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a least-cost collection of sets to cover elements. Clas-sical problems in this framework include the generalset cover problem, of which a widely studied spe-cial case is the vertex cover problem. (The vertexcover problem is a special case of set cover in whichthe edges correspond to elements and vertices cor-respond to sets; in this set cover instance, each el-ement is in exactly two sets.) Both these problemsare NP-hard and polynomial-time approximation al-gorithms for both are well studied. For set cover see[12, 26, 29]. For vertex cover see [6, 7, 13, 21, 22, 30].In this paper we study the generalization of \cov-ering" to \partial covering" [27, 31]. Speci�cally, ink-set cover, we wish to �nd a minimum number (or,in the weighted version, a minimum weight collec-tion) of sets that cover at least k elements. When kis the total number of elements, we obtain the reg-ular set cover problem; similarly for k-vertex cover.(We sometimes refer to k-set cover as \partial setcover", and k-vertex cover as \partial vertex cover";the case where k equals the total number of elementsis referred to as \full coverage".) This generalizationis motivated by the fact that real data (in clusteringfor example) often has errors (also called outliers).Thus, discarding the (small) number of constraintsposed by such errors/outliers is permissible.Suppose we need to build facilities to provide ser-vice within a �xed radius to a certain fraction ofthe population. We can model this as a partial setcover problem. The main issue in partial coveringis: which k elements should we choose to cover? Ifsuch a choice can be made judiciously, we can theninvoke a set cover algorithm. Other facility locationproblems have recently been studied in this context[11].We begin our discussion by focusing on vertexcover and k-vertex cover. A very simple approxima-tion algorithm for unweighted vertex cover (full cov-erage) is attributed to Gavril and Yannakakis, andcan be found, e.g., in [14]: take a maximal matching1



and pick all the matched vertices as part of the cover.The size of the matching (number of edges) is a lowerbound on the optimal vertex cover, and this yields a2-approximation. This simple algorithm fails for thepartial covering problem, since the lower bound re-lies on the fact that all the edges have to be covered.The �rst approximation algorithm for k-vertex coverwas given in [9]. Their 2-approximation algorithm isbased on a linear programming (LP) formulation:suitably modifying and rounding the LP's optimalsolution. A faster approximation algorithm achiev-ing the same factor of 2 was given by Hochbaum [24]in which the key idea is to relax the constraint lim-iting the number of uncovered elements and search-ing for the dual penalty value. More recently, Bar-Yehuda [8] studied the same problem and gave a 2-approximation for k-vertex cover based on the ele-gant \local ratio" method.1.1. Problem De�nitions and PreviousWork� k-Set Cover: Given a set T = ft1; t2; : : : ; tng,a collection S of subsets of T , S =fS1; S2; : : : ; Smg, a cost function c : S ! Q+,and an integer k, �nd a minimum cost sub-collection of S that covers at least k elementsof T .Previous Results: For the full coverage ver-sion, a ln n + 1 approximation was proposedby Johnson [26] and Lov�asz [29]. This anal-ysis of the greedy algorithm can be improvedto H(�) (see the proof in [14]) where � is thesize of the largest set1. Chv�atal [12] generalizedthis to the case when sets have costs. Slav�ik[32] shows the same bound for the partial coverproblem. When � = 3, Duh and F�urer [15] gavea 4=3-approximation for the full coverage ver-sion. They extended this result to get a boundof H(�)� 12 for full coverage. When an elementbelongs to at most f sets Hochbaum [21] givesa f -approximation.� k-Vertex Cover: Given a graph G = (V;E),a cost function c : V ! Q+, and an integer k,�nd a minimum cost subset of V that covers atleast k edges of G.1H(k) :=Pki=1 1=i = ln k +�(1).

Previous Results: For the partial coverageversion several 2-approximation algorithms areknown (see [9, 24, 8]).� Geometric Covering Problem: Given npoints in a plane, �nd a minimally sized set ofdisks of diameter D that would cover at least kpoints.Previous Results: The full coverage version iswell-studied. This problem is motivated by thelocation of emergency facilities as well as fromimage processing (see [23] for additional refer-ences). For the special case of geometric cover-ing problems, Hochbaum and Maass [25] havedeveloped a polynomial approximation scheme.1.2. Methods and Results� k-Set Cover: For the special case when eachelement is in at most f sets, we combine aprimal-dual algorithm [13, 18] with a threshold-ing method to obtain an f -approximation.One advantage of our method, in addition to itssimplicity, is that it can be easily parallelized bychanging the algorithm slightly. The resultingapproximation factor is f(1 + �), where � > 0is any desired constant. The number of parallelrounds is O(logn) once we �x � > 0. The num-ber of processors required in linear in the prob-lem size. This is the �rst parallel approximationalgorithm for any partial covering problem.Our general method is as follows: we �rst\guess" the cost of the maximum cost set in theoptimal solution. We then modify the originalcost function by raising the costs of some of thesets to in�nity, so that these sets are never cho-sen in our solution. This leads to dual feasiblesolutions for the instance with modi�ed costs(which we use as a lower bound) that may beinfeasible for the original problem. However, ifwe only raise the costs of sets that are guaran-teed to not be in the optimal solution, we donot change the optimal IP solution. Hence thedual feasible solution for this modi�ed instanceis still a lower bound for the optimal IP.To parallelize the above algorithm, at each\round" when we update the dual variables weinclude all sets whose constraints are \almost"2



