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The study of atom-light interaction is a key element of quantum optics and a

central part of atomic physics. Systems composed of atoms interacting with each

other through the electromagnetic field can be used for studies from fundamental

research to practical applications. Experimental realizations of these systems benefit

from three distinct attributes: large atom-light coupling, trapping and control of

atomic ensembles, and engineering and manipulation of the electromagnetic field.

Optical waveguides provide a platform that achieves these three goals. In particular,

optical nanofibers are an excellent candidate. They produce a high confinement of

the electromagnetic field that improves atom-light coupling, guiding the field that

mediates the interactions between atoms, while allowing trapping of the atoms close

to it.

This thesis describes the uses of an optical nanofiber for quantum optics exper-

iments, demonstrating its possibilities for enabling special atom-light interactions.

We trap atoms near the optical nanofiber surface, and characterize the trap in a



non-destructive manner. We show how the presence of the nanofiber modifies the

fundamental atomic property of spontaneous emission, by altering the electromag-

netic environment of the atom. Finally, we use the nanofiber to prepare collective

states of atoms around it. These states can radiate faster or slower than a single

atom (superradiance and subradiance). The observation of subradiance of a few

atoms, a rather elusive effect, evidences nanofibers as a strong candidate for future

quantum optics experiments. Moreover, we show how the guided field mediates in-

teraction between atoms hundreds of wavelengths apart, creating macroscopically

delocalized collective states.
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Chapter 1: Introduction

Quantum optics has followed a path to achieve the ideal limit of one single

quantum of light, a photon, interacting with one single quantum of matter, an

atom. The interest in this realization has theoretical and experimental implications

that have illuminated and guided much of the contemporary discussion on quantum

information.

The advent of cavity quantum electrodynamics (QED) [1], marked a transfor-

mative milestone in the study of atom-light interactions. Such interactions can be

tailored by modifying the vacuum modes of the electromagnetic field, with cavities

formed by mirrors, or other structures, while providing a preferential mode for the

atom-light coupling. Cavity QED ushered in the ability to sufficiently isolate a quan-

tum system from its environment and control nearly all of its degrees of freedom [2].

This has led, for instance, to the demonstration of the Purcell effect – increased or

inhibited spontaneous emission rates [3] – and to the generation of highly nonclas-

sical photon states [4], among other phenomena. Remarkably, these studies have

been realized within many different regions of the electromagnetic spectrum, e.g.

from the microwave [4, 5] to the optical domain [6, 7].

Motivated by the challenge of interconnecting quantum systems, recent ca-
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pabilities for large coupling of atoms with propagating photons are opening a new

line of research. This is possible through the use of optical waveguides that highly

confine the propagating field in the transverse direction as an evanescent wave. The

emerging field of waveguide QED applies the machinery of cavity QED to propagat-

ing modes in electromagnetic structures [8–11]. Our study of atom-light interactions

is framed within this context. In this chapter we first introduce the concept of coop-

erativity from cavity-QED as the figure of merit for atom-light interaction. We then

show how this concept can be extended to waveguide-QED, focusing on a particular

kind of optical waveguide: optical nanofibers.

1.1 Cooperativity and optical density

Consider a two-level atom with dipole moment ~d interacting with an electric

field ~E whose energy is equivalent to one photon. The parameter g gives the strength

of the coupling in frequency units, numerically equivalent to half of the vacuum Rabi

splitting [12],

g =
~d · ~E
~

. (1.1)

For an atom with spontaneous emission decay rate γ and a decay rate κ of the

electric field in the cavity we define the single-atom cooperativity to be [2]

C1 =
g2

κγ
. (1.2)

A cooperativity of C1 > 1 means that the rate that governs the interaction be-

tween the atom and the field mode is larger than the geometric mean of the atomic-

and field-reservoir coupling rates. This places the system in the so-called strong
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coupling regime, which was a longstanding goal within the quantum optics commu-

nity that has been achieved in several systems, such as trapped ions [13], Rydberg

atoms in microwave cavities [4], neutral atoms in optical cavities [6], artificial atoms

such as quantum dots that give rise to excitons in semiconductor microcavities [14],

optomechanical systems [15] and superconducting circuits in planar waveguides [16].

The cooperativity of a system with many atoms interacting through the same

preferential electromagnetic mode scales with the number of atoms [2]

C = NC1. (1.3)

Even if the single atom cooperativity is smaller than one, for enough atoms, the

coupling of the system to the mode can be larger than the coupling into the reservoir

(C > 1).

To better understand how one can coerce a system into the strong coupling

regime where a single mode of the electromagnetic field and one atom preferentially

exchange an excitation, it can be useful to relate the cooperativity to the optical

density (OD). This way of thinking comes from a predecessor of cavity QED,

optical bistability [17], which is part of the more general area of dissipative systems

in quantum optics [18]. We illustrate the argument by considering a high-finesse

Fabry-Perot cavity with two mirrors of transmission T separated by a length L, so

that its full width at half maximum (FWHM) is 2κ, with κ = cT/2L as a frequency

half-width. The electric field amplitude for a field with an energy of a single photon

within this mode is given by

E =

√
~ω

2ε0V
, (1.4)
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defining the mode volume as V = Amode × L. Amode is the effective mode area,

defined at the position of the atom (x0, y0), and is given by the area that the mode

would occupy if it had a constant transverse intensity profile, i.e

cε0

2

∫
dA|E(x, y)|2 = Amode(x0, y0)I(x0, y0) = P, (1.5)

where I is the electromagnetic wave intensity and P is the total optical power.

We know that the free-space decay rate of the atom in three dimensions is

γ0 =
4ω3

3c2

d2

4πε0~c
, (1.6)

where d is the magnitude of the dipole moment of the atom and ω = 2πc/λ is the

resonant angular frequency of the decay transition associated with the wavelength

λ . Typical values of d for the D2 line of alkali atoms are about 5a0e, where a0 is

the Bohr radius and e the electron charge [19]. Combining Eqs. (1.4) and (1.6) into

Eq. (1.2) yields a single-atom cooperativity of [20]

C1 =
Aatom

Amode

1

T
. (1.7)

Here we have defined the “area” of the atom, Aatom, to be the resonant scattering

cross section

σ0 = 3λ2/2π. (1.8)

This motivates a geometric framework to think about the cooperativity by realizing

that the OD for a dipole transition is:

OD =
Aatom

Amode

. (1.9)
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We conclude from Eq. (1.7) that C1 is just the product of the optical density of

a single atom times the factor 1/T , related to the cavity enhancement or finesse

F ≈ π/T for T � 1.

Equation (1.7) states that the cooperativity is independent of the atomic dipole

moment and the cavity length L, but depends on the ratio of the two “areas”.

See Ref.[18] for a discussion not only of resonance fluorescence, but also optical

bistability and superradiance and their connection through the idea of cooperativity.

Efforts to increase this figure of merit have followed a few different paths, as we

describe next.

For certain processes with N atoms, the total cooperativity, C = C1N , is

important. Increasing N achieves an appropriate threshold of the system, e.g. vapor

cells with high atomic densities facilitate the observation of coherent processes such

as electromagnetically induced transparency (EIT) [21].

The Nobel Prize-worthy efforts of Serge Haroche focused on decreasing T with

microwave cavities possessing finesses greater than 109 while making sure that the

cavity-mode cross section significantly overlaps with the radiation pattern of the

Rydberg atom capturing most of the emitted light. With this system, his group

created highly nonclassical states of light and performed quantum non-demolition

measurements of photon jumps [4].

Recent advances in superconducting technology have allowed the creation of

nonlinear quantum circuits that behave like “artificial atoms” [22]. By coupling these

effective two-level atoms to a high-quality-factor coplanar resonator, scientists have

engineered an analog of cavity QED, dubbed circuit QED, that achieves couplings
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far beyond what has been realized in optical systems [5, 16]. This architecture not

only relies on the high finesse of the cavity to increase C, but the area of the artificial

atoms (antennae, qubits) has also been increased significantly beyond that of the

mode. This limit can not yet be realized with atoms in free space, but may be

achievable for atoms near photonic and plasmonic structures, where the field can be

confined beyond the diffraction limit.

Finally, we mention recent efforts made by some groups that have moved away

from the use of a traditional cavity altogether, trying to increase the cooperativity

of an atom in free space, i.e. 1/T = 1 in Eq. (1.7). There are groups that use

high-NA optical systems to focus light to a small spot and achieve high coupling

in free space [23–25]. Another possibility is to use a parabolic mirror that focuses

a laser such that the focused beam has the same structure as the dipole radiation

pattern of a single atom, thereby increasing the ratio of the atomic area to the mode

area [26–28].

We will consider here the coupling of atoms to one kind of nanophotonic

waveguide: optical nanofibers. Nanophotonic waveguides are not like the tradi-

tional optical cavities with high finesses discussed above, but they do modify the

vacuum mode structure in a nontrivial way. As a result of this modification and

the appreciable increase in the ratio between the atomic and optical areas, one can

appreciably couple an atom to the electric field of a photon in a single pass. In fact,

there is an active area of research studying waveguides constructed via nanofab-

rication techniques, whose mode produces a large OD for a single atom [29–32].

Important advances have happened, for example, with hollow-core fibers: encasing
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an atomic vapor in the hollow core of a photonic-crystal fiber to confine atoms and

photons in the waveguide increases C, but the manipulation of the atoms is not

as straightforward as if they are outside the photonic structure [33–36]. Optical

nanofibers (ONFs) formed by thinning single-mode optical fibers to sub-wavelength

diameters, as shown in Fig. 1.1 (not to scale), are another example of this kind of

structure. It has been demonstrated that ONFs provide an excellent platform to

interface trapped atoms to the evanescent field of the mode around the nanometer-

size waist-region [37–42]. Next we review the platform of ONFs with atoms and its

implications and applications for quantum physics.

Core ø~ 5 μm

Cladding ø~ 125 μm

Unmodified fiber

Taper lenght ~2.5 cm

Taper half angle ~2 mrad

Waist lenght (mm to cm)

Waist ø~ 500 nm

Figure 1.1: Schematic of an optical nanofiber where the transverse dimension has

been greatly expanded compared to the longitudinal one. There are three distinctive

sections of the ONF and the typical values are those used in our experiments. Atoms

around the waist region, either free or trapped, can evanescently couple to the ONF

guided mode. Fig. from Ref. [43]

.
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1.2 Optical nanofiber platform

Before embarking on a thorough discussion of the nanofiber platform it is

important to point out some advantages over other nanophotonic structures.

Nanofibers can be produced in-house, using a heat-and-pull method [44, 45].

The glass ability to flow ensures low surface roughness. The smoothness of the

surface is a great asset since it leads to ultra-high transmission structures that can

withstand high optical powers (almost one Watt in vacuum [44]) without damage

to the fiber or degradation of the transmission.

ONFs also show great versatility in terms of connectivity to other systems.

The advanced state of fiber optic technology is an enormous advantage to pursuing

quantum information devices on this platform as they facilitate the interaction and

communication among modular devices [46].

Moreover, ONFs have been proposed as a platform for hybrid quantum sys-

tems, with increasing importance in quantum optics and quantum information

[47, 48]. The proposals rely on trapped atoms around an ONF, coupled through

their magnetic dipole to a superconducting circuit in a cryogenic environment [49–

51].

One of the most fascinating recent developments is the use of ONFs in quantum

optics for the study of chiral quantum optics [52] and its connections with many-

body physics. ONFs indeed provide a unique platform to study this nascent area.

Nanofibers are not without difficulties and challenges, the main ones being a

consequence of the polarization structure of the modes and its limited control along
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the waist length. However it has not been a major drawback for experiments. Also,

the values of atom coupling to the nanofiber currently do not reach those recently

seen in nanophotonic devices [31, 32, 53], but the entire parameter space on traps

has yet to be explored, and improvements may be possible.

1.3 Cooperativity in an ONF

We now present, following closely the discussion in [54] related to waveguide

QED with atoms, the connections between emission enhancement, coupling effi-

ciency, cooperativity, and the Purcell factor. These quantities characterize in com-

plementary ways the coupling between the nanofiber mode and a nearby atomic

dipole.

The emission “enhancement” parameter α:

α =
γ1D

γ0

(1.10)

is the ratio between the emission rate into the quasi one-dimensional (1D) mode of

the nanofiber in both possible directions combined, γ1D, and the intrinsic sponta-

neous emission rate γ0 of an atom in free space (see Eq. (1.6)).

The waveguide coupling efficiency β:

β =
γ1D

γtot

(1.11)

is the ratio between the emission rate into the waveguide mode in both directions

combined and total emission rate into all radiative channels γtot.

The parameter α is proportional to the interaction rate of the atom and the

guided mode, while β quantifies the fraction of the total rate that couples to that
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mode. As an example to illustrate the two concepts consider an atom in a cavity

with dimensions less than λ/2. The system has α = 0 and β = 1, implying that

there will be no decay signal despite β = 1.

The single-atom cooperativity in terms of these parameters is

C1 =
β

(1− β)
=

γ1D

γtot − γ1D

. (1.12)

This expression relates the parameter β, often used in the microcavity literature [55],

to C1 and thus to what we have presented in Sec. 1.1. The quantity (γtot−γ1D)/γtot

is sometimes referred as the fraction of the decay radiated outside the ONF mode

γrad/γtot. The meaning of Eq. (1.12) in terms of rates is equivalent to Eq. (1.2) in

the sense that C1 is the ratio of the rate of interaction between atom and field mode

to the interaction to other reservoirs.

The Purcell factor, or modification of spontaneous emission, is given by the

emission enhancement over the coupling efficiency

Fp =
α

β
=
γtot

γ0

. (1.13)

A Purcell factor bigger (smaller) than one, means that the atomic spontaneous

emission is enhanced (inhibited) due to the boundary condition imposed by the

waveguide.

1.4 Optical density in a ONF mode

The optical density of an atomic sample in the ONF mode can be related

to the spontaneous emission decay rates, in the same manner as we did with the

10



cooperativity in the previous section. In order to do so, we need to know first the

atomic decay rate into a one-dimensional waveguide, often written as [54, 56]

γ1D =
4L

vg
g2, (1.14)

where L is the length of the waveguide, vg the group velocity of the propagating

mode, and g is given by Eq. (1.1). In the spirit of Fermi’s golden rule, the term

4L/vg comes from the density of modes where the excitation decays and g2 comes

from the atom-field coupling strength.

This equation can be written more explicitly for a infinite waveguide (inde-

pendent of L) as

γ1D(~r) = neff
2

ε0~
ω

c

d2

Amode(~r)
. (1.15)

where neff is the effective group index of refraction of the propagating mode. We

have made the equation an explicit function of the atom position ~r. For a mode

with a non-uniform electric field, the mode area depends on the local intensity I(~r)

as Amode(~r) = P/I(~r), where P is the total optical power in the mode, as defined

in Eq. (1.5). For an ONF this can be calculated from the mode structure shown in

Appendix A.

The ratio between the decay rate into the guided mode (see Eq. (1.15)) and

the decay rate of an atom in free-space (see Eq. (1.6)) gives us the emission en-

hancement, which after simplification is written as

α(~r) = neff
Aatom

Amode(~r)
, (1.16)

where Aatom is the on-resonance atomic cross section in free space (see Eq.1.8).
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The effective mode area captures the modification of the vacuum electric field

due to the presence of the ONF. This allows us to relate the enhancement parameter

to a purely geometrical expression consisting of the ratio of two areas, the atomic

cross section and the mode area. The optical density from Eq. (1.9) is then related

to the spontaneous emission enhancement parameter by the effective group index of

refraction of the waveguide as

α(~r) = neffOD(~r). (1.17)

This equation can be interpreted from a classical point of view. The enhance-

ment parameter, given by the modification of the atomic decay rate, is related to

the electromagnetic energy stored at the position of the atom. On the other hand,

the optical density is related to the flux of electromagnetic energy that propagates

through the waveguide and is being blocked by an object of cross section σ0. From

classical electrodynamics we know that the electromagnetic energy stored and energy

flux are related by the group velocity [57], proportional to the index of refraction of

the medium. Another way to see this is noticing that the process of photon emission,

related to α, is the time reversal of the absorption, related to OD. The difference

between both processes is given by the density of states where the excitation ends,

which increases with neff. This illuminates the physical intuition behind Eq. (1.17).

1.5 ONFs as interfaces for atom-light interaction

Fiber optics in present day telecommunications have been a game-changing

technology allowing enormous bandwidth for current and future uses. It began with
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the pioneering observation of the low-loss properties of glass fibers in [58]. This was

recognized with the 2009 Nobel Prize awarded to Charles K. Kao. (See [59]).

More recently, ONFs have seen widespread use in science and engineering [60–

62]. The tight confinement of light around ONFs [63], unique geometries provided by

the fiber modes [64–66], low loss, and promise of improved atom-light interaction [37,

38, 67–69] have led to increased interest in the physics community. Optical micro-

or nano-fibers are used for sensing and detection [70, 71], and coupling light to

resonators [70, 72–76], NV centers [77], or photonic crystals [29, 78].

Reducing the thickness of an optical fiber to sub-wavelength diameters [79]

modifies the boundary conditions of the field so that a significant fraction of the light

propagates in an evanescent field outside the nanofiber. Nanofibers thus provide an

excellent platform to interface light with atoms.

To confine atoms along the nanofiber, one can couple laser beams into the

fiber to create an optical dipole potential around it [65]. Optical dipole trapping

of atoms is a well-developed technique applied to numerous atomic species [80].

Typical trapping schemes allow trap depths of fractions of a miliKelvin located

a few hundred nanometers from the fiber ([37–42]). Trapping lifetimes of tens of

milliseconds and atomic ground state coherence times of ∼ 600µs [81] have been

obtained and formation of a one-dimensional lattice along the nanofiber waist has

also been demonstrated [37]. In this regime, the OD per atom is as large as a few

percent, so that a modest atom number can achieve large optical thicknesses. This

confirms that ONFs are a viable platform for studying the physics of light-matter

interactions, as they enable high optical density and cooperativity.
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1.6 Outline of the thesis

Here I present some of the most recent works developed at the JQI and Uni-

versity of Maryland regarding ONFs as enablers of atom-light interactions. I focus

particularly on three studies presented in three chapters, in which I was the principal

experimentalist and led great part of the theoretical calculations and interpretations.

Each study has culminated in an article that is included as part of the chapter. The

articles are submitted or near submitted at this point (April 2017).

Chapter 2 presents the basic aspects of an ONF dipole trap. We explore the im-

plementation of a non-destructive technique to characterize the trapping potential.

We use a propagating probe beam that changes its polarization when dispersively

couples to trapped atoms. The trapping frequencies can be observed through po-

larimetric measurements of the probe beam as a function of time. This technique

could be part of a toolbox for the characterization and control of trapped atoms

coupled to waveguides.

Chapter 3 discusses the effects of an ONF on a single atom close to its surface.

In particular, we focused on the modification of the spontaneous emission rate of

the atom, i.e. the Purcell effect. In particular, the atomic lifetime depends on the

state in which the atoms are prepared. We perform measurements of this effect

and present a theoretical model to capture some of the complex aspects of this

fundamental problem.

Finally, in Chap. 4 we present ONFs as a platform that allows infinite-range

interaction among distant atoms. The guided mode of the nanofiber acts as a bus
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for the interaction-mediating electromagnetic field. We focus on the preparation of

collective states, observing superradiant behavior of a few atoms separated by hun-

dreds of resonant wavelengths. We also discuss how an ONF enables the excitation

and detection of subradiant states, a challenging task in quantum optics.

Conclusions and outlooks are presented in Sec. 5.
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Chapter 2: Polarimetric Measurement of Trapped Atoms

The evanescent field of the guided modes of an ONF provides an intensity

gradient suitable for generating an optical dipole trap [80]. All current experimental

realizations use two lasers in the fundamental HE 11 guided mode [37] (see Appendix

A for the mode structure). A laser red-detuned from resonance creates an attractive

potential, while a blue-detuned one creates a repulsive potential preventing the

atoms from sticking to the nanofiber surface. The characteristic decay length of both

evanescent fields is proportional to their effective wavelengths (see Eq. (A.22) in

Appendix A), producing a longer (shorter) range attractive (repulsive) potential for

the red- (blue-) detuned beam. By adjusting their relative intensities it is possible to

find a configuration where there is a minimum of the dipole potential away from the

ONF surface, achieving trap depths of a few hundreds of microkelvins. Longitudinal

confinement of the trapped atoms can be implemented by counterpropagating two

red detuned beams, creating a standing wave. Stable traps can be created for

different trapping beam polarizations and intensities, generating different azimuthal

confinements.

The gradient of the transversal component of the guided field is always on the

order of 2π/λ, creating a non-negligible longitudinal component of the electric field
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(as explained in Appendix A). Longitudinal polarizations are generally not the case

for trapping beams propagating in free space, unless they are tightly focused. The

phase relation between the transverse and the longitudinal component of the guided

field creates elliptically polarized light, introducing significant vector light shifts in

the trapped atoms [65]. Differential light shifts induced among atomic sub-levels

can be suppressed with a proper choice of trapping wavelengths and polarizations

[82] or they can be used as a tool for atomic state preparation [83].

These types of trapping schemes are a promising platform for integrating laser-

cooled atomic ensembles with optical fibers, opening a route towards applications

in the context of quantum information and quantum technologies.

