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Nowadays a vast amount of data is generated in Extensible Markup Language (XML).

However, it is necessary for applications in some domains to store and manipulate uncertain infor-

mation, e.g. when the sensor inputs are noisy, or we want to store data that is uncertain. Another

big change we can see in applications and web data is the increasing use of ontologies to describe

the semantics of data, i.e., the semantic relationships between the terms in the databases.

As such information is usually absent from traditional databases, there is tremendous op-

portunity to ask new kinds of queries that could not be handled in the past. This provides new

challenges on how to manipulate and maintain such new kinds of database systems.

In this dissertation, we will see how we can (i) incorporate and manipulate uncertainty in

databases, and (ii) efficiently compute aggregates and maintain views on ontology databases.

First, I explain applications that require manipulating uncertain information in XML data-

bases and maintaining web ontology databases written in Resource Description Framework (RDF).

I then introduce the probabilistic semistructured PXML data model with two formal semantics.

I describe a set of algebraic operations and its efficient implementation. Aggregations of PXML

instances are studied with two semantics proposed: possible-worlds semantics and expectation

semantics. Efficient algorithms with pruning are given and evaluated to show their feasibility. I

introduce PIXML, an interval probability version of PXML, and develop a formal semantics for it.

A query language and its operational semantics are given and proved to be sound and complete.

Based on XML, RDF is a language used to describe web ontologies. RDQL, an RDF query lan-

guage, is extended to support view definition and aggregations. Two sets of algorithms are given



to maintain non-aggregate and aggregate views. Experimental results show that they are efficient

compared with standard relational view maintenance algorithms.
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Chapter 1

Introduction

1.1 New Challenges in XML Databases

Over the last few years, there has been considerable interest in Extensible Markup Language (XML)

databases. A proliferation of semistructured data models have been proposed [64, 58, 76, 7], along

with associated query languages [3, 18] and algebras [6, 42]. XML is a simple but very flexible

markup language derived from SGML, which is now mainly used for exchange, transmission and

manipulation of data on the web [11]. XML tags are not predefined, which means that it gives

users flexibility to define their own tags according to their domains and applications.

Nowadays, while data is more often generated in XML for easier data transmission and

manipulation over the web, it is necessary for applications in some domains to store and manipulate

uncertain information. For example, this occurs when the sensor inputs are noisy. Another big

change we can see in applications and web data is the increasing use of ontologies to describe the

semantics of data, i.e., the semantic relationships between the terms stored in the databases. As

such information is usually absent from traditional databases, there is tremendous opportunity to

ask new kinds of queries that could not be handled in the past. This provides new challenges on

how to manipulate and maintain such new kinds of database systems. In this dissertation, I will

describe how we can (i) incorporate and manipulate uncertain information in databases, and (ii)

efficiently compute aggregates and maintain views on ontology databases.

In the following sections, I will briefly introduce the motivations underlying the above two

problems, my contributions and the organization of this dissertation.
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1.2 Uncertainty in XML

The semistructured data model has the advantage of not placing hard constraints on the structure

of the data. However, a particular semistructured instance specifies deterministic relationships

between objects. In cases where we would also like to avoid hard constraints on the object-

level structure, it is desirable to have a model that allows us to represent uncertainty over the

relationships between objects in the semistructured model. This uncertainty is necessary when

relationships between objects and values for attributes of objects are not known with absolute

certainty.

There are numerous applications (including financial, image processing, manufacturing and

bioinformatics) for which a probabilistic XML data model is quite natural and for which a query

language that supports probabilistic inference provides important functionality. Probabilistic in-

ference supports capabilities for predictive and ‘what-if’ types of analysis. For example, consider

the use of a variety of predictive programs[10] for the stock market. Such programs usually return

probabilistic information. If a company wanted to export this data into an XML format, they

would need methods to store probabilistic data in XML. The financial marketplace is a hotbed

of both predictive and XML activity (e.g. the FIX standard for financial data is XML based).

There is the same need to store probabilistic data in XML for programs that predict expected

energy usage and cost, expected failure rates for machine parts, and in general, for any predictive

program. Another useful class of applications where there is a need for probabilistic XML data is

image processing programs that process images (automatically) using image identification methods

and store the results in an XML database. Such image processing algorithms often use statistical

classifiers[44] and often yield uncertain data as output. If such information is to be stored in

an XML database, then it would be very useful to have the ability to automatically query this

uncertain information. Another important application is in automated manufacturing monitoring

and diagnosis. A corporate manufacturing floor may use sensors to track what happens on the

manufacturing floor. The results of the sensor readings may be automatically piped to a fault di-

agnosis program that may identify zero, one, or many possible faults with a variety of probabilities
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on the space of faults. When such analysis is stored in a database, there is a natural need for

probabilities. In addition to these types of applications, information extraction using probabilistic

parsing of input sources may also result in a semistructured instance in which there is uncertainty.

For example, the NSIR system for searching documents at the University of Michigan[70] returns

documents based along with probabilities. Likewise, Nierman and Jagadish. point out the use of

probabilistic semistructured databases in protein chemistry[61].

While there has been a great deal of work on supporting uncertainty in relational models

[12, 54, 56, 50, 19, 24, 33, 30], to date, there has been little work on supporting uncertainty

in semistructured models. There are a few exceptions including [16] and [61]. Dekhtyar et al.[16]

proposed a model that allows probabilistic information to be stored using semistructured databases.

My proposal does the opposite: I extend the semistructured data model so that paths in such a

model can include probabilistic information. More closely related to my work is the work of

Nierman and Jagadish[61], in which a tree-structured probabilistic database is proposed. I will

show that their model is a special case of my probabilistic semistructured PXML model.

1.3 Ontologies in XML

The World Wide Web Consortium (W3C) has recently designated Resource Description Framework

(RDF) as a web recommendation endorsed by approximately 300 companies, bringing it close to

the status of being a de facto standard for web semantics. RDF data is basically XML data written

in a specific structure with some specific tags defined to describe the ontology (relationships)

between resources. Though RDF has many complex features, the basic idea is to describe “resource,

property, value” triples specifying that a given resource has a given value for the described property.

RDF databases are expected to store such triples about vast numbers of web pages and other

information resources so that users can query the web using a sophisticated, database style query

language rather than using simple keyword search supported by most current web search engines.

This has caused a growing interest in maintaining databases of RDF data [71] for the purpose of

discovering web resources using a richer query language than that offered by current web search

3



engines. An indication of current interest in RDF is the RDQL query language from Hewlett

Packard[41], and its impressive (prototype) Jena RDF database system[43]. Other RDF query

languages include RQL[47] and SeRQL[62]. Methods to express RDF views with RQL were first

described in [79]. However, to date, the problem of incremental maintenance of materialized RDF

views has not been studied.

In this dissertation, I study the problem of efficiently maintaining views over RDF databases.

There is currently no industry-wide consensus on the best RDF query language. I have chosen to

build view maintenance algorithms on top of HP’s RDQL language as RDQL is one of the leading

industry contenders to become a standard RDF query language. The problem of maintaining RDF

views is different from that of maintaining views in XML databases, graph-structured databases

(GSDBs)[87], object-oriented databases and relational databases for several reasons. (i) GSDB

data such as XML assume a rooted graph model, whereas RDF databases assume a general graph

model. (ii) Materialized GSDB views contain a set of nodes, whereas RDF views are rich enough to

return not only nodes, but also graphs and other combinations. (iii) The method used to specify

views are quite different. These differences persist when considering object-oriented and relational

databases as well which in many ways are even less expressive than GSDBs.

1.4 Contributions

The first contribution of this dissertation is a flexible probabilistic representation for semistructured

data that supports arbitrary distributions over the relationships between an object and its children

and arbitrary distributions over the object’s value. As we will see, my model does not require

the semistructured instance to be tree structured; however, it does require that the probabilistic

dependencies are acyclic.

The second major contribution is a formal characterization of the probabilistic semantics of

the model. This connection is missing in previous approaches to represent probabilistic semistruc-

tured data. In particular, I propose two semantics - the first semantics (or “global” semantics) is

a possible-worlds-based approach that hypothesizes that the world is always certain, but it is us

4



who are uncertain about what is true. According to this semantics, a probabilistic XML database

instance is shorthand for a set of (ordinary) semistructured database instances. I show how the

definition of a PXML instance formally defines a set of “compatible” semistructured instances, and

how the PXML instance can induce a probability distribution over the set of compatible instances.

The second semantics (“local semantics”) exploits a factorization of the probability distribution.

I show several important results: (i) the local semantics can be embedded in the global semantics,

(ii) the converse is not always true - I identify conditions under which it is true, and (iii) I provide

a nontrivial construction for a Bayesian network that encodes the local semantics. This means

that for some simple queries, Bayesian inference can be used to reason with the local semantics

(but not the global).

The third major contribution is an algebra that supports querying probabilistic semistruc-

tured data, including selection, projection, and cartesian product (join can be handled as a com-

bination of cartesian product and selection). One of the important features of my PXML algebra

is that all operations occur directly on PXML instances.

The fourth major contribution is the introduction of aggregate operations on PXML in-

stances. I provide two semantics for PXML aggregate operators. The possible-worlds semantics

returns a set of possible answers to aggregate queries (together with associated probabilities). In-

tuitively, these possible answers correspond to the evaluation of the aggregate query in different

possible worlds. The second semantics is an expected value semantics. I then show how PXML

instances can be directly manipulated so that the need to explicitly compute compatible instances

is avoided. Pruning methods are also proposed.

The fifth contribution is a prototype implementation of PXML. I have conducted a suite

of experiments, which show that PXML can be effectively implemented. Experiments with PXML

aggregates show the performance of algorithms for both semantics with the clear outcome that the

expected value semantics is more practical to compute. On the other hand, pruning techniques

used in the possible-worlds semantics also produce good approximate answers in acceptable running

time.
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The sixth contribution is that I extend PXML to use interval probabilities rather than point

probabilities to represent uncertainty. The result is the PIXML probabilistic interval data model.

I then provide two alternative formal semantics for PIXML. The first semantics is a declarative

(model-theoretic) semantics. The second semantics is an operational semantics that can be used

for computation. In the formal W3C specification of XML, an instance is considered as an ordered

rooted tree in which cycles can possibly appear[80]. I assume that an instance is an acyclic graph -

this assumption will be needed to provide a coherent semantics to PIXML databases. However I do

not restrict attention to tree-structures. I also provide an operational semantics that is provably

correct for a class of queries over a large class of probabilistic instances called tree-structured

instances.

The seventh contribution is that I describe how to extend a commercial RDF language called

RDQL (proposed by Hewlett Packard) to support views and aggregations. I provide algorithms

called IMA, DMA, TMA, RMA to incrementally maintain views when insertions, deletions, triple

modifcations and resource modifications are made to an RDF database instance. I implement a

prototype of these algorithms and experimentally show that the my new algorithms are significantly

better than the use of standard view maintenance algorithms on relational representations of RDF

databases.

The eighth contribution is that I extend the problem of maintaining non-aggregate RDF

views to maintaining aggregate RDF views. I propose the CAA (Compute Aggregates Algorithm)

algorithm to efficiently compute aggregate operations such as COUNT,SUM,AVG,MIN,MAX and

so on. CAA can also handle GROUPBY queries. I subsequently define algorithms to maintain

aggregate views. These are views involving aggregate queries. I split aggregate functions into two

categories - distributive and non-distributive aggregates. I provide algorithms (called AMI and

AMD) to maintain aggregate views when insertions and deletions are made. In addition, I provide

methods to maintain aggregate views when triples are modified (called AMT) and when resources

(called AMR) are modified. I also note that RDF databases can be easily stored in relational form.

As a consequence, standard algorithms to maintain aggregate relational views can be implemented
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to maintain RDF views. I have implemented this strategy and compared it to my implementation

of AMI, AMD, AMR and AMT – my algorithms are much faster than performing view maintenance

on the relational version. The results show that, when the database is updated, my incremental

maintenance algorithms work much faster than a complete recomputation by an order of 10 to

1000 and about 1.8 to 1109 times faster than the relational implementation.

1.5 Organization

Chapter 2 describes the PXML model, algebra and aggregation. I first start with a motivating

example and propose the Probabilistic XML (PXML) model of probabilistic semistructured data-

bases. I define the semantics for probabilistic semistructured databases and propose an extension

of the relational algebra operators to apply to probabilistic semistructured databases. Then, I

describe a formal model of probabilistic aggregates with algorithms to compute them efficiently. I

then present experimental results to evaluate the efficiency of algorithms.

In Chapter 3, I show how to extend the PXML model to the PIXML probabilistic interval

data model which uses interval probabilities rather than point probabilities. I then provide two

alternative formal semantics for PIXML with an operational semantics for queries.

In Chapter 4, I first introduce the reader to the basics of RDF and RDF aggregates and

describe how to extend a commercial RDF language called RDQL (proposed by Hewlett Packard)

to support aggregations. I propose algorithms to compute aggregates, maintain non-aggregate

views and aggregate views of RDF databases. I then present experimental results which show that,

when the database is updated, my incremental maintenance algorithms work much faster than a

complete recomputation and the relational implementation.

I discuss related work in Chapter 5. Chapter 6 concludes this dissertation.
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Chapter 2

Probabilistic XML Model, Algebra and Aggregation

In this chapter, I describe the PXML model, algebra and aggregation. I first start with a motivating

example in Section 2.1. In Section 2.2, I propose the Probabilistic XML (PXML) model of prob-

abilistic semistructured databases. Then in Section 2.3, I define two semantics for probabilistic

semistructured databases. The first is a global semantics (in a sense to be made precise) while the

second is a local semantics. I show that the two semantics are equivalent. In Section 2.4, I pro-

pose probabilistic point queries, that return the probabilities that particular objects exist satisfying

some constraints. Then, in Section 2.5, I propose an extension of the relational algebra operators

to apply to probabilistic semistructured databases. I define the operations of select, project and

Cartesian product. I also give algorithms that exploit the local semantics, and result in efficient

computation of the results of these algebraic operations. Then, in Section 2.6, I describe a formal

model of probabilistic aggregates. Section 2.7 contains algorithms to compute probabilistic aggre-

gates efficiently. Section 2.8 contains experimental results that evaluate the efficiency of algorithms

implementing the PXML algebra and aggregation.

2.1 Motivating Examples

In this section, I provide two applications as our motivating examples used throughout this chapter

to illustrate my proposed PXML model, semantics, algebra, query and aggregate operators.

2.1.1 A Bibliographical Application

As our first running example, I will use a bibliographic domain. This example is rather simple,

but I assume it will be accessible to all readers. In this case, I assume that the uncertainty arises

from the information extraction techniques used to construct the bibliography. Consider a citation
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Figure 2.1: A semistructured instance for a bibliographic domain.

index such as Citeseer 1 or DBLP 2. In Citeseer, the indexes are created by crawling the web, and

operations include parsing postscript and PDF documents. Often, there will be uncertainty over

the existence of a reference (have we correctly identified a bibliographic reference?), the type of

the reference (is the reference a conference paper, a journal article or a book?), the existence of

subfields of the reference such as author, title and year, the identity of the author (does Hung refer

to Edward Hung or Sheung-lun Hung or many other tens of authors with “Hung” as their last

names or first names?). In such environments, uncertainty abounds.

Semistructured data is a natural way to store such data because for an application of this

kind, we have some idea of what the structure of data looks like (e.g. the general hierarchical

structure alluded to above). However, semistructured data models do not provide support for

uncertainty over the relationships in an instance. In this paper, I extend this model to naturally

store the uncertainty that we have about the structure of the instance as well. Furthermore, we will

see how my algebraic operations and query mechanisms can perform the following manipulations:

1. Find a list of authors (without titles, institutions, etc.) and return an object which allows

further querying.

1http://citeseer.nj.nec.com/cs/

2http://www.informatik.uni-trier.de/~ley/db/
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2. Merge two databases together.

3. Find the probability that a particular individual is the author of some book.

2.1.2 A Surveillance Application

Another example is a surveillance application where a battlefield is being monitored. Image

processing methods are used to classify objects appearing in images. Some objects are classi-

fied as vehicle convoys or refugee groups. Vehicle convoys may be further classified into individual

vehicles, which may be further classified into categories such as tanks, cars, armored personnel

carriers. However, there may be uncertainty over the number of vehicles in a convoy as well as the

categorization of a vehicle. For example, image processing methods often use statistical models to

capture uncertainty in their identification of image objects. Further uncertainty may arise because

image processing methods may not explicitly extract the identity of the objects. Semistructured

data is a natural way to store such data because for a surveillance application of this kind, we have

some idea of what the structure of data looks like (e.g. the general structure described above).

However, the above example demonstrates the need for a semistructured model to store uncertain

information in uncertain environments.

Aggregate queries are natural queries for users to ask in such applications. To date, we are

aware of no formal model of aggregate computations in probabilistic XML databases. Examples

of queries that users may wish to ask include: How many convoys are there (in some collection

of images)? How many tanks are there in total? On the average, how many tanks are there in a

convoy? What is the ratio of the total number of tanks to the total number of trucks? In more

complex examples, there are many other important queries. If convoys include an estimate of the

number of soldiers per vehicle, we may be interested in the total number (sum) of soldiers. We

may also be interested in the average number of soldiers per convoy, the average number of soldiers

per tank, and so on.
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2.2 Probabilistic Semistructured Data Model

In this section, I introduce the PXML model. I first review the definition of a semistructured data

model. I then introduce the syntax of PXML followed by the semantics of PXML.

2.2.1 Semistructured Data Model

I start by recalling some simple graph concepts.

Definition 2.2.1 Let V be a finite set of vertices, E ⊆ V × V be a set of edges and ` : E → L

be a mapping from edges to a set L of strings called labels. The triple G = (V, E, `) is an edge

labeled directed graph.

As usual, a graph is rooted iff there is a distinguished node called the root such that for

every node in the graph, there is a path in the graph from the root to that node. Unless otherwise

noted, we will assume that G is rooted.

Definition 2.2.2 Suppose G = (V, E, `) is any rooted, edge-labeled directed graph. For o ∈ V :

• The children of o, denoted C(o), is the set {o′ | (o, o′) ∈ E}.

• The parents of o, parents(o), is the set {o′ | (o′, o) ∈ E}.

• The descendants of o is the set des(o) = {o′ | there is a directed path from o to o′ in G},

i.e., o’s descendants include o’s children as well as the children of o’s descendants.

• The non-descendants of o is the set non-des(o) = {o′|o′ ∈ V ∧ o′ /∈ des(o) ∪ {o}}, i.e., all

vertices except o’s descendants are o’s non-descendants.

• We use lch(o, l) to denote the set of children of o with label l . More formally,

lch(o, l) = {o′ | (o, o′) ∈ E ∧ `(o, o′) = l}.

• A vertex o is called a leaf iff C(o) = ∅.

I also introduce a set T of types, each type T ∈ T has an associated finite domain, denoted

dom(T ). For each object, τ(o) returns the type of the object and I have a function val which maps

an object o to a value in the domain of τ(object).
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It is important to note that my graphs are not restricted to trees— in fact, the above

definition allows graphs. As we will see later, while I allow semistructured data instances to be

graph-structured, I require the probabilistic dependencies among the nodes to be acyclic.

As I plan to build upon existing models of semistructured databases, I start by recapitulating

the definition of a semistructured instance from [1]. I start by assuming the existence of some

arbitrary but fixed set O of strings called object-ids (oids for short), and a set T of types. Each

type T ∈ T has an associated finite domain, dom(T ).

Definition 2.2.3 A semistructured instance S over a set of objects O, a set of labels L, and

a set of types T , is a 5-tuple S = (V, E, `, τ, val) where:

1. G = (V, E, `) is a rooted, directed graph where V ⊆ O, E ⊆ V × V and ` : E → L;

2. τ associates a type in T with each leaf object o in G.

3. val associates a value in the domain dom(τ(o)) with each leaf object o.

I illustrate the above definition through an example from the bibliographic domain.

Example 2.2.1 Figure 2.1 shows a graph representing a part of the bibliographic domain. The in-

stance is defined over the set of objects O = {R,B1 ,B2 ,B3 ,T1 ,T2 ,A1 , A2 , A3 , I1 , I2}. The set

of labels is L = {book , title, author , institution}. There are two types, title-type and institution-type,

with domains given by: dom(title-type) = {PXML,Probabilistic Relational Models} and

dom(institution-type) = {Stanford,UMD}. The graph shows that the relationships between the

objects in the domain and the types and values of the leaves.

2.2.2 The PXML Probabilistic Data Model

In this section, I develop the basic syntax of the PXML probabilistic data model. Before defining

the important concept of a probabilistic instance, I need to introduce some intermediate concepts.

Definition 2.2.4 (probability distribution) A probability distribution w.r.t. S is a mapping

P : S → [0, 1] where Σs∈SP(s) = 1.
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A central notion that allows us to provide coherent probabilistic semantics is that of a weak

instance. A weak instance describes the objects that can occur in a semistructured instance, the

labels that can occur on the edges in an instance and constraints on the number of children an

object might have. I will later define a probabilistic instance to be a weak instance annotated with

probabilistic information that will provide us with a distribution over semistructured instances

consistent with the weak instance.

Definition 2.2.5 A weak instanceW with respect to O, L and T is a 5-tupleW = (V, lch, τ, val,

card) where:

1. V ⊆ O.

2. For each object o ∈ V and each label l ∈ L, lch(o, l) specifies the objects that may be

children of o with label l . I assume that for each object o and distinct labels l1, l2, lch(o, l1) ∩

lch(o, l2) = ∅. 3

3. τ associates a type in T with each leaf object.

4. val associates a value in dom(τ(o)) with each leaf object o.

5. card is a mapping that constrains the number of children with a given label l . card asso-

ciates with each object o ∈ V and each label l ∈ L, an integer-valued interval card(o, l) =

[min, max], where min ≥ 0, and max ≥ min. I use card(o, l).min and card(o, l).max to

refer to the lower and upper bounds respectively.

A weak instance implicitly defines, for each object and each label, a set of potential sets of children.

Consider the following example.

Example 2.2.2 Consider a weak instance with V = {R,B1 ,B2 ,B3 ,T1 ,T2 ,A1, A2, A3 , I1 , I2}.

We may have lch(R, book) = {B1 ,B2 ,B3} indicating that B1, B2 and B3 are possible book-

children of R. Likewise, we may have lch(B1 , author ) = {A1 ,A2}. If card(B1 , author) = [1, 2],

then B1 can have between one and two authors. The set of possible author-children of B1 is thus

3This condition says that two edges with different labels cannot lead to the same child; this condition can be

relaxed, I make it here to simplify exposition.
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{{A1}, {A2}, {A1 ,A2}}. Likewise, if card(A1, institution) = [1, 1] then A1 must have exactly

one (primary) institution.

I formalize the reasoning in the above example below.

Definition 2.2.6 Suppose W = (V, lch, τ, val, card) is a weak instance and o ∈ V and l is a label.

A set c of objects in V is a potential l-child set of o w.r.t. the above weak instance iff:

1. If o′ ∈ c then o′ ∈ lch(o, l) and

2. The cardinality of c lies in the closed interval card(o, l).

I use the notation PL(o, l) to denote the set of all potential l-child sets of o.

As PL(o, l) denotes the set of all potential child sets of o with labels l, I define the set of all

potential child sets of o with any label as the following:

Definition 2.2.7 Suppose W = (V, lch, τ, val, card) is a weak instance and o ∈ V . Let Ho be a set

of all the sets of potential l-child sets of object o,

Ho =
⋃

l∈{PL(o,l) | (∃o′)o′∈lch(o,l)}

PL(o, l).

(Note that Ho is a multiset.) The potential child set of o, denoted PC(o), is a hitting set4 of

Ho.

Once a weak instance is fixed, PC(o) is well defined for each o. I will use this to define the

weak instance graph below. We will need this in the definition of a probabilistic instance.

Definition 2.2.8 Given a weak instance W = (V, lch, τ, val, card), the weak instance graph,

GW = (V, E), is a graph over the same set of nodes V , and for each pair of nodes o and o′, there

is an edge from o to o′ iff ∃c ∈ PC(o) such that o′ ∈ c.

Figure 2.2 shows a weak instance graph for the bibliographic domain. An important re-

quirement when defining a probabilistic semantics is that the probabilities of all potential child

sets sum to 1.
4Suppose S = {S1, . . . , Sn} where each Si is a set. A hitting set for S is a set H such that (i) for all 1 ≤ i ≤ n,

H ∩ Si 6= ∅ and (ii) there is no H′ ⊂ H satisfying condition (i).
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Figure 2.2: A weak instance graph for the bibliographic domain.

Definition 2.2.9 Suppose W = (V, lch, τ, val, card) is a weak instance. Let o ∈ V be a non-

leaf object. An object probability function (OPF for short) for o w.r.t. W is a mapping

ω : PC(o)→ [0, 1] such that OPF is a legal probability distribution, i.e., Σc∈PC(o)ω(c) = 1.

Definition 2.2.10 Suppose W = (V, lch, τ, val, card) is a weak instance. Let o ∈ V be a leaf object.

A value probability function (VPF for short) for o w.r.t. W is a mapping ω : dom(τ(o)) →

[0, 1] such that VPF is a legal probability distribution, i.e., Σv∈dom(τ(o))ω(v) = 1.

An object probability function provides the model theory needed to study a single non-leaf

object (and its children) in a probabilistic instance to be defined later. It defines the probability

of a set of children of an object existing given that the parent object exists. Thus it is the

conditional probability for a set of children to exist, under the condition that their parent exists in

the semistructured instance. As we will see later, it is akin to the conditional probabilities specified

in graphical models or Bayesian networks [66], however a key difference is that it describes the

local structure of the network. Similarly, the value probability function provides the model theory

needed to study a leaf object, and defines a distribution over values for the object.
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Definition 2.2.11 Suppose W = (V, lch, τ, val, card) is a weak instance. A local interpretation

is a mapping ℘ from the set of objects o ∈ V to local probability functions. For non-leaf objects,

℘(o) returns an OPF, and for leaf objects, ℘(o) returns a VPF.

Intuitively, a local interpretation specifies, for each object in the weak instance, a local probability

function.

Definition 2.2.12 A probabilistic instance I is a 6-tuple I = (V, lch, τ, val, card, ℘) where:

1. W = (V, lch, τ, val, card) is a weak instance and

2. ℘ is a local interpretation.

A probabilistic instance consists of a weak instance, together with a probability associated with

each potential child set of each object in the weak instance.

Example 2.2.3 Figure 2.3 shows a very simple probabilistic instance. The set O of objects is

the same as in our earlier PXML example. The figure shows the potential lch of each object; for

example, lch(B1 , author) = {A1 ,A2}. The cardinality constraints are also shown in the figure; for

example, object B1 can have 1 to 2 authors and 0 to 1 title. The tables on the right of Figure 2.3

show the local probability models for each of the objects. The tables show the probability of each

potential child of an object. For example, if B2 exists, the probability A1 is one of its authors is

0.8.

The components O,L, T of a probabilistic instance are identical to those in a semistructured

instance. However, in a probabilistic instance, there is uncertainty over:

• The number of sub-objects of an object o;

• The identity of the sub-objects.

• The values of the leaf objects.

This uncertainty is captured through the function ℘(o). ℘(o) may be defined extensionally, defin-

ing a probability for each potential child of every object, as we have done here. Or we may define
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o l lch(o, l)

R book {B1, B2, B3}

B1 title {T1}

B1 author {A1, A2}

B2 author { A1, A2, A3}

B3 title {T2}

B3 author {A3}

A1 institution {I1}

A2 institution {I1, I2}

A3 institution {I2}

o l card(o, l)

R book [ 2,3 ]

B1 author [ 1,2 ]

B1 title [ 0,1 ]

B2 author [ 2,2 ]

B3 author [ 1,1 ]

B3 title [ 1,1 ]

A1 institution [ 0,1 ]

A2 institution [ 1,1 ]

A3 institution [ 1,1 ]

c ∈ PC(R) ℘(R)(c)

{B1, B2} 0.2

{B1, B3} 0.2

{B2, B3} 0.2

{B1, B2, B3} 0.4

c ∈ PC(B1) ℘(B1)(c)

{A1} 0.3

{A1, T1} 0.35

{A2} 0.1

{A2, T1} 0.15

{A1, A2} 0.05

{A1, A2, T1} 0.05

c ∈ PC(B2) ℘(B2)(c)

{A1, A2} 0.4

{A1, A3} 0.4

{A2, A3} 0.2

c ∈ PC(B3) ℘(B3)(c)

{A3, T2} 1.0

c ∈ PC(A1) ℘(A1)(c)

{} 0.2

{I1} 0.8

c ∈ PC(A2) ℘(A2)(c)

{I1} 0.5

{I2} 0.5

c ∈ PC(A3) ℘(A3)(c)

{I2} 1.0

Figure 2.3: A probabilistic instance for the bibliographic domain.

℘(o) more compactly if there are some symmetries or independence constraints that can be ex-

ploited in the representation. For example, if the occurrence of each category of labeled objects

is independent, then we can simply specify a probability for each subset of objects with the same

label and compute the joint probability as the product of the individual probabilities. For in-

stance, if the existence of author and title objects is independent, then we only need to specify

a distribution over authors and a distribution over titles. Furthermore, in some domains it may

be the case that some objects are indistiguishable. For example in an object recognition system,

we may not be able to distinguish between vehicles. Then if we have two vehicles, vehicle1 and

17



vehicle2, and a bridge bridge1 in a scene S1, we may not be able to distinguish between a scene

that has a bridge1 and vehicle1 in it from a scene that has bridge1 and vehicle2 in it. In this case,

℘(S1)({bridge1, vehicle1}) = ℘(S1)({bridge1, vehicle2}). The semantics of the model we have

proposed is fully general, in that we can have arbitrary distributions over the sets of children of

an object.

2.3 Semantics

In this section, I develop a semantics for probabilistic semistructured databases. We can use a

PXML model to represent our uncertainty about the world as a distribution over possible semi-

structured instances. A probabilistic instance implicitly is shorthand for a set of (possible) semi-

structured instances—these are the only instances that are compatible with the information we do

have about the actual world state that is defined by our weak instance. I begin by defining the

notion of the set of semistructured instances that are compatible with a weak instance.

Definition 2.3.1 Let S = (VS , E, `, τS , valS) be a semistructured instance over a set of objects O,

a set of labels L and a set of types T and let W = (VW , lchW , τW , valW , card) be a weak instance.

S is compatible with W if the root of S is in W and for each o in VS :

• o is also in VW .

• If o is a leaf in S and also a leaf in W, then τS(o) = τW(o) and valS(o) ∈ dom(τS(o)).

• If o is not a leaf in S then

– For each edge (o, o′) with label l in S, o′ ∈ lchW(o, l),

– For each label l ∈ L, let k = |{o′|(o, o′) ∈ E ∧ `(E) = l}|, then card(o, l).min ≤ k ≤

card(o, l).max.

I use Domain(W) to denote the set of all semistructured instances that are compatible with a weak

instance W . Similarly, for a probabilistic instance I = (V, lchI , τI , valI , card, ℘), I use Domain(I)

to denote the set of all semistructured instances that are compatible with I’s associated weak

instance W = (V, lchI , τI , valI , card).
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I now define a global interpretation based on the set of a compatible instances of a weak

instance.

Definition 2.3.2 Consider a weak instance W = (V, lch, τ, val, card). A global interpretation

P is a mapping from Domain(W) to [0, 1] such that ΣS∈Domain(W)P(S) = 1.

Intuitively, a global interpretation is a distribution over the set of semistructured instances com-

patible with a weak instance. In contrast, a local interpretation (Def. 2.2.11) defines semantics at

a node by node level, rather than considering the space of all compatible semi-structured instances.

First I must impose an acyclicity requirement on the weak instance graph. This is required

to ensure that my probabilistic model is coherent.

Definition 2.3.3 Let W = (VW , lchW , τW , valW , card) be a weak instance. W is acyclic if its

associated weak instance graph GW is acyclic.

Note that I do not restrict a probabilistic instance to be trees; I allow graphs, I just do not

allow cycles in the dependency structure. For example, the probabilistic instance in Figure 2.3

whose weak instance graph shown in Figure 2.1 is an acyclic graph.

Given a probabilistic instance I over an acyclic weak instance W , the probability of any

particular instance can be computed from the OPF and VPF entries corresponding to each object

in the instance and its children.

For any probabilistic instance under the local semantics, we can construct an associated

Bayesian network that encodes the structure of the semistructured instance. This Bayesian network

allows us to construct a global interpretation from a local one. As we will see later, the Bayes nets

only allows us to go the other way in some cases. This relationship with Bayesian network can be

leveraged to some extent for query processing.

The Bayesian network is constructed as follows. For each object oi in the PXML instance,

there are two corresponding nodes in the Bayesian network, the node ni and its child node ci. Node

ni is a boolean random variable that is true if object oi occurs in the semistructured instance,

and false otherwise. For non-leaf objects oi, node ci is a discrete random variable whose values
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correspond to the set of children of object oi that occurs in the semistructured instance. For leaf

objects oi, node ci is a discrete random variable whose values correspond to the domain dom(τ(oi)).