tight. This is similar to the method describedin [28], but does not work directly. The maindi�culty is that in each round many sets arechosen. As long as we have covered fewer thanthe target number of elements there is no prob-lem in accounting for the cost of the chosen sets.However, in the last round (when we cross therequired threshold), we have to carefully pick anappropriate subset of the chosen sets.For set cover where the sets have cardinality atmost � there are results (starting from [16, 19])by Duh and F�urer [15] for set cover (full cover-age) that improve the H(�) bound toH(�)� 12 .For example, for � = 3 they present a 43 (=H(3)� 12) approximation using \semi-local" op-timization rather than a 116 -approximation ob-tained by the simple greedy algorithm.For the case � = 3, we can obtain a 43 boundfor the partial coverage case. This does sug-gest that perhaps the H(�)� 12 bound can beobtained as well. This would improve Slav�ik'sresult [32].� k-Vertex Cover: By switching to a probabilis-tic approach to rounding the LP relaxation ofthe problem, we obtain improved results for k-vertex cover, where we wish to choose a min-imum number of vertices to cover at least kedges. An outstanding open question for vertexcover (full coverage) is whether the approxima-tion ratio of 2 is best-possible; see, e.g., [17].Thus, it has been an issue of much interest toidentify families of graphs for which constant-factor approximations better than 2 (which wedenote by Property (P)) are possible. In the fullcoverage case, Property (P) is true for graphs ofbounded maximum degree; see, e.g., [20]. Howcan we extend such a result? Could Property(P) hold for graphs of constant average degree?This is probably not the case, since this wouldimply that Property (P) holds for all graphs.(Given a graph G with n vertices, suppose weadd a star with �(n2) vertices to G by con-necting the center of the star by an edge tosome vertex of G. The new graph has boundedaverage degree, and its vertex-cover number isone more than that of G.) However, we showthat for expander graphs of bounded averagedegree, Property (P) is indeed true. We also

show Property (P) for k-vertex cover in the caseof bounded maximum degree and arbitrary k;this is the �rst Property (P) result for k-vertexcover, to our knowledge. Our result on ex-panders uses an expectation analysis and the ex-pansion property. Expectation analysis is insuf-�cient for our result here on k-vertex cover, andwe show that a random process behaves close toits mean on bounded-degree graphs: the degree-boundedness helps us show that many sub-events related to the process are (pairwise) in-dependent. We also present certain new resultsfor multi-criteria versions of k-vertex cover.� Geometric Covering: There is a polynomialapproximation scheme based on dynamic pro-gramming for the full coverage version [25]. Forthe partial coverage version since we do notknow which k points to cover, we have to de�nea new dynamic program. This makes the im-plementation of the approximation scheme dueto Hochbaum and Maass [25] more complex, al-though it is still a polynomial-time algorithm.� k-Vertex Cover for Planar Graphs: Weare able to use the dynamic programmingideas developed for the geometric covering prob-lem to design a polynomial-time approximationscheme (PTAS) for k-vertex cover for planargraphs. This is based on Baker's method forthe full covering case [3].2. k-Set CoverThe k-Set Cover problem can be formulated as aninteger program as follows. We assign a binary vari-able xj for each Sj 2 S i.e xj 2 f0; 1g. In this for-mulation, xj = 1 i� set Sj belongs to the cover. Abinary variable yi is assigned to each element ti 2 T .yi = 1 i� ti is not covered. Clearly, there could beat most n� k such uncovered elements.The corresponding LP relaxation can be obtainedby letting the domain of xj and yi be 0 � xj ; yi �1. Notice that the upper bound on xj and yi isunnecessary and is thus dropped.min mXj=1 c(Sj) � xj3



subject to yi + Xj:ti2Sj xj � 1; i = 1; 2; : : : ; nnXi=1 yi � n� kxj � 0; j = 1; 2; : : : ; myi � 0; i = 1; 2; : : : ; nThe dual LP contains a variable ui (for each el-ement ti 2 T ) corresponding to each of the �rstn constraints in the above LP. The dual variablez corresponds to the (n + 1)th constraint in theabove LP formulation. The dual LP is to maximizePni=1 ui�(n�k) �z subject to: (i)Pi:ti2Sj ui � c(Sj)for j = 1; 2; : : : ; m, (ii) 0 � ui � z for i = 1; 2; : : : ; n,and (iii) z � 0.The algorithm SetCover (pseudo-code can befound in Figure 1 in Appendix A) does the follow-ing. The algorithm \guesses" the set with the high-est cost in the optimal solution by considering eachset in turn to be the highest cost set. For each setthat is chosen, to be the highest cost set, say Sj ,Sj along with all the elements it contains is removedfrom the instance and is included as part of the coverfor this guess of the highest cost set. The cost of allsets having a higher cost than c(Sj) is raised to 1.Ij = (T j ;Sj ; c0; kj) is the modi�ed instance. Set-Cover then calls Primal-Dual on Ij which uses aprimal dual approach [18] to return a set cover for Ij .In Primal-Dual, the dual variables ui are increasedfor all ti 2 T j until there exists a set Si such thatPi:ti2Si ui = c0(Si). Sets are chosen this way un-til the cover is feasible. The algorithm then choosesthe minimum cost solution among the m solutionsfound. For the purpose of clarity of exposition inthe following pseudo-code (refer to Figure 1 in Ap-pendix A) we assume that costs of all sets in S aredistinct.Theorem 2.1: SetCover(T ;S; c; k) returns a f -approximate solution, where f is the highest fre-quency of any element i.e. an element appears inat most f sets.Proof: Let OPT refer to an optimal solution. Wewill use OPT to mean either an optimal solution

or the cost of an optimal solution. The meaningwill be clear from the context in which it is used.Let I be the given instance of the problem. LetIj refer to the modi�ed instance of the problem i.e.Ij = (T j ;Sj; c0; kj). Let Sh be the set with thehighest cost in OPT . Let OPT (Ih) be the opti-mal integer solution for the instance Ih. OPT =OPT (Ih) + c(Sh). Let DFS(Ih) refer to the dualfeasible solution for the instance Ih. Again, DFS(�)will be used to mean the dual feasible solution or thecost of the dual feasible solution. DFS(Ih) may notbe a feasible solution2 to the instance (T j ;Sj; c; kj)(note the original cost function). However, sinceDFS(Ih) � OPT (Ih) and OPT = OPT (Ih)+c(Sh),we have DFS(Ih) + c(Sh) � OPT . SCh is theset cover chosen by our algorithm during the iter-ation j = h. Let Sl be the last set chosen. LetASC = SCh n fSlg (ASC stands for Almost SetCover). Note that since Sh is the costliest set,c(Sl) � c(Sh). Let Tc represent the set of pointscovered by ASC. Let Tu = T h nTc represent the setof uncovered elements. Since the algorithm choosesa cover, SC, of the lowest cost, cost(SC) is upperbounded by cost(SCh).cost(SC) � cost(SCh) = XSk2SCh c0(Sk)= XSk2SCh c(Sk)= XSk2ASC c(Sk) + c(Sl) + c(Sh)� XSk2ASC Xi:ti2Sk ui + c(Sh) + c(Sh)= Xi:ti2Tc ui: jftig \ASCj+ 2 � c(Sh)� f � Xi:ti2Tc ui + 2 � c(Sh)= f � ( nXi=1 ui � Xi:ti2Tu ui) + 2 � c(Sh)= f � ( nXi=1 ui � jTuj � z) + 2 � c(Sh)2This is because we relax the constraints for the dualproblem.4



