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Abstract. Leaf area index (LAI) and vertical foliage profile

(VFP) are among the important canopy structural variables.

Recent advances in lidar remote sensing technology have

demonstrated the capability of accurately mapping LAI and

VFP over large areas. The primary objective of this study was

to derive and validate a LAI and VFP product over the con-

tiguous United States (CONUS) using spaceborne waveform

lidar data. This product was derived at the footprint level

from the Geoscience Laser Altimeter System (GLAS) using

a biophysical model. We validated GLAS-derived LAI and

VFP across major forest biomes using airborne waveform li-

dar. The comparison results showed that GLAS retrievals of

total LAI were generally accurate with little bias (r2
= 0.67,

bias=−0.13, RMSE= 0.75). The derivations of GLAS re-

trievals of VFP within layers were not as accurate overall

(r2
= 0.36, bias=−0.04, RMSE= 0.26), and these varied as

a function of height, increasing from understory to overstory

– 0 to 5 m layer: r2
= 0.04, bias= 0.09, RMSE= 0.31; 10 to

15 m layer: r2
= 0.53, bias=−0.08, RMSE= 0.22; and 15

to 20 m layer: r2
= 0.66, bias=−0.05, RMSE= 0.20. Sig-

nificant relationships were also found between GLAS LAI

products and different environmental factors, in particular

elevation and annual precipitation. In summary, our results

provide a unique insight into vertical canopy structure dis-

tribution across North American ecosystems. This data set

is a first step towards a baseline of canopy structure needed

for evaluating climate and land use induced forest changes

at the continental scale in the future, and should help deepen

our understanding of the role of vertical canopy structure in

terrestrial ecosystem processes across varying scales.

1 Introduction

Accurate measurements of three-dimensional canopy struc-

ture and function play a key role in global carbon dynamics,

climate feedbacks as well as biodiversity studies (Heimann

and Reichstein, 2008; Loreau et al., 2001; Cramer et al.,

2001; Schimel et al., 2001). Spatial variations of ecosystem

structure largely inform the geographical patterns of eco-

logical processes, including species richness (Cramer et al.,

2001; Goetz et al., 2007; Turner et al., 2003). These struc-

tural variables, such as canopy height, leaf area index (LAI)

and vertical foliage profile (VFP), have been identified as es-

sential climate variables (ECV), essential biodiversity vari-

ables (EBV), or both (Pereira et al., 2013; Aber, 1979; Gower

and Norman, 1991; Baret et al., 2013). Yet measurements of

these canopy structural data are often limited at field sites,

and their spatial distributions over broader geographical ar-

eas still remain poorly characterized due to heterogeneity of

natural vegetation and inexact measuring techniques (Clark

and Kellner, 2012; Asner et al., 2013). Improved spatial char-

acterization of LAI and VFP at large scales may fill this ob-

servational gap and help clarify the role of spatial and vertical

variability in canopy structure for carbon cycling, biodiver-

sity and habitat quality (Houghton, 2007; Sauer et al., 2008).

Several global-scale LAI products have been created from

passive remote sensing data for many years (Myneni et al.,

2002; Ganguly et al., 2012; Deng et al., 2006; Baret et

al., 2007). Most of these products are derived by exploring

the correlation between canopy foliage density and the to-

tal reflected intensity of electromagnetic radiation at multi-

ple wavelengths. Applications of these LAI products have

significantly improved the representation of the dynamics of
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terrestrial ecosystems and their interactions with the atmo-

sphere (Mu et al., 2007; Zhao et al., 2005; Randerson et al.,

2009). However, the overall accuracy of these products does

not meet the requirements as specified by the Global Terres-

trial Observing System (GTOS: http://www.fao.org/gtos/org.

html), and a key problem is the saturation of spectral signal

over dense forests with high canopy cover (Abuelgasim et

al., 2006; Shabanov et al., 2005; Yang et al., 2006). Satura-

tion occurs because the solar flux decreases exponentially as

it passes through a dense canopy, and the majority of the re-

turned signal comes from the upper canopy in the form of di-

rect reflectance and multiple scattering (Gower and Norman,

1991; Nilson, 1971). This limits the observational capabili-

ties of passive optical sensors, such as Landsat and MODIS,

to estimate LAI over dense forests. Furthermore, deriving the

foliage profile as a function of height is beyond the capabil-

ity of passive optical remote sensing, unless multiple look

angles are used (Chopping et al., 2009). We argue that space-

borne lidar (light detection and ranging) technology provides

a means of overcoming this limitation and of measuring ver-

tical structure even over dense forests.

