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Functional areas of mammalian cerebral cortex seem positioned to 

minimize costs of their interconnections, down to a best-in-a-

billion optimality level.  The optimization problem here, 

originating in microcircuit design, is:  Given connections among 

components, what is the physical placement of the components on a 

surface that minimizes total length of connections?  Because of 

unfeasibility of measuring longrange “wirelength” in the cortex, 

a simpler adjacency cost was validated.  To deal with incomplete 

information on brain networks, a Size Law was developed that 

predicts optimization patterns in subnetworks.  Macaque and cat 

cortex rank better in this connection optimization than the 

wiring of comparably structured computer chips, but somewhat 

worse than the macroeconomic commodity-flow network among U.S. 

states.  However, cortex wiring conforms to the Size Law better 

than the macroeconomic patterns, which may indicate cortex 

optimizing mechanisms involve more global processes.   

 



  

 Cherniak et al  3 

 

 
 

Simple "Save wire" generative principles from combinatorial 

network optimization theory predict layout of sensory areas of 

macaque and of cat cerebral cortex.  The areas appear to be 

positioned on the cortex to minimize interconnecting wiring, in 

some cases to current limits of detectability.  This picture of 

large-scale component placement optimization in the cortex 

resembles earlier findings for ganglion layout in the nervous 

system of Caenorhabditis elegans (1, 2), and for optimization of 

neuron arbors (3, 4), but to orders of magnitude finer optimality 

(5, 6).  Computer searches of all of the tens of millions of 

alternative possible roundworm ganglion placements indicate that 

the actual layout of the nematode requires the least total 

wirelength for the nervous system's one thousand connections.  On 

the model of these worm ganglion searches, we have worked out 

methods for optimality searches of layouts of cerebral cortex 

areas:  To avoid difficulties of wirelength measurement, a more 

manageable adjacency cost was calibrated as a surrogate.  To 

detect optimization of subnetworks when the complete network is 

inacessible, and to distinguish local from larger-scale 

optimization mechanisms, a Size Law was articulated (7).   

 We present evidence that the cortex areas appear optimally 

placed, down to the limits of present computing resources.  If 

these types of results are confirmed, they constitute a 

predictive success story of recent quantitative neuroanatomy.  

This is a much finer degree of neuro-optimality than previously 

reported (e.g., 3, 5, 6).  We have also analyzed non-neural 

networks–-a benchmark computer microchip, and macroeconomic 
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patterns among U.S. states–-as a calibration of these methods.  

Some chip layouts minimize connection costs better than chance, 

but worse than the cortex layouts.  The economic network performs 

even better than the cortex, but apparently only via simple local 

processes.   

 Component placement optimization (also characterized as a 

quadratic assignment problem) has been a research focus in 

computer science for design of large-scale integrated circuits 

(8, 9).  Briefly defined, the problem is:  Given connections 

among a set of components, find the spatial layout of the 

components that minimizes total connection costs.  This task, 

like many other network optimization problems (e.g., Travelling 

Salesman), is NP-hard (non-deterministic polynomial-time hard).  

The formal concept of NP-hardness, and the related concept of NP-

completeness, need not be defined here (10, 11, 12); they have 

long been conjectured to be linked with a problem being 

intrinsically computationally intractable--i.e., not generally 

solvable without exhaustive search of all possible solution-

candidates.   

 Of course, a cerebral cortex is vastly more complex than the 

300-neuron C. elegans nervous system; it is also molded by 

experience much more extensively.  And, even when connections are 

reported between two cortex areas, connection lengths and 

densities are usually not available.  In addition, the two-

dimensional cortical sheet is intricately folded, so that 

measuring distance between two areas becomes a three-dimensional 

problem.  Observing the actual course of an axon bundle in the 
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white matter is yet another layer of difficulty.  Finally, 

widespread axonal bifurcation of corticocortical connections in 

cat and monkey visual systems has been reported, with estimates 

of branching ranging above 30% for some populations of projecting 

neurons (13).  Such a bifurcation can save around 10% of the 

corresponding length of two separate connections (14, 4).  

However, cerebral connection compendia only describe links 

between pairs of areas (15, 16); they therefore cannot 

systematically represent these branchings, and so remain 

inaccurate as a basis for computing wirecosts.  Is optimization 

still discernable through so many barriers?   

