since || f||az is finite, [5[(fT.g9) (a)*da is finite for almost every a € G. In other
words, (fT,g) € LZ((A?) for almost every a € G. By the Plancherel theorem,
fT.g € L*(G) for almost every a € G. In particular, f satisfies the hypotheses
of Proposition 2.1.31. Let f be a locally integrable function on G as in the conclusion

of Proposition 2.1.31. We now have
191 = [ [ 10T.0) @) dada
GJa

- | [1irarad
= [ [1i0Plst - P dtda

= [/ 1219112

Since || f|| a2 is finite, fe L*(G). In particular, f is a tempered distribution, so f
and f coincide as tempered distributions.
Conversely, if f € L?(G), we obtain || f|lazz = || fll2llg|lz by the same calculation.

]

Remark. Note that the inclusion L?(G) C M°°(@) is continuous by Proposition 2.3.6.

The next result refines the STFT inversion theorem in the context of modulation

spaces.
Proposition 2.4.6 (STFT Inversion Theorem). Let h € S(G).
(a) For F € LP9(G x G), the linear map

ViF ¢ — F(a,a){M,T,h, $) dada
GxG
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on 8(QG) is continuous. In other words, V;F € §'(G), and
Vh*F:/ F(a,a)M;T,hdada,
Gx@

where the right hand side is an S'(G) valued integral. We have the pointwise
estimate |VyViF| < |F| % |Vyh|. Moreover, V'F € MPA(G) and ||V F || pma <
C\|F||gzallhl|ary. In particular, Vi is a bounded linear map from LP9(G x Q) to
MEA(G).

(b) Suppose that (h,g) # 0. Then

1

V. =1.
gt

Proof. (a) Suppose that ¢; — 0 in S(G). By Corollary 2.3.13, Vj,¢; — 0in S(G x Q).
It follows from Holder’s inequality and the dominated convergence theorem that
(VIFF,¢;) — 0. The remaining assertions follow by direct calculation and Propo-

sition 2.4.2. [
Note that the inclusions S(G) C MP9(G) C S'(G) are continuous.
Proposition 2.4.7. If 1 < p,q < oo, then S(G) is dense in MP9(G).

The completeness and duality properties enjoyed by LP-spaces have analogues

for modulation spaces.
Proposition 2.4.8. MP9(G) is a Banach space.

Proposition 2.4.9. If 1 < p,q < oo, then Mf;;f:(G) and MP1(G)* are isomorphic
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up to norm equivalence under the pairing
(FF) = (Vo V,F)  (f € MEI(G), F e MU (G)).

Moreover,

(s ) < [I/]

MR 1/m

Pl (f € MEAG), F € MJT(G)).
1/m

Proof. 1t follows from Holder’s inequality that the pairing just defined induces a
bounded linear map from Mf;;’j:(G) to MP(G)*. By the open mapping theorem, it
suffices to show that this map is one-to-one and onto.

Let ' '€ MP,7(G). Suppose that (f,F) = 0 for all f € M%9(G). By Corol-
lary 2.3.24, F = 0.

Let u € MP9(G)*. By the Hahn-Banach theorem, there exists & € L29(G x G)*
extending u. By duality, @ is induced by some H € L’l)l/’g;(G X @) Let h = ||g||2_2Vg*H.

We have

(f;h) = (Vof, Voh)

= (Vof:llglly*VVy H)

(Vof, H)
= a(Vyf)
=u(f) (fe€8(G)
The third equality makes use of the STFT inversion theorem for tempered distribu-

tions, hence the restriction f € S(G). Since S(G) is dense in MPYU(G), (f, h) = u(f)

for all f € MP(G). O
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Remark. Note that the hypothesis 1 < p, ¢ < oo is only relevant to the proof that the

map is onto and that its inverse is continuous.
The following result elucidates the dependence of the duality pairing on the

chosen window function.

Proposition 2.4.10. Let h € S(G) be nonzero. Then
HRIZ(Vof. VaF) = gl3(Vaf, VaF)  (f € MEI(G), F € MU (G)).

Proof. The equality holds when f € S(G) by Corollary 2.3.24. Since S(G) is dense

in MP4(G), the result follows from the norm estimate of Proposition 2.4.9. O

Remark. Let f € MP9(G) and ¢ € S(G). If ||g||o = 1, then (V,f,V,¢) = (f,$) by
Corollary 2.3.24. In this case, the duality pairing is consistent with the standard

pairing.

The duality pairing satisfies the following sequential form of continuity; this

result is the analogue of Lemma 2.1.29.

Proposition 2.4.11. If f; — f in MY(G) and F; — F in the weak™ topology of

M>(G), then (f;, F;) — (f, F).

Proof. Since the sequence {(g, Fj)} is convergent and hence bounded for all g €
MY(@G), the collection {F;} of continuous linear functionals on M'(G) is equicon-
tinuous by the uniform boundedness principle. In particular, there exists a uniform

constant C’, independent of j, such that

g, F)l < C'llglan (9 € MY(G)).
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Setting g = f; — f, we see that (f; — f, ) — 0. [

Invariance Properties

It is straightforward to check that unweighted modulation spaces are strongly
invariant under complex conjugation and coordinate reflection. The duality pairing

satisfies the expected identities

(f.F)=(f.F) and (f F)=/(fF)

for f € MP(G) and F € M??(G). The next result shows that modulation spaces

are invariant under translations and modulations.
Proposition 2.4.12. Let f € S'(G). We have ||M;T, f||yre < Cv(a,d)|| f|laee.

The duality pairing satisfies the expected identities (T, f, F) = (f,T_.F") and
(Maf,F) = (f,M_3F) for f € MP9(G) and F € Mf;;’f:(G). The proof involves a

straightforward application of the fundamental identity of time-frequency analysis.

The following result extends Proposition 2.1.19.

Proposition 2.4.13. Suppose that 1 < p,q < oo. Let f € MPYG). The map

(a,d) — MaT,f from G x G to MP4(G) is continuous.
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Proof. We have

IMTyf — MaTufllarra = |VeMTof (8, 8) — VoMo Tof (£, 6)] o
— l[(=b,E = BV, (¢ — b= b
— (—a,t = @)V f(t — a,t — @) 1o
< (=b, i = D)V, (= bi— )
(b= BVt~ arf = )
+[(=b,E = D)V, f(t —a,i—a)- -
— (—a,t—a)V,f(t - a,t —a)| Lra
= [Vof (¢ = bt =b) = Vo f(t = a,t = @) oa -
(=08 = b) = (—a,t = @))Vo f(t = a,1 = @)l ra.
Since translation is continuous in L»9(G x @), the first quantity becomes arbitrarily

small as (b,b) — (a,a). By the dominated convergence theorem, the second quantity

becomes arbitrarily small as (b, b) — (a, a). O

Corollary 2.4.14. Let F € M>(G). The map (a,d) — MyT,F from G x G to

M>(Q) is continuous, where M*(G) is endowed with the weak™ topology.

Lemma 2.4.15. The asymmetric coordinate transform Tg satisfies the following iden-

tities:
(a) TGM(a,B) = M(J>,&+B)7-G-
(b) Ta_lM(a,i)) = M(a+13,fa)7‘G_1-

(c) TeT(ap) = Ta-ba)Tc-
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(d) T Ty = Tos-ayT5 -

Lemma 2.4.16. Let f € S'(G x Q) and g € S(G x G). Then

~

VyTaf(a,b,a,b) = Vi f(b,b—a,a+b,—a).

Proposition 2.4.17. Let 1 < p < oo. Here, p is a number. The asymmetric
coordinate transform Tg is an isomorphism from MP(G x G) onto MP(G x G) up to

norm equivalence.

Proposition 2.4.18. Letv and m be weight functions on GxG asin Definition 2.4.1.
Suppose that m(a,a) = m(—a,a). Let 1 < p,q < oco. Here, p and q are tuples with
as many components as the number of factors of G. The Fourier transform is an

isomorphism from MP:(G) onto Wfr’l’q(@) up to norm equivalence.
Proof. Let g € S(G) be nonzero. Let f € S'(G). We have
[ fllwze = WIVaf (@ aym(a, a)ll ol Lo
= Vg f(=a,a)m(a, )| Lol Loy
= [V f(a,a)ym(=a, )l r)ll Lo

= [lIVgf(a, a)m(a, @)l o)

= 1/ sz
[l

Proposition 2.4.19. Let v and m be weight functions on G x Gy X @1 X @2 as

in Definition 2.4.1. Suppose that m(ay,as,ay,as) = m(—ay,as,ay,a9). Let 1 < p <
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oco. Here, p is a number. The partial Fourier transform with respect to Gi is an

isomorphism from M? (G x Gs) onto MP (G, x Gs) up to norm equivalence.

Proof. Let g € S(G; x G3) be nonzero. Let f € §'(Gy x G2). We have

| F1fllaz, = [[VEgFif(ar, az, a1, a2)m(as, ag, a1, az)|| e
= ||Vof(—ai, az, a1, a2)m(ar, as, a1, az)| e
= ||V, f(as, ag, a1, a2)m(—aq, az, ay, az)|| e
= ||V, f(a1,az, a1, a2)m(ay, as, ay, as)|| e

= [/ llaz,-
[l

Proposition 2.4.20. Let v and m be weight functions on G; X Gy X él X ég as in
Definition 2.4.1. Suppose that m(ay,as, a1, a2) = m(—ay, as,ar,a2). Let 1 < p < oo.

Here, p is a number. Then
(f.F)=(Ff, FiF)  (f € ML(Gyx Go), F €M), (GyxGy)).
Proof. Let g € S(G; x G3) be nonzero. We have

(Fif, FAF) = (Ve gFif(an, a2, a1, a2), Vr g F1F (a1, az, ay, a2))
= ((—a1,a1)Vyf(—a1,az2,01,02), (—a1,a1) Vo F(—aq, az, ay, az))
- <%f(a1,CLQ,&1,&2),%F(a1,a2,d17d2)>

= (f, F).
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Remark. Note that the equality holds under the condition that the chosen window
functions are related via the partial Fourier transform. Otherwise, the correct equality

is furnished by Proposition 2.4.10.

Proposition 2.4.21. Let 1 < p < oo. Here, p is a number. Then
(f,F)={Taf.TcF)  (f € MP(G x @), F e M"(Gx G)).
Proof. Let g € S(G x G) be nonzero. We have

<7Z¥fa %F> = <VTGg7bf(a7 b7 &7 8)7 VT@Q%F(aa ba d, 8))

= (V,f(b,b—a,i+b,—a),V,F(b,b—a,a+b,—a))

= ([, F).
O

Remark. Note that the equality holds under the condition that the chosen window
functions are related via the asymmetric coordinate transform. Otherwise, the correct

equality is furnished by Proposition 2.4.10.

We note the following tensor product property of modulation spaces.

Proposition 2.4.22. Let 1 < p < co. Here, p is a number. Let f; € MP(Gy) and

f2 € MP(Gy). Then f1 ® fo € MP(G1 x Ga) and || f1 @ fa|lar = || fillaze || f2llasr -
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Proof. Let g1 € S(G1) and g, € S(G2) be nonzero. We have

11 ® fallir = Vgieg, (f1 @ fo)ll e
= ”(V(hfl) ® (V;szQ)HL”
= [V fill o || Vg, fol| 2o

= [[f1llazr [l f2l| 2z
O

Remark. Note that the equality holds under the condition that the window function

on GG X Gy is the tensor product of the window functions on G and Gs.

The following result shows that the duality pairing commutes with tensor prod-

ucts.

Proposition 2.4.23. Let 1 < p < oo. Here, p is a number. Let f; € MP(Gy) and
f2 € MP<G2) Let F; € Mp/(Gl) and Iy € Mpl(GQ). Then <f1 ®f2,F1 ®F2> =

(f1, F1)(fa, F2).
Proof. Let g1 € S(G1) and g, € S(G2) be nonzero. We have
<f1 ® fQ? F1 ® F2> = <‘/91®g2(f1 ® f2)? ‘/91®92(F1 ® F2)>
= <(V;71f1) ® (‘/;lzfQ)’ (V;]lFl) ® (V;JQFQ»

= <V91f17 V91F1><Vq2f27 %2F2>

= (f1, F1)(f2, F2).
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Remark. Note that the equality holds under the condition that the window function

on (G; x (G5 is the tensor product of the window functions on G7 and Gs.

Compact Supports

We next study modulation space norms of compactly supported distributions.
Let 1 < p,q < 0. Here, p and g are tuples with as many components as the number

of factors of G. The following result generalizes [Oko09, Lemma 1].

Proposition 2.4.24. Let 1 < p,q < oo. Here, p and q are tuples with as many

components as the number of factors of G.

(a) Let K be a compact subset of G with nonempty interior. Then || f||aea = || || za

for all f € §'(G) with supp f C K.

(b) Let L be a compact subset of G with nonempty interior. Then || f|lwea = || f|| e

for all f € 8'(G) with supp f C L.

Proof. (a) Let g € C°(G) be nonzero with suppg C K. Since supp M;T,9 C a + K,
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V,f(a,a) =0 when a ¢ K — K. We have

[ fllarea = [IVef(a, @)l o)l Loy
= Il x-x(a)Vyf(a,a)ll o)l Lo
< Mk—rllwe@lllVef (@, a)lle@)llLoa)
= |1kl 1 (fT2d) (@)l ()l oy
< H]leK“LP(G)HH(fT&§>(£)HL1(@)HLq(@)
= 1k llo@ 1] 19 o
< ||]1K—K||LP(G)||§||L1(@)||f||m(é)-

For the converse, let ¢ € C°(G) with ¢ = 1 on an open neighborhood of K.

Let h € C2°(G) be nonnegative with & = 1 on supp ¥ — supp . Note that
U(a)f =) f = (a)(Th)pf = d(a)(Th) f
for all a € G. Then
v(a)f(@) = ¥(a)(fT,h) (@) = ¥(a)Vaf(a,a)
for all a € G and @ € G. We now have
1ollr @1 Fll a@y = Ml (@) £ (@) ol ey
= [lllP(a)Vaf(a a)lleell o

< 1l @ IVaf (@, @)l o)

= [[¥ll ooy 1.f | atwa.
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(b) The result follows from Proposition 2.4.18 and (a). O

Example 2.4.25. Let 1 < p,q < oco. Here, p and ¢ are numbers. By Proposi-
tion 2.4.24, MP4(T¢ x A), WP4(Z? x A), and £9(Z% x A) are isomorphic up to norm

equivalence.

Example 2.4.26. Let 1 < p < co. Here, p is a number. Since g = ls € 600(@),

oG € Mp’OO(G).

2.5 Periodization

In the first half of this section, we consider general locally compact abelian
groups. We refer to [Rei68; Fol95] for a detailed treatment of the material that
follows.

Let G be a locally compact abelian group. Let H be a closed subgroup of G.
We fix Haar measures on G and H. The linear map Py : C.(G) — C.(G/H) defined
by

P ( + H) = /H flo+ ) de

is surjective. The Haar measure on G/H can be suitably normalized so that

/f(x)dx— Puf(x+ H)d(x+ H)
¢ e (2.5.1)

:/G/H/Hf(erg)dgd(a:vLH) (f € C(@)).

In this case, we say that the Haar measures on G, H, and G/H are canonically
related; any choice of two normalizations forces the third normalization. We have the

L' estimate ||Py f|l1 < ||f]]1 for f € C.(G).
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Let N be the null space of Py. Then Py descends to an L' isometry from
C.(G)/N onto C.(G/H). Let N be the closure of N in L'(G), i.e., the L' completion
of N. It follows from functional analytic generalities that Py extends to an isometric
isomorphism from L'(G)/N onto L'(G/H). Moreover, (2.5.1) holds for f € L'(G).
More precisely, f(z+-) € L*'(H) for almost every x + H € G/H, and Py f(z + H) =
[y [z + &) d€ for almost every z + H € G/H.

The set H- ={vy € G : (z,7) = 1 for all z € H} is a closed subgroup of G. We
have (HY)* = H. Moreover, H* is the dual group of G/H, and G/H" is the dual

group of H.

Proposition 2.5.2. Let f € L}(G).
(a) PuT,f =Ty+uPuf foralyed.
(b) PuM,f = M,Pyf foralveH"

Proof. Suppose first that f € C.(G).
(a)
PuTyfa+ 1) = [ Tyfa+ 6
— [ s+e-wdg
H
=Puflz—y+H)

= Ty+H7DHf(I + H)
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(b)

P, f(x + H) = /H M, f(x + €) de

=/Hf<:c+s><m+5,v>df

=<x,v>/Hf<x+5>d§

The general case follows from the fact that C.(G) is dense in L'(G). O

The Fourier inversion formula requires that the Haar measures on a group and
its dual be suitably normalized. For dual pairs where one group is compact and the
other group is discrete, this compatibility requirement is satisfied if the Haar measure
on the compact group is normalized to have total measure 1, and the Haar measure
on the discrete group is the counting measure.

We now state a general Poisson summation formula.

Theorem 2.5.3 (Poisson Summation Formula). In the following, the Haar measure

on H* is the dual of the Haar measure on G/H which is suitably normalized so that

(2.5.1) holds.

(a) Let f € C.(G). Then Puf = fIHL. If flH+ € LY(HY), then
[ taroi= [ jwani  @ea)
(b) Let f € LNG). Then Puf = fIH:. If flH* € LY\(H?Y), then
/Hf(a;+§> de = n fW)(x,v)dv  (ae x+ He G/H).

o4



The following result is relevant to the hypotheses of the Poisson summation

formula.
Lemma 2.5.4 ([Rei68, p. 120]). Let f € C.(G). If f € LY(G), then flH- € L*(H"Y).