2.1 Atomic dipole traps around an ONF

We now summarize how our ONF trap operates [40, 84] (see Fig. 2.1). The

ONF has a waist diameter of approximately 500 nm and length of 7 mm, with ta-

pering regions of 28 mm in length and 2 mrad half angle. A MOT loaded from a

background vapor of 87Rb produces a cloud of ∼ 108 atoms. We overlap the cloud

with the ONF waist using magnetic field shim coils and a ultra-high-vacuum me-

chanical manipulator. Two orthogonal imaging systems ensure the overlap between

the atomic cloud and the ONF. In our experimental cycle we do 90 ms of increased

MOT detuning and a 1-ms-duration optical molasses stage, cooling the atoms to

∼ 15µK. The red- and blue-detuned trap beams are on throughout the experi-

ment. As a result of dissipation from laser cooling, some of the atoms end up in the
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ONF dipole trap. For more details about the experimental setup see Ref. [43].

An ONF trap requires light that is tuned to the red of the resonant frequency

(with respect to the 780 nm 87Rb D2 line) to provide an attractive potential and

light tuned blue of resonance to prevent atoms from striking the ONF surface (see

Fig. 2.1). A 1064-nm wavelength laser beam provides the (red) attractive potential

and a 750-nm wavelength beam the (blue) repulsive force. A potential minimum of a

few hundred µK in depth is formed at ∼200 nm from the fiber surface, as calculated

with a simple two level atom and only scalar shifts (see Fig. 2.1 (e)).

Counter-propagating the red-detuned attractive beams, generating a standing

wave, confines the atoms along the nanofiber. This configuration creates a one-

dimensional lattice on each side of the ONF. The presence of a longitudinal com-

ponent of the propagating electric field prevents us from having a standing wave

with perfect contrast. The periodicity of the lattice is given by half the effective

wavelength λ/neff. The contrast varies for different wavelengths and ONF radius,

and in our case is ∼65%. However, this is not an impediment for trapping the atoms

in a lattice configuration.

The azimuthal confinement of the trapped atoms is achieved by using quasi-

linearly polarized trapping beams in the HE 11 mode. A quasi-linearly polarized

mode is the result of linearly polarized light propagating through the ONF, which

electric field has components in all three direction due to its large spatial gradient

(see appendix A). The intensity profile of a quasi-linearly polarized mode is az-

imuthally asymmetric, providing a tool for azimuthal confinement of the atoms (see

Fig. 2.1 (c and d)).
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Figure 2.1: (a) Schematic of an ONF with counter-propagating 1064-nm beams

and an orthogonally-polarized 750-nm beam. (b) Illustration of the intensity of the

fields at the ONF waist with lattice formed by 1064-nm beams. (c) Intensity plot of

quasi-horizontaly-polarized 1064-nm light in an ONF with diameter 500 nm. The

color scale indicates increasing intensity from blue to red. (d) Intensity profile of

quasi-vertically-polarized 750-nm light through the same ONF. (e) Total trapping

potential (black solid) for a 500-nm diameter ONF with contributions from 3 mW

in each 1064-nm beam (red dashed), 6.5 mW of 750-nm power (blue dotted), and

van der Waals (green dashed and dotted). Fig. from Ref. [43]
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These operation parameters allow only zero or one atoms on each independent

well because of collisional blockade [85], creating on average a filling factor of 50%.

There is no particular requirement for the relative polarization of the blue and red

detuned beams. A trapping minimum can be generated for polarizations varying

from parallel [38] to perpendicular [37, 86], provided one uses the proper optical

powers of the trapping beams. Due to intrinsic stress in the ONF from the fabrica-

tion process that produces birefringence, the light polarization at the input of the

un-tapered fiber is not the same as in the nanofiber region. We overcome this issue

by independently verifying the polarization of each beam at the nanofiber waist and

adjusting the input polarization accordingly. We take polarization-sensitive mea-

surements of the Rayleigh scattering of the propagating beams at the ONF waist

through a high quality microscope objective positioned above the vacuum chamber

where the nanofiber resides.

The number of trapped atoms in an ONF two-color dipole trap can be mea-

sured by propagating a probe beam through the nanofiber. Possible strategies are

based on transmission spectroscopy and off-resonance dispersive measurements [87],

as described below.

2.2 Transmission spectroscopy

Transmission spectroscopy is based on the Beer-Lambert-Bouguer law for op-

tical absorption in a thick medium and on the knowledge of the atomic spectral

lineshape. By scanning the frequency of a weak near-resonance probe beam and
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measuring its transmission as a function of frequency, we can obtain the optical

density of the sample [88]. If the atom-light coupling strength is known, the OD can

be translated to a number of trapped atoms [37, 38, 40, 86]. When implemented

for an ONF the probe power is typically of the order pW, to avoid saturation of the

atoms and power broadening. The transmitted photons are counted with avalanche

photodiodes and appropriate electronics. A careful bandwidth filtering is neces-

sary to filter the background from the blue detuned laser and what appears to be

fluorescence of the fiber.

This method of measuring the number of trapped atoms is a rather destructive

one. The absorbed photon transfers a momentum kick to the atoms. After repeated

scattering events, the atoms heat up, and eventually leave the trap.

2.3 Dispersive measurements

A less destructive atom-number measurement is to send an off-resonance probe

beam through the ONF. The dispersive atom-light interaction creates an effective

modification of the refractive index experienced by the propagating field, minimally

altering the atomic state. The tight mode confinement provides a large atom-light

nonlinear interaction and efficient readout. The main features of this technique

have been explored theoretically in detail, proposing it as a tool for quantum non-

demolition measurements [89]. The dispersive atom-light interaction produces a

phase shift in the propagating field, proportional to the number of atoms and the

atom-light coupling strength. This phase shift can be read out with polarimetric
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[84, 90] and interferometric measurements [39].

The polarimetric measurement relies on the azimuthally asymmetric geometry

of the trap. An ensemble of trapped atoms at each side of the ONF defines a

preferential propagation axis for the evanescent field of an off-resonant quasi-linearly

polarized probe beam. The atoms create an effective birefringence for the probe [90].

An interferometric measurement of the probe beam can be performed by two

probe beams detuned by the same frequency above and below resonance [39]. This

eliminates any possibility of modification of the potential landscape experienced by

the trapped atoms. Because the sign of the phase shift depends on which side of

the resonant frequency the probe is, both probe beams experience equal-magnitude

but opposite-sign phase shifts. The differential phase shift between the two probes

can be measured using optical homodyne interferometry, allowing the measurement

of the number of trapped atoms.

2.4 State-sensitive and state-insensitive traps

When a two-level atom interacts with an oscillating electric field, e.g. a dipole

trap, the two energy levels shift in opposite directions, an effect known as the ac-

Stark shift. If the field is red-detuned from the atomic resonance, the ground state

shifts down in energy and the excited state shifts up; the opposite is true for a blue-

detuned optical beam. When the shift only depends on the total amplitude of the

electric field it is called a scalar light shift, and when it depends on ellipticity of the

field polarization it is called vector light shift. In a dipole trap, the scalar shift shifts

22



the atomic energy levels, causing different electronic states to experience different

trapping potentials. When the dipole trap is produced by circularly polarized light

the polarization of the electric field couples to the components of the angular mo-

mentum of the real (multilevel) atom, shifting also the Zeeman sub-levels, similar

to what happens to the atoms in the presence of an external magnetic field. Both

effects, scalar and vector light shift, create state-dependent potentials that present

difficulties for coherent control of atoms, coupling the internal states to the noisier

center-of-mass motion.

The scalar shift that the first excited atomic state experiences due to its cou-

pling with the ground states can be counteracted in a multilevel-atom by an opposite

shift due to its coupling with higher-excited states. The wavelength of light that

creates the same shift for the ground and excited atomic states is called a magic

wavelength. The idea of magic wavelengths, originally stated in the context of a

possible systematic effect in precision measurements [91], shows that in a dipole

trap the ground and excited electronic states of an atom can experience the same

trapping potential, permitting coherent control of electronic transitions independent

of the atomic center-of-mass motion [92, 93].

Vector light shifts are not present when using only linearly polarized light.

However, ONF-based dipole traps use elliptically-polarized light along the nanofiber,

due to the significant longitudinal component of the propagating field. Vector light

shifts can still be highly suppressed by canceling the longitudinal component of the

electric field, using equal intensities and polarizations for the counter-propagating

trapping beams. A frequency difference between blue-detuned counter-propagating
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beams creates a “walking wave” that averages to produce a uniform repulsive po-

tential. These methods for implementing a (mostly) state-insensitive dipole trap

in an ONF are proposed in Ref. [94] and first implemented in Refs. [38, 82, 95],

where they trap Cs atoms 215 nm from the surface of a nanofiber, and suppress the

differential scalar and vector light shifts by a factor of 250.

State-sensitive traps, which lift the degeneracy of the atomic Zeeman sublevels,

can be used for state preparation and interrogation of trapped atoms. For these ap-

plications, the vector light shift in ONF-based dipole trap can be particularly useful

[83, 96]. Applying additional real or fictitious magnetic fields, the state dependence

of the trapping potential can be controlled, providing a mean to probe and to ma-

nipulate the motional state of the atoms in the trap by driving transitions between

Zeeman sub-levels. Another possible application is to use the fictitious magnetic

field induced by a nanofiber-guided light field in conjunction with an external mag-

netic bias field to create an effective trapping potential for atoms around the ONF

[97].

Despite the difficulties that state-dependent trapping potentials impose on the

coherent control of arbitrary atomic states, ground states can keep coherences for

times suitable for some quantum information applications. In particular, Ref. [81]

studies the ground state coherence properties of Cs atoms in a nanofiber-based two-

color dipole trap. Using microwave radiation to coherently drive the clock transition

(|e〉 = |6S1/2, F = 4,mF = 0〉 → |g〉 = |6S1/2, F = 3,mF = 0〉), they record Ramsey

fringes as well as spin echo signals and infer a reversible dephasing time of T ∗2 = 0.6

ms and an irreversible dephasing time of T ′2 = 3.7 ms. Both time constants are
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limited by the finite initial temperature of the atomic ensemble and the heating

rate, respectively.

2.5 Possible heating mechanisms

Atoms trapped around an ONF eventually leave the trap. The heating mecha-

nisms that lead the atoms to escape have not been fully determined. One contribu-

tion comes from elastic scattering events of the far-detuned trapping beams [80], a

well-known effect in dipole traps. A less familiar contribution comes from torsional

modes of the ONF [98]. Torsional modes produce stress-induced birefringence in

the ONF, which couples to the polarization of all the guided fields. Since the trap-

ping potential is sensitive to the polarization of the trapping beam, the torsional

modes create a time-dependent perturbation of the potential. The frequencies of

these modes are closely spaced and they are close enough to the trapping frequen-

cies (∼ 200 kHz) to consider parametric heating of the atoms as particularly strong

mechanisms for losses. Torsional modes have been measured and characterized [98],

and even optically excited [99, 100]. However, it is necessary to suppress them or

increase their frequencies to prevent the heating of the atoms.

2.6 Characterization of the trapping potential

Experiments based on the type of dipole trap described above can benefit

from a non-destructive characterization of the local potential felt by the atoms,

leaving them trapped after interrogation for further experimentation. We hope that
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direct and non-destructive measurements of trapping potentials grow into a stan-

dard procedure for atom traps near optical waveguides. Next, we present our work

on non-destructive measurement of the ONF trapping potential, using dispersive

measurement of trapped atoms.
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Nano-optical waveguides allow efficient ways to couple
trapped atoms to propagating photons, a crucial element in the
development of quantum technologies [1–4]. Optical nanofibers
(ONF) [5] have shown to be a particularly versatile platform in
this context; enabling quantum memories [6–9], switches [10, 11],
diodes [12], and reflectors [13, 14]. These examples show inte-
gration of photonic and atomic systems.

An ONF consists of single-mode optical fiber heated and
pulled to create a tapered profile. The tapers can adiabatically
guide the propagating light in and out of a sub-wavelength di-
ameter waist with less than 0.1% loss [15]. Because the nanofiber
radius is smaller than the wavelength of the propagating mode,
most of the field is outside its dielectric body as an evanescent
field [16]. This field allows coupling of atoms near the ONF
surface to the guided mode. The tight confinement of the propa-
gating mode enables significant atom-light coupling.

The large spatial gradient of the evanescent field enables an
optical dipole trap for atoms with two different wavelengths of
light, one detuned above atomic resonance (blue-detuned) to
repel the atoms from the surface, and the other detuned below
resonance (red-detuned) for confinement. Such traps are an
effective tool to confine atoms close the the ONF waveguide
for millisecond time-scales with low optical powers, creating
a robust platform for coupling propagating photons to atoms
[17–21].

A typical ONF dipole trap, with retro-reflection of the red-
detuned light, creates two one-dimensional arrays of atoms on
each side of the ONF, sketched in Fig. 1 (a). Characterizing the
atom number and trap characteristics is necessary for future ap-

plications of this platform. The number of trapped atoms can be
measured on resonance [17] or off resonance [20, 22], i.e. destruc-
tive and dispersive measurements, respectively. The trapping
potential has been characterized by parametrically heating the
trapped atoms to find the resonance frequency of the trap, a
destructive measurement [23–25], since it is necessary to lose
trapped atoms to perform it.

In this letter we present a method to non-destructively char-
acterize the trapping potential of an ONF dipole trap. We prop-
agate a weak, off-resonance probe beam through the ONF that
is linearly polarized and tilted 45◦ relative to the azimuthal
axis defined by the trapping potential. The probe experiences
a modified refractive index with a fast axis and a slow axis
due to the presence of trapped atoms. This effective birefrin-
gence rotates the polarization of the probe as a function of the
position of the atoms. Turning on the probe beam imparts a mo-
mentum kick to the trapped atoms so that they oscillate at the
radial and azimuthal trapping frequencies. Detecting the time-
dependent polarization change of the probe gives us a direct
and non-destructive measurement of the transverse frequencies
of the trapping potential.

Because the evanescent field decay constant is proportional
to its wavelength, the red (blue) detuned light creates a longer
(shorter) range attractive (repulsive) potential. Combining both
red and blue detuned light, the atoms experience a potential
energy minimum a fraction of a wavelength away from the ONF
surface. This two-color dipole trap provides radial confinement
for the atoms. Two counter-propagating red-detuned beams in
a standing-wave configuration provide confinement along the
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Fig. 1. (a) Schematic of the experimental setup showing the
two one-dimensional array of atoms. An off-resonance probe
beam propagates through the sample with linear polarization
rotated by 45◦. (b) Transversal view of a trapping potential,
with 1 mW of power in each red-detuned beam and 3 mW
of blue detuned propagating through a 235-nm radius ONF
waist. (c) Modification of the trapping potential in (b) after
turning on a probe beam with 70 nW of power and 200 MHz
detuned to the blue of atomic resonance.

optical nanofiber, as a one-dimensional lattice. The azimuthal
confinement is achieved by correctly choosing the polarization
of the trapping beams. At the ONF waist linearly-polarized light
becomes quasi-linearly polarized, breaking the azimuthal sym-
metry of the intensity profile of the propagating field. Aligning
the polarization axis of the red-detuned beam orthogonal to the
blue detuned one provides azimuthal confinement for the atoms
(See Fig. 1 (a) and (b)).

We create a dipole trap for 87Rb atoms with a 235-nm radius
ONF waist by coupling two counter-propagating red-detuned
beams (1064 nm) in a standing wave configuration and a blue-
detuned beam (750 nm). (The dominant resonances for Rb are
at 780 (D2 line) and 795 nm (D1 line)). We typically use 1 mW
of power for each red-detuned beam, and 3 mW for the blue-
detuned beam. Fig. 1(b) shows this configuration, which pro-
duces a trapping potential with a depth of about 500 µK.

We image the light scattered from the nanofiber to character-
ize the polarization of the laser beams at the ONF waist. Because
Rayleigh scattering preserves the polarization of the field, with
the help of a linear polarizer in front of the camera we deter-
mine the polarization of the propagating field. The polarization
can be controlled by wave plates at the input of the ONF. Each
laser beam has to be characterized and controlled independently,
since inherent stress in the ONF creates a birefringent medium
that affects each wavelength differently.

A magneto-optical trap (MOT) loads cold 87Rb atoms into
our ONF dipole trap in a vacuum chamber kept at lower than
10−9 Torr. We further cool the atoms by increasing the detuning
of the MOT beams for 90 ms. We then turn off the magnetic
field gradient to create optical molasses for 1 ms. The atoms
are typically at 15 µK when we let them fall into the dipole
trap. Because of the tight confinement of the trap, the atoms are
expected to be in a collisional blockade regime. This leads to
a binary loading with one or zero atoms per trapping site. We
typically trap a few hundred atoms for trapping lifetimes of the

order of 10 ms.
We send an off-resonant beam, detuned 200 MHz to the blue

of the the F = 2 → F′ = 3 transition of the D2 line, through
the ONF to probe the trapped atoms. We align its polarization
to be 45◦ from the trapping beams when there are no atoms
present. The projection of the polarization component along
the axis defined by the trapped atoms experiences a modified
refractive index while the orthogonal component, which does
not interact with the atoms, propagates unaltered. The motion
of trapped atoms in the transverse plane of the nanofiber will
change this birefringence as a function of time, producing a
dynamical polarization rotation of the probe beam. Presumably
there could be some oscillation in the z-component of the trap,
but that may be weakly coupled to the probe and not affect the
polarization rotation.

Because of the significant atom-light coupling provided by
the tight mode area, more than a few tens of nW of probe power
are detrimental to the trap. We use 70 nW of probe power,
enough to imprint a momentum kick in the atoms to start their
motion, but too weak to excite the atoms out of the trap. Fig. 1
(c) shows the effect of the probe beam on the trapping potential.
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Fig. 2. (a) Polarization rotation of the probe beam (in units of
measured voltage) as a function of time. The sudden spike in
the signal denotes the probe turning on. (b) Power spectrum
from the Fourier transform of the oscillations in (a). The two
distinct peaks (at 73 ±3 kHz and 197 ±2 kHz), correspond to
the radial and azimuthal trapping frequencies respectively,
marked with red dashed lines.

The polarization rotation of such a low probe power is de-
tected by heterodyne measurements by mixing the probe with a
local oscillator (LO) with a 1 MHz relative frequency shift. We
typically use 9 mW of power for the LO beam. After the probe
goes through the ONF it is combined with the LO using a 50/50
beam splitter. We use one of the output paths for detection. Its
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polarization components are separated by a Wollaston prism
and sent to a 4 MHz bandwidth balanced photodetector. The 1
MHz beat note between the probe and the LO is mixed down to
DC. This allows us to use the LO as gain for the probe, and di-
rectly detect the probe polarization rotation as a function of time
with a bandwidth higher than the expected trap frequencies.

Figure 2 (a) shows a typical signal of the polarization rotation
of the probe. Although the signal is visible in single-shot, the
data is averaged to improve the signal to noise ratio by a factor
of 10. The original data was acquired with a 2-ns bin width, and
the plot is a 400-ns moving average for visualization purposes.
The detector polarizations are set such that when there are no
trapped atoms the measured output voltage is zero. However
the zero voltage at time t = 0 in the plot is produced only by
the LO (probe beam off). The probe field turns on at 2 µs. The
signal can be decomposed in two time regimes: a short time
regime where we observe oscillations due to the atoms moving
back and forth in the trapping potential; and a long time regime
where the oscillations vanish but the non-zero signal shows the
presence of atoms in the trap. The sharp initial peak comes from
atoms starting their motion closer to the ONF surface, where
they interact more strongly with the probe beam, producing a
larger signal. The decoherence of the oscillations comes from the
large anharmonicity of the trapping potential and the thermal
motion of the trapped atoms. The long timescale slope is the
lifetime of the trap. In this case the characteristic decay time is
370± 3 µs, where the error represents the standard error of the
fit. The lifetime is degraded by more than an order of magnitude
when the probe beam is kept on. A small fraction of the probe
beam gets absorbed by the trapped atoms and results in losses
as the trapping potential becomes shallower (see Figs. 1 (b) and
(c) with the depth scale).

The initial oscillations in Fig. 2 (a) encode information about
transverse trapping frequencies. By taking a discrete Fourier
transform of the data (after the probe turns on) we obtain the
resonance frequencies of the oscillating atoms. Fig. 2 (b) shows
the power spectrum of the signal. We observe two distinct peaks
at νφ = 73± 3 kHz and νr = 197± 2 kHz, corresponding to the
azimuthal and radial frequencies of the trap. The uncertainties
in the mean are calculated from the full width at half maximum
of the peak over the signal to noise ratio [26]. The width of the
spectral peaks arises from the dephasing of the atoms due to the
strong anharmonicity of the trap. As an approximation, we can
model the problem as a damped harmonic oscillator. The fit to
a Lorentzian line shape shows a linewidth of γφ = 64± 8 kHz
γr = 47± 6 kHz respectively, where the errors are the standard
errors of the fit. This represents a decay time of the oscillations
of around 20 µs, enough to measure trapping potentials of more
than 50 kHz. The observation of oscillations from the azimuthal
motion of the atoms depends on the alignment of the probe
polarization to within few degrees. On the other hand, the
detection of oscillation from radial motion of the atoms is more
robust under misalignments.