Adjacency Rule Costing   

 The adjacency rule is, If two components a and b are 

connected, then a and b are adjacent.  Two components are 

adjacent if immediately contiguous topologically (as are, e.g., 

U.S.A. and Canada).  The rule is a candidate for a network wire-

minimizing heuristic (17); in fact, it is also extensively 

confirmed for macaque and cat visual cortex areas, rat olfactory 

areas, and C. elegans ganglia (1, 2, 18, 19).  Conformance of a 

cortex layout to such a "myopic" adjacency rule is much more 

feasible to compute than its total wirelength cost:  Just compare 

interconnections and contiguities of the layout's areas, and 

score how many rule-violations occur.  (For example, in Table 1 

below, the seventh row "VOT" is {0, 2, 0, 2, 0, 1, 0}; it adds 2 

to the total cost of the actual layout, since two areas are 

connected (i.e., value greater than 0) but not adjacent (i.e., 

not shaded).)   
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How useful would such adjacency costing be?  The basic point 

remains, that component placement optimization is a 

computationally intractable, NP-hard problem; hence, a quick and 

dirty heuristic like the adjacency rule cannot provide a general 

solution to such a problem.  (In fact, as noted elsewhere (18, 

20), most of the worm's interganglionic connections are not to 

adjacent ganglia, but rather to more remote loci.  Similarly for 

the majority of connections in macaque and in cat cortex (see 

Table S7).)   

 So a first question would be, How closely correlated here in 

fact are layout wirecosts and adjacency performance?  As 

explained, we cannot expect to have accurate wirelength data for 

cerebral cortex.  However, another strategy is to use our earlier 

C. elegans databases as a testbed for such queries; a positive 

picture for the worm would motivate exploring a similar working 

hypothesis for the cortex.  In fact, the nematode layouts that 

perform best for the above simple adjacency rule also perform 

very well in terms of wirecost.  This type of comparison can be 

generalized:  Fig. 1 is a dispersion diagram for 100,000 randomly 

sampled worm ganglion layouts (21).  The amorphous cloud of 

points indicates that, generally, adjacency rule conformance is 

not an efficient means to good wirecost.  However, the narrow 

trail of points at the far lower left of the diagram suggests a 

special case:  extremely good--near-optimal--adjacency rule 

performance does correlate well with very good wirecost.  (See 

also Fig. 6 below.)   
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Fig. 1.  Adjacency rule conformance, vs total wirecost, of 100,000 C. elegans ganglion layouts 

randomly sampled from the set of all 11! possible layouts (2).  Correlation between adjacency 

rule performance and wirecost is not strong (r2 = 0.051); in general, the adjacency rule is not an 

effective means to good wirecost.  However, the small set of layouts best fitting the adjacency 

rule--the points at the far left--behave markedly differently:  they correspond closely to the best 

wirecost layouts.  (The larger point at the far left represents the actual, minimum-wirecost 

layout.)  Thus, good adjacency rule scores seem worth exploring as a surrogate for layout 

wirecost.  (See Fig. S1.)   

 

 It should be noted that the scattergram shows that merely 

connecting components to their neighbors will not optimize wire 

cost; only a layout that is optimized in turn for adjacency rule 

conformance will do that.  Hence, a regress:  optimal wirecost 

can be approximated via optimal adjacency rule conformance, but 

now the wirecost minimization problem has been replaced by 

another combinatorial optimization problem of the same NP level 

of computational complexity (22).  (In turn, adjacency 

optimization itself can be achieved via an evolutionary process 

such as a genetic algorithm--e.g., we have so implemented our 

GenAlg (23).)  That the worm's connection matrix should be just 
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such that the best adjacency rule layouts match the very cheapest 

wirecost ones--while the set of all others does not--may be an 

instance of the type of connection matrix finetuning we reported 

earlier (23) for a force-directed placement algorithm, i.e., that 

the worm's set of connections appears to be just such that it has 

relatively few local minima traps.   