The following compatibility result is a consequence of the Poisson summation

formula.

Proposition 2.5.5 ([Rei68, p. 122]). If the Haar measures on G, H, and G/H are
canonically related, then the dual Haar measures on é, Ht = CT/T-I, and CAJ/HL =H

are canonically related.

If H is a discrete subgroup of G such that G/H is compact, then H is called
a lattice. In this case, H' is also a lattice by the duality between subgroups and
quotient groups discussed above. Since H is discrete, the Haar measure on H will
be the counting measure. Since G/H is compact, the Haar measure on G/H will be
normalized to have total measure 1. With this last normalization, the Haar measures

on G, H, and G/H might no longer be canonically related. Therefore, (2.5.1) becomes

/Gf(x)dx:s(H) Pufle+ H)d(x+ H).

G/H
Here, s(H) is the measure of G/H if the Haar measure on G/H were normalized to
be canonically related to the Haar measures on G' and H. Similarly, s(H') is the
measure of G JH* if the Haar measure on G /H* were normalized to be canonically

related to the dual Haar measure on G and the counting measure on H=.

Proposition 2.5.6. s(H)s(H') = 1.
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Proof. Suppose that the Haar measures on GG, H, and G/H are canonically related.
Recall that the Haar measure on H is the counting measure. Then the measure of
G/H is s(H), and the dual Haar measure on G/H~ has total measure 1. Since the
measure of G/H is s(H), the dual Haar measure on H* is so normalized that every
point has measure 1/s(H). By Proposition 2.5.5, the dual Haar measures on G, H*
and G/H* are canonically related. However, the dual Haar measure on H* might
not be the counting measure. If we normalize the dual Haar measure on H+ to be
the counting measure, then the dual Haar measure on G /H* must be normalized to

have total measure 1/s(H). In other words, s(H*) = 1/s(H). O

If the Haar measures on both H and H* are the counting measure, then the

Poisson summation formula becomes

1 N
/ fergic= o [ fema

Example 2.5.7. It is well known that every lattice in R? is of the form AZ?, where A
is an invertible real d x d matrix. Let f be the characteristic function of A[0,1)¢. Then

(2.5.1) shows that s(AZ?) = m(A[0,1)¢) = | det(A)|. The dual lattice is (AT)~Z%.

Proof. Let B be an invertible real d x d matrix such that BZ? is the dual lattice.
Then |det(A)det(B)| = s(AZ%)s(BZ%) = 1. Since AZ? and BZ? annihilate each
other, U = AT B must be an integer matrix. Since det(A” B) = det(A) det(B) = +1,
U is an invertible integer matrix (unimodular matrix). Then BZ? = (AT)"1UZ? =

(AT)~17Z4. O
Example 2.5.8. The lattices in T? are precisely the finite subgroups of T¢. By
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duality, these are in one-to-one correspondence with the finite index subgroups of
Z%. The preimage of a lattice in T¢ under the exponential map is a lattice in R
Therefore, every lattice in T¢ is the image of a lattice in R? under the exponential
map. However, not every lattice in R? gives a lattice in T¢. For example, if « is
irrational, then the image of aZ under the exponential map is dense in S*.

Let H be a lattice in Z%. Let f be the characteristic function of {0}. Then

(2.5.1) shows that s(H) = [Z¢: H]. By duality, |H*| =[2%: H] = s(H) = 1/s(H™).

Example 2.5.9. Let H be a subgroup of A. Let f be the characteristic function of
{0}. Then (2.5.1) shows that s(H) = [A : H]. By duality, |[H*+| =[A: H] = s(H) =

1/s(H*Y).

We now return to the setting where G = R? x T? x Z%" x A. We take the
lattice I'g = AZ in R?, where A is an invertible real d x d matrix. Let my,...,mg be
nonnegative integers. Let I'r ; be the group of m;th roots of unity. We take the lattice
I'p =T x--xIpgin T4 . Let ni,...,Nng be positive integers. We take the lattice
Iy =mZx- - xngZin Z%. Let Ts be a subgroup of A. Let ' = T'g x I'r x I'z x T'4.
Note that I'y, I'#, and I'; are of the same type as I'g, I'z, and I'r, respectively.

We fix the following fundamental domains for the lattices described above: Dg =
A[0, 1) for Tg, Dy = [0,1/my) x -+ x[0,1/mga) for T, Dz = [0,n1) x - - - x [0, ngv) for
I'z, and any choice of coset representatives Dy for I'y. Let D = Dr X D1 X Dy X Dy.
We define D+ similarly for ['. Note that ug(D) = s(T') and pg(D+) = s(I'H).

Note that we haven’t been particular with our choice of I'y and Dy, the reason

being that what choice we make has no bearing on much of our discussion in the
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sequel. In fact, we could have been quite arbitrary with our choice of Dr, D, and
Dy as well. We made the above choices for the sake of definiteness and ease of
presentation. However, we will need to be much more particular with our choice of
'y and D, in some parts of Chapter 4. In fact, our choices will be limited to the
trivial ones.

Let P : G — G/T be the quotient map. Note that D and G/T" are isomorphic
as measure spaces via P. However, the Haar measure on G/I" must be normalized to
have total measure pg(D).

The following series of results up to the end of Proposition 2.5.16 is inspired by

the discussion in [Fol99, p. 298] and [Fol99, p. 299, Exercise 24].

Lemma 2.5.10. Let ¢ € S(G). Then >, v Tw¢ converges in C*°(G).

wel

Proof. Let N > 0. We have

S ITudla)] = 3 [6la —w)] < Cx (1 + fan — we| +Jaz — wal) ™,

wel’ wel wel

By Lemma 2.1.4, the last sum is uniformly convergent if we choose N sufficiently large.

It follows that >

wer | Tw®| converges uniformly. Since differentiation commutes with

translation, the same conclusion applies to ) 0Ty | O

wEF’

Lemma 2.5.11. The linear map ¢ — >+ Two from S(G) to C=(G) is continuous.

wel

Proof. Suppose that ¢; — 0 in S(G). It suffices to show that Y  _T,¢; — 0

wel

uniformly. Let ¢, N > 0. We have

D Tugi(a) =D |jla —w)| < €> (14 |ag — we| + Jaz — wz]) ™"

wel wel’ wel’
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for j sufficiently large. By Lemma 2.1.4, the last sum is uniformly bounded for a € G

if we choose N sufficiently large. n
Lemma 2.5.12. Let ¢ € C°(G) with [,¢ =1. Then Y, . Tw(¢p*1p) = 1.

Proof.

> Tu(d*1p)(a) =) (¢*1p)(a—w)

wel wel’

= Z/ng(t)]ll)(a —w—t)dt

wel’

=> /MUD o(t) dt

wel’

- /G o(t) dt.

Remark. Note that ¢« 1, € C2°(G) by Proposition 2.1.2.

Proposition 2.5.13. Let K be a compact subset of G. There exists ¥ € C2°(G) such

that 0 > 0, ¥ is constant and positive on K, and Y, Ty = 1.

Proof. Let ¢ € C°(G) such that ¢ > 0, ¢ is constant and positive on K — D, and

ngzS = 1. Let C be the constant value of p on K — D. Let ¥y = ¢ x 1 p. Then 9 > 0
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and ) . T = 1. We have

¥(a) = (¢ +1p)(a)

/¢ Jp(a—t)d

= (t) dt

a—D

= / Cdt
a—D

= Cug(D) (a € K).

Proposition 2.5.14. The linear map Pr : S(G) — C>(G/T") defined by

Pré(a+T) =Y dla—w)

wel’

is continuous and surjective. In particular, the dual map Pl : S'(G/T") — S'(G) is

mjective.

Proof. By Lemma 2.5.11 and periodicity, Pr is well-defined and continuous. Let

Ve CX(G) with Y, o T = 1. Let ¢ € C*°(G/I'). Then Pr(d(zp o P)) = 1). O

Let S[.(G) be the set of all [-periodic distributions on G, i.e., u € §'(G) such

that T,,u = u for all w € I". Clearly, the image of P[. is contained in S/.(G).
Proposition 2.5.15. The image of P} coincides with S[-(G).

Proof. Let ¥ € C°(G) with ) T = 1. Let u € Sp(G). Define v € §'(G/TI') by
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v(y) = u(d(y o P)). We have

Pro(¢) = v(Pro)

— u(d(Pr o P))

=u(d>_0T,0)

wel

= u(¥T,0)

wel’

= Z u(¢T-,0)

= u() T )
=u(¢) (¢ €CX(A)),

Since C2°(G) is dense in S(G), Plv = u.

Proposition 2.5.16. Let f € L'(G/T). Then PLf = pg(D)™' fo P.
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Proof. Let ¢ € S(G). Let N > 0. We have

/G (FoPYDo]dt =Y / (e PYe)o0) e

=3 [ 170 P+ wpote + )l d

wel’

=Z/Dl(foP)(t)¢(t+w)|dt

wel’

=/D|(foP)(t)|Z|¢(t+w)|dt

wel’

— 1ie(D) /G/Fl(foP)(t)IZ|¢(t+w)\d(t+F)

wel’

sMG<D>/G/F|<foP><t>|---

Cn Y (1 + [tg + wg| + |tz + wz]) ™ d(t +T).

wel’

By Lemma 2.1.4, the last sum is uniformly bounded for ¢t € G if we choose N suffi-

ciently large. We have shown that (f o P)¢ is integrable. We now have

- /G TP Yot w4

wel’

-/ e PO~ wydie+T)
:/G/FZ(foP)(t—w)¢(t—w)d(t+F)
— (D) [ (Fo P®o()dt.

G

The last equality follows from (2.5.1). O

We shall obtain the distributional version of the Poisson summation formula.
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For ¢ € S(G/T"),

(W) T2 0a

<
I

(]

<

and

Y= Z Y(wh) M, 16

wteldt

with convergence in S(I't) and S(G/T'), respectively. For v € §'(G/T),
b= Y dw)T,.g
wtelt

and

v = Z d(wh)Myilg

wlLert

with convergence in §'(I't) and S'(G/T), respectively. For f € L*(G/T),

and

f=Y flwh M, 1g

wlLert

with convergence in L*(T*) and L?(G/T), respectively.

Remark. By Proposition 2.1.25, ¢ is a complex function of polynomial growth. There-

fore, it makes sense to evaluate © at elements of I'*.

By Proposition 2.5.16,

1
Pro= Y dw")PiM,le= 5 > b(wh) Mg

wtert
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with convergence in §’(G). In particular,

Y Tuwéq = Proc =

wel wiEFL

with convergence in §'(G). Evaluating both sides of this expression at ¢ € S(G) gives

> w) =

wel wlel"L

The tempered distribution ) . T3,0¢ is often called a Dirac comb. More generally,

we can construct weighted Dirac combs.
Lemma 2.5.17. The linear map ¢ — ¢|I' from S(G) to S(I') is continuous.

Proof. The noncompact factors of GG correspond to the noncompact factors of I, i.e.,
AZ% is a subgroup of R%, T is a subgroup of Z%", and these are all the noncompact
factors. Therefore, the inequalities that characterize Schwartz functions on I' are all
restrictions of inequalities satisfied by Schwartz functions on G. For example, for
¢ € S(Q), |p(a)] < Cn(1+ |ar| + |az|)™ for all N > 0. It follows that ¢|T' € S(I).

The continuity of the map follows by the same reasoning. O]

Proposition 2.5.18. Let f € S'(I'). Let us be the image of f under the dual of the
restriction map of Lemma 2.5.17. Then uy = ) . f(w)T6a with convergence in

S'(@).

Proof. Let ¢ € S(G). We have

up(d) = (f,6I0) =D f(w)

wel

64



Example 2.5.19. Let f € §'(I') and g € S(G). We have

Let N > 0. We have

Vous(a,a)] <Y [f(w)g(w — a)|

wel’

< Onllflloe Y (1 + Jwg — ag| + |wz — az|) ™.
wel

By Lemma 2.1.4, the last sum is uniformly bounded for a € G if we choose N

sufficiently large. It follows that uy € M*°(G) if f is bounded.

2.6 Wiener Amalgam Spaces

We have already encountered the Wiener amalgam space W?4(G). We now
look at the definition of W?4(G) from a slightly different perspective to make contact
with the more general notion of a Wiener amalgam space, a term originally coined
by Benedetto. Our treatment of the material in this section borrows mainly from
[Hei03] in addition to [Fei80; Gro01]. Throughout, I' is a lattice in G as described in

Section 2.5.
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Frequency Domain Approach

Let g € S(G) be nonzero. Let 1 < p,q < co. Here, p and ¢ are tuples with as

many components as the number of factors of G. We have

Fllwoa = II(fTag) @@l (f € S'(G)).

Our goal is to discretize the outer norm.

Definition 2.6.1. Let U be a precompact open neighborhood of 0. Let {a;} be a

subset of GG such that
sup [{k : (a; + K) N (a, + K) # 0} = Cx < o0
J

for every compact K C (G. We require that the index set that j runs over has as
many factors as the number of factors of G. Note that {a;} is necessarily closed and
discrete. Let {1;} be a corresponding subset of C°(G) such that sup |[¢;]|; = M <
oo, supp¥; C a;+ U, and > ¢; = 1. The collection {¢,} is called a Fourier bounded

uniform partition of unity (FBUPU) on G.

Remark. Let K be a compact subset of G. Every point of GG has an open neighborhood

intersecting only finitely many of a; + K. Note also that
sup[{j:a€a; + K} <Ck.
acG
Example 2.6.2. Let ¥ € C°(G) with Y . T,,¥ = 1. Then {T,¥}er is a FBUPU.

Let {¢;} be a FBUPU on G. Let 1 < p,q < co. Here, p and ¢ are tuples with

as many components as the number of factors of G. Let K be a compact subset of G
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containing U. We define

1l = 1Y 105 o lasrllee (F € S'(G)).

Lemma 2.6.3. Let {¢);} be a FBUPU on G. Let 1 < p,q < co. Here, p and q are
tuples with as many components as the number of factors of G. Let K; and Ky be

compact subsets of G containing U. Then || - ||k, < - ||x,-

Proof. There exist by, ..., b, € K, such that Ky C |J;_,(by + K7). We have
D i fllrLa irs N flle > Laysberk,
k=1
=3 N fllerlaysherr
k=1

- Z T, Z ”%\JEHLP]I%JFKP
k=1

Then
A lres <D NT D> s f oLyl o
k=1
= I Nif oo lasmc e
k=1
= n|flx,-
The result is obtained by reversing the roles of K; and K. O

The following result is the first step towards the intended discretization of the

outer norm.

Proposition 2.6.4. Let {¢;} be a FBUPU on G. Let 1 < p,q < co. Here, p and

q are tuples with as many components as the number of factors of G. Let K be a
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compact subset of G containing U. Then || - ||x =< || - ||wr.a-

Proof. Let g € C*(G) with ¢ = 1 on K — K. Note that ¢;f = (T,g)v;f for all

a € aj + K. Then

105 Fllee = I (Tug)es f) |12
= | (fTug) * U;lLr
< W51 1 Tog) o

< M|[(fTug) |lz»

for all a € a; + K. We now have

S 1 fllrtaix(@) = D (i fllee < CxM|(fTag) || 1o

j:a€aj+K

for all a € G, so

||f||K < CKMH‘]CHWPJJ.

For the converse, let h € C°(G) be nonzero. Let A be a compact subset of G

containing U U (U — supp h). For a € G, let

Se={j:(aj+U)N(a+supph) # 0}.
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We have

1CFTuh) Nle = 10O (Tah)tb f) Il

J€5a
< Tk £) (e
J€5a
= 10 * Tahl|o
jESa
< NTuhll 195 flle
jesa
= 12l Y s fllee
J€5a
= 1Al D> 195 fllela 4 ala)
JESa

<Nl > b flleLa,+ala)

for all a € G, so

1f llwra < [[Rllzr[1f]La-

The result follows from Lemma 2.6.3. OJ

We shall need the following technical results; see [Hei03].

Lemma 2.6.5. Let (X, 1) be a measure space. Let {E;};c; be a sequence of measur-

able sets in X such that

0<supl{k e J:u(E;NE) >0} =N < .
jed

There exists a partition {Jy,..., Iy} of J such that p(E; N Ey) = 0 for all distinct

5 ked., 1<r<N.
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Lemma 2.6.6. Let (X, ) be a measure space. Let {f; : X — [0, 00]},cs be a sequence

of measurable functions such that

0 <sup |{k € J: pu(supp f; Nsupp fi) > 0} = N < oo.
jed

Let 1 < p <oo. Define F': J —[0,00] by F(j) = ||fill,- Then

1EL < IS fill, < N7 F,.

jeJ

We finally achieve the intended discretization of the outer norm.

Proposition 2.6.7. Let {1;} be a FBUPU on G. Let 1 < p,q < co. Here, p and q

are tuples with as many components as the number of factors of G. Then

1fllwea = s flsllee (f € S'(G)):

Proof. Let K be a compact subset of G containing U. We have

1f lwma = 1 £l
= 1> N fllo Loy s
< s Fll o Ly el
= W17 Fll s ¢ ol

= [l zall s f 1l o llea-
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Time Domain Approach

We next study a different class of Wiener amalgam spaces. Let 1 < p < oo.
Here, p is a tuple with as many components as the number of factors of G. The
key ingredient of our discussion above is the fact that FLP (@) is a Banach module
over FL'(G) under convolution. The following discussion will be entirely similar but
based on a different Banach module, namely, LP(G) as a Banach module over Cy(G)
under pointwise multiplication.