Lidar has proven effective at measuring three-dimensional

canopy structural information (Lefsky et al., 2002). Lidar

measures the distance between a target and the sensor by the

round-trip traveling time of an emitted laser pulse. It allows

direct three-dimensional measurements of canopy structural

components, including foliage, branch and trunk, which then

can be used to estimate biophysical variables, such as canopy

height and biomass (Drake et al., 2002; Saatchi et al., 2011;

Los et al., 2012; Lefsky, 2010; Simard et al., 2011; Asner et

al., 2012; Baccini et al., 2012; Strahler et al., 2008), as well

as LAI and VFP (Morsdorf et al., 2006; Tang et al., 2012;

Zhao et al., 2013).

Garcia et al. (2012) and Luo et al. (2013) demonstrated

the possibility of deriving LAI and VFP data across differ-

ent landscapes from the Geoscience Laser Altimeter System

(GLAS) onboard the Ice, Cloud and land Elevation Satellite

(ICESat). Tang et al. (2014a) derived LAI and VFP data from

GLAS data, but using a physically based model rather than an

empirical methodology. The use of a physical model greatly

simplified application over large areas because site-specific,

statistical calibrations were not required. Further improve-

ment of the model led to a GLAS LAI and VFP product

over the entire state of California, USA (Tang et al., 2014b).

However, there is still a need to further examine the rela-

tionship between vertical foliage distribution and lidar wave-

forms over even broader areas. Assessment of their relation-

ship across different forest types and environmental gradients

will not only strengthen our confidence in acquiring a poten-

tial global LAI and VFP measurement, but will also provide

guidance on the design and science definition of future lidar

missions such as the Global Ecosystem Dynamics Investiga-

tion (GEDI) (Dubayah et al., 2014).

The objective of this study is to characterize the

continental-scale variability of canopy structure across the

United States using lidar observations from space. First, we

implement our existing algorithm at the GLAS footprint level

and compare the derived data with LAI and VFP products

from airborne lidar in different forest types. Next we map

the aggregated LAI and VFP product according to differ-

ent ecoregions and land cover types over the contiguous

United States (CONUS). Finally we analyze the distribution

of GLAS LAI across different environmental factors, includ-

ing elevation and precipitation.

2 Methods

2.1 GLAS data

GLAS is a spaceborne, sampling waveform lidar sensor with

the working wavelength in the near-infrared band (1064 nm).

It emits laser pulses at a frequency of 40 Hz and records the

energy reflected from both the ground surface and canopy

in an approximately 65 m diameter footprint (Abshire et al.,

2005). GLAS samples the Earth’s surface in transects with

individual footprints separated by ∼ 175 m along track, and

with between-track spacing that varies as a function of lati-

tude (e.g., 30 km spacing between tracks at the Equator and

5 km spacing at 80◦ latitude, Brenner et al., 2012). As a re-

sult of this sampling pattern, GLAS does not provide a wall-

to-wall observation of forests. Its spatial allocation of laser

footprints is best defined as a pseudo-systematic sampling or

cluster sampling strategy (Stahl et al., 2011; Healey et al.,

2012). To obtain a spatially continuous estimate of LAI at

continental scale, footprint level GLAS data would need to

be extrapolated using other remote sensing data (Dubayah et

al., 2008; Lefsky, 2010), or can be mapped into appropriate

geographic strata such as land cover types or ecoregions.

2.2 Retrieval of GLAS LAI and VFP

We collected a total of 1100 498 cloud-free GLAS data from

campaigns GLA01 and GLA14 data over the contiguous

United States from 2003 to 2007. GLA01 included the com-

plete recorded waveform at a vertical resolution of 15 cm for

land surface products, and GLA14 products were comprised

of geographical information and various parameters calcu-

lated from the waveform (Harding and Carabajal, 2005).