Size Law   

 So, the first provisional conclusion is that very good 

adjacency performance is indeed worth examining as a feasible, 

surrogate index of connection-optimization for layout of cortical 

areas.  Another difficulty is that cortical connection and 

adjacency information is not complete:  For macaque (15) and cat 

(16), the anatomy is satisfactory for the visual areas, usable 

also for auditory and somatosensory areas, but only partial for 

frontal-limbic areas.  Therefore, any near-term optimization 

analysis of the cortex will not include the entire system, but 

only large subsets.  On the working hypothesis that the total 

system was perfectly optimized, what level of optimization would 

be expected for such a subset?  To begin with, the following Size 

Law can be conjectured: 

 If a set of connected components is optimally placed, then, 

the smaller a subset of the total layout, the less optimal 

it will tend to be.   

 

 The idea of a proof begins with the familiar observation, 

that global optimality need not yield local subsystem optimality; 

local means-ends sacrifices are often required for the best 
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overall solution.  Furthermore, as an isolated subset of the 

total optimized system gets smaller, its own local-global 

tradeoff constraints (e.g., connections to surrounding edges) 

will be likely to depart more and more from those of the total 

layout, and so the subset by itself is less likely to be as well 

optimized.  However, not all types of optimized networks will 

obey such a Size Law:  For instance, a uniform fabric mesh with 

just a regular, repeating pattern of connections between adjacent 

nodes--such as among wire intersections in chainlink fencing--

will show perfect adjacency-rule optimization for all sizes of 

subsets.  (See Fig. 2.)   

 Typical connection costs to be minimized are total 

wirelength, or violations of an adjacency rule.  For an n-

component layout, there are n! possible layouts.  Optimality of a 

given layout can be expressed in terms of the percentile rank of 

its cost relative to all other alternative layouts, i.e., the 

proportion of all layouts that have a lower cost.   
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Fig. 2.   Global vs local optimization.  A simple illustration that connection-minimization of a total 

system does not entail connection-minimization of its subsets:  Total system here consists of a 1-

dimensional array of movable components, 1 - 3, with fixed edge-terminal (vertical bar) at left.  

All connections are of equal cost per unit length (horizontal only).  Besides internal connection 2-

3, 1 and 2 go to left edge.  (A) A globally optimal layout (cost: 4).  However, if the system-subset 

is restricted to only components 2 and 3 with their outgoing connection to left edge, then the 2 

and 3 layout is (locally) suboptimal (cost: 3), compared with a layout with positions of 1, 2, and 3 

swapped (cost: 2), as in (B).  In contrast, the complete (B) layout is locally optimal for subsystem 

2 and 3, but at the expense of a higher cost for the total layout (cost: 5).   

 

 How do neural systems behave?  The Size Law can first be 

evaluated for the 11-component worm ganglion system, with total 

layout wirelength as the cost measure.  A nested series of 

ganglion subsets was generated, each composed of contiguous 

elements, proceeding from head to tail, from 4 to the full 11 

components.  The cost of each subset of the actual layout was 

compared with all possible alternative layouts of that subset of 

components.  (Components external, but immediately contiguous, to 

a subset are included in the analysis as fixed "edge" 

constraints.)  For the smallest set, 8.33% of all layouts are 

better than the actual layout; this performance monotonically 

improves, up to the full 11-component set, for which (as reported 

1 2 3 2 3 1 



  

 Cherniak et al  11 

 

 
 

earlier (2, 24)) no layout is better than the actual one.  In 

addition, when optimality--proportion of layouts better than 

actual--is plotted logarithmically against subset size, the 

descending curve closely approximates a straight line (r2 > 0.99, 

p < .001), suggesting the growth function is in fact a simple 

exponential one.   

 Mammalian cortex optimization is of at least as much 

interest as worm ganglion optimization.  Yet, as explained, 

connection length data are not in general available, and even in 

the best cases (macaque and cat), adequate information on 

connections and adjacencies mainly exists for sensory areas.  In 

addition, there is the double-bind that, according to the Size 

Law, component sets that are large enough to be well-optimized 

will tend to be too large for feasible search of all layouts.  We 

first evaluated the Size Law for 17 contiguous core visual areas 

of macaque cortex (see Fig. 3), with conformance to the adjacency 

rule as optimality measure.  For the macaque visual cortex areas, 

we constructed a matrix of ipsilateral intracortical connections, 

and a topological database of adjacencies among the areas (15, 

26).  Areas outside of the core set, but along the immediate 

periphery of the group, were treated again as fixed edge 

components.  See Table 1.  A nested series of compact subsets was 

generated, each composed of contiguous elements.  While actual 

cortical areas form a jigsaw puzzle of widely differing sizes and 

shapes, they are approximated here as uniformly interchangeable:  

For example, when V1 and V2 are swapped, V1 adjacencies are 

assigned to V2, and vice versa, while V1 and V2 each retain their 
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original connections.  (Thus, as also to a lesser extent for the 

worm ganglion problem, actual cortical layouts are in fact even 

being tested against some topologically impossible alternative 

layouts.)   