Let g € C2°(G) be nonzero. Let 1 < p,q < oo. Here, p and ¢ are tuples with as

many components as the number of factors of G. We define

I fllwze,eay = ||| f(a)Tyg(a)|| e || Lo (measurable f : G — C).

Here, we take the p-norm over a € G followed by the ¢g-norm over b € G. For example,

if p and ¢ are finite numbers, then

iz = ( [/ |f<a>g<a—b>|pda>q/p db)l/q.

Let W(LP(G), L9(G)) be the set of all measurable f : G — C such that || f|lw(zr,Le) <

Q.

Proposition 2.6.8. The definition of W(LP(G), LY(G)) is independent of the chosen

window function g up to norm equivalence.

Proof. Let h be another window function. Let V' be a precompact open subset of G
such that V C {a € G : h(a) # 0}. Let m = min, ¢ |h(a)|. Let C = ||g||oo/m. There

exist ai,...,a, € G such that suppg C J;_,(ax + V). Then |g| < C> 7, T |hl.
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Let f: G — C be measurable. We have

/(@ Tig(@llzellzall < I1F(@C Y Toraelhl(@) 2ol 2o

k=1

< CY (@) Thraph(@)] o2
k=1
= C Y _llIf(@)Tyh(a)] ol o
k=1
= nCl|[[f(a)Toh(a)| o]l La-
The result is obtained by reversing the roles of g and h. O
Proposition 2.6.9 ([Hei03, Proposition 11.3.2]). W(LP(G), LY(G)) is a Banach space.

We now discretize the outer norm. The mathematics is essentially identical to
the case of WP apart from the representative Banach module. Therefore, we shall

merely state the relevant definitions and results.

Definition 2.6.10. Let U be a precompact open neighborhood of 0. Let {a;} be a

subset of G such that
sup [{k : (a; + K) N (ax + K) # 0}] = Cx < 00
J

for every compact K C G. We require that the index set that 7 runs over has as many
factors as the number of factors of G. Note that {a;} is necessarily closed and discrete.
Let {1} be a corresponding subset of C2°(G) such that sup ||[¢)|lcc = M < oo,
supp?; € a; + U, and ) ¢; = 1. The collection {1} is called a bounded uniform

partition of unity (BUPU) on G.

Example 2.6.11. Let ¥ € C°(G) with ) T, = 1. Then {T;,0}er is a BUPU.
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Let {¢;} be a BUPU on G. Let 1 < p,q < co. Here, p and ¢ are tuples with
as many components as the number of factors of G. Let K be a compact subset of G

containing U. We define

£l = 1D llflleelaxlle  (measurable f: G — C).

Lemma 2.6.12. Let {¢;} be a BUPU on G. Let1 < p,q < oco. Here, p and q are
tuples with as many components as the number of factors of G. Let Ky and Ky be

compact subsets of G containing U. Then || - |k, < || - || k-

Proposition 2.6.13. Let {¢;} be a BUPU on G. Let 1 < p,q < co. Here, p and
q are tuples with as many components as the number of factors of G. Let K be a

compact subset of G containing U. Then || - ||k < || - [lw(zr,0)-

Proposition 2.6.14. Let {¢;} be a BUPU on G. Let 1 < p,q < co. Here, p and q

are tuples with as many components as the number of factors of G. Then

| fllwe,nay < W5 fllzellea (measurable f: G — C).

Proposition 2.6.15. Let 1 < p,q < oo. Here, p and q are tuples with as many

components as the number of factors of G. Then
I fllwee,zay =< | fLwsn | Lelles (measurable f : G — C).

Proof. Let ¥ € C*(G) such that ¥ > 0, ¥ is constant and positive on D, and

Y wer Lw? = 1. Let C' be the constant value of ¥ on D. Then
1
M Lwspllzelles < S Twdll 2ol
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For the converse, let wy,...,w, € I' such that suppd C (J;_,(wy + D). Then

V< |90 >op—y Lup+p. We have

S Tudllzolles < 10lloe D IF Lt nl| 2ol
k=1
= 19lloe D Nf Lunllolle
k=1

= 1l Oloo[[[f Lt | o [l ea-

Inclusion Relations

Proposition 2.6.16. Let 1 < p < oo. Here, p is a number. Then W (LF(G), LP(G)) =

LP(G) up to norm equivalence.

Proof. Let g € C°(G) be nonzero. Let f: G — C be measurable. We have

[ llwzr.coy = Il F(@)Tog(@)| ol e = llgllze f (@)l e = Nlgll ol fl| o

Here, we take the p-norm over b € G followed by the p-norm over a € G; we are able

to switch the order of integration only because p is a number. O]

Proposition 2.6.17. Let1 < p < g < oco. Here, p and q are numbers. The inclusions

LP(G) CW(LP(G), LY(G)) and LY(G) C W(LP(G), LY(G)) are continuous.
Proof. Let {¢;} be a BUPU on G. We have

i fllzelles < M9 llzellee < W[ fllr - (measurable f: G — C).
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Let K be a compact subset of G containing U. We have
s fllzelles < [BTP90 by fllzallen < [ fllze (measurable f: G — C).
O

Proposition 2.6.18. Let1 < g < p < oo. Here, p and q are numbers. The inclusions

W(LP(G), L1(GQ)) C LP(G) and W(LP(G), L1(G)) C LU(G) are continuous.
Proof. Essentially identical to the proof of Proposition 2.6.17. O

Proposition 2.6.19. Let 1 < p< oo and 1l < ¢ < ¢ < 0. Here, p, q1, and g
are tuples with as many components as the number of factors of G. The inclusion

W(LP(G), L1 (G)) C W(LP(G), L2(G)) is continuous.

Proposition 2.6.20. Let 1 < p < co. Here, p is a tuple with as many components as

the number of factors of G. The inclusion W (L>®(G), LP(G)) C LP(G) is continuous.

Proof.

1o = 11D 11 Lwsnlee

wel’

<D I LwspllzeLuwsn] o

wel’

=M Ll oo Lwsl o ller

= [/ VwrplleTwinllzo e

= | 1pllzellll fLwsn|lLoe || e (measurable f: G — C).
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Proposition 2.6.21. Let 1 < p < oo. Here, p is a tuple with as many compo-
nents as the number of factors of G. The inclusion W'P(G) C W(L>*(G), L*(Q))
is continuous. In particular, the inclusion W'P(G) C LI(G) is continuous for all
q > p. If p < oo, then the inclusion W'P(G) C Co(G) is continuous. Otherwise,

Whe(G) C O(G).

Proof. Let V be a precompact open subset of G such that | J,.p(w+ V) = G. Let
¥ € C>(G) such that ¥ > 0, ¥ is constant and positive on V, and >, T,0 = 1.

Let f € W'P(G). Since

ML) Nzl < NICFT0) Nzt ller < o0,

(fT,0)" € LYG) for all w € T. Then fT,,0 € Co(G) for all w € T. Clearly, f satisfies
the hypotheses of Proposition 2.1.31. Let f be a locally integrable function on G as

in the conclusion of Proposition 2.1.31. We have
HFTwdl ol < MI(fTud) N2t fler < 0.

It follows that f is a tempered distribution, so f and f coincide as tempered distribu-
tions. Since fT,,9 is continuous for all w € I', f is continuous. Suppose that p < oco.
We have already established that the inclusion W?(G) C L>(G) is continuous. Since

S(@G) is dense in W?(@G), the inclusion W'?(G) C Cy(G) is continuous. O
Corollary 2.6.22. The inclusion M'(G) C Co(G) is continuous.
We note the following continuity result.

Proposition 2.6.23. The function (a, f) — f(a) on G x Cy(G) is continuous.
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Proof. Let a,b € G and f, g € Cy(G). We have

19(b) = f(a)] < [g(b) = f(B)| + [f(b) — fla)] < llg — flloe + | f(b) — fla)|
The right hand side becomes arbitrarily small as (b, g) approaches (a, f). ]
Corollary 2.6.24. The function (a, f) — f(a) on G x MY(G) is continuous.

We define W(G) = W(L>(G), L*(G)). By Proposition 2.6.18, the inclusions
W(G) € LYG) and W(G) C L*°(G) are continuous. By [Fol99, Proposition 6.10],
the inclusion W(G) C LP(G) (1 < p < o) is continuous. Here, p is a tuple with as
many components as the number of factors of G.

~

Corollary 2.6.25. The inclusions M'(G) C W(G) and M*(G) C FW(G) are con-

tinuous. In particular,
MYG) CW(G)NFW(G) C LY(G)n FL'(G),
and the inclusion M'(G) C L*(G) is continuous.

Proposition 2.6.26 ([Gro01, Proposition 12.1.7]). ||k * f|la < [|R||e||f|larr for all
h € LNG) and f € MYG). In particular, M*(G) is a Banach algebra under both

convolution and pointwise multiplication.

Some Important Consequences

The following result refines the Poisson summation formula in the context of

Wiener amalgam spaces.
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Proposition 2.6.27. Let f € W(G)NFW(G). Then

1
e (D)

> flatw)=

wel’

S fwhaw')  (aeq)

wlelrt

with uniform absolute convergence on both sides.

Proof. Uniform absolute convergence follows immediately from the definition of W (G).
In particular, both sides are continuous. Our discussion of the general Poisson sum-
mation formula shows that the two sides are equal almost everywhere. Since both

sides are continuous, they are equal everywhere. O

We introduced modulation spaces to quantify the decay properties of the STFT.
The following result, together with Proposition 2.6.21, shows that such quantification
gives something more refined than what is apparent from the definition; see [CG03,

Lemma 4.1].

Proposition 2.6.28. Let 1 < p,q < oo. Here, p and q are tuples with as many
components as the number of factors of G. Let f € MP1(G) and g € S(G). Then

V,f € Whra(G x G) and

Vo Fllwrwa < Cllfllamallglar-

The constant C does not depend on f and g.
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Proof. Let ¢ € S(G) be nonzero. We have

Vo llwrwa = [[IVi,6 Ve f(a, a, l;, b)HLl(@xc)HLm(Gxé)
= [V f(=b,a+ B)V¢g(—a -0, [;)HLl(@XG)”LP’q(GX@)
= [V f (b, + b)Vig(—a + b, B)HLl(@xG) Lraiaxa)
= IV f (b,5)Voog(—a + b, —a + B)HLl(@xG)HL%Q(GX@)
= [[1Vo (0. )Vog(a = b.a = B)ll 1@y |l oy
= Ve 1 * Vot raqescy
< Wkl poaaxeyIVedll i axay

= [1flaarallgllar-

Here, we take the 1-norm over (l;, b) € G x G followed by the (p, ¢)-norm over (a,a) €

G x G. The second equality follows from Proposition 2.3.31. O
The following result concerning the nestedness of modulation spaces is in stark
contrast to the case of LP-spaces.

Proposition 2.6.29. Let 1 < p; < pp < o0 and 1 < ¢4 < qo < oo Here, py, po,
q1, and qo are tuples with as many components as the number of factors of G. The

inclusion MP»9(G) C MP>%(G) is continuous.

Proof. Let g € S(G) be nonzero. We have

HfHM”W?? = H‘/;;fHLpzm
< ClVyfllwrora

< N fllarallglan (f € 8'(G)).
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The first inequality follows from Proposition 2.6.21.
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Chapter 3:

The Space M! and Quantization of Operators

3.1 Window Functions

In this section, we enlarge the class of window functions that can be used in the
definition of the modulation space norm. Let 1 < p,q < oo. Here, p and ¢ are tuples
with as many components as the number of factors of GG. For the rest of this section,
p and ¢ will be fixed unless otherwise specified. We endow S(G) with the topology
of M*(G). The discussion below up to the end of Proposition 3.1.4 elaborates on
[Gro01, Theorem 11.3.7].

Let g € S(G) with ||g]]2 = 1. Let f € MP%(G). By Proposition 2.3.28 and
the STFT inversion theorem for tempered distributions, |V, f| < [V;f|* |V,g| for all

g € S(G). By Proposition 2.4.2,

Vo fllzra < Vel llzrallVaglior = 1 Fllarallgllar

for all ¢ € S(G). In other words, the linear map g — V f from S(G) to L»4(G x G) has
operator norm bounded by || f||ara. Since S(G) is dense in M*(G), and LP9(G x G)
is complete, we get a unique extension to a bounded linear map from M'(G) to

LP4(G x G) whose operator norm is bounded by || f||ase. In particular, Vo fllrra <
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| fllarpa||g]|ar for all g € M*(G). We have shown:

Proposition 3.1.1. Let g € M'(G). Then V, is a bounded linear map from M?4(G)

to LP1(G x G) whose operator norm is bounded by ||g|| -

Let F' € LP9(G x @) By Proposition 2.4.6, the linear map h — V,F from
S(G) to MP%(@G) has operator norm bounded by | F| prq. Since S(G) is dense in
MY(G), and MP4(G) is complete, we get a unique extension to a bounded linear map
from M'(G) to MP4(G) whose operator norm is bounded by ||F||zre. In particular,

|V Fllapa < ||F|oallh]|an for all h € MY (G). We have shown:

Proposition 3.1.2. Let h € M'(G). Then V;' is a bounded linear map from LG X

~

G) to MP(G) whose operator norm is bounded by ||k a1 .

Recall that the inclusion M (G) C L*(G) is continuous. Let g,h € M*(G) with
(h,g) # 0. Let {g;} and {h;} be sequences in S(G) such that g; — g and h; — h in

MY (G). Then (h;, g;) = (h,g). Let f € MP(G). We have

Vi Vaf = Vi, Vo FHllama <AV VoS = ViV, fllaa + IV Ve, f = Vi Ve, fllaara
< WVof = Ve Fllzeallbllar + [V, fllzoall = Bl
< 1 fllarvallg = gsllar[|Pllare + 1 F laaeallgsllar 1o = Rl ar

— 0.

It follows that

1 1
<h,g>Vh ‘/Qf 1 <hj’gj>vhj‘/gjf f

We have shown:
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Proposition 3.1.3 (STFT Inversion Theorem). Let g,h € M*(G) with (h,g) # 0.

Then

gy =

Proposition 3.1.4. Let g € M'(G) be nonzero. Then

[flazra < Vg fllra  (f € MPUG)).

Proof. By Proposition 3.1.1, ||V, f|lzra < ||g||lart ]| f||apa. By Proposition 3.1.2 and

Proposition 3.1.3,

£ llazma = g2 1V Vo lamma < Ngll2llgllar Vo fllzoa.
O
The continuity of the STFT holds in the case of window functions in M*(G).
Proposition 3.1.5. Let f € MP4(G) and g € M*(G). Then V,f is continuous.

Proof. By Proposition 2.6.29, f € M>(G). Let {g;} be a sequence in S(G) such
that g; — g in M'(G). By Proposition 3.1.1, V. f — V,f uniformly. Since V,, f is

continuous, the result follows. O

The following result extends Proposition 2.4.10 to include window functions in

MY Q).
Proposition 3.1.6. Let g,h € M'(G) be nonzero. Then

RI5Vaf Vo F) = lglls(Vaf, VaF)  (f € MPU(G), F € MP(G)).
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Proof. The result holds when g, h € §(G) by Proposition 2.4.10. By Proposition 3.1.1
and Hélder’s inequality, the sesquilinear pairing (k, k") — (Vif, Ve F) on M'(G) x
M'(G) is continuous. Recall that the inclusion M'(G) C L?*(G) is continuous. Since
S(@G) is dense in M'(G), the general case follows by taking sequences in S(G) con-

verging in M*(G) to g and h. O

We see by Proposition 3.1.6 that the duality pairing does not depend on the
chosen window function as long as the window function has unit L? norm. Therefore,
whenever a duality pairing is used, the window function shall be assumed to have
unit L? norm. The remark following Proposition 2.4.10 is also relevant here.

We note the following special cases of the duality pairing.

Proposition 3.1.7. Let f € LP(G). Then f € M>(G), and (f,g) = [, fg for all

g € MY(G).

Proof. Recall that the inclusion M'(G) C L¥' (@) is continuous. By Hélder’s inequal-
ity, the linear map § — [, fg on M'(G) is continuous. By duality, there exists
u € M*(G) such that (u,g) = [, fg for all g € M*(G). In particular, (u,¢) = [, f¢

for all ¢ € S(G). It follows that u = f. O
Proposition 3.1.8. Let f € M'(G). Then (f,dc) = f(0).

Proof. The equality holds by definition when f € S(G). The general case follows

from the density of S(G) in M'(G). O

We originally defined the STFT via the pairing between S'(G) and S(G). In

this section, we extended the definition of the STFT to include window functions in
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M*'(G) using a standard metric space argument. The following result shows that we

could have used the duality pairing to carry out this extension.
Proposition 3.1.9. Let f € MP4(G) and g € M (G). Then V,f(a,a) = (f, MaT,g).

Proof. The result holds by definition when g € S(G). By Proposition 2.6.29, f €
M>(G). Let {g;} be a sequence in S(G) such that g; — ¢ in M*'(G). By Proposi-
tion 3.1.1, V,, f — V, f uniformly. In particular, Vy f(a,a) — V,f(a,a). By Proposi-
tion 2.4.12, M;T,9; — M;T,g in M*(G). By Proposition 2.6.29, M;T.g; — M;T,g

in M7 (G). By Holder’s inequality, (f, MaT.g;) — (f, MaTng). O

The following result extends Proposition 2.3.23 to include window functions in

M'(G). Recall that 7 is the asymmetric coordinate transform defined in Section 2.3.