� f � ( nXi=1 ui � (n� k) � z) + 2 � c(Sh)� f � (DFS(Ih) + c(Sh)) � f �OPT:2Corollary 2.2: SetCover(E; V; c; k) gives a 2-approximate solution for k-Vertex Cover.2.1. Parallel Implementation of Partial SetCover AlgorithmWe assume as before that each element belongsto at most f sets. The framework for the algo-rithm is the same as the one we described for theprimal-dual serial algorithm. The parallel algorithmruns in \rounds". In each round, we simultane-ously raise all dual variables ui corresponding tothe uncovered elements. In the serial algorithmwe pick one set in each iteration, namely a set Sjsuch that (Pi:ti2Sj ui = c0(Sj)). (Recall that c0denotes the modi�ed cost function.) We changethis step in the algorithm to pick all sets such that(c0(Sj)�Pi:ti2Sj ui � �c0(Sj)). (This condition willlet us prove that c0(Sj) � (Pi:ti2Sj ui)=(1� �).) Westop as soon as we have covered at least k elements.Suppose the algorithm covers at least k elementsafter ` rounds. The main problem is that in thelast round we can include many sets simultaneously,while we can a�ord to include only a few. Let � bethe number of elements that we need to cover afterround ` � 1. To select an appropriate subset of thechosen sets, we need to pick a minimal collection ofchosen sets that cover at least � elements. To ac-complish this, we order the sets chosen in the lastiteration arbitrarily. Now compute in parallel the\e�ective" number of elements each set covers andchoose a minimal collection based on the �xed order-ing. (All these steps can be implemented in parallelusing pre�x computations.)Theorem 2.3: The parallel algorithm runs in (1 +f log(1=�))(1+logn) rounds. The number of proces-sors is linear in the size of the input. The parallelalgorithm produces a f1�� -approximate solution.

3. Set Cover for Small SetsProblem: Given a collection C of small subsets ofa base set U . Each small subset in the collection hassize at most �, and their union is U . The objectiveis to �nd a minimum size sub-collection that coversat least k elements.Here we have the original partial set cover instancewith the additional information that the sets are of\small" size, i.e., � is small. We obtain an approx-imation factor of 4=3 for the case when � = 3 us-ing the the idea of (s; t) semi-local optimization [15].This technique consists of inserting up to s 3-sets(sets of size 3) and deleting up to t 3-sets from thecurrent cover. Then the elements that are not cov-ered by the 3-sets (already existing ones + the newlyadded) are covered optimally using 2-sets and 1-sets.This can be solved in polynomial time using max-imum matching [16]. The vertices are the uncov-ered elements of U and the edges are the admissible2-sets. The 2-sets corresponding to the maximummatching edges and the 1-sets corresponding to thevertices not covered by the maximum matching forman optimum covering. We will order the quality ofa solution by the number of sets in the cover andamong two covers of the same size we choose the onewith fewer 1-sets and if the covers have the same sizeand neither cover has a 1-set we choose the one thatcovers more elements.The algorithm starts with any solution. One solu-tion can be obtained as follows. Choose a maximalcollection of disjoint 3-sets. Cover the remaining el-ements optimally using 2-sets and 1-sets. Performsemi-local (2; 1) improvements until no improvementis possible.The proof for the bound of 4=3 for full coveragedoes not extend to the partial coverage version. Forthe full coverage, to prove the lower bound on theoptimal solution Duh and F�urer construct a graph Gin which the vertices are the sets chosen by OPT andthe edges are 1-sets and 2-sets of the approximatesolution. They prove that G can not have more thanone cycle and hence argue that the total number of1-sets and 2-sets in the solution is a lower bound onOPT . This works well for the full coverage versionbut breaks down for the partial covering problem.For the partial covering case G having at most onecycle is a necessary but not a su�cient condition to5



prove the lower bound.In the full version of the problem, to bound thenumber of 1-sets in the solution they construct abipartite graph with the two sets of vertices cor-responding to the sets chosen by the approximatesolution and OPT . If a set corresponding the ap-proximate solution intersects a set corresponding toOPT in m elements then there are m edges betweentheir corresponding vertices in the graph. In eachcomponent of the graph they show that the num-ber of 1-sets of the solution in that component isat most the number of 1-sets of OPT in that com-ponent. This is clearly not the case in the partialcovering case. We obtain a bound on the numberof 1-sets as a side e�ect of the proof for the lowerbound on OPT .The detailed proof of our theorem is shown in Ap-pendix B.Theorem 3.1: The semi-local (2; 1)-optimizationalgorithm for 3-set partial covering problem pro-duces a solution that is within 43OPT + 1.4. Probabilistic Approaches for k-Vertex CoverWe now present a randomized rounding approachto the natural LP relaxation of k-vertex cover. An-alyzed in three di�erent ways, this leads to threenew approximation results mentioned in x1: re-lating to vertex cover (full coverage) for expandergraphs of constant average degree, k-vertex cover onbounded-degree graphs, and multi-criteria k-vertexcover problems. We �rst describe the basic methodand prove some probabilistic properties thereof, andthen consider the three applications.The k-vertex cover problem on a graph G = (V;E)can be formulated as an integer program as follows.We assign binary variables xj for each vj 2 V andzi;j for each (i; j) 2 E. In this formulation, xj = 1 i�vertex vj belongs to the cover, and zi;j = 1 i� edge(i; j) is covered. The corresponding LP relaxationcan be obtained by letting each xj and zi;j lie in[0; 1]. min nXj=1 xj