 

 

  

 

Fig. 3.  Parcellation of macaque cerebral cortex.  Connection-cost optimization analysis of layout 

of 17 core areas of the visual cortex (white), along with 10 immediately contiguous "edge" areas 

(dark gray):  Placement of the interconnected functional areas is evaluated for how well total 

interconnection costs are minimized.  120 connections are reported among the core areas and 

with the edge areas.  Core and edge areas are listed in Table 1 connection matrix below.  Rostral 

is to right.  (See Fig. S2.)  After Felleman and Van Essen (15, 25); areas MIP and MDP have 

been included in PO.  
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Table 1.  Combined connection and adjacency matrix for macaque visual cortex.  The series of 

17 core visual areas shown above in Fig. 3 are listed (V1 - CITv), in the order in which they are 

successively added to the analysis.  They are followed by the set of 10 edge areas for the total 

core (PO - TH).  Connections of an area to itself are excluded.  A cell with 0 indicates no known 

connection between the area of that row and of that column; 1 indicates connection in one 

direction between the two areas; 2 indicates two-way connection.  Shaded cell values designate 

topological contiguity of the two areas on the cortex sheet, as in Fig. 3 (26, 27).  (See Table S1.)  

(Adjacencies from Felleman and Van Essen (see note 15).  Adjacencies do not include 

"diagonals", where only corners of two areas are contiguous (e.g., V3a and LIP in Fig. 2); 

similarly for all analyses below.  (Because of incomplete information, the macaque visual cortex 

edgering has a gap at PS, 29, 30.))   
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V2 2
V3 2 2
VP 0 2 1
V3a 2 2 2 2
V4 2 2 2 2 2
DP 0 0 0 0 2 2
VOT 0 2 0 2 0 1 0
V4t 1 1 2 0 0 2 0 0
MT 2 2 2 2 2 2 0 0 2

MSTd 0 2 2 2 2 0 2 0 1 2
MSTl 0 2 0 0 2 0 1 0 1 2 0
FST 0 1 2 1 2 2 1 0 2 2 2 2
PITd 0 0 0 0 0 2 0 1 0 0 1 0 1
PITv 0 0 0 0 0 2 0 1 0 0 1 0 1 0
CITd 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
CITv 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 0
PO 2 1 1 1 1 0 2 0 1 1 2 2 0 0 0 0 0
PIP 2 1 2 2 0 2 2 0 0 2 0 0 0 0 0 0 0
LIP 0 0 2 1 1 2 2 0 0 2 2 1 2 0 1 0 0
7a 0 0 0 0 0 0 2 0 0 0 2 0 1 0 0 0 0

STPp 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 1 1
STPa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AITd 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2
AITv 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 1 2
TF 0 0 2 2 0 2 0 0 0 0 1 0 2 0 1 0 1
TH 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 1  

 
 

 Fig. 4A shows that the Size Law seems to apply well to the 

actual cortex layout, and does not hold for a corresponding 

scrambled calibration set.  The logarithmic scale of the y-axis 
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should be noted:  the Size Law curve fits a straight line well 

(r2 > 0.91, p < .001), suggesting, as for the much more complete 

worm ganglia subset series, a simple exponential growth function.  