Low-energy shots (peak energy < 0.5 V) were excluded from

the data process for retrieval quality control because those

waveforms were susceptible to noise contamination. Shots

during the leaf-off season (November to March) were also

filtered out over deciduous forests and mixed forests. LAI

and its profiles (0.15 m at vertical resolution) were initially

calculated for GLAS footprints based on the Geometric Opti-

cal and Radiative Transfer (GORT) model (Ni-Meister et al.,

2001) and further corrected for slope effects using an itera-

tive method (Tang et al., 2014a). Canopy VFPs were calcu-

lated from integration of footprint level LAI profiles at height

intervals of 0 to 5, 5 to 10, 10 to 15, and 15 to 20 m. More
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details of the GLAS data processing can be found in the Sup-

plement.

2.3 Comparison data sets

We validated LAI and VFP data sets using an airborne li-

dar system, LVIS (Laser Vegetation Imaging Sensor). LVIS

is a medium-resolution (∼ 25 m diameter) waveform scan-

ning lidar system designed by NASA Goddard Space Flight

Center (GSFC) (Blair et al., 1999). It can image the ter-

restrial surface across a 2 km wide swath and has been de-

ployed to map many different forest structural parameters

at regional scales across diverse biomes (Tang et al., 2012;

Drake et al., 2002; Swatantran et al., 2012). We calculated

both total LAI and VFP at 5 m height intervals from ex-

isting LVIS data using our physically based model, which

has been validated using different types of field measure-

ments (destructive sampling, LAI-2000 and hemispherical

photos) (Tang et al., 2012, 2014a; Zhao et al., 2013). LVIS

data used in this study included major forest types from

the eastern, central and western US, including Maine forests

just north of Orono, Maine (2003), Sierra National Forest

in California (2008), mixed forests along the Baltimore–

Washington corridor (2003) and the White River National

Wildlife Refuge in Arkansas (2006). These LVIS data sets

were all collected during the leaf-on season.

We also included a 30 m resolution Landsat LAI map to

examine the spatial distribution of GLAS total LAI. Land-

sat has the longest Earth observation history at moderate

resolution (30 m), and for decades has provided a consis-

tent and unique measurement of terrestrial ecosystems. The

Landsat LAI map was produced using Global Land Sur-

vey (GLS) 2005 orthorectified Landsat data (Ganguly et al.,

2012, 2016).

2.4 Analysis

The comparison between LVIS and GLAS was performed

at the GLAS footprint level. LVIS shots falling within a

32.5 m radius from a GLAS shot center were selected. We

filtered GLAS footprints to have a minimum of three coinci-

dent LVIS shots to increase the likelihood that the LVIS data

covered a sufficient portion of the larger GLAS footprints.

Both LAI and the 5 m interval VFP of LVIS shots were av-

eraged onto each coincident GLAS footprint for comparison.

We also made a footprint level comparison between GLAS

LAI and the Landsat LAI map. A 3× 3 Landsat window was

applied to each GLAS footprint center to extract the aver-

aged Landsat LAI pixels. Pixels with invalid values (e.g., re-

trieval failure or non-vegetation pixels) were excluded from

the comparison. Agreements of different LAI data sets were

assessed by coefficient of determination, bias and RMSE

(root mean square error):

bias=
∑n

i=1

GLASi −Refi

n
, (1)

RMSE=

√∑n
i=1(GLASi −Refi)

2

n
. (2)

In Eqs. (1) and (2), GLASi is the GLAS LAI (or VFP) value

at footprint level and Refi is that extracted from LVIS or

Landsat.

Next, we aggregated the footprint level GLAS data into

terrestrial ecoregions based on a subset of a global map (Ol-

son et al., 2001). Statistical analysis of total LAI and LAI

strata (VFP aggregated at every 10 m height interval) was

performed subsequently for each ecoregion. We also ana-

lyzed the GLAS LAI and VFP distribution across different

environmental gradients throughout CONUS. GLAS foot-

prints were categorized according to different environmen-

tal factors, including vegetation type, topographic data and

annual measurements of climate variables. The vegetation

map was derived from the MODIS Land Cover Type prod-

uct (MCD12Q1) at 500 m resolution following the IGBP

scheme (Friedl et al., 2010). Elevation data were extracted

from the void-filled 90 m resolution SRTM (Shuttle Radar

Topography Mission) DEM (digital elevation model) data

(Reuter et al., 2007). Precipitation, temperature and vapor

pressure deficit information originated from the 800 m res-

olution 30 yr annual normal climate data developed by the

PRISM Climate Group (PRISM, 2013).