Proposition 3.1.10. Let 1 < p < oo. Here, p is a number. Let f € MP(G) and

g€ MYG). Then V,f = FyTa(f ®7).

Proof. The result holds when g € S(G) by Proposition 2.3.23. By Proposition 3.1.1,
the linear map h — Vi, f from M*(G) to LP(G x G) is continuous. Since the inclusion
LP(G x G) C 8'(G x G) is continuous, we have a continuous linear map from M (G)
to §'(G x CA}’) By Proposition 2.4.17, Proposition 2.4.19, Proposition 2.4.22, and
Proposition 2.6.29, the linear map i — FoTe(f @ k) from MY (G) to MP(G x G) is
continuous. Since the inclusion MP(G x G) C 8'(G x @) is continuous, we have a
continuous lincar map from M*(G) to 8'(G x G). Since S(@) is dense in M*(G), the

two maps we have described coincide. O

Proposition 3.1.11. Let 1 < p < co. Here, p is a number. Let f € MY(G) and
g€ MP(G). ThenV,f € LP(G x G) and V,f(a,a) = (f, MyT,g).
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Proof. The result follows from Proposition 2.3.34, Proposition 3.1.9, and Proposi-

tion 3.1.10. 0

We have encountered a few ostensibly different definitions of the STFT based
on various pairings between function spaces. The last few results reconcile all of these
definitions.

The following result extends Proposition 2.6.28 to include window functions in

MY(G).

Proposition 3.1.12. Let f € MP9(G) and g € M'(G). Then V,f € WHP9(G x Q)

and

Vo fllwrwa < Cllfllamallgllar-

The constant C' does not depend on f and g.

Proof. By Proposition 2.6.28, the linear map h — V,f from S(G) to WHP9 (G x
G) has operator norm bounded by C||f|lame. Since S(G) is dense in M(G), and
Wt (G x @) is complete, we get a unique extension to a bounded linear map
from MY(G) to Wh9 (G x G) whose operator norm is bounded by C||f||spe. By
Proposition 2.6.21, the inclusion WH®9 (G x @) C PG x @)) is continuous, so we
have a bounded linear map from M'(G) to LP4(G x G)). By Proposition 3.1.1, the

linear map b — Vi, f from MY(G) to LP4(G x G)) is continuous. Since S(G) is dense

in M'(G), this map coincides with the extension described above. O
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Convolutions

We next study convolutions in the setting of M' and M. Let f € M>(G) and
g € M'(G). We define (f * g)(a) = (f,T.g*) = V,+f(a,0) for a € G. This definition
of convolution is consistent with the definition in Section 2.1 when g € S(G).

The following result is a special case of [CGO03, Proposition 2.4].
Proposition 3.1.13. fxg € MY G) and || f * gllaroon < || f || aree |9l ar-

Proof. Let ¢ € S(G) be nonzero. Suppose first that g € S(G). By Proposition 2.3.32,

Voro(f ¥ 9)(a,a) = (=a,a)(f + Map™ x g x Map™)(a).

Then

1S * gllarsen = [[Voso (f * g)llLoen
= [I(f * May™ * g x Map*)(a)||2=(0)ll 11 @
< If * Map™(a)|lz=(allg * Map™ (@)l 1)l 1)
< Lf * Map™ ()|l (o)l oo ) llllg * Mae™ (@)l 16yl 11 )

= |[fllarellgllar-

We now lift the restriction that ¢ € S(G). We have just shown that the linear map
h — f*h from S(G) to M>!(G) has operator norm bounded by || f||a=. Since
S(G) is dense in M'(G), and M>(G) is complete, we get a unique extension to a
bounded linear map from M!(G) to M°>>!(G) whose operator norm is bounded by
| fllare- Since the inclusion M°'(G) C §'(G) is continuous, we have a continuous

linear map from M'(G) to §’(G). On the other hand, by Holder’s inequality, the
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linear map h — f % h from M'(G) to L*°(G) is continuous. Since the inclusion
L>(G) € 8'(G) is continuous, we have a continuous linear map from M!(G) to

S'(G). Since S(G) is dense in M*(G), the two maps we have described coincide. [

We can now define §f = f/*\g € WL(G)NM>(G). Equivalently, we can define
gf = F(RFfx«RFg) € W (G)N M>(G). By Proposition 2.1.22, this definition of
multiplication is consistent with the definition in Section 2.1 when g € S(G). Note
that 5} = f % (.

Suppose that f € L*(G). Then fg € L*(G). We claim that ¢gf as defined

above coincides with fg. Indeed, for ¢ € S(G), we have

(9f.0) = (9], )

In particular, fg € W*HG) N M>(G).

The following result on the associativity of convolution has been used above.
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Proposition 3.1.14. If f € M>®(G) and g,h € M (G), then (f*xg)xh = fx(g*h).

Proof. The result holds when g, h € S(G). By Proposition 2.6.26, Proposition 2.6.29,
and Proposition 3.1.13, the bilinear map (k, k') — (f * k) x k¥’ from M'(G) x M*(G)
to M°'(@) is continuous. Similarly, the bilinear map (k, k") — f x (k * k') from
MY(G)x MY(G) to M>}(G) is continuous. Since §(G) is dense in M*(G), the general

case follows by taking sequences in S(G) converging in M*(G) to g and h. O
We can now establish the following result on approximations of the identity.

Proposition 3.1.15. Let {1;} be a sequence in CZ(G) such that 1; >0, [,v; =1,

and supp ¢; — 0.
(a) For every f € MY (Q), fxv; — [ in M(G).
(b) For every F € M*(G), F x1; — F in the weak™ topology of M*(G).

Proof. (a) Suppose first that f € S(G). By Proposition 2.1.28, f x¢; — f in S(G).
Since the inclusion S(G) € M*(G) is continuous, f *; — f in M*(G). We now lift

the restriction that f € S(G). Let g € S(G). We have

If* s — fllare S| f 05 — g% jllan + llg* 5 — gllare + |lg — fllan
< \f = gllaerllebsllzr 4+ lg * 5 — gl + lg = fllan

= |If = gllar + lg * 5 — gllan + [lg — fllar,

where we have used Proposition 2.6.26. The result now follows form the density of

S(G) in MY(G).
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(b) Let f € M'(G). We have

(F, f7) = (Fx £)(0) = B (F ;% f)(0) = B {F *1h;, f7).

The following result is the analogue of Proposition 2.1.7.

Proposition 3.1.16. Let 1) € C®°(G) with ) =1 on U x T x U” x A, where U and
U" are open balls about 0. Let ) (x, 2,1, \) = ¢Y(ex, 2, [¢/n], A) fore >0, n>1, and
(z,2,0,\) € G. Here, || is truncation towards 0. For every f € MY(G), Yenf — f

in M'(G) as € — 0 and n — oo.

Proof. We shall prove the result for the case G = R%. Suppose first that f € S(G).
By Proposition 2.1.7, ¢ f — f in S(G) as € — 0. Since the inclusion S(G) € M (G)
is continuous, ¥ f — fin M(G) as € — 0. We now lift the restriction that f € S(G).

Let g € S(G). We have

[ef = Fllare < NYef = begllar + 1beg = gl +llg = Fllan
< |1f e = g% Pellan + lvbeg — gl + g — Fllar
< If = dllan el + 1veg = gl + llg = fllan

I = allan [Pl + [¢eg — gllar + lg — Fllar,

where we have used Proposition 2.6.26. The result now follows form the density of

S(G) in MY(G). O

The following important result is the analogue of Proposition 2.1.30.
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Proposition 3.1.17. Every distribution in M (G) is the weak™ limit of a sequence

of functions in C°(G).

Proof. Let F' € M>(G). Let x; = 11/;;, where v /;; is as in Proposition 3.1.16. Let
{v;} be as in Proposition 3.1.15. Let F; = (x;F) *v¢;. Then F; € C*(G). We claim
that I; — F in the weak™ topology of M*>(G).

Let f € M'(G). We have

(5, [) = (OGE) #5, [) = (OGE) %40y % £7)(0) = O 05 % f).

By Proposition 3.1.16, x;F — F' in the weak™ topology of M*(G). By Proposi-

tion 3.1.15, 95 * f — f in M*(G). The claim follows from Proposition 2.4.11. O

3.2 Atomic Decompositions

In this section, we study how functions in M'(G) can be decomposed into sim-
pler 7atoms”. The decomposition results below are discussed in [FK98; FZ98; Gro01].
We shall obtain these results as special cases of the general atomic decomposition the-
orem of Bonsall; see [Bon91]. We state the theorem here for convenience.

Let X be a Banach space. Let B be the open unit ball of X. Let E be a
nonempty subset of X. The absolutely convex hull of E is abco E = {d_,_, axuy, :
up € E, ar, € C, Y27 |ax] < 1}. For f € X, let A(E, f) be the set of all sequences

{)\;} € ¢! such that f =" \ju; for some u; € E.

Theorem 3.2.1 (Bonsall [Bon91]). Let m,M > 0. The following statements are

equivalent:
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(a) For every ¢ € X*, m||¢|| < sup{|¢(u)| - u € E} < M||o]|.
(b) mB C abcoE C MB.
(¢) For every f € X, A(E, f) is nonempty, and

M7 FIF< mf{IM] s X € A(E, £)} < mTHIF]-

Proposition 3.2.2. Let g € M'(G) be nonzero. For every f € M'(G), there exist
sequences {a;} C G, {a;} C G, and {c;} € 0 such that f = 3 ¢; M, Ty, g9 with
convergence in M'(G). Moreover, the norm defined by || f|| = inf{||{c;}l1}, where
the infimum is taken over all such representations of f, is equivalent to the modulation

space norm.
Proof. Let E = {M;T,g: (a,d) € G x G}. We have

sup{[(u, h)| : h € E} = |[Vgulle < flully= (v € M*(G)).
By Theorem 3.2.1, this statement is equivalent to the assertion of the proposition. [

Corollary 3.2.3. For every f € MY (G), there exists a sequence {g;} C C>(G) such

that f =" g; with convergence in M*(G). In particular, C>*(G) is dense in M*(G).
Proof. Take g € C2°(G) in Proposition 3.2.2. O

The next result is the important minimality property of M!(G) originally dis-

covered by Feichtinger; see [Gro01, Theorem 12.1.9].

Proposition 3.2.4. Let X be a Banach space that is continuously embedded in S'(G),

and is strongly invariant under translations and modulations. If MY(G)NX # 0, then
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the inclusion M'(G) C X is continuous.

Proof. Let g € M'(G) N X be nonzero. Let f € M'(G). Let {a;} C G, {a;} C
G, and {c;} € €' be sequences such that f = " ¢;M; T, g with convergence in
MY(G). Since M, T,,g € X and || My, T,, gl x = |lgllx, we have Y |¢;|||Ma, T, 9|l x <
[{c;iHItllgllx. In particular, ) c;M;,Ty,g converges absolutely with respect to the
norm of X. Since X is complete, there exists u € X such that u = Y ¢;M;,T,,g in
X. Since the inclusions M'(G) C §'(G) and X C §'(G) are continuous, u = f. We

have shown that M'(G) C X. Since || f|lx < |[{¢;}1]lgllx, taking the infimum over all

representations of f, the continuity of the inclusion follows from Proposition 3.2.2. [
We next obtain the following tensor product property of M?!.

Proposition 3.2.5. For every f € MY (G, x G3), there exist sequences {f1;} C
MY (Gh) and {fs;} C MY (Gs) such that f =" f1,;® fa; with convergence in M* (G x

Gs). Moreover, the norm defined by

LFIE =t I fusllan | fagllan b

where the infimum is taken over all such representations of f, is equivalent to the

modulation space norm.

Proof. Let g; € S(G1) and go € S(G5) be nonzero. For every f € M*(G x Gy), there

exist sequences {(ay j,a2;)} € Gy x Ga, {(a1;,a25)} C G x G, and {¢;} € ' such
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that

f= Z CjM(dl,j7&2,J’)T(a1,j,a2,j)(91 X 92)

= Z Cj(Mdl,jTal,jgl> ® (M&Q,jTaQ,ng)

with convergence in M'(G x G). This proves the existence claim. We need to prove
that || - || and || - ||a; are equivalent. Let || - ||, be the norm corresponding to g; ® go
as defined in Proposition 3.2.2. Since || - ||« and || - |2 are equivalent, it suffices to
find m, M > 0 such that m| - [y < ||- || < M|| - ||«. It is clear that || f|[s < || f|| for

all f € M'(Gy x Gy). Therefore, we can take m = 1. On the other hand,

£l < Z cilllgillar [lg2llarn = Z lcilllgr @ gallar,

so we can take M = ||g1 ® gol|as1- O

We now state a result from functional analysis that will be used a number of

times in the sequel. In fact, we shall only need (b).
Proposition 3.2.6. Let X be a Banach space.

(a) If {z;} is convergent in the weak topology of X, then {x;} is bounded in the

norm topology of X.

(b) If {x}} is convergent in the weak™ topology of X*, then {x}} is bounded in the

norm topology of X*.
Proof. (a) By duality theory, X is isometrically embedded in X**. Since {z*(z;)}

is bounded for all z* € X* {z;} is uniformly bounded by the Banach-Steinhaus

theorem.
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(b) Since {x}(x)} is bounded for all z € X, {z}} is uniformly bounded by the

Banach-Steinhaus theorem. O

Remark. In (a), the completeness of X is superfluous since X* is complete irrespective

of whether X is complete.

The following result is the analogue of Proposition 2.2.7.

Proposition 3.2.7. If F} ; — Fy in the weak™ topology of M*(G1) and Fy; — Fy
in the weak™ topology of M>(G3), then Fy; ® Fyj — Fy ® Fy in the weak™ topology

Of MOO(Gl X Gg)
Proof. In view of the identity

Fil;F;—FRFkh=(F,—F)®(Fy;—F)---

+F Q@ (Fy; — F) + (Fij — F1) @ Fy,

it suffices to consider the cases I} = F, =0, I} =0, and F;, = 0.
By PI‘OpOSitiOIl 3267 HFl,j||M°° < Ol and ||F2’j||Moo < CQ.

Let f € MY (G1 x Ga). Let {fix} C M'(G1) and {for} € M'(G5) be sequences
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such that f =" fix ® foy with convergence in M*'(G; x Gy). We have

[(fs F1y @ Fag)| < [(f — Zfl,k®f2,k>F1,j ® Fy )|

k=1
+ |(Z fir ® for, F1; @ Fyj)|
k=1
<NF = fin® forllan|Fry ® Fojllares -
k=1
1Y fre Fug){fons Faj)l
k=1

S Hf - Zka X f2,k||M10102 e
k=1
T Z [ F13) (o o) |-
k=1

Let € > 0. The first term can be made less than €/2 by choosing n sufficiently
large. Since n is now fixed, the second term can be made less than €/2 by choosing j

sufficiently large. O

3.3 Sampling on Modulation Spaces

Let I' be a lattice in G as described in Section 2.5.

Proposition 3.3.1. Let 1 < p < oo. Here, p is a tuple with as many components as

the number of factors of G. The linear map f — f|I' from W(L*(G), L*(G))NC(G)
to £P(T') is continuous. In particular, the linear map f — f|T from WHP(G) to (P(T)

15 continuous.

Proof. Let f € W(L>(G), LP(G)) N C(G). We have [[f[T]ler < [[[|/Twipllzoeller- T
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Corollary 3.3.2. The linear map g — g|U from M'(G) to M'(T') = ¢*(T) is contin-

uous.

The following result is the analogue of Proposition 2.5.18. It also provides an

alternate proof of the claim in Example 2.5.19.

Proposition 3.3.3. Let f € (*(T'). Let uy be the image of f under the dual of the
restriction map of Corollary 3.3.2. Then uy = Y, 1 f(w)T,0¢ with convergence in

the weak™ topology of M*(G).

Proof. Let g € M'(G). We have

(g,up) = (g0, f) = > g(w)f(w) = > (g, Tude) f(w) Z w)T,0c).

wel wel

]

We have already established the periodization maps Pr : C.(G) — C.(G/TI),
Pr: LY(G) — L'(G/T), and Pr : S(G) — C*°(G/T). Therefore, the following result
is expected, and is easy to prove using the minimality property of M?; see [Fei81,

Theorem 7.

Proposition 3.3.4. The linear map Pr : M'(G) — M*(G/T") defined by

Prfla+T) = Zfa—

wel’

15 continuous and surjective.

Proof. Note that the series defines a continuous function on G by Proposition 2.6.27.

Let X be the image of M*(G) under the periodization map Pr : L'(G) — L'(G/T).
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We endow X with the quotient norm induced by the quotient
MY (G)/(M*(G) Nker Pr).

Since the inclusion M*(G) C LY(G) is continuous, M*(G)Nker Pr is closed in M*(G).
In particular, X is a Banach space. Since Pr descends to a continuous linear map
from M'(G)/(M*(G)Nker Pr) to L'(G/T), X is continuously embedded in L'(G/T).
By Proposition 2.5.2 and the strong invariance of M'(G) under translations and
modulations, X is strongly invariant under translations and modulations. By Propo-
sition 3.2.4, the inclusion M'(G/T') C X is continuous. It remains to show that
MY(G/T') = X; the continuity assertion then follows form the open mapping theo-
rem. Since G/I" is compact, it suffices to show that ﬁ;f = s(I)"1f|0+ e ¢4(TL) for

all f € M*(G). Since f € M*(G), this follows from Corollary 3.3.2. O
Let A be a lattice in G as described in Section 2.5.