It should be emphasized that the "total set" here consists of 

only 17 components of the entire ~73 area macaque cortical 

system, and does not include extracortical efferent and afferent 

connections.  The Size Law provides an account of how such an 

incomplete system would only attain an optimality ranking in the 

top 10-7 of all possible layouts, even if the complete system 

were in fact perfectly optimal.   
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Fig. 4.  Size Law for cortex areas.  In each case, a series of nested compact subsets of the set 

of cortical areas was generated, each consisting of from 4 to the full set of areas.  Each subset of 

the actual layout was compared with all possible alternative layouts of that subset for optimality; 

optimality-measure is conformance of the system to the adjacency rule (2).  (16 and 17-element 

sets were each compared only with random samples of 109 alternative layouts.)  (A) The system 

of components is 17 contiguous macaque visual cortex areas as in Fig. 3, with connections and 

adjacencies as in Table 1, and order of successive elements added as in Table 1.  (B) Similar 

analysis for 15 cat visual cortex areas.  (C) 14 cat cortex "metamodules" composed from 40 

Brodmann areas of visual, auditory, and somatosensory regions.  (See Figs. S3, S5, S6.)   
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In each case, the actual layout curve (diamonds) shows that smaller subsets rank approximately 

in the middle of their group of alternative layouts.  But, as subset size increases, optimality-

ranking of the actual layout consistently improves (with 1 or 2 exceptions in each series, p < 

0.02).  E.g., for macaque, fewer than one in a million of all alternative layouts conform to the 

adjacency rule better than the actual layout of the complete macaque set.  For comparison, each 

scrambled layout curve (circles) shows the corresponding analysis for layouts of the areas with 

their adjacencies randomly shuffled; no Size Law trend toward improving optimality is now 

evident.   

  

 We similarly analyzed placement optimization for all 15 

contiguous visual areas of cat cortex (along with a fixed edge 

zone of immediately surrounding areas) (Fig. S4).  From published 

anatomy (16, 28), we constructed a matrix of cat ipsilateral 

intracortical connections and a topological database of 

adjacencies among the Brodmann areas.  (Area SVA is included in 

17, ALG in 19; DP in EPp & AI, V in VP & AII, SSF in EPp; some 

boundary indeterminacies remain unresolved.)  (See Table S2.)   

The results (Figs. 4B, S5) confirm the picture for macaque visual 

cortex:  Again, there is a significant Size Law effect, with 

smaller subsets of the actual layout ranking only in the midrange 

among all possible layouts, but larger subsets performing 

progressively better in their relative ranking for adjacency rule 

optimality.  Optimality improves exponentially with subset size.   

 Naturally, these two visual cortex series raise the question 

of how much finer optimality even larger subsets of the actual 

layout attain:  For instance, as observed via simple random 
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samples of the extremely large total sets of all alternative 

possible layouts (29, 30).  For cat sensory cortex (visual, 

auditory, and somatosensory), anatomical data for 39 contiguous 

Brodmann areas was adequate for such an analysis.  When the 

subset was extended from the above visual 15 to 20 areas, a 

sample of a billion out of all possible 1018 layouts showed a 

rise of actual layout rank from 10-5 into the top 10-8 of all 

layouts.  (That is, only 3 layouts out of a billion sampled were 

better than the actual layout.)  For a 25-area subset, a billion-

layout random sample yielded no placements cheaper than the 

actual one, suggesting the actual layout's ranking may be too 

high to be detectable at this sample size.  Similarly no layouts 

cheaper than the actual one were found for 30 areas, and also up 

to 39.  While this is of course the most striking finding 

reported here, it should be interpreted with some care; to begin 

with, larger sample sizes are warranted.  For the 39 area cat 

cortex layout, we performed three separate random samplings, each 

of 100 billion layouts from the 1046 alternative possible 

layouts:  we found no layouts with better adjacency-rule 

optimization than the actual one.  However, with only 39 of the 

total 57 areas included in this analysis, the Size Law would 

suggest the 39 areas need not be perfectly optimally laid out, 

even if the total 57-component system were.  (In addition, of 

course, the neuroanatomical database inevitably still includes 

errors.)  We therefore constructed a simple genetic algorithm, 

along lines of one we had developed for the worm ganglion 

placement problem (23); it quickly finds layouts of the 39 areas 
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cheaper than the actual one.   

 

Metamodule Grouping   

 Of course, exhaustive search of all 57! alternative layouts 

of the 57 Brodmann areas of cat cortex (= 4 x 1076 layouts) would 

be cosmically unfeasible (2, 24).  Another sampling strategy is 

instead to unite and conquer:  Cluster the Brodmann areas of the 

actual layout into groups of topologically contiguous components, 

then search the smaller set of alternative placements of these 

locked-down "meta-modules" (see Table S3).  This strategy is 

based upon a Metamodule Conjecture:   

 If a set of connected components is optimally placed, then a 

set of metamodules, each consisting of a subset of those 

components in the same positions, is also optimally placed.   