3 Results

This section includes three major parts: the first part focuses

on the validation and comparison of GLAS LAI and VFP

data with existing products; the second presents the geo-

graphical distribution of GLAS LAI and VFP; and the last

part shows their relationship with environmental factors.

3.1 GLAS LAI and VFP comparisons with LVIS and

Landsat

The footprint level comparison between GLAS LAI and

LVIS LAI had an overall r2 of 0.60, bias of −0.23, and

RMSE of 0.82 (Fig. 1). Except for a few outliers at the lower

range of LAI, most of the comparison points were distributed

along the 1 : 1 line, suggesting no systematic difference be-

tween the two data sets. No significant bias was found across

individual sites either.

The agreement of the 5 m height interval VFP distribu-

tions between the two data sets was lower than that of to-

tal LAI (r2
= 0.36, bias=−0.04, RMSE= 0.26). Although

there was no systematic bias observed when all sites and

vertical intervals are considered (Fig. 2), examination by

layer showed that GLAS overestimated understory LAI (0

www.biogeosciences.net/13/239/2016/ Biogeosciences, 13, 239–252, 2016
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Figure 1. A comparison between two lidar-derived leaf area index

(LAI) data sets at different sites across the US (N = 318), produced

from the Laser Vegetation Imaging Sensor (LVIS) and the Geo-

science Laser Altimeter System (GLAS), respectively. Each point

represents a comparison at the GLAS footprint, while different col-

ors and shapes indicate different sites (AR: White River National

Wildlife Refuge in Arkansas; CA: Sierra National Forest in Califor-

nia; MD: Baltimore–Washington corridor in Maryland; ME: Maine

forests to the north of Orono, Maine). The comparison produces r2

of 0.60, bias of −0.23, and RMSE of 0.82). Dashed line is the 1 : 1

line.

to 5 m) (r2
= 0.04, bias= 0.09, RMSE= 0.31) when com-

pared with LVIS LAI (Fig. 3), but agreement improved as

the vertical height interval considered moved higher in the

canopy (5 to 10 m, r2
= 0.33, bias=−0.13, RMSE= 0.29;

and 10 to 15 m, r2
= 0.53, bias=−0.08, RMSE= 0.22),

reaching a maximum at the top of the canopy (15 to 20 m,

r2
= 0.66, bias=−0.05, RMSE= 0.20).

The comparison between Landsat LAI and GLAS LAI

had a much lower agreement than that of LVIS (r2
= 0.18,

bias= 0.18, RMSE= 2.02) (Fig. 4). Even though the two

data sets agreed well at lower LAI values, Landsat overes-

timated LAI at the middle range (from LAI values of 1 to

3) and then saturated above a value of about 4 to 5 against

GLAS data.

3.2 Aggregated GLAS LAI and VFP within ecoregions

We next mapped GLAS LAI across US ecoregions (Fig. 5).

Highest LAI values were found along the northern Pacific

coast, while lowest values occurred in the basin and range

province and the arid rain shadow region east of the Rocky

Mountains. Northern California coastal forests (Pacific tem-

perate rainforests) were found to have the highest mean LAI

value of 5.24. In the eastern US, the mixed deciduous forests
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Figure 2. A comparison of vertical foliage profile (VFP) density

derived from LVIS and GLAS over different sites in the US (same

sites as Fig. 1 but with N = 1272). Each VFP point represents an

integrated value of foliage density at each 5 m height interval.

of the Appalachian–Blue Ridge province had the highest

value of 3.95, while other ecogreions around the north–south

direction of the Appalachian Mountains had similar LAI

values around 3–4 (Table 1). Forest ecogreions with low-

est LAI values (excluding desert, shrubland and grassland)

were located in Arizona mountain forests (1.15) and Great

Basin montane forests (0.90). Differences between these

ecoregion-level LAI values were significant based on a Bon-

ferroni adjusted t test, except for those among Willamette

Valley forests, Appalachian–Blue Ridge forests, Puget low-

land forests and Appalachian mixed mesophytic forests (p

values > 0.05).