The conditional probability distribution for each ni is deterministic: ni is true with probability 1

if oi is the member of any child set that occurs; otherwise, it is false with probability 1. The value

of the node ni corresponding to the root is true with probability 1 because the root always exists.

The conditional probability distribution for each ci corresponds to the local probability models in

the PXML instance (the OPF or VPF for oi, as appropriate) if ni is true; if ni is false, then ci has

a special value ∅ with probability 1. Because of the acyclicity requirement for the weak instance

graph, we will always be able to find an ordering of the random variables such that we have any

cj that potentially contains oi before ni.

Let I = (V, lchI , τI , valI , card, ℘), be a probabilistic instance. Let |V | = m. The associated

Bayesian network defines the following distribution:

PBN (n1, . . . , nm, c1, . . . , cm) =
m
∏

i=1

P (ni|c1, . . . , ci−1)P (ci|ni)

For any complete assignment, the probability is 0 if any of the ni are inconsistent with the structure

encoded by the c1, . . . , ci−1. For any complete assignment consistent with structure encoded by

the ci’s and ni’s, the probability is simply the product of the P (ci|ni).

With this construction in mind, I am now going to define the relationship between the local

interpretation and the global interpretation for PXML.

Definition 2.3.4 Let ℘ be local interpretation for a weak instance W = (V, lch, τ, val, card). We

define the function P℘ as follows: for any instance S ∈ Domain(W), P℘(S) =
∏

o∈S ℘(o)(cS(o)),

where if o is not a leaf in W, then cS(o) = {o′|(o, o′) ∈ E}, i.e., the set of children of o in instance

S; otherwise, cS(o) = valS(o), i.e., the value of o in instance S.

In order to use this definition of P℘ for the semantics of our model, I must first show that

the above function is in fact a legal global interpretation.

Theorem 2.1 Suppose ℘ is a local interpretation for a weak instance W = (V, lch, τ, val, card).

Then P℘ is a global interpretation for W.
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Proof: The Bayesian network construction above defines a legal probability distribution denoted

PBN . I show the correspondence between PBN and P℘.

An instance S defines an assignment to the random variables n1, . . . , nm, c1, . . . , cm of the

BN. By construction, for any assignment of n1, . . . , nm, c1, . . . , cm that is not consistent with

S ∈ Domain(W), PBN (S) = 0. By definition, for any instance S ∈ Domain(W),

PBN (n1, . . . , nm, c1, . . . , cm) =
m
∏

i=1

P (ni|c1, . . . , ci−1)P (ci|ni)

I can collect together the terms corresponding to the oi ∈ S and the oi /∈ S as follows:

PBN (n1, . . . , nm, c1, . . . , cm) =
∏

oi∈S

P (ni|c1, . . . , ci−1)P (ci|ni)
∏

oi /∈S

P (ni|c1, . . . , ci−1)P (ci|ni)

For each oi /∈ S, ni = False and ci = ∅, and by the BN construction:

P (ni = False|c1, . . . , ci−1)P (ci = ∅|ni = False) = 1,

so I can ignore this term. For each oi ∈ S, ni = True and ci = cS(o), and by the BN construction:

P (ni = True|c1, . . . , ci−1)P (ci = cS(o)|ni = True) = ℘(o)(cS(o)),

because the first term is 1, and the second term corresponds to the OPF or VPF for o. Thus, for

the assignment of the ni and ci associated with S,

PBN (n1, . . . , nm, c1, . . . , cm) =
∏

o∈S

℘(o)(cS(o)) = P℘(S),

and P℘(S) defines a global interpretation for W .

Example 2.3.1 Consider S1 in Figure 2.4 and the probabilistic semistructured instance from Fig-

ure 2.3.

P (S1) = P (B1 ,B2 | R) P (A1 ,T1 | B1 )P (A1 ,A2 | B2 ) P (I1 | A1 ) P (I1 | A2 )

= 0.2 · 0.35 · 0.4 · 0.8 · 0.5 = 0.00448

An important question is whether we can go the other way: from a global interpretation, can

we find a local interpretation for a weak instance W(V, lch, τ, val, card)? It turns out that we can

if the global interpretation can be factored in a manner consistent with the structure constraints
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Figure 2.4: Some of the semistructured instances compatible with the probabilistic instance in

Figure 2.3.

imposed by W(V, lch, τ, val, card). One way to ensure this is to impose a set of independence

constraints on the distribution P .

Given P is a global interpretation and W = (V, lch, τ, val, card) is a weak instance, we can

compute the probability of any object o’s children, C(o) given o exists, which we will denote

P(C(o) = c), directly from the global interpretation as follows:

P(C(o) = c) =

∑

S∈Domain(W)∧o∈S∧C(o)=c P(S)
∑

S∈Domain(W)∧o∈S P(S)
.

Similarly, we can compute the probability of a set of objects. The objects that we will be inter-

ested in are the non-descendants of o in the weak instance graph for W , which we will denote

non-desW(o). The probability we will be interested in is the probability of the nondescendents

given the object exists, P(non-desW(o)), and this is simply:

P(non-desW(o)) =

∑

S∈Domain(W)∧o∈S∧non-desW(o) P(S)
∑

S∈Domain(W)∧o∈S P(S)
.

We can compute the probability of the children and the descendents, P(C(o) = c, non-desW(o)),

analogously.
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Definition 2.3.5 Suppose P is a global interpretation and W = (V, lch, τ, val, card) is a weak

instance. P satisfies W iff for every non-leaf object o ∈ V and each c ∈ PC(o) (and for every leaf

object o ∈ V and each c ∈ dom(τ(o))), it is the case that

P(C(o) = c, non-desW(o)) = P(C(o) = c).

In other words, given that o occurs in the instance, the probability of any potential children

c of o is independent of the nondescendants of o in the instance. Under this assumption, it is

possible to use the Bayesian net to construct a local interpretation from a global one. Future

sections of this chapter, however, will not make this assumption unless explicitly stated.

Furthermore, given a global interpretation that satisfies a weak instance, we can find a local

interpretation associated with it in the following manner:

Definition 2.3.6 ( D̃ operator) Suppose c ∈ PC(o) for some non-leaf object o5 and suppose P

is a global interpretation. ωP,o, is defined as follows.

ωP,o(c) =
ΣS∈Domain(W)∧o∈S ∧ cS (o)=cP(S)

ΣS∈Domain(W)∧o∈SP(S)
.

Then, D̃(P) returns a function defined as follows: for any non-leaf object o, D̃(P)(o) = ωP,o.

Intuitively, we construct ωP,o(c) as follows. Find all semistructured instances S that are

compatible with W and eliminate those for which o’s set of children is not c. The sum of the

(normalized) probabilities assigned to the remaining semistructured instances by P is assigned to

c by the OPF6 ωP,o(c). By doing this for each object o and each of its potential child sets, we get

a local interpretation.

Theorem 2.2 Suppose P is a global interpretation for a weak instance W = (V, lch, τ , val, card)

and P satisfies W. Then D̃(P) is a local interpretation for W.

Proof: From Definition 2.3.6, D̃(P)(o) = ωP,o is an OPF (or VPF) for o because ΣcωP,o(c) = 1.

By Definition 2.2.11, D̃(P) is a local interpretation because for every non-leaf object o, D̃(P)(o)

5For leaf objects, c ∈ dom(τ(o)) and cS(o) = val(o) in the formula.
6VPF for leaf objects; note that for the rest of this section, when I mention OPF, it is also true for the case of

VPF.
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returns an OPF for o and for every leaf object o, D̃(P)(o) returns a VPF for o.

2.4 Probabilistic Point Queries

In the next section, we turn to more complex algebraic operations over PXML that do not map

directly to simple Bayesian network queries. But first, now that we have the semantics for PXML,

there are a number of simple queries that are straightforward to compute and in the case where

the local semantics hold, some of these can be computed directly using the Bayesian network

construction from the previous section.

To begin, the simplest probability that we may wish to compute is the probability of an

object oi existing, which I will denote simply P (oi). For a given probabilistic instance W with

global interpretation P ,

P (oi) =
∑

S∈Domain(W)∧o∈S

P(S)

In the case where we can represent P(S) using the local representation, this is equivalent to

computing the query PBN (ni = 1). By definition, this is equal to:

PBN (ni = 1) =
∑

n1,...,ni−1,ni,...,nm,c1,...,cm)

m
∏

i=1

P (ni|c1, . . . , ci−1)P (ci|ni).

We can compute this query efficiently using any of a number of Bayesian network inference tech-

niques [66, 53, 15]. In general, if the network is tree structured, the inference will be linear in

the number of nodes in the network. If the network is not a tree, the complexity depends on

the connectivity of the graph and the induced tree width of the graph. In practice, if the graph

is not highly connected, as in our example, the inference is quite efficient. And, regardless of

the structure, the inference algorithms are significantly more efficient than naively computing the

probability by marginalizing over all of the compatible instances.

It is also straight-forward to compute the probability of the existence of some collection of

objects, simply by computing the marginal probability of their associated ni’s.
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2.5 Probabilistic Semistructured Algebra

This section describes several more complex manipulations of PXML using algebraic operations on

probabilistic instances. For convenience, I use the term instance to refer to a probabilistic instance

when there is no ambiguity.

Relational algebra is based on relation names and attribute names while my algebra is

based on probabilistic instance names and path expressions. The definition of path expressions is

a variation of the standard definition [3].

Definition 2.5.1 An edge sequence is a sequence l1. . . . .ln, where the li’s are labels of edges. A

path expression p = r.l1. . . . .ln is an object (oid) r, followed by a (possibly empty) edge sequence

l1. . . . .ln; p denotes the set of objects that can be reached from r via the sequence of edges with

labels l1. . . . .ln.

A path expression is used to locate objects in an instance. We say o ∈ p iff there is a path

p to reach o. For example, in the instance in Figure 2.1, A2 ∈ R.book .author because there is a

path from R to reach A2 through a path that is labeled book .author .

In this section I will define the following operators: projection, selection, and cross product

(join can be defined in terms of these operations in the standard way). For each operator, I will

first describe how it works on an ordinary semistructured instance, then I will describe how it

works on a probabilistic instance.

2.5.1 Projection

I propose several projection operators including ancestor projection, descendant projection and

single projection as follows. The ancestor projection operation extracts subgraphs composed of

objects located by a path expression and those objects’ ancestors up to the root. Note that only

those ancestors and edges on the paths to those objects are extracted. The descendant projection

operation extracts subgraphs composed of objects located by a given set of path expressions and

those objects’ descendants. The objects located by path expressions are connected to the root.
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Figure 2.5: The result of the ancestor projection on the semistructured instance in Figure 2.1 with

the path expressions R.book.author.

Finally, the single projection operation extracts all objects by a given path expression and then

connects them to the root. I only discuss ancestor projection - the other two notions of projection

can be similarly constructed.

Example 2.5.1 Consider the semistructured instance shown earlier in Figure 2.1. Suppose we

have a path expression R.book .author. Ancestor projection will first locate the set V ′ = {A1 ,A2,

A3 } of objects that satisfy the path expression. V’ is expanded by adding objects on the path from

the root to the objects in V ′ (the added objects are B1, B2 and B3), as well as the root of the

instance (R). V ′ is the set of the objects in our new instance. If there was an edge between two

nodes n1, n2 in the semistructured instance of Figure 2.1 and n1, n2 ∈ V ′ then we draw an edge

from n1 to n2 with the same label. The resulting instance is shown in Figure 2.5.

Definition 2.5.2 [ancestor projection (Λ)] Suppose G = (V, E, `) is an instance, r is the root of

G and p is a path expression. The ancestor-projection of G on p, denoted Λp(G) = (V ′, E′), is

defined as follows:

• V ′ = {o | o ∈ V ∧(o ∈ p∨∃o′ ∈ V, edge sequences s, s′ (p = r.s.s′∧o ∈ r.s∧o′ ∈ o.s′))}∪{r}

• E′ = {(o, o′) | (o, o′) ∈ E ∧ o, o′ ∈ V ′ ∧ ∃ edge sequences s, s′ a label l and an object o′′ ∈

V ′ (p = r.s.l.s′ ∧ o ∈ r.s ∧ o′ ∈ o.l ∧ o′′ ∈ o′.s′)}

• ∀(a, b) ∈ E′ (`′(a, b) = `(a, b))
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Figure 2.6: Given the two instances S1 and S2 on the left, the ancestor projection of R.book.author

gives the same resulting semistructured instance shown as S3 on the right. Because these are the

only two compatible instances that produce this result, the probability of the result is simply the

sum of the two probabilities, P (S3) = P (S1) + P (S2).

• For any newly created leaf o′, val(o′) = NULL.

We have seen how ancestor projection works on a semistructured instance. Now, we are

going to see what it means for a probabilistic instance. For example, recall the first question

we wanted to answer in Section 2.1.1. We can use an ancestor projection with a path expression

R.book.author on the probabilistic instance. The result keeps the authors and their ancestors,

which can be used to deduce the global probabilities of compatible instances or the probability

of a particular author in the future. Recall that from a probabilistic instance, we can obtain

a set of compatible instances and a distribution over the probability of each of the compatible

instances. We can perform the ancestor projection on each of the compatible instances to obtain a

resulting set of semistructured instances. We then combine the probabilities of identical instances

by summing them up.

For example, after the ancestor projection with a path expression R.book.author on the set

of instances S1 and S2 in Figure 2.6(a), we will have S3 as the result, shown in Figure 2.6(b).
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We can combine the probabilities of S1, S2, i.e., P (S1) + P (S2), which is the probability of the

resulting instance.

Definition 2.5.3 Suppose I = (V, lch, τ, val, card, ℘) is a probabilistic instance, P = W̃ (℘) and

p is a path expression. The probabilities of the result of the ancestor projection with path ex-

pression p on I are defined as follows: for every S ∈ Domain(Λp(I)), the probability of S is

∑

S′′∈Domain(I) s.t. Λp(S′′)=S P(S′′).

I give an efficient algorithm when all compatible instances are tree-structured. Note that

this is not a requirement, but it does simplify the algorithm.

Ancestor projection on a probabilistic instance results in a new probabilistic instance, with

the probability of an instance S′ in the projection computed as the sum of the probabilities of

the instances that map to S′ in the original probabilistic instance. We can treat the probabilistic

instance as an ordinary semistructured instance and perform ancestor projection on it and update

card and ℘. We begin at the leaves. The value of a newly created leaf is NULL, with probability

1. The update of ℘ and card is done starting from the immediate parents of leaves. The update

is bottom up; it will be performed on an object only if the updates have been done on all of its

children.

Let oi denote the non-leaf object whose ℘(oi) and card are to be updated. I denote the

original set of children before projection as C(oi), the new set of children after projection as C′(oi),

and Cd = C(oi)−C′(oi). Similarly, we use ℘′ and card′ to denote the new local interpretation and

cardinality.

• First, consider the immediate parent of a leaf.

– Marginalization. Intuitively, for each c′ ⊆ C′(oi), we project all the children in the

original, c ⊆ C(oi), where c′ is the result of projection of c (after removing the deleted

children), to c′:

℘′(oi)(c
′) =

∑

d⊆Cd s.t. c=(c′∪d)∈PC(oi)

℘(oi)(c
′ ∪ d).
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– Normalization.

A non-leaf object (except the root) in the result of ancestor projection should not exist

in a compatible instance if none of its children exists in the compatible instance (by

the definition of ancestor projection). We will compute εoi
, the probability that oi has

some child still existing in the result of the ancestor projection:

εoi =
∑

c′∈PC′(oi)∧c′ 6=∅

℘′(oi)(c
′).

We then renormalize the probabilities so that ℘′(oi)(c) will represent the conditional

probability of oi having children c given the condition that some of the children exist.

We set ℘′(oi)({}) = 0 and do the normalization as follows: ∀c ⊆ C′(oi),

℘′(oi)(c) =
℘′(oi)(c)

εoi

• For other non-leaf object (except the root), for each c′ ∈ C′(oi), we project all the children

in the original c ∈ C(oi), where c′ is a subset of c, to c′, and multiply by the probability that

each exists:

℘′(oi)(c
′) =

∑

c∈PC(oi)∧c′⊆c

℘(oi)(c)
∏

oj∈c′

εoj

∏

oj∈(c−c′)∧oj∈PC′(oi)

(1− εoj ).

As, above, we will record the probability εoi
, set ℘′(oi)({}) = 0 and renormalize the proba-

bilities by dividing them by εoi
.

• For the root r, we marginalize as above. However, we do not need to set ℘′(r)({}) to 0

and do normalization. In essence, ℘′(r)({}) is the probability that a compatible instance in

the original has no object satisfying the path expression of the ancestor projection and, as a

result, only the root object is returned.

The process of update of card is the same for all non-leaf objects: for an object o0 and an

edge label lj,

card′(o0, lj).min = min
C⊆C′(o0) s.t. ℘′(o0)(C)>0

(number of objects in C that have edge label lj)
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card′(o0, lj).max = max
C⊆C′(o0) s.t. ℘′(o0)(C)>0

(number of objects in C that have edge label lj)

Probabilistic Path Queries

Now let us consider computing the probability of a simple object chain. To compute the probability

of a simple object chain c = r.o1.o2. . . . .oi, we consider all possible ways that the chain can be

achieved:

P (c) = p(r)
∑

c1∈PC(r)∧o1∈c1

p(c1)×
∑

c2∈PC(c1)∧o2∈c2

p(c2)× · · · ×
∑

ci∈PC(ci−1)∧oi∈ci

p(ci)

Next we consider probabilistic path queries, which allow us to compute the probability that

an object satisfies a path expression. This kind of query can be used to answer the last situation

in Section 2.1.1: we want to know the probability that a particular author exists.

Definition 2.5.4 Given a path expression p and an object o in a probabilistic instance, a proba-

bilistic path query returns the probability that o ∈ p in a compatible instance.

Here I assume that o ∈ p in the probabilistic instance, otherwise it is obvious that the

probability must be zero. First, I define the path ancestors of o as all o’s ancestors such that for

every such ancestor oa, there exists a path identical to the path expression p from the root to oa

and then to o. Note that if I extract only the object o and its path ancestors from the probabilistic

instance, and use the same method described in the previous section to calculate εr, then εr will

be the answer to this problem. The reason is that the root of the result of the ancestor projection

on a compatible instance will have a child if and only if there is some object in that compatible

instance satisfying the path expression. Here, because I only keep o and its path ancestors, the

root of the result of the ancestor projection on a compatible instance will have a child if and only

if o in that compatible instance satisfies the path expression p. Recall the meaning of εr is that,

given that r exists in a compatible instance (which is true always), r still has a child that should

exist after the ancestor projection on that compatible instance, so εr also gives the probability

that o satisfies p.
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An extension to this problem is to find the probability that there exists some object satisfying

a given path expression. We can solve it by keeping all objects satisfying the path expression in

the probabilistic instance and their path ancestors and calculate εr as the answer.

2.5.2 Selection

In this section I will describe the selection operation. I define two types of selection conditions, an

object selection condition and a value selection condition.

Definition 2.5.5 (object selection condition) An object selection condition is of the form

p ∈ o or p /∈ o where p is a path expression starting from the root and o is an object id.

Definition 2.5.6 (value selection condition) A value selection condition is of the form val(p)

φ v where p is a path expression starting from the root to some leaf, φ is a binary predicate from

{=, 6=,≤,≥, <, >} and v is a value.

It is straightforward to add other kinds of selection conditions (e.g. those based on cardinality or

OPFs/VPFs) - space constraints preclude us from doing so.

With a given selection condition sc and a probabilistic instance I, the global approach

will give a set of semistructured instances (with normalized probabilities) compatible with the

result of selection operation. The global approach works as follows: among the set of instances

compatible with the probabilistic instance I, only those instances satisfying the selection condition

sc will be selected; then their resulting probabilities will be obtained by normalizing their original

probabilities using the formula in the following definition.

Definition 2.5.7 (selection (σ)) Suppose I = (V, lch, τ, val, card, ℘) is a probabilistic instance,

sc is a selection condition. Let Domain(σsc(I)) = {S ∈ Domain(I) | S satisfies sc} be the set

of compatible instances satisfying the selection condition. Then, ∀S ∈ Domain(σsc(I)), P ′(S) =

P(S)
∑

S′∈Domain(σsc(I))
P(S′)

Example 2.5.2 Suppose we have a (simplified) probabilistic instance with the P shown in Fig-

ure 2.7(a). Recall the second situation in Section 2.1.1 where the book B1 surely exists. So,
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Figure 2.7: (a) The set of compatible instances of a probabilistic instance along with their proba-

bilities. (b) The result of the selection R.book = B1.

how will the probabilities be affected? The result of the selection R.book = B1 is shown in

Figure 2.7(b). The set of compatible instances are shown, along with their updated probabilitites.

Among the four compatible instances shown in Figure 2.7(a), only S1, S3, S4 satisfy the selection

condition. Then we normalize the probabilities of the selected instances as follows. For example,

consider S1: P ′(S1) = P(S1)
P(S1)+P(S3)+P(S4) = 0.4

0.4+0.2+0.2 = 0.5

Here we are not making any assumptions about the factorization of the global interpretation.

2.5.3 Cartesian Product

In Section 2.1.1, I mentioned a situation where we want to combine two probabilistic instances

into one. As in the case of Cartesian product in the relational algebra, I assume that the object

ids are unique (after renaming, if necessary).

Definition 2.5.8 (Cartesian product (×)) Suppose I = (V, lch, τ, val, card, ℘), I ′ = (V ′, lch′, τ ′,

val′, card′, ℘′) are two probabilistic instances, r, r′ are the roots of I, I ′. The Cartesian product of
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I, I ′, denoted I ×I′, results in a new probabilistic instance I ′′ = (V ′′, lch′′, τ ′′, val′′, card′′, ℘′′). I ′′

is rooted at r′′ and is defined as follows:

• V ′′ = (V ∪ V ′ ∪ {r′′})− {r} − {r′}, τ ′′ = τ ∪ τ ′, val′′ = val ∪ val′.

• lch′′ = lch∪ lch′ and card′′ = card∪ card′ with the modification such that the two old roots are

merged into r′′ with all children of r, r′ become the children of r′′.

• for every label l, ∀b ∈ lch′′(a, l)

– if a = r′′, then if b ∈ V , then `′′(a, b) = `(r, b); otherwise, `′′(a, b) = `′(r′, b);

– if a 6= r′′, then if b ∈ V , then `′′(a, b) = `(a, b); otherwise, (`′′(a, b)← `′(a, b)).

• ℘′′ is defined such that ∀o ∈ V , ℘′′(o) = ℘(o); ∀o ∈ V ′, ℘′′(o) = ℘′(o). The root r′′ requires

a special treatment: ∀c′′ ∈ PC(r′′) such that c′′ = c ∪ c′ where c ∈ PC(r), c′ ∈ PC(r′),

℘′′(r′′)(c′′) = ℘(r)(c) × ℘′(r′)(c′).

Note that the last item in the above definition uses an independence assumption to multiply

probabilities. Lakshmanan et. al. [50] introduced the concept of a conjunction strategy to compute

the probability of a conjunction of events from the probabilities of the individual events. The

multiplication in the last step of the above definition can be replaced by any of their conjunctive

strategies if the person posing the query believes that strategy to be appropriate (e.g. if he knows

that the events in question are positively correlated).

The standard condition join operator is defined in the usual way as a cartesian product

followed by a selection.

2.6 Probabilistic Aggregate Operators

In this section, I consider another useful class of PXML operations, operations that use aggregates.

I will use as a running example the surveillance application introduced earlier. Consider the

probabilistic instance and its associated weak instance graph shown in Figure 2.8. The primary

goal of this section is to define the declarative semantics of aggregate queries. Answering aggregate

queries in PXML raises three important issues:
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o l lch(o, l)

I1 convoy { convoy1, convoy2 }

convoy1 tank { tank1, tank2 }

convoy2 truck { truck1 }

o τ (o) val(o)

tank1 tank-type T-80

tank2 tank-type T-72

truck1 truck-type rover

o l card(o, l)

I1 convoy [1,2]

convoy1 tank [ 1,1 ]

convoy2 truck [ 1,1 ]

c ∈ PC(I1) ℘(I1)(c)

{ convoy1} 0.3

{ convoy2} 0.2

{ convoy1, convoy2} 0.5

c ∈ PC(convoy1) ℘(convoy1)(c)

{ tank1} 0.4

{ tank2} 0.6

c ∈ PC(convoy2) ℘(convoy2)(c)

{ truck1} 1

Figure 2.8: A probabilistic instance for the surveillance domain.

• Possible-worlds answer: Consider a query that wishes to count the number of objects

in all convoys in probabilistic instance I1. This probabilistic instance has five compatible

semi-structured instances marked as S1, . . . , S5 in Figure 2.9. Each of these instances has

between 1 and 2 objects - we could return the set {1, 2} indicating that the answer to the

count query is not known precisely, but is either 1 or 2 (each with probability 0.5 in this

example).

• Expected answer: Alternatively, we could use the statistical notion of expected value. In

this case, we always return one count for any count query. We multiply the number of objects
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in S1 (i.e. 2) by the probability of S1 (i.e. 0.5× 0.4× 1 = 0.2) and add this to the number

of objects in S2 (i.e. 2) by the probability of S2 (i.ee. 0.5× 0.6× 1 = 0.3) and so on. In the

above example, we would return 1.5 as the expected value.

• Form of the answer: Instead of just giving a “direct” answer to an aggregate query

such as 1.5, we may want to return a probabilistic instance. The advantage of returning a

probabilistic instance as output is that this can be the subject of further querying.

In the rest of this section, I proceed as follows. As the answers in both semantics above depend

upon finding the answer to an aggregate query in a semistructured instance, I first give a formal

definition of aggregates for semistructured instances (Section 2.6.1), and then extend it to the

case of the possible world aggregates (Section 2.6.2) and then to the case of expected aggregates

(Section 2.6.3).

2.6.1 Aggregates on semistructured instances

The standard aggregate functions such as sum, count, avg, min, max take a set of values and return

a single value. In addition, as we will see shortly, we can define a more general notion of aggregate

function that takes a multiset of values and returns a set of values.

In classical relational databases, we may count all the tuples that satisfy a given selection

condition (e.g. find the number of people making over 100K in an employee database) or sum

up values in a given attribute (e.g. find the sum of monthly salaries of employees in the Sales

department). Such aggregates have two parts: (i) a condition such as the 100K condition or the

Sales department condition mentioned above, and (ii) an aggregate function to be applied. In

PXML, the analog of (i) is a path condition (or path expression), while (ii) is unchanged. In

addition, PXML supports a higher level of aggregates (e.g. return the average number of tanks

per convoy). To achieve this, we need to specify a path expression (I.convoy) specifying that we

are interested in each convoy and I.convoy.tank. In this case a set of path expressions must be

specified.
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Figure 2.9: The set of semistructured instances compatible with the probabilistic instance in

Figure 2.8.

Definition 2.6.1 Suppose S is a semistructured instance, f is an aggregate function and α is a

set of paths. Let A be the multiset of values of objects in S that are selected by a path in α. The

aggregate operator fo returns the semistructured instance S′ = (V ′, E′, `′, τ ′, val′) where

• V ′ = {r′, aggf(A)} where r′ is the root of S′ and aggf(A) is a new object with value f(A),

• E = {(r′, aggf(A))} with a label f .

In this context, the simple aggregates mentioned earlier (sum, count, avg, min, max) select a multiset

of objects using the path conditions. These values are then mapped to another value by f . The

resulting semistructured instance is a graph with an artificial root node r′. The root has a child
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Figure 2.10: Consider the probabilistic instance I1 and its five compatible instances in Fig-

ure 2.9. S1′ = counto(S, ∅) where S = S1, S2. S2′ = counto(S, ∅) where S = S3, S4, S5.

I1′ = countP(I1, ∅). S3′ = counto(S, {I1.convoy.tank}) where S = S1, S2, S3, S4. S4′ =

counto(S5, {I1.convoy.tank}). I2′ = countP(I1, {I1.convoy.tank}).

node labeled aggf(A′). The edge is labeled with the name of the function f .

Example 2.6.1 Consider the semistructured instance S1 in Figure 2.9 and consider the aggregate

function count. The aggregate query counto(S1, ∅) may be used to determine the number of objects

in S1. This query returns a semistructured instance with the root connected to an object count5

with the value 5 (shown as S1′ in Figure 2.10). The aggregate query counto(S1, {I1.convoy.tank})

can be used to determine the total number of tanks in S1. This returns the answer with object

count1 with the value 1 (shown as S3′ in Figure 2.10).
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2.6.2 Possible-worlds aggregates on probabilistic instances

Given a probabilistic instance I, the set of semi-structured instances that are compatible with I

represents “possible worlds.” An aggregate operator has a given value in each such compatible

instance. Suppose the values of a given aggregate in compatible instances w1, . . . , wk are v1, . . . , vk

and suppose the probability of each compatible instance wi is pi. Then the probability of the

aggregate value being v is given by Σvj=vpj. In other words, given v, we find all compatible

instances wj where vj = v and add up the probabilities of all such compatible instances.

At this point, we are still left with the problem of how to present the answer - we want the

answer to be a probabilistic instance. The following definition describes how to accomplish this.

Definition 2.6.2 Suppose fo is an aggregate operator. The probabilistic aggregate operator fP(I,

α ) based on fo takes a probabilistic semistructured instance I = (V, lch, τ, val, card, ℘) and a set α

of paths as input, and returns as output, a probabilistic instance I ′ = (V ′, lch′, τ ′, val′, card′, ℘′)

where:

1. V ′ = V ′′ ∪ {r′} where r′ is the root of I ′ and V ′′ = ∪S∈Domain(I)(S
′.f ) where S′ = fo(S, α).

2. lch′ is given by lch′(r′, f ) = V ′′.

3. ∀o ∈ V ′′, τ(o) is the type returned by fo.

4. card′(r′, f ) = [1, 1].

5. It follows immediately from the above that Domain(I ′) ≡ {S′ | ∃S ∈ Domain(I)(S′ =

fo(S, α))}. I define the local interpretation as follows:

∀o ∈ V ′′, ℘′(r′)({o}) =
∑

S∈Domain(I)∧val(S′.f )=val(o) P℘(S)

=
∑

S∈Domain(I)∧o∈fo(S,α) P℘(S), where S′ = fo(S, α).

Equivalently, ∀S′ ∈ Domain(I ′), P ′℘(S′) =
∑

S∈Domain(I)∧fo(S,α)=S′ P℘(S). Obviously, ∀o ∈

V ′′, ℘′(r′)({o}) ≡ P℘(S′) where S′ ∈ Domain(I ′) and o ∈ S′. Similarly, ∀S′ ∈ Domain(I ′),

P℘(S′) ≡ ℘′(r′)({o}) where r′ is the root of I ′ as well as S′ and o is the child of r′ in S′.

The following proposition provides an important commutativity result. Suppose I is a

probabilistic instance and I ′ is the probabilistic instance that results by computing a probabilistic

aggregate. If we were to perform the same aggregate on the set of compatible instances of I, then
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we would get the set of compatible instances of I ′. This very neat result is a kind of “correctness”

theorem that says that I ′ succinctly represents the answer.

Proposition 1 Suppose fo is an aggregate operator, I is a probabilistic semistructured instance, α

is a set of path expressions, and I ′ = fP(I, α). Then, Domain(I ′) ≡ {S′ | ∃S ∈ Domain(I)(S′ =

fo(S, α))}.

Proof: Immediately follows from the construction in Definition 2.6.2.

Example 2.6.2 Consider the two aggregate operators defined in Example 2.6.1, the probabilistic

instance I1 in Figure 2.8 and the compatible instances shown in Figure 2.9. The corresponding

probabilistic aggregate operators work as follows. countP(I1, ∅) returns I1′ in Figure 2.10 where

℘′(I1)({count5}) = P℘(S1) +P℘(S2) = 0.2+0.3 = 0.5 and ℘′(I1)({count3}) = P℘(S3)+P℘(S4)+

P℘(S5) = 0.12+0.18+0.2 = 0.5 (because object count5 results from S1, S2 and object count3 results

from S3, S4, S5). Note that Domain(I1 ′) = {S1 ′,S2 ′}. Similarly, countP(I1, {I1.convoy.tank})

returns I2′ in Figure 2.10 where ℘′(I1)({count1}) = P℘(S1) + P℘(S2) + P℘(S3) + P℘(S4) =

0.2 + 0.3 + 0.12 + 0.18 = 0.8 and ℘′(I1)({count0}) = P℘(S5) = 0.2 (because object count1 results

from S1, S2, S3, S4 and object count0 results from S5). Note that Domain(I2 ′) = {S3 ′,S4 ′}.

2.6.3 Expected aggregates on probabilistic instances

I now move on to the next kind of aggregate: expected value aggregates. Such an aggregate has

no uncertainty. It just returns a single value.

Suppose I is a probabilistic instance, and suppose the values V of a given aggregate f

in compatible instances w1, . . . , wk are v1, . . . , vk and suppose the probability of each compatible

instance wi is pi. Then, following the classical statistical notion of expected value, the answer

returned by our “expected value” aggregate semantics is

E(V ) = Σk
i=1pi × vi.