We can compare the measured frequencies in Fig. 2 (b) to
a numerical calculation. Taking the second derivative of the
trapping potential shown in Fig.1 (c) and knowing the atomic
mass m we can calculate the expected trapping frequencies as

νi =
√

1
2πm ∂2U/∂x2

i , where the index i denotes the radial or
azimuthal direction in cylindrical coordinates. For the experi-
mental parameters listed in this paper, which produce Fig. 2
(c), we find that νφ = 70± 4 kHz and νr = 195± 6 kHz. The
frequencies are extracted by fit an harmonic potential to the

bottom of the calculated potential and extracting the correspond-
ing trapping frequency for each spatial direction. The errors
represent the sensitivity of the simulation to a 5% variation of
the experimental parameters, these parameters being the four
lasers beams power (two red-detuned, a blue-detuned and the
probe), and the four polarization angles (three relative angles).
We assume that the polarizations are perfectly linearly-polarized,
which is in general not true, but greatly reduces the number of
free parameters in the simulation. The theoretical results are 2%
above and 7% below the measured values for the azimuthal and
radial frequencies respectively. The measured signal is in good
agreement with the expected result within the experimental
uncertainties.
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Fig. 3. Polarization rotation of the probe beam (in units of
measured voltage) as a function of time, for a set of four 40 µs
probe pulses. The repeatability of the process shows the non-
destructive feature of the measurement technique. The inset
shows a Monte Carlo simulation of the signal for radial oscil-
lations only. The simulation considers an ensemble of atoms
oscillating in the potential shown in Fig. 1 (c) from different
starting positions and a decay of 265 µs.

The non-destructive feature of this method is further tested
by probing the trapped atoms more than once while they still are
in the trap. Fig. 3 shows the polarization rotation as a function
of time for a probe beam that turns on and off four times. We
see that the first pulse is enough to extract the oscillation fre-
quency of the atoms before it decreases. Consecutively the probe
turns off and on again, after 10 µs, reproducing the same oscil-
latory signal but with smaller amplitude. This process can be
repeated as long there are enough atoms in the trap to produce
a detectable signal. The signal from the four pulses shown in
Fig. 3 has an over-all slope corresponding to a trapping lifetime
of 265± 1 µs. This is almost 30% shorter lifetime compared to
keeping the probe beam constantly on (as in Fig. 2 (a)), because
the momentum kick of suddenly turning the probe beam on and
off can induce atom loss. However, the dispersive measurement
is non-destructive enough to test the characteristics of the trap
while leaving a significant amount of atoms for further exper-
imentation. The inset of Fig. 3 shows a numerical simulation
of the detected signal for only radial oscillations (uncoupled
motion). Using the simulated trapping potential (Fig 1 (c)) we
calculate the motion of a set of 500 atoms randomly positioned
with a flat distribution of ±75 nm centered at 80 nm towards the
ONF from the potential minimum. The trajectories of the atoms,
computed and averaged, give an effective trajectory. The signal
is proportional to the dynamical change of the coupling into
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the ONF of an atom following such an effective trajectory. The
displacement of the center of the distribution of the initial atomic
positions takes into account the displacement of the center of the
trap when the probe beam is turned on. The parameters for the
simulation are empirically found within a experimentally realis-
tic range. This simple model captures the qualitative behavior
of the detected signal.

Although the probe beam modifies the potential landscape
felt by the atoms, the good agreement between the measure-
ments and the simulations allows us to extract the trapping
potential without the modification due to the probe beam. In
our case we obtain νφ = 178.3 KHz and νφ = 252.2 KHz from
the potential shown in Fig. 1 (b). Moreover, by optimizing the
photodetection, a weaker probe beam minimally perturbs the
trapping potential. In this configuration another pulsed beam
can rapidly imprint a momentum kick to the atoms, so they start
oscillating in phase. Colder atoms might also help to establish
longer coherence time for the oscillations, since the trapping
potential approximates to an harmonic trap around its mini-
mum. The measured signal increases linearly with the number
of trapped atoms. A more efficient loading of the trap may
increase the number of atoms and the amplitude of the signal.

We have shown how a polarimetric measurement of an off-
resonance probe beam can be use to non-destructively character-
ize the trapping potential of a two-color ONF-based dipole trap.
This technique can be easily implemented in any ONF-based
dipole trap experiment, allowing a shot-to-shot measurement
of the trapping potential before performing further experiments
in the same experimental sequence, an advantage over other
configurations of optical dipole traps. The results are in good
agreement with theoretical predictions, showing an understand-
ing of the variables involved in the problem. This points to
different strategies to improve the technique in the future. We
expect that non-destructive and fast-readout characterization of
local potential experienced by trapped atoms near dielectric sur-
faces to become standard tools in the growing field of interfacing
nano-photonic platforms to cold atoms.
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2.7 Model of the atomic motion

The trapping potential shown in the previous section can be directly calculated

knowing the atomic polarizability and the the electric field of the ONF mode (see

Appendix A). However the nature of the detected signal is less clear.

The polarization of the probe beam rotates due to the effective index of re-

fraction created by the atoms. The change of the index of refraction is given by the

scalar atomic polarizability α0 and the density of atoms ρ, as [101]

δn =
ρα0(∆)

3ε0
. (2.1)

The scalar atomic polarizability can be written as a function of the atomic linewidth

γ0 and the probe detuning ∆ as α0 = 3ε0λ
3γ0/(8π

2∆).

The angle of polarization rotation is proportional to the optical path difference

between two polarizations components of the propagating field. A polarization that

interacts with the trapped atoms and an orthogonal one that (almost) does not

interacts with the atoms. The optical path difference between both polarizations is

δφ = δnkl, (2.2)

where k is the wavenumber and l is the length of the sample. Replacing Eq. (2.1)

in Eq. (2.2) and using the expression for α0 we obtain

δφ = ρσ0l
γ0

∆
= OD

γ0

∆
. (2.3)

The measured signal is inversely proportional to the probe detuning and directly

proportional to the optical density. The signal relates to the position of the atoms
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by the OD. Comparing this result with the fact that OD ∝ γ1D/γ0 (as shown in

Eq. (1.17)), we get that the polarization rotation is related to the atomic position

by the expression

δφ(r) = neff
γ1D(r)

∆
. (2.4)

The motion of the atoms in the trap can be calculated from a Monte Carlo sim-

ulation. We randomly position a group of atoms in the trap with a flat distribution,

and solve the equations of motion for each one. Adding them up, we can obtain the

trajectory of an effective atom seen by the probe beam. Fig. 2.2 shows the effective

atomic motion and the corresponding expected signal for two different cases. By

comparing both figures, one with a bigger spread of the atomic distribution than

the other, meaning higher temperature, we see how the damping of the oscillations

comes from the anharmonicity of the trap. The more dispersed the atoms are in the

potential well, the faster they dephase.

This simple model provides verification of our physical intuition. We can

qualitatively reproduce the measured signal from a purely theoretical model that

corroborates our understanding of the physically relevant parameters involved in the

experiment.
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Figure 2.2: (a) Sum of the atomic trajectories under the conditions explained in Sec.

2.6. (b) Same as (a) but with a narrower distribution of atoms in the trap (±15 nm

instead of ±75 nm, corresponding to approximately 5 µK and 100 µK respectively).

Both figures help to contrast the cases of having atoms occupying more or less of the

trapping potential. The insets represent the expected signal for each plot using Eq.

(2.4), with an added exponential decay of 265 µs (not present in the main figures)

that captures the measured loss of trapped atoms.
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Chapter 3: Purcell effect of an ONF

Section 1 has motivated the importance of ONFs for quantum optics and

quantum information. They provide a unique platform for many reasons, one being

that the presence of an ONF modifies the structure of the vacuum electromagnetic

field experienced by a nearby atom. This can modify atomic properties such as the

spontaneous emission rate, i.e. the Purcell effect, [68, 102–105].

The Purcell effect is the change of the atomic spontaneous emission due to

the modification of the vacuum electromagnetic field in the presence of an object

[106]. As explained in Sec. 1.1, it tells us about the properties of atoms coupled to a

given structure of modes, in our case radiated (reservoir) and guided modes. When

only the coupling into the preferential guided mode is known, the measurement of

a Purcell factor helps obtain information about the coupling of the system to the

reservoir. This provides us with a tool to characterize properties of the system, such

as the atom-light coupling strength for the guided or non-guided modes and the

cooperativity.

We started this thesis presenting different parameters that characterize atom-

light coupling (see Sec. 1.3) that are relevant for quantum optics experiments. Know-

ing the decay rate into the waveguide γ1D and the total atomic decay rate γtot we
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can calculate the four relevant parameters: emission enhancement α, coupling co-

efficient β, cooperativity C1, and Purcell factor Fp. We plot them as a function of

nanofiber radius and atom-surface distance in Fig. 3.1.

Figure 3.1 shows calculations of α (see Eq. 1.10) for a single Rb atom operating

on the D2 line in the HE 11 evanescent mode of the ONF. We follow the work in

Ref. [68] for the caclulation of γ1D (see Eq. (1.15) and Appendix A for details on

the calculation on the mode structure). The total decay rate γtot (including both

contribution, from photons radiated into the ONF and outside the ONF) is more

challenging to calculate. However we can compute them numerically with finite-

difference time-domain (FDTD) calculations [107] (as will be explained later in this

chapter).

The emission enhancement can be up to 20% larger than that of free-space

near to the fiber surface according to Fig. 3.1(a). As expected, it decreases to the

free space value as the atom-fiber distance increases. For a typical nanofiber β � 1,

it follows from Eq. (1.12) that C1 ≈ β, as the plots in Fig. 3.1 (b) and (c) show.

Both the coupling efficiency and the cooperativity display similar spatial dependence

as the emission enhancement. The modification of the total spontaneous emission

due to the presence of the nanofiber is given by the Purcell factor (Fp), plotted in

Fig. 3.1(d). Its non-trivial dependence on the geometrical parameters comes from

the atomic dipole alignment and is discussed in more detail in Sec. 3.1. For the

particular case of Fig. 3.1(d) we assume that the dipole moments point in the same

direction as the electric field of the circularly polarized fundamental mode of the

ONF. This means that the component along the ONF (z) is approximately the same
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Figure 3.1: Atom-mode coupling parameters as a function of nanofiber radius and

atom-surface distance for our ONF configuration. (a) Emission enhancement α, (b)

coupling efficiency, β (c) single atom cooperativity C1, and (d) Purcell factor α/β.

The Purcell factor C1 and β depend strongly on the atomic dipole alignment relative

to the ONF surface. For all the plots we consider an atomic dipole alignment along

the electric field of the circularly polarized fundamental mode of the ONF, meaning

a superposition of the three polarization components (z, φ, and r). The calculations

consider a wavelength of 780 nm. Fig. from Ref. [87].
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Figure 3.2: Contour plot of the spontaneous emission enhancement parameter as

a function of nanofiber size and atom-surface distance. The calculation are for a

wavelength of 780 nm. Fig. from Ref. [43].

as the azimuthal one (φ) and three times smaller than the radial (r) one.

Figure 3.2 shows that there is an optimal ONF radius that maximizes the

coupling enhancement, which depends on the atom-surface distance; reducing the

radius further than that decreases α. The target ONF radius during fabrication

should then be decided accordingly with the wavelength that will be used and the

distance from the ONF surface at which the atoms will be.

The spontaneous emission rate depends on the square of the energy matrix

element of the the atom-light interaction. This is given by the dot product of the

atomic dipole moment and the local vacuum electric field felt by the atom. If

the surrounding media is anisotropic, the vacuum electric field can have different

amplitudes for each polarization component [108]. This leads to a dependence of
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the spontaneous emission on the atomic dipole alignment.

Figure 3.3 shows a calculation, using FDTD, of the modification of the spon-

taneous emission for a two-level atom aligned along r, φ, and z. We see that we can

go from enhancement to inhibition of the spontaneous emission depending on the

dipole alignment and the atom-surface distance.
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Figure 3.3: Purcell factor of an ONF of 237-nm radius as a function of the atom-

to-surface distance for an atomic dipole aligned along r (solid red), along φ (dotted

blue), and along z (dashed green). The curves come from finite-difference time-

domain calculations. The calculations are for a wavelength of 780 nm. Fig. from

Ref. [87].

3.1 Measuring the Purcell effect of ONFs

We present measurements of the radiative lifetime changes in the vicinity of

an ONF due to the presence of a dielectric surface and to atomic dipole alignment

effects. Depending upon the ONF radius an the atom-surface position (see Fig. 3.3),

the alignment of the induced atomic dipoles relative to the ONF surface influences if
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there is an enhancement or inhibition of the atomic decay rate. The difference can be

as large as ∼80% enhancement to ∼20% inhibition for our current ONF parameters.

Fig. 3.3 displays this dependence, showing that for a particular alignment atomic

dipoles could couple differently to the environment. The alignments not only modify

the total atomic decay rate, but also the coupling into different modes, modifying

the branching ratios of the decays into the guided mode and radiated outside the

ONF.

We use a sample of free cold atoms around the nanofiber. In this configuration,

it is possible to probe closer distances than with trapped atoms and still avoid

the complications of the van der Waals interaction. We measure enhancements

and inhibitions of the spontaneous emission rate of ∼10% and ∼5% respectively,

depending on the alignment of the induced dipoles and averaged over the given

atomic distribution.

However the problem is far from being understood. Multi-level atoms have a

radiation pattern more isotopic than the one of a dipole, contradicting the idea of

imagining the atoms as classical dipoles with a well defined axis. Although numerical

simulations for a two-level atom seem to agree with the measured results, we know

that this model does not capture the real problem. Moreover, we know that there

are discrepancies in the calculated values for the spontaneous emission rate when

using different methods. This indicates that further studies on the dependence of the

atomic spontaneous emission to a particular geometry are necessary to understand

the system. Next, we present our study regarding these issues.
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4Joint Quantum Institute, NIST and University of Maryland, Gaithersburg, Maryland 20899, USA
(Dated: April 14, 2017)

We study the modification of the atomic spontaneous emission rate, i.e. Purcell effect, of 87Rb in
the vicinity of an optical nanofiber (∼500 nm diameter). We observe enhancement and inhibition
of the atomic decay rate depending on the alignment of the induced atomic dipole relative to the
nanofiber. Finite-difference time-domain simulations are in quantitative agreement with the mea-
surements when considering the atoms as simple oscillating linear dipoles. This is surprising since
the multi-level nature of the atoms should produce a different radiation pattern, predicting smaller
modification of the lifetime than the measured ones. This work is a step towards characterizing
and controlling atomic properties near optical waveguides, fundamental tools for the development
of quantum photonics.

I. INTRODUCTION

Neutral atoms coupled to optical waveguides is a grow-
ing field of research [1–10]. Atom-waveguide systems en-
able atom-light interaction for propagating light modes.
This makes them promising tools for forthcoming opti-
cal technologies in the quantum regime, such as quan-
tum switches [11–13], diodes [14, 15], transistors [16], and
electromagnetically induced transparency and quantum
memories [17–20]. In order to further any of these ap-
plications it is necessary to understand and control the
effects of such waveguides on nearby atoms.

Two important features result from having a waveg-
uide with a preferential optical mode: the spatial vari-
ation of the electromagnetic field, and the change of its
density of modes per unit frequency. One of the key
atomic properties affected by both is the spontaneous
emission rate [21]. Its modification is due to the change in
the local vacuum field felt by the atom under the bound-
ary condition imposed by the adjacent object, a phenom-
ena known as Purcell effect [22]. When the symmetry of
the free-space vacuum field is broken in the presence of
an object, the alignment of the atomic dipole relative to
the object also plays an important role on the atomic
lifetime. For a given alignment the atom can couple
more strongly (weakly) to the vacuum modes, producing
an increase (decrease) of the spontaneous emission rate.
The effect of waveguides on the spontaneous emission of
nearby emitters has been a productive field of research
[23–35].

Optical nanofiber (ONF) waveguides [36, 37] are opti-
cal fibers with a diameter smaller than the wavelength of

∗ Corresponding author email: solano.pablo.a@gmail.com

the guided field. Most of the electromagnetic field propa-
gates outside the dielectric body of the ONF (in vacuum)
in the form of a evanescent field, and its strong transver-
sal confinement enables interactions with adjacent atoms.
The nanofiber is adiabatically connected, through a ta-
pered section, to a convensional single mode optical fiber,
facilitating light coupling and readout. ONFs are up-
coming platforms for photonic based quantum technolo-
gies due to the coupling efficiency of light, high surface
quality at the nanometer scale, and simplicity and ro-
bustness of the fabrication procedure [38]. The electro-
magnetic mode confinement in a ONF provides a large
atom-light coupling [39, 40], a feature that has been
used for spectroscopy [41], atomic cloud characterizations
[42, 43] and atom trapping [44–49]. It also allows the
operation and control of memories [17–20], and light re-
flectors [50, 51] at the level of single photons. The pres-
ence of three polarization components of the propagating
field gives rise to chiral effects and new possibilities for
atom-light directional coupling including optical isolators
[2, 3, 14, 52].

The Purcell effect experienced by an emitter near an
ONF has been studied in the past [53–62]. However,
there are disagreements between predicted values for the
decay rates (e.g. Refs. [54] and [61] differ by approxi-
mately 30% for atoms at the ONF surface), without di-
rect experimental evidence that allows to validate one
calculation over the other. Moreover, the possibility of
controlling the atomic lifetime in the vicinity of an ONF
by the position and alignment of the emitter has not been
emphasized or shown experimentally.

We measure the modification of the spontaneous emis-
sion decay rate of a 87Rb atom placed near an ONF,
in the time domain for different alignments of the in-
duced atomic dipole, showing that the atomic lifetime
can increase or decrease by properly preparing the atom.
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We present a theoretical description of the system,
and perform both finite-differences time-domain (FDTD)
and electromagnetic modes expansion calculations of the
modification of the atomic decay rate. The FDTD nu-
merical calculations considering a simple two-level atom
show quantitative agreement with our experimental re-
sult. However, given the the multi-level structure of the
atoms, their radiation patterns should differs from that
of a linear dipole. The more isotropic pattern of our
multilevel atom raises a puzzling question about the in-
terpretation of the measured effects. Nonetheless, this
study offers insight about the possibility of controlling
atomic properties near surfaces for photonics, quantum
optics and quantum information applications.

This paper is organized as follows: Sec. II explains the
platform under study. The details of the experimental
apparatus and the measurements procedure are in Sec.
III, and the results are discussed in Sec. IV. We present
numerical calculations for the atomic decay rate under
the experimental conditions in Sec. V and a theoretical
modeling of the system in Sec. VI. We comment on the
role of the multilevel structure of real atoms in our ex-
periment in Sec. VII. Sec. VIII presents a quantitative
comparison of the results to numerical simulations. Fi-
nally, we discuss the implications of this result in Sec.
IX, and conclude in Sec. X.

II. DESCRIPTION OF THE EXPERIMENT

We consider an ONF that only allows the propagation
of the fundamental mode HE 11. Excited atoms that are
close to the nanofiber can spontaneously emit not only
into free space, but also into the ONF mode, as sketched
in Fig. 1 (a). Our goal is to measure the modified sponta-
neous emission rate γ of an atom placed near it, compared
to the free space decay rate γ0. γ is the sum of the spon-
taneous emission rate of photons radiated into free-space
(in the presence of the ONF) and into the ONF waveg-
uide, i.e. γ(r) = γfs(r) + γwg(r), where all the quantities
are a function of the atom position r. When the atom
is placed far away from the ONF γwg → 0 and γ → γ0,
recovering the free space scenario.

The atomic decay rate can be calculated from Fermi’s
golden rule [21]. It states that the decay rate from a
initial state |i〉 to a final state |f〉 is given by the strength
of the interaction that mediates the transition, related to
Hint, (r) and the density of final states per unit energy
ρ(ε) as

γi→f (r) =
2π

~
ρ(ε)|〈f |Hint(r)|i〉|2, (1)

where ~ is the reduced Plack constant. In our particular
case Hint(r) = d · E(r), given by the transition dipole
moment d and the electric field operator E(r).

The effect of the ONF dielectric body on the decay
rate of a nearby atom can be thought in two analogous
ways [63]: it modifies the structure of the vacuum electric
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FIG. 1. (a) Sketch of the experimental configuration where
an ensemble of cold atoms spontaneously emit photons at
a rate γ0 or γ when they are placed far away or close the
the fiber respectively. (b) and (c) sketch of the orientation
of the induced atomic dipoles relative to the nanofiber for
horizontal and vertical probe beam polarization respectively.
The coordinate system is used throughout the paper.

field; or it reflects the emitted field back to the atom. In
both cases the electric field E(r) at the position of the
atom is modified. This changes the interaction Hamilto-
nian Hint(r) along with the decay rate. The dot product
between the atomic dipole moment and the electric field
in Eq. (1) depends upon their relative alignments, lead-
ing to alignment dependence of the atomic decay rate,
because the ONF breaks the isotropy of the free space
field.

A linearly polarized optical field will drive a two-level
atom along the direction of light polarization. After a
scattering event, the light will leave the atom with the
polarization and radiation pattern of a classical dipole
aligned in such direction. By choosing the direction of
light polarization we can align the radiating dipole rel-
ative to the ONF (see Fig. 1 (b) and (c)). This allows
us to observe the dependence of the atomic decay rate
on the dipole orientation. Due to the tight transverse
confinement of the light propagating through the ONF,
the electric field has a significant vector component along
the propagation axis, as well as perpendicular to it [54].
This enables an atomic dipole oscillating along the ONF
to couple light into the guided mode. This is not the
case for radiation in free space, where there is no radi-
ated power along the dipole axis [64].