Proposition 3.3.5. Let g € MY (G). Let 1 < p,q < oo. Here, p and q are tuples with

as many components as the number of factors of G. The linear map Cy : MP(G) —

P9I x A) defined by Cy(f)(w,v) = (f, M,Tywg) is continuous.

Proof. The result follows immediately from Proposition 3.1.12 and Proposition 3.3.1.

O

Corollary 3.3.6. Let g € M'(G). The linear map C, : L*(G) — (*(T x A) defined

by Cy(f)(w,v) = (f, M, T,,g) is continuous.
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3.4 Kernels and Operators

In this section, we study operators of the (presently imprecise) form

f—>//<;

where « is the kernel. See [FK98] and [Gro01, Chapter 14] for a comprehensive

discussion of the material in this section and the next.

Lemma 3.4.1. Let a; € Gy. The linear map k — r(ay,-) from M*(Gy x Gs) to

MY(Gy) is continuous.

Proof. Let g, € S(G1) and ¢g» € S(G5) be nonzero. Let k € MY Gy x Go). Let

{(byj,b2;)} € Gy x Gy, {(brj,b2;)} C G x Go, and {c¢;} € ' be sequences such that
k= Z CjM(lAn,j,IAJQ,]')T(bl,jvaj)(gl ® 92)

with convergence in M (G x Gy). Since the inclusion M (G x Gy) C Co(G x Gy)

is continuous,

K(t, t) = Z CjM(I;Lj71;2J.)T(b17j,b2,j)(91 ® ga2)(t1,t2)

= Z ¢; My, Ty, ,91(t0) My, Th, ;92(t2).

In particular,
k(ay,ty) = ZC] o0 (a1)M;, Tbgjgz(b)

Since

lejM, [ Th, ;91(a0) My, To, ;9allar < |65l 01llocll g2l
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the series
Z c] Tb1 ng al)MlA)Zijzﬁng

converges in M'(Gs). Since the inclusion M'(Gy) C Cy(Gs) is continuous, the sum

of this series is k(ay, ). The continuity assertion follows from the inequality

{e; My, Ty, ,91(an) i < [{ei Il g1lloo-
Corollary 3.4.2. Let k € MY(G, x G3) and a; € Gy. Then Faor(ay,-) = k(ay,-) .

Proof. We have
For =Y ;M Ty, g1 @ FM;, Ty, 95
with convergence in M'(G; X Gs). By Lemma 3.4.1
Forlay, ) = Z CleA)Lijl,jgl(al)fMl;27ij2,jg2

and
al) ZC] Tb1 ]gl a’l)MlA;27ij2,jg2

with convergence in M'(Gs). The result follows by taking the Fourier transform of

the latter series. O

Lemma 3.4.3. Let f € M™(Gs) and K € M (Gy x Gs). The map a; — {r(a1,-), f)

on G is in M*(Gy).

Proof. Let ¢1 € S(Gy) and g € S(G2) be nonzero. Let {(b1;,b2,)} € Gy X Go,
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{(byj,b2;)} C G x Gs, and {¢;} € ' be sequences such that

k= Z My by )T 015,02, (91 @ g2)

with convergence in M'(G; x G5). We have previously shown that

K(ar,-) = Z CjMEI’ijl,jgl(a’l)MlA)27ij2,jg2

with convergence in M*'(Gy). Then

(r(ar,-), ) = ZCnglijbl,jgl(%)<M1;2,ij2,]-927 ).
Since
lej (M, Th, ;920 F) My, Toy ;91l[ar < €5l fllar< g1 llart [l g2llarr,
the series
Z ¢j(M;, To, 92, [) My, Ty, ;00
converges in M'(G;). Since the inclusion M'(Gy) C Cy(Gy) is continuous, the sum

of this series is (k(-,t2), f(t2))- O

Proposition 3.4.4. Let kK € M'(Gy x G3). The operator K : M*>(Gy) — M*(Gy)
defined by K f(a1) = (k(ay,-), f) has operator norm bounded by C||k||prr. The constant

C does not depend on k.

Proof. Let ¢ € S(G1) and go € S(G2) be nonzero. Let {(b1;,b2;)} € G1 x Go,

{(byj,b2;)} C G x Go, and {c¢;} € €' be sequences such that

K= Z ch(i)l,j,BQ,j)T(blyj7b2vj)(gl ® 92)
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with convergence in M'(Gy X G3). Let f € M>(G3). We have previously shown that

ICT - Z € <M52’ij27j92> f>]wl;mj—‘bl’jg1

with convergence in M*'(Gy). Then

< D leslll A= llgallarn gzl arn

= [[{e; HIwll £l aro= g1 | aer || g2l aar-

By Proposition 3.2.2, taking the infimum over all representations of ,

1T ar < Cllallare 1 F ar llgallar lgallare

Therefore, we can take C' = C'|| f||are< || g1l ar1 |92 as2 - O

Lemma 3.4.1, Lemma 3.4.3, and Proposition 3.4.4 together show that every
k € M'(Gy x Gy) defines a bounded operator K : M*°(Gy) — M*(G,). However, we

actually have the following stronger form of continuity:

Proposition 3.4.5. If f; — 0 in the weak™ topology of M>(G5), then Kf; — 0 in

MNGY).

Proof. Let g1 € S(G1) and go € S(G2) be nonzero. Let {(b1;,b2;)} € G1 x Gy,

{(byj,b2;)} C G x Gs, and {c¢;} € €' be sequences such that

k= Z CJ‘M(IAn,j,Bz,j)T(blijij)(gl ® 92)
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with convergence in M'(G; x G3). We have previously shown that

||’Cf_]||M1 S Z ||CJ<MIA72,]Tb2,]927 f])Mi)l,ijl,jg:lHMl

Since

lej (M, To, ;92 F7) My, Toy s 91llan < {5} oo (Mg, T, ;925 T ll91lIar1,

2,3

every term of this series converges to 0. The result will follow once we show that
the dominated convergence theorem applies. By Proposition 3.2.6, || f;||am=~ < C. We

then have

lej (Mg, Tos ; 92, 1) My, Ton s 1llarr < le Il fllar<llgallaar | g2l aae

1.7

< 1¢j|Cllgallaallgzllar,

and
{Ie|Cllgillar lg2llan } € €.

]

The next result provides an alternate description of K when we restrict it to

MY(Gy).

Proposition 3.4.6. (Kg, f) = (r, f ®g) for all f € M*(G,) and g € M*(G).
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Proof.

(Kg, f) = /G Kg(t) T8 dhy

- / (k(t1, ), 3 F (00 di
G

:/G(/ m(tl,tg)g(tQ)dh)mdtl

G
:///{(tl,tg)f(tl)g(tg)dtgdtl
GJG

= (r, f®7).

Corollary 3.4.7. (Kg, f) = (k, f ®g) for all f € M>*(G;) and g € M>(Gs).

Proof. Let {f;} be a sequence in M*(G;) such that f; — f in the weak* topology of
M>(Gy). Let {g;} be a sequence in M*(G2) such that g; — g in the weak* topology
of M>(Gy). By Proposition 3.4.5, Kg; — Kg in M'(G,). By Proposition 2.4.11,

(Kgj, ;) — (Kg, f). By Proposition 3.2.7, (s, f; ® g;) — (k, f ® 7). O

Let O=!(Gy,Gy) be the set of all operators from M>(Gs) to M'(G;) which
are continuous in the weak™ sense of Proposition 3.4.5. In light of Lemma 2.2.2
and Proposition 3.4.6, we have an injective map from M (G} x G3) to O (G, Gy)
mapping a kernel to its corresponding operator. The next result shows that this map

is a bijection; see [FK98, Theorem 7.4.1]. Therefore, O°(Gy, Gy) = M (G x Gs).

Proposition 3.4.8. Fvery operator in O (G4, Gs) is induced by a kernel in M*(Gy x

Go).
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3.5 The Spreading Representation

We now take G; = Go = G. Let K € O>!(G) with kernel x. The spreading
function of K is n = FyTgk. Note that n € MY(G x @) Applying F> 7 to k and

f ® g in Proposition 3.4.6, we get

(Kg, f) = Vof)  (f.g€M(G)).

In other words,

Kg = / (@) MTugdada (g€ M\(G)),
GxG

where the right hand side is an M*°(G) valued integral given that M*(G) is endowed
with the weak* topology. In fact, applying F>7¢ to k and f ® g in Corollary 3.4.7,
we get

Ky, [) = Vo) (f,9 € M*(G)).

By Proposition 3.1.11, V, f is bounded for f € M'(G) and g € M>(G). It follows

that
/Cg:/ e, @)MiTagdada (g € M¥(G)), (3.5.1)
GxG

where the right hand side is an M*(G) valued integral given that M*(G) is endowed
with the weak* topology. However, we actually have the following more concrete
equation. Note the similarity between this result and Proposition 2.3.26. Also note

the technical subtlety of the proof in spite of the plausibility of the result in light of

(3.5.1).
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Proposition 3.5.2.

Kg(t) = /G i M Tgt) dadi (g € 1'(G))

Proof. By Proposition 2.4.13 and Corollary 2.6.24, the function (a, a,t) — M;T,g(t)
on G x G x G is continuous and bounded. It follows that the integrand is integrable
and the integral is well-defined.

We next show that the map

p:t— n(a,a)M;T,g(t) da da
Gx@

on G is in MY(G). Let h € S(G) be nonzero. Let {(z;,%;)} C G x G, {(95,9;)} <

G x G, and {c¢;} € ' be sequences such that

n= Z ¢i Mg, Tw;.a) (h @ h)

with convergence in M'(G x G). Let {sy} C G, {3;} C G, and {d,,} € ¢* be sequences

such that

g="> dMiT,h
with convergence in M'(G). Since the inclusions MY (G x G) C Co(G x G) and
MY (@) C Cy(G) are continuous,

n(a,@) =Y ¢; Mg, )T, a0 (h @ h)(a, @)

and

M;T,g(t) = diMaT,Ms, T h(t).
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Since

D Mgy Ty (B ® B)(a, @) < [HeslallR ool Blloc

and
> 1deMT M, T h()] < [{i Iy 1 lloo,
n(a, ) MaTog(t) = Y ¢;de Mg, ) Tiay 2 (h @ 1) (a, @) MaTu M, Ty, h(t).
7.k
Since

> llejdiMig, ) Tia, ) (B @ h) (@, @) MaTo Mz, To, h(t)|| 11 gy <
7,k

e Ml I a1l oo,

the dominated convergence theorem applies. Here, we take the 1-norm over (a,a) €

G x G. Let

ein) = [ My, T,z (h @ h)(a,a) MaT, Ms, Ty h(t) da da
Gx G

for t € G. By Proposition 2.3.26, ¢;; € S(G). Integrating term by term over
(a,a) € G x @, we obtain
P(t) = cidppsn(t).
j.k

By Proposition 2.4.6,
@ikllar <N Mg, 40 Tiw;a5)(h @ W) | Me, T hl[ar = [[Rl| ([l ][]l ar-
It follows that

> lesdieilian < I H LA IRl IR o IRl
g,k
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and the series
E ¢jdrpjk
g,k

converges in M'(G). Since the inclusion M'(G) C Cy(G) is continuous, the sum of
this series is ¢. We have shown that ¢ € M'(G).

For f € MY(G), we have
= [ ( | ety da) 7 di

= /Gxan<a’d) (/G M&Tag(t)mdt) da da

= (n,V,f)

= (Kyg, f).
It follows that ¢ = Kg. O

Let x(a,a) = (a,a) for a € G and a € G. Recall the definitions of Tz and Iz

from Section 2.3.

Proposition 3.5.3. Let u € S'(G x G). Then

xu=F ITs Ty .
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Proof. Let ¢ € S(G x G). We have

TaTs \Fioi.a) = T F ol )

The general case follows from the sequential density of S(G) in S'(G). O

Corollary 3.5.4. Let 1 < p < oo. Here, p is a number. Multiplication by x is an

isomorphism of MP(G X CA;) up to norm equivalence.

We define nz(a,a) = (—a,a)n(—a,a) for a € G and @ € G. Note that nr €

MY(G x G). Let Kz be the operator in ©O*'(G) with spreading function 7.

Proposition 3.5.5.

Kg=Krg (g€ M>(G)).
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Proof. Suppose first that g € M(G). We have
Gt = [ ([ ntaa) g0 dada) (-t.0a
¢ \Jaxa@

/cxan(“’d) (/G M,T,q(t)(~t,1) dt) dada

n(a,a) M, T,g(f) da da

(a,a)n(a,a)M_,T,¢(t) da da

/

= / n(a,a)ToM_o§(t) da da
G
J

(—a,a)n(—a,a)M,T:g(t) da da

The general case follows from the sequential density of M'(G) in M*°(G), where

M®>(@G) is endowed with the weak* topology. O
The following result explains the meaning of the term ”spreading”.
Proposition 3.5.6. Let g € M (G).
(a) supp Kg C supp g + mg(suppn), where g : G X G — G is the projection map.

b) su I/C\g C supp g + wa(suppn), where 75 : G X G — G is the projection map.
pp a n a
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Proof. (a) Let ¢ € C°(G) with supp ¢ N (supp g + 7¢(suppn)) = . We have

(Kg,0) = (0, V9)

_ / n(a,a)(MaTog, &) da da
Gxé

= /Gxan(a’&) (/G(t,&)g(t—a)malt) da da
= /7r G(suppmxan(a’ a) < /Suppw(t,a)g(t—a)mdz) da da

= / n(a,a) ( / (t,a)g(t — a)o(t) dt) dada = 0.
7 (suppn)xG supp g+mg(suppn)

(b) The result follows from (a) and Proposition 3.5.5. O
The spreading representation has the following tensor product property.

Proposition 3.5.7. Let n, € MY (Gy x G1) and 1y € M (Gy x Gs). Let Ky be the
operator in O1(G) with spreading function ny. Let Ky be the operator in O (Gs)
with spreading function ny. Let K be the operator in O>'(Gy x Gy) with spreading
function m; @ nz. Then K(g1 ® g2) = (K1g1) ® (Kaga) for all g1 € M*>(G,) and

go € MOO(G2>

Proof. Suppose first that g, € M'(G,) and go € M'(G3). We have

K(g1 ® g2)(t1,t2) = /  mlay, ar)na(ag, az) - -
G1><G2><G1><G2

M, a9)Ta1,a0) (91 @ g2)(t1, t2) day day day dag
= (/ N nl(a’lvdl)M&1Talgl(tl)dal ddl)
G1 ><G1
(/ R T]Q(CLQ, &Q)M@QTangg(tg) dCLQ d&g)
GQXGQ

= K191(t1)K2g2(t2).
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For the general case, take a sequence in M'(G;) converging in the weak* topology of
M™>(G) to g;. Similarly, take a sequence in M!(G5) converging in the weak* topology
of M>(G3) to go. The result follows from Proposition 2.4.22 and Proposition 3.2.7.

O
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Chapter 4:

Identification of Operators

4.1 The Identification Problem

Let X and Y be Banach spaces. Let O be a Banach space of bounded linear
maps K : X — Y. Let g € X. Consider the evaluation map e, : O — Y defined
by e, = Kg. We say that O is weakly identifiable by g if e, is injective [PW15a].
We say that O is strongly identifiable by g if e, is continuous with a bounded inverse
[PW15a]. We shall also use the term ”stable” to mean ”having a bounded inverse”
[PW06a].

We first study the finite dimensional instance of the operator identification
problem. Apart from being of interest in its own right, the finite dimensional theory
forms the basis of the general infinite dimensional theory via a discretization scheme.

Consider a finite abelian group A. Recall that A = A. Observe that all of the
function spaces that we have studied on ELCA groups coincide in this case with the
|A| dimensional vector space C*.

Let n € CA%A, The operator K corresponding to the spreading function 7 is
defined as follows. Let g € C*. Let A(g) be the matrix whose columns consist of the

Gabor system generated by g, i.e., the |A|x|A[|* matrix with columns {M;Thg}, - ci-
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If we specialize (3.5.1) to the present case, we see that Kg = |A|71A(g)n. The factor
|A|~! appears because the measure of A x Ais |A.

Let S C A x A. Let Os be the set of all n € CA*A with suppn € S. Let
g € C*. Consider the evaluation map e, : Og — C*. The matrix representation
of e, is precisely |A|7'A(g)s, where A(g)g is obtained from A(g) by removing those
columns corresponding to (A x ,&) \ S. In particular, Og is identifiable by ¢ only if
|S| < |A] or, equivalently, p,. :(S) < 1. Therefore, the condition s, 7(S) < 1 is
necessary for the identifiability of Og. We next study to what extent this condition
is also sufficient.

We interrupt our main discussion to make some definitions. Let R be a complex
n X p matrix. The spark of R is ¢+ 1, where ¢ is the largest m < p such that every set
of m columns of R is linearly independent [DE03]. The matrix R is called full spark
if the spark is n + 1 or, equivalently, p > n and every n X n minor of R is invertible
[PW15b].

Let g € C¥N% The matrix A(g) is defined as follows. Let wy = e2™/N. Let

Wy be the N x N discrete Fourier transform matrix

1 1 1
1wy wh
(WI]G])]]?\{qZO =
N— N-—1)2
1 wy ! ng )

Let Ti(g) be the N x N diagonal matrix

diag(g(k),g(k+1),...,9(k —1)).
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Then

A(g) = (To(g)Wn | T (@)W | -+ | Tnoa(g)Wn).