Formally, I define this as follows.
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Definition 2.6.3 Suppose fo is an aggregate operator. The expected aggregate function fE(I, α)

takes a probabilistic semistructured instance I = (V, lch, τ, val, card, ℘) and a path input set α, and

returns the expected value of the aggregate:
∑

S∈Domain(I) P℘(S) × v.

2.7 Probabilistic Aggregate Algorithms

In the previous section, I gave very general definitions of aggregate operators, probabilistic ag-

gregate operators and expected aggregate functions. The last two operations examine the entire

set of compatible instances. However, this is very expensive in practice as the set of compatible

instances may be huge. This section shows that for a large collection of aggregates that have the

properties of idempotence and distributivity, we can avoid this.

Definition 2.7.1 Let X be any set. A mapping f : M(X) → M(X) is idempotent-distributive

(ID for short) iff

• ∀ multiset A ∈M(X), f(f(A)) ≡ f(A).

• ∀ multisets A, B ∈M(X), f(A ∪B) ≡ f(f(A) ∪ f(b)).

Examples of ID aggregates include sum, count, avg, max, min.7

Examples of operators that are not ID include medians and modes.

2.7.1 SP Algorithm

We now describe the SP algorithm that can be used to compute aggregates efficiently as long as

the aggregate function has the ID property. Figure 2.11 shows the details of the algorithm.

The basic algorithm can be summarized as follows.

• aggP(I, α)

1. select set Y of objects and their ancestors from I according to the definition of fP and

input α;

7Strictly speaking, count is not ID. However, count can be computed easily by a trick in which we proceed as

though we are computing sum, but replace the values being summed by 1.
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probabilistic aggregate operator: fP

/* input: I, α; output: I′ */

1) locate a set Y of objects from I according to the definition of fP and input α;

2) K ← all elements in Y and their ancestors;

3) T ← bottom-up(r) where r is the root;

4) if fP = countP, then add a tuple ({0}, u) into T where u = 1−
∑

p∈T.P
p;

5) else, add a tuple (undefined, u) into T where u = 1−
∑

p∈T.P
p;

6) construct a probabilistic instance I′ from T as follows:

for every a ∈ T.A, connect the root r′ to a new object with object id fa and value a

with an edge with label f ; ℘(r′)({fa}) = σ(T.A=a)T.P ;

7) return I′;

function bottom-up

/* input: object o; output: relational table T = (A, P ) */

1) if o is a leaf, then

2) if τ(o) is compatible with f then T ← {({val(o)}, 1)};

3) else T ← undefined;

4) return T ;

5) let C ← {o1, . . . , on} denote the children of o such that Ti ← bottom-up(oi) is not undefined;

6) let D ← C(o)− C;

7) for every non-empty subset E = {oe1 , . . . , oem} of C,

8) p←
∑

F⊆D
℘(o)(E ∪ F );

9) if p > 0, then

10 for each combination of values ae1 , . . . , aem where aei
∈ Tei

.A,

11) a← f(∪m
i=1aei

);

12) if o ∈ Y , then a← f(a ∪ adefault);

13) p← p ×
∏

m

i=1
σ(Tei

.A=aei
)(Tei

.P );

14) T ←update(T, a, p);

15) return T ;

function update

/* input: relational table T , value set a, probability p; output: relational table T */

1) if a /∈ T.A then T ← T ∪ {(a, p)};

2) else replace (a, p′) ∈ T by (a, p + p′);

3) return T ;

Figure 2.11: Algorithm SP for ID probabilistic aggregate operators
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2. probability table T ← bottom-up(r) where r is the root;

3. add a tuple (undefined, u) into T where u = 1−
∑

p∈T.P p;

4. construct the resulting probabilistic instance I ′ from T ;

• bottom-up

1. if o is a leaf, then

(a) if o ∈ Y , then a← {val(o)};

(b) T ← {(a, 1)}, return T ;

2. let C ← {o1, . . . , on} denote the children of o such that Ti ← bottom-up(oi) is not

undefined;

3. for every non-empty subset ci of of C,

(a) calculate the marginal probability of existence of ci given o;

(b) for each combination of values, each from an element in ci, we aggregate them,

multiple their probabilities p from the tables Ti, which is finally multiplied by the

marginal probability above; T is updated with the aggregate result and probability;

4. return T ;

Consider the probabilistic instance I1 in Figure 2.8 and a probabilistic aggregate operator

countP(I1, I1.convoy.∗) which returns the number of vehicles in a convoy. SP starts by locating

the set Y = {tank1, tank2, truck1} of objects. As count is not ID, we set the values of objects in

Y to {1} and use the aggregate function sum instead.

After obtaining Y , we know K (K consists of the Y ’s and their ancestors) contains all

objects. SP calls the function bottom-up recursively. At the leaves (tank1, tank2, truck1), bottom-

up passes up the stored value (1) with probability 1. For example, at convoy1, it obtains

T1 = {({1}, 1)} from tank1 where the first attribute store the aggregate value of objects under

(and including) tank1 which belong to Y . The second attribute is the corresponding conditional

probability (given tank1 exists). It then considers each subset of children of convoy1. For {tank1},

the only possible combination of the values from tank1 is {({1}, 1)}. The results of aggregate of

the first attribute is: sum({1}) = {1} with probability p = ℘(convoy1)({tank1}) × 1 = 0.4. We
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then update the table of convoy1 by adding a tuple ({1}, 0.4). Similarly, the remaining subsets

of children {tank2}, {} and {tank1, tank2} are considered and the table at convoy1 becomes

T1 = {({1}, 1)}, which means that convoy1 must have exactly one vehicle. SP works similarly on

the branch of convoy2 and obtains the table T2 = {({1}, 1)}.

At the root, we consider subset of children of I1. For example, for {convoy1, convoy2}, the

only possible combination of the values from tank1, tank2 is {({1}, 1), ({1}, 1)}. The results of ag-

gregating the first attribute is: sum({1, 1}) = {2}with probability p = ℘(I1)({convoy1, convoy2})×

1× 1 = 0.5. We then update the table T of I1 by adding a tuple ({2}, 0.5). Similarly, we update

the table with the tuple ({1}, 0.3) for {convoy1} and ({1}, 0.2) for {convoy2}. The table now

becomes T = {({1}, 0.5), ({2}, 0.5)}, which means that there are one to two vehicles, each with the

equal probability. SP finally creates a probabilistic instance with this result.

2.7.2 Complexity of SP Algorithm

As the data in each object is required at most once in SP, only one disk scan is needed.

Space complexity: The worst case space complexity is O(2|Y |), where Y is the set of objects

whose values we want to aggregate. The worst case upper bound can be reduced, depending on f .

For example, the worst case upper bound of space required by countP is just |Y |.

Time complexity: Consider a non-leaf object o. The time complexity of bottom-up is bounded

by the product of the size of each child’s probability table and 2n where n is the number of children

of o in line 5. Since the size of each child oi’s probability table is bounded by 2ji where ji is the

number of selected objects under it, the product is bounded by 2
∑

ji = 2j where j is the number of

selected objects under o. Thus, the complexity now becomes O(2n+j). However, if |℘(o)| < 2n, we

can modify the algorithm slightly so that, instead of trying all possible subsets of children (in E),

we try all the entries (with elements in E) of o’s OPF. In this way, we can reduce the complexity

to O(|℘(o)|2j).

It follows that the total time complexity is O(|I|2|Y |). For most aggregates (such as

countP, sumP, avgP, and even maxP, minP) where the table size is non-decreasing while going from
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the leaves to the root, we can use the following upper bound which is more precise: O(|I| · |Troot|)

where I is the size of the probabilistic instance including the size of all OPF entries, and Troot is

the probability table at the root.

2.7.3 Pruning

Time complexity increases with the actual size of the final probability table passed up from the

root, i.e., the total number of possible aggregate values. If this size is not unreasonably large,

we can effectively prune our computation. For example, when a probability table T is passed

up, all values with a probability below a preset threshold can be eliminated. Another method is

to keep the h most probable values in the probability table. In addition, a hybrid of the above

two and other pruning methods can be used. Since the effects of pruning techniques depends

on the application domain, the instance, the aggregate operator used and the thresholds used,

users are advised to fine tune their pruning methods according to the desired performance of their

applications. In Section 2.8.3, I will investigate the effectiveness of pruning by keeping the size

of probability table of every non-root object (finalized at the end of the function bottom-up) not

exceeding a threshold ranging from 50 to 300 probability entries.

2.7.4 SE Algorithm

The SE algorithm (shown in Figure 2.12) modifies SP for the expected aggregate computations.

Unlike SP, instead of keeping the whole probability table, SE only keeps the expected aggregate

value and propagates it up.

To see how SE works, consider the probabilistic instance I1 in Figure 2.8. Consider the

probabilistic aggregate operator countE(I1, {I1.convoy.∗}) which returns the total number of ve-

hicles. SE first locates Y = {tank1, tank2, truck1}. The aggregate function to be applied on them

is count. However, as count is not ID, we will set the values of selected objects (in Y ) to be {1}

and use the aggregate function sum instead. After computing Y , we know that K contains all ob-

jects. SE calls the function bottom-up recursively. At the leaves (tank1, tank2, truck1), bottom-up

passes up the stored value with probability 1. For example, at convoy1, it obtains T1 = {({1}, 1)}
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expected aggregate function: fE /* input: I, α; output: real number e */

1) locate set Y of objects from I according to the definition of aggE and input α;

2) K ← all elements in Y and their ancestors; T ← bottom-up(r) where r is the root;

3) {e} ← T.A; p← T.P ;

4) return e/p;

function bottom-up /* input: object o; output: relational table T = (A, P ) */

1) if o is a leaf, then

2) if τ (o) is compatible with agg then T ← {({val(o)}, 1)}; else T ← undefined;

3) return T ;

4) let C ← {o1, . . . , on} denote the children of o which are also in K

such that Ti ← bottom-up(oi) is not undefined;

5) for every OPF entry ℘(o)(F ),

6) let E = {oe1 , . . . , oem} = F ∩ C;

7) if |E| > 0, then

8) a← agg(∪m
i=1aei) where aei ∈ Tei .A,

9) if o ∈ Y , then a← agg(a ∪ adefault);

10) p← ℘(o)(F )×
∏m

i=1
(Tei .P ); T ←update(T, a, p);

11) return T ;

function update

/* input: relational table T , value set a = {e}, probability p; output: relational table T */

1) if |T | 6= 0 then T ← T ∪ {({e× p}, p)}; else replace ({e′}, p′) ∈ T by ({e′ + e× p}, p + p′);

2) return T ;

Figure 2.12: Algorithm SE for ID expected aggregate functions

from tank1 and T2 = {({1}, 1)} from tank2. It then considers each OPF entry. For {tank1},

the only possible combination of the values from tank1 is {({1}, 1)}. The result of the aggregate

computation is: sum({1}) = {1} with probability p = ℘(convoy1)({tank1}) × 1 = 0.4. We then
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update the table of convoy1 by adding a tuple ({1 × 0.4}, 0.4). Similarly, the remaining OPF

entry {tank2} is considered and the table at convoy1 becomes T1 = {({1}, 1)}, which means that

convoy1 must have exactly one vehicle. SE works similarly on the branch of convoy2 and obtain

a table T2 = {({1}, 1)}.

At the root, we consider the OPF entries of I1. For example, for the subset {convoy1,

convoy2}, the only possible combination of the values from tank1, tank2 is {({1}, 1), ({1}, 1)}.

The result is sum({1, 1}) = {2}, with probability p = ℘(I1)({convoy1, convoy2}) × 1 × 1 = 0.5.

We then update the table T of convoy1 by adding a tuple ({2 × 0.5}, 0.5). Similarly, we update

the table with the tuple ({1×0.3}, 0.3) for {convoy1} and ({1×0.2}, 0.2) for {convoy2}. The final

table becomes T = {({1.5}, 1)}, which means that the expected number of vehicles is 1.5.

2.7.5 Complexity of SE Algorithm

As the table only contains a single value, SE’s space complexity is O(|Y |) where Y is the set of

objects selected. SE’s time complexity is O(b|I|) where b is the branch factor (the number of

children), and I is the size of the probabilistic instance including the size of all OPF entries. SE

is therefore much faster (and more space efficient) than SP.

2.8 PXML Experiments

2.8.1 Experimental Design

I have implemented a prototype system in C on a Dell PowerEdge with 1.13 Ghz PIII processors,

4GB RAM running Linux. I generated probabilistic instances as balanced trees with the depth

(of the tree) ranging from 3 to 9 and with every non-leaf object having b children (b is the branch

factor, from 2 to 14) and every leaf object having a value in [0, r − 1] (r is the range of the value,

from 2 to 32). I assume that there is no cardinality constraint, so the total number of OPF

entries in a local interpretation for each non-leaf object is 2b. There are two kinds of distributions

of OPF entries within a given object. In the uniform distribution, all potential child sets have

the same probability. In the exponential distribution, exponentially decreasing probabilities are
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assigned randomly to the potential child sets. There are two kinds of random edge labelings. In

the same label (or SL) labeling, all children of the same parent have the same labels (shown as

SL in the figures). The fully random (or FR) labeling assigns random labels to all children of the

same parent. I evaluated the performance of ancestor projection, selection, Cartesian product and

aggregate operations.

2.8.2 Performance results of algebra experiments

In this set of results, I include graphs of total query time and the time required to update the

local interpretation (℘). The total query time is the sum of the time to make a copy of the input

instance, the time to locate objects satisfying a path expression (and the object id of the object

to be selected in the case of selection operation), the time to update the structure of the instance

(for ancestor projection only), the time to update the local interpretation, and the time to write

the resulting instance onto a disk. For each depth, each branching factor and each operation, I

generated 10 instances. For each instance, I kept track of labels used by edges of objects in each

depth and generated 10 random queries that returned results consisting of the root and at least

one more object. For example, in an instance of depth 2 where the edges connecting objects of

depth 1 to their parents have labels from the set {a, b} and the edges connecting objects of depth

2 to their parents have labels from the set {c, d}, the path expression of an ancestor projection

query generated has the form r.x1.x2 where r is the root id, x1 ∈ {a, b} and x2 ∈ {c, d}. I accepted

this query in the performance measurement in our experiment only if there were objects satisfying

the path expression of this query. For each selection query, I generated a path expression p (in the

same way) and similarly found a set SelObj of objects satisfying the path expression. The selection

queries used have the form p = o where o is an object id selected randomly from SelObj. For

each Cartesian product query, I generated two instances of the same depth and the same branch

factor. In my experiments, I only consider single path expressions as defined in Definition 2.5.1.

In addition, I set the length of the query (the length of the path expression) equal to the depth of

the instance because, according to the definition of ancestor projection and selection, the objects
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whose depth exceeds the length of the query will not be considered and will not affect the query

results and the local interpretation of such objects does not need updating. For each combination

of depth and branching factor, I took the average of 100 such queries.
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Figure 2.13: (a) Total query time of ancestor projection, (b) update local interpretation time of

ancestor projection, (c) total query time of selection and (d) total query time of Cartesian product

for instances of sizes ranging from 10 to 1000000, branching factors ranging from 2 to 8 and two

different labeling schemes (SL = same labels for children of the same parent; otherswise, all random

labels).

Figures 2.13 (a) and (b) show the total query processing time and the time of updating
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℘ in an ancestor projection. By comparing the two graphs, we see that the time to update ℘

dominates the total query processing time. Figure 2.13 (b) shows that the time to update ℘ is

linear in the number of objects, which can be explained by the fact that ℘(o) is updated only once

for each object o. Recall that the time to propagate probabilities from children of an object o to

o is quadratic in the size of ℘(o). When we fix the number of objects, we see from Figure 2.13

(b) that the time increases by a multiple less than 16 when the branching factor increases by 2,

i.e. the number of entries in ℘(o) is multiplied by 4. In addition, under the setting of having the

same labels for all children of the same parent, the time is longer than the other setting. One

possible reason is that in the former setting, there is a higher chance that more objects are located

by the path expression, and so there are more objects to be kept whose local interpretations are

to be updated. The final note is that the updating time for 299593 objects and branch factor 8

SL (the top rightmost point) is 10.4s, which seems to be long. However, it is reasonable when we

consider the fact that about 700 - 5000 objects are kept and about 28000 - 200000 ℘(o) entries are

processed.

Figures 2.13 (c) and (d) show the total query processing time for selection and Cartesian

product. Their results are different from that of ancestor projection as the time to write the result

onto the disk dominates the total query processing time (the time of updating ℘ in selection only

involves less than 0.001 second; the time of updating the root data in Cartesian product only takes

less than 0.01 second). The reason is that the remaining structure of the resulting instance does

not change after selection. Hence, the amount of data to be written is much larger than the number

of objects whose ℘(o) needs to be updated (the number is the same as the depth) in selection, or

the data of the root in Cartesian product. The total time is linear in the number of objects and

linear in the number of entries in ℘(o) of each object o. The quantity of data to be written is

independent of whether SL or FR labelings are used.
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2.8.3 Performance results of aggregate experiments

In this section, I only evaluate the performance of the core part of aggregate operations, so I

assume that the probabilistic instances generated are the results after selecting objects of interest

and their ancestors. Thus, the instances used here can be treated as just small subsets of a much

larger instance.

I evaluated two aggregate operators which are typical and useful. One is avgsumP(I,

{p1, p2}) which selects object sets Y1, Y2 satisfying path expressions p1, p2 from probabilistic in-

stance I, and then finds all the possible answers (with probabilities) of the quotient from dividing

the sum of values of objects in Y2 by the number of objects in Y1. I use an extended version of SP

program to handle this operator. This extended SP works similarly to SP, but it keeps aggregate

results and probabilities for both Y1 and Y2 and processes an extra calculation on them in the final

stage, which is division for avgsumP to get the average. The other operator is sumP(I, {p}).

The experimental results show that the second operator’s corresponding expected proba-

bilistic function sumE can be computed by the SE algorithm within 0.5 second even when there are

105 selected objects. I also implemented the pruning technique by keeping the size of probability

table of every non-root object (finalized at the end of the function bottom-up) not exceeding a

threshold ranging from 50 to 300.

I now show results (averaged over 10 to 100 runs for each setting) of the SP algorithm about

(1) the relationship of the number of selected objects and the size of table at the root, (2) the

running time of SP (without pruning), and (3) the performance (running time and relative error)

of SP with pruning.

Root Table Size and Running Time of SP

Figure 2.14(a) shows that the size of the probability table Troot at the root (in SP program

for sumP(I, {p})) is approximately linear in the number of selected objects because the slope is

approximately 1. The table size (|Troot|) increases with the value range (r) to the power of about

1.4, i.e., |Troot| ∝ r1.4.
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Figure 2.14: (a) In SP for sumP, the linear relationship between the size of the table T at the root

(number of distinct values) and the number of objects selected (in log scale), (b) running time of

extended SP for avgsumP against the size of the root table (in log scale).

Figure 2.14(b) shows that the running time of extended SP to compute avgsumP (including

the time for dividing the sum in Y2 by |Y1|) is sub-cubic relative to the root table size because the

slope is between 2 and 3 The time complexity of this extended SP is O(βb|I| · |Troot|3). When the

branch factor increases by 2, the number of OPF entries increases by a factor of four. We see from

the graph that after counting the effect of b on the complexity, the time increases approximately

linearly with the probabilistic instance size (the total number of OPF entries). Note that the

curves of branch factor 4, 6, 8 are close to each other. A possible reason is the common overhead

which dominates over the effect of branch factor when the branch factor is small.

Performance of Pruning

Here I generate instances with depth 4 and branch factor 4 (i.e., 256 selected objects) and evaluate

the operator sumP. When the range of values is 8, 16, 32, the mean root probability table size is

918, 1872, 4043, and the running time is 6.84, 55.84, 566.5 seconds respectively.

Figure 2.15(a) shows that the relative error of the result with pruning compared with the

case where there is no pruning decreases with the increase in the range of values and the maximum
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Figure 2.15: (a) Error of SP with pruning (relative to without pruning) for sumP against the

maximum table size allowed, (b) Running time of SP with pruning for sumP against the maximum

table size allowed.

probability table size allowed at non-root objects. Instances with an exponential distribution give

less error than those with uniform distribution because the former produces aggregate values with a

larger difference in probabilities, and hence the pruning of aggregate values with lower probabilities

gives less effect to the final answer.

Figure 2.15(b) shows that the running time of SP with pruning increases with the range

values and maximum table size, but the time are all much less than the time without pruning

(except the curve of range 8 which flattens when the maximum table size allowed is even larger

than the original non-root table size).

2.9 Summary

In this chapter, I have introduced the probabilistic semistructured data model (PXML). I have

given two semantics of this model, namely the local semantics and the global semantics. The global

semantics gives an intuition of possible-worlds interpretation of the semantics of the data model

while the local semantics allows efficient direct manipulation to avoid the expensive handling

of exponentially large number of compatible instances (possible worlds). I have presented an
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algebra to manipulate PXML data instances and showed how to evaluate such queries efficiently.

Furthermore, I introduced two semantics (possible-worlds and expectation) for aggregations on

PXML instances. The second semantics can be computed efficiently while the first semantics can

be computed with acceptable performance with pruning. Experimental results have verified the

feasiblity of PXML algebra and aggregations.

The PXML model presented uses point probability to model uncertainty of information. We

will see how this can be extended to use interval probability in the next chapter.
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Chapter 3

Probabilistic Interval XML Model

In this chapter, I extend the PXML model developed in the previous chapter so that interval

probabilities are used instead of point probabilities to represent uncertainty. In Section 3.1, I will

first provide some necessary definitions on which the PIXML model will be built. In Section 3.2, I

then develop the PIXML probabilistic interval data model. I then provide two alternative formal

semantics for the PIXML model. Section 3.3 presents the first semantics which is a declarative

(model-theoretic) semantics. The remaining sections present the second semantics which is an

operational semantics that can be used for computation. In the W3C formal specification of XML,

an instance is considered as an ordered rooted tree in which cycles can possibly appear[80]. In

this chapter, I will assume that an instance is an acyclic graph - this assumption will be needed

to provide a coherent semantics to PIXML databases. However I do not restrict attention to tree-

structures. I also provide an operational semantics that is provably correct for a queries over a

large class of probabilistic instances called tree-structured instances.

3.1 Interval Probabilities

An extension to handle interval probabilities is useful because almost all statistical evidence in-

volves margins of error. For instance, when a statistical estimate says that something is true with

probability 95% with a ±2% margin of error, then this really corresponds to saying the event’s

probability lies in the interval [0.93, 0.97]. Likewise, using intervals is valuable when one does

not know the relationship between different events. For example, if we know the probabilities of

events e1, e2 and want to know the probability of both of them holding, then we can, in general,

only infer an interval for the conjunction of e1, e2 ([9, 26]) unless we know something more about

the dependencies or lack thereof between the events. Furthermore, it is also natural for a human

judgement to be expressed as an interval probability rather than an exact point probability. For
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example, a human expert may say that the vehicle in a picture is likely a tank. If he or she is

asked to indicate a probability, he or she may feel difficulty to give a point probability (say, 60%),

but he or she may feel more natural to give an interval probability (say, 40% to 70%), which also

reflects the nature of uncertainty. An extreme case is [0, 1] (i.e., “0% to 100%”) which indicates

that we have no information about the probability or likeliness of an event.

Below I quickly review definitions and give some important theorems for interval probabili-

ties. Given an interval I = [x, y] I will often use the notation I.lb to denote x and I.ub to denote

y.

An interval function ι w.r.t. a set S associates, with each s ∈ S, a closed subinter-

val [lb(s), ub(s)] ⊆ [0, 1]. ι is called an interval probability function if
∑

s∈S lb(s) ≤ 1 and

∑

s∈S ub(s) ≥ 1. A probability distribution w.r.t. a set S over an interval probability function

ι is a mapping P : S → [0, 1] where

1. ∀s ∈ S, lb(s) ≤ P(s) ≤ ub(s), and

2. Σs∈SP(s) = 1.

Lemma 1 For any set S and any interval probability function ι w.r.t. S, there exists a probability

distribution P(S) which is compatible with ι.

Proof: There are potentially many possible distributions that are compatible with ι. One solution

is the distribution that is as close to “the middle” of each interval as possible. Let
∑

s∈S lb(s) = L

and
∑

s∈S ub(s) = U . By the definition of interval probability function, we know that L ≤ 1

and U ≥ 1. A probability function that is consistent with the interval constraints is: p(si) =

lb(si)+(ub(si)−lb(si))∗
1−L
U−L . It is easy to check that

∑

i p(si) = 1 and that lb(si) ≤ p(si) ≤ ub(si).

It may be noted that among the possible distributions, there has been work such as [34] to

find the one with maximum entropy. An interval probability function ι w.r.t. S is tight iff for

any interval probability function ι′ w.r.t. S such that every probability distribution P over ι is

also a probability distribution over ι′, ι(s).lb ≥ ι′(s).lb and ι(s).ub ≤ ι′(s).ub where s ∈ S. If every
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probability distribution P over ι′ is also a probability distribution over ι, then we say that ι is

the tight equivalent of ι′. A tightening operator , tight, is a mapping from interval probability

functions to interval probability functions such that tight(ι) produces a tight equivalent of ι. The

following result (Theorem 2 of [16]) tells us that we can always tighten an interval probability

function.

Theorem 3.1 [16, Theorem 2] Suppose ι, ι′ are interval probability functions over S and tight(ι′) =

ι. Let s ∈ S. Then:

ι(s) =



max



ι′(s).lb, 1−
∑

s′∈S∧s′ 6=s

ι′(s′).ub



 , min



ι′(s).ub, 1−
∑

s′∈S∧s′ 6=s

ι′(s′).lb







 .

For example, we can use the above formula to check that the interval probability functions in

Figure 2.3 are tight. Throughout the rest of this chapter, unless explicitly specified otherwise, I

will assume that all interval probability functions are tight.

3.2 The PIXML Data Model

In probabilistic XML, we have uncertainty because we do not know which of various possible

semistructured instances is “correct.” Rather than defining a point probability for each instance,

we will use interval probabilities to give bounds on the probabilities for structure. In this section, I

will first define a probabilistic interval semistructured instance. The following section will describe

its model theoretic semantics.

Recall the definitions of a weak instance (Definition 2.2.5), a potential l-child set (Defin-

ition 2.2.6), a potential child set (Definition 2.2.7), a weak instance graph (Definition 2.2.8), an

object probability function (OPF) (Definition 2.2.9) and a local interpretation (Definition 2.2.11).

A probabilistic semistructured instance defined in Section 2.2 uses a local interpretation to map a

set of OPFs to non-leaf objects for the point probabilities of children sets. Here, a probabilistic in-

terval semistructured instance uses ipf for a similar purpose; however, instead of point probabilities,

interval probabilities are used in ipf.

Definition 3.2.1 A probabilistic instance I is a 6-tuple I = (V, lch, τ, val, card, ipf) where:
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o l lch(o, l)

I1 convoy { convoy1, convoy2 }

convoy1 tank { tank1, tank2 }

convoy2 truck { truck1 }

o τ(o) val(o)

tank1 tank-type T-80

tank2 tank-type T-72

truck1 truck-type rover

o l card(o, l)

I1 convoy [1,2]

convoy1 tank [ 1,1 ]

convoy2 truck [ 1,1 ]

c ∈ PC(I1) ipf(I1, c)

{ convoy1} [ 0.2, 0.4 ]

{ convoy2} [ 0.1, 0.4 ]

{ convoy1, convoy2} [ 0.4, 0.7 ]

c ∈ PC(convoy1) ipf(convoy1, c)

{ tank1} [ 0.2, 0.7 ]

{ tank2} [ 0.3, 0.8 ]

c ∈ PC(convoy2) ipf(convoy2, c)

{ truck1} [ 1, 1 ]

Figure 3.1: A probabilistic instance for the surveillance domain.

1. W = (V, lch, τ, val, card) is a weak instance and

2. ipf is a mapping which associates with each non-leaf object o ∈ V , an interval probability

function ipf w.r.t. PC(o), where c ∈ PC(o) and ipf(o, c) = [lb, ub].

Intuitively, a probabilistic instance consists of a weak instance, together with probability intervals

associated with each potential child set of each object in the weak instance. Similarly, given a

probabilistic instance, we can obtain its weak instance graph from its corresponding weak instance.

Example 3.2.1 Figure 2.3 shows a very simple probabilistic instance.1 The set O of objects is

{I1 , convoy1 , convoy2 , tank1 , tank2 , truck1}. The first table shows the legal children of each of the

objects, along with their labels. The cardinality constraints are shown in the third table; for example

object I1 can have from one to two convoy-children. The tables on the right of Figure 2.3 shows the

ipf of each potential child of I1, convoy1 and convoy2. Intuitively, ipf(I1, {convoy1}) = [0.2, 0.4]

says that the probability of having only convoy1 is between 0.2 and 0.4.

1Here we only show objects with non-empty set of children.
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Figure 3.2: (a) The graph structure of the probabilistic instance in Figure 2.3. (b) The set of

semistructured instances compatible with the probabilistic instance in Figure 2.3.

In the rest of this chapter, I will omit the term interval in “probabilistic interval semistruc-

tured instance” and write it as “probabilistic semistructured instance” or simply “probabilistic

instance”.

3.3 PIXML : Declarative Semantics

I am now ready to describe the declarative semantics of a probabilistic instance. Recall Defini-

tion 2.3.1 of an ordinary semistructured instance to be compatible with a weak instance. Intuitively,

this means that the graph structure of the semistructured instance is consistent with the graph

structure and cardinality constraints of the weak instance. If a given object o occurs in the weak

instance W and o occurs also in a compatible semistructured instance S, then the children of o in

S must be a set of potential children of o in W .

I use Domain(W) to denote the set of all semistructured instances that are compatible

with a weak instance W . Similarly, for a probabilistic instance I = (V, lchI , τI , valI , card, ipf),

I use Domain(I) to denote the set of all semistructured instances that are compatible with I’s
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associated weak instance W = (V, lchI , τI , valI , card).

Figure 3.2 shows the set of all semistructured instances compatible with the weak instance

corresponding to the probabilistic instance defined in Example 3.2.1.

I will now define global interpretations that associate probability distributions over the set

of all semistructured instances that are compatible with a probabilistic instance.

Definition 3.3.1 Suppose we have a weak instance W = (V, lch, τ, val, card, ipf). A global inter-

pretation P is a mapping from Domain(W) to [0, 1] such that ΣS∈Domain(W)P(S) = 1.

Intuitively, a global interpretation is a distribution over the semistructured instances com-

patible with a weak instance. On the other hand, local interpretations assign semantics on an

object by object basis. To define local interpretations, I will use the definition of OPFs in Defini-

tion 2.2.9.

Definition 3.3.2 Suppose W = (V, lch, τ, val, card) is a weak instance. A local interpretation

is a mapping ℘ from the set of non-leaf objects o ∈ V to object probability functions, i.e. ℘(o)

returns an OPF for o w.r.t. W.

Intuitively, a local interpretation specifies, for each non-leaf object in the weak instance, an object

probability function.

3.3.1 Connections between Local and Global Semantics

In this section, I show that there is a transformation to construct a global interpretation from a

local one, and vice versa, and that these transformations exhibit various nice properties.

Definition 3.3.3 ( W̃ operator) Let ℘ be a local interpretation for a weak instance W = (V, lch,

τ , val, card). Then W̃ (℘) is a function which takes as input, any S ∈ Domain(W) and is defined

as follows: W̃ (℘)(S) =
∏

o∈S ℘(o)(CS(o)) where CS(o) are the actual children of o in S.

The following theorem says that W̃ (℘) is a valid global interpretation for W with an acyclic weak

instance graph.
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Theorem 3.2 Suppose ℘ is a local interpretation for a weak instance W = (V, lch, τ, val, card)

with an acyclic weak instance graph. Then W̃ (℘) is a global interpretation for W.

Proof:

The proof is by induction.

The length of the path from the root r of a rooted directed acyclic graph G to an object o is

the depth of o in G. The largest depth of any object in G is the height of G. I will call the root of a

graph of height k as ok. Now, I define k sets, namely OG,k, OG,k−1, . . . , OG,0, which contain objects

of depth 0, 1, . . . , k.2 A set OG,k is defined to contain ok only. OG,j−1 is defined as the union of the

sets of children of objects in OG,j, minus OG,j∪. . .∪OG,k, i.e., OG,j−1 =
⋃

o∈OG,j
C(o)−

⋃k
m=j OG,m.

Intuitively, the depth of objects in OG,j is k− j. Suppose ℘(o) returns an OPF ωo for o w.r.t. W .

Consider the case that the height of W is 1. The root o1 is the only object in any S ∈

Domain(W) that can have children. Thus,

W̃ (℘)(S) =
∏

o∈S

℘(o)(CS(o)) = ℘(o1)(CS(o1)) = ωo1(CS(o1))

In order for W̃ (℘) to be a global interpretation for W , the sum of W̃ (℘)(S) over all S

compatible with W should be equal to one. In this case, each distinct S has the object o1 to

contain a distinct potential child set. By Definition 2.2.9, the sum always gives one.

∑

S∈Domain(W)

W̃ (℘)(S) =
∑

c0∈PC(o1)

ωo1(c0) = 1.

Consider the case that the height of W is 2. The root is denoted as o2.