LAI strata formed by VFP at each 10 m height interval

were also averaged and mapped across the US (Fig. 6). We

chose the 10 m height interval rather than that of 5 m because

LAI strata aggregated at the 10 m height interval represented

a more accurate and reliable description of vertical canopy

structure given the relatively lower measurement accuracy in

the understory (< 5 m) we found in comparison to LVIS data.

Each strata showed a generally similar geographic pattern to

that of total LAI with the decreasing trend from coast to in-

terior lands, but the specific patterns among strata differed.

Northwestern forests were observed to have the highest to-

tal LAI values as well as LAI strata values. Northern Cal-

ifornia coastal forests exhibited the largest total LAI value

as well as highest foliage density under 20 m height, while

British Columbia mainland coastal forests showed the high-

est foliage density (1.13) above 20 m height, with a lower

total LAI value (4.74).
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Figure 3. Comparison between LVIS and GLAS VFP density integrated at every 5 m height interval (from ground to canopy top).
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Table 1. Ecoregions with highest total LAI values (unit: m2 m−2).

Ecoregions Total LAI mean LAI 0–10 m mean LAI 10–20 m mean LAI > 20 m mean

(±SD) (±SD) (±SD) (±SD)

Northern California coastal forests 5.24± 2.11 2.06± 1.32 1.67± 1.09 1.08± 1.15

Central Pacific coastal forests 5.00± 2.14 1.52± 1.61 1.10± 1.16 0.84± 1.25

British Columbia mainland coastal forests 4.74± 2.26 1.48± 1.31 1.23± 1.08 1.13± 1.13

Central and Southern Cascades forests 4.31± 2.34 1.06± 1.35 0.79± 1.02 0.64± 1.07

Klamath–Siskiyou forests 4.31± 2.31 1.26± 1.30 0.99± 1.07 0.73± 0.99

Willamette Valley forests 3.99± 2.24 0.73± 1.09 0.60± 0.89 0.75± 1.31

Appalachian–Blue Ridge forests 3.95± 2.03 1.04± 1.27 0.82± 0.99 0.47± 0.82

Puget lowland forests 3.91± 2.25 0.98± 1.39 0.71± 1.08 0.40± 0.81

Appalachian mixed mesophytic forests 3.86± 2.04 1.06± 1.29 0.77± 0.93 0.48± 0.83

North Central Rockies forests 3.67± 2.27 1.61± 1.55 0.84± 0.89 0.47± 0.72

^

^

^

^

LAI by Ecoregions (Unit: m2 m-2)

^ LVIS Sites

NoData

0 - 1

1 - 2

2 - 3

3 - 4

4 - 5

5 - 6

> 6

Figure 5. GLAS LAI distributions by ecoregion. All LVIS sites are

marked with red stars.

The distributions of GLAS total LAI and profiles were ex-

amined across different land cover types (Figs. 7 and 8). Not

surprisingly, forests were found to have a consistently greater

value than non-forest biomes in both total LAI and its strata.

For example, deciduous broadleaf forests had the highest

value of total LAI (mean= 4.03) as well as that of middle

and upper LAI strata (height > 10 m), while open shrubland

showed the lowest total LAI values of 0.77. However, ver-

tical LAI distributions of most forests and non-forests were

similar, with peak foliage density distributed around a height

of 2–4 m. The only exception was deciduous broadleaf for-

est, of which most leaves were distributed at middle-story

level with a peak height at about 8 m. Its VFP values did not

decrease significantly until they reached a height of 15 m.

3.3 GLAS LAI distributions by environmental factors

A linear regression analysis between GLAS LAI and

the SRTM DEM showed that increasing altitude led to

an overall decreasing, but non-monotonic, trend in LAI

values (LAI= 3.60–0.686×Elevation (km), r2
= 0.59, all

P< 0.01) (Fig. 9). GLAS LAI values increased with the

(a)

(c)

(b)

Figure 6. LAI strata distributions by WWF ecoregion. Despite sim-

ilar total LAI values, the southeastern forests show different LAI

values at stratified height intervals.

DEM at the elevation ranges from 0 to 750 m and 2000 to

3000 m. The variation in the LAI–DEM relationship agreed

well with the Forest Ratio (LAI= 0.112 + 3.18×Forest Ra-

tio, r2
= 0.45, P< 0.01). Here each GLAS footprint was
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classified as either forest or non-forest with an overlay of

the MODIS land cover map, and the forest ratio was de-

fined as the percentage of footprints classified as forests in

total GLAS shots within each elevation group. A multiple

linear regression analysis showed that about 87 % of total

variance could be explained by a simple combination of El-

evation groups and Forest Ratio values: LAI= 2.59×Forest

Ratio− 0.595×Elevation (km)+ 1.58.

