Approximation Algorithms for Partial Covering Problems

Rajiv Gandhi *

Abstract

We study the generalization of covering problems to
partial covering. Here we wish to cover only a de-
sired number of elements, rather than covering all
elements as in standard covering problems. For ex-
ample, in k-set cover, we wish to choose a minimum
number of sets to cover at least k elements. For k-set
cover, if each element occurs in at most f sets, then
we derive a primal-dual f-approximation algorithm
(thus implying a 2-approximation for k-vertex cover)
in polynomial time. In addition to its simplicity, this
algorithm has the advantage of being parallelizable.
For instances where each set has cardinality at most
three, we obtain an approximation of 4/3. We also
present better-than-2-approximation algorithms for
k-vertex cover on bounded degree graphs, and for
vertex cover on expanders of bounded average de-
gree. We obtain a polynomial-time approximation
scheme for k-vertex cover on planar graphs, and for
covering points in R? by disks.

Key Words and Phrases: Approximation al-

gorithms, partial covering, set cover, vertex cover,
primal-dual methods, randomized rounding.

1. Introduction

Covering problems are widely studied in discrete op-
timization: basically, these problems involve picking
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a least-cost collection of sets to cover elements. Clas-
sical problems in this framework include the general
set cover problem, of which a widely studied spe-
cial case is the vertex cover problem. (The vertex
cover problem is a special case of set cover in which
the edges correspond to elements and vertices cor-
respond to sets; in this set cover instance, each el-
ement is in exactly two sets.) Both these problems
are NP-hard and polynomial-time approximation al-
gorithms for both are well studied. For set cover see
[12, 26, 29]. For vertex cover see [6, 7, 13, 21, 22, 30].

In this paper we study the generalization of “cov-
ering” to “partial covering” [27, 31]. Specifically, in
k-set cover, we wish to find a minimum number (or,
in the weighted version, a minimum weight collec-
tion) of sets that cover at least k elements. When k
is the total number of elements, we obtain the reg-
ular set cover problem; similarly for k-vertex cover.
(We sometimes refer to k-set cover as “partial set
cover”, and k-vertex cover as “partial vertex cover”;
the case where k equals the total number of elements
is referred to as “full coverage”.) This generalization
is motivated by the fact that real data (in clustering
for example) often has errors (also called outliers).
Thus, discarding the (small) number of constraints
posed by such errors/outliers is permissible.

Suppose we need to build facilities to provide ser-
vice within a fixed radius to a certain fraction of
the population. We can model this as a partial set
cover problem. The main issue in partial covering
is: which £ elements should we choose to cover? If
such a choice can be made judiciously, we can then
invoke a set cover algorithm. Other facility location
problems have recently been studied in this context
[11].

We begin our discussion by focusing on vertex
cover and k-vertex cover. A very simple approxima-
tion algorithm for unweighted vertex cover (full cov-
erage) is attributed to Gavril and Yannakakis, and
can be found, e.g., in [14]: take a maximal matching



and pick all the matched vertices as part of the cover.
The size of the matching (number of edges) is a lower
bound on the optimal vertex cover, and this yields a
2-approximation. This simple algorithm fails for the
partial covering problem, since the lower bound re-
lies on the fact that all the edges have to be covered.
The first approximation algorithm for k-vertex cover
was given in [9]. Their 2-approximation algorithm is
based on a linear programming (LP) formulation:
suitably modifying and rounding the LP’s optimal
solution. A faster approximation algorithm achiev-
ing the same factor of 2 was given by Hochbaum [24]
in which the key idea is to relax the constraint lim-
iting the number of uncovered elements and search-
ing for the dual penalty value. More recently, Bar-
Yehuda [8] studied the same problem and gave a 2-
approximation for k-vertex cover based on the ele-
gant “local ratio” method.

1.1. Problem Definitions and Previous

Work

e k-Set Cover: Given a set 7 = {ty,t3,...,t,},
a collection S of subsets of 7, §&§ =
{51,592,..., 9.}, a cost function ¢ : § — QF,
and an integer k, find a minimum cost sub-
collection of & that covers at least k elements

of 7.

Previous Results: For the full coverage ver-
sion, a Inn + 1 approximation was proposed
by Johnson [26] and Lovasz [29]. This anal-
ysis of the greedy algorithm can be improved
to H(A) (see the proof in [14]) where A is the
size of the largest set!. Chvétal [12] generalized
this to the case when sets have costs. Slavik
[32] shows the same bound for the partial cover
problem. When A = 3, Duh and Fiirer [15] gave
a 4/3-approximation for the full coverage ver-
sion. They extended this result to get a bound
of H(A)— 1 for full coverage. When an element
belongs to at most f sets Hochbaum [21] gives
a f-approximation.

¢ k-Vertex Cover: Given a graph G = (V, V),
V — Q7. and an integer k,
find a minimum cost subset of V' that covers at

least k edges of G.

a cost function ¢ :

YH(ky =320 1/i=Tnk +0O(1).