The matrix A(g) has the following remarkable properties.

Theorem 4.1.1 (Lawrence-Pfander-Walnut [LPWO05]). Suppose that N is prime.
The product of all K x K (1 < K < N) determinants of A(g), interpreted as a

polynomial in the indeterminates g(0),...,g(N — 1), does not vanish identically.

Theorem 4.1.2 (Malikiosis [Mall5]). The product of all N x N determinants of
A(g), interpreted as a polynomial in the indeterminates ¢(0),...,g9(N — 1), does not

vanish identically.

The complement of the zero set of the polynomial in Theorem 4.1.2 is a dense
open set of full measure. For every ¢ in this complementary set, every N x N minor
of A(g) is invertible, i.e., A(g) is full spark. In particular, for S C Z/NZ x (Z/NZ) ",
the condition |S| < N is sufficient for the identifiability of Og.

If A is not cyclic, then, for S C A x A, the condition ty 2 (S) <1 may not be

sufficient for the identifiability of Og. Counterexamples exist even for Z/27 x Z/27

[Pfal3a]. The discrete Fourier transform matrix for Z/27 x Z /27 is

1 1 1 1
1 -1 1 -1
1 1 -1 -1 |
1 -1 -1 1
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where the elements of Z /27 x 7 /27 have been ordered as

(0,0),(0,1),(1,0),(1,1).

Let g € CZ/22XZ/2L et

(Cl762;c3yc4) = (g<070)ug(07 1)7g<170>7g(17 1))

The translations of g as we run through

(0,0),(0,1),(1,0),(1,1)

correspond to the columns of the matrix

Cl C C3 (4
Ca C1 C4 C3

3 €4 C C2

Cy C3 Co2
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Then

i C &1 Ci Ca (3 C2 C2

Ca —Cp Cp —Cp € —C C —(C

c3 €3 —C3 —C3 C C —C —C4

C4 —C4 —C4 C4 C3 —C3 —C3 C3

C3 C3 C3 C3 C4 (4 C4 Cy

Cy —C4 Cy —C4 C3 —C3 C3 —C3

i —C1 —C C2 C2 —C2 —C2

Cg —Cy —Cy €3 € —C —C
Of the (146) = 1820 4 x 4 determinants of A(g), 240 of them are identically zero.
For example, the determinant of the matrix corresponding to columns 1,2,5,8 is
identically zero. Therefore, Z/27 x 7./27 x (727 x 7./27) has 240 subsets S with
|S| = 4 for which Og is not identifiable. However, there are additional conditions we
can impose on S C Z/27 x Z/27 x (Z/27 x Z/2Z) to guarantee the identifiability
of Og. We give one example.

Let ¢ € C%/?2. Then
o o 1 ¢
c1 —c1 cg —Co
The matrix A(c) is full spark if and only if coci(co — ¢1)(co + 1) # 0. Let ¢ be

chosen so that A(c) is full spark. Let I' = Z/2Z x {0} and A = {0} x {0}. Then
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't = {0} x Z/27 and A+ = Z/27 x 7./27. Note that AL/T' = 7Z/27. Let

g = Z CUL_H_"TUL Z Tw5g.

v +TEeAL/T wer

Then
(9(0,0),9(0,1),9(1,0),9(1,1)) = (co, c1, o, ¢1)-

Let S C Z/27 x 7)27 x (Z)2Z x Z./2Z) . By Theorem 4.4.5, Oy is identifiable by g
if and only if (a) the translations of S by I' x A are disjoint, and (b) no three of the
translations of S by A+ x I'* have nonempty intersection. We used Mathematica to

numerically verify Theorem 4.4.5 in this particular case. Note that

Co Co Co ¢ G (O C1 C1
i —C C1 —C1 Cyp —C(Cp Co —Cp

Co Co —Cp —Chp C1 C1 —C1 —C1

¢ —C —C (€ ¢ —C¢ —C (g

Co Co Co G €1 C1 C1

i —C C1 —C1 Cyp —Cp Co —Cp

ch ¢ —C¢C —C¢ €1 ¢ —C —C

¢ —C —C (€ ¢ —C¢ —C C(

Of the ('}) = 1820 subsets of Z/2Z x Z/2Z x (Z/2Z x Z/2Z) " of size 4, 576 of them

satisfy both (a) and (b). Each of the corresponding 4 x 4 determinants belongs to
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the list

i—ch(Q)c%, +8cqcy(co — ¢1)(co + ¢1), ﬂ:8cocl(cg + ),

+4(co —c1)*(co +c1)?,  Fd(co—e1)(co+ca)(ch+c3), 4(ck + )2

Since A(c) is full spark, none of these are equal to zero. Therefore, for each of
these 576 subsets S, Oy is identifiable by ¢, as predicted by Theorem 4.4.5. For the
remaining 1244 subsets of size 4, the corresponding 4 x 4 determinants are all zero.
Therefore, for each of these 1244 subsets S, Og is not identifiable by ¢, as predicted

by Theorem 4.4.5.

4.2 The Zak Transform and Quasi-Periodization

Let T be a lattice in G as described in Section 2.5. Let D be the canonical
fundamental domain of I" as described in Section 2.5.

Let f € M*(G). We define the Zak transform of f as

Zrfla,a) =) fla+w)(~w,a)

wel
for a € G and a € G. (See [Gri01, Chapter 8] and [Gri98] for a more comprehen-
sive discussion of the Zak transform.) By Proposition 2.6.27, this series converges

uniformly absolutely. Therefore, Zr f is continuous.
Proposition 4.2.1. The Zak transform has the following quasi-periodicity property:
(a) Zrfla+k,a) = (k,a)Zrf(a,a) (kel).

(b) Zefa,a+kY) = Zrfla,a) (KX eDb).
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Proof. (a)

Zrfla+ka) =Y flatk+w)(-w,a)

=" fla+w+k)(—w—k,a)(k,a)
(k,a)Zr f(a,a)

(b)

Zrf(a,a+ k) = Zfa+w (—w,a+ k*)

= fla+w)(~w,a)(—w, k")
=Y fla+w)(~w,a)
= Zrf(a,a)

]

Since Zrf is determined by its values on D x D+, we identify Zrf with its

restriction to D x D+.

Proposition 4.2.2. The Zak transform has the following diagonalization property:

ZrTpyMy,. f = M(kl,—k)Zl"f (k el kt e FJ_)
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Proof.

ZrTi My f(a,a) = Y TeMye f(a+ w)(~w, )

_ ;M,&f(a +w — k) (—w,a)

- ;(a +w—k, k) fa+w - k)(~w,a)
zzgmxﬂfm+w—%w—w+kﬁx—h®
= (a, k) (—k,0) > fla+w — k)(—w + k,d)

wel

= M+ —y2Zrf(a, ).

For a € G, the function w — f(a +w) on T is in ¢}(T") C ¢*(T). By the

Plancherel theorem,

Sl up= |

|
wel’ G/T+

> fla+w)(—w,a)d(a+T)

- / \Ze fa,@) P d(a + T
G/rt

for all @ € G. Then

s(T) /G/F /@/FJ— |Zrf(a,a)]"d(a+T")d(a+T) =

s(T) /G/F2|f(a+w)|2d(a+1“) _

wel’

JALGIRD

If we normalize the Haar measure on G/I'x G/T'* to have total measure s(I'), we have
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shown that || f|l2 = || Zrf]]2- Since M'(G) is dense in L*(G), Zr extends uniquely to
an isometric linear map from L2(G) to L2(G/T x G/T'L).

In fact, this map is surjective as follows. Since G/I" is compact, {Myr 1 r}ptert
is an orthonormal basis for L*(G/T"). In other words, {M;,1 1 p};1epe is an orthogonal
basis for L?(D). Then {TyM;:1p}rerprtere is an orthogonal basis for L*(G). It fol-
lows from the diagonalization property of the Zak transform and the following lemma
that the Zak transform maps {Tp My 1p}rerprers onto {My, _x1ylpypt brer piert,

and this latter set is an orthogonal basis for L*(D x D4).
Lemma 4.2.3. Zrlp =1p.pe.

Proof. Let K1 C Ky C -+ C D° be compact sets with D° = |J K. Let ¢; € C2°(D°)
with 0 < ¢; <1 and ¢; =1 on K;. Clearly, ¢ — 1p in L*(G). Then Zr¢p; — Zrlp
in L?(D x D*). Passing to a subsequence, we can assume that Zri; — Zr1p almost
everywhere. Since supp; C D°, Zri);(a,a) = ;(a) for all a € D and a € D*. The

result is now immediate. O

Example 4.2.4. Let g = > _.T,0c. By Proposition 3.3.3, this series converges in

wel
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the weak™® topology of M*°(G). By Proposition 3.1.11,

V;]f(a, d) = <f7 MdTag>

= <fa MdTa Z Tw5G>

wel’

= <f7 Z M&TaTw6G>

wel’

= Z<f7 M&TaTw6G>

wel’

=Y flatw)atw,~a)

wel’

= (—a,a)Zrf(a,a).

In particular, Zr f is bounded.

Quasi-Periodization

We next study the concept of quasi-periodization introduced in [PW15b]. Let
A be a lattice in G as described in Section 2.5 such that A C T't. Let = be the
canonical fundamental domain of A as described in Section 2.5. In thinking of I" and
A, one should keep in mind Figure 4.1 and refer to it as needed for the remainder of
this chapter.

Let n € MY(G x G). We define the quasi-periodization of 7 as

QPran(a,a) = Z Z n(a+w,a+v)(—w,a)

wel vEA

for a € G and a € G. By Proposition 2.6.27, this series converges uniformly abso-

lutely. Therefore, QPr zn is continuous. It is immediate from the definition that
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)

At r G
Figure 4.1: The lattices I" and A.

QPr an is quasi-periodic, i.e.,
QPran(a+k,a) = (k,a)QPran(a,a)  (keT)

and

QPran(a,a+ ) = QPran(a,a) (L eN).

Note that the inclusion A C I'* is crucial here. Since QPr 7 is determined by its
values on D x Z, we identify QP an with its restriction to D x =.
Proposition 4.2.5 and Proposition 4.2.6 below will be used in the proof of The-

orem 4.4.5.

Proposition 4.2.5. Quasi-periodization has the following diagonalization property:

QPF,AM(kL’gL)T(k7g)77 = M(k¢7,k+g¢)QPp’A77 (k el kt e FJ‘, (e, ¢+ e AJ‘).
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Proof.

QPraMpr oy Tikoyn(a, a) = Z Z Ms g1y Tion(a +w, a + v)(—w, a)

wel’ veA

=> ) (a+w k) atv)--

wel vEA

A

na+w—k,a+v—"L)(—w,a)

— ZZ(“7 KDt a) - -

wel veEA

nla+w—k,a+v—~0)(-w+k,a)(—k,a)
= (a, k) (—k + 0+,4)QPr an(a, d)

= M(ki_7_k+gl) QPF,AU(C% d)

Proposition 4.2.6.

~

XMy T,y = (=0,0) Moy T 5y (X7)-

Proposition 4.2.7. Suppose that ji., a(suppn N (suppn + (k,£))) =0 for allk € T'

and 0 € A with (k,¢) # (0,0). Then

|2 = / 0Py a0, 8)|? dad.
Dx=
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Proof.

/ |QPF7An(a,&)|2dad&:/ |ZZn(a+w,d~|—v)(—w,&)|2dad&
Dx= Dx=

wel veEA

:/ > Inla+w,a+v) dada
Dx=

wel vEA

~ [ Il a)P dada
GxG

= [Inll3.
O

Example 4.2.8. Let h = > 1> s Tww)0qya- By Proposition 3.3.3, this series

converges in the weak* topology of M>°(G x @) By Proposition 3.1.11,

V]ﬂ]((l, da d? 0) = <7]7 M(d,O)T(a,d) h>

= (1, Ma0)Tiaay D > Tww)Ocxe)

wel’ veA

= (n, Z Z Ma,0)T(a,a)T(wv)0ck @)

wel veEA

=Y > 0 M) s T dana)

wel veEA

=>_ > natwa+v)(a+w,—a)
wel’ veA

= (—a,a)QPran(a,a).

In particular, QPr a7 is bounded.
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4.3 Discretization of Operators

Let I" be a lattice in G as described in Section 2.5. Let D be the canonical
fundamental domain of T' as described in Section 2.5. Let K € O°!(G). Recall that
x(a,a) = (a,a) for a € G and a € G. The following result generalizes [PW15b,

Lemma 3.2].
Proposition 4.3.1. Let g =, 1 Twoc. Then ZrKg = pg(D*+)QPrre (Xni)-

Proof. Let f € M'(G). We have

(g, ) = (e, Vo f)
= (X7, Zr f) (4.3.2)

- / x(a, @) (a, 8)Zr f (@, @) da da
Gx@

:/ . LZ > xlat+w,a+w)pcla+wa+w)- (43.3)
G/TxG/T

wel wltel+

Zrfla+w,a+wt)d(a+T)d(a+1")

:/ > > xatwatwtplatwatwt) - (4.3.4)
G/TxG/T+ wel wlerl
(—w,a)Zrf(a,a)d(a+T)d(a+TF)
= / _ QPrri(xnx)(a,a)Zr f(a,a) d(a+T)d(a+T7)
G/TxG/T+

= <Q7)F,I‘l (XnIC)v ZFf>7

where (4.3.2) follows from Example 4.2.4, (4.3.3) follows from (2.5.1), and (4.3.4)

follows from the quasi-periodicity of the Zak transform. Since the Zak transform is
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an L? isometry, we have

(ZrKg, Zr f) = ng(DH){(QPrr (xnk), Zr f).

Here, the inner products are taken with respect to the unit Haar measure on G/T" x
G /T, The factor ug(D*) appears because the Haar measure on G/T x G//T' must
be normalized for the Zak transform to be an L? isometry. Since M!(G) is dense in

LX(G), ZrM*(@) is dense in L2(G/T x G/T+). The result is now immediate. O
Lemma 4.3.5. nkr, = 407k
Proof. Let f,g € M'(G). We have

(KTag, f) = (i, Vg f)

= (M, T—a,0) Vo f)

= (Tla,0)nic; Vo f)-
O

Let A be a lattice in G as described in Section 2.5 such that A C I'*t. Observe
that the annihilator subgroup of I't /A is I' C A+. Tt follows that the dual group of
'+/A is A+/T. Since I't /A is finite, T+/A = A+ /T. The following result generalizes

[PW15b, Lemma 3.7].

Proposition 4.3.6. Let c € CM/ and

g = Z CUL+FT,UL Z Tw(SGf.

vl4TeAl/r wel
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Let ZpKg € CT/MXGXC be defined by
ZrKg(t+ +T,a,a) = (—0*,a)ZrKg(a + +,a).
Let mycrp € CAH/MXT/MxGXE pe defined by
Nera(v + 0w + A a,a) = (—vt, a4+ wh) QPralxmc)(a+ vt a+wh).

Then

ZrKg = pg(DH)A()N) ra-

Proof. We have

ZrKg= Y cuirZiKT,n Y Tude

vt4+ITeAL/T wel

u@(Dl) Z Coi4rQPrrt (XnICTUJ_)

vt4TeAL/T

= Mé(Dl) Z Cotyr QPrpt (XT(UL,O)TIIC)

vl4TeAL /T

= pg(DY) Z ot a1 QPr e (MooyTiwt 0)(X7k))-

vt4TeAL/T
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= ug(D")

= ug(D")

Z Cylyr Q731“,FL (M(O,’UL)T(’UJ‘,O) (X?’]K))((I, &)

vl4TeAL/T

Z Colqr
vl4TeAt/T
S st
werwierl
(e +w —vt, a4+ wh)(—w, a)
Z CUJ——FF' .

vh4TeAt/T

Z Z Z(UJ—yd“‘wL—FU)...

weT wl+Aelr+/A vEA
N L
xla+w—v-,a+w" +v)---

ncla+w—va+wt +v)(—w,a)

Z Z CUJ-JFF(UL,d—i—wJ‘)...

vl 4TEAL /T whAert /A

QP (k) (a — vt a4+ wh).
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Let ¢+ +T € A+/T. We have

ZFICg(a + gLa d)

:M@(DL) Z Z Cvi-‘rF(UL?&—}_wL)

vi4TeAL /T wt+AelL /A

QPra(xnc)(a+ - — vt a+ wh)

:/Lé(DJ‘) Z Z C,ULJFF(—’UJ', d + U}J‘) s

vi4TeAL /T wl+Ael /A

QPra(xnic)(a+ -+ vt a+wh)

ZNCA}'(DL) Z Z CZL—UL-FF(gL _ULJ&—i_wL)”'

vt 4+TEAL /T wt+AeTL /A

QPra(xnc)(a+ v, a+wh)

:N@(DJ_> Z Z CéifviJrF(gL»wJ_)(gl?&)(_ULvd+wl) T

vl4TeAL /T wl+Ael /A

QPra(xnc)(a+vh a+wh)

:M@(DJ—> Z Z (MwJ-+ATvJ-+Fc)€J-+F(£J_7 d)(_UJ_J a+ wJ_> U

vi+TeAL /T wl+Ael+L/A

QPra(xnc)(a+ v, a+w")

4.4 Sufficient Conditions for Identification of Operators

Recall the abstract operator identification problem described in Section 4.1,
where we studied the finite dimensional instance of the problem. We now formulate
the infinite dimensional theory. Recall that O (G) = M (G x G) C L*(G x G). We

endow ©O°!(G) with the L? norm induced by L*(G x G). In other words, for K €
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O=H@G), |K|l2 = ||nclla. For S € Gx G, let O1(G)|S be the set of all K € O%1(G)
with supp e € S. We consider the evaluation map e, : OG) — M'(G) C L*(G)
and its restriction e,4|S : O (GQ)|S — L*(G) for S C G x G. We emphasize that
both sides of e, are endowed with the L? norm.