W̃ (℘)(S) =
∏

o∈S

℘(o)(CS(o))

= ℘(o2)(CS(o2))
∏

o1∈CS(o2)

℘(o1)(CS(o1))

= ωo2(CS(o2))
∏

o1∈CS(o2)

ωo1(CS(o1))

Since Domain(W) contains all possible compatible instances and the set of all potential

child sets of an object is independent of other objects, Domain(W) will then contains all possible

2I intentionally make the subscript of O as opposite to the depth it is corresponding so that the remaining parts

of the proof is simpler and easier to understand when I am using induction.
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combinations of every potential child set of every object.

∑

S∈Domain(W)

W̃ (℘)(S) =
∑

c1∈PC(o2)

ωo2(c1)
∏

o1∈c1

∑

c0∈PC(o1)

ωo1(c0)

=
∑

c1∈PC(o2)

ωo2(c1)
∏

o1∈c1

1

=
∑

c1∈PC(o2)

ωo2(c1)

= 1.

Assume that the theorem is true for the cases that the height of W is 1, . . . , k + 1. Now, let

us consider the case that the height of W is k + 2.

W̃ (℘)(S) =
∏

o∈S

℘(o)(CS(o))

=

k+2
∏

j=1

∏

oj∈OG,j

℘(oj)(CS(oj))

=
k+2
∏

j=1

∏

oj∈OG,j

ωoj
(CS(oj))

While summing up over all compatible instances, I can use the assumption that the subgraph

(height k + 1) of W without the root ok+2 has the product of sum equal to one.3

∑

S∈Domain(W)

W̃ (℘)(S) =
∑

ck+1∈PC(ok+2)

ωok+2(ck+1)×

k+1
∏

j=1





∏

oj∈OW,j





∑

cj−1∈PC(oj)

ωoj (cj−1)









=
∑

ck+1∈PC(ok+2)

ωok+2(ck+1)× 1

= 1.

Example 3.3.1 Consider the probabilistic instance in Example 3.2.1. Suppose we are given a lo-

cal interpretation ℘ such that ℘(I1) = ωI1, ℘(convoy1) = ωconvoy1, ℘(convoy2) = ωconvoy2, where

ωI1({convoy1}) = 0.3. ωI1({convoy2}) = 0.2, ωI1({convoy1, convoy2}) = 0.5, ωconvoy1({tank1}) =

3Although now the subgraph may have more than one root, it can be proved in a similar way that the product

of sum equal to one.
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0.4, ωconvoy1({tank2}) = 0.6, ωconvoy2( {truck1}) = 1. Then the probability of a compatible in-

stance S1 shown in Figure 3.2 will be:

W̃ (℘)(S1) = ℘(I1)({convoy1, convoy2}) ×℘(convoy1)({tank1})× ℘(convoy2)({truck1}) = 0.5×

0.4× 1 = 0.2.

An important question is whether we can go the other way: from a global interpretation,

can we find a local interpretation for a weak instance W? It turns out that we can if the global

interpretation can be factored in a manner consistent with the structure constraints imposed by

W . One way to ensure this is to impose a set of independence constraints relating every non-leaf

object and its non-descendants in the weak instance graph GW . The independence constraints are

defined below.

Definition 3.3.4 Suppose P is a global interpretation and W = (V, lch, τ, val, card) is a weak

instance. P satisfies W iff for every non-leaf object o ∈ V and each c ∈ PC(o), it is the case

that4: P(c|o, non-des(o)) = P(c|o). Here, non-des(o) are the non-descendants of o in GW .

In other words, given that o occurs in the instance, the probability of any potential children c

of o is independent of any possible set of nondescendants. From now on, given a weak instance

W , I will only consider P that satisfies W . The definition below tells us how to associate a local

interpretation with any global interpretation.

Definition 3.3.5 ( D̃ operator) Suppose c ∈ PC(o) for some non-leaf object o and suppose P

is a global interpretation. ωP,o, is defined as follows.

ωP,o(c) =
ΣS∈Domain(W)∧o∈S ∧CS (o)=cP(S)

ΣS∈Domain(W)∧o∈SP(S)
.

Then, D̃(P) returns a function defined as follows: for any non-leaf object o, D̃(P)(o) = ωP,o.

Intuitively, I construct ωP,o(c) as follows. Find all semistructured instances S that are compatible

with W and given that o occurs, find the proportion for which o’s set of children is c. The sum of

4Here, P(c|o) is the probability of c being children of o given that o exists. The notation of P(c|o, A) means the

probability of c being children of o given that o and A exists, where A is a set of objects.
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the (normalized) probabilities assigned to the remaining semistructured instances by P is assigned

to c by the OPF ωP,o(c). By doing this for each non-leaf object o and each of its potential child

sets, we get a local interpretation. The following theorem establishes this claim formally.

Proposition 2 Suppose P is a global interpretation for a weak instance W = (V, lch, τ, val, card).

Then D̃(P) is a local interpretation for W.

Proof:

From Definition 2.3.6, D̃(P)(o) = ωP,o is an OPF for o because ΣcωP,o(c) = 1. By Defini-

tion 2.2.11, D̃(P) is a local interpretation because for every non-leaf object o, D̃(P)(o) returns an

OPF for o.

Example 3.3.2 Consider the probabilistic instance in Example 3.3.1 and the set of compatible

instances in Figure 3.2. Suppose we are given a global interpretation P such that P(S1) = 0.2,

P(S2) = 0.3, P(S3) = 0.12, P(S4) = 0.18, P(S5) = 0.2. Then a local probability can be obtained

by calculating the probability of each potential child of every non-leaf object. For example, when we

calculate the probability of {tank1} as the actual child of convoy1, we notice that S1, S2, S3, S4 con-

tain convoy1, but only the child of convoy1 in S1, S3 is {tank1}. Hence, D̃(P)(convoy1)({tank1})

= P(S1)+P(S3)
P(S1)+P(S2)+P(S3)+P(S4) = 0.2+0.12

0.2+0.3+0.12+0.18 = 0.32
0.8 = 0.4

The following theorems tell us that applying the two operators D̃ and W̃ one after the other

(on appropriate arguments) yields no change.

Theorem 3.3 Suppose ℘ is a local interpretation for a weak instance W = (V, lch, τ, val, card).

Then, D̃(W̃ (℘)) = ℘.

Proof:

Given a graph G and a subset A of objects in G, G− A is a subgraph of G after removing

the set A of objects and all edges connected to A. Define Gndes(o) = G − ({o} ∪ desG(o)) for

any acyclic directed graph G, where desG(o) is the set of descendants of o in G, i.e., Gndes(o) is a

subgraph of G without an object o and its descendants. Define Gdes(o) = G− ({o} ∪ non-desG(o))
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for any acyclic directed graph G, where non-desG(o) is the set of non-descendants of o in G, i.e.,

Gdes(o) is a subgraph of G containing descendants of an object o only. In this proof, I will treat

instances S and weak instances W as graphs and the above notations will be used on them.

Define Domainndes(o) as function ofW which returns a set of “compatible” subgraphs ofW

only containing nondescendants of an object o, i.e., Domainndes(o)(W) = {S − o − desW(o)|S ∈

Domain(W)} where desW(o) are the descendants of o in W . Similarly, define Domaindes(o) as

function ofW which returns a set of “compatible” subgraphs ofW only containing an object o and

its descendants, i.e., Domaindes(o)(W) = {S − non-desW(o)|S ∈ Domain(W)} where non-desW(o)

are the nondescendants of o in W .

I need to prove that for any non-leaf object o and any of its potential child sets c,

D̃(W̃ (℘))(o)(c) = ℘(o)(c). The formula in Definition 3.3.3 can be rewritten as the following:

W̃ (℘)(S) = αS × ℘(o)(CS(o))× βS

where

αS =
∏

o′∈S∧o′∈Wndes(o)

℘(o′)(CS(o′)), βS =
∏

o′∈S∧o′ /∈Wndes(o)

℘(o′)(CS(o′)).

Intuitively, αS is the product of the probabilities of children of all objects excluding o and

its descendants. βS is the product of the probabilities of children of all objects including only

descendants of o. Here, descendants and nondescendants are those of the object o in W .

It is obvious that for any two instances S, S′ ∈ Domain(W), if Sndes(o) = S′ndes(o), then

αS = αS′ . Similarly, if Sdes(o) = S′des(o), then βS = βS′ . For any X ∈ Domainndes(o)(W), I define

new term α(X) = αS if X = Sndes(o). Similarly, for any Y ∈ Domaindes(o)(W), I define a new

term β(Y ) = βS if Y = Sdes(o).

The formula in Definition 2.3.6 to compute ωW̃ (℘),o(c) can be rewritten as:

D̃(W̃ (℘))(o)(c) = ωW̃ (℘),o(c) =
a

a + b

where

a =
∑

S∈Domain(W)∧o∈S ∧CS (o)=c

αS × ℘(o)(CS(o))× βS
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=
∑

X∈Domainndes(o)(W)

α(X) × ℘(o)(c) ×
∑

Y ∈Domaindes(o)(W)

β(Y )

(the reasoning in this step is similar to Theorem 3.2)

=
∑

X∈Domainndes(o)(W)

α(X) × ℘(o)(c) × 1,

(the last term can be proved similarly to Theorem 3.2)

b =
∑

S∈Domain(W)∧o∈S ∧CS (o) 6=c

αS × ℘(o)(CS(o))× βS

=
∑

X∈Domainndes(o)(W)

α(X) ×
∑

ci∈PC(o) where ci 6=c

℘(o)(ci)×
∑

Y ∈Domaindes(o)(W)

β(Y )

(more precisely, for the last term, I require ∃S ∈ Domain(W)

such that Snon-des(o) = X and Sdes(o) = Y .)

=
∑

X∈Domainndes(o)(W)

α(X) ×
∑

ci∈PC(o) where ci 6=c

℘(o)(CS(o)) × 1

=
∑

X∈Domainndes(o)(W)

α(X) × (1− ℘(o)(c)).

Thus,

ωW̃ (℘),o(c) =
℘(o)(c)

℘(o)(c) + 1− ℘(o)(c)
= ℘(o)(c).

The following theorem tells us that if we first apply the D̃ operator and then apply the W̃

operator to a global interpretation, then we get the global interpretation back.

Theorem 3.4 Suppose P is a global interpretation for a weak instance W = (V, lch, τ, val, card)

and P satisfies W. Then, W̃ (D̃(P)) = P.

Proof:

As P satisfies W and as the probability of a child set of a given object is independent of

other objects, so we can factorize P(S) to the product of the conditional probabilities of child sets

of all non-leaf objects and there exists an OPF ωo for every non-leaf object o such that for every

S ∈ Domain(W), P(S) =
∏

o∈S ωo(C(o)).

If I can prove that for any non-leaf object o and its any potential child set c, D̃(P)(o)(c) =

ωo(c), then I can show that for every S, W̃ (D̃(P))(S) =
∏

o∈S D̃(P)(o)(C(o)) =
∏

o∈S ωo(C(o))
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= P(S).

Now I must show that D̃(P)(o)(c) = ωo(c). I can define a local interpretation ℘ such that

℘(o) = ωo for any non-leaf object o. Then, from Definition 3.3.3, W̃ (℘)(S) =
∏

o∈S ℘(o)(CS(o)) =

∏

o∈S ωo(C(o)) = P(S). Thus, W̃ (℘) = P . As a result, I can substitute P by W̃ (℘) in D̃(P)(o)(c) =

ωo(c), then what I now need to prove has become: for any non-leaf object o and its any potential

child set c, D̃(W̃ (℘))(o)(c) = ℘(o)(c). This is exactly the same as that in the proof of Theorem 3.3.

3.3.2 Satisfaction

I am now ready to address the important question of when a local (resp. global) interpretation

satisfies a probabilistic instance.

A probabilistic instance imposes constraints on the probability specifications for objects. I

associate a set of object constraints with each non-leaf object as follows.

Definition 3.3.6 (object constraints) Suppose I = (V, lch, τ, val, card, ipf) is a probabilistic in-

stance, o ∈ V is a non-leaf object. We associate with o, a set of constraints called object

constraints, denoted OC(o), as follows. For each c ∈ PC(o), OC(o) contains the constraint

ipf(o, c).lb ≤ p(c) ≤ ipf(o, c).ub where p(c) is a real-valued variable denoting the probability that c

is the actual set of children of o. OC(o) also includes the following constraint Σc∈PC(o)p(c) = 1.

Example 3.3.3 Consider the probabilistic instance defined in Example 3.2.1. OC(I1 ) is defined

as follows: 0.2 ≤ p({convoy1}) ≤ 0.4, 0.1 ≤ p({convoy2}) ≤ 0.4, 0.4 ≤ p({convoy1 , convoy2 }) ≤

0.7, and p({convoy1}) + p({convoy2}) + p({convoy1 , convoy2}) = 1.

Intuitively, an OPF satisfies a non-leaf object iff the assignment made to the potential

children by the OPF is a solution to the constraints associated with that object. Obviously, a

probability distribution w.r.t. PC(o) over ipf is a solution to OC(o).

Definition 3.3.7 (object satisfaction) Suppose I = (V, lch, τ, val, card, ipf) is a probabilistic in-

stance, o ∈ V is a non-leaf object, ω is an OPF for o, and ℘ is a local interpretation. ω satisfies

o iff ω is a probability distribution w.r.t. PC(o) over ipf. ℘ satisfies o iff ℘(o) satisfies o.
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Example 3.3.4 Consider the probabilistic instance defined in Example 3.2.1, the probability inter-

pretation defined in Example 3.3.1 and the OC(I1 ) defined in Example 3.3.3. Since the assignment

made to the potential children of I1 by the OPF ℘(I1) = ωI1 is a solution to the constraints OC(I1 )

associated with I1 , ωI1 is a probability distribution w.r.t. PC(I1 ) over ipf. Thus, ω satisfies I1

and the local interpretation ℘ satisfies convoy. Similarly, convoy1 and convoy2 are satisfied.

I am now ready to extend the above definition to the case of satisfaction of a probabilistic

instance by a local interpretation.

Definition 3.3.8 (local satisfaction of a prob. inst.) Suppose I = (V, lch, τ, val, card, ipf) is

a probabilistic instance, and ℘ is a local interpretation. ℘ satisfies I iff for every non-leaf object

o ∈ V , ℘(o) satisfies o.

Example 3.3.5 Consider the probabilistic instance defined in Example 3.2.1, the local interpreta-

tion ℘ defined in Example 3.3.1. In view of the fact that ℘ satisfies all three non-leaf objects, I1 ,

convoy1 and convoy2, it follows that ℘ satisfies the example probabilistic instance.

Similarly, a global interpretation P satisfies a probabilistic instance if the OPF computed

by using P can satisfy the object constraints of each non-leaf object.

Definition 3.3.9 (global satisfaction of a prob. inst.) Suppose I = (V, lch, τ, val, card, ipf)

is a probabilistic instance, and P is a global interpretation. P satisfies I iff for every non-leaf

object o ∈ V , D̃(P)(o) satisfies o, i.e., D̃(P) satisfies I.

Corollary 1 (equivalence of local and global sat.) Suppose I = (V, lch, τ, val, card, ipf) is a

probabilistic instance, and ℘ is a local interpretation. Then ℘ satisfies I iff W̃ (℘) satisfies I.

Proof:

By Definition 3.3.9, W̃ (℘) satisfies I iff D̃(W̃ (℘)) satisfies I. By Theorem 3.3, D̃(W̃ (℘)) =

℘. Thus, it is trivial that the corollary is true.

We say a probabilistic instance is globally (resp. locally) consistent iff there is at least

one global (resp. local) interpretation that satisfies it. Using Lemma 1, I can prove the following
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theorem saying that according to my definitions, all probabilistic instances are guaranteed to be

globally (and locally) consistent.

Theorem 3.5 Every probabilistic instance is both globally and locally consistent.

Proof:

By Definition 3.3.9 and Corollary 1, a probabilistic instance is globally consistent iff it is

locally consistent. Thus, I only need to prove that every probabilistic instance is locally consistent.

Suppose I = (V, lch, τ, val, card, ipf) is a probabilistic instance. For every non-leaf object o ∈ V ,

OC(o) are exactly the same constraints of the definition of a probability distribution w.r.t. PC(o)

over ipf(o, c). By Lemma 1, there exists such a probability distribution P , so I can define an OPF

ωo for o such that ∀c ∈ PC(o), ωo(c) = P (c). ωo is a probability distribution w.r.t. PC(o) over ipf

w.r.t. PC(o), so it satisfies o. Thus, for each non-leaf object o ∈ V , I can define an OPF ωo that

satisfies o. Then I can define a local interpretation ℘ such that for every non-leaf object o ∈ V ,

℘(o) = ωo . Therefore, for every non-leaf object o ∈ V , ℘(o) satisfies o, so ℘ satisfies I.

3.4 PIXML Queries: Syntax

In this section, I define the formal syntax of a PIXML query. The important concept of a path

expression defined below (a bit different from Definition 2.5.1) plays the role of an attribute name

in the relational algebra.

Definition 3.4.1 (path expression) Suppose I is a probabilistic instance, opr is an object id,

and l1, l2, . . . , ln are labels of edges. Then I : opr and I : opr .l1 . . . ln are called path expressions.

When I is clear from context, I will often just write opr and opr .l1 . . . ln.

I write o ∈ p whenever object o can be located by path p. A path expression is instance-specific

iff the path expression is specified with an instance name of the form I : p where I is an instance

name and p is a path expression. When a path expression is not instance-specific, it refers to a

default instance.
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3.4.1 Single-Instance Queries

A single instance query is one that only accesses one probabilistic instance.

Given an attribute name A in the relational algebra, we can write queries such as A =

v, A ≥ v, etc. We can do the same with path expressions.

Definition 3.4.2 (atomic query) An atomic query has one of the following forms:

1. p φ o, where p is a path expression, φ is a binary predicate from {=, 6=} and o is an oid.

2. val(p) φ v, where p is a path expression, φ is a binary predicate from {=, 6=,≤,≥, <, >} and

v is a value.

3. card(p, x) φ I, where p is a path expression, x is either l ∈ L or ? (a wildcard matches any

label), φ is a binary predicate from {=, 6=,≤,≥, <, >,⊂,⊆,⊃,⊇, } and I is an interval. I1 φ I2

has the intended interpretation. For example, I1 > I2 means I1.lb > I2.lb ∧ I1.ub > I2.ub.

4. ipf(p, x) φ I, where p is a path expression, x is either c ∈ PC(p) or the wildcard ? (which

means that it matches any potential child), φ is a binary predicate from {=, 6=,≤,≥, <, >,⊂

,⊆,⊃,⊇, } and I is an interval ⊆ [0, 1].

5. operand1 φ operand2, where both operand1 and operand2 should be of the same form among

p, val(p), card(p, x) and ipf(p, x) defined above; φ is a corresponding binary predicate defined

above.

I assume that an order is defined on the elements in the domain of a type, but some types such

as strings only allow operations in {=, 6=}. An atomic selection expression of the form val(p) φ v

or val(p1) φ val(p2) is satisfied only if both sides of the binary predicate are type-compatible and

compatible with φ (i.e., φ is defined on their types).

A compound query is a boolean combination of atomic queries.

Definition 3.4.3 (q1 ∧ q2) and (q1 ∨ q2) are compound queries if q1, q2 are atomic queries or

compound queries.
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The simplest kind of query is one where all the conditions in the query can be satisfied (I

will formally define satisfaction later) by one object in one instance. This kind of query can be

either an atomic query with just one path expression (like a free variable for only one object as

the answer) or a compound query with all path expressions referring to the same object (this can

be done by using an object variable, e.g., val(w = p1) > v1 ∧ val(w) < v2 where w is an object

variable, p1 is a path expression, v1, v2 are values).

Definition 3.4.4 A single-instance-single-object (SISO) query is either (i) an atomic query

(form (1)–(4) in Definition 3.4.2), or (ii) a compound query as a result of a boolean combination

of atomic queries (form (1)–(4) in Definition 3.4.2) where all the path expressions in the query

refer to the same object by using an object variable.

In contrast, the following defines a query that can be satisfied by more than one object in

one instance.

Definition 3.4.5 A single-instance-multiple-object (SIMO) query is either (i) an atomic

query (form (5) in Definition 3.4.2), or (ii) a compound query.

3.4.2 Multiple-Instance Queries

In the previous section, only one probabilistic instance is queried at a time. It is straight forward

to extend the above syntax to handle multiple probabilistic instances.

When the path expressions are specified with instance names, we can query multiple in-

stances in a way similar to SIMO queries.

Definition 3.4.6 A multiple-instance-multiple-object (MIMO) query is either (i) an atomic

query (form (5) in Definition 3.4.2), or (ii) a compound query where all the path expressions are

instance-specific and involve more than one instance. Furthermore, it is called an independent

MIMO (IMIMO) if and only if every atomic query in an MIMO query involves only one instance

AND the atomic queries can be rearranged into the form (q1,1 γ q1,2 γ . . . γ q1,n1) γ (q2,1 γ q2,2

70



γ . . . γ q2,n2) γ . . . γ (qm,1 γ qm,2 γ . . . γ qm,nm
), where γ5 is either ∧ or ∨, and qi,j are atomic

queries involving only instance Ii. Otherwise, it is called a dependent MIMO (DMIMO).

Suppose I1, I2 are instance names, p1, p2, p3, p4 are path expressions. Then (val(I1 : p1) >

val(I1 : p2)∨val(I1 : p1) < 100)∧val(I2 : p3) = val(I2 : p4) is IMIMO while val(I1 : p1) > val(I2 :

p2) is DMIMO and (val(I1 : p1) > val(I1 : p2) ∨ val(I2 : p3) = val(I2 : p4)) ∧ val(I1 : p1) < 100 is

also DMIMO

A query is reduced to SISO or SIMO if only one instance is involved. For example, val(I1 :

p1) = val(I1 : p2) is reduced to SIMO query val(p1) = val(p2) on I1.

Note that it is possible to rearrange the atomic queries in a DMIMO query to become a

boolean combination of groups of atomic queries. Each group is a boolean combination of atomic

queries and the instances involved in this group are not involved in any other groups. In this case,

we can solve each group by algorithms for IMIMO or DMIMO (depending on whether the group

is IMIMO or DMIMO) and then combine the result by the strategies described in the algorithm

for IMIMO. In this way, the complexity and actual running time can be reduced significantly.

The algorithms and strategies for IMIMO and DMIMO queries will be described in later sections

(Section 3.6.3 and Section 3.6.4).

3.5 PIXML Queries: r-Answers

3.5.1 r-Answers to SISO queries

First, let us consider the answer to an SISO query.

In order to define the answer to an SISO query w.r.t. a probabilistic instance, I proceed in

two steps. I first define what it means for an object to satisfy an SISO query. I then define what

the answer to an SISO query is w.r.t. a probabilistic instance.

Definition 3.5.1 (satisfaction of an SISO query by an object) An object o1 satisfies an

atomic SISO query Q via substitution θ(p/o1) (denoted o1 |= Q) if and only if o1 ∈ p where p is

5Here, I assume that the operator γ has a specified order of precedence, so I do not put parentheses to specify

the order of computation of the query.
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the path expression in Q.

An object o1 satisfies a compound SISO query if and only if o1 ∈ pi for every path expression

pi in Q and Q is true under substitution θ = {p1/o1, p2/o1, . . .}.

In order to define the answer to a query, I must account for the fact that a given probabilistic

instance is compatible with many semistructured instances. The probability that an object is

an answer to the query is determined by the probabilities of all the compatible semistructured

instances that it occurs in.

Definition 3.5.2 (satisfaction of an SISO query by an object with prob r) Suppose I is

a probabilistic instance, Q is an SISO query, and S ∈ Domain(I). I say that object o of I satisfies

query Q with probability r or more, denoted o |=r Q iff

r ≤ INF{ΣS∈Domain(I)∧ o∈S ∧ o|=QP(S) | P |= I}.

Intuitively, any global interpretation6 P assigns a probability to each semistructured in-

stance S compatible with a probabilistic instance I. By summing up the probabilities of the

semistructured instances in which object o occurs, we obtain an occurrence probability for o

in I w.r.t. global interpretation P . However, different global interpretations may assign different

probabilities to compatible semistructured instances. Hence, if we examine all global interpreta-

tions that satisfy I and take the INF (infimum) of the occurrence probability of o w.r.t. each

such satisfying global interpretation, then we are guaranteed that for all global interpretations, the

probability of o’s occurrence is at least the INF obtained in this way. This provides the rationale

for the above definition. The answer to a query may be defined in many ways. My standard norm

will be to assume that the user sets a real number 0 < r ≤ 1 as a threshold and that only objects

satisfying a query with probability r or more will be returned.

Definition 3.5.3 (r-answer) Suppose 0 < r ≤ 1. The r-answer to SISO query Q is the set of

all objects o such that o |=r Q.

6Note that given a probabilistic instance I, I will only consider global interpretations that satisfies the weak

instance corresponding to I (by Definition 3.3.4).
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Example 3.5.1 Consider the probabilistic instance in Example 2.2.3 and a query Q which is val(

I1.convoy.tank ) = T 80. Suppose we want to find a 0.4-answer to Q. Obviously, the only possible

object to satisfy Q is tank1. However, there exists a global interpretation (for example, the one

in Example 3.3.2) such that the sum of the probability of compatible instances containing tank1

satisfying Q is less than 0.4. Thus, the 0.4-answer to Q is empty.

3.5.2 r-Answers to SIMO/MIMO queries

For multiple-object queries (including SIMO and MIMO queries), it is possible for an atomic query

to have form (5) of Definition 3.4.2, i.e., two objects are necessary to satisfy it. For example, in

val(p1) = val(p2) where p1, p2 are path expressions, only a pair of objects satisfying each path

expression and having the same value can satisfy this query.

Definition 3.5.4 Objects o1 and o2 satisfy an atomic query (p1 φ p2) via substitution θ =

{p1/o1, p2/o2} if and only if (o1 ∈ p1 ∧ o2 ∈ p2 ∧ o1 φ o2) holds. Similarly for other forms of

the two operands.

Instead of talking about an object satisfying an SISO query, I will need to define when a set

of objects satisfies an SIMO or MIMO query. I say a set of objects T = {o1, . . . , on} satisfies the

query with a substitution θT = {p1/o1, . . . , pn/on} if all the path expressions are satisfied and the

result of the boolean combination of the atomic queries returns true. For example, we are given a

query Q defined as val(w = p1) > val(p2)∧val(w) < val(p3) (where p1, p2, p3 are path expressions

and w is an object variable) that is used to find object sets such that an object satisfying p1 has

a value lying between the values of some object satisfying p2 and some object satisfying p3. Here

I say that a set of objects T = {o1, o2, o3} satisfies Q by a substitution θT = {p1/o1, p2/o2, p3/o3}

if and only if o1 ∈ p1, o2 ∈ p2, o3 ∈ p3 and ((val(o1) > val(o2)) ∧ (val(o1) < val(o3))) is true.

Definition 3.5.5 (satisfaction of an SIMO/MIMO query by a set of objects) A set T =

{o1, . . . , on} of objects satisfies an SIMO/MIMO query Q (denoted T |= Q) via substitution

θT = {p1/o1, . . . , pn/on} if and only if any one of the following conditions is satisfied:
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• Q is an atomic query (form (5) in Definition 3.4.2), T = {o1, o2}, o1 and o2 satisfy Q via

θT ;

• Q is a compound query in the form of q1 ∧ q2 (where q1, q2 are atomic queries or compound

queries), and T satisfies q1 and q2 via θT ;

• Q is a compound query in the form of q1 ∨ q2 (where q1, q2 are atomic queries or compound

queries), and (i) T satisfies q1 via θT or (ii) T satisfies q2 via θT .

The definitions of satisfaction with probability r and r-answer for SIMO/MIMO queries are

similar to those for SISO queries.

Definition 3.5.6 (satisfaction of an SIMO query by a set with prob r) Suppose I is a

probabilistic instance, Q is an SIMO query, and S ∈ Domain(I). I say that the set T = {o1, . . . , on}

of objects in I satisfies query Q with probability r or more under substitution θT =

{p1/o1, . . . , pn/on}, denoted T |=r Q, iff

r ≤ INF{ΣS∈Domain(I)∧T⊆S ∧T |=QP(S) | P |= I}.

The major difference of MIMO queries from SIMO queries is that we have multiple proba-

bilistic instances I1, . . . , Im. Suppose T is the set of objects satisfying a given MIMO query over

probabilistic instances I1, . . . , Im, and suppose Ti consists of all objects in T that are in Ii. The

occurrence probability for T w.r.t. I1, . . . , Im and a sequence P1, . . . ,Pm of global interpreta-

tions (where Pi satisfies Ii) is the combination of the probabilities assigned by the Pi’s to the

Ti’s. Hence, I need to examine all combinations of global interpretations and take the INF of T ’s

occurrence probabilities w.r.t. each such combination.

[50] proposed the concept of a conjunctive strategy used for conjunction of interval prob-

abilities. Intuitively, a conjunction strategy is a function satisfying several axioms (shown in

Figure 3.3) related to conjunction which takes probability intervals associated with the conjuncts

in a conjunction and finds a probability for the conjunction. Based on the user’s knowledge of

the dependencies between the conjunctions, an appropriate conjunction strategy can be chosen –
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[50] suggest several (cf. Figure 3.4). The strategies for interval probabilities will be used again

when we discuss how to solve MIMO queries in later sections. Here in the definition for r-answer

of MIMO queries, as I need to obtain the INF of the conjunction of point probabilities only, I can

transform each point probability p to an interval probability [p, p] and take the lower bound of a

specific conjunctive strategy as the value of the conjunction.

Generic Postulates (? ∈ {⊗,⊕})

1. Commutativity ([l1, u1] ? [l2, u2]) = ([l2, u2] ? [l1, u1])

2. Associativity (([l1, u1] ? [l2, u2]) ? [l3, u3]) = ([l1, u1] ? ([l2, u2] ? [l3, u3]))

3. Monotonicity ([l1, u1] ? [l2, u2]) ≤ ([l1, u1] ? [l3, u3]) if [l2, u2] ≤ [l3, u3]

Probabilistic Conjunction Postulates

4. Bottomline ([l1, u1]⊗ [l2, u2]) ≤ [min(l1, l2), min(u1, u2)]

5. Identity ([l1, u1]⊗ [1, 1]) = [l1, u1]

6. Annihilator ([l1, u1]⊗ [0, 0]) = [0, 0]

7. Ignorance ([l1, u1]⊗ [l2, u2]) ⊆ [max(0, l1 + l2 − 1), min(u1, u2)]

Figure 3.3: Postulates of a probabilistic conjunctive strategy

Probabilistic Conjunctive Strategies

Ignorance ([l1, u1]⊗ig [l2, u2]) = [max(0, l1 + l2 − 1), min(u1, u2)]

Positive Correlation ([l1, u1]⊗pc [l2, u2]) = [min(l1, l2), min(u1, u2)]

Negative Correlation ([l1, u1]⊗nc [l2, u2]) = [max(0, l1 + l2 − 1), max(0, u1 + u2 − 1)]

Independence ([l1, u1]⊗in [l2, u2]) = [l1 · l2, u1 · u2]

Figure 3.4: Examples of probabilistic conjunctive strategies

Definition 3.5.7 (satisfaction of an MIMO query by a set with prob r) Suppose I1, . . .Im

are probabilistic instances, Q is a MIMO query, and Si ∈ Domain(Ii ). I say that the object set

T = {o1, . . . , on} ⊆ I1 ∪ . . . ∪ Im satisfies query Q with probability r or more under sub-
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stitution θT = {p1/o1, . . . , pn/on}, denoted T |=r Q, iff

r ≤ INF{Conji(ΣSi∈Domain(Ii)∧ (T∩Ii)∈SI ∧T |=QPi(S)) | Pi |= Ii}.

where Conji(xi) returns the conjunction of values x1, . . . , xm using a specified conjunctive strategy.7

Definition 3.5.8 (r-answer) Suppose 0 < r ≤ 1. The r-answer to SIMO/MIMO query Q is the

set of all object sets T = {o1, . . . , on} and their corresponding substitutions θT = {p1/o1, . . . , pn/on}

such that T |=r Q.

3.6 PIXML Queries: Operational Semantics

3.6.1 Algorithm to solve SISO queries

In this section, I study the problem: Given a probabilistic instance I, a real number 0 <

r ≤ 1, and an SISO query Q, how do we find all objects o in the probabilistic instance

that satisfy query Q with probability r or more?

Clearly, we do not wish to solve this problem by explicitly finding all global interpretations

that satisfy I and explicitly computing the sum on the right side of the inequality in Definition 3.5.2.

This approach is problematic for many reasons, the first of which is that there may be infinitely

many global interpretations that satisfy I. I present a more practical solution.

Recall that the weak instance graph GW describes all the potential children of an object. A

probabilistic instance is said to be tree-structured iff its corresponding weak instance graph is a

tree (i.e. the vertices and edges of GW (I) constitute a tree). Throughout the rest of this section,

I assume that we are only dealing with tree structured probabilistic instances.

My algorithm to solve this problem involves two core steps.