subject toxi + xj � zi;j ; (i; j) 2 E (1)X(i;j)2E zi;j � k (2)xj ; zi;j 2 [0; 1]; 8i; j:Our basic approximation recipe will be as follows.The LP relaxation is solved optimally. Let fx�i g,fz�i;jg denote an optimal LP solution, and let � =2(1��), where � 2 [0; 1=2] is a parameter that will bechosen based on the application. Let S1 = fvj jx�j �1=�g, and S2 = V � S1. Include all the vertices inS1 as part of our cover, and mark the edges incidenton vertices in S1 as covered. Now independently foreach j 2 S2, round xj to 1 with a probability of�x�j , and to 0 with a probability of 1 � �x�j . LetW be the random variable denoting the number ofcovered edges at this point. IfW < k, we choose anyk�W uncovered edges and cover them by arbitrarilychoosing one end-point for each of them.We now introduce some notation to analyze theabove process. Throughout, we let Pr[�] and E[�] de-note probability and expectation, respectively. Lety� represent the optimal objective function value ofthe LP, and de�ne S0 � S1 by S0 = fvj : x�j = 1g.Let y�F and y�P be the contribution to y� of the ver-tices in S0 and V � S0 respectively. Denote by Ui;jthe event that edge (i; j) is uncovered. Let C1 bethe cost of the solution produced by our randomizedscheme before the step of covering k � W edges ifnecessary, and let C2 be the cost incurred in cover-ing these k�W edges, if any. The total cost C is ofcourse C1 + C2; thus, E[C] = E[C1] + E[C2]. Now,it is easy to check that E[C1] � y�F + �y�P , and thatE[C2] � E[maxfk �W; 0g]. So we haveE[C] � y�F + �y�P +E[maxfk �W; 0g]: (3)The following lemma on the statistics of W willbe useful. As usual, let E denote the complement ofan event E .Lemma 4.1: (i) E[W ] � k(1��2). (ii) Suppose thegraph G has maximum degree d. Then, the varianceVar[W ] of W is at most dE[W ].Proof: (i) Consider any edge (i; j). Now if x�i �1=� or x�j � 1=�, Pr[Ui;j] = 0; otherwise, Pr[Ui;j ] =6



(1� �x�i )(1� �x�j ). Consider the latter case. Sincex�i +x�j � z�i;j , we can check that for any given z�i;j 2[0; 1], (1 � �x�i )(1 � �x�j) is maximized when x�i =x�j = z�i;j=2. Hence,Pr[Ui;j ] � (1� �z�i;j=2)2= (1� (1� �)z�i;j)2� 1� z�i;j(1� �2):Thus, since E[W ] =P(i;j)2E Pr[Ui;j ], we getE[W ] � X(i;j)2E z�i;j(1� �2) � k(1� �2):(ii) We have W = P(i;j)2E Ui;j . It is also an easycalculation to see that if a random variable W 0 isthe sum of pairwise independent random variableseach of which lies in [0; 1], then Var[W 0] � E[W 0].However, the terms Ui;j that constitute W do havesome dependent pairs: if edges (i; j) and (i0; j 0) sharean endpoint, then Ui;j and Ui0;j0 are dependent (pos-itively correlated). De�ne 
 to be the sum, overall unordered pairs of distinct edges (i; j) and (i0; j 0)that share an end-point, of Pr[Ui;j ^ Ui0;j0 ]. Usingthe above observations and the de�nition of variance,a moment's re
ection shows that Var[W ] is upper-bounded by E[W ] + 
. Now, for any events A andB, Pr[A^ B] � minfPr[A];Pr[B]g� (Pr[A] + Pr[B])=2:Thus, the term \Pr[Ui;j ^ Ui0 ;j0 ]" in 
 is at most(Pr[Ui;j ] + Pr[Ui0;j0 ])=2. Finally, since each edge hasat most 2(d�1) other edges that share an end-pointwith it, we get that
 � X(i;j)2E(2(d� 1)=2) � Pr[Ui;j] = (d� 1)E[W ]:So, Var[W ] � E[W ] + 
 � dE[W ]. 24.1. Vertex Cover on ExpandersSuppose we have a vertex cover problem; i.e., k-vertex cover with k = m. The LP relaxation herehas \1" in place of \zi;j" in (1), and does not requirethe variables zi;j and the constraint (2). We focus

here on the case of expander graphs of constant av-erage degree. That is, for some constants c and d, weare studying graphs where: (i) the number of edgesm is at most nd, and (ii) for any set X of verticeswith jX j � n=2, at least cjX j vertices outside X havea neighbor in X .Since k = m, it is well-known that we can ef-�ciently compute an optimal solution x� to theLP with all entries lying in f0; 1=2; 1g. Let H =fvj jx�j = 1=2g and F = fvj jx�j = 1g. Also, sinceW � k = m always holds, E[maxfk � W; 0g] =E[k�W ] � m�2, by Lemma 4.1(i). Thus, (3) showsthat E[C] is at most y�F + 2(1 � �)y�H + m�2. (Theoverall approach of: (i) conducting a randomizedrounding and then doing a greedy �xing of violatedconstraints, and (ii) using an equality such as our\E[maxfk �W; 0g] = E[k �W ]" here, is suggestedin [33]. We next show how the expansion prop-erty is useful in bounding E[C] well. However, inthe context of partial covering, an equality such as\E[maxfk�W; 0g] = E[k�W ]" does not hold; so, asdiscussed in x4.2 and x4.3, new analysis approachesare employed there.) Choosing � = y�H=m to mini-mize y�F + 2(1� �)y�H +m�2, we getE[C] � y�H(2� y�H=m) + y�F : (4)Case I: jH j � n=2. Note that the edges incidenton vertices in H must have their other end-point inF ; otherwise the LP constraint on such edges will beviolated. Since G is an expander, jF j � c � jH j. Also,y�F = jF j and y�H = jH j =2. So, since y� = y�H + y�F ,we have y�H = y�=(1 + a) for some a � 2c. We cannow use (4) to getE[C] � 2y�H + y�F = (2� a=(1 + a))y�;i.e., at most (2� 2c=(1 + 2c))y� since a � 2c.Case II: jH j > n=2. So, we have y�H � n=4. Bound(4) shows that E[C] � (2� y�H=m)y�; we have m �nd by assumption. So, E[C] � (2� 1=(4d))y� in thiscase.Thus we see that E[C] � [2 � minf2c=(1 +2c); 1=(4d)g] � y�. In other words, for the family ofexpanders of constant average degree, we can get aconstant-factor approximation that is strictly betterthan 2.7