Let I' be a lattice in G as described in Section 2.5. Let D be the canonical
fundamental domain of I' as described in Section 2.5. Let A be a lattice in G as
described in Section 2.5 such that A € I't. Let = be the canonical fundamental
domain of A as described in Section 2.5. Recall that in Section 2.5 we were not
particular about our choice of I'y and Dy. We now make the trivial choice: If A is
cyclic, let T'y = {0} or I'y = A. In general, make the trivial choice for each cyclic
summand. The geometry of I' is now as simple as possible, which is necessary for
the arguments in the following proof to go through. But also note that this is a very
minor technical point. We similarly specify A.

The following result generalizes part of [PW15b, Theorem 2.8].

Theorem 4.4.1. Suppose that AL /T is cyclic. Choose ¢ € CM/T so that A(c) is full

spark. Let

g = Z CUJ_+FTUL Z Twég.

vl4TeAL)T wel

Let S C G x G be measurable. Suppose that

Z Z Tsi (ke <1 (4.4.2)

kel LeA

and

D D Lspuipy <A/, (4.4.3)

tLent klert
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where the inequalities hold almost everywhere. Then O>Y(Q)|S is strongly identifiable

by g.

Proof. We first elaborate on (4.4.2) and (4.4.3). The statement that (4.4.2) holds
pointwise everywhere is equivalent to the statement that, if we partition S into pieces,
one piece for each square of I' x A, and translate all the pieces by I' x A to collect them
in D x =, the canonical square of I' x A, there is no overlap between the translated
pieces. If (4.4.2) holds almost everywhere, then the set of all points where there is
overlap of translated pieces is a set of measure zero. Let Sp a be the indexed collection
of all the translated pieces described above.

The statement that (4.4.3) holds pointwise everywhere is equivalent to the state-
ment that, if we partition S into pieces, one piece for each square of A+ x I't, and
translate all the pieces by A+ x I't to collect them in =+ x D+, the canonical square
of At x I't, there are at most |A+/I'| translated pieces overlapping at any point.
If (4.4.3) holds almost everywhere, then the set of all points where there is overlap
of more than |A*+/T| translated pieces is a set of measure zero. Let Sy. o be the
indexed collection of all the translated pieces described above.

Note that D x Z is the disjoint union of |A+/T||T+/A| = |A+/T|? translations of
=+ x D+, one translation for each index in (A+/T)x (It /A). For J C (A+/T)x (T+/A)
with |J] < |AL/T, let V; be the set of all (a,a) € E+ x D+ such that (i) if (¢+, k%) €
J, then (a,a) + (¢4, k) is contained in a unique translated piece in Sr ., and (ii)
if ((+ k) e (AY)T) x (T1/A)\ J, then (a,a) + (¢*,k*) is not contained in any

translated piece in Sp . In particular, (a,a) is contained in exactly |J| translated

133



pieces in Sy pi, but we are also keeping track of where in D x Z each such translated
piece would lie were it translated by the coarser lattice I' x A instead of the finer
lattice A+ x T't. Note that V; N'Vy = @ for distinct J, J' C (AL/T) x (I't/A) with
|J],]J'| < |A+/T|, and =+ x D+ \ |JV;, where the union is over all J as described
above, is a set of measure zero.

By Proposition 4.3.6,
ZrKg = ug(DH)A(ncra (K€ 0XH(G)S).

Consider J as described above. By construction, we can choose |A+/T'|? — |.J| entries
of My r o which necessarily vanish on V; independent of K € O°!(G)|S. Since |J| <
|A+/T’|, we can in fact choose |A+/T'|? — |A+/I'| such entries. For K € O>1(G)|S,
let M ..y be M p o with |[A+/T? — [A+/T| such entries removed. Let A(c); be A(c)
with the corresponding columns removed. Since A(c) is full spark, A(c); is invertible.

We now have
ZrKg = pg(DY)A(C) meray (K€ 0®Y(G)]S)

and

pe(D)meray = Ale); ZeKg (K € 0%4(G)|9)

on V. Let ay = ||A(c);'|l5" and b; = ||A(c),||2. Here, the norm is the Frobenius

norm. Then

pe(DF P ailngraslls < 1ZeKglly < ng(DH)*Wilncraslle (K€ 0®HG)IS)
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on V. Since ||771c,r,A,J”§ = ||”71<:,F,A||§ on Vy,
(D) 2a3llneralls < 1ZeKgll3 < pa(DH)205Inerall; (K € 0O4G)]S)

on Vj.
Let ¢« = mina; and b = minb;, where the minimum is over all J as described

above. Then
pa(D)a’Inerally < 1ZeKglls < ug(DF W ncrall; (K€ 0°HG)IS)
on |JV;, where the union is over all J as described above. In particular,
pa(DF)a e ralls < 11ZeKglls < pa(D)*W(Ineraly (K € OFHG)|S),
where the inequality holds almost everywhere on =+ x D+. By Proposition 4.2.7,
L meral= [ 10Pratu)@ )P dada = el (€ 0¥1(G)LS),
=ELxDL DxZ=
Since the Zak transform is an L? isometry,
[ ko= [ 1ZeKg(a, 0 dada = (DY)l (€ € OX(GS)
ZLxDL Dx DL
It follows that
pa(DH)alnlls < llegKll; < pe(DHPncllz (K € 0%HEG)]S).
We have shown that e,4|S is bounded and stable. O

Remark. Note that
laya(ED % DY) = pa(EH)pa(DY) = pe(E4)/pa(D) = 1/|AH/T].
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It follows that s, 5(S) < 1 in Theorem 4.4.1.

The following result generalizes [PW06a, Theorem 3.1].

Corollary 4.4.4. Suppose that G has at most one finite cyclic summand. Let S C

G x G be compact with Laya(S) < 1. Then O1(G)|S is strongly identifiable.

Proof. Tt suffices to specify I and A so that A+ /T is cyclic, and (4.4.2) and (4.4.3) are
satisfied. Since S is compact, we can satisfy (4.4.2) by making I" and A sufficiently
coarse. Note that as I and A become coarser, ' and A+ become finer. Since S is
compact with 1., 5(S) < 1, and p1, & is outer regular, we can make I't and A+ even
finer so that S is covered by at most |A*/I'| translations of =t x D+ by A+ x I't. We
thus satisfy (4.4.3). It remains to ensure that A /I is cyclic. Since there are infinitely
many primes, we can ensure that the elementary divisors of (Ag/I'r) x (Ag/I'1) X
(A7 /T'z) are distinct primes. The key observation here is that the sizes of Ag/T'g,
A% /T, and Az /T'z are unconstrained as I't and At become finer. If G has a finite
cyclic summand, then we also have to ensure that none of these distinct primes divide

the order of the finite cyclic summand. O
The following result generalizes [PW15b, Theorem 2.8] in full.

Theorem 4.4.5. Suppose that A~ /T is cyclic. Choose ¢ € CM/T so that A(c) is full

spark. Let

g = Z CUL+FTUL Z Tw(SG,

vl4Teal/r wel

Let SC G x G be open. The following statements are equivalent:

(a) (4.4.2) and (4.4.3) hold pointwise everywhere.

136



(b) O>1(G)|S is strongly identifiable by g.
(c) OY(G)|S is weakly identifiable by g.

Proof. We have already shown that (a) implies (b). That (b) implies (c) is trivial.
We show that (c¢) implies (a) via proof by contradiction. Suppose that (4.4.2) does
not hold pointwise everywhere. Then there exist (s, $) € S and (k,¢) € I'x A\{(0,0)}
such that (s, 35)+ (k,¢) € S. Let n € C(S) with n(s,$) =1, suppn+ (k,¢) C S, and
suppn N (suppn + (k,£)) = 0. Let K be the operator in O>!(G)|S with spreading

function ne =n — (k, €)M (_¢0)T (k0. By Proposition 4.2.6,

xe = xn — (k, OxM—e0)Tion = x1 — Mog)Ti0(xX7).-

By the diagonalization property of quasi-periodization,

QPra(xnk) = QPra(xn) — QPra(xn) = 0.

By Proposition 4.3.6, ZrKg = 0 and hence Kg = 0. Since K # 0, we have a
contradiction. Therefore, (4.4.2) holds pointwise everywhere.

Suppose now that (4.4.3) does not hold pointwise everywhere. Then there exist
(t,t) € (- x DF)° and J C A+ x T- with |J| = |AY/T| + 1 such that (¢,) +
(¢4, k%) € S for all (¢+, k) € J. Moreover, since (4.4.2) holds pointwise everywhere,
the elements of J belong to distinct equivalence classes in (A+/I") x (I'/A). Let
A(c); be A(c) with those columns corresponding to (A+/T') x (I't/A) \ J removed.
Since A(c) is full spark and A(c); has |A+/T| + 1 columns, dimker A(c); = 1. Let

o € ker A(c); be nonzero. Let 1) € C°((E+ x D4)°) with «(¢,#) = 1. Let H be the
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operator in O>!(G)|S with spreading function

Ny = Z a0 kD) (5 )M e 0 T geryd.
(e kLyeg

By Proposition 4.2.6,

XNH = Z a(fj‘, kL)(gL, /{ZJ‘)XM(_]CL,o)T(eJ—,kJ—)w
(¢ kL)ed

= Z a0, k) Mg oy Ty gy ().
(e kL)eg

Let (a,a) € =+ x D If (vt + T wt + A) € (AL/T) x (T'+/A) \ J, then (—vt,a +

wbH)QPra(xnu)(a+ v, a+wt) = 0. On the other hand,

(=0, 4+ kN QPra(xnw) (a + 0+, a + k*)
ZOé(KJ‘, kJL)(—EL, a+ ]{?L)M(OVZJ_)T(@_JCL)()@#)(CL + EJ‘, a+ ]{JJ‘)

=a(l, k) (x¢)(a, a)

for all (¢+,k*) € J. By construction, A(c)n; s = 0. By Proposition 4.3.6, ZrHg =
0 and hence Hg = 0. Since H # 0, we have a contradiction. Therefore, (4.4.3) holds

pointwise everywhere. O

4.5 Necessary Conditions for Identification of Operators

Our goal in this section is to formulate and prove a partial converse to Corol-
lary 4.4.4 as best as we can. We begin with a duality result for identification of
operators in the spirit of the Plancherel theorem. Recall that, for K € O°(G),

~

Kr is the operator in O°(G) with spreading function 7c,, where ni,(a,a) =
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~

(—a,a)nc(—a,a). Let S € G x G. Let Sy = {(a,a) € G x G : (—a,a) € S}.
The map K — Kr from O®(G)|S to O<1(G)|Sx is an L? isometric isomorphism.
Let g € M*°(G). By Proposition 3.5.5, the following diagram commutes.
O=HG)|S — L*(G)
mzc;l fl (4.5.1)
O=1G)|Sr — L*G)
Therefore, we have the following result.
Theorem 4.5.2. O<YG)|S is strongly identifiable by g if and only if (90071(@)|S;

15 strongly identifiable by g.

Let SCGxGandge M *(G). We would like to study under what conditions
O>1(@)|S is not strongly identifiable by g. To show that O°!(G)|S is not strongly
identifiable by g, it suffices to show that a subspace V of O°!(G)|S is not strongly
identifiable by ¢, where V is constructed so as to be much easier to work with. We

now carry out this program.

Lemma 4.5.3. Let K € OY(G). Then

NM T, KT M, = (b> a+ b)M(—&,—b)T(aer,ajLB)”K-
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Proof. Let f,g € M'(G). We have

(MyT KT Mag, f) = (KTuMag, Ty M_; f)
= <711Ca VTaMagT—bM—Bf>
= (e, (@ +b,a)Man T oy —a-iyVol)
= ((—a—b, d>T(a+b,&+5)M(_dv_b)n’C7 Vo f)

~

= <<b7 a+ b)M(—fh—b)T(a—&-b,&—&-l;)mC? ng>7
where we have used the covariance property of the STFT. O]

Let I' be a lattice in G as described in Section 2.5. Let D be the canonical
fundamental domain of I' as described in Section 2.5. Let I'. be a lattice in G as
described in Section 2.5. Let D, be the canonical fundamental domain of I'. as
described in Section 2.5. Suppose that there exists # € G such that D.+60 C D°. Let
nrr, € CX(G) with 0 <nppr, <1,nppr, =1on D.+6, and nprr, = 0 outside D°. We
denote by Dg the data that have just been described.

Let A be a lattice in G as described in Section 2.5. Let = be the canonical
fundamental domain of A as described in Section 2.5. Let A, be a lattice in G
as described in Section 2.5. Let =. be the canonical fundamental domain of A, as
described in Section 2.5. Suppose that there exists 0 € G such that = +6 C =0 Let
NAA. € C(‘fo(@) with 0 <maa, < 1,744, =1on Ec+é, and na a, = 0 outside Z°. We
denote by Dg the data that have just been described. (See Figure 4.2.)

Let P be the operator in O>*(G) with spreading function np = nrr, @ N ..

The following result generalizes [PW06a, Lemma 4.5(a)].
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Figure 4.2: D, x Z, and its translation by (6, 0).

Proposition 4.5.4. The linear map U : £.(T' x A x Tt x AL) — O%Y(G) defined by

Uo = ZZ Z Z o(w, v, wy, Vg )My sps T s PToy s M,

wel veA wleld vieAt
is bounded and stable. Here, (.(I' x A x 't x A}) is endowed with the L* norm.
Therefore, U extends uniquely to a bounded and stable linear map U : (2(T x A x Tt x

AL) — O*@G). Equivalently,
{Mv—&—wg- T—Ug- PTw—s—vg- M—wg- }(w,v,wé— WOE)EMXAXTLE AL

is a Riesz basis for its closed linear span in O*(G). Here, O*(G) is the set of all

Hilbert-Schmidt operators on L*(G); see [Shu01, Appendiz 3].

Proof. By Lemma 4.5.3,

M AT A PT ML = (_Ui_7U)M(wci,vcl)T(w,v)7/]P-

vtwg
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Let p(w,v,wt,vl) = (w, wl)o(w,v,wt, v:). We have

1Uall = llnusl3

- H ZZ Z Z w v, W, ’UCL)(_UchU)M(wé,vci)T(w,v)nPHS

wel' veA wlelt vlieAt

= Z Z || Z Z (w v wi_v Ui')(—Uj‘, U)M(wg-,vg-)T(w,U)n'PHg (455>

wel' veA  whelt vteat

=S 1>0 D plw,v,wh v Ty Mt wryne

wel' veA  wlelt vleAt

- ZZ || Z Z p(w v wc y Ue )M(wJ- vd) 777>||2 (456)

wel' veA  wlelt vlieat

=D le D> D plwv,wh v M wnylesl? (4.5.7)

wel veA wiell vleAt
> |1 5 plw, v, wr, v My vyl a3
= (De+0) % (Ec+0) cr Ve (ww)taxGll2
wel’ veA wEelt vieAt

_ZZ” Z Z (w, v, w, UL)M(wé,vé)1(D0+9)x(sc+é)Hg

wel' veA  wlelt vteat

- ZZ Z Z ||J w,v ’LUC » Ue )M(wi Ul)]l(Dc+0)><(Ec+é)”g (458)

wel' veA wleldl vieAt

= By (De X Ec)|lo]l3,

where (4.5.5) follows from the fact that the translations of np by I' x A have disjoint
supports, (4.5.6) follows from the translation invariance of the L? norm, and (4.5.8)
follows from the Pythagorean theorem. Let K be a finite subset of G such that
D C Uex(De+ k). Let L be a finite subset of G such that = C Urer(Ec +£). Note

that

Inp|* < Z Z Lpovkyx(zct0)-

keK (el
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We now go back to (4.5.7). We have

WWolz=>_> lne D > plw,v.wy,v) Mt o) lowalls

wel’ veA wtelt vleAl
1 2
I peanxzarn >, > plwv,ws vF) My lesl’
wel veA keK (el wtelt vieAd

=D 32200 > Y plwoswd v ) Mug vy Lipermx ol

wel veA keK leL  wlel}t vieAt

= ZZZZ Z Z o (w, v wc » Ve )M(wci,fuci)]l(Dc-i-k)x(Ec-f—Z)H%

wel veA keK LeLl wlelt vleAt

= |K]|Lltga(De x Zo)lo 3
We have shown that
tigya(De x EQlloll3 < Uoll3 < |K||L|pgya(De % Zo)llo]3.

In other words, U is bounded and stable. Since £.(I' x A x I'} x A}) is dense in
P(T'x AxTExAL), and both £2(I' x Ax 't x AL) and O?(G) are complete, U extends

uniquely to a bounded and stable linear map U : £2(I' x A x 't x AL) — O*G). O

Let J be a finite subset of I'x A. Let iy : £o(JxTExAL) — ((Tx AXTExAL) be
the inclusion map. Let V; be the image of U oi; in O°!(G). Note that J determines
the maximal spreading support of any operator in V;. Let S C G x G and g € M>(G).
Suppose that V; € 0°!(G)|S. Then we can restrict the identification problem to
V. More specifically, we can consider the stability of e, o U oi; = ¢4|S o U oy
rather than the stability of e4|S. Of course, if we wish to obtain a negative result,
J cannot be too small. To simplify matters even further, we define, if possible, a

bounded and stable analysis map V : L*(G) — (*(Z), and we consider the stability of

143



V oe,y|S oU oiy, which is controlled by how the entries of the matrix representation

of Voey|SoU oiy decay.