• Step 1: The first step is to identify all objects o in the weak instance graph GW of I that

7Here, for each probabilistic instance Ii, ΣSi∈Domain(Ii )∧ (T∩Ii )∈Si ∧T |=QPi(S) gives the probability that Ii

contains the objects in T intersecting Ii, for a particular global interpretation Pi. Because I am considering a

combination (hitting set) (of a possible global interpretation of each probabilistic instance), I need a conjunction of

the above probabilities from all probabilistic instances (details in Section 3.6.3).

76



satisfy the query Q. This can be done using any available implementation of semistructured

databases[59], hence I do not present the details here.

• Step 2: The second step is to check (using the original probabilistic instance I rather

than its weak instance graph) which of the objects returned in the preceding step have an

occurrence probability that exceeds the threshold w.r.t. all global interpretations that satisfy

the original probabilistic instance.

In this section, I focus on Step 2 as Step 1 can be readily solved using existing techniques for pure,

non-probabilistic semistructured databases. To solve step 2, we must have the ability to find the

minimal occurrence probability of the type described earlier for o (given an o that passes the test

of step 1 above).

Suppose I = (V, lch, τ, val, card, ipf) and suppose o ∈ V . I define a quantity cex(o) as follows.

Intuitively, cex(o) finds the conditional probability of occurrence of o, given that o’s parent in

the tree is known to occur.

1. If o is the root of GW , then cex(o) = 1.

2. Otherwise, o ∈ lch(o′, l) for some o′ and some l. Recall the object constraints OC(o′) defined

in Definition 3.3.6. Set cex(o) to be the result of solving the linear programming problem:

minimize Σc∈PC(o′)∧ o∈cp(c)

subject to OC(o′),

where p(c) is a real-valued variable denoting the probability that c is the actual set of children

of o′. As usual I assume that all the variables p(c) ≥ 0.

Intuitively, the quantity cex(o) specifies the smallest occurrence probability of object o given that

its parent is already known to occur in a semistructured instance.

Note: though OC(o′) appears to contain exponentially many variables, this is in reality linear in

the number of potential children of the object o′ and hence linear in the size of ipf (and hence

linear in the size of the probabilistic instance).
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Proposition 3 For any probabilistic instance I and any object o, cex(o) can be computed in time

polynomial in the size of I.

Suppose the path expression to object o in I is of the form r.l1 . . . ln where r is the root,

and l1, . . . , ln are labels. Let us now use the object id on to denote o, and object id oi−1 to denote

the parent of oi where 1 ≤ i ≤ n. Then the computed occurrence probability, cop(o) of o in

I is given by cex(o0) · · · cex(on).

Note: it is not necessary for us to always compute all cex(oi) before finding that cop(n) is

less than the threshold. Since cop(n) is computed by multiplying all cex(oi), when we are computing

cex(oi) one by one, we can stop as soon as their product is already less than the threshold. This

pruning technique applies to all algorithms in this chapter.

The following theorem says that the occurrence probability of o (which is defined declara-

tively in Definition 3.5.2) corresponds exactly to the computed occurrence probability of o according

to the above procedure.

Theorem 3.6 (correctness theorem) Suppose I = (V, lch, τ, val, card, ipf) is a tree structured

probabilistic instance and o ∈ V . Then, cop(o) = INF{ΣS∈Domain(I)∧ o∈SP(S) | P |= I}.

Proof

I provide the proof of this theorem. Suppose the path expression to object o in I is of the

form r.l1 . . . ln where r is the root’s object id, and l1, . . . , ln are labels. Let us now use the object id

on to denote o, and object id oi−1 to denote the parent of oi where 1 ≤ i ≤ n. The proof proceeds

by induction on n.

If n = 0 then o is the root of I. Hence, cop(o) = 1 by definition. As every compatible

semistructured instance contains the root, it follows by the definition of probabilistic interpretation

that every probabilistic interpretation assigns 1 to ΣS∈Domain(I)∧ o∈SP(S). This completes the

base case.

Suppose n = m + 1 for some integer m. Consider the path o1.l2 . . . lmlm+1. Clearly,

this is a path of length m from o1 to om+1 = o. Let I ′ be the probabilistic instance which is

78



just like the subtree (of I) rooted at o1. By the induction hypothesis, I know that copI′(o) =

INF{ΣS′∈Domain(I′)∧ o∈S′ ∧P′|=I′P
′(S′)} where P ′ is defined as follows. If S′ is compatible with

I ′ then P ′(S′) is the sum of P(S) for all S compatible with I such that S′ is the subtree of S

rooted at o1.

Note that copI(o) = cex(o0) × copI′(o1) by definition of cop. From the above, I may infer

that cop(o) = cex(o0)× INF{ΣS′∈Domain(I′)∧ o∈S′ ∧P′|=I′P
′(S′)}. I therefore need to show that

cex(o0)× INF{ΣS′∈Domain(I′)∧ o∈S′ ∧P′|=I′P
′(S′)} = INF{ΣS∈Domain(I)∧ o∈S ∧P|=IP(S)}.

But cex(o0) = 1 by definition, so I need to show that

INF{ΣS′∈Domain(I′)∧ o∈S′ ∧P′|=I′P
′(S′)} = INF{ΣS∈Domain(I)∧ o∈S ∧P|=IP(S)}.

The reason this equality holds is because of the construction of P ′. Consider each compatible

instance S ∈ Domain(I) that contains o. The interpretation P ′ looks at each S′ obtained by

restricting S to the subtree rooted at o1. A single S generates only one S′ in this way, but the

same S′ may be obtained from different semistructured instances S compatible with I. The sum of

all such P ′(S′) clearly equals the sum of all such P(S) containing o by construction. Furthermore,

P satisfies I iff its corresponding P” satisfies I ′. Since both sums are equal to each other for

every P satisfying I, the infimum of one sum is also equal to the infimum of the other sum. This

completes the proof.

It is important to note that the above condition is very similar to the condition on the right

side of the inequality of Definition 3.5.2 (it is exactly the same if we only consider objects o that

satisfy the query). An immediate consequence of the above theorem is that the two-step

procedure outlined in this section is correct, as step 2 is only applied to objects that

satisfy the SISO query condition Q.

Example 3.6.1 Consider the probabilistic instance in Example 3.2.1 and a compound SISO query

Q which is (val( w = I1.convoy.tank ) = T 80 ∨ val( w ) = T 72). This query indicates that we

want only one object whose value is either T 80 or T 72. Suppose we want to find a 0.1-answer to

Q.
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• Step 1: The first step is to identify all objects that satisfy Q. The two possibilities are objects

tank1 and tank2.

• Step 2: The second step is to compute the occurrence probability of object tank1 and tank2

respectively. First we identify that the ancestors of tank1 consists of convoy1 and the root

I1. On the other hand, the ancestors of tank2 also consists of convoy1 and the root I1. Then

we compute the (minimum) conditional probability of occurrence of I1, convoy1, tank1 and

tank2. cex(I1) = 1 because I1 is the root. As I1 is the parent of convoy1, we can obtain

cex(convoy1) by solving the following linear programming problem:

minimize Σc∈PC(I1)∧ convoy1∈cp(c)

subject to OC(I1),

where p(c) ≥ 0 is a real-valued variable denoting the probability that c is the actual set of

children of I1. The object constraints OC(I1) consist of the following equations:

0.2 ≤ p({convoy1}) ≤ 0.4,

0.1 ≤ p({convoy2}) ≤ 0.4,

0.4 ≤ p({convoy1, convoy2}) ≤ 0.7 and

p({convoy1}) + p({convoy2}) + p({convoy1, convoy2}) = 1.

The result is: cex(convoy1) = 0.6. Similarly, as convoy1 is the parent of tank1, we can

obtain cex(tank1) by solving the following linear programming problem:

minimize Σc∈PC(convoy1)∧ tank1∈cp(c)

subject to OC(convoy1),

where p(c) ≥ 0 is a real-valued variable denoting the probability that c is the actual set of

children of convoy1. The object constraints OC(convoy1) consist of the following equations:

0.2 ≤ p({tank1}) ≤ 0.7,

0.3 ≤ p({tank2}) ≤ 0.8,

p({tank1}) + p({tank2}) = 1.

The result is: cex(tank1) = 0.2. Finally, as convoy1 is the parent of tank2, we can obtain

cex(tank2) by solving the following linear programming problem:
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minimize Σc∈PC(convoy1)∧ tank2∈cp(c)

subject to OC(convoy1),

where p(c) ≥ 0 is a real-valued variable denoting the probability that c is the actual set of

children of convoy1. The result is: cex(tank2) = 0.3. Therefore, the (minimum) computed

occurrence probability of tank1 is cop(tank1) = cex(I1) · cex(convoy1) · cex(tank1) = 1 · 0.6 ·

0.2 = 0.12 which exceeds the threshold. The (minimum) computed occurrence probability of

tank2 is cop(tank2) = cex(I1) · cex(convoy1) · cex(tank2) = 1 · 0.6 · 0.3 = 0.18 which exceeds

the threshold. As a result, the 0.1-answer to Q is {tank1, tank2}.

3.6.2 Algorithm to solve SIMO queries

The preceding section provides a sound and complete algorithm to answer SISO queries. In this

section, I extend the algorithm to solve SIMO queries. Unlike SISO queries, to answer a SIMO

query, I need to find a set of objects that satisfy the query. As a consequence, an r-answer to an

SIMO query is defined as a set of sets of objects (Definition 3.5.6, Definition 3.5.8). I extend the

previous algorithm in Section 3.6.1 as follows.

The extended algorithm to solve this problem also involves two core steps:

• Step 1: The first step is to identify all sets T of objects {o1, . . . , on} (and substitutions

θT = {p1/o1, . . . , pn/on}) in the weak instance graph GW of I that satisfy the SIMO query Q.

As in the SISO case, this can be done using any available implementation of semistructured

databases. Hence I do not present the details here.

• Step 2: The second step is to check (using the original probabilistic instance I rather than

its weak instance graph) which of the sets of objects returned in the preceding step have an

occurrence probability that exceeds the threshold w.r.t. all global interpretations that satisfy

the original probabilistic instance.

To solve step 2, I can modify the procedure used to find the minimal occurrence probability

of T (given a T that passes the test of step 1 above).
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Suppose I = (V, lch, τ, val, card, ipf) and suppose T = {o1, . . . , on} where o1, . . . , on ∈ V .

Furthermore, define set A to contain objects in T and all their ancestors (in the weak instance

graph GW ). The subgraph of GW consisting of objects in A and edges among them is denoted by

GA
W . For every non-leaf object o in GA

W , I define a quantity ccpA(o) as follows. Intuitively, ccpA(o)

finds the conditional probability of occurrence of the set Ao of all o’s children (that are also in

A, i.e., in GA
W), given that o is known to occur. For those leaf objects o in GA

W , ccpA(o) is set to 1

by default.

1. If o is a leaf in GA
W , then ccpA(o) = 1.

2. Otherwise, let Ao be the set of o’s children in GA
W . Recall the object constraints OC(o) defined

in Definition 3.3.6. Set ccpA(o) to be the result of solving the linear programming problem:

minimize Σc∈PC(o)∧Ao⊆cp(c)

subject to OC(o),

where p(c) is a real-valued variable denoting the probability that c is the actual set of children

of o. As usual I assume that all the variables p(c) ≥ 0.

Intuitively, the quantity ccpA(o) specifies the smallest occurrence probability of object o’s children

Ao given that o is already known to occur in a semistructured instance.

Proposition 4 For any tree structured probabilistic instance I and any object o, ccpA(o) can be

computed in time polynomial in the size of I.

Then the computed occurrence probability, cop(T ) of T in I is given by
∏

o∈A ccpA(o).

The following theorem says that the occurrence probability of T (which is defined declar-

atively in Definition 3.5.6) corresponds exactly to the computed occurrence probability of T ac-

cording to the above procedure.

Theorem 3.7 (correctness theorem) Suppose I = (V, lch, τ, val, card, ipf) is a tree structured

probabilistic instance, set T of objects {o1, . . . , on}, and oi ∈ V . Then,

cop(T ) = INF{ΣS∈Domain(I)∧T⊆SP(S) | P |= I}
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Proof

Suppose d is the depth of GA
W (the maximum length of the shortest paths from leaf nodes

to the root).

If d = 0, then T only contains or that is the root of I. Hence, cop(T ) = 1 by definition. As

every compatible semistructured instance contains the root, it follows by the definition of proba-

bilistic interpretation that every probabilistic interpretation assigns 1 to ΣS∈Domain(I)∧ or∈SP(S).

This completes the base case.

If d = 1, then suppose or is the root (which always exists in GA
W), and Aor

is the root’s

children that are also in GA
W . Since for every leaf object o, ccpA(o) = 1, so cop(T ) = ccpA(or) = 1.

ccpA(or) is obtained from the result of solving the linear programming problem:

minimize Σc∈PC(or)∧Aor⊆cp(c)

subject to OC(or),

where p(c) is a real-valued variable denoting the probability that c is the actual set of chil-

dren of or. As usual I assume that all the variables p(c) ≥ 0. By Proposition 2 and Theo-

rem 3.4, for every global interpretation that satisfies the probabilistic instance, it can be con-

verted to an equivalent local interpretation. Recall Definition 2.3.6,
ΣS∈Domain(I) ∧ or∈S ∧ Aor ∈SP(S)

ΣS∈Domain(I) ∧ or∈SP(S) =

ΣS∈Domain(I) ∧ T⊆SP(S)

1 actually returns the conditional probability that Aor
is a subset of children

of or, i.e., Σc∈PC(or)∧Aor⊆cp(c). Thus, the local interpretation corresponding to the solution of

the above linear programming problem also corresponds to the global interpretation that gives the

value of INF{ΣS∈Domain(I)∧T⊆SP(S) | P |= I}. This completes the case of d = 1.

Suppose d = m + 1 for some integer m. Suppose GA
W has the root or having the set Aor

of children. Suppose Aor
= {o1, . . . , oc}, Bi is the subtree of GA

W rooted at oi ∈ Aor
with depth

≤ m, Ti is the subset of T that appears in Bj . Let Ii be the probabilistic instance which is

just like the subtree (of I) rooted at oi. By the induction hypothesis, I know that copIi
(Ti) =

INF{ΣSi∈Domain(Ii)∧Bi⊆Si ∧Pi |=IiPi(Si)} where Pi is defined as follows. If Si is compatible with

Ii then Pi(Si) is the sum of P(S) for all S compatible with I such that Si is the subtree of S
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rooted at oi.

Note that copI(T ) = ccpA(or)×
∏

copIi
(Ti) by definition of cop. However, since P satisfies

W corresponding to I, so by Definition 3.3.4, every object is conditionally independent of any

possible set of its non-descendants given that its parent exists. As copIi
(Ti) represents the minimal

conditional probability of the existence of Bi given that oi exists, and every subtree is independent

of each other given its parent exists, so
∏

copIi
(Ti) returns the minimal probability that all those

subtrees (Bi) exist given that all oi’s exist. ccpA(or) returns the minimal probability that all oi’s

exist given that the root or exists. As the root always exists, so copI(T ) = ccpA(or)×
∏

copIi
(Ti)

returns the minimal probability that all those subtrees (Bi) exist, i.e., T ′ ∈ S, which is equal to

INF{ΣS∈Domain(I)∧T ′∈SP(S) | P |= I}. This completes the proof.

It is important to note that the above condition is very similar to the condition on the

right side of the inequality of Definition 3.5.6 (it is exactly the same if we only consider sets T of

objects that satisfy the query). An immediate consequence of the above theorem is that

the two-step procedure outlined in this section is correct, as step 2 is only applied to

sets of objects that satisfy the SIMO query condition Q.

Example 3.6.2 Consider the probabilistic instance in Figure 3.5 and a SIMO query Q which is

(val(I2.convoy.tank) = T 80∧ val(I2.convoy.truck) = mac).

Suppose we want to find a 0.1-answer to Q.

• Step 1: The first step is to identify all sets of objects (and substitutions) that satisfy Q. The

result is {{tank3, truck4}} with substitution θT = {I2.convoy.tank/tank3, I2.convoy.truck

/truck4}.

• Step 2: The second step is to compute the occurrence probability of the set returned in Step

1. I define set T = {tank3, truck4}. Then I define set A = {I2, convoy3, convoy4, tank3,

truck4} to contain T and its ancestors. Then I compute the (minimum) conditional proba-

bility of occurrence (ccpA) of AI2, Aconvoy3 and Aconvoy4 where Ao is the set of children of o

that are also in A. By default, I define ccpA(tank3) = ccpA(truck4) = 1 because tank3 and

truck4 are leaves in GA
W . Let us first compute ccpA(I2), where AI2 = {convoy3, convoy4}.
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o l lch(o, l)

I2 convoy { convoy3, convoy4 }

convoy3 tank { tank3 }

convoy3 truck { truck2 }

convoy4 truck { truck3, truck4 }

o τ(o) val(o)

tank3 tank-type T-80

truck2 truck-type rover

truck3 truck-type rover

truck4 truck-type mac

o l card(o, l)

I2 convoy [1,2]

convoy3 tank [ 0,1 ]

convoy3 truck [ 0,1 ]

convoy4 truck [ 1,1 ]

c ∈ PC(I2) ipf(I2, c)

{ convoy3} [ 0.1, 0.1 ]

{ convoy4} [ 0.1, 0.2 ]

{ convoy3, convoy4} [ 0.7, 0.8 ]

c ∈ PC(convoy3) ipf(convoy3, c)

{ } [ 0, 0 ]

{ tank3} [ 0.3, 0.8 ]

{ truck2} [ 0.2, 0.7 ]

{ tank3, truck2} [ 0, 0 ]

c ∈ PC(convoy4) ipf(convoy4, c)

{ truck3} [ 0.1, 0.2 ]

{ truck4} [ 0.8, 0.9 ]

Figure 3.5: Another probabilistic instance for the surveillance domain.

We can obtain ccpA(I2) by solving the following linear programming problem:

minimize Σc∈PC(I2)∧{convoy3,convoy4}∈cp(c)

subject to OC(I2),

where p(c) ≥ 0 is a real-valued variable denoting the probability that c is the actual set of

children of I2. The object constraints OC(I2) consist of the following equations:

0.1 ≤ p({convoy3}) ≤ 0.1,

0.1 ≤ p({convoy4}) ≤ 0.2,

0.7 ≤ p({convoy3, convoy4}) ≤ 0.8 and

p({convoy3}) + p({convoy4}) + p({convoy3, convoy4}) = 1.
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The result is: ccpA(I2) = 0.7. Next, let us compute ccpA(convoy3), where Aconvoy3 =

{tank3}. We can obtain ccpA(convoy3) by solving the following linear programming problem:

minimize Σc∈PC(convoy3)∧{tank3}∈cp(c)

subject to OC(convoy3),

where p(c) ≥ 0 is a real-valued variable denoting the probability that c is the actual set of

children of convoy3. The object constraints OC(convoy3) consist of the following equations:

0.3 ≤ p({tank3}) ≤ 0.2,

0.8 ≤ p({truck2}) ≤ 0.7,

p({tank3}) + p({truck2}) = 1.

The result is: ccpA(convoy3) = 0.3. Finally, let us compute ccpA(convoy4), where Aconvoy4 =

{truck4}. We can obtain ccpA(convoy4) by solving the following linear programming prob-

lem:

minimize Σc∈PC(convoy4)∧{truck4}∈cp(c)

subject to OC(convoy4),

where p(c) ≥ 0 is a real-valued variable denoting the probability that c is the actual set of

children of convoy4. The object constraints OC(convoy4) consist of the following equations:

0.1 ≤ p({truck3}) ≤ 0.2,

0.8 ≤ p({truck4}) ≤ 0.9,

p({truck3}) + p({truck4}) = 1.

The result is: ccpA(convoy2) = 0.8. Therefore, the (minimum) computed occurrence proba-

bility of {tank3, truck4} is cop({tank3, truck4}) = ccpA(I2) · ccpA(convoy3) · ccpA(convoy4) ·

ccpA(tank3)·ccpA(truck4) = 0.7·0.3·0.8·1·1 = 0.168 which exceeds the threshold. As a result,

the 0.1-answer to Q is {{tank3, truck4}} with substitution θT = {I2.convoy.tank/tank3,

I2.convoy.truck/truck4}.
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3.6.3 Algorithm to solve IMIMO queries

Recall (cf. Definition 3.4.6) that an IMIMO query Q is a boolean combination of groups (or query

groups). Each query group is a boolean combination of atomic queries involving one instance and

each instance is involved in only one group. Thus, each query group is equivalently an SISO or

SIMO query (depending on whether one object or more are needed to satisfy it) and can be solved

by the algorithms described in previous sections.

After solving the query groups, we have computed the minimal probability of each possible

answer (an object for SISO query group or a set of objects with its substitution for SIMO query

group) in each query group.

If the probability that a given object or set of objects is an answer to a particular group is

independent from the probability that some other object or set of objects is an answer to another

group, then the minimal probability that a given set of objects obtained by combining each answer

from each query group satisfies the whole original IMIMO query Q is simply the product of the

minimal probability of each component answer from each group (for the conjunctive case).

If the boolean combination of the query groups also involves disjunction, then it is enough

to have only one operand of the disjunction operator to be true in order to make the disjunc-

tion expression true. Thus, instead of returning a combination of the answers (object sets) from

each operand (query group) in the conjunction case, we have the following three outputs in the

disjunction case: (1) the answer of the left operand with its original minimal probability, (2) the

answer of the right operand with its original minimal probability, and (3) the combination of the

answers of the left and right operands with its new minimal probability which may depend on the

relationship (independent? mutually exclusive? correlated somehow, etc.) between the disjuncts.

For the answer (3), it actually means that we have the answer from the left AND the answer from

the right together, so in fact we want to have the conjunction of the two’s minimal probabilities.

Thus, for each set of answers from all query groups, we check the combination to see whether

the query is satisfied. As a result, we generate one or more “candidate” answers, each of which

will be kept as the final answer if its resulting minimal probability exceeds the specified threshold.

87



The whole algorithm to solve this problem involves the following three core steps (Figure 3.6

shows its pseudo code).

• Step 1: The first step is to rewrite the IMIMO query as a boolean combination of query

groups where each query group involves one instance and each instance is involved in one

query group only.

• Step 2: The second step is to use algorithms for SISO and SIMO queries to solve each query

group (returned in the preceding step) and obtain a set of answers to each query group (an

answer is an object or a set of objects with its substitution) with the corresponding minimal

probabilities.

• Step 3: The final step is to find the “candidate” answers (constructed from the answer

returned in preceding step) that satisfy the query and compute their minimal probabilities

using the conjunctive strategy specified by the user (or a default strategy provided by the

system). As we want to find the minimal occurrence probability of the object set, we can

transform each point probability probj (of each object subset existing in each Ij) to an

interval probability [probj , probj ] and take the lower bound of a specific conjunctive strategy

as the value of the conjunction.

For each query group, we select none or any one of the answer returned in step 2. As a result,

we obtain a set of objects from one or more probabilistic instances (with the corresponding

substitution). We then check to see whether the query returns true by this substitution. If

so, this is a candidate answer and we compute the conjunction of the minimal probabilities of

those answers from their query groups. Finally, only the candidates whose results exceeding

the threshold will be returned.

Theorem 3.8 (correctness theorem) Suppose I1, . . . Im are tree structured probabilistic in-

stances, the object set TC = {o1, . . . , on} ⊆ I1 ∪ . . . ∪ Im. Then,

probTC = INF{Conji(ΣSi∈Domain(Ii)∧ (T∩Ii)∈SI
Pi(S)) | Pi |= Ii}.
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• Input: IMIMO query Q, threshold r

• Output: r-answer

1. Rewrite Q into the form G1 γ G2 γ . . . γ Gm where Gi is a query group in the form

(qi,1 γ qi,2 γ . . . γ qi,ni), γ is either ∧ or ∨, and qi,j are atomic queries involving only in-

stance Ii.

2. For each Gi, we execute SIMO(Gi) where SIMO() is the algorithm to solve SIMO queries

and returns a set Ti of answers (object sets Ti,k) with substitutions θi,k and the minimal

probabilities probi,k.

3. For each combination TC (any Ti,k or none from each Ti) of object sets,

– if Q returns true by θTC (the corresponding substitutions), then compute the minimal

probability probTC of TC by using the conjunctive strategies specified. If probTC ≥ r,

then TC by θTC is included in the r-answer.

Figure 3.6: Pseudo code to solve IMIMO queries

Proof

Each query group Gi involves only probabilistic instance Ii. By Theorem 3.7, the probability

probi,k returned by SIMO(Gi) equals INF{ΣSi∈Domain(Ii)∧ (Ti,k ∩ Ii)∈Si
Pi(S) | Pi |= Ii}. My

algorithm then computes conjunction of INF. I show below that “the conjunction of INF” and

“INF of conjunction” are equivalent.

Here the conjunction of INF means that for each of sets S1, . . . , Sm, I apply INF on its

elements and then I transform each resulting point value pi into an interval [pi, pi]. A conjunctive

strategy is applied and the lower bound of the result is taken as the final result. In the other

words, I am computing Conj(INF{S1}, . . . , INF{Sm}).

On the other hand, the INF of conjunction means that for each hitting set H of the

sets S1, . . . , Sm, I transform each element point value pi into an interval [pi, pi]. A conjunctive

strategy is applied and the lower bound of the result is taken as the result. Among all these

resulting values, I apply INF and get the final result. In the other words, I am computing
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INF{Conj(H) | H is a hitting set of S1, . . . , Sm}.

First, note that {INF{S1}, . . . , INF{Sm}} is also a hitting set of S1, . . . , Sm. Second,

from Figure 3.3, I know that all conjunctive strategies are non-decreasing functions w.r.t. its

inputs. Therefore, if the input is INF, then the result will be also INF. As a result, the value of

Conj(INF{S1}, . . . , INF{Sm}) is also minimum among all Conj(H) and will be returned as the

result of INF{Conj(H) | H is a hitting set of S1, . . . , Sm}.

Because both the conjunction of INF and INF of conjunction actually considers all possible

cases and return the minimal value, their results are equal and this completes the proof.

Recall that the algorithms for SISO and SIMO queries compute the minimal probability of

an answer to a query group, i.e., the lower bound of the probability interval of that answers w.r.t

all possible global interpretations satisfying the instance. For example, suppose two query groups

G1, G2 are combined by conjunction and the conjunctive strategy used is the one of independence.

If the minimal probability of the answer {o1, o2} to G1 is x1 and the minimal probability of the

answer {o3, o4, o5} to G2 is x2, then the minimal probability of the answer {o1, o2, o3, o4, o5} to

G1 ∧G2 is x1 ·x2. If the two query groups G1, G2 are combined by disjunction and the disjunctive

strategy used is the one of negative correlation, then besides the original answers {o1, o2} and

{o3, o4, o5} (with the minimal probability of x1 and x2 respectively), another possible answer is

{o1, o2, o3, o4, o5} with the minimal probability of min(1, x1 + x2).

If a user specifies some conjunctive strategies that requires the value of upper bound of a

probability interval, then it is straightforward to modify the algorithms for SISO and SIMO to

find the maximal occurrence probability of a given answer and obtain the minimal probability of

the combination of answers to the original IMIMO query in a similar manner.

Example 3.6.3 Consider the two probabilistic instances in Figure 3.1 and Figure 3.5, and an

IMIMO query Q which is (val(w = I1.convoy.tank) = T 80∨((val(w) = T 72∨val(I2.convoy.tank) =

T 80) ∧ (val(w) = T 72 ∨ val(I2.convoy.truck) = mac))). It is IMIMO because it can be rewritten

as follows: ((val(w = I1.convoy.tank) = T 80 ∨ val(w) = T 72) ∨ (val(I2.convoy.tank) = T 80 ∧

val(I2.convoy.truck) = mac)), which consists of two query groups G1 = (val(w = I1.convoy.tank)
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= T 80 ∨ val(w) = T 72) and G2 = (val(I2.convoy.tank) = T 80 ∧ val(I2.convoy.truck) = mac)

connected by a disjunction. This query indicates that we want only one object (tank) from instance

I1 whose value is either T 80 or T 72 or a set of two objects (a tank and a truck) from instance I2

whose values are T 80 and mac. Suppose we want to find a 0.17-answer to Q and the disjunctive

strategy used is the one of positive-correlation. G1 is the same as the compound SISO query in

Example 3.6.1 and G2 is the same as the SIMO query in Example 3.6.2. From Example 3.6.1, we

know that the objects tank1 and tank2 in I1 satisfy G1 and have computed occurrence probabilities

of 0.12 and 0.18 respectively. From Example 3.6.2, we know that the object set {tank3, truck4} in

I2 satisfy G2 and has a computed occurrence probability of 0.168. Since G1 and G2 are connected

by a disjunction, so the 0.17-answer includes the object tank2 in I1 as its (minimum) probability

exceeds the threshold 0.17. Furthermore, the candidates of the answer also include the following:

{tank1, tank3, truck4} and {tank2, tank3, truck4}. The (minimum) probability of the former is

max(0.12, 0.168) = 0.168 while that of the latter is max(0.18, 0.168) = 0.18. As a result, the

0.17-answer consists of the object tank2 in I1 and the object set {tank2, tank3, truck4} in I1, I2.

3.6.4 Algorithm to solve DMIMO queries

In the previous section, I have described how to solve IMIMO queries. An atomic IMIMO query

Q involves only one instance and furthermore, it can be expressed as a boolean combination of

groups (or query groups) such that each query group is a boolean combination of atomic queries

involving one instance and each instance is involved in only one group. DMIMO queries do not

satisfy these conditions.

For IMIMO queries, we can consider each instance individually to see which object (or set

of objects) can satisfy a query group or not and then consider the different combinations of the

results of the query groups.

It is obvious that the first condition is necessary to handle one instance each time. In

order to understand why the second condition is necessary, let us consider the following illustrative

example. Suppose we are given an IMIMO query Q1 = (q1,1 ∧ q1,2) ∨ q2,1 where qi,j is an atomic
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query involving the ith instance. It is obvious that Q1 consists of two query groups, G1 = (q1,1∧q1,2)

and G2 = q2,1, connected by the operator ∨. Hence, we can consider which sets of objects from

the first instance satisfy G1 (this is the first set of answers to Q1) and which sets of objects in

the second instance satisfy G2 (the second set of answers to Q1), and then can use a disjunctive

strategy to find the minimal probability of the combination of the above two sets of answers. Now,

consider a DMIMO query Q2 = (q1,1 ∧ q2,1)∨ q1,2. The answers T1 satisfying q1,2 alone can satisfy

Q2, but answers T2 satisfying q1,1 alone cannot satisfy Q2 without combining with the answers T3

which satisfy q2,1. This means that we need to keep the minimal probabilities of all three cases

of object sets in the first instances: T1, T2 and T1 ∪ T2. One approach is to keep all necessary

information for each instance’s object set candidates (e.g., which atomic queries they satisfy) and

then use them as a basis to select for the combination with other candidates of other instances.

Nevertheless, the previous approach cannot work for a DMIMO query with some atomic

queries involving two or more instances, e.g. val(I1 : p1) > val(I2 : p2).

To address this problem, we must consider multiple instances concurrently. We must exam-

ine all the path expressions in the atomic queries and select all candidate objects in each instance

satisfying those path expressions. Thus, for each path expression, we have a set of object candi-

dates. We must then try all combinations of object candidates (as well as either or both side of

a disjunction) to check whether the whole query is satisfied or not. If it is satisfied, then we can

compute the minimal probability of the selected object candidates of each instance, and get the

resulting minimal probability by a probabilistic conjunctive strategy (it is a conjunction since we

are considering all possible combinations of candidates, and in each combination, we require all

those selected candidates to exist).

Figure 3.7 shows the pseudo code.

Theorem 3.9 (correctness theorem) Suppose I1, . . . Im are tree structured probabilistic in-

stances, the object set TC = {o1, . . . , on} ⊆ I1 ∪ . . . ∪ Im. Then,

probTC ≥ INF{Conji(ΣSi∈Domain(Ii)∧ (T∩Ii)∈SI
Pi(S)) | Pi |= Ii}.

Proof
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• Input: DMIMO query Q, threshold r

• Output: r-answer

1. For each path expression pi in Q, identify the set Ti of objects located by pi.

2. For each combination TC (any one or none from each Ti) of objects (and the corresponding

substitution θTC),

– if Q returns true by this substitution, then for each probabilistic instance Ij ,

∗ compute the minimal occurrence probability probj of the set of objects from TC that

exist in Ij in the way similar to step 2 of the algorithm to solve SIMO queries. If no

such object exists, then probj = 1.

Then, compute the minimal occurrence probability probTC of TC using a specified con-

junctive strategy (Figure 3.4). If probTC ≥ r, then TC by θTC is included in the r-answer.

Figure 3.7: Pseudo code to solve DMIMO queries

The internal iteration of step 2 in the algorithm is identical to step 3 of IMIMO algorithm

(Figure 3.6). Thus, it can be proved in a manner similar to the proof of Theorem 3.8.