1.2.

Previous Results: For the partial coverage
version several 2-approximation algorithms are
known (see [9, 24, 8]).

Geometric Covering Problem: Given n
points in a plane, find a minimally sized set of
disks of diameter D that would cover at least k
points.

Previous Results: The full coverage version is
well-studied. This problem is motivated by the
location of emergency facilities as well as from
image processing (see [23] for additional refer-
ences). For the special case of geometric cover-
ing problems, Hochbaum and Maass [25] have
developed a polynomial approximation scheme.

Methods and Results

k-Set Cover: For the special case when each
element is in at most f sets, we combine a
primal-dual algorithm [13, 18] with a threshold-
ing method to obtain an f-approximation.

One advantage of our method, in addition to its
simplicity, is that it can be easily parallelized by
changing the algorithm slightly. The resulting
approximation factor is f(1 + €), where ¢ > 0
is any desired constant. The number of parallel
rounds is O(logn) once we fix € > 0. The num-
ber of processors required in linear in the prob-
lem size. This is the first parallel approximation
algorithm for any partial covering problem.

Our general method is as follows: we first
“guess” the cost of the maximum cost set in the
optimal solution. We then modify the original
cost function by raising the costs of some of the
sets to infinity, so that these sets are never cho-
sen in our solution. This leads to dual feasible
solutions for the instance with modified costs
(which we use as a lower bound) that may be
infeasible for the original problem. However, if
we only raise the costs of sets that are guaran-
teed to not be in the optimal solution, we do
not change the optimal IP solution. Hence the
dual feasible solution for this modified instance
is still a lower bound for the optimal IP.

To parallelize the above algorithm, at each
“round” when we update the dual variables we
include all sets whose constraints are “almost”



tight. This is similar to the method described
n [28], but does not work directly. The main
difficulty is that in each round many sets are
chosen. As long as we have covered fewer than
the target number of elements there is no prob-
lem in accounting for the cost of the chosen sets.
However, in the last round (when we cross the
required threshold), we have to carefully pick an
appropriate subset of the chosen sets.

For set cover where the sets have cardinality at

most A there are results (starting from [16, 19])

by Duh and Fiirer [15] for set cover (full cover-

age) that improve the H(A) bound to H(A)—%.

For example, for A = 3 they present a % (=

H(3)- %) approximation using “semi-local” op-
11

timization rather than a <-approximation ob-

tained by the simple greedy algorithm.

For the case A = 3, we can obtain a % bound
for the partial coverage case. This does sug-
gest that perhaps the H(A) — 1 bound can be
obtained as well. This would improve Slavik’s
result [32].

k-Vertex Cover: By switching to a probabilis-
tic approach to rounding the LP relaxation of
the problem, we obtain improved results for k-
vertex cover, where we wish to choose a min-
imum number of vertices to cover at least k
edges. An outstanding open question for vertex
cover (full coverage) is whether the approxima-
tion ratio of 2 is best-possible; see, e.g., [17].
Thus, it has been an issue of much interest to
identify families of graphs for which constant-
factor approzimations better than 2 (which we
denote by Property (P)) are possible. In the full
coverage case, Property (P) is true for graphs of
bounded mazimum degree; see, e.g., [20]. How
can we extend such a result? Could Property
(P) hold for graphs of constant average degree?
This is probably not the case, since this would
imply that Property (P) holds for all graphs.
(Given a graph G with n vertices, suppose we
add a star with ©(n?) vertices to G by con-
necting the center of the star by an edge to
some vertex of (G. The new graph has bounded
average degree, and its vertex-cover number is
one more than that of ) However, we show
that for expander graphs of bounded average
degree, Property (P) is indeed true. We also

show Property (P) for k-vertex cover in the case
of bounded maximum degree and arbitrary k;
this is the first Property (P) result for k-vertex
cover, to our knowledge. OQOur result on ex-
panders uses an expectation analysis and the ex-
pansion property. Expectation analysis is insuf-
ficient for our result here on k-vertex cover, and
we show that a random process behaves close to
its mean on bounded-degree graphs: the degree-
boundedness helps us show that many sub-
events related to the process are (pairwise) in-
dependent. We also present certain new results
for multi-criteria versions of k-vertex cover.

Geometric Covering: There is a polynomial
approximation scheme based on dynamic pro-
gramming for the full coverage version [25]. For
the partial coverage version since we do not
know which & points to cover, we have to define
a new dynamic program. This makes the im-
plementation of the approximation scheme due
to Hochbaum and Maass [25] more complex, al-
though it is still a polynomial-time algorithm.

k-Vertex Cover for Planar Graphs: We
are able to use the dynamic programming
ideas developed for the geometric covering prob-
lem to design a polynomial-time approximation
scheme (PTAS) for k-vertex cover for planar
graphs. This is based on Baker’s method for
the full covering case [3].