Modifications in the spontaneous emission rate change
the atomic spectral width and can be measured in fre-
quency space by doing precision spectroscopy [65]. How-
ever, the atomic spectrum is highly susceptible to broad-
ening mechanisms such as Stark, Zeeman (DC and AC)
and Doppler shifts, and van der Waals effects from the
ONF dielectric surface. These broadenings increase sys-
tematic errors, making the measurement more challeng-
ing. Considering this, we perform a direct atomic life-
time measurement, i.e. in the time domain, to study the
atomic decay rates.
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Atoms have to be relatively close to the ONF surface
(less than λ/2π) when we probe them to see a significant
effect. Two-color dipole traps, created by the evanescent
field of an ONF, are a useful tool for trapping a large
number of atoms close to the nanofiber [45–51]. However,
the created potential minimum is usually too far from the
ONF surface (typically ∼ 200 nm) to observe changes in
the atomic radiative lifetime. Cold atoms that are free to
move can get much closer to the ONF and spend sufficient
time around it to be properly measured.

To measure γ/γ0 we overlap a cold cloud of atoms with
a single mode ONF (see Fig.1 (a)). The atoms in the
cloud are excited by a resonant probe pulse propagat-
ing perpendicularly to the nanofiber. After the pulse is
suddenly turned off, spontaneously emitted light is col-
lected and the photon-triggered signals are counted and
histogrammed to get their temporal distribution, a tech-
nique known as time-correlated single photon counting
(TCSPC) [66]. From the exponential decay of the tem-
poral distribution of photons we measure the atomic life-
time τ = 1/γ, directly related to the spontaneous emis-
sion rate. By detecting the spontaneously emitted light
coupled into the ONF mode we are measuring only those
atoms that are close enough to the nanofiber to couple
light in. This allows us to obtain the modified spon-
taneous emission rate of atoms near the ONF surface.
Note that the measured decay is the total decay rate γ,
regardless of the mode used for the detection. The decay
rates into different channels, in our case γfs and γwg, only
determine the branching ratio of the total decay.

We are interested in the effect of the atomic dipole
alignment relative to the ONF. For this we externally
drive the atomic dipole in a particular direction set by
the polarization of the probe pulse. That polarization can
be set to be linear in the direction along the ONF (hori-
zontally polarized) or perpendicular to it (vertically po-
larized). When probing with horizontally polarized light
the atomic dipoles for two-level atoms are oriented along
z, (see Fig. 1 (b)). For the case of a vertically polarized
probe, the atomic dipoles are oriented along r on top and
bottom, but along φ on each side, relative to the direction
of propagation of the probe. In the vertical polarization
case, we have a continuous distribution of dipole align-
ments, from dipoles along r to dipoles along φ (see Fig.
1 (c)).

III. APPARATUS AND MEASUREMENTS
PROCEDURE

Figure 2 (a) shows a schematic of the experimental
apparatus. The ONF waist is 7 mm in length with
an approximately 240 ± 20 nm radius, where the un-
certainty represents the variation in any given fabrica-
tion of an ONF, as destructively measured by an scan-
ning electron microscope and independently confirmed
with non-destructive techniques [67]. Any given ONF
is uniform to within 1% through its full length. We
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FIG. 2. (a) Schematic of the experimental setup. A train
of pulses generated from a Pockels cell is directed to an en-
semble of cold 87Rb atoms placed near an optical nanofiber.
The spontaneously emitted photons into the nanofiber are
collected and time tagged to obtain the atomic radiative life-
time. Photons emitted into free space are also measured to
verify possible systematic errors. (b) Experimental sequence
of light pulses to cool, repump and probe the atoms.

placed the ONF inside an ultrahigh vacuum (UHV)
chamber. Inside the chamber, the ONF is overlapped
with a cloud of cold 87Rb atoms created from a mag-
neto optical trap (MOT), loaded from a background gas
of atoms released from a dispenser. The atoms are ex-
cited by pulses of a probe beam incident perpendicularly
to the nanofiber and retroreflected to reduce photon-to-
atom momentum transfer. These pulses are resonant
with the F = 2 → F ′ = 3 transition of the D2 line
and created with a Pockels cell (Conoptics 250-160) for
a fast turn off, with a pulse extinction ratio of 1:170 in
20 ns. The on-off stage of the pulses is controlled with
an electronic pulse generator (Stanford Research Systems
DG645). The probe beam is a 7 mm 1/e2 full-width colli-
mated beam and kept at a saturation parameter s < 0.05
to reduce atomic excitations during the off period (where
s = I/Isat = 2(Ω/γ0)2, with Isat = 3.58 mW cm−2 the
average saturation intensity for a uniform sub-level popu-
lation distribution over all mF in F = 2, and Ω is the on-
resonance excitation Rabi frequency). A linear polarizer
with extinction ratio of 105 : 1 sets the probe polarization
for driving the atomic dipoles along a particular direc-
tion. Any atoms in the cloud, close or far from the ONF,
can be excited. The photons emitted into the nanofiber
and those emitted into free space are independently col-
lected with avalanche photodiodes (APDs, Laser Compo-
nents COUNT-250C-FC, with less than 250 dark counts
per second). The TTL pulses created from photons de-
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tected by the APDs are processed with a PC time-stamp
card (Becker and Hickl DPC-230) and time stamped rel-
ative to a trigger signal coming from the pulse generator.
We detect of the order of 10−3 photons per probe pulse,
consistent with considering atomic excitation probability,
coupling into the ONF, power losses through band-pass
filters and other optical elements, and detection efficien-
cies.

The experimental cycle is described in Fig. 2 (b).
Acousto-optic modulators (AOMs) control the amplitude
and frequencies of the MOT and repump beams. After
the atomic cloud reaches steady state, the MOT cooling
and repump beams are turned off with a fall time of less
than 0.5 µs. The repump turns off 5 µs after the cool-
ing beams to end with the maximum number of atoms in
the F = 2 ground state. We wait 300 µs until the AOMs
reach maximum extinction. The atomic cloud constitutes
a cold thermal gas around the ONF. The atom that in-
teracts significantly with the nanofiber mode does so for
approximately 1.5 µs (see atomic transit measurements
in [42]). Because the atomic cloud expansion reduces the
density of atoms, we limit the probing time to 1.7 ms.
During this time we send a train of 200-ns probe pulses
every 1.5 µs (approx. 1100 pulses). The probe beam is
turned off and the MOT beams on. We reload the MOT
for 20 ms and repeat the cycle. The average acquisition
time for an experimental realization is around 5 hours,
for a total of about 1× 109 probe pulses.

When atoms are around the nanofiber, they tend to
adhere to it due to van der Waals attraction. After a few
seconds of exposing the ONF to rubidium atoms, it be-
comes coated with rubidium and light cannot propagate
through. In order to prevent this, we use approximately
500 µW of 750 nm laser (Coherent Ti:Saph 899) during
the MOT-on stage of the experimental cycle to create a
repulsive potential that keeps the atoms away from the
nanofiber surface. When the MOT beams turn off so does
the blue beam, allowing the probed atoms to get closer
to the ONF. We have also seen that 500 µW of blue de-
tuned beam is intense enough to heat the nanofiber and
accelerate atomic desorption from the surface.

Regarding the reduction of systematic errors, all the
components of the magnetic field at the position of the
MOT are carefully minimized. Using three sets of Hel-
moltz coils we reduce all residual field components to
the level of 10 mG. This reduces low frequency quantum
beats among different Zeeman sub-levels (with different
mF ) that will shorten the apparent lifetime, and effects of
atomic precession during the decay i.e. the Hanle effect.
The intensity of the probe pulse is kept much lower than
the saturation intensity, in order to reduce the atomic
excitation when the pulse is nominally off. Another sys-
tematic error is the lengthening of the measured lifetime
due to radiation trapping, which is the multiple scat-
tering of a photon between different atoms [68]. Light
trapped in the sample can re-excite atoms near the ONF,
creating the appearance of a longer atomic lifetime. We
confirm that the atomic density is low enough by mea-

suring the lifetime of atoms emitting into free space as a
control measurment, similar to the approach followed in
[69]. The photons collected from emission into free space
come mainly from atoms far away from the ONF surface,
so their time distribution should give us the well known
atomic lifetime τ0 = 26.24(4) ns [70] in the absence of
significant systematic error. We also consider the mod-
ification of the probe polarization after being scattered
by the nanofiber. However, given the symmetry of the
problem, a horizontally polarized incoming beam does
not change polarization after interacting with the ONF.
On the other hand, vertically polarized light changes po-
larization in the transversal plane of the nanofiber. This
leads to a different arrangement of dipoles aligned along r
and φ compare to a probe beam propagating unaltered,
but does not change the overall distribution of dipoles
aligned along both directions.

IV. LIFETIME MEASUREMENTS

We show the normalized time distribution of photons
collected through the ONF mode in Fig. 3. The red cir-
cles correspond to the data obtained for vertically polar-
ized probe light, and the blue squares, for the horizontal
one. The curves are horizontally shifted apart for clarity.
The bin size is 1 ns and we typically have a thousand
counts per bin at the peak. The error bars come from
the statistical error of the data collection. The solid black
lines are the fits to an exponential decay, and the plot un-
derneath shows the corresponding normalized residuals.
The fitting function is Ae−γt + O, where the amplitude
A and the decay rate γ are the only fitting parameters,
and the offset parameter O comes from the average value
of the background at long times.

We vary the starting and ending point of the fit-
ting curves and verify that as long as we are in a re-
gion within one to three natural lifetimes after the pulse
turns off, there is no significant dependence on the cho-
sen data points. Varying the end points did not change
the obtained decay rate by more than 0.1% . We con-
sider only the fits with reduced χ2 between 0.9 and 1.5.
The averaged decay rates extracted from these fits are
〈γ〉v/γ0 = 1.088 ± 0.015 and 〈γ〉h/γ0 = 0.943 ± 0.014
for the atoms driven by vertical and horizontal polar-
ized probe light respectively. For these two data sets,
the average of the measured free-space decay rates is
〈γ0〉/γ0 = 0.989±0.012, corresponding to atoms far away
fro the ONF. The uncertainties represent the amount
that the fitting parameter γ has to be varied to changes
the χ2 by plus or minus one.

To study the systematic errors, we vary the mag-
netic field around 60 mG without observing a significant
change on the decay rate. We also change the atomic
density, and effects of radiation trapping bigger than the
statistical errors appear when the density increases by
a factor of three. The polarization of the probe pulse
might also contribute with an error from a possible tilt of
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FIG. 3. Normalized time distribution of the collected photon
count rate in logarithmic scale with a time bin of 1 ns. The
red circles (blue squares) correspond to the data for vertically
(horizontally) polarized probe light. The black solid lines are
fits to exponential decays, and their residuals normalized to
the standard deviation are displayed below the plot. The
curves have been displaced 30 ns apart for clarity.

the ONF. We estimate this uncertainty to smaller than
10 mrad, and its effect into the total decay rate to be
smaller than 0.1%.

Even though our signal to background should be in
principle limited by the extinction ratio of the probe pulse
(better than 1:170 after 20 ns), the signal is small enough
that dark counts from the APDs become important and
are our ultimate limiting factor. In our case the dark
counts are around 500 counts per second, a factor of two
higher than the specifications. However, the obtained
signal is enough to measure a difference in the modified
spontaneous emission decay rate for the two probe polar-
izations of almost 10 standard deviations.

V. NUMERICAL SIMULATIONS FOR A
TWO-LEVEL ATOM

Most of the literature about modified spontaneous
emission rates considers two-level atoms, i.e. classical
dipoles, and we will follow that in this section. We will
discuss the ramifications of our multi-level atoms in a
later section.

The radiative decay rate of an atom can be modified by
the boundary conditions of the electromagnetic vacuum.
We consider calculating this modification by two different
approaches. Each is presumably equally valid and pro-
vides a different perspective and intuition of the problem
[63]. In the first one, when the mode expansion of the
electromagnetic field of the full space is known, the con-
tribution of each mode to the spontaneous emission rate

can be calculated using Fermi’s golden rule (see Eq.(1)).
In particular, the mode expansion of the vacuum electro-
magnetic field for an ONF has an analytical expression
[54]. A second strategy, useful when the modes are un-
known or too complicated to compute analytically, is to
solve the problem from classical electrodynamics. We cal-
culate the modification of the radiated power of a clas-
sical dipole under equivalent boundary conditions, and
take that to be the modification of the radiative decay
rate of the atom [71]

γ

γ0
=

P

P0
, (2)

where γ and γ0 are the modified and unmodified atomic
decay rates respectively, and P and P0 are the classically
calculated modified and unmodified radiative power. The
modification of the radiative spontaneous emission is ex-
plained by the effect of the electric field reflected from
the boundaries to the dipole position.

The latter approach allows us to develop an intuitive
picture based on the idea that a two-level atom radiates
as a linear dipole oscillating along the direction of the ex-
citation field: When the atomic dipole is aligned along z
and φ, parallel to the ONF surface, the radiated light can
be reflected from the front and back interfaces created by
the dielectric. These multiple reflections add at the po-
sition of the dipole affecting its emission. Because there
is interference between reflections, the dipole radiation is
sensitive to changes in the ONF radius. For these cases,
the effect of the nanofiber can lead to enhancement or
inhibition of the radiative spontaneous decay rate. On
the other hand, for a dipole aligned along r we can ex-
pect little radiation reflected from the back surface of the
ONF to the dipole, given the radiation pattern. For this
case, the decay rate depends mainly on the distance be-
tween the atom and the ONF surface and only slightly
on the nanofiber radius. An alternative viewpoint is to
consider image charges. The atomic dipole induces an
image dipole inside the ONF aligned in the same axis
and in phase. They radiate more power than the normal
atomic dipole, producing an enhancement of the decay
rate for the distances we consider.

Using the second strategy, based on a classical dipole,
we calculate the modification of the atomic decay rate
near an optical nanofiber as a function of the ONF ra-
dius and the distance from the atom to the nanofiber
surface for different atomic dipole orientations. The cal-
culation is performed numerically with a finite-difference
time-domain (FDTD) algorithm [72]. It considers the
wavelength of the emitted light, and the nanofiber index
of refraction to be λ = 780.241 nm and n = 1.45367,
respectively. The result of these calculations are shown
in Fig. 4 (a)-(c). It shows the modification of the atomic
decay rate as a function of distance to the nanofiber and
radius of the nanofiber for dipoles aligned (in cylindrical
coordinates) in the (a) z-direction, (b) φ-direction, and
(c) r-direction relative to the ONF (as sketched in Fig.
(1) (b) and (c)). We identify these rates as γz, γφ and γr
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FIG. 4. Modification of the atomic spontaneous emission rate due to the presence of the ONF normalized by the free space
decay rate. The results are displayed as function of the distance between the atom and the fiber surface, and the ONF radius.
The three possible atomic dipole orientations can be along z, φ, and r. (a)-(c) show the result of FDTD calculation. (d)-(e)
Show the result of a mode expansion calculation

respectively. The values of γ/γ0 for this three cases are
normalized so they are equal to one at large atom-surface
distance.

The atomic decay rate of an atomic dipole aligned
along z, Fig. 4 (a), is mostly inhibited close to the ONF
surface compared to the free space decay rate, and it is
highly dependent on the nanofiber radius. This is also
true for dipoles aligned along φ, Fig. 4 (b). For a dipole
aligned along r, Fig. 4 (c), the decay rate is enhanced
and depends mostly on the distance between the atom
and the ONF surface and not on the nanofiber radius.

These results are compared with the calculations of the
radiative lifetime using the electromagnetic field mode
expansion (taken from Ref. [54]) in Fig. 4 (d)-(f). We
are interested in the limit where only the fundamental
mode of the ONF can propagate, which is valid when
the ONF radius is smaller than 284 nm for a wavelength
of 780 nm. We observe that both calculations are qual-
itatively similar, but quantitatively different. The main
discrepancy occurs at the fiber surface, where the mode
expansion calculation seems to give a larger enhancement
of the decay rate. The reason for the disagreement be-

tween both results is not understood. We have verified
that other calculations based on finding the electric field
at the position of the atom are in agreement with the
mode expansion approach (compare Ref. [54] and [53]).
On the other hand, our FDTD calculations are in agree-
ment with previous results using the same method [61].

VI. THEORETICAL MODEL

The modification of the atomic spontaneous emission is
a function of the position of the atom. Because the atoms
are not trapped at a particular position, the measured de-
cay time is an spatial average of the atomic distribution
around the ONF. The main factor that determines such
distribution is the van der Waals interaction between the
atoms and the ONF. Moreover, atoms emit into the ONF
mode with different probabilities, depending on their rel-
ative orientation and proximity to the nanofiber, altering
the average of the decay time. We describe the necessary
physical considerations to model the spatial average of
the atomic distribution and the dipole orientation aver-
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age corresponding to a multilevel atom.

A. Van der Waals potential

At short distances from the ONF the atoms feel an
attractive force due to the van der Waals and Casimir-
Polder (vdW-CP) potentials. These two potentials can
be smoothly connected in a simple equation written as
[73, 74]

Ug,e(r) = − C
(g,e)
4

r3
(
r + C

(g,e)
4 /C

(g,e)
3

) , (3)

valid for the atomic ground (g) and excited (e) states,
where C3 and C4 are the van der Waals and Casimir
Polder coefficients of the atom interacting with the
nanofiber. Using the procedure described in Ref. [75]
we can obtain the value of these coefficients. For a 87Rb
atom in the 5S1/2 ground level in front of an infinite
half space fused silica medium, with index of refrac-
tion n = 1.45, the van der Waals and Casimir-Polder

coefficients are C
(g)
3 = 4.94 × 10−49 J·m3 and C

(g)
4 =

4.47 × 10−56 J·m4 respectively. For the 5P3/2 excited

state C
(e)
3 = 7.05× 10−49 J·m3 and C

(e)
4 = 12.2× 10−56

J·m4. The vdW-CP potential affects the experimental
measurement in two different ways, by reducing the local
density of atoms and by shifting the atomic levels.

By sending probe pulses to the entire atomic cloud, we
actually measure a spatial average over an ensemble of
atoms with a density distribution ρ(r) at a radius r from
the ONF surface. The vdW-CP attraction accelerates the
atoms reducing the local density around the nanofiber,
all of them initially in the ground state. Assuming only
the radial degree of freedom and thermal equilibrium, a
simple steady state density distribution can be obtained
from the ideal gas law and energy conservation [75], as

ρ(r) ≈ ρ0
1

1− Ug(r)/E
, (4)

where ρ0 and E = 3
2kBT are the atomic density and the

average (kinetic) energy of the atoms far away from the
fiber, with atoms typically at T ≈ 150 µK for our atomic
cloud. By only considering Ug, we neglect the small frac-
tion of atoms in the excited state. Fig. 5 shows an exam-
ple of this distribution (blue dotted line). This approx-
imation agrees with previous analytical results [76], and
differs at most by 30% with Monte Carlo simulations of
atomic trajectories [73].

The vdW-CP potentials also shift the atomic energy
levels, affecting the probability to absorb the otherwise
resonant probe beam as [77]

pabs(r) =
N

1 + s+ 4( δ(r)γ0
)2
, (5)

where N is just a probability normalization factor and
δ(r) = (Ue(r) − Ug(r))/2π~ is the detuning induced by

ρ(
r)
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FIG. 5. Plot of the spatial dependence of ρ(r) (dotted blue),
pabs(r) (dashed green), and α(r) (dotted dashed red) in ar-
bitrary units as a function of the atom-surface distance. The
black solid line is the direct multiplication of these functions
and it represents the distribution over which the spatial aver-
age is taken in a realistic experiment, as stated in Eq. (10).

the ONF, which for us is always red shifted. This dis-
tribution is plotted with a green dashed line in Fig. 5,
neglecting s since we work in the low saturation limit.

B. Coupling into the waveguide

Another factor to consider when measuring the spon-
taneously emitted light into the ONF, is the fact that
atoms that are closer to the nanofiber surface contribute
more to the measured signal than those further away.
This effect is characterized by the emission enhancement
parameter

α(r) =
γwg(r)

γ0
. (6)

This factor is different from the more commonly used
coupling efficiency β(r) = γwg(r)/γ(r) [78]. α(r) is pro-
portional to the total number of photons emitted into
the guided mode, and β(r) is the percentage of photons
emitted into the mode relative to the total number of
emitted photons. The difference between α and β be-
comes clear with the following example: When the cou-
pling efficiency β(r) is very large, close to one, most of
the emitted photons couple to the waveguide. However,
the total number of photons emitted into the waveguide
can still be close to zero if the total spontaneous emis-
sion where to be greatly inhibited, γ � γ0 (which is not
our particular case). The amplitude of the signal mea-
sured through the guided mode is then represented by
the emission enhancement parameter α(r).

An analytical expression for γwg(r) can be found in
the literature [54, 55], and it is proportional to the norm
squared of the evanescent electric field, as expressed in
Eq. (1). For a single mode ONF, the spatial dependence
of each component of the evanescent electric field is given
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by the sum of one or two modified Bessel function of the
second kind Ki(qr

′) of order i = 0, 1, 2; where r′ = r0+r,
and r0 and r are the ONF radius and the radial position

from the ONF surface; q =
√
β2 − k2 is the transverse

component of the wave vector, β is the field propagation
constant in the ONF, and k = 2π/λ is the free space
wavenumber. For our particular case of an ONF with
radius r0 = 230 nm propagating a field of wavelength
λ = 780 nm, q = 0.56k. Provided that qr′ > 1 away from
the ONF surface, we can simplify the calculation with the
asymptotic expansion of Ki(qr

′) ≈
√
π/2qr′e−qr

′
, and

approximate the spatial dependence of γwg(r) as [42]

α(r) =
γwg(r)

γ0
∝ 1

r0 + r
e−2(0.56kr), (7)

approximation that has been tested against exact numer-
ical results with excellent agreement. Any other constant
pre-factor will not contribute to the final average after
the appropriate normalization. Its spatial distribution
is plotted as the red dotted and dashed line in Fig. 5.
For our experimental parameters α ≈ 0.2 at the ONF
surface.