We also analyzed GLAS LAI by 30 yr normal annual

climate data using linear regression models (Fig. 10). It

was observed that increasing precipitation significantly in-

creased LAI values (1LAI= 1.84 per 1000 mm precipitation

increase), but only at low and moderate precipitation lev-

els (< 2400 mm): LAI= 1.84× precipitation (mm)× 10−3
+

0.774, r2
= 0.96, adj-r2

= 0.95, P< 0.01. It contributed little

when exceeding that threshold (LAI= 0.22× precipitation

(mm)× 10−3, r2
= 0.40, adj-r2

= 0.30, P = 0.09), as we

found no significant LAI increase among groups greater than

2400 mm using a Bonferroni adjusted t test. GLAS LAI was

also negatively but slightly correlated with minimum (max-

imum) vapor pressure deficit with a Pearson’s correlation

coefficient of −0.29 (−0.15). The correlation coefficients

between GLAS LAI and annual mean/minimum/maximum

temperature were even lower, with values of 0.13, 0.18 and

0.08, respectively.

Finally, we applied multiple linear regression analysis

to illustrate the combined environmental effects of altitude

and precipitation on the distributions of LAI and VFP. The

regression analyses were conducted at both GLAS foot-

print level and aggregated scale on altitude and precipitation

groups. At footprint level, altitude and precipitation together

explained about 30 % of variance of total LAI (LAI= 2.73–

0.69×Elevation (km)+ 0.58× precipitation (mm)× 10−3,

r2
= 0.29, adj-r2

= 0.29, P< 0.01). However, their corre-

lations with footprint level VFP (0–10, 10–20 and > 20 m

height intervals) were not significant, with r2 of 0.07, 0.12

and 0.08, respectively. At the aggregated scale, there was a

better relationship between averaged LAI (VFP) values and

environmental factors. The combination of altitude and pre-

cipitation can explain more than 60 % variance in both total

LAI and VFP, but explains only about 36 % of variance in

LAI for canopies of less than 10 m height.

4 Discussion

In this study, we generated GLAS estimates of LAI and VFP

across the United States, validated with an airborne lidar

sensor, LVIS. Comparisons between LVIS and GLAS LAI

and VFP estimates in different forest types across the United

States show that GLAS generally provides accurate LAI and

VFP estimates at footprint level. Considering the temporal

offset and spatial resolution differences between LVIS and

GLAS, their overall agreements on LAI and VFP are ac-

ceptable (r2
= 0.60, bias=−0.23, and RMSE= 0.82; and

r2
= 0.36, bias=−0.043, and RMSE= 0.26). Our compar-

isons further demonstrate the efficacy of our retrieval meth-

ods over continental scales that encompass large gradients in

environmental factors and variability in forest types.

Measurement accuracy of GLAS VFP was lower com-

pared to total LAI however (r2
= 0.36, bias=−0.043, and

RMSE= 0.26). Accuracies decreased for the lowest canopy

layers, with the r2 values falling from a peak of 0.66 at upper-

story (15 to 20 m) to 0.33 at middle-story (5 to 10 m), to es-

sentially no relationship in the lowest 5 m in the understory.

There may be multiple factors contributing to this trend.

First, a slope effect may reduce measurement accuracy of

GLAS (Tang et al., 2014a). Slopes can blur the boundary be-

tween vegetation and topography signals in a lidar waveform,

making their separation difficult and potentially leading to

the error in LAI and VFP estimates. Despite methods to cor-

rect for topography (Lee et al., 2011; Tang et al., 2014a; Park

et al., 2014), this effect cannot be fully mitigated, especially

over steep slopes, and consequently may introduce errors and

uncertainties into VFP estimates. Additionally, topographical

effects can lead to a vertical misalignment of VFP between

LVIS and GLAS. GLAS measures the terrestrial surface at

a larger footprint with higher topographical variations, and a

direct average of LVIS VFP can possibly result in a mismatch

of vertical foliage distribution up to several meters. For ex-

ample, consider two adjacent LVIS shots with the same VFP

distribution but a 1 m difference in ground elevation (like

a signal lag in the waveform). Adding the two waveforms

along the geodetic altitude would lead to a 1 m vertical off-

set in the averaged waveform (pseudo-GLAS waveform) and

produce a different VFP using the direct average method in

a normalized coordinate system. But their total LAI values

remain the same as long as the total energy from ground and

vegetation can be separated correctly. Reducing the vertical

resolution of VFPs can partially mitigate the mismatch effect

because a lower vertical resolution requires integration over a

longer vertical axis that is more tolerant of ground mismatch.