Example 3.6.4 Consider the two probabilistic instances in Figure 3.1 and Figure 3.5, and a

DMIMO query Q which is ((val(I1.convoy.tank) = val(I2.convoy.tank))∨(val(I1.convoy.truck) 6=

val(I2.convoy.truck))). It is DMIMO because every atomic query involves two instances: I1

and I2. In order to solve this query, we will first identify the set of objects satisfying each

path expression. The objects in the set O1 = {tank1, tank2} satisfy the first path expression

P1 = I1.convoy.tank. The object in the set O2 = {tank3} satisfies the second path expression

P2 = I2.convoy.tank. The object in the set O3 = {truck1} satisfies the third path expres-

sion P3 = I1.convoy.truck. The objects in the set O4 = {truck2, truck3, truck4} satisfy the

fourth path expression P4 = I2.convoy.truck. For the first atomic query (val(I1.convoy.tank) =

val(I2.convoy.tank)), we consider the following two object sets: {tank1, tank3} and {tank2, tank3}.

We can see that only the first object set satisfies the first atomic query. For the second atomic

query (val(I1.convoy.truck) 6= val(I2.convoy.truck)), we consider the following three object sets:
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{truck1, truck2}, {truck1, truck3} and {truck1, truck4} We can see that only the third object set

satisfies the second atomic query. Since the two atomic queries are connected by a disjunction, so

the object sets {tank1, tank3} in I1 (satisfying the first atomic query) and {truck1, truck4} in I2

(satisfying the second atomic query) as well as the combination of them, i.e., {tank1, tank3, truck1,

truck4} in I1, I2 can satisfy the whole query respectively. The minimal probabilities of the first

two candidates can be obtained by SIMO algorithm and that of the last candidate can be obtained

by using a specific disjunctive strategy. Finally, only those candidates with probabilities exceeding

the threshold r will be returned as the r-answer to Q.

3.7 Summary

In this chapter, I described the interval-probability version of PXML model, which is called PIXML

model. I have developed its formal theory with proofs. I also proposed a query language to query

such single or multiple instances. I then provided an operational semantics that is proven to be

sound and complete.

We have seen how we can incorporate and manipulate uncertainty information in XML

databases. In the next chapter, I will examine the next challenge: how to manipulate ontologies

in XML databases.
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Chapter 4

Maintaining RDF Databases

In the previous two chapters, we have seen how we can incorporate and manipulate uncertainty

information in XML databases. In this chapter, I first introduce to the reader the basics of RDF

and RDQL in Section 4.1. RDQL is a commercial RDF language proposed by Hewlett Packard.

A large part of RDF focuses on storing resource, property, value triples. For example, if we

wish to say that John is Ed’s boss, we can describe this via the resource, property, value triple

(Ed, boss, John) which says that the resource (Ed) has a property called “boss” with value John.

Usually in RDF, rather than explicitly say Ed or John, we would use a URL-like syntax called a

URI to describe a location that talks about Ed or John, respectively. It is clear that such triples can

be stored in a relational database in many different ways (e.g. store them all in one relation called

triples with schema (Resource, Property, Value) or we can store one relation for each attribute

such as “boss” with schema (Resource, Value)). Once such a translation of RDF data is made into

the relational representation, then any number of standard relational view maintenance algorithms

can be used for maintaining RDF views. This chapter shows that this is a bad idea. RDF-instances

are usually represented via labeled graphs. In Section 4.2, I present the IMA algorithm to maintain

views when insertions are made to an RDF-instance. Likewise, I present the DMA algorithm to

maintain views when deletions are made. I also present algorithms TMA and RMA to maintain

views when different kinds of modifications are made to an RDF-instance.

In Section 4.3, I describe how to extend RDQL to support aggregations. I also propose the

CAA algorithm to compute aggregates. Section 4.4 proposes the AMI, AMD, AMT and AMR algo-

rithms to maintain aggregate views. Section 4.5 shows how all these views can also be maintained

by converting an RDF database to a relational database and then using a standard relational view

maintenance engine.

Section 4.6 describes my prototype implementation of these algorithms. I conducted exhaus-
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tive experiments measuring how my graph-based view maintenance algorithms compare with two

of the best known view maintenance algorithms[39] on the problem of maintaining RDF-instances.

The results show that, when the database is updated, my incremental maintenance algorithms work

much faster than a complete recomputation and are significantly better than the use of standard

view maintenance algorithms on relational representations of RDF databases. I am certainly not

implying that classical view maintenance algorithms are bad. They apply to arbitrary relations,

whereas my algorithms only apply to the types of relations generated by translating RDF-instances

into a relational form. Classical view maintenance algorithms are clearly effective and should be

used for non-RDF approaches.

I describe how to extend this problem to RDF containers, collections and reification in

Section 4.7.

4.1 Overview of RDF and RDQL

4.1.1 RDF Model

RDF’s main goal is to express information about the values of properties of resources. As a

consequence, RDF statements express what we call resource, property, value triples. The resource,

property and value are also often referred to as subject, predicate and object respectively. Each

resource is expressed via a Uniform Resource Indicator (URI) which looks very similar to a URL.

Note that the value of a property of a given resource can be another resource.

RDF also has the concept of an RDF schema which is used to express class-subclass as well

as property-subproperty relationships. Figure 4.1(a) shows an example RDF-schema. This figure

shows that “Painter” (the class type of http://www.culture.net#picasso132) is a subclass of “Artist.”

It is important to note that in RDF schema, properties are defined independently of classes, rather

than inside classes as is common in object-oriented languages. Figure 4.1(a) states that fname is

a property that applies to the “Artist” class. Thus, the “Painter” class (which is a subclass of

“Artist”) inherits this property.

Figure 4.1(b) shows a sample RDF instance. It states that there is a resource at
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http://www.culture.net#picasso132, for example, which has a property called fname whose value is

“Pablo”.

RDF-schemas can be viewed as labeled graphs whose vertices are either classes or data types.

There is an edge from vertex v to vertex v′ labeled with property p if the domain of p is v and the

range of p is v′.

RDF-instances can also be viewed as graphs whose vertices are either resources or values.

There is an edge from vertex v to vertex v′ labeled with property p if the value of the property p

of vertex v is v′. Figure 4.2’s top half and bottom half show example graphs for an RDF-schema

and an RDF-instance, parts of which are shown in Figure 4.1(a) and (b). The example schema

graph shows one-to-one connections between nodes, but this is not necessary in general because

the domain and/or range of a property can be defined to be one or more classes (or datatypes, in

the case of the range). To be more precise, the “property” in an RDF schema graph should be a

node rather than an edge. The property node is connected to its domain and range nodes by the

“domain” edges and “range” nodes. Figure 4.1(a) is a simplified version.

4.1.2 RDQL, Views and Graph Patterns

There are currently just a few query languages for RDF databases such as RDQL[72], RQL[47],

SeRQL[62] and RAL[28] (RAL is an algebra rather than a declarative query language). My view

maintenance algorithms assume that views are defined in Hewlett Packard’s RDQL language - my

choice was based on the fact that RDQL seems to have the most industry support though the

eventual winner in the “best RDF query language” sweepstakes is far from determined.

RDQL queries follow the usual SELECT-FROM-WHERE structure to locate RDF statements

satisfying particular triple patterns. An (optional) AND clause can be used to specify conjunctive

conditions, while an optional USING clause may be used to specify that only URIs having a certain

prefix should be considered.

To find all (sculpture, museum) pairs where the sculpture was created by Rodin, the museum

houses the given sculpture, and the museum web site was not modified since Jan 1, 2001, we can
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(a)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.icom.com/schema1#">

<rdfs:Class rdf:ID="Artist"/>

<rdfs:Class rdf:ID="Painter"><rdfs:subClassOf rdf:resource="#Artist"/></rdfs:Class>

<rdfs:Datatype rdf:about="&xsd;string"/>

<rdf:Property rdf:ID="fname">

<rdfs:domain rdf:resource="#Artist"/><rdfs:range rdf:resource="&xsd;string"/>

</rdf:Property>

</rdf:RDF>

(b)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ns1="http://www.icom.com/schema1#">

<rdf:Description rdf:about="http://www.culture.net#picasso132">

<rdf:type rdf:resource="ns1:Painter"/>

<ns1:fname rdf:datatype="&xsd;string">Pablo </ns1:fname>

</rdf:Description>

</rdf:RDF>

Figure 4.1: (a) Part of example RDF schema in XML (b) Part of example RDF instance in XML
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Figure 4.2: An RDF example for a Museum Artifact Catalog describing artifact resources.

ask the following RDQL query.

Example 4.1.1 SELECT ?sculpture, ?museum

WHERE (?sculptor, <ns1:lname>, ”Rodin”),

(?sculptor, <ns1:creates>, ?sculpture),

(?sculpture, <ns1:exhibited>, ?museum),

(?museum, <ns1:last modified>, ?date)

AND ?date < 2001-01-01

USING ns1 FOR <http://www.icom.com/schema1#>

The result of this query contains {(&r6, &r7)}.

Note that the WHERE clause is just shorthand for a logical statement. For example, in the above

query, the WHERE clause is RDF-notation for the logical query:

in(S, http : //www.icom.com/schema1#lname, “Rodin′′)∧
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in(S, http : //www.icom.com/schema1#creates, S′)∧

in(S′, http : //www.icom.com/schema1#exhibited, M)∧

(M, http : //www.icom.com/schema1#last modified, D).

The variables S, S′, M, D in the above logical statement correspond exactly to the variables

?sculptor, ?sculpture, ?museum and ?date respectively in the preceding RDQL-query. As in logic,

we want to find all bindings of variables in the RDF-instance (hence the predicate in above) that

satisfy the query.

Formally, a WHERE-triple is an expression of the form (R, P, V ) where R is either a resource

or a variable ranging over resources, P is either a property or a variable ranging over properties,

and V is either a value or a variable ranging over values. In RDQL, variables are strings that start

with the “?” symbol.

Likewise, an AND-constraint is an expression of the form ?x op ?y where ?x, ?y are both

variables or an expression of the form ?x op v where ?x is a variable and v is a value. In either case,

op ∈ { =, 6=, <, ≤, >, ≥, eq, ne, }. The first kind of constraint is often called a join constraint,

while the second is often called a value constraint.

Formally, an RDQL-query has the syntax:

SELECT V

WHERE w1, . . . , wn

AND a1, . . . , am

USING u

where V is a sequence of variables, w1, . . . , wn are WHERE-triples, a1, . . . , am are AND-constraints

and u denotes a URI-prefix.

As is common in databases, a view merely consists of an RDQL query together with a

request to create the view. This is expressed by: “CREATEVIEW view name AS rdql query”. The

materialized view is a table whose columns are the items in the SELECT clause of the RDQL query

in the view definition, and rows are sets of values satisfying the query. I do not restrict views (like

[79]) to be defined only on a subset of queries that return results (i) containing class instances
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?date
ns1:last_modifiedns1:exhibited

?museum

ns1:creates

ns1:lname

?sculpture

?sculptor

"Rodin"

Figure 4.3: An example graph pattern

(i.e., a subject or object variable), or (ii) in the pattern of RDF statement (i.e., a triple containing

subject, predicate and object).

Because RDQL is a graph matching language, each RDQL query has an associated graph

pattern[72]. A graph pattern (GP ) for a given RDQL view Q is a graph whose nodes are labeled

by a set of constraints such that:

1. for each triple (r, p, v) in the WHERE clause of Q, r and v are nodes in the graph, and there

is an edge from r to v in the graph;

2. if two triples share a variable or resource or literal, the two nodes for the same variable or

resource or literal will be collapsed into one while preserving their edges.

3. if C is a value constraint in the AND clause of the form ?x op v then C is in the set of value

constraints associated with the node ?x.

Figure 4.3 shows the corresponding graph pattern for the query shown in Example 4.1.1. Notice

that the constraint ?date < 2001-01-01 associated with the node ?date is not shown in the figure.

Although a root at ?sculptor exists in Figure 4.3, roots may not always exist as the reader can

see from the following example.

Example 4.1.2 Suppose we want to find some painter who painted a portrait of someone such that

that someone was a student of that painter. This can be answered by the following RDQL-query:

SELECT ?painter

WHERE (?painter, <ns1:paints>, ?painting),

(?painting, <ns1:portrait of>, ?model),
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(?model, <ns1:student>, ?painter)

USING ns1 FOR <http://www.icom.com/schema1#>

The above query forms a cyclic graph pattern without a root.

A graph pattern may include more than one connected component. My algorithms work

well when one connected component is present. They may be less efficient when multiple connected

components are present.

4.2 Maintenance Algorithms

4.2.1 Insertion Maintenance Algorithms

I am now ready to consider the problem of maintaining views over RDF-instances when a triple is

added to the RDF-instance. As there is a one to one correspondence between RDF-instances and

their corresponding graphs, I will often use these terms synonymously.

All insertions to RDF graphs can be represented via triples. For example, suppose we

wish to insert the “Painter” resource (http://www.culture.net#matisse) associated with Matisse. This

may be accomplished by inserting the following triple “(http://www.culture.net#matisse, <rdf:type>,

<ns1:Painter>)”. When a new triple is inserted, the algorithm will detect the new delegate

objects1 to be inserted into the materialized view. If the inserted triple involves a new resource

and/or value, it means that a new node is inserted with a new edge into the RDF graph.

My IMA algorithm uses the important notion of triple unification, graph unification and

pattern matching between the graph pattern of query and an RDF instance graph which is some-

what different from the classical notion of unification in logic [57]. Traditionally, a substitution is

a mapping from the set of variables to a set of terms, where a term is a variable or a constant; a

substitution θ is a unifier of two terms t1, t2 iff t1θ = t2θ
2.

Definition 4.2.1 (triple-unification) Suppose (R1, P1, V1) is a WHERE-triple and (R2, P2, V2)

1The original database has some objects with IDs. A delegate object is a version of the original object and

preserves a link to the original object. Due to space limitation, we do not go into details of delegate objects here.
2t1θ is the expression obtained by applying θ to t1.
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is an instance triple (i.e., a triple in an instance). We say that (R1, P1, V1) triple-matches

(R2, P2, V2) iff there exists a substitution θ such that:

1. R1θ = R2θ or R2θ is a subclass of R1θ

2. P1θ = P2θ or P2θ is a subproperty of P1θ

3. V1θ = V2θ or V2θ is a subclass of V1θ

It is important to note that the triple-matches relationship is not symmetric (because of the

subclass/subproperty condition in the above definition). The following example illustrates this.

Example 4.2.1 Consider the following WHERE-triple t1= (?painter, <ns1:creates>, ?painting)

and the following instance triple t2= (http://www.culture.net#picasso132, <ns1:paints>,

http://www.museum.es/guernica.jpg). t1 triple-matches t2 because there exists a substitution

θ = {(?painter) → http : //www.culture.net#picasso132,

?painting → http : //www.museum.es/guernica.jpg} and <ns1:paints> is a subproperty of

<ns1:creates>. However, t1 does not triple-match t2.

The reason for this asymmetry is that given a WHERE-triple in a query (or a graph pattern),

we want to find instances of it in the RDF-instance that satisfy the conditions of the query (rather

than the other way around). The RDF-instance of course has no variables in it, while the query

might have zero or more variables in it.

Similarly, I define a unifier of two labeled graphs as follows. Given a labeled graph G(V, E)

(e.g., an RDF graph), I define l(v1, v2) to be the label (e.g., a property) associated with (v1, v2) for

all (v1, v2) ∈ E.

Definition 4.2.2 (Graph Unifier) A substitution θ unifies a labeled graph G1 = (V1, E1) with

another labeled graph G2 = (V2, E2), i.e. G1θ = G2θ, iff there exists a bijection φ between V1 and

V2 such that

1. v1 is unifiable with φ(v1) using substitution θ for all v1 ∈ V1 and

2. if (v1, v2) ∈ E1, then (φ(v1), φ(v2)) ∈ E2, and vice versa, and
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3. l(v1, v2) is unifiable with l(φ(v1), φ(v2)) using substitution θ for all (v1, v2) ∈ E1.

Based on this definition, I can define a matching between a graph pattern GP of query Q and a

subgraph I ′(V ′, E′) of an RDF graph I(V, E) ( I ′(V ′, E′) itself is a graph and V ′ ⊆ V , E′ ⊆ E).

Definition 4.2.3 (Pattern Matching) Suppose Q is a query, GP (V1, E1) is the graph pattern of

Q, and I(V2, E2) is an RDF graph. A substitution θ matches GP (V1, E1) with a subgraph I ′(V ′2 , E′2)

of I iff

1. GPθ = I ′θ and 3

2. θ satisfies the constraints in Q.

Example 4.2.2 Consider the view defined in Example 4.1.1. There is one subgraph of the RDF-

instance in Figure 4.2 which unifies with the graph pattern of the view via the following substitution:

{?sculptor→ &r5, ?sculpture→ &r6, ?museum→ &r7, ?date→ “2000− 02− 01′′}.

My IMA algorithm uses the following subroutines.

• BuildGP(Q) constructs a graph pattern GP from view definition Q.

• TMatch(GP , t) returns “true” for a triple t and a graph pattern GP if a WHERE -triple w

in GP triple-matches t, i.e., if there exists a subsitution such that t unifies with a triple in

GP .

• Given GP , Q, a triple t and the updated RDF graph (I ∪ t),4 the subroutine MSearch(GP ,

Q, t, I ∪ t) returns the set {θ | there exists a WHERE-triple t′ in GP and a triple set T in

(I ∪ t) such that, via substitution θ, (i) t′ triple-matches t and (ii) ∀t1 ∈ GP , ∃t2 ∈ T , t1

triple-matches t2, and (iii) θ satisfies the WHERE and AND clauses in GP}, i.e., it finds all

substitutions θ that match GP with some subgraph of I that contains t.
3For a value (i.e., non-variable) to unify with another value (non variable), instead of the original requirement

that both values must be identical, we allow a value v1 in a triple in GP to unify with another value v′1 in a triple

in I′ if and only if (1) v1 is the same as v′1; or (2) v′1 is v1’s subclass if both of them are classes; or (3) v′1 is v1’s

subproperty if both of them are properties.
4For simplicity, we use I ∪ t instead of I ∪ {t}, and I − t instead of I − {t}.
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• Given a substitution θ, and output variables (specified in a SELECT clause) X = (?x1, . . .,

?xn ), we define VRetrieve(θ, GP , X) to retrieve values XV = (θ(?x1), . . . , θ(?xn)) for X

from MSearch(GP, Q, t, I ∪ t).

Figure 4.4 presents the IMA algorithm (short for Insertion Maintenance Algorithm) to

find new delegate objects when an insertion occurs.

algorithm IMA(I, Q, M(Q, I), t)

/* Input: RDF graph I, view specification Q, materialized view M(Q, I), inserted triple t */

/* Output: M(Q, I ∪ t) */

1) GP ← BuildGP(Q); X ← output variables of Q;

2) if TMatch(GP , t) == TRUE, then

3) ∆M ← {VRetrieve(θ, GP, X) | θ ∈ MSearch(GP, Q, t, I ∪ t)};

4) return M(Q, I ∪ t)←M(Q, I) ∪∆M ;

Figure 4.4: Insertion Maintenance Algorithm IMA

Example 4.2.3 Consider the RDF graph I of Figure 4.2 and the view Q in Example 4.1.1. The

materialized view M(Q,I) is {(&r6, &r7)}. Suppose we insert t = (&r5, <ns1:creates>, &r2). IMA

first builds a graph pattern GP (Figure 4.3). The output variables are X = (?sculptor, ?museum).

TMatch(GP, t) returns true via the substitution {t/(?sculptor, <ns1:creates>, ?sculpture)} in GP .

MSearch(GP, Q, t, I∪t) returns the substitution: ?sculptor→ &r5, ?sculpture→ &r2, ?museum

→ &r4, ?date→ “2000-06-09”. For this substitution, VRetrieve(θ, GP, X) returns (&r2, &r4). As

a result, M(Q, I ∪ t) = M(Q, I) ∪ {(&r2, &r4)}.

Complexity Analysis of IMA. The time taken to execute BuildGP(Q) in line 1 is linear in the

number of triples in the WHERE clause and the number of constraints in the AND clause. If we

materialize or cache graph patterns, we can retrieve the stored copy instead of calling BuildGP(Q).

In lines 2 and 3, both TMatch(GP , t) and VRetrieve(θ, GP, X) take linear time w.r.t. |GP |, the

number of edges in the graph pattern.
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algorithm MSearch(GP, Q, t, I)

/* Input: graph pattern GP , view specification Q, triple t, RDF graph I */

/* Output: Θ = {θ | θ is a substitution} */

1) Θ← ∅;

2) for each t′ ∈ GP s.t. ∃θ′, tθ′ = t′θ′,

3) for each θ ∈ bSearch(t, t′, GP, I),

4) if θ satisfies the constraints in Q, then Θ← Θ ∪ θ;

5) return Θ;

Figure 4.5: Algorithm for MSearch

In line 3, I can modify a breadth-first search for MSearch starting with triple t. Basically,

by substituting t for some WHERE-triple t′ in GP , we can search for a substitution of GP to a

subgraph of I ∪ t containing t by a breath-first search starting at t′. There may be more than one

possible way of assigning triples in GP to t in GP (say, from t to a triple t′ in GP ). This means

that each time, we may have to search starting at t for a substitution (θ) to I ∪ t from the graph

pattern GP rooted at each possible t′. Figure 4.5 presents the algorithm for MSearch(GP, Q, t, I)

to find all such substitutions θ. bSearch(t, t′, GP, I) denotes the breadth-first search starting with

some t′ ∈ GP to find the subgraphs of I (containing t) that GP substitutes to.

In addition, checking whether substitution θ satisfies the first type of AND-constraint can

be done in linear time w.r.t. the number of AND-constraints in the AND clause. Thus, the time

complexity of MSearch is O(|GP |bD(GP )) where b is the average branching factor of I (considering

both in and out degrees) and D(GP ) indicates the depth of graph pattern as an undirected graph.

Therefore, the worst-case time complexity of the IMA algorithm is O(|GP | bD(GP )). As graph

patterns are usually not too deep (3 or 4 perhaps), this is not unreasonable.

Speeding up IMA. IMA’s performance can be improved by improving bSearch in MSearch in

two ways. (i) First, the value constraints associated with the nodes in pattern GP should be used

as quick filters when testing whether GP triples can triple-match a set of triples in graph I ∪ t. If
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we start from a possible substitution for t and find that a particular triple in GP can triple-match

no triple in I ∪ t, we can immediately stop searching this path. If this happens for all possible

substitutions, we can conclude that the update of I does not affect M(Q, I). (ii) Second, in the

graph I ∪ t, the properties of a node can be classified via a namespace. For a triple t′ in GP , we

need only search the triples in I ∪ t whose property has the same namespace as the property of

t′. For example, the node &r5 in Figure 4.2 has properties in namespace ns1 and rdf. Suppose

a triple in the graph pattern is (?sculptor, <ns1:creates>, ?sculpture). For &r5, we only need to

consider the properties in namespace ns1. This is useful when the branching factor b is large and

there are several namespaces in I.

Figure 4.6 presents the pseudocode for this enhanced bSearch(t, t′, GP, I), modified from a

standard breadth-first search algorithm. Here I treat triples as vertices in a graph. Two vertices

(triples) are connected if one triple’s resource is the other’s value. Just like the standard breadth-

first search, bSearch colors each vertex in GP to keep track of the search progress. A vertex is

initially white, but becomes gray or black after it is discovered (encountered in the search). Black

vertices have all neighbors non-white (discovered) while gray vertices may have some white (non-

discovered) neighbors. The following additional data structures are used. Adj is an adjacency list

where Adj[u] returns the neighbors of vertex u. color[u] and π[u] store the color (white, gray or

black) and predecessor of vertex u. d[u] denotes the distance (the smallest number of edges) from

the starting vertex t′. I use a first-in-first-out queue Q to store gray vertices.

The following theorem says that IMA is correct.

Theorem 4.1 Given an RDF graph I, view specification Q, an inserted RDF triple t, the result

M(Q, I) ∪∆M of the algorithm IMA(I, Q, M(Q, I), t) is equivalent to the complete recomputation

of the view M(Q, I ∪ t) from I ∪ t.

Proof

For every row r of values in M(Q, I), there exists at least one substitution θ from GP to I

satisfying Q that outputs r. As θ(GP ) is a subset of I, after adding any nodes or edges into I, all

original rows in M(Q, I) will still exist in M(Q, I ∪ t).
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algorithm bSearch(t, t′, GP, I)

/* Input: instance triple t, WHERE-triple t′, graph pattern GP , RDF graph I */

/* Output: Θt′ = {θ | θ is a substitution} */

1) for each vertex u ∈ GP − {t′},

2) color[u]← WHITE;

3) d[u]←∞;

4) π[u]← NIL;

5) color[t′]← GRAY;

6) d[t′]← 0;

7) π[t′]← NIL;

8) Q′ ← {t′};

9) create a mapping M s.t. M(t′) = t;

10) while Q′ 6= ∅,

11) u′ ← head[Q′];

12) for each v′ ∈ Adj[u′],

13) if color[v′] = WHITE, then

14) color[v′]← GRAY;

15) d[v′]← d[u′] + 1;

16) π[v′]← u′;

17) Enqueue(Q′, v′);

18) for each mapping M ,

19) for each pair (v′, v) where v ∈ Adj[M(u′)],

20) if (i) v′ and v are in the same namespace, (ii) v′ triple-matches v and

(iii) if v contains a value, v satisfies all value constraints associated with v′, then

create a new mapping M ′ ←M ; M ′(v′)← v;

21) delete M ;

22) if no M exists, return Θt′ = ∅;

23) Dequeue(Q′);

24) color[u′]← BLACK;

25) return Θt′ = {θ|θ is a substitution corresponding to some mapping M };

Figure 4.6: Algorithm for enhanced bSearch
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Suppose ∆M ′ = M(Q, I ∪ t) −M(Q, I). To prove the theorem is equivalent to prove that

∆M ′ = ∆M −M(Q, I), i.e. the additional rows in M(Q, I ∪ t) but not in M(Q, I) are equivalent

to the rows in ∆M but not in M(Q, I).

∆M ′ consists of all rows r′ of values such that for every r′, there exists at least one sub-

stitution θ′ from GP to I ∪ t satisfying Q that outputs r′. Note that t ∈ θ′(GP ). If this were

not true, there would be a substitution θ that outputs a row r ∈ M(Q, I) such that θ = θ′. Since

IMA find all substitutions from GP to I ∪ t such that t is included and Q is satisfied, IMA find

all the possible substitutions that contribute to ∆M ′. On the other hand, IMA does not return

substitutions that do not include t, so it does not return substitutions that output rows of values

not existing in M(Q, I) ∪ ∆M ′, i.e., M(Q, I ∪ t). The reason is that the output rows of values

of the substitutions that include t must be captured by ∆M ′ unless they are already included in

M(Q, I).

Therefore, ∆M ′ = ∆M −M(Q, I).

4.2.2 Deletion Maintenance Algorithm

I consider triple deletion in this section. When we delete a node from an RDF graph, I assume that

all edges connected to it are deleted automatically. I will discuss resource deletion in Section 4.2.4.

Figure 4.7 presents the DMA algorithm (DMA stands for Deletion Maintenance Al-

gorithm). DMA uses the same functions used by IMA. In addition, it uses a new function

MSearch2(GP, Q, r, I − t, X) which is just like MSearch except for one difference: MSearch2

returns true if there exists at least one substitution θ such that (1) r == V Retrieve(θ, GP, X); (2)

θ satisfies the value constraints in GP ; (3) θ satisfies the join constraints in Q. Thus, MSearch2

returns true if there exists some substitution such that (i) every triple in GP triple-matches some

triple in I−t, (ii) Q is satisfied and (iii) the same row r in M(Q, I) can be returned. The algorithm

MSearch2 is shown in Figure 4.8.

Example 4.2.4 Consider the RDF graph I of Figure 4.2 and the view Q in Example 4.1.1.

The materialized view M(Q, I) is {(&r6, &r7)}. Suppose the triple t = (&r5, <ns1:creates>,
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algorithm DMA(I, Q, M(Q, I), t)

/* Input: RDF graph I, view specification Q, materialized view M(Q, I), deleted triple t */

/* Output: M(Q, I − t) */

1) if M(Q, I) = ∅, then return M(Q, I − t)← ∅;

2) GP ← BuildGP(Q); ∆M ← ∅;

3) X ← output variables of Q;

4) if TMatch(GP , t) == TRUE, then

5) ∆M ← {V Retrieve(θ, GP, X) | θ ∈MSearch(GP, Q, t, I)};

6) ∀r ∈ ∆M ,

if MSearch2(GP, Q, r, I − t, X) == TRUE, then ∆M ← ∆M − r;

7) return M(Q, I − t)←M(Q, I)−∆M ;

Figure 4.7: Deletion Maintenance Algorithm DMA

algorithm MSearch2(GP, Q, r, I, X)

/* Input: graph pattern GP , view specification Q, row r, RDF graph I, output variables X */

/* Output: TRUE or FALSE */

1) for each t′ ∈ GP , t ∈ I s.t. ∃θ′, tθ′ = t′θ′,

2) for each θ ∈ bSearch(t, t′, GP, I),

3) if θ satisfies the constraints in Q AND

r == V Retrieve(θ, GP, X), then return TRUE;

4) return FALSE;

Figure 4.8: Algorithm for MSearch2
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&r6) is deleted. DMA first builds a graph pattern GP (Figure 4.3). The output variables are

X = (?sculptor, ?museum). TMatch(GP, t) returns true because we can have t to unify

(?sculptor, <ns1:creates>, ?sculpture) in GP . MSearch(GP, Q, t, I) returns the substitution:

?sculptor→ &r5, ?sculpture→ &r6, ?museum→ &r7, ?date→ “2000-02-01”. For this substitu-

tion, VRetrieve(θ, GP , X) returns (&r6, &r7). Thus, ∆M = {(&6, &7)}. MSearch2 then tries to

find a substitution from GP to I− t such that Q is satisfied with (&6, &7) as output. Because there

does not exist such a substitution, we will delete (&6, &7) from M(Q, I). The resulting M(Q, I− t)

is empty.

Complexity Analysis of DMA. The main difference between MSearch2 and MSearch is that

the starting point of the breadth-first search can be any node (subject/object in a triple) specified in

r. During the search, the values of nodes and edges (corresponding to those output variables) must

match those in GP specified by r. Similarly, the constraints and non-variable nodes/edges are quick

filters and reduce the actual search space even though the degrees of nodes are large. If r contains

only edge values (i.e., edge labels in a graph or predicate in triples) (l1, . . . , ln), then we can find

(by using an index), the count |li| of li in I − t ∀i = 1, . . . , n. Suppose argmin({|li| | i = 1, . . . , n})

= j. I use |lmin| to denote |lj |. We can then start our breadth-first search from each edge (with

label lj) in turn. We can stop as soon as a substitution is found that outputs r, satisfies Q

and returns TRUE, or until all edges with label lj are tried. The worst-case time complexity of

MSearch2 is O(|lmin|bD(GP )) where |lmin| = 1 when r also contains some node, b is the average

branching factor of I (considering both in and out degrees) and D(GP ) is the depth of graph

pattern as an undirected graph. Therefore, the worst-case time complexity of the DMA algorithm

is O((|GP | + |∆M ||lmin|)b
D(GP )).

Theorem 4.2 Given an RDF graph I, view specification Q, a deleted RDF triple t, the result

M(Q, I)−∆M of the algorithm DMA(I, Q, M(Q, I), t) is equivalent to the complete recomputation

of the view M(Q, I − t) from I − t.

Proof
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Suppose ∆M ′ = M(Q, I)−M(Q, I − t). To prove the theorem is equivalent to prove that

∆M ′ = ∆M , i.e. the original rows in M(Q, I) but not in M(Q, I − t) are equivalent to the rows

in ∆M .

∆M ′ consists of all rows r′ of values such that for every r′, there exists at a substitution θ′

from GP to I satisfying Q that outputs r′ but there exists no substitution θ′′ from GP to I − t

satisfying Q that outputs r′. All θ′ above must contain t (i.e., t ∈ θ′(GP )) because if one such θ′

does not contain t, then we can substitute by θ′ from GP to I − t satisfying Q that outputs r′.

∆M of line 5 consists of all rows r such that for every r, there exists a substitution θ from

GP to I satisfying Q that contains t and outputs r. After line 6, ∆M excludes those rows r which

has at least one substitution θ from GP to I − t satisfying Q that does not contain t but outputs

r. In the other words, ∆M consists of all rows r such that for every r, (1) there exists at least one

substitution θ from GP to I satisfying Q that outputs r; (2) all such θ must contain t; (3) there

exists no substitution θ′′ from GP to I − t satisfying Q that outputs r.

Therefore, ∆M ′ = ∆M .

4.2.3 Triple Modification Algorithm

An atomic modification update to a set of RDF statements falls into one of five categories:

1. a triple’s resource changes;

2. a triple’s property changes;

3. a triple’s value which is a resource changes;

4. a triple’s value which is not a resource changes;

5. a resource itself (the change of rdf:about) from R to R′ which will cause all edges connecting

to or from R to change to connect to or from R′.

I consider these cases one by one.