Atomic dipoles aligned along different direction will
couple to the guided mode with different strengths.
We denote the emission enhancement parameter with a
subindex to specify the alignment of the emitting dipole
as αi(r) with i ∈ {z, φ, r}. It can be shown, from the
calculation in Ref. [54], that to a good approximation
αz ≈ αφ ≈ αr/3 for our ONF, independent on the radial
position of the atom. The different coupling strength for
atomic dipoles aligned along r comes from the fact that
the radial component of the guided field is discontinuous
and larger than the others due to the dielectric boundary
conditions.

Figure 5 shows the spatial dependence of each one of
the described distributions that affect the measured av-
erage decay rate. The black solid line in the plot repre-
sents the direct multiplication of them. This effectively
describes the probability of observing a photon emitted
from an atom at a position r into the ONF guided mode.
Noticed that for a given ONF the only experimentally
tunable parameter for the final distribution is the tem-
perature of the atomic cloud. The atomic distribution is
weakly dependent on the temperature in Eq.(4).

C. Averaged signal

The measured signal is an average of atoms decaying
at different rates. If these decay rates are close enough
to each other the measured decay rate is approximately
equal to the spatially averaged decay rate 〈γ〉. As a proof
let us consider that the decay rates differ by an small
quantity ε with a distribution g(ε), then the measured
signal is given by

∫
dεg(ε)e−γ(1+ε)t = e−γt

∫
dεg(ε)e−γεt. (8)

For small ε (and short times) the exponential of order
ε can be expanded in series, averaged, and exponentiate
again, to obtain

e−γ(1+〈ε〉)t = e−〈γ〉t (9)

The measured decay rate 〈γ〉 is a spatial average of the
actual decay rate weighted by the atomic density distri-
bution ρ(r), the excitation probability pabs(r) and the
emission enhancement parameter α(r).

〈γ〉 =

∫
γ(r)α(r)ρ(r)pabs(r)rdr∫
α(r)ρ(r)pabs(r)rdr

. (10)

In the particular case of driving the atoms with light
polarized vertically, there are atomic dipoles oriented
along r and φ (see Fig. 1 (c)). In this case the proper
αi has to be taken into account to obtain the averaged
signal.

VII. CONSIDERATION OF THE MULTI-LEVEL
ATOMIC STRUCTURE

The radiation pattern of a real atom differs from that
of an ideal linear dipole. A multi-level atom (with more
than one Zeeman sub-level mF in the ground state) can
decay to a ground state through a π- or σ-transition,
when ∆mF = 0 or ∆mF = ±1 respectively. In our
case, we consider the quantization axis to be along the
direction of the linear polarization of the probe, and π
and σ are with respect to this quantization axis.

We model the decay rate of a multi-level atom by an
incoherent superposition of linear dipoles [79] that de-
scribes the real radiation pattern. An atom decaying
through a π-transition is described by a linear dipole
aligned along the probe polarization axis. An atom de-
caying through a σ-transition, is considered as a linear
dipole rotating in the plane perpendicular to the probe
polarization axis. The atomic decay rate depends on the
norm squared of the dot product of the electric field and
the dipole polarization (see Eq. (1)). This implies that
the decay rate of a rotating dipole (σ-transition) is the
incoherent sum of the decay rate of two orthogonal linear
dipoles oscillating in the rotation plane.

All the information necessary to calculate the decay
rate of different transitions of a real atom are then cal-
culated from the decay rates of classical linear dipoles,
in the spirit of Fig. 4. To calculate the total decay rate
we need to know the branching ratios of the transitions.
We denote the probability of decay through a π- or σ-
transition as Pπ and Pσ respectively. This depends on
the state preparation of the atoms.

The measured signal will be a spatial average over the
contribution of such classical dipoles, weighted according
to the coupling efficiency of each dipole into the waveg-
uide. Considering this, the spatially averaged decay rate
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V polarized probe H polarized probe

γ/
γ 0

FIG. 6. Normalized decay rates for different polarizations
of the probe with respect to the nanofiber. The red circle
(blue square) corresponds to the measured modified lifetime
of atoms driven by vertically (horizontally) polarized probe
light. The black diamonds are the simultaneously measured
free space decay time for each configuration.The solid black
line is the expected decay rate in free space. The dashed
blue and red lines are the calculated values from the two-level
atom FDTD calculation for a horizontal polarized probe and
a vertically polarized probe respectively. The dotted lines are
the calculated values from the two-level atom mode expansion
calculation. Both calculation are done considering the spatial
average in Eq. (10).

can be obtained using Eqs. (4), (5) and (6), as

〈γ〉π =

∫
(γπ(r)Pπαπ(r) + γσ(r)Pσασ(r)) ρ(r)pabs(r)rdr∫

(Pπαπ(r) + Pσασ(r)) ρ(r)pabs(r)rdr
.

(11)
where γi(r) with i ∈ {π, σ} are obtained from the numer-
ical simulation displayed in Fig. 4. The subscript π in
the spatial average denotes the polarization of the probe
beam that drives the atomic transition.

VIII. COMPARISON BETWEEN THEORY AND
EXPERIMENT

We can compare the measurements with the theoret-
ical simulations calculating the average 〈γ〉/γ0 by intro-
ducing the numerical values of γ(r)/γ0, displayed in Fig
4, into Eq. (10) for a particular ONF radius. It is im-
portant to notice that when we realize the experiment
probing the atoms with horizontally polarized light we
are measuring the spatially averaged decay rate for an
atomic dipole aligned along z. For atoms driven by a
vertically polarized probe pulse we measure a decay rate
that is averaged over the different dipole alignments in
addition to the spatial average (along φ and r as is is
shown in Fig. 1 (c)). This means that we can not sepa-
rately measure the decay rate for dipoles aligned along r
and φ.

Figure 6 shows a comparison between the measure-
ments and the numerical simulations for a two-level atom.
It shows the extracted atomic decay rates for both exper-
imental configurations normalized by the free space one.

The blue lines are the calculated value of the modified de-
cay rate 〈γ〉h/γ0, corresponding to the probe beam hori-
zontally polarized, to be compared with the experimental
value (blue square). The blue dashed line corresponds
to the FDTD calculation and the dotted one the mode
expansion calculation. The red lines are the calculated
values of the modified decay rate 〈γ〉v/γ0, corresponding
to the probe beam vertically polarized, to be compared
with the experimental value (red circle). The red dashed
line corresponds to the FDTD calculation and the dot-
ted one the mode expansion calculation. For each exper-
imental realization we simultaneously measure the mod-
ified atomic decay rate of atoms close to the ONF and
the free space decay rate from atoms in the MOT, where
the great majority of them are away from the nanofiber.
The black diamonds in Fig. 6 are the measurements of
the decay time into free space for the two different polar-
izations. When the measured decay rate into free space
is off by more than few percent of the expected value, be-
cause for example an unexpected fluctuation of the atom
density, the data collected through the ONF mode was
discarded.

For a multilevel atom we have to consider its initial
state. During the period the probe beam is on, the atoms
get pumped into a particular ground state. The steady
state solution for optical pumping the F = 2 → F ′ = 3
transition of 87Rb with linearly polarized light is biased
towards the mF = 0 state (the fractional populations
are approx. 0.04, 0.24, and 0.43 for |mF | equal 2, 1,
and 0 respectively). A π excitation (linearly polarized)
of such initial state, will lead to probability Pπ = 0.55
of emitting π radiation and Pσ = 0.45 of emitting as a
σ radiation (circularly polarized). This effect has to be
taken into account when calculating the averaged decay
rate using Eq. (11). Considering this, neither of our cal-
culations, the FDTD nor the mode expansion, predict
the measured values. They tend to be approximately
equal to the natural decay rate for both polarizations.
Even if the population distribution is different from the
calculated optical pumping values, almost all population
distributions tend towards producing more isotropic dis-
tributions than a linear dipole, as any amount of sigma
polarization reduces the angular contrast.

The fact that the radiation pattern of a real atom is
more isotropic than the one of a linear dipole questions
the idea of having any significant alignment dependent
effect. The spontaneous decay of an atom to a particu-
lar ground states does not depend on the atomic dipole
coherence induced by the excitation, but it depends only
on the branching ratio of the decay of the excited state
(proportional to the square of the Clebsch–Gordan coeffi-
cients). This is an outstanding puzzle: our measurements
are in good agreement with a radiating linear dipole and
in disagreement with the radiation expected for the ac-
tual multi-level atom. We note that the problem of the
radiation of multi-level atoms with degenerate ground
states near systems with a modified environment has not
been thoroughly addressed or experimentally studied.
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IX. DISCUSSION

The numerical calculations have only the ONF radius
and the atomic cloud temperature as adjustable param-
eters to match the experimental results, the former one
showing a stronger effect in the expected decay rate. The
fact that the decay time of an atomic dipole oriented
along the fiber is strongly dependent on the nanofiber ra-
dius, gives us a possible method to measure this radius.
From the error bars in the collected data, and consider-
ing the dependence on the nanofiber radius of the simula-
tions, we determine the radius to be 235±5 nm, based on
the two-level atom FDTD calculation. This value is close
the estimated ONF radius from the fabrication (240 nm
± 20) . Having fixed the nanofiber radius, there are no
free parameters in the calculation of 〈γ〉v/γ0 (red dotted
line in Fig. 6) other than the MOT temperature, set to
be 150 µK.

When we calculate the spatial average, as is explained
in Sec.VI, we make a series of approximations. These in-
clude the van der Waals and Casimir-Polder coefficients
calculated for a dielectric plane instead of a cylinder in
Eq.(3), an equilibrium distribution of the atomic density
in Eq.(4), and the asymptotic expansion of the guided
mode for determining the shape of α(r) in Eq.(6). How-
ever, when we vary all these quantities (C3, C4, ρ, and
α) for 20% of their values, the final averaged decay rate
does not change by more than the estimated error bars
of the measurements.

We can use the physical model presented in this paper
to design other experiments. From Fig. 4 (a)-(c) we can
see that by positioning the atoms, for example at 50 nm
from a 230 nm radius ONF, we can create atomic states
can go from an approximately 40% enhancement of the
spontaneous emission to 20% inhibition. This is possible
by using only the atomic dipole alignment as a tuning
knob for its coupling to the mode of the nanofiber and
the environment. We can also use ONFs that support
higher order modes to allow us to have a better control
of the probe polarization, using the evanescent field of
guided light, which can be used to drive different atomic
dipole orientations, such as purely radial or azimuthal.

The discrepancy between different calculations has yet
to be understood. It is also necessary to develop bet-
ter physical picture that explains the measured behavior
for a real multi-level atom near an ONF. This problem
bring fundamental questions that need to be revised and
systematically study in the future, crucial for any future
application of multi-level atoms coupled to optical waveg-

uides.

X. CONCLUSION

We have experimentally observed the modification of
the rate of spontaneous emission of atoms near an op-
tical nanofiber and its dependence on the atomic dipole
alignment. The experiment is implemented by placing
an ONF at the center of a cold atomic cloud. A lin-
early polarized resonant probe pulse drives the atomic
dipoles in a particular alignment. We measured the time
distribution of spontaneously emitted photons into the
ONF to obtain the atomic lifetime. The modification of
the atomic lifetime is measured for different probe polar-
izations in order to show the dependence on the atomic
dipole alignment of the spontaneous emission rate.

A physical model of the experiment is also presented an
used to perform a numerical calculation of the modifica-
tion of the spontaneous emission rate. This shows a good
quantitative agreement with the experimental measure-
ments considering two-level atoms. Some basic physical
aspect remain elusive, regarding the multi-level structure
of a real atom. This work clearly demonstrates that there
are open problems that need further investigation - a per-
haps surprising conclusion given the fundamental nature
of the simple problem of an atom radiating near a dielec-
tric. A better understanding of the problem will allow
us to extend this knowledge to more general cases. With
this knowledge of how atomic properties change under
different conditions, we can start implementing a new
toolbox for precisely manipulating and controlling atoms
coupled to optical waveguides.
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V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).

[14] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. OShea,
P. Schneeweiss, J. Volz, and A. Rauschenbeutel, Physical
Review X 5, 041036 (2015).

[15] Y. Shen, M. Bradford, and J.-T. Shen, Physical Review
Letters 107, 173902 (2011).

[16] D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D.
Lukin, Nature Physics 3, 807 (2007).

[17] B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and
J. Laurat, Physical Review Letters 114, 180503 (2015).

[18] C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and
A. Rauschenbeutel, Optica 2, 353 (2015).

[19] D. E. Jones, J. D. Franson, and T. B. Pittman, Physical
Review A 92, 043806 (2015).

[20] R. Kumar, V. Gokhroo, and S. Nic Chormaic, New Jour-
nal of Physics 17, 123012 (2015).

[21] E. Fermi, Nuclear Physics (The University of Chicago
Press, 1949).

[22] E. M. Purcell, Physical Review 69, 674 (1946).
[23] F. Le Kien and A. Rauschenbeutel, Physical Review A

93, 043828 (2016).
[24] V. Bordo, Journal of the Optical Society of America B

29, 1799 (2012).
[25] J. Barthes, G. Colas des Francs, A. Bouhelier, J.-C. Wee-

ber, and A. Dereux, Physical Review B 84, 073403
(2011).

[26] P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman,
K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Na-
ture 430, 654 (2004).

[27] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang,
T. Nakaoka, Y. Arakawa, Y. Yamamoto, and
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[76] G. Sagué, E. Vetsch, W. Alt, D. Meschede, and
A. Rauschenbeutel, Physical Review Letters 99, 163602
(2007).

[77] C. J. Foot, Atomic Physics (Oxford University Press,
2005).

[78] Q. Quan, I. Bulu, and M. Lončar, Physical Review A
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Chapter 4: Atom-atom interaction mediated by an ONF

ONF guided modes create a preferential channel for the atomic radiation field.

This is a virtually lossless channel that mediates the interaction between distant

atoms along the nanofiber, even when they are not trapped. This presents a novel

realization of many-body states in one-dimension with, so called, infinite-range in-

teraction.

Infinite-range interactions are a newly experimentally accessible physical phe-

nomena allowed by interfacing atoms with the guided mode of an optical waveguide.

Photons emitted from one atom into the waveguide can propagate unaltered and

interact with the same coupling strength with all the other atoms along the line.

The only way that the photon can leave the waveguide is if it were scattered out by

an atom. The relevant parameter for infinite-range interactions is the ratio between

the rate of emission into the waveguide and out of the waveguide. This is the def-

inition of cooperativity, as defined in Chap.1. High cooperativity means that the

system is effectively one dimensional, where every excitation in the system has to

interact with all the atoms, because it does not have anywhere else to go. Sec. 4.1

presents an introduction to this effect.

Systems interacting at infinite-range lead to interesting features that are elu-
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sive, or even not accessible, for more than one dimension. One particular example

is self-organization. When an ensemble of atoms interact strongly enough with each

other through the common guided mode they tend to self-organize, as in a crystal.

Provided with excitations, atoms go through multiple scattering event of photons in

both directions of the waveguide. The spontaneous emission provides a dissipation

mechanisms that leads the system to an equilibrium where it stays at its energy

minimum. This is briefly discussed in Sec. 4.2.

Another fascinating consequence of infinite-range interaction is that they allow

macroscopically separated collective atomic states. Collective states are the states

of a composite system that evolve as a whole with dynamics that differs from that

of the individual subsystems, as it is discussed in Sec. 4.3. These states, while en-

tangled, differ from just entangled states in their dynamics. Interaction between the

subsystems are necessary to create a collective state. Since separated subsystems

can interact with each other through the waveguide along distances of many wave-

lengths, we can in principle create a system that is macroscopically delocalized. We

will present a way to observe this kind of system in Sec. 4.4, by using an ONF and

through the observation of superradiance, the main result of this chapter. Finally,

in Sec. 4.5 we discuss how how ONFs can help us to study subradiance, an effect

that is otherwise challenging to observe.
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4.1 Infinite-range interactions

When two atoms are in free-space, they interact with each other through

a dipolar interaction mediated by the propagating electromagnetic field. This is

like two cross-talking antennae. Because the radiated field decays inversely with

distance, when the atoms are more than a wavelength apart their interaction quickly

becomes negligible. Free-space atom-atom interactions are long range compared to

the size of the atoms, but remain short range compared to size of a usual atomic

ensemble. This implies that in a cold atomic gas, or in a lattice of atoms, the

atom-atom interaction usually occurs among nearest neighbors.

The electromagnetic field that propagates in a waveguide does not present this

problem, because being confined, it does not decay with distance. When two atoms

can radiate into the guided mode of an ideal waveguide, the mediating field does

not decrease its amplitude with distance, with a sinusoidal spatial modulated. This

allows coupling of atoms at infinite range. When there are more than two atoms

coupled to the same waveguide, they can all interact with each other with the same

coupling strength. The constraint of nearest neighbor interaction mentioned above

are removed. This could in principle create novel many-body systems where all the

subsystems can identically couple to each other.

Although some current experiments, such as those using ONF and photonic

waveguides, have the capability to observe infinite-range interaction between distant

subsystems, it has not being experimentally studied. The observation of this effect

is the main goal of Sec. 4.4. There have been a few theoretical works considering
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the implication of infinite-range interaction [56, 109, 110].

4.2 Self-Organization of atoms around an ONF

An interesting system to study is the collective off-resonant scattering of co-

herent light by a cold gas in a one dimensional configuration [111]. The scattering

into a one dimensional waveguide induces infinite-range interactions. Via interfer-

ence of light, scattered by different atoms, that can propagate through the ONF, it

is possible to observe phase transitions of the atomic spatial order as a function of

the external pump intensity. This is evidence of self-organization: a crystallization

of the atomic ensemble in a periodic array, similar to Ref. [112].

Similar studies have been carried for slightly different nanophotonic structures

and under different conditions[109, 113, 114]. In particular, ONFs could in principle

provide the platform necessary to have coupling among all the atoms in the system,

leading to spontaneous organization. For a detailed discussion about the role of

long-range interaction in self-organized systems see Ref.[115].

4.3 Single excitation collective states

Before going into the details of the observation of collective states (super and

subradiance) in an ONF, we introduce the theoretical framework.

The master equation that describes the dynamics of an ensemble of atomic

dipoles coupled to a single common mode is given by [116]

ρ̇ = −i [Hdd, ρ] + Ldd[ρ]. (4.1)
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where ρ is the density matrix of the atomic ensemble, and the Hamiltonian and

Lindblad super operator are

Hdd =
1

2

∑

i,j

~Ωijσ
†
iσj, (4.2)

Ldd[ρ] =
1

2

∑

i,j

~γij
(

2σjρσ
†
i − σ†iσjρ− ρσ†iσj

)
, (4.3)

with σi (σ†i ) being the atomic lowering (raising) operator for an excitation of the

i-th atom.

The non-dissipative or dispersive evolution of the system is given by the fre-

quencies Ωij, often call dipole-dipole coupling. Ωij is the contribution of the i-th

atom to the energy shift of the j-th atom, and vice versa. The dissipative evolution

of the system is given by the decay rates γij. γij is the contribution of the i-th atom

to the decay rate of the j-th atom, and vice versa. The effect of Ωij and γij on the

dynamic of the system is ultimately determined by the atomic dipoles, as expressed

in Eqs. (4.2) and (4.3) respectively.

For atoms interacting in free-space, Ωij and γij are proportional to the real

and imaginary part – respectively – of the complex electric field radiated by a linear

dipole [116]

Ωij = γ0
3

4

{
−[1− (d̂ · r̂ij)2]

cos ξij
ξij

+ [1− 3(d̂ · r̂ij)2]

(
sin ξij
ξ2
ij

+
cos ξij
ξ3
ij

)}
(4.4)

γij = γ0
3

2

{
−[1− (d̂ · r̂ij)2]

sin ξij
ξij

+ [1− 3(d̂ · r̂ij)2]

(
cos ξij
ξ2
ij

− sin ξij
ξ3
ij

)}
(4.5)

where ξij = krij is proportional to the distance rij between the i-th and j-th atom

and k is the norm of the wavevector.

Notice that the coupling strength between two atoms decays inversely with
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their separation, imposing a limit on how far the interacting atoms have to be. In

addition, the dispersive term Ωij diverges as the atoms get closer, producing a large

frequency shift [117]. This does not present an issue for only two interacting atoms.

However, when more than two atoms are close together, this term creates dephasing

between the interacting dipoles, destroying the collective state. These two effects

combined impose a fundamental limit in the number of atoms that can be in a

collective state interacting through free-space, since they would all have to be closer

than a wavelength, but not too close.

This scenario changes when using waveguides to confine the electromagnetic

field in one dimension. If the coupling rate of a single atom into the waveguide is γ1D

and into modes radiated out of the waveguide is γrad, the dispersive and dissipative

term of the master equation, ignoring direct (non-guided) coupling, are given by [56]

Ωij = γ1D sin (k |zi − zj|) ; (4.6)

γij = γradδij + γ1D cos (k |zi − zj|) (4.7)

where zi is the position of the i-th atom along the waveguide, and δij is a Kronecker

delta. γii = γrad + γ1D is the total decay rate of a single atom, γtot.