  

 Figs. 4C (and S6) show Size Law optimization performance of 

a series of nested layouts of 14 metamodules composed of 40 cat 

cortical areas.  Each metamodule was grouped from adjacent 

Brodmann areas, all of the same modality (visual, auditory, then 

somatosensory); metamodules were assembled to have approximately 

equal numbers of areas, to be of approximately equal area, and to 

be each as compact as possible.  The main observation is that the 

full 14 meta-module layout now approaches the top ten-millionth 

level of optimization--comparable to that found for the worm 

ganglion system.  The Size Law curve again fits a straight line 

well (r2 > 0.97, p < .001).  The consistency of the entire Size 

Law trend here constitutes further convergent support for the 
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basic cortical optimality conclusion.   

Non-Neural Networks   

 As a further calibration of the methods here, we analyzed 

connection optimization of two types of non-neural systems:  a 

computer microchip, and macroeconomic commodity-flow networks.  

The chip was AMI49, the largest of the set of MCNC microcircuit 

benchmarks (31), which contains 49 blocks or modules--comparable 

to the number of functional areas in one cortex hemisphere.  We 

studied three AMI49 layouts of fully automatic design, with costs 

to be minimized:  (a) a function of layout area and maximum path 

delay (32); (b) a “blended” function of area and total wirelength 

(33); (c) total wirelength (34).  (See Figs. 5, S7.)  In each 

case, the central 15 blocks of the chip, along with the 

surrounding edge-zone of immediately contiguous blocks, was 

analyzed (see Table S4).  Again, placement of the interconnected 

areas was evaluated for how well total interconnection costs--

adjacency rule violations--are minimized, with the actual layout 

compared with alternative possible layouts.  The Size Law curve 

for the minimum-wirelength layout (c) showed the same pattern as 

for the cortex networks, although somewhat weaker; the full 15 

component subset attains an optimality-rank of 10-3 (see Figs. 6, 

S8).  Neither of the other AMI49 layouts showed a Size Law 

pattern, nor did either attain significant optimality.  (In 

comparisons with the cortex, it should be recalled that--unlike 

for chips--information on cortex wiring is still not complete.)  

So, for these calibration networks, adjacency rule conformance 

seems capable of distinguishing a target of wirelength 



  

 Cherniak et al  19 

 

 
 

minimization from some other related cost-measures.  And again, 

as for the scrambled layouts earlier, adjacency costing does not 

seem to inflate optimality rankings.  (See also Figs. 1 and 2 

above.)   

 

 

 

  

  

 

Fig. 5.  Integrated circuit network for calibration of optimality analysis:  AMI49 microchip, the 

largest of the MCNC set of benchmark circuits, with 49 modules (31).  Lin and Chang layout; cost 

to be minimized is total wirelength (34).  The central 15 blocks (white), along with the 

surrounding edge-zone of immediately contiguous blocks (dark gray), were analyzed.   Again, 

placement of the interconnected areas is evaluated for how well total interconnection costs--

adjacency rule violations--are minimized.  (See Figs. S7, S8, Table S4.)   
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Fig. 6. Size Law for three layouts of AMI49 chip.  In each case, the system of components is 15 

contiguous central blocks, as in Fig. 5 (connections and adjacencies for Lin and Chang are as in 

Table S4).  Optimality-measure is conformance of the system to the adjacency rule, with a layout 

scored in terms of its number of “all or nothing” violations.  A series of nested compact subsets 

of the set of blocks was generated, each consisting of from 5 to the full 15 areas.  Each subset of 

the actual layout was compared with all possible alternative layouts of that subset for adjacency-

rule optimality (14 and 15-element sets were each compared only with random samples of 109 

alternative layouts).  The curve for the Lin and Chang (34) layout (C) shows a similar but weaker 

Size Law trend as the cortex networks earlier; the full 15-component subset only attains an 

optimality-rank of 1.5 x 10-3.  Both the Esbensen and Kuh  (32) layout (A), and the Hong et al 

(33) layout (B), show no Size Law pattern.   

 

 The macroeconomic system studied was U.S. states (see Fig. 

S9).  The "connection"-cost to be minimized was combined "export 

+ import" commodity flow (in U.S. $) between non-adjacent units.  