Take the above example again: the two VFPs, at 1 m verti-

cal resolution, do not match each other at all along the entire

waveform due to the offset. However, integration at every 5 m

creates a signal overlap of 4 m in each height bin with a max-

imum of 20 % measurement error. Thus there is ultimately

a tradeoff between vertical resolution and VFP accuracy. It

also explains the higher agreement of total LAI (essentially

an integration of VFP over the entire canopy) in the com-

parison between LVIS and GLAS. Lastly, measurement of

near-ground understory vegetation by GLAS is difficult. By

default, GLAS waveforms are processed by a Gaussian de-

composition method to get an approximate fit comprised of a

series of Gaussian functions where the last one usually rep-

resents the ground (Hofton et al., 2000). The upper tail of the

ground Gaussian peak may be mixed with signals from the

lower understory, and their separation is problematic, espe-

cially over slopes. All of these factors, plus the nature of high

complexity and heterogeneity in canopy understory (Aubin
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et al., 2000; Valladares and Niinemets, 2008), may help ex-

plain the lower agreement on understory VFP between LVIS

and GLAS.

Comparison between GLAS and Landsat displayed a

much lower agreement than that of LVIS, was somewhat bi-

ased, and showed clear signals of saturation beyond LAI val-
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ues of about 5. This result, along with all previous studies

(Tang et al., 2012, 2014b), clearly showed the non-saturation

advantage of lidar data against passive remote sensing in ob-

serving high LAI forests. On the low end of the LAI spec-

trum, GLAS values were lower as compared with Land-

sat. There are different factors (some in the LVIS com-

parison too) that could possibly lead to their difference in

LAI estimates such as geolocation errors of GLAS shots,

observation-scale difference (65 m vs. 30 m) and misclassi-

fications from MODIS land cover types (mainly impacting

the correction of the clumping effect). But this underestima-

tion should be largely due to the fact that GLAS may not be

able to adequately capture LAI values of short grassland with

limited vertical structure or areas of sparse canopy cover,

whereas Landsat is able to measure such areas based on their

total spectral response (tree and grass).

Analysis of GLAS LAI and VFP across ecoregions dis-

played a reasonable and expected geographical distribution.

The great advantage of lidar-based estimates is that they can

produce LAI vertical strata maps, providing a view of canopy

variability across ecosystem types over large areas. Specifi-

cally, we can identify the foliage concentrations at various

vertical bins and at spatial resolutions of interest (Figs. 6 and

8 and Table 1; another example provided in the Supplement).

This approach may reduce errors that arise from assumptions

of uniformly distributed foliage within canopies, and could

potentially be a contribution towards continental-scale eco-

logical and biological studies of forest structure and dynam-

ics.

LAI and VFP also varied across different landscapes rep-

resented by various land cover types. As expected, we found

that both total LAI and maximum value of foliage density

significantly increase along the vegetation gradient described

by the transition from shrubland to savanna to woody sa-

vanna to forests (Figs. 7 and 8). In particular, we found de-

ciduous broadleaf forest showing a different pattern, with its

foliage more evenly distributed in understory and mid-story

when compared with all other forests. Our results suggest the

existence of canopy layering, and highlight the feasibility of

quantifying these layers across landscapes (Whitehurst et al.,

2013). Regardless of whether the data are conceptualized as

layers or as continuously varying profiles, they nonetheless

provide the actual vertical structure, and thus should help re-

fine current empirical assumptions about vegetation structure

of different land cover types in current LAI inversion algo-

rithms (e.g., MODIS) and in ecosystem models (Hurtt et al.,

2010; Antonarakis et al., 2014).