One straightforward way to handle cases (1) to (4), is to process the modification as a

deletion of the old triple tdel and an insertion of a new triple tins (with the updated subject,
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algorithm TMA(I, Q, M(Q, I), tdel, tins)

/* Input: RDF graph I, view specification Q, materialized view M(Q, I),

deleted triple tdel, inserted triple tins */

/* Output: M(Q, (I − tdel) ∪ tins) */

1) GP ← BuildGP(Q); ∆Md ← ∅;

2) X ← output variables of Q; F = 0;

3) if TMatch(GP , tdel) == TRUE, then F ← F + 1;

4) if TMatch(GP , tins) == TRUE, then F ← F + 2;

5) if F == 0, then return M(Q, (I − tdel) ∪ tins)←M(Q, I);

6) if F == 1, then return M(Q, (I − tdel) ∪ tins)← DMA(I ∪ tins, Q, M(Q, I), tdel);

7) if F == 2, then return M(Q, (I − tdel) ∪ tins)← IMA(I − tdel, Q, M(Q, I), tins);

8) ∆Mi ← {VRetrieve(θ, GP, X) | θ ∈ MSearch(GP, Q, tins, (I − tdel) ∪ tins)};

9) if M(Q, I) 6= ∅, then

10) ∆Md ← {VRetrieve(θ1, GP, X) | θ1 ∈ MSearch(GP, Q, tdel, I)};

11) ∆Md ← ∆Md −∆Mi;

12) ∀r ∈ ∆Md,

if MSearch2(GP, Q, r, I − tdel ∪ tins, X) == TRUE, then ∆Md ← ∆Md − r;

13) return M(Q, (I − tdel) ∪ tins) ← (M(Q, I)−∆Md) ∪∆Mi;

Figure 4.9: Triple Modification Maintenance Algorithm TMA
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predicate or object). Fortunately, I can do better by first finding the rows to be inserted into

M(Q, I) as a result of adding tins using IMA before executing line 5 of DMA. The rows to be

both deleted (potentially) and inserted should be kept in the final answer. Figure 4.9 presents the

TMA algorithm (short for Triple Modification Maintenance Algorithm) to make necessary

updates to a materialized view when a modification occurs in a triple.

Example 4.2.5 Consider the RDF graph I of Figure 4.2, the view Q in Example 4.1.1. The

materialized view M(Q, I) is {(&r6, &r7)}. Suppose the triple tdel = (&r5, <ns1:creates>, &r6)

is modified to become tins = (&r5, <ns1:paints>, &r6). TMA first builds a graph pattern GP

(Figure 4.3). The output variables are X = (?sculptor, ?museum). Both TMatch(GP , tdel)

and TMatch(GP , tins) return true. The insertion of tins leads to an inserted row ∆Mi =

{(&r6, &r7)}. MSearch(GP, Q, tdel, I) returns a substitution θ1 as follows (only variables are

shown): ?sculptor→ &r5, ?sculpture → &r6, ?museum→ &r7, ?date→ “2000-02-01”. For this

substitution, VRetrieve(θ1, GP, X) returns rd = (&r6, &r7). As rd ∈ ∆Mi, so rd /∈ ∆Md. As

M(Q, I) = {(&r6, &r7)}, ∆Md = ∅, ∆Mi = {(&r6, &r7)}, M(Q, (I − tdel) ∪ tins) = M(Q, I).

Complexity Analysis of TMA. The time complexity is the sum of those of IMA and DMA,

i.e. O(|GP |bD(GP ) + (|GP | + |∆Md| |lmin|) bD(GP )) = O((|GP | + |∆Md||lmin|)bD(GP )) (same as

DMA).

Theorem 4.3 Given an RDF graph I, view specification Q, an RDF triple updated from tdel to

tins, the result (M(Q, I)−∆Md)∪∆Mi of the algorithm TMA(I, Q, M(Q, I), tdel, tins) is equivalent

to the complete recomputation of the view M(Q, (I − tdel) ∪ tins) from (I − tdel) ∪ tins.

Proof

Basically, TMA uses IMA to find the set ∆Mi of rows to add into the view and then uses

DMA to find the set ∆Md of rows to remove from the view. The additional things are from lines

6-7 and 11. Lines 6-7 simply calls DMA if it is impossible to have new rows to add, or calls IMA

if it is impossible to have old rows to remove. Line 11 simply removes from ∆Md those common

rows in ∆Md and ∆Mi. It is correct because in line 12, those common rows removed will be added
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back. As DMA and IMA are proved correct, TMA is also correct.

4.2.4 Resource Modification Algorithm

In this section, I consider the fifth kind of modification to an RDF-instance. This is the case where

a resource is changed from Rd to Ri. In this case, we need to delete rows from the original view

associated with Rd and insert rows associated with Ri.

Suppose Td is the set of edges connected to Rd. One straightforward approach is to call

IMA and DMA (for inserting and deleting the edges one by one) |Td| times.

Fortunately, we can instead consider the deletion and insertion of all those edges simulta-

neously. In this second approach, we consider the substitutions of the deleted/inserted resource to

the resource/value of a triple in GP instead of the substitutions of the deleted/inserted edges to a

triple in GP . In this case, the worst case time complexity will not depend on |Td|.

Figure 4.10 presents the RMA algorithm (short for Resource Modification Maintenance

Algorithm) to make necessary updates to a materialized view when a modification occurs in a re-

source. I use IRd→Ri
to denote the updated RDF graph after replacing Rd by Ri and M(Q, IRd→Ri

)

as the updated view.

My RMA algorithm uses the following new subroutines.

• TMatchR(GP , R) returns “true” for a resource R and a graph pattern GP if R unifies with

a GP triple’s subject or object.

• Given GP , Q, a resource R and an RDF graph I, I define MSearchR(GP , Q, R, I) to find

all substitutions θ, such that (1) for every triple t (or node) in GP , there exists a triple t′ (or

node) in I such that t triple-matches some t′ whose resource or value is R and (2) θ satisfies

value constraints in GP ; (3) θ satisfies join constraints in Q; (4) there is at least one variable

in GP that is mapped onto R by θ.

In Figure 4.11, I present an algorithm to implement MSearchR.

Example 4.2.6 Consider the RDF graph I of Figure 4.2, the view Q of Example 4.1.1. The

materialized view M(Q, I) is {(&r6, &r7)}. Suppose Rd = &r6 and Ri = &r8 where &r8 refers to
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algorithm RMA(I, Q, M(Q, I), Rdel, Rins)

/* Input: RDF graph I, view specification Q, materialized view, M(Q, I),

deleted resource Rd, inserted resource Ri */

/* Output: M(Q, IRd→Ri
) */

1) GP ← BuildGP(Q); ∆Md ← ∅; ∆Mi ← ∅;

2) X ← output variables of Q; F = 0;

3) if TMatchR(GP , Rd) == TRUE, then F ← F + 1;

4) if TMatchR(GP , Ri) == TRUE, then F ← F + 2;

5) if F == 0, then return M(Q, IRd→Ri
)←M(Q, I);

6) if F > 1, then ∆Mi ← {VRetrieve(θ, GP, X) | θ ∈MSearchR(GP, Q, Ri, IRd→Ri
)};

7) if (F == 1 OR F == 3) AND M(Q, I) 6= ∅, then

8) ∆Md ← {VRetrieve(θ1, GP, X) | θ1 ∈ MSearchR(GP, Q, Rd, I)};

9) ∆Md ← ∆Md −∆Mi;

10) ∀r ∈ ∆Md,

if MSearch2(GP, Q, r, IRd→Ri
, X) == TRUE, then ∆Md ← ∆Md − r;

11) return M(Q, IRd→Ri
)← (M(Q, I)−∆Md) ∪∆Mi;

Figure 4.10: Resource Modification Maintenance Algorithm RMA

http://www.museum.es/man.jpg. RMA first builds a graph pattern GP (Figure 4.3). The output vari-

ables are X = (?sculptor, ?museum). Both TMatchR(GP, Rd) and TMatchR(GP, Ri) return true.

The insertion of Ri leads to an inserted row ∆Mi = {(&r8, &r7)}. MSearchR(GP, Q, Rd, I) re-

turns a substitution θ1 which gives output ∆Md = {(&r6, &r7)}. MSearch2 then cannot find

another substitution to IRd→Ri
to output {(&r6, &r7)}, so we need to remove that from the view.

As a result, M(Q, IRd→Ri
) = {(&r8, &r7)}.

Complexity Analysis of RMA. TMatchR(GP , R) can be executed in linear time w.r.t. |GP |.

MSearchR is similar to MSearch except that instead of starting with a substitution of the triple t

in I to some triple in GP , we substitute the resource R for the subject/object of some triple in GP .
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algorithm MSearchR(GP, Q, R, I)

/* Input: graph pattern GP , view specification Q, resource R, RDF graph I */

/* Output: Θ = {θ | θ is a substitution} */

1) Θ← ∅;

2) for each t′ ∈ GP s.t. ∃θ′ and t ∈ I where R is a resource or value of t and tθ′ = t′θ′,

3) for each θ ∈ bSearch(t, t′, GP, I),

4) if θ satisfies the constraints in Q, then Θ← Θ ∪ θ;

5) return Θ;

Figure 4.11: Algorithm for MSearchR

The breadth-first search works similarly as MSearch. Since there may be at most 2|GP | different

substitutions of R, the time complexity of MSearchR is same as MSearch, i.e. O(|GP |bD(GP )).

Therefore, the worst-case time complexity of the RMA algorithm is same as TMA i.e., O((|GP | +

|∆Md||lmin|)bD(GP )).

Theorem 4.4 Given an RDF graph I, view specification Q, a resource updated from Rd to Ri,

the result (M(Q, I) −∆Md) ∪ ∆Mi of the algorithm RMA(I, Q, M(Q, I), Rd, Ri) is equivalent to

the complete recomputation of the view M(Q, IRd→Ri
) from IRd→Ri

.

Proof

Basically, TMA is a variation of RMA where TMatch and MSearch in TMA are replaced by

TMatchR and MSearchR which work with a resource instead of a triple. Instead of calling DMA

or IMA which deal with deletion or insertion of a single triple, RMA mandatorily uses MSearchR

to find ∆Md and ∆Mi caused by deletion of Td and insertion of Ti. As TMA is proved correct, so

is RMA.
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4.3 RDF Aggregates

I illustrate the need for RDF aggregate operators with some motivating examples inspired by data

from Christies’ auction house. Figure 4.12’s bottom half shows an example RDF-instance describing

the auction data while the top half shows its RDF-schema. The following examples are based on

this RDF-instance. I assume that unit conversions are already considered.
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Figure 4.12: An RDF example describing artifact auctions in Christie’s auction house

Example 4.3.1 (min) Suppose Jack, a bidder, is going to buy an artifact but has a limited budget.

He may want to know the minimum estimated price of the artifacts for auction in April, 2004. By

comparing the values of the low property of the estimated prices for all artifacts in Figure 4.12,

Jack will know that the minimum price is 10,000 USD.
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Example 4.3.2 (max) Suppose Jack is interested in Impressionism. He may want to know the

maximum estimated price of paintings by Guy Rose, a pure Impressionist. By comparing the values

of the high property of the estimated prices for Guy Rose’s works in Figure 4.12, he will know

that the maximum estimated price is 800,000 USD.

Example 4.3.3 (count) As a fan of Guy Rose, Jack may want to know how many of his paintings

will be presented for auction in April, 2004. By counting Guy Rose’s works for auction in April,

2004, Jack will know that two of them are going to be sold.

Example 4.3.4 (sum) Suppose Smith is a manager of the auction house. He may want to know

the prospective revenue by maximizing estimation for all the auctions in April, 2004. By summing

up the values of the high property of the estimated prices of all the artifacts, Smith will know that

the revenue is 1,425,244 USD approximately.

Example 4.3.5 (average) Suppose the auction house publishes price information on the web, in-

cluding the average of the estimated high prices of the artifacts for each artist. By grouping the

high prices and computing the average w.r.t. each artist respectively, the auction house can publish

this information as follows:

artist average of high prices

Guy Rose 650,000 USD

Christoffel Van den Berghe 60,000 GBP

Odoardo Tabacchi 15,000 USD

I give the formal definition of an aggregate query below which is sufficiently generalized to

include all kinds of aggregate queries .

Definition 4.3.1 (Aggregate Query) Let I be an RDF graph, x1, x2, . . . , xn be variables, and

o1, o2, . . . , om be aggregate operators, where oi ∈ {min, max, count, sum, average}, for i =1, . . . , m.

An RDF aggregate query Q involving those variables and operators as well as an optional GROUP

BY clause takes I as input and outputs a table T 5 containing a set of tuples.

5The result of an aggregate query can be represented as an RDF instance or a table. The advantage of producing
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Notice that the columns of the table T are the items in the SELECT clause of the query Q. If

there is no GROUP BY clause and with the specific aggregate operators considered: min, max,

count, sum, average, T normally contains only one tuple. The query Q2 of Example 4.3.2 can be

expressed in RDQL as follows:

Example 4.3.6 SELECT max(?highprice)

WHERE (?artist, <ns1:lname>, "Rose"),

(?artist, <ns1:fname>, "Guy"),

(?artist, <ns1:creates>, ?artifact),

(?artifact, <ns1:estimated>, ?price),

(?price, <ns1:high>, ?highprice),

(?artifact, <ns1:presented>, ?date)

AND 2004-04-01 <= ?date <= 2004-04-30

USING ns1 FOR <http://www.auctionschema.com/schema1#>

Here a string with the prefix “?” (e.g. ?artist) represents a variable . Figure 4.13 illustrates the

graph pattern of Q2. The result of Q2 is [(“800000”∧∧ns1:USD)]. The symbol ∧∧ in a typed literal

connects a value (such as “800000”) and the literal’s data type (such as the URI for USD)[71].

?highprice
ns1:high

ns1:estimated

ns1:presented
?date

?price

?artifact
ns1:creates

ns1:lname

ns1:fname

?artist

"Guy"

"Rose"

Figure 4.13: An example graph pattern

An RDF graph can be created as an answer returned by an aggregate query using an ap-

propriate SELECT clause6. For example, Q2 can return a valid RDF statement:

the result as an RDF instance is that it allows us to further query the result using the existing RDF query languages.

However, I choose the tabular representation here for the sake of simplicity.
6I am expanding the syntax of RDQL so that it allows constants in SELECT clauses which equivalently creates

new resources and properties using the constants.
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(<ns1:works by guyrose>, <ns1:maxprice>, “800000”∧∧ns1:USD) if its SELECT clause is SELECT

<ns1:works by guyrose>, <ns1:maxprice>, max(?highprice).

Example 4.3.7 Consider query Q2 in Example 4.3.6. There are two subgraphs of the RDF-

instance in Figure 4.12 whose graph pattern unifies with that of Q2 via the following two sub-

stitutions: {?artist→ &r1, ?artifact→ &r2, ?price→ &r4, ?highprice→ “800000”∧∧ns1:USD,

?date→ 2004-04-28} and {?artist→ &r1, ?artifact→ &r3, ?price→ &r5, ?highprice→

“500000”∧∧ns1:USD, ?date → 2004-04-28}. The maximum value of ?highprice is 800,000 USD.

As a result, Q2 returns {(“800000”∧∧ns1:USD)}.

4.3.1 Algorithm to Compute Aggregates

Figure 4.14 presents an abstract algorithm CAA (short for Compute Aggregates Algorithm)

to compute the result for aggregate queries. This algorithm is applicable to all aggregate queries

including those with a GROUP BY clause.

algorithm CAA(I, Q)

/* Input: RDF graph I, query Q */

/* Output: table T (Q, I) */

1) GP ← BuildGP(Q); X ← aggregate variables of Q;

2) Y ← GROUP BY variables of Q;

3) S ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearchAll(GP, Q, I)];

4) return T (Q, I)← TCompute(S, Q);

Figure 4.14: Compute Aggregates Algorithm CAA

The new subroutines introduced in CAA algorithm are as follows:

• Given GP , Q and the RDF graph I, MSearchAll(GP , Q, I) returns all most general substi-

tutions that match GP with some subgraph of I.7

• Given a bag8 S of values for variables X ∪ Y , TCompute(S, Q) computes the aggregates as

7Only one substitution is returned for each matching in order to avoid double counting.
8Please note that I adapt the bag semantics for aggregation, i.e., we allow duplicates. I use [] to denote a bag.
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specified by SELECT clause (and GROUP BY clause if any) specified in Q. As S can be

regarded as a relational table, we can use existing relational DBMS algorithms to compute

the result T in TCompute(S, Q).

Although MSearchAll returns a set of substitutions (with no duplicate), VRetrieve may produce

duplicate tuples from the set of substitutions. Thus, S is defined as a bag and assigned with a bag

of tuples which may contain duplicates.

Example 4.3.8 Consider the RDF graph I of Figure 4.12 and the query Q in Example 4.3.2.

CAA first builds the graph pattern shown in Figure 4.13. X is set to (?highprice). Y is set to ∅.

MSearchAll(GP, Q, I) returns two substitutions as described in Example 4.3.7. The bag S contains

two tuples {(“800000”∧∧ns1:USD), (“500000”∧∧ns1:USD)} returned by VRetrieve(θ, GP, X ∪

Y) for those two substitutions. Thus, T contains one tuple {(“800000”∧∧ns1:USD)} returned by

TCompute(S, Q) which is the maximum of the two values.

4.4 Aggregation Maintenance Algorithms

Before presenting algorithms to maintain aggregate views, I first describe properties of distributive

and non-distributive aggregates, which affects the design of my algorithms.

An aggregate function f is distributive w.r.t a source update operation if and only if after

such an operation, the updated value of the function can be computed based on its old value and

the value(s) of the source update without reference to the source. More formally, f is distributive

w.r.t. an update operation U if and only if there exists a function g such that f(I ′) = g(f(I), v)

where f(I) is the aggregate value, I ′ is the updated instance after the update operation U(I, v),

and v is the value(s) used in the update (e.g., the new value to add, the old value to remove, etc).

Examples of distributive aggregate functions include count, sum, average w.r.t. insertion,

deletion and update. For average, I will need an additional attribute size which stores the size of

S (in line 4 of CAA) in order to compute the correct updated value (or, I can use sum, count to

calculate it). max and min are distributive wr.t. insertion, but not deletion and update (which

also involves deletion). Auxiliary data computed from the source (such as S) can help to maintain
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non-distributive aggregate functions to avoid the need to refer to the source. Note that I do

allow more than one aggregate function to be used in a query. For example, I allow “SELECT

max(?highprice), min(?lowprice)”. However, by examining the view (query) specification, different

aggregate functions will be processed differently and different auxiliary data may be required.

4.4.1 Insertion

algorithm AMI(I, Q, A(Q, I), T (Q, I), t)

/* Input:RDF graph I, query Q, auxiliary data A(Q, I), query result T (Q, I), inserted triple t */

/* Output: table T (Q, I ∪ t), auxiliary data A(Q, I ∪ t) */

1) GP ← BuildGP(Q);

2) X ← aggregate variables of Q;

3) Y ← GROUP BY variables of Q;

4) if TMatch(GP , t) == TRUE, then

5) ∆S ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearch(GP, Q, t, I ∪ t)];

6) return (T (Q, I ∪ t), A(Q, I ∪ t))← TMaintainI(T (Q, I), ∆S, A(Q, I), Q);

7) else, return (T (Q, I ∪ t), A(Q, I ∪ t))← (T (Q, I), A(Q, I)) ;

Figure 4.15: Aggregate Maintenance Algorithm for Insertion AMI

Figure 4.15 presents the AMI algorithm (short for Aggregate Maintenance Algorithm

for Insertion) to find new objects to include in the answer when an insertion occurs. My AMI

algorithm uses the following new subroutine.

• T (Q, I) is the original view storing the answer of Q on I. ∆S contains the portion of S

caused by t. A is the auxiliary data that depends on the original view and the specification

of Q which will be covered by later sections. TMaintainI(T (Q, I), ∆S, A(Q, I), Q) takes the

above, computes the updated view T (Q, I ∪ t) and updates the auxiliary data.

Handling GROUP BY: When a GROUP BY clause exists, we require one more step in addition
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to the above procedure. By examining the GROUP BY clause and ∆S, we know which group each

tuple in ∆S belongs to. Thus TMaintainI should only maintain each affected group by using the

affecting tuples. It will delete any empty groups and create new groups if necessary. Each group

will also have its auxiliary data (if any). The cases for deletion, modification, etc, in later sections

are handled similarly.

TMaintainI : Below shows how TMaintainI works for some common aggregate functions in

this insertion case.

Handling sum, count, min, max We require no auxiliary data. Suppose we are considering an

aggregate function f(x) on an attribute x and F is the original aggregate value. The updated

aggregate value F ′ can be computed as:

• F ′ = F + Σv∈πx(∆S)v if f = sum

• F ′ = F + |∆S| if f = count

• F ′ = min([F ] ∪ πx(∆S)) if f = min

• F ′ = max([F ] ∪ πx(∆S)) if f = max

where πx(∆S) projects a bag of values of attribute x from ∆S and ∪ above is a bag union operation.

If a GROUP BY clause exists, the projection should be done for each group of values separately

instead of altogether.

Note that min, max DO need auxiliary data for the deletion case. Thus, we must update the

auxiliary during insertion. We must store πx(S) in A(Q, I) where πx(S) contains a bag of values

of attribute x used to produce aggregate value. When adding the values stated in πx(∆S), we

should update πx(S) to πx(S + ∆S) = πx(S) ∪ πx(∆S) and store it in A(Q, I ∪ t).

Handling average

For average, the additional information we need is the size of S in the original view, which

can be stored in A(Q, I). We can get the updated aggregate value F ′ and new size′ as follows:

size′ = size + |∆S|

F ′ =
F · size + Σv∈πx(∆S)v

size′
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Example 4.4.1 Suppose we want to know, for each artist, the smallest estimate for an artifact

(with the title), and the largest estimate for an artifact (with title). This can be answered by the

following query.

SELECT ?lname, min(?lowprice), sum(?highprice)

WHERE (?artist, <ns1:lname>, ?lname),

(?artist, <ns1:creates>, ?artifact),

(?artifact, <ns1:title>, ?title),

(?artifact, <ns1:estimated>, ?price),

(?price, <ns1:low>, ?lowprice),

(?price, <ns1:high>, ?highprice),

USING ns1 FOR <http://www.auctionschema.com/schema1#>

GROUP BY ?lname

The result is [(“Rose”, “600000”∧∧ns1:USD, “800000”∧∧ns1:USD), (“Tabacchi”,

“10000”∧∧ns1:USD, “15000”∧∧ns1:USD)]. Suppose we insert the following triple to the source:

t = (&r3, <ns1:title>, “In the High Canadian Rockies”). AMI will first compute ∆S = [(“Rose”,

“300000”∧∧ns1:USD, “500000”∧∧ns1:USD)]. TMaintainI finds that the only tuple in ∆S is in

the group of “Rose”, which is the only affected group.

For min(?lowprice), we can update it by: min(600000, 300000) = 300000. We also need to

update the auxiliary data for “Rose” group which is π?lowprice(S) = [“600000”∧∧ns1:USD] origi-

nally. Now it can be updated as: π?lowprice(S ∪ t) = [“600000”∧∧ns1:USD, “300000”∧∧ns1:USD].

For sum(?highprice), we can update it by: 800000 + 500000 = 1300000.

The resulting updated answer is: [(“Rose”, “300000”∧∧ns1:USD, “1300000”∧∧ns1:USD),

(“Tabacchi”, “10000”∧∧ns1:USD, “15000”∧∧ns1:USD)].

Complexity Analysis of AMI.

For TMaintainI, the worst case time complexity is O(|S|) where |S| is the number of records

in S (the worst case refers to the update of auxiliary data, e.g. for min, max, without indexing).
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Thus, MSearch dominates the time complexity of AMI algorithm. The worst case time

complexity of AMI is O(|GP |bD(GP )). The similar analysis can be applied to other maintenance

algorithms in later sections.

4.4.2 Deletion

Deletion is a harder problem for min, max because we cannot compute the new aggregate value

based on the old value and the update only. They are non-distributive w.r.t. deletion.

algorithm AMD(I, Q, A(Q, I), T (Q, I), t)

/* Input: RDF graph I, query Q, auxiliary data A(Q, I), query result T (Q, I), deleted triple t */

/* Output: table T (Q, I − t), auxiliary data A(Q, I − t) */

1) GP ← BuildGP(Q);

2) X ← aggregate variables of Q;

3) Y ← GROUP BY variables of Q;

4) if TMatch(GP , t) == TRUE, then

5) ∆S ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearch(GP, Q, t, I)];

6) return (T (Q, I − t), A(Q, I − t))← TMaintainD(T (Q, I), ∆S, A(Q, I), Q);

7) else, return (T (Q, I − t), A(Q, I − t))← (T (Q, I), A(Q, I)) ;

Figure 4.16: Aggregate Maintenance Algorithm for Deletion AMD

Figure 4.16 presents the AMD algorithm (short for Aggregate Maintenance Algorithm

for Deletion) to maintain views when a deletion occurs.

The following shows how TMaintainD works for different aggregate functions.

Handling sum, count We do not require any auxiliary data. Suppose we are considering an aggre-

gate function f(x) on an attribute x and F is the original aggregate value. The updated aggregate

value F ′ can be computed as:

• F ′ = F − Σv∈πx(∆S)v if f = sum
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• F ′ = F − |∆S| if f = count

where πx(∆S) projects a bag of values of attribute x from ∆S.

Handling average For average, the additional information we need is the size of S in the original

view, which can be stored in A(Q, I). We can get the updated aggregated value F ′ and new size′

by the following:

size′ = size− |∆S|

F ′ =
F · size− Σv∈πx(∆S)v

size′

Note: if size′ = 0, we should return F ′ as undefined.

Handling min, max min, max are not distributive w.r.t. deletion. We need to store πx(S) in

A(Q, I) where πx(S) contains a bag of values of attribute x used to produce aggregate value.

When removing the values stated in πx(∆S), we should update πx(S) to become πx(S −∆S) =

πx(S)−πx(∆S) and store it in A(Q, I−t). Note that ∆S is a sub-bag of S, so the above expression

is always true.

The updated aggregate value F ′ will be computed as:

• F ′ = min(πx(S −∆S)) if f = min

• F ′ = max(πx(S −∆S)) if f = max

Example 4.4.2 Consider the aggregate query in Example 4.4.1 and the source data that is updated

as described. Suppose we delete the triple t = (&r2, <ns1:title>, “The Model”). AMD will first

compute ∆S = [(“Rose”, “600000”∧∧ns1:USD, “800000”∧∧ns1:USD)]. TMaintainI finds that the

only tuple in ∆S is in the group of “Rose”, which is the only affected group.

For min(?lowprice), we need to update and use the auxiliary data for “Rose” group which

is π?lowprice(S) = [“600000”∧∧ns1:USD, “300000”∧∧ns1:USD] originally. Now it can be updated

as: π?lowprice(S − ∆S) = [“300000”∧∧ns1:USD]. Then, we can update the aggregate value as:

min(300000) = 300000.

For sum(?highprice), we can update it by: 1300000− 800000 = 500000.

The resulting updated answer is: [(“Rose”, “300000”∧∧ns1:USD, “500000”∧∧ns1:USD),

(“Tabacchi”, “10000”∧∧ns1:USD, “15000”∧∧ns1:USD)].
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4.4.3 Triple Modification

An atomic modification update to a set of RDF statements can be classified as the modification of

(1) a triple’s resource (i.e., the starting point of an edge in the RDF graph changes); (2) a triple’s

property (the edge label changes); (3) a triple’s value which is a resource (i.e., the ending point of

an edge changes); (4) a triple’s value which is a literal (i.e., the value stored at the ending point

of an edge changes); (5) a resource itself (the change of rdf:about) from R to R′ which will cause

all edges connecting to or from R to change to connect to or from R′.

I will consider cases (1) to (4) in this section and (5) in the next section. For cases (1) to

(4), we can simply process the modification as a deletion of the old triple td and an insertion of

a new triple ti (with the updated subject, predicate or object). When we modify a triple, some

new subgraphs of I may be matched (producing ∆Si, portion of new S to be inserted), but some

subgraphs that matched before the update may no longer match (producing ∆Sd, portion of old

S to be removed). However, if there are any common tuples between ∆Si and ∆Sd, (portions of

S caused by insertion and deletion), we can simply ignore them as the effect of their insertion will

balance out the effect of their deletion.

Figure 4.17 presents the AMT algorithm (short for Aggregate Maintenance Algorithm

for Triple Modification) to maintain a materialized view when a modification occurs in a triple.

We now show how TMaintainT works for different aggregate functions.

Handling sum, count We do not require any auxiliary data. Suppose we are considering an aggre-

gate function f(x) on an attribute x and F is the original aggregate value. For f ∈ {sum, count},

the updated aggregate value F ′ can be computed as:

• F ′ = F + Σv∈πx(∆Si)v − Σv∈πx(∆Sd)v if f = sum

• F ′ = F + |∆Si| − |∆Sd| if f = count

where πx(∆S) projects a bag of values of attribute x from ∆S.

Handling average For average, the additional information we need to know is the size of S in the

original view, which can be stored in A(Q, I). We can get the updated aggregated value F ′ and

new size′ by the following:
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algorithm AMT (I, Q, A(Q, I), T (Q, I), ti, td)

/* Input: RDF graph I, query Q, auxiliary data A(Q, I),

query result T (Q, I), inserted triple ti, deleted triple td */

/* Output: table T (Q, I ′), auxiliary data A(Q, I ′)(I ′ = (I − td) ∪ ti) */

1) GP ← BuildGP(Q);

2) X ← aggregate variables of Q;

3) Y ← GROUP BY variables of Q;

4) ∆Si ← []; ∆Sd ← [];

5) if TMatch(GP , td) == TRUE, then

6) ∆Sd ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearch(GP, Q, td, I)];

7) if TMatch(GP , ti) == TRUE, then

8) ∆Si ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearch(GP, Q, ti, I ∪ ti)];

9) ∆S∩ ← ∆Si ∩∆Sd;

10) ∆Si ← ∆Si − S∩; ∆Sd ← ∆Sd − S∩;

11) if |∆Si|+ |∆Sd| == 0, then return (T (Q, I ′), A(Q, I ′))← (T (Q, I), A(Q, I)) ;

12) else, return (T (Q, I ′), A(Q, I ′))← TMaintainT (T (Q, I), ∆Si, ∆Sd, A(Q, I), Q);

Figure 4.17: Aggregate Maintenance Algorithm for Triple Modification AMT
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size′ = size + |∆Si| − |∆Sd|

F ′ =
F · size + Σv∈πx(∆Si)v − Σv∈πx(∆Sd)v

size′

Note: if size′ = 0, we should return F ′ as undefined.

Handling min, max min, max are not distributive w.r.t. deletion. We need to store πx(S) in

A(Q, I) where πx(S) contains a bag of values of attribute x used to produce aggregate value. We

use S′ to denote (S−∆Sd)∪∆Si. We should update πx(S) to become πx(S′) = (πx(S)−πx(∆Sd)∪

πx(∆Si)) and store it in A(Q, I ′).

The updated aggregate value F ′ will be computed as:

• F ′ = min(πx(S′)) if f = min

• F ′ = max(πx(S′)) if f = max

Example 4.4.3 Consider the aggregate query in Example 4.4.1 and the source data that is up-

dated as described. Suppose we modify the following triple from the source: t = (&r5, <ns1:low>

, “300000”∧∧ns1:USD) to t = (&r5, <ns1:low>, “200000”∧∧ns1:USD)

AMT will first compute ∆Sd = [(“Rose”, “300000”∧∧ns1:USD, “500000”∧∧ns1:USD)]. ∆Si

= [(“Rose”, “200000”∧∧ns1:USD, “500000”∧∧ns1:USD)].

TMaintainT finds that the only tuple in ∆Si and ∆Sd is in the group of “Rose”, which is

the only affected group.

For min(?lowprice), we need to update and use the auxiliary data for “Rose” group which is

π?lowprice(S) = [“600000”∧∧ns1:USD, “300000”∧∧ns1:USD] originally. It can now be updated as:

π?lowprice((S −∆Sd) ∪∆Si) = [“600000”∧∧ns1:USD, “200000”∧∧ns1:USD]. We may then update

the aggregate value to: min(600000, 200000) = 200000.

For sum(?highprice), we can update it by: 1300000− 500000 + 500000 = 1300000.

The resulting updated answer is: [(“Rose”, “200000”∧∧ns1:USD, “1300000”∧∧ns1:USD),

(“Tabacchi”, “10000”∧∧ns1:USD, “15000”∧∧ns1:USD)].
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4.4.4 Resource Modification

In case (5) where a resource is changed from Rd to Ri, we need to consider the new values caused

by the insertion of a new resource Ri and the new edges connected to it AND we need to remove

old values caused by the deletion of resource Rd and the edges connected to it.

Suppose Ed is the set of edges connected to Rd. One approach is to call AMI and AMD

|Ed| times (for inserting and deleting the edges one by one). Alternatively we can instead consider

the deletion and insertion of all those edges together. In this second approach, we consider the

substitutions of the deleted/inserted resource to the resource/value of a triple in GP instead of

the substitutions of the deleted/inserted edges to a triple in GP .

Figure 4.18 presents the AMR algorithm (short for Aggregate Maintenance Algorithm

for Resource Modification) to make necessary updates to a materialized view when a mod-

ification occurs to a resource. We denote I ′ as the updated RDF graph after replacing Rd by

Ri.