4.2. k-Vertex Cover: Bounded-DegreeGraphsWe now show that any constant d, k-vertex coveron graphs of maximum degree at most d can be ap-proximated to within 2(1�
(1=d)), for any value ofthe parameter k. We also demonstrate that the inte-grality gap in this case is at most 2(1�
(1=d)). Westart with a couple of tail bounds that will be of usenow, as well as in x4.3. First, suppose X is a sumof independent random variables Xi each of whichlies in [0; 1]; let E[X ] = �. Then for any � 2 [0; 1],the Cherno� bound shows that Pr[X � �(1 + �)]is at most e���2=3. We will also need tail boundsfor certain non-independent situations. Suppose Xis a random variable with mean � and variance �2;suppose a > 0. Then, the well-known Chebyshev'sinequality states that Pr[jX � �j � a] is at most�2=a2. We will need stronger tail bounds than this,but only on X 's one-sided deviations (say, below itsmean). We will use the Chebyshev-Cantelli inequal-ity (see, e.g., [1]), which shows that Pr[X � � ��a] � �2=(�2 + a2).We now analyze the performance of our basic al-gorithm (of randomized rounding of the LP solu-tion followed by a simple covering of a su�cientnumber of edges), for the k-vertex cover problemon graphs with maximum degree bounded by somegiven constant d. The notation remains the same.The main problem in adopting the method of x4.1here is as follows. Since k equaled m there, we coulduse the equality E[maxfk � W; 0g] = E[k � W ],thus substantially simplifying the analysis. Here,however, such an equality is not true; furthermore,E[maxfX; Y g] � maxfE[X ];E[Y ]g for any pair ofrandom variables X; Y . (In fact, the two sides of thisinequality may di�er a lot. For instance, supposeX is the sum of n independent random variables,each of which is uniformly distributed on f�1; 1g;let Y be the constant 0. Then the r.h.s. is zero,while the l.h.s. is �(pn).) Instead, we take re-course to the Chebyshev-Cantelli inequality, and useLemma 4.1(ii).We now claim thatPr[W � (k(1� �2)� 2pkd)] � 1=5: (5)This is trivially true if k < 4d, since Pr[W � 0] = 1.So suppose k � 4d. Lemma 4.1 and the Chebyshev-Cantelli inequality show that � := E[W ] � k(1� �2),

and that Pr[W � � � 2pd�] � 1=5. Subject to� � k(1� �2) � 4d(1� �2), � � 2pd� is minimizedwhen � = k(1� �2). Thus we have (5).Next, for a suitably large constant c0, we can as-sume that k � c0d5. (Any optimal solution has sizeat most k, since in an optimal solution, every ver-tex should cover at least one new edge. So if k isbounded by a constant{such as c0d5{then we can�nd an optimal solution in polynomial time by ex-haustive search.) Also, by adding all the constraintsof the LP and simplifying, we get that y� � k=d.Thus, letting � = 1=(3d), a Cherno� bound showsthat immediately after the randomized rounding, theprobability of having more than 2y�(1 � �)(1 + �)vertices in our initial cover is at most 1=5 (if theconstant c0 is chosen large enough). Recall (5). So,with probability at least 1� (1=5 + 1=5) = 3=5, the�nal cover we produce is of size at most2y�(1� �)(1 + �) + k�2 + 2pkd:We now choose � = y�(1 + �)=k; since y� � k=d �c0d4 with c0 su�ciently large, some simpli�cationshows that the �nal cover size is at most 2y�(1 �
(1=d)).4.3. k-Vertex Cover: Multiple CriteriaWe now brie
y consider multi-criteria k-vertex coverproblems on arbitrary graphs. Here, we are givena graph G and, as usual, have to cover at least kedges. We are also given ` \weight functions" wi,and want a cover that is \good" w.r.t. all of these.More precisely, suppose we are given vectorswi = (wi;1; wi;2; : : : ; wi;n) 2 [0; 1]n; i = 1; 2; : : : ; `and a fractional solution x� to the k-cover prob-lem on G. De�ne y�i = Pj wi;jx�j for 1 � i �`. We aim for an integral solution z such thatfor each i, yi = Pj wi;jzj is not \much above"y�i . Multi-criteria optimization has recently re-ceived much attention, since participating individu-als/organizations may have di�ering objective func-tions, and we may wish to (reasonably) simulta-neously satisfy all of them if possible. The resultwe show here is that if y�i � c1 log2(` + n) for alli (where c is a su�ciently large constant), thenwe can e�ciently �nd an integral solution z withyi � 2(1 + 1=plog(`+ n))y�i for each i. Please seeAppendix C for a short description of the analysis.8



5. Geometric Packing and CoveringProblem: Given n points in a plane, �nd the small-est number of (identical) disks of diameter D thatwould cover at least k points.A polynomial time approximation scheme existsfor the case when k = n (full covering). The al-gorithm uses a strategy, called the shifting strategy.The strategy is based on a divide and conquer ap-proach. The area, I , enclosing the set of given pointsis divided into strips of widthD. Let l be the shiftingparameter. Groups of l consecutive strips, resultingin strips of width lD are considered. For any �xedsubdivision of I into strips of width D, there are ldi�erent ways of partitioning I into strips of widthlD. The l partitions are denoted by S1; S2; : : : ; Sl.The solution to cover all the points is obtainedby �nding the solution to cover the points for eachpartition, Sj ; 1 � j � l, and then choosing a mini-mum cost solution. A solution for each partition isobtained by �nding a solution to cover the points ineach strip (of width lD) of that partition and thentaking the union of all such solutions. To obtain asolution for each strip, the shifting strategy is re-applied to each strip. This results in the partition ofeach strip into \squares" of side length lD. As willbe shown later, there exists an optimal covering forsuch squares.We modify the use of shifting strategy for the casewhen k � n (partial covering). The obstacle in di-rectly using the shifting strategy for the partial cov-ering case is that we do not know the number ofpoints that an optimal solution covers in each stripof a partition. This is not a problem with the fullcovering case because we know that any optimal so-lution would have to cover all the points within eachstrip of a partition. For the partial covering, thisproblem is overcome by \guessing" the number ofpoints covered by an optimal solution in each strip.This is done by �nding a solution for every possiblevalue for the number of points that can be coveredin each strip and storing each solution. A formalpresentation is given below.Let A be any algorithm that delivers a solution tocover the points in any strip of width lD. Let A(Si)be the algorithm that applies A to each strip of thepartition Si and outputs the union of all disks in a