(Since nearly all cells in the matrices have non-0 values, 

economic transactions above a threshold were analyzed, with 

cutoff set here to yield approximately the same connectivity 

density as for macaque and cat cortex above; see Table S7.)  
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Optimality-measure was conformance of the system to the simple 

"all or nothing" adjacency rule, with each layout scored in terms 

of its number of violations of the rule.  For U.S. interstate 

commodity flow, a core of 15 central contiguous states, along 

with a surrounding edge-zone of immediately contiguous states, 

was analyzed (35) (see Table S5).  We similarly analyzed as pilot 

data European international commodity flow among 8 countries 

(36).  The total US system attains perfect connection-

optimization.  The smaller European nation set shows a similar 

pattern.  (See Fig. S10.)  As calibration, a scrambled layout of 

the U.S. system shows no optimization.  This powerful performance 

of the optimization model (rather than a mere satisficing model) 

may appear to vindicate the wisdom of the hive, the "invisible 

hand" of laissez-faire economics.  Indeed, very fine component 

placement optimization may thereby seem a rather pervasive 

phenomenon.  However, each macroeconomic series completely 

departs from the Size Law pattern; in particular, smaller subsets 

already attain perfect optimality, with no alternative layouts 

better than the actual one.  So, optimality does not necessarily 

entail conformance to the Size Law.  This breakdown suggests the 

macroeconomic networks are only optimized via local processes, 

unlike the cortex (and some chip) networks.  In contrast, 

conformance of the cortex systems to the Size Law suggests they 

are instead "high-tradeoff" networks requiring longrange 

exchanges of local optimality for global optimality.   

* * * 

 For each cortical network above, the population distribution 
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of costs of alternative possible layouts conforms well to a 

normal distribution.  For each neural system, when connections 

to/from surrounding edges are excluded from the analysis, 

optimality of the actual layout decreases.  Conversely, when 

weighting information on connection strength is included in the 

adjacency-rule costing, actual layout optimality improves over 

simple all-or-nothing costing.  Similarly for r2 fit to the Size 

Law.  On an assumption that the more realistic the modeling, the 

more optimal a network should appear, these trends further 

confirm the optimality assessment.   

 The convergent set of "best of all possible brains" results 

reported here (see Table S6) raises the issue, Are complete 

mammal cortex layouts in fact optimal, as the total C. elegans 

ganglion layout appears to be?  As for minimum-volume neuron 

arbors (4), optimal cortex may be just an initial plan that can 

be modified and elaborated.  Natural next questions arise about 

optimization mechanisms, for instance, direction of causation--

from connections to positioning, or vice versa, or both.  

Although the point should be interpreted with some care, each of 

the cortex systems analyzed here shows better goodness of fit to 

an "If connected, then adjacent" hypothesis than to the converse 

hypothesis.  (The test consists of comparing, for each actual 

layout (see Table S7), its number of counterexamples to “If 

connected, then adjacent” with the number of counterexamples to 

the converse hypothesis; the comparison includes a correction for 

unequal populations of connections and adjacencies.  The 

scrambled calibration layouts show no bias in either direction.)  
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It is also worth noting that, for the C. elegans optimization 

problem, we have demonstrated simple mechanisms that proceed 

solely from connections to adjacencies--namely, a genetic 

algorithm, and also a force-directed placement algorithm (23).  A 

similar genetic algorithm was described above for cat sensory 

cortex.   

 This discussion has focussed upon neuroanatomy, upon 

minimization of biological connection-structures.  However, the 

above macroeconomic analyses really concerned abstract, 

functional "connections"--i.e., commercial transactions.  We 

thereby proceed from anatomy to physiology broadly conceived.  

The adjacency rule then generalizes, If components are 

"connected" in the wider sense of causal interrelation, then they 

are topologically adjacent.  (No action at a distance.)  For 

instance, the large-scale optimization landscapes of cortex and 

genome may be worth comparing:  the structure of the genome would 

be analyzed similarly as above.  Two genes might count as 

"connected" if they are co-activated--(approximately) 

contemporaneously expressed.  Contiguity would be interpreted as 

proximity of position in the 3-d genome structure.  In fact, a 

first step already towards such an approach may be recent studies 

of clustering of highly expressed genes in chromosomal domains 

(37).   
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