Our AMR algorithm uses the following new subroutines.

• TMatchR(GP , R) returns “true” for a resource R and a graph pattern GP if R unifies with

a GP triple’s subject or object.

• Given GP , Q, resource R and the updated RDF graph (I ∪ t), we define MSearchR(GP , Q,

R, I) to find all substitutions9 θ that match GP with some subgraph of I that contains R.

MSearchR is a variant of MSearch where R rather than t gives a fixed starting point.

AMR uses the same function TMaintainT of AMT.

Example 4.4.4 We modify the aggregate query in Example 4.4.1 to the following:

SELECT ?artist, min(?lowprice), sum(?highprice)

WHERE (?artist, <ns1:creates>, ?artifact),

(?artifact, <ns1:title>, ?title),

(?artifact, <ns1:estimated>, ?price),

9Substitutions that are subsumed by another substitution need not be returned.
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algorithm AMR(I, Q, A(Q, I), T (Q, I), Ri, Rd)

/* Input: RDF graph I, query Q, auxiliary data A(Q, I),

query result T (Q, I), inserted resource Ri, deleted resource Rd */

/* Output: table T (Q, I ′), auxiliary data A(Q, I ′)(I ′ = (I −Rd) ∪Ri) */

1) GP ← BuildGP(Q);

2) X ← aggregate variables of Q;

3) Y ← GROUP BY variables of Q;

4) ∆Si ← []; ∆Sd ← [];

5) if TMatchR(GP , Rd) == TRUE, then

6) ∆Sd ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearchR(GP, Q, Rd, I)];

7) if TMatchR(GP , Ri) == TRUE, then

8) ∆Si ← [VRetrieve(θ, GP, X ∪ Y ) | θ ∈ MSearchR(GP, Q, Ri, I
′)];

9) ∆S∩ ← ∆Si ∩∆Sd;

10) ∆Si ← ∆Si − S∩; ∆Sd ← ∆Sd − S∩;

11) if |∆Si|+ |∆Sd| == 0, then

12) return (T (Q, I ′), A(Q, I ′))← (T (Q, I), A(Q, I)) ;

13) else, return (T (Q, I ′), A(Q, I ′))← TMaintainT (T (Q, I), ∆Si, ∆Sd, A(Q, I), Q);

Figure 4.18: Aggregate Maintenance Algorithm for Resource Modification AMR
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(?price, <ns1:low>, ?lowprice),

(?price, <ns1:high>, ?highprice),

USING ns1 FOR <http://www.auctionschema.com/schema1#>

GROUP BY ?artist

The result is [(&r1, “600000”∧∧ns1:USD, “800000”∧∧ns1:USD), (&r9, “10000”∧∧ns1:USD,

“15000”∧∧ns1:USD)].

Suppose we change the resource &r1 to &r13 which refers to http://www.artist.net#g-rose. AMR

will first compute ∆Sd = [(&r1, “600000”∧∧ns1:USD, “800000”∧∧ns1:USD)]. AMR then computes

∆Si = [(&r13, “600000”∧∧ns1:USD, “800000”∧∧ns1:USD)].

TMaintainT finds that the &r1 group becomes empty after removing ∆Sd, but it creates a

new &r13 group for ∆Si.

The resulting updated answer is [(&r13, “600000”∧∧ns1:USD, “800000”∧∧ns1:USD), (&r9,

“10000”∧∧ns1:USD, “15000”∧∧ns1:USD)].

4.5 Relational Approach

Instead of using a graph structure, we can store and query an RDF graph using a standard relational

database system. Florescu and Kossmann[27] have suggested a few alternative approaches to store

XML data in a relational database. An RDF-instance I is a set of triples that can directly be

stored in a relational table having schema (Resource,Prop,Value). An insertion of an RDF triple

corresponds to an insertion of a tuple into this relational table. Any standard view maintenance

algorithm can be used[8, 13, 38, 39] – we use IMAr, DMAr, TMAr and RMAr to denote the use

of standard view maintenance algorithms (DRed [39] in my implementation) to maintain non-

aggregate views when insertions, deletions, tuple modifications and resource modifications are

made. Similarly, we use RAMI, RAMD, RAMT and RAMR to denote the use of Counting algorithm

[39] for aggregate views.
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4.6 Implementation and Scalability Experiments

4.6.1 Maintaining Non-aggregate Views

I implemented a prototype system in Java which consists of 5099 lines of code. The system consists

of three main components: XMA, XMAr and Recomp where X is either I, D, T or R. XMA provides

functionalities of IMA, DMA, TMA and RMA. It constructs its own graph model from the data

stored in Hewlett Packard’s Jena 2.1 system. XMAr provides functionalities of IMAr, DMAr, TMAr

and RMAr. The Jena 2.1 system uses a statement table to store RDF statement just like what I

described the relational approach in the previous section.[81] Jena also uses various optimization

techniques including indexing to evaluate RDQL queries efficiently. Therefore I use Jena to evaluate

delta rules produced by XMAr specified by the well known view maintenance algorithm (DRed) in

[39]. Recomp uses Jena API to compute modified materialized views from scratch.

In all my scalability experiments, I used the data from Open Directory RDF Dump[21].

Each query we used has the following form (the graph pattern contains at least 5 triples):

CREATE VIEW dmoz AS

SELECT ?topic,?atitle,?btitle

WHERE (?topic,<ns1:catid>,?id),

(?topic,<ns1:link>,?alink),

(?alink,<ns2:Title>,?atitle),

(?topic,<ns1:link>,?blink),

(?blink,<ns2:Title>,?btitle)

AND ?id < 472029, ?alink NE ?blink

USING ns1 FOR <http://dmoz.org/rdf#>,

ns2 FOR <http://purl.org/dc/elements/1.0/>

I randomly inserted/deleted/modified some single triple/resource. For each combination of

algorithm and database size, I repeated the experiment to have at least 5 non-empty results (∆M

in insertions and deletions) or intermediate results (∆Mi, ∆Md in modifications). I then took the
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average running time and original view size. The experiments were run on a PC with 1.4GHz

CPU, 524MB memory and Windows 2000 Professional platform.

The times taken in all experiments only includes the time to (i) build graph

patterns (ii) do updates to the database and (iii) compute ∆M . However, it excludes

the time to load RDF data into the Jena model (for all algorithms) and construct my

graph model (for XMA) because this can be done once.

When comparing my algorithms with algorithms that operate on the relational version of the RDF

data, I compared my algorithms with the well known view maintenance algorithms (DRed) of Gupta

et. al. [39].
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Figure 4.19: Running time of IMA, IMAr and Recomp against (a) database size, (b) original view

size. Running time of DMA, DMAr and Recomp against (c) database size, (d) original view size.

Figure 4.19 (a) and (b) show the running time of IMA, the relational approach IMAr, and

Recomp against (a) the database size and (b) the original view size. IMA’s running time is indepen-

dent of the database size and original view size because it uses a local search for the substitutions

of graph pattern. In contrast, the relational approach IMAr’s running time increases linearly with

135



the database size and original view size.

It is important to note that IMA is highly scalable - it almost hugs the x-axis in the graph

shown and can process materialized views containing over 65,000 tuples in under 0.4 second, at

least 12 times faster than the relational approach.

Deletion

Figure 4.19 (c) and (d) show the running time of DMA, the relational approach DMAr and Recomp

against (c) the database size and (d) the original view size. DMA’s running time is again indepen-

dent of the database size and original view size with the same reason in IMA. In contrast, DMAr’s

running time is much longer than DMA’s and even exceeds that of Recomp. It may be because of

the overheads of sending a lot of delta rules. Compared with Recomp, the large number of queries

outweighs the shorter processing time of each query.

As in the case of IMA, the reader will note that DMA also performs very well, handling views

of over 65K tuples in well under 0.6 seconds, 49 times faster than the relational approach.

Modification

Figure 4.20 shows the running time of TMA, the relational approach TMAr and Recomp as we vary

(a) the database size and (b) the original view size. Figure 4.20 (c) and (d) shows the counterparts

for RMA. TMA and RMA both compute triples to be inserted (Ins) and triples to be potentially

deleted (Pdel). In my experiments I tested two extreme cases - (i) those where Pdel ⊆ Ins and

those where (ii) Pdel ∩ Ins = ∅. Of course, most view maintenance operations fall somewhere

between these two extremes. I use TMA-A and TMA-B to denote the application of TMA in cases (i)

and (ii) above, respectively. I use the notation TMAr-A, TMAr-B, RMA-A,RMA-B, RMAr-A,RMAr-

B in a similar way. The running time of TMA-A, TMA-B, RMA-A and RMA-B are again under 0.92

seconds and independent of the database size (and original view size, whose figures are not shown

due to the limitation of space) for the same reason as for IMA. Both running times are very close.

In contrast, we can see a big difference between TMAr-A and TMAr-B. Without the need to submit

a large number of delta rules, TMAr-A runs much faster than TMAr-B. TMAr-B’s running time in

136



0

10

20

30

0 1 2 3 4 5

R
un

ni
ng

 ti
m

e 
(s

ec
)

Database size (MBytes)

TMAr-B
Recomp
TMAr-A
TMA-B
TMA-A 0

10

20

30

0 20000 40000 60000

R
un

ni
ng

 ti
m

e 
(s

ec
)

Original view size (tuple number)

TMA2-B
Recomp
TMA2-A
TMA1-B
TMA1-A

(a) (b)

0

20

40

60

80

0 1 2 3 4 5

R
un

ni
ng

 ti
m

e 
(s

ec
)

Database size (MBytes)

RMAr-B
RMAr-A
Recomp
RMA-B
RMA-A

0

20

40

60

80

0 20000 40000 60000

R
un

ni
ng

 ti
m

e 
(s

ec
)

Original view size (tuple number)

RMA2-B
RMA2-A
Recomp
RMA1-B
RMA1-A

(c) (d)

Figure 4.20: Running time of TMA, TMAr and Recomp against (a) database size, (b) original view

size. Running time of RMA, RMAr and Recomp against (c) database size, (d) original view size.

Curves of TMA-A/B and RMA-A/B are hard to distinguish among each other because their values

are very close to zero.

some cases can even exceed that of Recomp because of this. The above also applies to RMAr. As

in the case of IMA and DMA, TMA and RMA also perform very well, handling views of over 65K

tuples under 0.92 second, 19 to 177 times faster than the relational approach.

4.6.2 Maintaining Aggregate Views

I have implemented a prototype system in Java (5701 lines of code) that contains AMI, AMD, AMT

and AMR algorithms (collectively called AMX algorithms) as well as standard view maintenance

algorithm (the counting algorithm in [39]) applied to the relational version of an RDF instance -

these are called RAMI, RAMD, RAMT and RAMR (collectively called RAMX algorithms) respec-

tively. AMX algorithms construct their own graph model from the data stored in Hewlett Packard’s

Jena 2.1 system so that I can navigate through the graph directly and reduce the overhead of Jena

API calls. Jena 2.1 uses a statement table to store RDF statement as described the relational

approach in earlier sections[81]. In addition, Jena uses various optimization techniques including
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Figure 4.21: Running time of AMI, AMD, AMT and AMR, and their counterparts in the rela-

tional apporach (RAMI, RAMD, RAMT and RAMR) for queries with aggregate functions (a,b)count,

(c,d)sum, (e,f)avg, (g,h)max, (i,j)min. GROUP BY clauses are used in the experiments in the left

column but not in the right column. Curves of AMI, AMD, AMT and AMR are hard to distinguish

among each other because their values are very close to zero.
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indexing to evaluate RDQL queries efficiently. Therefore I use Jena to evaluate delta rules produced

by RAMX.

In all my scalability experiments, I used the restaurant data from Chef Moz dining guide

(accessible at Chef Moz Project RDF Dump, http://chefmoz.org). Each query has the following

form with its graph pattern containing at least 7 triples:

SELECT ?cu,agg(?x) WHERE (?r,<ns1:AmbianceRating>,?a),

(?r,<ns1:FoodRating>,?b),(?r,<ns1:ServiceRating>,?c),

(?r,<ns1:OverallRating>,?d),(?r,<ns1:Cuisine>, ?cu),

(?r,<ns1:Review>,?rev),(?rev, <ns1:FoodRating>, ?e)

USING ns1 For <http://chefmoz.org/rdf/elements/1.0/#>

GROUP BY ?cu

where agg is one of the following five aggregate functions: count, sum, avg, max, min; ?x is one

of the following five variables: ?a, ?b, ?c, ?d, ?e. Although my system can handle multiple different

aggregates at the same time, I use the above query in order to examine the performance of my

algorithms on each aggregates.

I randomly inserted/deleted/modified some single triple/resource. For each combination of

algorithm, aggregates, database size, with or without GROUP BY, I repeated the experiment 15

times with different aggregated variables and different updates. I then took the average running

time. The experiments were run on a PC with 1.4GHz CPU, 524MB memory and Windows 2000

Professional platform.

Each row of graphs in Figure 4.21 shows the results of each aggregate function. GROUP BY

clauses are used in the experiments in the left column but not the right column. In all experiments,

my algorithms run much faster than their counterparts in the relational approach in three to seven

times. The curves of AMI, AMD, AMT and AMR almost hug the x-axis in the graphs shown and

can process 18 MB of source data in well under a second (in fact, under 0.22 second). They are

in general at least three times to 100 times faster then the relational counterparts because they

use a local search strategy for the substitutions of the graph pattern starting from the data to be
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updated in order to find what the new view should add into or remove from the original view.

4.7 RDF Containers, Collections and Reification

RDF provides basic vocabulary to describe three kinds of containers: bag, seq (sequence) and alt

(alternative).

In the formal RDF semantics[71], there are no special semantic conditions concerning a

container other than its general structure and general RDF semantic conditions like other RDF

statements. For example, it is only an intended meaning that a bag has a set of unordered and

perhaps duplicate members. Such intended meanings have no built-in understanding in RDF and

only depend on the implementation of applications.

There are two approaches to define queries in RDF databases that have containers. One

is to explicitly handle the intended meaning of containers. Queries should be written to check

explicitly, using WHERE and AND clauses, whether a resource is a container and, if yes, to

access its members. For example, RDQL syntax can be extended easily to handle containers by

(1) using (?a, <rdf:type>, ”rdf:bag”), (?a, <rdf:li>, ?b) in the WHERE clause or (2) using both

(?a, <rdf:type>, ”rdf:bag”), (?a, ?p, ?b) in the WHERE clause and ?p=”<rdf: *>” in the AND

clause. Here I use the abbreviations <rdf:type>, rdf:bag and <rdf:li> rather than their full names.

<rdf:li> should be recognized by RDQL evaluation engine as a way to represent ?b as a member of

?a rather than a real property name directly because <rdf:li> is only provided by RDF/XML as a

convenience element to aviod having to explicitly number each membership property as <rdf: 1>,

<rdf: 2>, etc. The * in <rdf: *> is treated as a wild card. The other approach is, with queries

written as usual, to handle containers implicitly by some mechanisms. For example, when the

engine reaches a resource which is a container, it can automatically substitute it by each of its

members. The advantage of this method is the high portability of queries – containers are handled

automatically without the need of checking expressed in the queries as above. The disadvantage

is the possible ambiguity when we want to access the properties of an object which may be a

container – should we return the properties of the container or those of its members? Due to this
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semantic problem, I choose the first approach in this paper, which means that my algorithms in

previous sections can also be applied to containers.

RDF collections[71] are more complicated than RDF containers because an RDF collection

uses a list structure, which means that every element in a collection has a different path length

(number of edges to reach) from the collection resource node. In order to simplify a query, a possible

extension of RDQL can use a special property <rdf:li> to access the elements of a collection,

similar to a container as described above. With this united form, users can write queries to access

elements of a container or a collection without worrying about whether it is actually a container

or a collection. If RDQL is extended in this way, the methods described in this paper handle

containers and collections directly.

RDF reification[71] allows the use of RDF to describe properties of an RDF triple, such as its

date of composition. We can handle a reification triple just like other ordinary triples. The only

difference is that the type of its resource is rdf:Statement, but it does not affect our algorithms.

4.8 Summary

In this chapter, I proposed algorithms to maintain RDF views for various updates to RDF databases

such as insertion, deletion and modification. I then extended RDQL (RDF query language) to

support aggregations and proposed another set of algorithms to maintain such aggregate views.

Experimental results show that my algorithms which are based on local search in graphs are more

efficient than by simply adapting general relational view maintenance algorithms.
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Chapter 5

Related Work

5.1 Probabilistic Semistructured Databases

There has been considerable work done on storing probabilistic information in relational databases

[50, 19, 20, 24, 32, 33], object databases[23] and temporal databases[17], to date, there has been

little work on supporting uncertainty in semistructured models.

More recently, Nierman and Jagadish developed a framework called ProTDB to extend the

XML data model to include probabilities[61]. XML DTD’s are extended to use a Prob attribute for

each element. As a query language, they use a variation of their earlier work on the TAX algebra

for XML[42] and use pattern trees. ProTDB proposed by Nierman and Jagadish[61] is similar

in spirit to my model – however there are a few important differences. In ProTDB, independent

conditional probabilities are assigned to each individual child of an object (i.e., independent of the

other children of a node); PXML supports arbitrary distributions over sets of children. Further-

more, dependencies are required to be tree-structured in ProTDB, whereas PXML allows arbitrary

acyclic dependency models. In the other words, their answers are correct under the assumption

of conditional independence and under the condition that the underlying graph is tree-structured.

Thus the PXML data model subsumes the ProTDB data model. In addition, I prove here that the

semantics of PXML is probabilistically coherent. Another important difference is in the queries

supported. There is no direct mapping among my algebra and their query language. For exam-

ple, in their conjunctive query, given a query pattern tree, they return a set of subtrees (with

some modified node probabilities) from the given instance, each with a global probability. There

is no direct mapping between their conjunctive query and my ancestor projection because they

find subtrees matching the pattern tree, while I use a path expression. Each of their subtrees is

restricted to match the query pattern tree and has a fixed structure while my output is a proba-
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bilistic instance which implicitly includes many possible structures. In my PIXML model, I use an

interval probability model rather than a point probability model. This is useful because almost all

statistical evidence involves margins of error. So when a statistical estimate says that something is

true with 95% probability with a ±2% margin of error, then this really corresponds to saying the

event’s probability lies in the interval [0.93, 0.97]. Likewise, using intervals is valuable when one

does not know the relationship between different events. For example, if we know the probabilities

of events e1, e2 and we want to know the probability of both of them holding, then we can, in gen-

eral, only infer an interval for the conjunction of e1, e2 (cf.[9, 26]) unless we know something more

about the dependencies or lack thereof between the events. Third, I provide two formal declarative

semantics for probabilistic semistructured databases - no such model theory is proposed by [61]. I

additionally prove that these model theories have a variety of interesting relationships. Finally, I

prove that my PIXML query language is sound and complete w.r.t. the above model theory.

The work of Dekhtyar et al.[16] was the first to deal with probabilities and semistructured

data. They pioneered the integration of probabilities and semistructured data by introducing

a semistructured model to support storage and querying of probabilistic information in flexible

forms such as a simple interval probability distribution, a joint interval probability distribution,

or a simple or joint conditional interval probability distribution. Their model allows us to use an

object (semistructured probabilistic object or SPO) to represent the probability table of one or more

random variables, the extended context and the extended conditionals. Intuitively, contexts provide

information about when a probability distribution is applicable. They then go ahead and developed

an elegant algebra to query databases of such SPOs and a prototype implementation. Their work

appears to be similar to PXML but in fact it is quite different. An SPO itself can be represented

in a semistructured way, but its main body is just a flat table. It cannot show the semistructured

relationship among variables. Only contexts (but not random variables) are represented in a

semistructured form. Contexts are ”regular relational attributes”, i.e., the context provides already

known information when the probability distribution is given on real ”random variables”. In

contrast, my model is based on the widely used model OEM[64], which allows data to be represented
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in a truly semistructured manner. I modify the syntax and semantics of the model by introducing

cardinality and object probability functions to demonstrate the uncertainty of the number and the

identity of objects existing in possible worlds. Every possible world is a semistructured instance

compatible with the probabilistic instance. The representation of a possible world (semistructured

instance) is the same as the one widely accepted nowadays. However, the model of Dekhtyar et

al. cannot do this. Their model also requires random variables to have distinct variable names

(or edge labels) (in my model, they are the children connected to their parents with the same

edge label). Consequently, their model cannot allow two or more variables with the same variable

names (no matter their values are the same or different) in a single possible world. Their model

also cannot capture the uncertainty of cardinality. On the other hand, my model can represent

their table. For each random variable, define a set of children (with the possible variable values)

connected to their parent with the same edge label (set as the variable name). The cardinality

associates with the parent object with each label is set to [1, 1] so that each random variable can

have exactly one value in each possible world. The extended context and extended conditionals

in SPO can be represented by two subtrees with corresponding edge labels and values connected

to the parent object. In [35, 85, 86], they extended their work to handle interval probabilities.

My query language described in Chapter 3 (my PIXML model) is a very simple logical one. I also

provide a model theory (two in fact) and an operational semantics and show that my operational

semantics is correct.

The above two pieces of work are closest to mine. In addition, there has been extensive

work on probabilistic databases in general. Kiessling et al.’s DUCK system[36, 48] provides a

logical, axiomatic theory for rule based uncertainty. Lakshmanan and Sadri[51] show how selected

probabilistic strategies can be used to extend the previous probabilistic models. Lakshmanan

and Shiri[52] have shown how deductive databases may be parameterized through the use of con-

junction and disjunction strategies. Barbara et al.[5] develop a point probabilistic data model

and propose probabilistic operators. Cavallo and Pittarelli[12]’s important probabilistic relational

database model uses probabilistic projection and join operations, but the other relational algebra
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operations are not specified. Also, a relation in their model is analogous to a single tuple in the

framework of Barbara et al.[5] Dey and Sarkar[19] propose an elegant 1NF approach to handling

probabilistic databases. They support (i) having uncertainty about some objects but certain infor-

mation about others, (ii) first normal form which is easy to understand and use, (iii) new operations

like conditionalization. The ProbView system by Lakshmanan et al.[50] extends the classical rela-

tional algebra by allowing users to specify in their query what probabilistic strategy (or strategies)

should be used to parameterize the query. ProbView removes the independence assumption of

previous works. More recently, Dyreson and Snodgrass pioneered the use of probabilities over time

in databases[22].

XPath[82] and XQuery[83] are languages that use path expressions (defined in XPath) to

extract objects. SAL[6] and TAX[42] are two algebras for semistructured data. SAL binds objects

to variables, manipulates the bindings and then removes bindings constructing a result. The

reason that I cannot use XPath, Xquery and SAL directly is that the original parent-children

relationships and probabilities associated with objects cannot be kept directly in the results since

individual objects are selected during the process. However, my algebra uses the well-defined path

expressions as a tool to locate the objects we are interested and manipulates the graph structure

of semistructured data directly. On the other hand, TAX uses a pattern tree to extract subsets of

nodes (called witness trees), one for each embedding of the pattern tree in an input tree (instance).

Its algebraic operations are similar to mine in some aspects. The reason that I cannot use theirs

directly is the fixed structure of the result, e.g., fixed number of children, which restricts the

representation of the uncertainty in cardinality.

Though there has been a substantial amount of work on probabilistic databases, there has

been almost no work on probabilistic aggregates in even probabilistic relational databases. Below

are related work on probabilistic aggregates and on aggregates on semistructured databases.

Ross et al.[73, 74] extend probabilistic relational databases to handle aggregate queries.

They define a semantics for such queries using linear programming and then develop an algorithm

to compute aggregate queries. The key differences between this work and theirs is that I am
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building on top of XML rather than relational data sources. The structure of XML documents

are far more complex to deal with than relational sources especially as the values to be aggregated

are stored in a semistructured way and I require the output of an aggregate operator to also be an

XML instance.

Aggregate operations defined in XQuery proposed by W3C can be found in the working

draft[83]. Besides textual languages, a graphical language XML-GL[14] was also proposed to handle

aggregates. A compact representation for exponentially large number of answers to a query on XML

documents and the algorithm to compute that can be found in the work of Meuss and Schulz[60].

Some methods to collect summary statistics for selectivity estimation were introduced[29, 67, 68].

Related work on aggregates for information retrieval is described in XIRQL, a query language

proposed by Fuhr and GroBjohann[31].

5.2 View Maintenance of Ontology Databases

There is very little related work on RDF views. Volz et al.[79] were the first to introduce a view

mechanism for RDF data. Their views require that (i) the results contain class instances (i.e., a

subject or object variable), or (ii) the result itself has the pattern of RDF statement (i.e., a triple

containing subject, predicate and object). My algorithms apply to all possible RDQL queries.

Magkanaraki et al.[55] proposed RVL, a view definition language that can also create virtual RDF

schemas and restructure class and property hierarchies such that new resources, property values,

classes and property types can be created. Wilkinson et al.[81] proposed a methodology to store

and query persistent RDF graphs in Jena. They also introduced two tools to assist in designing

application-specific RDF storage schema. None of these works addresses RDF aggregates or the

problem of maintaining aggregate RDF views.

To my best knowledge, there is no work on RDF view maintenance to date. However, there

has been a huge amount of work on maintaining views [37]. Relational DB view maintenance

works include [8, 13, 38, 39]. Zhuge and Garcia-Molina[87] develop methods to maintain graph

structured views. There are substantial variations between the RDFRDQL and their notion of a
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graph structured database (GSDB). In a GSDB (which must be rooted), views are defined using a

simple language that (i) uses one path expression to locate a node n to be returned, and (ii) using

some other path expressions to identify paths starting from node n that satisfy various conditions.

Thus, a view is defined to contain a set of nodes, each of which satisfies some path expression and

condition(s). In contrast, in my RDF framework, materialized views are not just sets of nodes –

they can contain edge labels as well as nodes in any form. In addition, path expressions in GSDBs

[87] starts from a given set of nodes (e.g. the root). In contrast, in an RDF database system

and in RDQL, there is no root. RDQL allows variables in subjects (i.e., a path expression can

start from arbitrary nodes in the graph). The incremental maintenance algorithm proposed in[87]

assumes that the database is tree-structured - I do not make any such assumption. They also

proposed a self-maintainability test[88] to determine whether access to the base data is required

to incrementally maintain a view after a database update – I do not do this.

Abiteboul et al.[4] discuss techniques to incrementally maintain views for arbitrary graph-

structured databases. They used the view specification language of [2]. Their views include not

only objects but edges between objects. They defined a cost model and provided a detailed cost

analysis with experimental results. However, they have two key assumptions which are inapplicable

to my setting. First, their path expression still has an entry node identified by a special name

label (may not be the root though). Second, in their view definition, only objects are variables

while edges are not. However, in RDQL, even the start node of a path expression could be a

variable. Furthermore, RDQL allows variables on properties (edge labels). They do not discuss

either aggregate computation or aggregate view maintenance.

Volz et al.[78] described how to incrementally maintain materialized views of queries on

a semantic web when changes occur. They represented a semantic web using Datalog rules and

proposed how to solve the maintenance problem when the rules change, which is new to deductive

databases.

Kang and Lim[45] described a framework for XML materialized view refreshing and ad-

dressed issues in its deferred incremental refresh using an object-relational DBMS storing the
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XML documents and views. Kang et al.[46] then proposed algorithms which outperform recom-

putation shown by experimental results. EL-Sayed et al.[25] proposed an algebraic approach for

incremental materialized XQuery view maintenance. A source update is transformed into a set of

update primitives propagated through the XAT (their XML algebra) tree in a bottom-up approach.

Yi et al.[84] worked on incremental maintenance of XML structural indexes.

In [75], Rundensteiner proposed a methodology called MultiView for supporting multiple

view schemata in object-oriented databases by breaking view specification into independent tasks:

class derivation, global schema integration, view class selection, and view schema generation. Kuno

and Rundensteiner proposed a number of techniques in [49] for incremental maintenance of mate-

rialized views in MultiView, e.g., pruning unnecessary update propagations, providing registration

services, and introducing notion of hierarchical registrations. They also present a cost model and

report experimental results.

Quass [69] proposed a framework to maintain aggregate views including group by attributes

and multiple aggregates. Gupta et al. [40] propose a framework of change-tables and a refresh

operator to incrementally maintain views involving relational and aggregate operators. Palpanas

et al. [63] present a general and efficient solution for both the distributive and the non-distributive

aggregate functions. An important step in their work is selective recomputation. They also discuss

a series of optimizations on the query plans for the maintenance. However, all of these works are

based on relational data model. My work is based on the RDF graph model although I choose

tabular representation for the query results. Furthermore, my approach works independently of

the view definition languages, i.e., not limited to tabular representation. My experiments show a

better performance for my algorithms compared with the relational counterparts.

Paparizos et al. [65] discussed how to specify grouping constructs in their tree algebra for

XML (TAX) and how to rewrite nested queries in XQuery to queries with grouping in TAX.

In addition, they described the implementation and performance benefits of grouping over the

equivalent nested join queries. They briefly mention aggregation but do not address it in depth.

Tufte et al. [77] proposed a Merge operation and a flexible mechanism, called Merge Tem-
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plate, to create aggregates over XML stream data. This operation is designed to combine tree-based

structures and compute aggregation over values. Their work handles value replacement (to result

documents) and insertion, but cannot handle deletion and update. Furthermore, they do not

consider incremental maintenance of aggregates.
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Chapter 6

Conclusion

As XML is used more widely to represent textual sources, multimedia sources, biological and

chemical applications, Nierman and Jagadish[61] have argued eloquently for the need to represent

uncertainty and handle probabilistic reasoning in semistructured data of applications like informa-

tion retrieval and protein chemistry applications. There are many other applications ranging from

image surveillance applications to the management of predictive information.

In the first part of this dissertation, I have presented two new probabilistic semistructured

data models, PXML and PIXML models and developed a formal theory for probabilistic semi-

structured data. Specifically, I have shown how graph models of semistructured data may be

augmented to include probabilistic information, where point probabilities are used in PXML while

interval probabilities in PIXML . In addition, I have provided two formal declarative semantics for

such databases. The first is a global semantics that draws inspiration from classical probabilistic

model theory as exemplified in the work of Fagin et al.[26] and applies it to the probabilistic XML

model proposed here. I also propose a local semantics that can be manipulated much more effi-

ciently to avoid the exponential blowup in handling the global semantics. I have proven that the

two semantics are probabilistically coherent. I have presented an algebra for the PXML model. The

algebra has some interesting differences from existing XML algebras. I have shown how queries

can be answered efficiently in my PXML system. In the PIXML model, I have proposed a query

language to query such sources and provided an operational semantics that is proven to be sound

and complete. To my knowledge, the declarative semantics and the soundness and completeness

results are the first of their kind.

To date, there has been no work I am aware of in the area of aggregate computations for

probabilistic XML sources. I have introduced two formal models for probabilistic aggregates—the

possible-worlds semantics and the expectation semantics. Though these semantics are declaratively
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defined over a large space of “compatible” semistructured instances, I am able to find a succinct

way of representing them and manipulating them. I have presented algorithms to compute these

aggregates and report on experiments I conducted showing the feasibility of my approach.

The marriage of semistructured model with probabilistic models is a natural pairing. It

supports uncertainty not only over the schema but also over the instance. This is particularly

useful in the processing of complex, noisy data that abounds in real world domains. In addition

to uncertainty information, ontology provides another kind of information that are usually absent

in traditional database systems.

With RDF’s recent approval as a web recommendation by the W3C, there is growing indus-

trial interest in RDF databases and more and more companies endorse RDF as a web standard for

describing ontology. As a result, RDF databases are expected to grow in size and number. The

ability to search the web using more sophisticated methods than keyword search is appealing, and

RDF provides a simple paradigm to accomplish this. Thus, it is critical to be able to build and

query RDF databases.

Views are key to many issues in databases - relating both to performance and security. In

the second part of this dissertation, I have studied the problem of maintaining materialized views

over an RDF database and I have proposed algorithms that can update materialized views when

the base RDF instance changes in any one of the following ways: (i) triples are added to it, (ii)

triples are deleted from it, (iii) triples are modified, and (iv) resources are modified. None of these

scenarios is theoretical - rather they occur all the time as new resources are deployed on the web,

old resources disappear, and new relationships (e.g. links) connect existing resources. For each of

these problems, I have provided an algorithm which develops a local search strategy starting from

the data to be updated in order to find what the new view should add into or remove from the

original view.

Furthermore, I have extended the problem to aggregate views where aggregate operations

such as COUNT,SUM,AVG,MIN,MAX and so on as well as GROUPBY operations can be handled.

I have then provided algorithms to maintain such views. In addition, I have also described how

151



this problem can be transformed into a relational view maintenance problem which can use any

standard view maintenance algorithms.

I have implemented a prototype system and conducted extensive scalability experiments.

The results show that my approach works well for all kinds of database updates with very short

running time. Most importantly, the naive idea of just dumping all the RDF data into a relational

database and using standard relational view maintenance algorithms leads to significantly slower

performance than if my algorithms were used directly on the RDF-graph data. Depending upon

the precise update operation being considered, my algorithms are 3 to 177 times faster than the

corresponding relational operations.
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