feasible solution. We will �nd such a solution foreach of the l partitions and output the minimum.Consider a partition Si containing p strips of widthlD. Let nj be the number of points in strip j. LetnOPTj be the number of points covered by OPT instrip j. Since we do not know nOPTj , we will �nd fea-sible solutions to cover points for all possible valuesof nOPTj . Note that 0 � nOPTj � k0j = min(k; nj).We use dynamic programming to solve our problem.The recursive formulation is as follows:C(x; y) = min0�i�k0x(Dxi + C(x� 1; y � i))where C(x; y) denotes the number of disks needed tocover y points in strips 1::x and Dxi is the number ofdisks needed to cover i points in strip x. ComputingC(p; k) gives us the desired answer.For each strip s, for 0 � i � k0s; Dsi can be calcu-lated by recursive application of the algorithm to thestrip s. We partition the strip into squares of sidelength lD. We can �nd optimal coverings of pointsin such a square by exhaustive search. With O(l2)disks of diameterD we can cover lD�lD square com-pactly, thus we never need to consider more disks forone square. Further, we can assume that any diskthat covers at least two of the given points has two ofthese points on its border. Since there are only twoways to draw a circle of given diameter through twogiven points, we only have to consider 2 n02 ! pos-sible disk positions where n0 is the number of givenpoints in the considered square. Thus, we have tocheck for at most O(n02(lp2)2) arrangements of disks.Let ZA be the value of the solution delivered byalgorithm A. The shift algorithm SA is de�ned fora local algorithm A. Let rB denote the performanceratio of an algorithm B; that is, rB is de�ned as thesupremum of ZB= jOPT j over all problem instances.Lemma 5.1: rSA � rA(1 + 1l ) where A is the localalgorithm and l is the shifting parameter.Proof: Consider a partition Si with p strips of widthlD. We have that rA � ZAjjOPTjj , where j runs over allstrips in partition Si and jOPTj j is the number ofdisks in an optimal cover of nOPTj points in strip j.It follows that ZA(Si) � rAPj2Si jOPTj j9



Let OPT be the set of disks in an optimal solutionand OPT (1); : : : ; OPT (l) the set of disks in OPT cov-ering points in two adjacent lD strips in 1; 2; : : : ; lshifts respectively. Thus we haveXj2Si jOPTj j � jOPT j+ ���OPT (i)���ZSA = mini=1::lZA(Si) = 1l lXi=1ZA(Si)� 1l rA( lXi=1 Xj2Si jOPTj j)� 1l rA( lXi=1 jOPT j+ ���OPT (i)���):There can be no disk in the set OPT that coverspoints in two adjacent strips in more than one shiftpartition. Therefore, the sets OPT (1); : : : ; OPT (l)are disjoint and can add up to at most OPT . It fol-lows that Pli=1(jOPT j+ ���OPT (i)���) � (l+ 1) jOPT j.Substituting this in the bound above for ZSA we getthat ZSA is at most 1l rA:(l + 1) jOPT j = rA:(1 +1l ) jOPT j. 2Theorem 5.2: The above algorithm yields a PTASwith performance ratio at most (1 + 1l )2.Proof: We use two nested applications of the shift-ing strategy to solve the problem. The above lemmaapplied to the �rst application of the shifting strat-egy would relate the performance ratio of the �nalsolution, rSA , to that of the solution for each strip,rA. rSA � rA(1 + 1=l) (6)The lemma when applied to the second applicationof shifting strategy relates rA to the performanceratio of the solution to each square, say rA0 . Thus,rA � rA0(1 + 1=l). But since we obtain an optimalsolution for each square, rA0 = 1. Bound (6) showsthat rSA � (1 + 1=l)2. 2

6. k-Vertex Cover for PlanarGraphsFull vertex cover for planar graphs of bounded tree-width can be computed optimally in linear time.Thisimmediately leads to a PTAS for planar graphsby a combination of results of Baker and Bodlaen-der [3, 4]. Baker gives a general framework that con-structs a PTAS for any problem which can be solvedoptimally for l-outerplanar graphs | planar graphswhere all nodes have a path of length � l to a nodeon the outermost face [3]. This method is based onthe shifting strategy that is similar to the methodused for geometric covering in the previous section.Bodlaender [4] proves that any l-outerplanar graphhas tree-width at most 3l�1. Vertex cover for graphsof bounded tree-width can be solved optimally inpolynomial time, thus implying such a solution forgraphs that are l-outerplanar for a �xed constant l.First we describe how to create a collection of de-compositions of a planar graph G into a set of l-outerplanar graphs. Let d(v) = shortest path lengthfrom v to any node on the outer face of G. Foreach value of � = 0; 1 : : : ; (l � 1), we generate a de-composition as follows. Let Gi = (Vi; Ei) be the ithl-outerplanar graph for a �xed �. Vi = fvjli+ � �d(v) � l(i+ 1) + � and Ei = f(u; v)ju 2 Vi and v 2Vig. There are l di�erent ways of creating these de-compositions, one for each �. These correspond tothe l partitions S1; S2; : : : ; Sl in the geometric cover-ing case. In the full covering case, the algorithm is to�nd a vertex cover for each of the l decompositionsand then to take the best solution. The vertex coverfor each decomposition is the union of the solutionsto each l-outerplanar graph in the decomposition.As in the case of geometric covering the obstacle indirectly using the above algorithm for the partialcovering case is that we do not know the numberof edges covered by OPT in each outerplanar graph.As in the previous section, we overcome this obstacleby \guessing" the number of points covered by anoptimal solution in each l-outerplanar graph. Thedynamic programming formulation in the previoussection can be used once the following correspon-dence between the various entities is noted. Thevertices in our case correspond to the disks and theedges correspond to the points to be covered. An l-outerplanar graph corresponds to the strip of width10