Atomic dipoles interacting through a waveguide do not have the constraint

present in the free-space case. The dispersive term Ωij does not diverge, and atoms

interact at virtually infinite distances.

We are interested in collective states in the weak excitation limit, for which we

follow the mathematical treatment in Ref. [118]. Let us consider only one excitation
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in a system composed of N atoms, represented by the state

|Ψ〉 =
∑

k

ak(t)|g1g2 · · · gN〉|1k〉+
N∑

j=1

bj(t)|g1g2 · · · ej · · · gN〉|0〉 (4.8)

where the sum over k is done over modes of the electromagnetic field where the

excitation decays. gi and ei are the ground and excited state of the i-th atom. The

normalization of the states imposes that
∑

k |ak(t)|2 +
∑N

j=1 |bj(t)|2 = 1 at all time

t.

Assuming that we start the evolution of the system with one excitation in the

atoms and none in the field, i.e. ak(0) = 0, we can write the Schrödinger equation

in the Markov approximation for the coefficients bi(t) as

ḃi(t) = −
N∑

j=1

Λijbj(t) (4.9)

where Λij = γij − iΩij captures the full dynamics of the system.

We can solve the set of equations (4.9) in matrix form as

Ḃ = −ΛB, (4.10)

where B is a vector with the bj(t) coefficients as entries and Λ is a symmetric matrix

with the values of Λij as entries. Considering the system to be in an eigenstate of

Λ with eigenvalue λi, we obtain

Bi(t) = e−λitBi(0). (4.11)

where Bi(t) is an eigenvector that gives the eigenstate of the system.

The eigenvectors of Eq. (4.10) represent the collective states of the system,

with evolution governed by λi. The imaginary part of λi is proportional to the
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energy shift of the state i-th eigenstate. The system decays with a rate given by the

real part of λi. If the real part of a particular λi is larger or smaller than γtot we

call it a superradiant or a subradiant state respectively.

4.4 Super- and sub-radiance mediated by an ONF

We observe infinite-range interaction by creating and measuring a collective

atomic state of atoms along an ONF. These type of states are enabled by interacting

subsystems. If they interact constructively, they decay faster. If they interact de-

structively, they decay slower. We call these two behaviors super- and sub-radiance

respectively. The observation of a super or a subradiant behavior is a signature of

the interaction among at least two atoms out of the ensemble. If we observe this ef-

fect from atoms separated further than a wavelength, coupled to each other through

the ONF, there is evidence of infinite-range interactions.

Collective effects become readily visible for a large enough coupling efficiency,

with the figure of merit being the cooperativity (see Eqs. (1.12) and (1.3) ). To

achieve high cooperativity we need to place the atoms as close as possible to the

ONF. We do so using the following pumping scheme on 87Rb atoms: All the atoms

in the MOT are prepared in the F = 1 hyperfine state. We send a pump beam

thorough the ONF resonant with the F = 1→ F = 2 transition, to pump into the

F = 2 state only the atoms that interact with the ONF guided mode. The position of

the pumped atoms can be selected by detuning the pump laser to the red, such that

atoms at a particular distance from the ONF experience a van der Waals shift (see
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Sec. 3.1 for details) that makes them resonant with the pump beam. In particular,

we shift the pump frequency by 15 MHz, pumping those atoms that are in average

30 nm away from the ONF surface. At this position we reach an efficiency β ∼0.13.

This allows atom-atom interactions mediated by the nanofiber. With this scheme,

we see evidence for infinite-range interactions through superradiance.

Superradiance mediated by infinite-range interaction presents another advan-

tage over free space superradiance. This is related to the dispersive part of the

interaction, as explained in the previous section. When atoms interact, there are

two collective effects that take place, dissipation and dispersion [117]. The dissi-

pative part of interaction is the one related to the decay rate of the system (super

or subradiance). The dispersive part is related to the spectrum of the system. For

atoms interacting in free space, the dispersive part diverges as they get closer. This

imposes a limit for the observation of collective states of many atoms in free space.

Infinite-range interactions solve this. The dispersive part of the interaction does not

diverge, making possible, as a future field of study, the observation of a collective

state of thousands of atoms along an ONF. In this scenario, a possible ultimate

limit is the number of atoms that can be placed within the coherence length of a

spontaneously emitted photon.

Here we present our work on the observation of infinite-range interaction in

an ONF.
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Super- and sub-radiance reveal infinite-range
interactions through a nanofiber
P. Solano1, P. Barberis-Blostein1,2, F. K. Fatemi3, L. A. Orozco 1, and S. L. Rolston1
1Joint Quantum Institute. Department of Physics and NIST, University of Mary-
land, College Park, MD 20742, USA. 2Instituto de Investigaciones en Matemáticas
Aplicadas y en Sistemas, Universidad Nacional Autónoma de México , Ciudad Uni-
versitaria, 04510, DF, México. 3Army Research Laboratory, Adelphi, MD 20783,
USA.

Atoms interact with each other through the electromag-
netic field, creating collective states that can radiate
faster or slower than a single atom, i.e. super- and sub-
radiance1, 2. The generation and control of such states by
engineering the dipolar interactions between atoms can
enable new tools for atomic-based technologies3. Atom-
atom interactions in free space are limited in range, since
the amplitude of the radiated field decreases inversely
with distance. When the field is confined to one di-
mension it propagates unaltered, allowing infinite-range
interactions4. Here we present the first report of infinite-
range interactions between atomic dipoles mediated by
an optical waveguide. This is evidenced by the collective
radiative decay of a single-photon distributed between
distant atoms. We use cold 87Rb atoms in the vicin-
ity of a single-mode optical nanofiber (ONF)5 that co-
herently exchange evanescently coupled photons through
the ONF mode. In particular, we observe super-radiance
of a few atoms separated by hundreds of resonant wave-
lengths. This effect is not possible for atoms separated by
more than a wavelength interacting through free space.
The same platform allows us to measure sub-radiance, a
rarely observed effect6, presenting a novel tool for quan-
tum optics. This result constitutes a proof-of-principle for
collective behavior of macroscopically delocalized atomic
states, a crucial element for new proposals in quantum
information7, 8 and many-body physics9, 10. Given the ap-
plication of one-dimensional waveguides in photonic-based
quantum technologies11–21, we envision infinite-range in-
teractions as the natural next step towards interconnect-
ing quantum systems on scales suitable for practical ap-
plications.

A new class of quantum technologies exploits the interfaces
between propagating photons and cold atoms. Recent realiza-
tions using nanophotonic platforms include optical isolators12,
switches13–15, memories20,21, and reflectors22,23. These devices
guide the electromagnetic field, a feature that could allow us to
engineer and control a collective time evolution of macroscopically
separated subsystems. States that evolve as a whole with dynam-
ics different to that of the independent subsystems, are called col-
lective state. These states emerge from atoms interacting via a
common mode of the electromagnetic field.
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Figure 1 | (a) Schematic of an ONF as a platform for generating
single-photon collective atomic states, excited from the side by a
weak probe of polarization V or H. When two atoms are close to-
gether the dipolar interaction is mostly mediated by the modes of
the electromagnetic field radiating outside the nanofiber. This is a
limited-range interaction that decays inversely with distance. When
the atoms are widely separated, the guided mode of an ideal ONF
mediates the interaction for arbitrary distances. (b) and (c) show
the atom-atom interaction rate γ12 (see Eq (4)) experienced by an
atom around the fiber given another atom at the position denoted by
the white cross (see Methods for the details of the calculation). Its
amplitude is shown for a longitudinal and a transversal cut (specified
by dashed black lines). Both plots share the color scale, but in (b) the
interaction rate is normalized by the single atom total decay rate γ0
and in (c) by the decay rate into the guided mode γ1D. Along the z-
axis the interaction among atoms through free space radiation modes
decreases as γ(rad)

12 ∝ sin(k|∆z|)/k∆z (with k being the wavenumber
and ∆z the separation between two atoms). The infinite interaction
through the ONF guided mode changes as γ(1D)

12 ∝ cos(k∆z)cos(∆φ)
(with ∆φ the angle difference in cylindrical coordinates). The wave-
length λ sets the scale of the graphic.

For an ensemble of N two level atoms, in the single excitation
limit,

|Ψj(t)〉 ∝ e−
1
2 (γj+iΩj)t

N∑

k=1

cjk|g1g2 · · · ek · · · gN 〉 (1)

represents the j-th collective state of the system, where γj and
Ωj are its collective decay and frequency shift respectively, and∑N

k=1 |cjk|
2e−γjt is the probability of having an excitation in the

atoms. When γj is larger (shorter) than the natural radiative
decay time γ0, the system is super- (sub-) radiant1. In the sim-
plest case, collective states emerge when all the atoms lie within1



a wavelength24. By externally exciting the atoms, super-radiant
states are readily observed (see e.g. Goban et al.19), but because
sub-radiant states are decoupled from the electromagnetic vacuum
field, they are challenging to produce6.

The master equation that describes the dynamic of an ensemble
of atomic dipoles, of density matrix ρ, coupled through a single
common electromagnetic mode is given by25

ρ̇ = −i [Heff, ρ] + L[ρ]. (2)

The effective Hamiltonian Heff of the dipolar interaction between
atoms and the Lindbland super operator L in Eq. (2) modify two
atomic properties: the resonance frequency and the spontaneous
decay rate respectively. They are given by

Heff = 1
2
∑

i,j

~Ωijσ†i σj , (3)

L[ρ] = 1
2
∑

i,j

~γij
(
2σjρσ†i − σ†i σjρ− ρσ†i σj

)
, (4)

with σi (σ†i ) being the atomic lowering (raising) operator for an
excitation of the i-th atom. Ωij is the rate of photons exchanged
between atoms and γij is the coupling term responsible for collec-
tive radiative decays, where γii = γ0. The decay of an excitation
in such a system, that leads to a collective state as in Eq. (1),
depends on the coupling amplitudes and relative phase between
the atoms given by γij .

When atoms are far apart in free space their interaction is
mediated by a propagating field with an expanding wavefront, and
a separation of few wavelengths is enough to make the interaction
negligible. As atoms get closer together, Ωij in Eq. (3) diverges,
reducing the coherence of a system with more than two atoms.
These constraints can be circumvented by using longer wavelengths
with larger atomic-dipole moments, such as Rydberg atoms26, or
long-range phonon modes, implemented with trapped ions27,28.
However, these techniques are limited to subwavelength distances.

Waveguides offer an alternative by confining the mediating
field. The guided field propagates unaltered, facilitating the cou-
pling of atoms separated by many wavelengths (see Fig. 1). Dipole-
dipole interactions, given by Ωij , are finite for atoms along the
waveguide, removing a practical limit for creating superadiant
states of a large number of atoms. Such a system has been imple-
mented with superconducting waveguides and two artificial atoms
one wavelength apart29, but has not been realized for many atoms
at multi-wavelength distances in the optical regime.

We present the implementation of collective atomic states
through infinite-range interactions via a one-dimensional nanopho-
tonic waveguide. We use a few atoms evanescently coupled to
a single-mode optical nanofiber (ONF)5. We observe super- and
sub-radiant radiative decays of a single excitation in the system,
evidencing collective behavior.

Atoms around the ONF interact at short and long distances
(see Fig 1 (a)), the latter mediated by the ONF guided mode. The
dipolar interaction that leads to a collective decay, is separated into
two contributions of the electromagnetic field: from modes radi-
ating outside the ONF, γ(rad)

12 , and from the guided mode, γ(1D)
12

25

(see Fig. 1 (b) and (c)).
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Figure 2 | (a) Normalized rate of photons detected through the ONF
mode (blue circles in a logarithmic scale) as a function of time in units
of natural lifetime (τ0 = 1/γ0 = 26.24 ns) with 5 ns bins. The signal
is taken after a probe beam polarized along the nanofiber turns off. In
this realization OD = 0.66±0.05. The individual statistical error bars
are not plotted but they are taken into account for the normalized
residuals in (b). We see two distinct slopes (red and green), at short
and long times. The initial slope (red) deviates towards decay rates
faster than γ0, a signature of super-radiance. The gray dotted line
is the natural decay rate, for comparison. The second slope (green)
comes from the natural post-selection of purely sub-radiant states.
The red dashed (green dashed) line is the best fit to a pure exponential
decay of the initial (final) decay. The decay rate of the fit at short
times is 1.10 ± 0.02 γ0, and 0.13 ± 0.01 γ0 for the fit a longer times,
with one-sigma error. The one-sigma fractional systematic errors are
±0.01. The full description of the measured temporal evolution of the
system involves averaging over many different decay rates through
Monte Carlo methods (explained in Methods). The solid black line is
a simulation of 7 atoms along the ONF, with reduced χ2 of 1.60. The
inset shows two different decay signals from an excitation driving the
atoms with light polarized along (green rectangles) and perpendicular
(red triangles) to the ONF for 25 ns bins. When the driving field is
polarized along the ONF we observe super and sub-radiance, and
when it is polarized perpendicular to the ONF the super-radiance
increases and the sub-radiance decreases. This feature is qualitatively
captured by the theoretical model. (b) The red circles, green circles,
and black diamonds are the normalized residuals of the exponential
fits to the initial decay, final decay, and the theoretical model.

We overlap a cold atomic cloud of 87Rb atoms from a magneto-
optical trap (MOT) with a 240 nm radius ONF. This ONF is single
mode at the D2 resonant wavelength of 780 nm. After the MOT
is turned off, the atoms form a cold thermal gas around the ONF.
They are prepared in the F = 1 ground level by an external free
propagating beam. A repumper beam driving the F = 1→ F = 2
transition propagates through the nanofiber, leaving in the F = 2
ground state only atoms that interact with the ONF guided mode.
By detuning the repumper below resonance we address atoms near
the nanofiber (whose levels have been shifted by van der Waals2



interactions) such that the atomic density distribution peaks at
∼ 30 nm away from the surface. A weak free space probe pulse,
propagating perpendicular to the fiber, excites atoms for 50 ns
using the F = 2 → F ′ = 3 transition. After the probe turns off
(extinction ratio better than 8× 103 in 20 ns), we collect photons
spontaneously emitted into the ONF mode to measure the decay
time using time-correlated single-photon counting.

Collective states can be tailored by positioning the atoms in a
particular arrangement. This kind of control has been challenging
to implement for atoms trapped close enough to the ONF (tens of
nanometers) to ensure significant mode coupling. However, collec-
tive states are still observed when atoms from a MOT are free to
go near the ONF. Their random positioning leads to probabilis-
tic super- or sub-radiant states on each experimental realization.
Sub-radiant states have lifetimes much longer than most other pro-
cesses, favoring their observation. Super-radiance can be measured
as an enhanced decay rate at short times. Both effects can provide
quantitative experimental evidence of collective states.

Figure 2 shows a typical signal of the atomic decay as mea-
sured through the ONF. Its time dependence can be described by
two distinct exponential decays. The slow decay (green dashed
line in Fig. 2 (a)) corresponds to an average of sub-radiant decays
due to pairs of atoms located within a wavelength, i.e. free space
interaction (Fig. 1 (b)). Infinite-range interactions also produce
sub-radiant decay rates. However, these events are obscured by the
dominant signal of slower decays produced from free space interac-
tions. In our case γ1D ≈ 0.13γ0, so sub-radiance from infinite-range
interactions is limited to γ0 − γ1D ≈ 0.87γ0. This is a factor of six
faster than the observed sub-radiant rates. Sub-radiance of atoms
interacting in free space has been observed in a very optically dense
cloud of atoms 6, but here we observe it for optical densities (OD)
as small as 0.3. The fast decay rate (red dashed line in Fig. 2
(a)) is larger than the natural decay rate, showing the presence of
super-radiant initial states.

A full description of the temporal evolution of the entire data
sample requires numerical (Monte Carlo) methods, as the solid
black line in Fig. 2 shows. We use two free parameters for this
simulation: the average number of atoms (N) and the initial atomic
dipole induced by the probe pulse. Once the amplitude of the
induced dipoles is found, the same value is used to predict the
behavior for different data sets with different N with equally good
agreement, allowing for variations of the background up to one-
sigma. The discrepancy between simulation and data (see Fig. 2
(b) between 7 and 15 τ0) could come from otherwise longer living
subradiant state that get prematurely destroyed because an atoms
fall onto the ONF, emitting the excitation into guided mode. The
initial state preparation –the polarization of the incoming pulse
that produces the collective one-photon state– can favor super- or
sub-radiant states, as the inset of Fig. 2 shows.

An important difference between sub- and super-radiant decay
rates in ONF is that the latter increases as a function of N . We
can vary N from one to six by changing the MOT density, and
quantify it through the OD of the ONF mode. neffOD = Nγ1D/γ0,
where neff is the mode effective refractive index, and in our case
neff ≈ 1.15. We measure the transmission spectrum through the
ONF to extract the OD. The decay rate increases with N , as
shown by the blue circles in Fig. 3, indicating super-radiance. The
gray region represents the confidence bands of a linear fit to the
data showing a linear dependence of the super-radiant decay rate
for increasing N . The theoretical model implemented for the fit
shown in Fig. 2 (solid black line) also predicts a linear dependence

on N of the decay rate γ at short times. The red dashed line in
Fig. 3 shows this prediction, corroborating the experiment.

The average spacing between atoms is larger than a wavelength
for most of the realizations, meaning that infinite-range interac-
tions are always present. However, to provide an unambiguous
proof of infinite-range interactions, we split the atomic cloud in
two (see inset of Fig. 3). We see that two atomic clouds separated
by 400 wavelengths present the same super-radiant collective be-
havior as a function of the OD as a single atomic cloud. This shows
that the relevant parameter is the total OD (or N) along the ONF
mode, regardless the separation between atoms.
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Figure 3 | Fast decay rates as a function of the OD (lower abscissa) and
N (upper abscissa) measured through the ONF guided mode. The
blue circles correspond to the signals from a single cloud of atoms. We
split the atomic cloud in two, as the inset shows. The light and dark
green diamonds, and the red square correspond to the right, left, and
the combination of both atomic clouds respectively. The systematic
errors (not shown) are estimated to be 1% for the decay rates and
smaller than 20% for the atom number. The gray region represent
the one-sigma confidence band of a linear fit to the data. The red
dashed line is the theoretical prediction, with a confidence interval
set by a fractional error of 1%. The curve goes below γ/γ0 = 1
because the natural decay rate is modified given the geometry of
the ONF and the alignment of the atomic dipoles (Purcell effect)
30. The top of the inset shows in black and white a fluorescence
image of a split MOT. The white dotted line represents the ONF
location. The fluorescence signal of the split MOT along the nanofiber
is plotted as a function of position. The light (dark) green dashed
lines is the intensity distribution of the right (left) atomic cloud when
the other one is blocked. The solid red line is the intensity distribution
when both clouds are present. The separation between the center of
both clouds is 318 ±1 µm, given by standard error of the mean of a
Gaussian fit. This distance is equivalent to 408 wavelengths.

Optically guided modes can be used to mediate atom-atom in-3



teractions, creating macroscopically delocalized collective atomic
states. We use the super-radiant behavior of distant atoms as evi-
dence of infinite-range interaction, but other interesting collective
quantum properties remain to be tested. The practical limits of
infinite-range interactions are an open question, since in principle
optical fibers can be easily connected and rerouted along several
meters. An intriguing next step is the study of quantum systems
beyond the Markov approximation, coupling atoms at distance
greater than what light travels in an atomic lifetime. Moreover,
by achieving fine control on the positioning of the interacting par-
ticles, and/or using the directional coupling produced by chiral
atom-light interaction 16, one can engineer desired states tailored
to address specific applications. The implementation of infinite-
range interactions opens new possibilities for quantum technologies
and many-body physics.
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Methods
Experimental methods A tapered single mode ONF, with waist
of 240±20 nm radius and 7 mm length, is inside an ultrahigh vac-
uum (UHV) chamber, where it overlaps with a cloud of cold 87Rb
atoms (less than half a millimeter width) created from a magneto
optical trap (MOT). The MOT is loaded from a background gas
produced by a 87Rb dispenser. Acousto optic modulators (AOMs)
control the amplitude and frequencies of the MOT beams. After
the atomic cloud loading reaches steady state, the MOT beams
are extinguished. A free space propagating depump beam, res-
onant with the F = 2 → F ′ = 2 transition (150 µs duration)
prepares all atoms in the cloud in the F = 1 ground state. A 0.4
nW fiber-repump beam, detuned below resonance by 15 MHz to
the F = 1→ F ′ = 2 transition, propagates through the ONF dur-
ing the entire cycle. It pumps back to the F = 2 ground state only
those atoms close enough to the ONF to interact with the guided
mode. This detuning repumps only those atoms close enough to
the ONF surface to experience an energy shift due to the van der
Waals interaction with the dielectric body. This produces a narrow
density distribution of atoms of 5 nm width centered around 30 nm
away from the surface. We wait 300 µs until the AOMs reach max-
imum extinction. The atomic cloud free falls and expands around
the ONF for 2.5 ms creating a cold thermal gas (approx. 150 µK),
where each atom interacts with the nanofiber mode for approxi-
mately 1.5 µs31. The atomic density reduction due to the cloud
expansion limits the probing time of the cycle. The atoms are ex-
cited by pulses of a weak probe beam incident perpendicularly to

the nanofiber (see Fig. 1 (a)) and linearly polarized along the ONF
for the data set shown in Fig. 3 . The pulses are resonant with
the F = 2 → F ′ = 3 transition of the D2 line and created with
a double-passed Pockels cell (Conoptics 350-160), with a pulse ex-
tinction ratio of 1:8000 in 20 ns. The on-off stage of the light pulses
is controlled with an electronic pulse generator (Stanford Research
Systems DG645). The probe power is kept low, i.e. saturation
parameter s < 0.1, to ensure a single photon excitation while stay-
ing in the limit of low-excitation and reduce photon pileup effects.
Only those atoms that interact with the ONF guided mode are in
the F = 2 ground state and will be excited by the probe beam.
During the probing time we send a train of 50 ns probe pulses every
1 µs. The probe is a 7 mm 1/e2 diameter collimated beam. After
2 ms of probing (approx. 2000 pulses) the probe beam is turned
off and the MOT beams are turned back on. During the probing
time the atomic density remains constant. We wait 20 ms after the
MOT reloads and repeat the cycle. The average acquisition time
for an experimental realization is around 5 hours, giving a total of
about 1×109 probe pulses. The photons emitted into the nanofiber
and those emitted into free space are independently collected with
avalanche photodiodes (APDs, Laser Components COUNT-250C-
FC, with less than 250 dark counts per second). The TTL pulses
created from photons detected by APD are processed with a PC
time-stamp card (Becker and Hickl DPC-230) and time stamped
relative to a trigger signal coming from the pulse generator. We
use time-correlated single-photon counting32 to extract the decay
rate of a single excitation in the system, eliminating after-pulsing
events from the record.