Elevation and precipitation were found to be significantly

correlated with LAI at both footprint level and across ag-

gregated groupings by elevation and the Forest Ratio. LAI

decreased with elevation, and this trend was consistent with

previous studies (Luo et al., 2004; Moser et al., 2007; Pfeifer

et al., 2012). Variations of the trend can be largely explained

(about 45 % of total variance) by the Forest Ratio (defined

in Sect. 3.3). A combination of the two factors (elevation

groups and the Forest Ratio) explained almost 90 % vari-

ance of average LAI spatial distribution. We also found a

significant but nonlinear relationship between GLAS LAI

and annual precipitation (Fig. 10). This nonlinear relation-

ship agrees with previous studies in the tropics (Pfeifer et al.,

2014; Spracklen et al., 2012). However, we found no signifi-

cant variation of GLAS LAI with either temperature or vapor

pressure deficit variables. A combined effect of elevation and

precipitation explains about 30 % of LAI variation at GLAS

footprint level, suggesting the natural complexity and high

spatial variability of LAI distribution.

As a direct quantification of three-dimensional foliage dis-

tribution, GLAS LAI profiles are thus far the best representa-

tions of terrestrial ecosystem structure over broad geograph-

ical areas and suggest that ecological applications of these

profiles are worth exploring. First, these data could refine

large-scale modeling of plant respiration and photosynthesis

and consequently improve ecosystem modeling (Houghton,

2007). Previous studies have reported a potential 50 % un-

derestimate of GPP values when vertical foliage stratifica-

tion is not considered (Kotchenova et al., 2004; Sprintsin

et al., 2012). A consistent, global data set of VFP should

thus improve initialization of ecological models (Hurtt et

al., 2004) and refine estimation of GPP, in conjunction with

passive remote sensing data (Turner et al., 2006). Secondly,

these profiles may be important descriptors of habitat as re-

lated to biodiversity and habitat quality. Many studies have

confirmed the general relationship between species richness,

habitat heterogeneity and forest structural complexity across

different landscapes (Swatantran et al., 2012; Goetz et al.,

2010; Schut et al., 2014; Ferger et al., 2014). The inclusion

of LAI profiles provides spatially explicit vegetation struc-

ture data and may potentially improve current observations

of species distribution at continental scale, e.g., for avian

species (Sauer et al., 2008; Culbert et al., 2013), and lead

to entirely new biodiversity metrics (e.g., see Huang et al.,

2014). For example, the concept of an “edge” has been tra-

ditionally defined as the boundary between forest and non-

forest areas. LAI profiles provide a means of defining new

edges based on differences in LAI as a function of height,

so the edge is now the boundary between a rapid change in

foliage density at a particular height.

5 Conclusions

Accurate representation of canopy vertical structure and its

dynamics has long been recognized as a priority because it

represents a key interface between terrestrial surface and at-

mosphere and impacts the water and carbon cycles, and their

transfer of energy and mass. Foliar profiles are also increas-

ingly recognized as important determinants for habitat qual-

ity, species distribution, diversity and abundance. As ecosys-

tems come under increasing pressure from climate and land

use change, global data sets of canopy structure are needed
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to help better understand the consequences of these changes

for ecosystem form, function and services.

In this paper we have demonstrated the potential for global

mapping of key canopy structures, LAI and VFP, from space.

While imperfect, given their large footprint and sparse sam-

pling, the waveforms from ICESat are currently the only such

global data set of structure. Our ability to produce this data

set is the end result of a series of research experiments that

linked various types of observations, from destructive pro-

files, to ground-based optical methods, to airborne lidar, to

passive optical retrievals. This background gives us confi-

dence that meaningful and useful data on LAI and VFP can

be derived from future spaceborne lidar. There are still hur-

dles to overcome related to topography, understory accuracy,

model assumptions and parameterizations, such as ground–

canopy reflectance ratios and foliage clumping, among oth-

ers, to achieving higher accuracy. We anticipate that these

will be resolved in time and lead to an even more capable

model suitable for the next generation of waveform lidar ob-

servations from space, such as NASA’s Global Ecosystem

Dynamics Investigation (GEDI) (Dubayah et al., 2014) and,

potentially, ICESat-2 (Abdalati et al., 2009).

The Supplement related to this article is available online

at doi:10.5194/bg-13-239-2016-supplement.
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