lD. As in the previous case, we still have l suchdecompositions. In the geometric covering problemthe solution to each strip is calculated by recursivelyapplying the shifting strategy to each strip. In thiscase, an optimal solution for the partial vertex coverfor l-outerplanar graphs is computed as shown in thenext section.We now give a linear-time algorithm for boundedtree-width graphs (if the graph has tree-width l, thenthe time required for the algorithm to run will beexponential in l but linear in the size of the graph).The following de�nition is standard (see, e.g., [4]).De�nition 1: Let G = (V;E) be a graph. A tree-decomposition of G is a pair (fXi j i 2 Ig; T =(I; F )), where fXi j i 2 Ig is a family of subsetsof V and T = (I; F ) is a tree with the followingproperties:1. Si2I Xi = V .2. For every edge e = (v; w) 2 E, there is a subsetXi, i 2 I , with v 2 Xi and w 2 Xi.3. For all i; j; k 2 I , if j lies on the path from i tok in T , then XiTXk � Xj .The tree-width of a tree-decomposition (fXi j i 2Ig; T ) is maxi2IfjXij�1g. The tree-width of a graphis the smallest value k such that the graph has a tree-decomposition with tree-width k.Many problems are known to have linear time al-gorithms on graphs with constant tree-width, andthere are frameworks for automatically generatinga linear time algorithm, given a problem speci�ca-tion in a particular format [2, 5]. The partial ver-tex cover problem can be solved by successively us-ing solutions to the problem of �nding the maxi-mum number of edges that can be covered usingp vertices. The value of p can be selected by do-ing a binary search on the set of vertices which re-duces in half with every successive solution. Thisproblem can be expressed in the formalism of [5]as: max jE1j [V1 � V ^ jV1j � p ^ E1 = IncE(V1)],which states that we want to maximize the set ofedges that can be covered by any subset V1 of Vsuch that the size of V1 is at most p.Theorem 6.1 follows from Lemma 5.1 and the factthat rA = 1.
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AppendixA. Pseudo-Code for k-Set CoverPrimal-Dual(T 0;S0; c0; k0)1 /* Returns a subset C of S0 that is feasible; */2 /* i.e., C covers � k0 elements of T 0 */3 /* z is maintained implicitly in the algorithm. At all times z = maxi ui */4 C  ;5 E  T 06 while C is not feasible7 /* increase the dual variables ui for ti 2 E. */8 /* When selecting Si, sumPi:ti2Si ui */9 /* is taken over all the ti 2 Sj before the start of the while loop. */10 do Increase ui for all ti 2 E until 9 a set Sj s.t. Pi:ti2Si ui = c0(Si)11 E  E n Si12 C  C [ fSig13 return CSetCover(T ;S; c; k)1 if (k � 0) return ;2 Sort the sets in increasing order of their cost3 for j  1 to m4 do c0(Sj) 15 for j  1 to m6 /* create a modi�ed instance Ij = (T j;Sj; c0; kj). */7 /* run Primal-Dual on this instance. */8 /* SCj is the cover obtained in iteration j. */9 do c0(Sj) c(Sj) /* Sj is the highest cost set in OPT */10 Sj  S n fSjg /* Sj is removed from the instance */11 T j  T n Sj /* all elements of Sj are removed */12 kj  k � jSj j13 cost(SCj ) =114 if (jS1 [ S2 [ : : :[ Sj)j � kj)15 then SCj  fSjg[ Primal-Dual(T j ;Sj; c0; kj)16 cost(SCj ) =PSk2SCj c(Sk)17 SC = minfcost(SC1); cost(SC2); : : : ; cost(SCm)g18 return SCFigure 1: Algorithm for k-Set Cover (x2).
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B. Proofs for x3B.1. Notation:S: our solution.OPT : optimal solution.ai: number of sets of size i (i = 1; 2; 3) in S.bi: number of sets of size i (i = 1; 2; 3) in OPT .D: set of elements that are covered by 2-sets and 3-setsof OPT and not covered by 2-sets and 3-sets of S.B: set of elements that are covered by 2-sets and 3-setsof S and not covered by 2-sets and 3-sets of OPT .C: set of elements that are covered by 2-sets and 3-setsof S and OPT .PCD(TCD): a 2-set (3-set) of OPT that covers elementsin C and D.PCB(TCB): a 2-set (3-set) of S that covers elements in Band C.If S consists only 3-sets then our solution is optimal,hence we will not consider this case. In order to upperbound the number of 1-sets and 2-sets we will constructa graph in which the vertices correspond to 2-sets and3-sets of OPT and the edges correspond to 1-sets and 2-sets of S. Let H be a component of G. Note that in Ha 1-set of S would be represented as a 1-cycle (self loop).Figures 2, 3, 4, 5, and 6 that are referenced in the lemmasbelow can be found in the appendix.Lemma B.1: The semi-local (2; 1)-optimization algo-rithm produces a solution in which a1 + 2a2 + 3a3 �b1 + 2b2 + 3b3 + 1.Proof: If a1 > 0 then S covers exactly k elements. Ifa1 = 0 then it may cover an extra element and hence the1 on the right hand side of the above inequality. 2Lemma B.2: H has at most one set of OPT that coverselements in C and D.Proof: In H, (i) TCD cannot co-exist with another TCDotherwise a semi-local (2; 0) improvement that uses oneset less to cover the same number of elements is possible.Figure 2(a) illustrates this case. In the �gure it is shownthat TCD covers only one element in D. The case inwhich TCD covers two elements in D is only easier. (ii)TCD can not co-exist with PCD, otherwise a (1; 0) semi-local improvement that uses the same number of sets tocover an extra element is possible. This is shown in Figure2(b). (iii) PCD can not co-exist with another PCD as thiswould mean that in H, there is a better 2-cover than theone used by S. This is not possible as we �nd a 2-coveroptimally. Figure 2(c) illustrates this case. 2