When atoms are around the nanofiber, they tend to adhere due
to van der Waals forces. After a few seconds of having the ONF
exposed to rubidium atoms it gets coated, suppressing light prop-
agation. To prevent this, we use 500 µW of 750 nm blue-detuned
light (Coherent Ti:Saph 899) during the MOT-on stage to create
a repulsive potential that keeps the atoms away from the ONF
surface. This is intense enough to heat the ONF and accelerate
the atomic desorption from the surface. The blue-detuned beam
is turned off at the same time as the MOT beams, so the probed
atoms are free to get close to the nanofiber.

Photons from the probe beam can be scattered multiple times
by the atoms producing a signal that looks like a long decay, an
effect known as radiation trapping. This effect can obscure sub-
radiant signals. However, the small ODs involved in the exper-
iment allow us to neglect contributions from radiation trapping.
We confirm this assumption by observing the same temporal evo-
lution of the signal at constant OD for several detunings of the
probe beam. 6

The atomic lifetime can also be altered by modification of the
electromagnetic environment of the atoms in the presence of a
ONF, i.e. the Purcell effect. However this effect is characterized
separately30 and well understood. More importantly, it does not
depend on the number of atoms, in contrast with the super-radiant
behavior.

Further evidence of collective states can be found in the reso-
nance spectrum of the system (see Eqs. (2) and (3)). The disper-
sive part of the interaction modifies the resonance frequencies of
the system, due to avoiding crossing of otherwise degenerate levels.
This effect is in principle visible in the transmission spectrum. In
our particular case the frequency splitting is a small percentage
of the linewidth. Broadening mechanisms and other systematic
errors prevent us from clearly observing such signal. However, a
line-shape dependence on N can be inferred from the statistical4



analysis of the fit of the spectrum to a Lorentzian. This effect
might enable the exploration of features of collective states in the
spectral domain.

ONFs can provide chiral atom-light coupling16. Even though
this is a promising feature of the platform, it requires a particular
positioning of the atoms and a preparation of their internal-state.
This first exploration of infinite-rage interactions involves detecting
only on one end of the ONF and azimuthally averaging the atomic
position, preventing studies of chiral effects that we do not consider
crucial to our measurements.
Theoretical model We follow the work of Svidzinsky and
Chang33 to implement the theoretical simulations of the experi-
ment. Consider the Hamiltonian of N atoms interacting with an
electromagnetic field in the rotating-wave approximation

Ĥint = −
∑

k

N∑

j=1

~Gkj
[
σ̂j â
†
ke

i(ω−ω0)t + h.c.
]

(5)

where σ̂j is the lowering operator for atom j; â†k is the photon
creation operator in the mode k-th; ω0 and ω are the frequencies
of atomic resonance and k-th mode of the field respectively. This
is a general expression for the Hamiltonian, which leads to the
master equation in Eq. (2) after some approximations. The sum
on j is done over the atoms and the sum on k goes over the elec-
tromagnetic field modes, guided into the nanofiber and radiated
outside. These modes can be found in the work of Le Kien et al.25

The sum over the guided modes is
∑

µ
=
∑

f,p

∫∞
0 dω, where f

and p are the propagation direction and polarization in the circu-
lar basis (plus or minus) of the guided mode respectively, and µ
stands for modes with different parameters (ω, f, p). The sum over
the radiated modes is

∑
ν

=
∑

m,p

∫∞
0 dω

∫ k
−k dβ; where m is the

mode order, k is the wavenumber, β is the projection of the wave
vector along the fiber or propagation constant, and ν stands for
modes with different parameters (ω, β,m, p). Then the total sum
is
∑

k
=
∑

µ
+
∑

ν
. The electromagnetic field modes and their

relative coupling strength have been previously studied25. The
coupling frequencies Gkj for the guided and radiated modes can
be written as

Gµj =
√

ωβ′

4πε0~
[dj · e(µ)(rj , φj)]ei(fβzj+pφj) (6)

Gνj =
√

ω

4πε0~
[dj · e(ν)(rj , φj)]ei(βzj+mφi) (7)

where β′ = dβ/dω, dj is the dipole moment of the j-th atom, and
e(µ,ν) are the electric field profile function (or spatial dependence
of the amplitude) of the guided and radiated modes (µ and ν).

Atoms interact with each other mediated by the electromag-
netic field. The interaction between the atomic dipoles is propor-
tional to the product of the atom-light coupling frequencies of the
form GkiGkj , were k labels the mediating field mode (the repe-
tition of the letter implies summation if there is more than one
mode) and i and j label the i-th and j-th atom. It is possible to
identify two contributions from the coupling of atoms to the dy-
namics of the system, a dispersive and a dissipative one, as shown
in Eq. (2). The dispersive part contributes to the unitary evo-
lution of the system (see Eq. (3)), and it can be decomposed as
Ωij = Ω(rad)

ij +Ω(1D)
ij , were Ω(rad)

ij and Ω(1D)
ij come from the interac-

tion of the i-th and j-th atoms mediated by the radiated and guided
modes respectively. Ωij is usually called the dipole-dipole coupling

frequency. The dissipative part contributes to the decay of the sys-
tem (see Eq. (4)), and it can be decomposed as γij = γ

(rad)
ij +γ(1D)

ij ,
were γ(rad)

ij and γ
(1D)
ij come from the interaction of the i-th and j-

th atoms mediated by the radiated and guided modes respectively.
For simplicity, here we consider the case of atomic dipoles oriented
along the ONF (z-axis) placed in the position ri = (ri, φi, zi) with
reduced dipole moment di, obtaining

γ
(1D)
ij = 2ω0β

′
0

ε0~
didje

(µ0)
z (ri)e∗(µ0)

z (rj) cos(φi − φj) cosβ0(zi − zj)

(8)

γ
(rad)
ij = 2ω0

ε0~
didj

∑

m

∫ k0

0
dβe(ν)

z (ri)e∗(ν)
z (rj)× (9)

cosm(φi − φj) cosβ0(zi − zj)

Ω(1D)
ij ≈ ω0β

′
0

ε0~
didje

(µ0)
z (ri)e∗(µ0)

z (rj) cos(φi − φj) sin β0(zi − zj)
(10)

where µ0 parametrizes the guided modes on resonance. The dis-
persive component of the interaction given by the radiated modes
as Ω(rad)

ij is a complicated expression and hard to solve even nu-
merically. We follow the work of Le Kien et al.34 and use the free
space value of Ω(rad)

ij throughout the calculation as a reasonable ap-
proximation. γii = γ0 with γ0 the single atom natural decay rate.
γ

(rad)
12 and γ

(1D)
12 are plotted in Fig. 1 (b) and (c) respectively for

an atom fixed at r1 = (30 nm + 240 nm, 0, 0) (240 nm being the
ONF radius and 30 nm the distance of the atom to the surface).
When atoms are too close to each other, the radiated terms Ω(rad)

ij

and γ
(rad)
ij dominate over the guided ones (Ω(1D)

ij and γ
(1D)
ij ), with

Ω(rad)
ij diverging and γ(rad)

ij approaching the total decay rate. With
a low number of atoms randomly distributed along the ONF the
effects of short-range interaction are small but still observable.

We are interested in the decay of only one excitation in the
system, represented by the state

|Ψ〉 =
∑

kµ,kν

αk(t)|g1g2 · · · gN 〉|1k〉+
N∑

j=1

βj(t)|g1g2 · · · ej · · · gN 〉|0〉

+αg(t)|g1g2 · · · gj · · · gN 〉|0〉 (11)

where kµ(ν) represents the sum over the guided (radiated) modes.
Assuming that we start the cycle with the excitation in the atoms,
i.e. αk(0) = 0, we can write the Schrödinger equation in the
Markov approximation for the coefficients βi(t) in a matrix form
as33

Ḃ(t) = −ΓB(t) (12)
where B(t) is a vector with entries given by the βi(t), and Γ is
a non-hermitian symmetric matrix with entries 2Γij = γij + iΩij ,
representing the couplings between the i-th and j-th atoms cal-
culated from the optical nanofiber modes, radiated and guided.
The eigenvalues ηi of Eq. (12) give the possible decay rates of the
system. This are the collective sates mentioned in Eq. (1). The
eigenvectors form a basis {|Bi〉} that allows us to write the state
of the system as

|Ψ〉 =
∑

kµ,kν

αk(t)|g1g2 · · · gN 〉|1k〉+
N∑

j=1

cje
−ηjt|Bj〉|0〉

+αg(t)|g1g2 · · · gj · · · gN 〉|0〉 (13)5



where the coefficients cj are given by the initial state. In con-
trast with Eq. (1), here we have also included the states with one
excitation in the field.

Following this approach the many-body problem, of calculat-
ing the decay of one excitation distributed among N interacting
atoms, becomes an eigenvalue problem in a Hilbert space of di-
mension N2 instead of 22N . This speeds the calculations, allowing
us to compute the decay rate of the system with Monte Carlos
simulations for a large N in random positions.

The electromagnetic field operator for the guided modes is 25

Ê
(+)
guided = i

∑

fp

∫ ∞

0
dω

√
~ωβ′
4πε0

âµe(µ)e−i(ωt−fβz−pφ) . (14)

The formal solution of the Heisenberg equation for âµ(t) in the
Markov and rotating wave approximation is

âµ(t) = âµ(t0) + 2π
∑

j

G∗µjδ(ω − ω0)σ̂j(t) , (15)

The substitution of this expression into Eq. (14) gives the guided
field operator as a function of the dipole operators.

Assuming that the guided modes are initially empty and that
all the dipoles are oriented in the z direction and at the same dis-
tance from the ONF, the intensity of the guided field as a function
of the atomic dipole operators is

〈Ê(−)
guidedÊ

(+)
guided〉 = |E(r)|2

(∑

j

〈σ̂eej (t)〉 −
∑

j

|〈σ̂j(t)〉|2 + |d(t)|2
)
,

(16)
where σ̂eej = σ̂†j σ̂j ,

d(t) =
∑

j

ei(βzj+φj)〈σ̂j(t)〉, (17)

|E(r)|2 = 2~ω0

neffcε0

γ1D(r)
Aeff(r) , (18)

considering γ1D(r) = γ
(1D)
ii (r) from Eq. (8) and Aeff(z)(r) =

|neffe
(µ0)
z (r)|−2 to be the effective mode area of the z component

of the electric field 25. Eq. (18) relates the total radiated power
into the waveguide with the energy radiated per unit time, i.e.
I(r)Aeff(z)(r) = ~ω0γ1D(r), where I(r) is the intensity of the radi-
ated field.

The first term in the right-hand side of Eq. (16) is the usual
term relating the intensity of the emitted electric field with the
amplitude of the atomic excitation. The other two terms can be
interpreted together as the correlations between pairs of atomic
dipoles. In particular, the last term can be interpreted on its own
as the interference of classical dipole antennae, leaving the first
two terms to be thought as the variance of each atomic dipole.
Theoretical methods We use Monte Carlo simulations, ran-
domly positioning N atoms around the ONF. The position of each
atom is given in cylindrical coordinates by ri = (r0, φi, zi), where
r0 = 240 nm + 30 nm, φi ∈ [0, 2π], and zi is obtained from a
Gaussian distribution with a FWHM of 200 µm, determined by
the atomic cloud size. The radial position of the atoms is fixed,
determined by the experimental procedure of repumping the atoms
close to the nanofiber surface. In our case all the atoms are at a
constant radial position of 30 nm away from the surface of an ONF

of 240 nm radius, with γ1D/γ0 ≈ 0.13. This is a good approxima-
tion given the narrow radial distribution of the atoms (∼ 5 nm),
as explained in the experimental methods.

The initial state will depend on the amplitude and phase of
the excitation beam. We assume that the initial state corresponds
to a superposition of all the atoms in the ground state except
one with an induced atomic dipole. From the data, we find the
induced dipole to be 20% excited. For each random realization we
solve Eq. (12) and calculate the decay of the excitation and the
dipoles. We take the mean of all the obtained decays, for every
random realization, as a function of time. Using these results in
Eq. (16) we calculate the guided field intensity as a function of
time. Typically, 100,000 realizations are required to converge to a
level of precision higher than what it is visible in Figs. 2 and 3.

If the initial state does not have a dipole, |d(t)|2 = 0, no super-
radiant decay is predicted by the theory. This is because the super-
and sub-radiant components of the initial state cancel when aver-
aging. Nevertheless, when there is an initial dipole, the theory
predicts super-radiant decay measurable at short times of the field
decay. The origin for this is the term proportional to the atomic
dipoles, |d(t)|2 in Eq. (16). There is a correlation between super-
radiance (sub-radiance) configurations and constructive (destruc-
tive) interference of the field emitted by the dipoles into the ONF
(see Eq. (17)); the effect of these correlations when we take the
mean over all the realizations is that super-radiance configurations
contributes more than sub-radiance configurations to |d(t)|2, for
an electric field detected through the ONF.

The theoretical model prediction for different dipole moment
orientations relative to the ONF25 qualitatively agrees with the
observed experimental behavior: The long term sub-radiance dis-
appears on our signal-to-background-ratio window when exciting
with vertically polarized light (see inset of Fig. 2).

A sensitivity analysis to the ONF radius shows no significant
changes in the predictions up to a ±10 nm variation. The devia-
tions of the theory from the experiment are mainly attributed to
the lack of knowledge of the actual initial states that are being
prepared. Although a more careful study of the state preparation
and its control is needed for future applications, the quantitative
behavior of the observations is captured by the model.
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4.5 Comments on subradiance mediated by an ONF

The observation of subradiance has always being a challenge, and therefore a

fascinating topic in quantum optics. This is why is worth using ONFs as a platform

for creating and studying subradiance.

A perfectly subradiant system is one that does not decay, being completely

decoupled from its environment. Likewise, a system that is decoupled from the

outside world is then difficult to access. It is, ideally, an isolated system, impossible

to excite and impossible to observe. However, a non-perfectly subradiant state

can be accessed from the outside, and observed through the ONF, under the right

conditions.

Subradiance has been observed in the past for two trapped ions [119], in a very

specific configuration with a rather small effect. More recently it has being observed

in a large cloud of atoms [120] in the limit of one excitation, i.e. one photon. But

there has not been a platform that allows the observation of long subradiant decay

times of a few atoms.

We showed in the previous section the experimental observation of subradiance

in our ONF system. This can come from two different scenarios: infinite-range

interactions and free space interaction.

Subradiant states created by infinite-range interaction in the single-excitation

regime have a hard limit on how subradiant they can be. Once two atoms along the

ONF destructively interfere with each other, they can no longer emit into that decay

channel (the guided mode). However, nothing stops them from emitting outside the
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ONF (into a radiated mode). Then the smallest subradiant decay rate allowed by

infinite-range interactions is γTot − γ1D = γrad (equal to 0.87γ0 in the case of our

experiment).

The subradiant decay times we observe through the ONF are a factor of six

smaller than the previously stated limit. This means that they come from atoms

interacting through free space. The presence of the nanofiber dielectric body alters

the radiated field that couple the atoms, allowing atoms from even opposite sides

of the ONF to interact. The large coupling of nearby atoms into the guided mode

facilitates the detection of such subradiant states.

Monte Carlo simulations of the system show this behavior. Fig. 4.1 shows

the probability of creating a given decay rate, in units of the natural decay rate,

by exciting a finite sample of atoms coupled to the ONF. If the fiber is infinitely

long, it means that the sample is diluted enough that all the atom-atom interactions

are through infinite range. Reducing the nanofiber length, it becomes more likely

to have two atoms interacting with each other through free space (but still in the

presence of the ONF). We can see how for purely infinite-range interaction, the most

subradiant state is limited by 1−α = 0.87 in our experimental realization. As atoms

can get closer, there are more subradiant states due to free space interaction. On

the other hand, the superradiant behavior is not greatly affected by increasing the

chance of having atoms closer together. This means that the superradiant signal

is dominated by infinite-range interaction, since all the atoms interacting with the

guided mode can contribute without an upper limit (in contrast to the case of a

lower limit for subradiance).
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Figure 4.1: Probability of observing a given decay rate for 10 atoms randomly

distributed around a 230 nm radius ONF at a distance of 30 nm from the surface.

The plot shows the allowed collective states for a ONF of infinite length (solid red),

as well as for 120 µm (dashed green) and 40 µm (dotted blue). The inset shows the

same results as in the main figure, but in a Log10 scale and normalized to the peak

of the red curve to show the probability of having a given decay rate represented in

order of magnitudes.
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Chapter 5: Conclusions and outlook

Optical nanofibers are a promising platform for fundamental research in quan-

tum optics and applications in quantum information. In this work, we have shown

some aspects in which they provide advantages and novel features compared with

other systems. We focused on three particular experiments based on ONFs: atom

trapping and non-destructive characterization, modification of the atomic lifetime,

and collective atomic effects at infinite-range. All of them present an starting point

for future investigations in the field.

Dipoles traps created by the evanescent field of an ONF have been implemented

in a few experimental groups in the past 10 years, and their applications are on the

rise. These experiments can certainly benefit from the development of a method

to characterize the traps in a short time and without losing atoms, as presented

here. Polarimetric measurements of the trapping frequencies can become a standard

procedure, as part of a toolbox for working with this type of system. We think

that there is room for improvements of the proposed technique. Improving the

sensitivity of the detection would allow the use of less probe power and reduce its

effect on trapped atoms. If some other experiment is being performed with trapped

atoms, a real time characterization of the trapping potential, at the beginning of a
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experimental cycle, can also be use to correct for long time drifts of the experiment.

Using feedback, drifts can be corrected without stopping the experiment and data

acquisition. Given the anharmonicity of the trap, a proper characterization of the

frequency of atomic motion can be related to the temperature of the atoms. A

proper understanding of the trapping can help to further cool the atoms in the trap

to their motional ground state. We consider that these are some of the promising

paths to explore with this new technique.

We have also studied the the effect of an ONF on the spontaneous emission

of nearby atoms. We measure different atomic decay rates when exciting the atoms

with different light polarizations. The dependence of the atomic properties on the

atomic dipole alignment can be used as a control knob for future applications involv-

ing atoms coupled to optical waveguides. This can could be a useful effect in other

waveguide systems with larger Purcell effect (or ONF with smaller radius), where

the lifetime of an excitation in the system can be tuned based on the polarization

of the field or the internal atomic state. During the search for a theoretical model-

ing of this problem we found in the literature discrepancies in the predictions. We

find some agreement between the measurement and a numerical calculation using

FDTD, however the calculations assume a two-level atom that behaves as a classical

dipole. We could not find a theoretical description that explains the measurements

considering the multi-level structure of the atom. The full description of this basic,

but still complicated, aspect of the experiment remains to be found. This presents a

challenge for all the future implementations of this kind of platform. Since the case

of a single real (multilevel) atom interacting with a waveguide is the fundamental
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unit of a bigger system, it needs to be understood, indicating the necessity of further

theoretical and experimental studies.