Lemma 4.5.9 ([KP05, Lemma 3.4]). Let ¢ € M*(G). There exists a nonnega-
tive continuous function r on G, decreasing faster than any polynomial, such that

|PM;Tg| <.

Proof. Suppose first that g € M'(G). We have

Pylt)] = / p(a, @) MaTog(t) da da
GxG

_ / e (@)nan (@)(t a)g(t — a) dada
GxG

- /G mr(@)g(t — o) da

/A nan.(a)(t,a)da

G

= [{nr.re, Teg)liaac ()]

< el gl are (94,4, (—1)]-

In particular,

[PM;Tog(t)] < [Inrr.

|| M Togl|aree |78 4. (=)

= |Ine.r s gl aree [a,8. (=)

We now lift the restriction that g € M'(G). Let {g;} be a sequence in M*(G) such
that g; — ¢ in the weak* topology of M*(G). Then PM;T,g; — PM;T,g in M (G).
Since the inclusion M'(G) C Cy(G) is continuous, PM;T,g,(t) — PM;T,g(t). By

Proposition 3.2.6, ||g;||ame < C. It follows that

[ PM;Tyg(t)| < Cllner.|lan[9a,a.(—1)]-
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We now define r(t) = C||nr.r. || |faa, (—1)| for t € G, and the result follows.

Lemma 4.5.10 ([KP05, Lemma 3.4]). Let g € M*>(G).

]

There exists a nonnega-

tive continuous function rx on @, decreasing faster than any polynomial, such that

(PM;Thg) | <77

Proof. Suppose first that g € M*(G). By Proposition 3.5.5,

Py(d)| = [Pra(d)]

/ (~a, a)er. (—a)aa (@) (a,
Gx G

/ (—a,a)np(—a,a)M,T:g(t) da da
GxG

£)g(t — a) da da

Note that the term (—a, @) precludes us from proceeding as in the proof of Lemma 4.5.9.

We have

o~ o o o —

~

[ﬁr,rc(&)nA,Ac (t—a)g(a) da
G

|, TiaA, G) |
< e, Linaacl| a1 9] aree

= [|ir.r Teniaac | a9 azes
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We can now proceed exactly as in the proof of Lemma 4.5.9 to obtain

(PM;Tyg) ()] < Crlliter. Tiina,

M1

even without the restriction that g € M*(G). We define 7#(t) = Cz||fir.r. Tii A,

M1
for { € G. See [KP05, Lemma 3.4] for the proof that rr decreases faster than any

polynomial. O
The following result is proved in [KP05, Lemma 3.5] and [Pfa08, Theorem 2.1].

Proposition 4.5.11. Let A : (.(Z%) — (*(Z%) be a (not necessarily bounded) linear
map. Let (aw k)p keze be the matriz representation of A with respect to the orthonor-
mal bases {Tydzatpcpa and {Ty0za}reza. Let T be a nonnegative Borel measurable
function on R, decreasing faster than any polynomial. Let N\ > 1. Suppose that

lag k] < F|AK" — k|l). In this case, there does not exist a bounded linear map

B : (2(Z4) — 2(Z%) with BA = I.

We next illustrate the abstract procedure described above in specific cases.

The Circle

The following calculations first appeared in [Civ15].

Let I' be the group of Kth roots of unity. Let I'. be the group of Lth roots of
unity, where L > K. Note that D = [0,1/K) and D, = [0,1/L). Let § = e™(/K=1/L),
Let nrp, € C(T) with 0 < nrp, <1, nrpr, =1 on D, + 6, and nrr, = 0 outside D°.

Let A = A, = Z. Note that Z = Z, = {0}. Let § = 0. Let ., = 0z.
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Let P be the operator in O°(T) with spreading function np = nrr, ® naa, =
nrr, ® 0z.
Note that I' 2 Z/KZ, T'y = LZ, and A+ = 0. By Proposition 4.5.4, the linear

map U : l(Z/KZ x 7 x ) — O*(T) defined by

N

Z Z k Py 4 p+qLPT k M—qL
€Z qEL

B
Il

0p

is bounded and stable. Note that 7]Mp+qL’pTwI;<M_qL = M(qLJ)T(w;;{’p)np.

Let g € M°>°(T). Let A; = Foe,oU. Recall that e, : 0°(T) — L*(T) is the
evaluation map. Let (ag kp.q))ccz, (kp.q)cz/kzxzxz be the matrix representation of A
with respect to the orthonormal bases {T:07 }ecz and {7k p.q)0z/ Kk zx2x7 } (kp.q 2/ KZx 22

We have

g (kp.g) = (AgT(kpg)0z/K2x2x2) (§)
= (Mp-&-qLPTw’;(M—ng)A(g)
= Tprqr(PTt M_419) (€)

= (PT; M_q9) (€ —p—qL).

By Lemma 4.5.10, there exists a nonnegative function rz on Z, decreasing faster than
any polynomial, such that |ag . pq)| < 77§ —p —¢qL). We extend rx from Z to R by
defining rz(z) = r£([x]) for x € R.

Let J = {(ko,po), (k1,p1), - ..} be a finite subset of T' x A such that A = |J|/L >

1. Let 7(x) = max‘j |8 re(A"Hx — Apj + 7)) for z € R. Note that 7 decreases faster
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than any polynomial. For 0 < j < |J| —1,

|a§7(kj,pj7q)| < 7’_7:(5 —Dj — qL)
=rr(A A=A+ 5 — (gl J| + 7))

<A = (qlJ] +7)).

Let iy : l(J X Z) — L.(Z]KZ x Z x Z) be the inclusion map. By Proposition 4.5.11,

Ag 01y is not stable. Equivalently, e, o U o4 is not stable.

Theorem 4.5.12. Let S C T x Z be open with purxz(S) > 1. There exists no

g € M>(T) for which ey4|S is stable.

Proof. In the above discussion, choose K large enough with L. = K + 1 so that S
contains L + 1 = K + 2 translations of D x = by I' x A. Let J be the corresponding
subset of I' x A. Then e; o U oiy = ¢,4|S o U oy is not stable for any g € M>(T).

Since U o i, is stable, 4|5 is not stable for any g € M*>(T). O

Corollary 4.5.13. Let S C Z x T be open with pzxr(S) > 1. There exists no

g € U>°(Z) for which e,|S is stable.

Proof. The result follows from Theorem 4.5.12 and (4.5.1). O

The Integers

As we saw above, the analysis over Z follows from the analysis over T via the

duality principle. Nonetheless, it is instructive to carry out the computations anew.

Let I' =T, = Z. Note that D = D, = {0}. Let § = 0. Let nrr, = dz.
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Let A be the group of Kth roots of unity. Let A. be the group of Lth roots of
unity, where L > K. Note that Z = [0,1/K) and Z, = [0,1/L). Let § = ¢m(/K-1/L),
Let naa, € C®(T) with 0 < naa, <1, gan, = 1 on Z,+ 6, and 7y 5, = 0 outside =°.

Let P be the operator in O°(Z) with spreading function np = nrr, @ naa, =
3z @ A A, -

Note that A = Z/KZ, 't = 0, and AL = LZ. By Proposition 4.5.4, the linear
map U : 0.(Z X /K7 x Z) — O°(Z) defined by

K-1
Uo = Z Z Z o(p, k, q)Mw;;(T,qLPTpﬂL

PEZ k=0 q€Z
. —kqL
is bounded and stable. Note that UMWI;(T,qLPTMqL = wp 1 M(quL)T(p’w;;()np.
Let g € (*(Z). Let A, = e, 0U. Recall that e, : O (Z) — (*(Z) is the evalu-
ation map. Let (ag (pr.q))ecz, (pk.qczxz/Kzxz be the matrix representation of A, with

respect to the orthonormal bases {T¢0z}ecz and {Tipk.q)0zx2/K2x2 } (pksq)cx 2/ K27

We have

e (phrq) = (AgTpkg)0zx2/K252) (§)
= (wa( T4 PTpqr9)(§)

= W];(E(PTPHMQ) (§+qL).

By Lemma 4.5.9, there exists a nonnegative function r on Z, decreasing faster than
any polynomial, such that |ag k¢ < 7(§+¢L). We extend r from Z to R by defining
r(z) =r([z]) for x € R.

Let J = {(po, ko), (p1, k1), ...} be a finite subset of I' x A such that A = |J|/L >

1. Let 7(x) = maxy:'al r(At(z —j)) for z € R. Note that 7 decreases faster than any
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polynomial. For 0 < j < |J| — 1,

|a€,(pj»kj:q)| <r(+ql)
=r(A' (A= j +qlJ|+ 7))

< F(AE+qlJ] + 7).

Let iy : l(J X Z) — L(Z x 2] K7 x Z) be the inclusion map. By Proposition 4.5.11,

Ag 01y is not stable. Equivalently, e, o U o4 is not stable.

The Real Line

Let « > 0and A > 1. Let ' = A = aZ and I'. = A, = (a/N)Z. Let
0=0=(\—1)a/(2)).

Let nrp, € CX(R) with 0 < nrr, <1, nrr, =1 on D.+6, and nrp, = 0 outside
De°. Let naa, € C’fo(}l/é) with 0 <nmpaa, < 1,724, =1on Ec+é, and n, 4. = 0 outside
Z°. Let P be the operator in O>!(R) with spreading function np = nrr, ® naa, -

By Proposition 4.5.4, the linear map U : {.(Z x Z x Z x Z) — O>*!(R) defined

Uo = Z Z Z Z o(k, L, p, @) Mea+pr/aT-gr/aPTratqr/aM—prja

k€Z LEZ pEZ q€Z

is bounded and stable. Note that

__—2milg\
nMZaw‘»p)\/anq)\/alkaa«kq)\/apr)\/oz =€ M(p/\/a,q)\/a)T(ka,Ea)nP'

Let ¢(x) = e ™ for & € R. Note that ¢ = ¢. Let N € Z with N > /a2

By Corollary 3.3.6, the linear map C}, : L*(R) — (*(Z x Z) defined by Cy(f)(s,t) =
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(f, Mox2/0Tix2(any@) 1s bounded. In fact, since A*/(a®?N) < 1, Cy is bounded and
stable; see [Gro01, Theorem 7.5.3].

Let g € M>=(R). Let A, = Cyo0e,0U. Recall that e, : O'(R) — L*R)
is the evaluation map. Let (a(s),(kp.q))(s,t)cZxZ,(k0p,q)czxZxzxz be the matrix rep-

resentation of A, with respect to the orthonormal bases {7{s+)0zxz}(sezxz and

{T(k:,ﬁ,p,q) 5Z><Z><Z><Z}(k,é,p,q)erZxeZ‘

Let J = {(ko,%),...,(kn-1,¢n-1)} € I' x A. It can be shown via calcula-
tions similar to the ones in [PW06a, p. 4819] that there exists a nonnegative Borel

measurable function 7 on R, decreasing faster than any polynomial, such that, for

‘a(svt)v(kj7€j7p7‘I)| S f(max{|)\8 - p|7 |)\t _'_ qN + j|})

Let iy : b(JXZLXZL) — L(Z XL XZxZ) be the inclusion map. By Proposition 4.5.11,

Ay 04y is not stable. Equivalently, e, o U o i; is not stable.

Theorem 4.5.14 (Pfander-Walnut [PW06a, Theorem 4.1]). Let S C R x R be open

with gy 5(S) > 1. There exists no g € M*®(R) for which ey|S is stable.

Proof. In the above discussion, choose o > 0 and A > 1 small enough with 202+ \* <
Py g (S) and N =1+ [A*/a?] so that S contains N translations of D x Z by I' x A.
Let J be the corresponding subset of I' x A. Then ejoUoi; = e,|SoUoi; is not stable

for any g € M>°(R). Since U oi, is stable, e,4|S is not stable for any g € M>°(R). O
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Product Groups

Let Dg, and Dg, be as described above. Let Py be the operator in O*'(G)

with spreading function np, = 7, r, . ® Na, A, .-

Let D¢, and Dg, be as described above. Let Py be the operator in O>1(Gy)

with spreading function np, = nr,r, . ® Na,,A,.-

Let P be the operator in 0! (G} x G4) with spreading function np = np, @np, .

By Proposition 4.5.4, the linear map

U: €Ty x Ty x Ay x Ay x i, x Ty, x Ap, x Ag,) = O™ (G x G)

defined by

Vo= 2.2 2 2 2. 2 2

wiEly woels viehs va€ha wi €T, wh €Tf, vl AL, vi €A,

L L L L
U<w1; Wz, V1, V2, Wy ¢, Wy ¢, V1 U2,c) T

Y-t —od ) PTlwn ot ws ot ) M—wk —wk)

1“ L 1
(U1+wl,c’v2+w2,c _Ul,c’_UZ,c

is bounded and stable. Note that

M, 1 1

M T PT
U (witwi watwy )" (ot g ) (wi el wa oy ) (et —wg )

:(_Uicvvl)(_viml&)M(wL L oot L)T(w1,zuzﬂn,vz)m’

1,c’w2,c7U1,c7U2,c

:(_Uicv Ul)(M(wfc,vtc)T(wLUl)nPl) ® (_U;:cv UQ) (M(wic,vic)T(wQ,vz)npz)'
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Let g1 € M*°(G) and g2 € M*(G3). By Proposition 3.5.7,

(UTwl,W2,v1,v2,wfp,wjmvfc,v2 C)5F1><F2><A1><A2><Fl ><I‘l ><AL ><AL )(gl ®92)

(UlT(wl ’Ul,wl U] c)éFl x A1 XFf ><Al ) (UQT(wQ ’U2,w2 V3, c)5F2XA2XF2 ><A )g :

In particular,

U(Ul ® T(’wg ’L)Q,’LU2 C,’L)2 c 5F2><A2><Fl XAJ‘ )(gl ® 92)

:<U10-]‘)gl ® (U2T’w2 UQ,w2 (,,UQ C)(SFQXAQXFL ><AL )92
for all o1 € £.(I'1 x Ay X Fic X Afc)'

Lemma 4.5.15. Let J; be a finite subset of I'y x Ay. Let iy, : 0.(J; X Fic X Afc) —
(D1 x Ay T X Af,) be the inclusion map. Let (ka, by, k3, 03.) € Tax Ao xTq X Ay
Let Ay = {(ka, la, kg ly)}. Let in, @ Le(As) — £o(Ty x Ay x Ty, x Ay,) be the
inclusion map. Let g1 € M™(Gy) and go € M*®(Gs). If eg, 0 Uy 01y, is not stable,

then eg 4, 0 U 0 (17, ®@14,) s not stable.

Proof. Suppose that eg g4, © U 0 (i), ® i4,) is stable. Then there exists C' > 0 such

that

Clloillz = Cllor @ Ty 1 kool )5r2xA2xri <Az, 2
S ||(](0-1 ® T(kg,fz,kj‘ ZL )5F2><A2><FJ‘ XAJ‘ )(gl ® 92)||2

2,¢?

- ||(U10_1)gl|| ||(U2T(w2,112,w2 eV C)(SFQXAQXFL ><A )92”2

for all o1 € £.(J; X ch X Af’ ). Dividing by ||(U2T(w2,v2,w2p,v20 5F2XA2XN XAL, )92”2,

we obtain that e, o U; o4y, is stable, a contradiction. ]
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Definition 4.5.16. We say that G has the finely tuned overspreading property if
for every open set S C G X G with Paxa(S) > 1, one can specify Dg and Dg, and
find a positive integer N so that (a) there exists J C I' x A with |J] = N and
V; C O=Y@G)|S, and (b) for every such J, e,oU oiy = €4S oU oiy is not stable for

any g € M>(G).

We have shown above that R, T, and Z have the finely tuned overspreading
property. It easily follows from the discussion in Section 4.1 that finite abelian groups

have the finely tuned overspreading property.

Theorem 4.5.17. Suppose that G| has the finely tuned overspreading property. Let
S C Gy x Gy x @1 X CA}’Q be open. Suppose that there exists (ag,as) € Gy X @2 such

that pg, @, (S(asas)) > 1, where
S(QQ@Q) = {(al,&l) € G1 X @1 : (al,ag,&l,dg) € S}

In this case, there exist no g1 € M™(G1) and go € M>(Gs) for which ey g4,|S is

stable.

Proof. Suppose that there exist g1 € M*>°(G1) and go € M>(G3) such that ey, g4,|5
is stable. Since (G; has the finely tuned overspreading property, we can specify Dg,,
Dg,, and J; € I'y x Ay finite so that V;, € O (G1)|S(ap4,) and ey, 0 Uy 0 iy, =
€g,|S(as,a2) © Ur © iy, is not stable. Let K; be the maximal spreading support of
any operator in V. By the tube lemma of topology concerning finite products of
compact spaces, there exist open sets W; C G x él and Wy C Gy X @2 such that

Wy x Wy C S, K1 C Wy, and (ag, az) € Wy, We can specify T'y and As so that there
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exists (]CQ,KQ) € FQ X AQ with DQ X EQ + (k)g,gg) - WQ. Let A2 = {(k2,€270,0)}.
Since ey, g4,|5 is stable, eg,94, © U 0 (i, ® ia,) = €405 © U 0 (i, ®i4,) is stable,

contradicting Lemma 4.5.15. [
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