Lemma B.3: If H has a TCD or PCD then H is acyclic.Proof: If TCD is part of the cycle then a (1; 0) semi-localimprovement is possible. If H has a TCD that is not partof the cycle then a (2; 0) semi-local improvement is possi-ble. If H has a PCD then a (1; 0) semi-local improvementis possible. All these cases are illustrated in Figure 3. 2Lemma B.4: H does not have more than one cycle.Proof: By Lemma B.3 this is true when H has a TCD ora PCD. Assume that H has no such set. In that case asemi-local 2; 0) improvement is possible. Figure 5 showsthis case. 2Lemma B.5: If a1 > 0 and if H contains a TCD or PCDthen H does not have a 2-set or a 3-set of OPT , say X,such that X \ Y 6= ;, where Y is a 3-set of S.Proof: If otherwise, a (0; 1) semi-local improvement ispossible. The improved solution would have fewer 1-sets.Figure 4 illustrates this case. 2Lemma B.6: The (2; 1) semi-local optimization tech-nique produces a solution in which a1+a2 � b1+b2+b3+1.Proof: Consider the case when a1 > 0. From LemmasB.2, B.3, B.4 and B.5 we conclude that if H contains aTCD or PCD then there also exists at least one PCB in H.In each component we will charge an edge to a vertex. InH which either has a TCD or a PCD we can charge PCBto the TCD or PCD and the edges whose both ends arecovered can be charged to the other vertices. In H, leteHc be the edges that are charged and eHu be the edgesthat are uncharged. Let ac1 be the 1-sets that are chargedto some set of OPT and let au1 be the remaining 1-sets.ac1+ a2 =PH eHc +PH eHu . Each uncharged edge coversan element in B. Since S and OPT cover exactly thesame number of elements, the number of elements coveredby the 1-sets of OPT is at least equal to the number ofelements in au1 [B. Thus we haveau1 +XH eHu � b1 (7)au1 +XH eHc +XH eHu � b1 + b2 + b3au1 + ac1 + a2 � b1 + b2 + b3a1 + a2 � b1 + b2 + b314



Consider the case when a1 = 0. In this case LemmaB.5 does not hold. Hence it is not necessary that if Hcontains a TCD or PCD then there also exists at least onePCB in H. In such components there exists exactly oneset of OPT that does not get charged by an edge in S.Let this set be the set that covers an element in D. InH, let qHc denote all the sets of OPT that are chargedby the edges of S and qHu denote the uncharged sets ofOPT . b2 + b3 = qHc + qHu . Since a1 = 0, S may coverk + 1 elements. Thus we havea1 +XH eHu �XH qHu + b1 + 1a1 +XH eHc +XH eHu �XH qHc +XH qHu + b1 + 1a1 + a2 � b1 + b2 + b3 + 1 2Lemma B.7: If H contains 1-set of S then H does nothave a 2-set or a 3-set of OPT , say X, such that X\Y 6=;, where Y is a 3-set of S.Proof: If otherwise then a semi-local (0; 1) improvementis possible by discarding Y . The resulting solution willhave one less singleton. Figure 6 illustrates this case. 2Lemma B.8: The semi-local (2; 1)-optimization tech-nique produces a solution in which a1 � b1Proof: If a1 = 0 the condition holds trivially. Henceassume a1 > 0. From equation (7) we have au1 � b1.Let b01 = au1 be the 1-sets of OPT . Let b001 = b1 � b01 beremaining 1-sets of OPT . We want to prove that ac1 � b001 .Consider aH that has a 1-set of S. This 1-set correspondsto a 1-cycle inH. By LemmaB.4 H does not have a cycleother than the 1-cycle. By Lemma B.3 H does not havea TCD or PCD. By Lemma B.7 there can not be a 3-set,Y , of S such that X \Y 6= ;, where X is a set of OPT inH. Hence H must have a PCB. The edge correspondingto PCB can not be charged to any set of OPT in H.Hence it is charged to some 1-set of OPT . Thus we haveac1 �PH eHu � b001 . 2Proof of Theorem 3.1. Adding up the inequalities in Lem-mas B.1,B.6 and B.8, we get3(a1 + a2 + a3) � 4(b1 + b2 + b3)� b1 � b2 + 2c(S) = a1 + a2 + a3 � 43OPT + 23This completes the proof of Theorem 3.1.

C. Brief description related to x4.3Brie
y, we run our algorithm with � = 0. Lemma 4.1 andthe Chebyshev-Cantelli inequality show thatPr[W � (k � 1)] � nm=(nm + 1) = 1� 1=(nm + 1);which, though large, is 1 � 
(1=nO(1)). Also, a Cher-no� bound and \union bound" argument can be used toshow that the probability of existence of an i for whichyi > 2(1 + 1=plog(`+ n))y�i holds after our randomizedrounding, is at most 1=(2nm+2). Thus, with probabilityat least 1=(nm + 1) � 1=(2nm + 2) = 1=(2nm + 2) wewill have our desired solution; this can be boosted to ahigh probability by repeating this basic algorithmO(nm)times. Complete details will be presented in the full ver-sion.
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(2; 0)
(1; 0)

TCD
TCD PCD

optimal2-coverPCD PCD

TCD
(a)
(b)
(c)Figure 2: In each of the following cases an improved partial cover (represented by �gures on the right)contains the sets of OPT marked by solid boundaries and the sets of S corresponding to the solid edges.(a) Two TCD sets in H lead to a (2; 0) semi-local improvement. (b) A TCD and PCD in H leads to a(1; 0) semi-local improvement. (c) Two PCD sets in OPT is not possible as our algorithm �nds an optimal2-cover. The �gure on the left is not an optimal 2-cover.16



(1; 0)(a)TCDTCD (2; 0)(b)
(c)

PCD (1; 0)
Figure 3: In each of the following cases an improved partial cover (represented by �gures on the right)contains the sets of OPT marked by solid boundaries and the sets of S corresponding to the solid edges.(a) A TCD set in H as part of the cycle leads to a (1; 0) semi-local improvement. (b) A TCD in H that isnot part of the cycle leads to a (2; 0) semi-local improvement. (c) A PCD set in H containing a cycle leadsto a (1; 0) semi-local improvement. 17



PCD (0; 1)
(0; 1)T 2 S TCDT 2 S

Figure 4: In the above instances (0; 1) semi-local improvement yield a solution which uses an extra set tocover an extra element. Thus a singleton can be discarded from our solution giving us a better solution.
(2; 0)

Figure 5: In the above instance (2; 0) semi-local improvement yields a solution which uses one set less tocover the same number of elements. 18



(0; 1)
(0; 1)T 2 ST 2 S a1a1Figure 6: In the above instances (0; 1) semi-local improvement yields a cover whose size is same as beforebut has one less singleton.
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