Using ONFs we were able to interact atoms at macroscopic distances. We

presentd evidence of the infinite-range interaction among atoms, allowed by the

ONF guided mode, by observing a collective evolution of the atomic system. In par-

ticular, we measured subradiance between atoms hundreds of resonant wavelengths

apart. During our search for evidence of infinite-range interactions, we also found

that ONFs allow us to excite and observe subradiant states. Subradiant states are

in general difficult to measure, and their observation presents ONFs as a excit-

ing platform for quantum optics. On the other hand, superradiant states due to

infinite-range interaction opens the field to a several new possibilities. Superradi-

ance of many atoms is limited in free space because atoms need to be closer than

a wavelength but not too close, otherwise decoherence mechanisms alters the pro-

cess. This sets a technical upper bound on how many atoms can be prepared in a

superradiant state. Atoms interacting through a guided mode lack this difficulty,

since they do not need to be closer than a wavelength. For the particular case of

collective decays of atoms the limiting spatial scale is the distance at which two

atoms can emit indistinguishable photons, i.e. the coherence length of an sponta-

neously emitted photon, which is of the order of meters. This is the scale limit for

sub- and super-radiance, but does not mean that atoms cannot coherently interact

at longer distances. Even though the coupling of single atoms into the waveguide

can be small compared to its decay into free space, superrandiace modifies this pro-

portional to the number of atoms. This implies that tens of superradiant atoms are
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enough to exceed the decay rate out of the ONF. The effect of having several atoms,

all interacting with each other, also opens the possibility to implement and study

spatial configuration of many-body systems. Moreover, all the technological devel-

opment in the fiber optics industry can be applied to ONFs, allowing distribution of

signals with minimum losses, routing them, and connecting several distant systems

in non-trivial arrangements. We envision this to be a step towards implementation

of quantum information protocols at scales of practical uses.
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Appendix A: Nanofiber electromagnetic modes

A standard step-index optical fiber is a cylindrical waveguide having a light-

guiding core of typical radius of 2− 3 µm and refractive index n1, surrounded by a

cylindrical cladding with index n2. In commercial, single-mode fibers, the refractive

index difference is small, with 0.001 . (n1−n2) . 0.02, and the waveguide is consid-

ered to have “weakly guiding” core-cladding guidance. Fig 1.1 shows schematically

that as the fiber is tapered down this geometry adiabatically transforms to a step-

index waveguide in which the light is entirely guided with air (or vacuum) as the

cladding (“cladding-air” guidance), having an index difference close to 0.5. Detailed

vector-mode solutions are required for such “strongly guiding” waveguides, and are

described in a number of treatments [121–126], while in the weakly guiding limit,

a scalar treatment is sufficient. Here we present a summary of the vector-mode

solutions from [127], and discuss some of the relevant aspects of optical nanofibers.

The electric and magnetic fields, E and H, are shown below in cylindrical

coordinates for a single-step index geometry with core radius, a, of index n1, and an

infinite cladding of index n2. The solution of the Maxwell Equations in cylindrical

coordinates leads to the following expressions for the field components along the

radial (r), azimuthal (φ), and longitudinal (z, propagation) directions inside (r < a)
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and outside (r > a) the core.

For r < a:

Er,± =
−iβ
h2

[
±iµ0ωl

βr
BJl(hr) + AhJ ′l (hr)

]
ei(ωt−βz±lϕ) (A.1)

Eφ,± =
−iβ
h2

[
±il
r
AJl(hr)−

µ0ωh

β
BJ ′l (hr)

]
ei(ωt−βz±lϕ) (A.2)

Ez,± = AJl(hr)e
i(ωt−βz±lϕ) (A.3)

Hr,± =
−iβ
h2

[
∓iε1ωl

βr
AJl(hr) +BhJ ′l (hr)

]
ei(ωt−βz±lϕ) (A.4)

Hφ,± =
−iβ
h2

[
ε1ω

β
AhJ ′l (hr)±

il

r
BJl(hr)

]
ei(ωt−βz±lϕ) (A.5)

Hz,± = BJl(hr)e
i(ωt−βz±lϕ), (A.6)

and r > a,

Er,± =
iβ

q2

[
±iµ0ωl

βr
DKl(qr) + ChK ′l(qr)

]
ei(ωt−βz±lϕ) (A.7)

Eφ,± =
iβ

q2

[
±il
r
CKl(qr)−

µ0ωh

β
DK ′l(qr)

]
ei(ωt−βz±lϕ) (A.8)

Ez,± = CKl(qr)e
i(ωt−βz±lϕ) (A.9)

Hr,± =
iβ

q2

[
∓iε2ωl

βr
CKl(qr) +DqK ′l(qr)

]
ei(ωt−βz±lϕ) (A.10)

Hφ,± =
iβ

q2

[
ε2ω

β
CqJ ′l (qr)±

il

r
DKl(qr)

]
ei(ωt−βz±lϕ) (A.11)

Hz,± = DKl(qr)e
i(ωt−βz±lϕ) , (A.12)

where β is the mode propagation constant, h =
√
k2 − β2, q =

√
β2 − k2, k = 2π/λ

is the wavenumber, and εi gives the dielectric constant in regions i = 1, 2. The

parameter l is a non-negative integer that gives the order of the guided mode and

its angular momentum. We also use the notation J ′l (hr) = ∂Jl(hr)/∂(hr), K ′l(qr) =
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∂Kl(qr)/∂(qr) for derivatives of Bessel functions Jl and modified Bessel functions

of the second kind Kl of order l.

Boundary conditions impose the following relations for the interior constants

A and B, and for the exterior constants C and D:

B

A
= ±

[(
1

ha

)2

+

(
1

qa

)2
] [

J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

]−1

(A.13)

C

A
=
Jl(ha)

Kl(qa)
(A.14)

D

A
=
B

A

Jl(ha)

Kl(qa)
− l2β2

k2
0

[(
1

ha

)2

+

(
1

qa

)2
]2

, (A.15)

so that the knowledge of the propagation constant β and amplitude normalization

constant A completely define the system.

An eigenvalue equation determines the propagation constant β:

Jl−1(ha)

haJl(ha)
=

(n2
1 + n2

2)

4n2
1

[
Kl−1(qa) +Kl+1(qa)

qaKl(qa)

]
+

l

(ha)2
±R, (A.16)

where

R =

√√√√(n2
1 − n2

2)
2

(4n2
1)

2

[
Kl−1(qa) +Kl+1(qa)

qaKl(qa)

]2

+
l2β2

n2
1k

2
0

[(
1

ha

)2

+

(
1

qa

)2
]2

, (A.17)

and the ±R solutions correspond to EH and HE modes, respectively. A normalized

frequency called the V -number is defined by the relation

V =
2π

λ
a
√
n2

1 − n2
2, (A.18)

which scales the optical frequency by the fiber radius and its numerical aperture

(
√
n2

1 − n2
2). We can numerically solve Eq. (A.16) for a particular V -number (see

Eq. (A.18)) and l by finding the points of intersection of its left hand side and right
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Figure A.1: Effective index of refraction as a function of V-number. The families of

modes and their colors are HE (solid blue), EH (dashed-dotted black), TE (dashed

red), TM (dotted green). Fig. from Ref. [87].

hand side. Modes are labeled with subscripts lm, e.g. HE lm, where for a given l,

the successive points of intersection signify increasing m. Fig. A.1 plots the result of

this calculation (where neff = β/k) as a function of V for various families of modes.

Note that the cutoff occurs at V = 2.405 and that the fundamental HE 11 mode

propagates for any V > 0. In the weak guiding limit, these vector mode solutions,

HE lm, become degenerate in the linearly-polarized (LP) basis, meaning that they

have the same propagation constant.

The last parameter to determine is A, which is calculated using energy conser-

vation. We normalize the time-averaged Poynting vector in the z-direction relative

to the input power,

P = 〈Sz〉t = A2π (Din +Dout) , (A.19)

where Din and Dout will be found analytically. For the HE lm and EH lm modes,

78



these parameters are

Din =
πaβ2

4µ0ω

β

h2
[(1 + sl)(N2

1 + sl)[J2
l+1(ha)− Jl(ha)Jl+2(ha)]

+ (1− sl)(N2
1 − sl)[J2

l−1(ha)− Jl(ha)Jl−2(ha)]] (A.20)

Dout =
−πaβ2

4µ0ω

β

q2

(
Jl(ha)

Kl(qa)

)2

[(1 + sl)(N2
2 + sl)[K2

l+1(qa)−Kl(qa)Kl+2(ha)]

+ (1− sl)(N2
2 − sl)[K2

l−1(qa)−Kl(qa)Kl−2(qa)]] , (A.21)

where Ni = nik/β and s = Bµ0ω/(ilβ) (with B given by Eq. (A.13)).

Figure A.2 offers a summary by plotting the mode structure of the HE 11

mode, showing the intensity (Fig. A.2 a)) as well as the norm of each electric

field component normalized to their value at the fiber surface (Fig. A.2 b), c) and

d)). These values correspond to a 360-nm-diameter fiber with index of refraction

n1 = 1.45367 and propagating wavelength of 780 nm. Note that the intensity has a

sharp discontinuity at the fiber surface. The two largest components, Ex and Ez, are

comparable. The presence of a sizable longitudinal component Ez plays a critical

role in nanophotonic atom-photon interactions [65].

The radial decay of the evanescent field amplitude is not a simple exponential,

but a complicated sum of modified Bessel functions of the second kind Kl(qr) (see

Eqs. (A.7), (A.8) and (A.9)). Since r is the distance from the center of the ONF and

we are interested in the field outside the dielectric media, the asymptotic expansion

for large argument Kl(qr) ≈
√
π/2qre−qr is a good approximation, for any order l.

Considering this, the radial dependence of the evanescent electric field is

Ei(qr) ≈ cir
− 1

2 e−qr, (A.22)
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Figure A.2: Fundamental (HE 11) mode structure of 360-nm diameter nanofiber.

Fig. from Ref. [87].

where Ei is the i-th component of the electric field with amplitude proportional to

ci. This shows that the evanescent field decays faster than an exponential decay. We

have tested this approximation against exact numerical calculation showing excellent

agreement, providing a simpler and more intuitive mathematical expression for the

evanescent field.

When we launch linearly polarized light into a fiber it will excite both the ±lφ

solutions. We can represent the mode in the quasilinear basis, as represented below.

Elin =
1√
2

[E+ ± E−] (A.23)

Hlin =
1√
2

[H+ ±H−] . (A.24)

It is useful to think of this as analogous to representing linearly polarized light as a

superposition of left and right circularly polarized.

80



The polarization of the propagating field can be characterized at the ONF waist

with polarimetric measurement of the scattered light. Because Rayleigh scattering

is dipolar, the scattered field preserves the polarization of the incoming one. This

allows us to measure the polarization of the guided field at each point along the

nanofiber. We can control the polarization at the ONF waist by modifying the

input polarization. For more details see [86].

The calculations show that Ez can be significant in an optical nanofiber [63].

This is generally true for tightly-focused laser beams and waveguides in the strong-

guiding regime. The existence of longitudinal polarizations is intimately related to

the first of Maxwell’s equations (Gauss’ law). While in everyday paraxial optics

rays and transverse polarizations suffice to characterize optical phenomena, when

there are significant gradients on the transverse field they have to be accompanied

by a corresponding longitudinal component of the electric field. [128] carries out

a systematic (perturbational) approach starting with Gauss’ law as a function of a

small parameter λ/w where λ is the wavelength of the light and w the characteristic

transverse width of the field: the transverse size of the beam. As w decreases the

ray optics approximation with transverse fields fails and longitudinal components

appear. This is a serious issue when focusing laser beams to small sizes and their

polarization properties have been studied and measured in [129].

Gauss’ law (∇ · E = 0) establishes that a focused light beam of wavelength λ

and angular frequency ω that propagates along ±z with a slowly-varying amplitude
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has a longitudinal component

Ez = ± i
k
∇ · E⊥. (A.25)

where the ± corresponds to the two possible directions of propagation and E⊥ is

the transverse field. The presence of i in the expression for Ez means that Ez is

±π/2 out of phase with the transverse components, depending on the propagation

direction. The existence of this longitudinal field and resulting transverse component

of elliptical polarization is at the source of the chirality observed in nanophotonic

systems as stated in [52].
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Appendix B: Other ONF Papers

This appendix includes references and comments for other papers related to

ONF published during my PhD.

When I first joined the group I had the pleasure to work with Jonathan Hoff-

man on the ONF pulling experient and learn from him all the details about fab-

rication and characterization of nanofibers. To me, this experiment needs a good

balance of knowledge and skills, the closest to art I have seen in the lab. I had the

great opportunity of contribute to build and perfect the current fiber puller appara-

tus that we use at UMD. This work lead to the fabrication of the ONFs with highest

transmission in the world (for now), as shown in an AIP Advances paper published

in 2014 [127].

After learning about ONF fabrication I started working with cold atoms, and

coupling them to our nanofibers. This is when I started working with Jeffrey Grover.

I shadowed him, and learned from him, while he implemented the ONF atomic dipole

trap. Soon after, we got interested on doing quantum optics with this platform, the

moment in which all the curiosity and ideas that led to this thesis started. We worked

on photon-correlation measurements of atoms evanescently coupled to the ONF.

This allowed me to learn about photon counting and other standard tools and tricks
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of quantum optics experiments. We observed photon antibunching and bunching,

when transitioning from one to several atoms interacting with the nanofiber mode.

We realized that the second-order correlation function of spontaneously emitted

photons can also be used to characterize the dynamics and the temperature of atoms

around the ONF. These results are published in the 2015 Phys. Rev. A paper [130].

At the end of 2015 our theory collaborators Zachary Eldredge and Alexey

Gorshkov, invited us to participate in the discussion of one of their ideas. They

where working on self-organizing chiral systems and the possibility to implement

it with ONF. The collaboration started, I think, because they wanted our opinion

as experimentalists about the feasibility of their proposal. I doubt that my input

changed even a little their motivations, calculations, and fascinating ideas. However,

I feel glad that they approached us, because it helped me to see the same system I

had been working on for the past two years with a different perspective, a theorist

perspective. As a result of that work we published a Phys. Rev. A paper on 2016

[114].

During 2016 we finished the measurements from an old idea that Jonathan

Hoffman left behind when he graduated. Fortunately the ghost of the idea was

haunting us, impersonated by our long term close collaborator Fredrik Fatemi. Run-

ning the fiber pulling experiment after a couple of years of not being in use could

be a challenge. Thankfully I had the help of Eliot Fenton (a skilled second year

undergraduate student!) to make everything run in perfect conditions. This project

represents to me a good summary of all the things we learned about ONF fabrica-

tion, characterization, and understanding of its mode structure. We use the beat
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note between propagating higher order modes to extract the ONF radius. The dif-

ference between the propagation constant of the modes is proportional to the radius

of the nanofiber. This produces a spatial beating frequency between different modes

propagating along the ONF, providing a way to characterize the ONF radius. We

collect the signal of the interference pattern, by evanescently coupling a probe opti-

cal fiber and scanning its position along the nanofiber. We are able to measure the

nanofiber radius with sub-Angstrom sensitivity. Our results are published in the

2017 Optica paper [131].

More recently, we were invited by the editors of Advances in Atomic and Molec-

ular Optics to contribute with a review paper (to be published soon) about ONF as

a platform for quantum optics [87], which contains information complementary to

this thesis.

85



AIP ADVANCES 4, 067124 (2014)

Ultrahigh transmission optical nanofibers
J. E. Hoffman,1 S. Ravets,1,2 J. A. Grover,1 P. Solano,1 P. R. Kordell,1

J. D. Wong-Campos,1 L. A. Orozco,1 and S. L. Rolston1,a

1Joint Quantum Institute, Department of Physics, University of Maryland, and
National Institute of Standards and Technology, College Park, MD 20742, U.S.A.
2Laboratoire Charles Fabry, Institut d’Optique, CNRS Univ Paris-Sud,
Campus Polytechnique, RD 128, 91127 Palaiseau cedex, France

(Received 26 March 2014; accepted 13 May 2014; published online 17 June 2014)

We present a procedure for reproducibly fabricating ultrahigh transmission optical
nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions
of 99.95 ± 0.02%, which represents a loss from tapering of 2.6 × 10−5 dB/mm
when normalized to the entire stretch. When controllably launching the next family
of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of
97.8 ± 2.8%, which has a loss from tapering of 5.0 × 10−4 dB/mm when normalized
to the entire stretch. Our pulling and transfer procedures allow us to fabricate optical
nanofibers that transmit more than 400 mW in high vacuum conditions. These results,
published as parameters in our previous work, present an improvement of two orders
of magnitude less loss for the fundamental mode and an increase in transmission of
more than 300% for higher-order modes, when following the protocols detailed in this
paper. We extract from the transmission during the pull, the only reported spectrogram
of a fundamental mode launch that does not include excitation to asymmetric modes;
in stark contrast to a pull in which our cleaning protocol is not followed. These
results depend critically on the pre-pull cleanliness and when properly following our
pulling protocols are in excellent agreement with simulations. C© 2014 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4879799]
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Photon-correlation measurements of atomic-cloud temperature using an optical nanofiber

J. A. Grover, P. Solano, L. A. Orozco, and S. L. Rolston*

Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology,
College Park, Maryland 20742, USA

(Received 25 June 2015; published 28 July 2015)

We develop a temperature measurement of an atomic cloud based on the temporal correlations of fluorescence
photons evanescently coupled into an optical nanofiber. We measure the temporal width of the intensity-intensity
correlation function due to atomic transit time and use it to determine the most probable atomic velocity, hence
the temperature. This technique agrees well with standard time-of-flight temperature measurements. We confirm
our results with trajectory simulations.
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Self-organization of atoms coupled to a chiral reservoir

Zachary Eldredge,1,2 Pablo Solano,1 Darrick Chang,3 and Alexey V. Gorshkov1,2

1Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
2Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
3ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

(Received 31 May 2016; published 29 November 2016)

Tightly confined modes of light, as in optical nanofibers or photonic crystal waveguides, can lead to large optical
coupling in atomic systems, which mediates long-range interactions between atoms. These one-dimensional
systems can naturally possess couplings that are asymmetric between modes propagating in different directions.
Strong long-range interaction among atoms via these modes can drive them to a self-organized periodic
distribution. In this paper, we examine the self-organizing behavior of atoms in one dimension coupled to a
chiral reservoir. We determine the solution to the equations of motion in different parameter regimes, relative to
both the detuning of the pump laser that initializes the atomic dipole-dipole interactions and the degree of reservoir
chirality. In addition, we calculate possible experimental signatures such as reflectivity from self-organized atoms
and motional sidebands.

DOI: 10.1103/PhysRevA.94.053855



Modal interference in optical nanofibers for
sub-Angstrom radius sensitivity
FREDRIK K. FATEMI,1,* JONATHAN E. HOFFMAN,2 PABLO SOLANO,2 ELIOT F. FENTON,2 GUY BEADIE,3

STEVEN L. ROLSTON,2 AND LUIS A. OROZCO2

1Army Research Laboratory, Adelphi, Maryland 20783, USA
2Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology,
College Park, Maryland 20742, USA
3Naval Research Laboratory, Washington, DC 20375, USA
*Corresponding author: fredrik.k.fatemi.civ@mail.mil

Received 30 September 2016; revised 23 November 2016; accepted 26 November 2016 (Doc. ID 277963); published 19 January 2017

Optical nanofibers (ONFs) of sub-wavelength dimensions confine light in modes with a strong evanescent field that
can trap, probe, and manipulate nearby quantum systems. To measure the evanescent field and propagating modes
and to optimize ONF performance, a surface probe is desirable during fabrication. We demonstrate a nondestructive
near-field measurement of light propagation in ONFs by sampling the local evanescent field with a microfiber. This
approach reveals the behavior of all propagating modes, and because the modal beat lengths in cylindrical waveguides
depend strongly on the radius, it simultaneously provides exquisite sensitivity to the ONF radius. We show that our
measured spatial frequencies provide a map of the average ONF radius (over a 600 μmwindow) along the 10 mmONF
waist with a 40 pm resolution and a high signal-to-noise ratio. The measurements agree with scanning electron micros-
copy (SEM) to within SEM instrument resolutions. This fast method is immune to polarization, intrinsic birefrin-
gence, mechanical vibrations, and scattered light and provides a set of constraints to protect from systematic errors in
the measurements. © 2017 Optical Society of America

OCIS codes: (060.2310) Fiber optics; (350.4238) Nanophotonics and photonic crystals; (060.2270) Fiber characterization.
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Optical Nanofibers: a new platform for quantum optics

Pablo Solanoa, Jeffrey A. Grovera, Jonathan E. Hoffmana, Sylvain Ravetsa,b, Fredrik K.
Fatemic, Luis A. Orozcoa, Steven L. Rolstona

aJoint Quantum Institute, Department of Physics, University of Maryland and NIST, College Park, MD
20742, USA.

bLaboratoire Charles Fabry, Institut d’Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127
Palaiseau cedex, France

cArmy Research Laboratory, Adelphi, MD 20783, USA.

Abstract

The development of optical nanofibers (ONF) and the study and control of their optical
properties when coupling atoms to their electromagnetic modes has opened new possibilities
for their use in quantum optics and quantum information science. These ONFs offer tight
optical mode confinement (less than the wavelength of light) and diffraction-free propaga-
tion. The small cross section of the transverse field allows probing of linear and non-linear
spectroscopic features of atoms with exquisitely low power. The cooperativity – the figure
of merit in many quantum optics and quantum information systems – tends to be large even
for a single atom in the mode of an ONF, as it is proportional to the ratio of the atomic
cross section to the electromagnetic mode cross section. ONFs offer a natural bus for infor-
mation and for inter-atomic coupling through the tightly-confined modes, which opens the
possibility of one-dimensional many-body physics and interesting quantum interconnection
applications. The presence of the ONF modifies the vacuum field, affecting the spontaneous
emission rates of atoms in its vicinity. The high gradients in the radial intensity naturally
provide the potential for trapping atoms around the ONF, allowing the creation of one-
dimensional arrays of atoms. The same radial gradient in the transverse direction of the
field is responsible for the existence of a large longitudinal component that introduces the
possibility of spin-orbit coupling of the light and the atom, enabling the exploration of chiral
quantum optics.

Keywords: nanofibers, atomic traps, quantum optics, chiral quantum optics, quantum
information
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