2. k-Set Cover

The k-Set Cover problem can be formulated as an
integer program as follows. We assign a binary vari-
able z; for each §; € Si.e z; € {0,1}. In this for-
mulation, z; = 1 iff set 5; belongs to the cover. A
binary variable y; is assigned to each element t; € 7.
y; = Liff t; is not covered. Clearly, there could be
at most n — k such uncovered elements.

The corresponding LP relaxation can be obtained
by letting the domain of z; and y; be 0 < z;,y; <

Notice that the upper bound on z; and y; is

unnecessary and is thus dropped.

min ZC(SJ) T
7=1



subject to

Yi + Z ;> 1,1=1,2,...,n
Jit; €S

n

Zyi <n-k

=1

v; >20,7=1,2,...,m

y2>07i—1727 )

The dual LP contains a variable wu; (for each el-
ement t; € 7) corresponding to each of the first
n constraints in the above LP. The dual variable
z corresponds to the (n + 1) constraint in the
above LP formulation. The dual LP is to maximize
2izy ui—(n—k)-zsubject to: (i) Xoieq, vi < (5))
forj=1,2,....m, (i) 0 <u; <zfori=1,2,...,n,
and (iii) # > 0.

The algorithm SETCOVER (pseudo-code can be
found in Figure 1 in Appendix A) does the follow-
ing. The algorithm “guesses” the set with the high-
est cost in the optimal solution by considering each
set in turn to be the highest cost set. For each set
that is chosen, to be the highest cost set, say S5;,
S; along with all the elements it contains is removed
from the instance and is included as part of the cover
for this guess of the highest cost set. The cost of all
sets having a higher cost than ¢(5;) is raised to oo.
I; = (T7,87,¢,k;) is the modified instance. SET-
CoVER then calls PRIMAL-DUAL on I; which uses a
primal dual approach [18] to return a set cover for /;.
In PRIMAL-DUAL, the dual variables u; are increased
for all ¢; € 77 until there exists a set S; such that
Yities; Wi = ¢'(5;). Sets are chosen this way un-
til the cover is feasible. The algorithm then chooses
the minimum cost solution among the m solutions
found. For the purpose of clarity of exposition in
the following pseudo-code (refer to Figure 1 in Ap-
pendix A) we assume that costs of all sets in S are
distinct.

Theorem 2.1: SETCOVER(7,S, ¢, k) returns a f-
approximate solution, where f is the highest fre-
quency of any element i.e. an element appears in
at most f sets.

Proof: Let OPT refer to an optimal solution. We
will use OPT to mean either an optimal solution

or the cost of an optimal solution. The meaning
will be clear from the context in which it is used.
Let I be the given instance of the problem. Let
I; refer to the modified instance of the problem i.e.
I; = (7T7,87,c,kj). Let S; be the set with the
highest cost in OPT. Let OPT(I;) be the opti-
mal integer solution for the instance Iy. OPT =
OPT(Iy) 4 ¢(Sp). Let DFS(1I}) refer to the dual
feasible solution for the instance I,. Again, DFS(-)
will be used to mean the dual feasible solution or the
cost of the dual feasible solution. DFS([;) may not
be a feasible solution? to the instance (77,87, ¢, k;)
(note the original cost function). However, since
DFS(1,) <OPT(Iy)and OPT = OPT(I)+¢(Sh),
we have DFS(I,) + ¢(S,) < OPT. SCj is the
set cover chosen by our algorithm during the iter-
ation j = h. Let 57 be the last set chosen. Let
ASC = SCL\ {51} (ASC stands for Almost Set
Cover). Note that since S} is the costliest set,
c(S1) < ¢(Sp). Let T, represent the set of points
covered by ASC. Let T, = T"\ T. represent the set
of uncovered elements. Since the algorithm chooses
a cover, SC, of the lowest cost, cost(5C) is upper
bounded by cost(.5C},).

cost(SC) < cost(SCh) = > (%)
SLESCH

= Z c(Sk)
SLeSCH

= Z C(Sk)—l—c(sl)—l—C(Sh)
Sy EASC

<Y D wite(Sh) +e(Sh)
S€EASC i:t; €5,

= Z u2|{t2}ﬂASC|+QC(Sh)
1t €T,

< f DD uit2-¢(Sh)

IR

Z w;) + 2-¢(Sh)

IR

f- (ZUZ _
=1

n

f(ZuZ— [Ty - 2) 4+ 2-¢(Sh)

=1

2This is because we relax the constraints for the dual
problem.
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f-(iui—(n—k)-z)—l—Q-c(Sh)
< fA(DFS(p)+e(Sp) < f-OPT.

a

Corollary 2.2: SETCOVER(E,V, ¢, k) gives a 2-
approximate solution for k-Vertex Cover.

2.1. Parallel Implementation of Partial Set
Cover Algorithm

We assume as before that each element belongs
to at most f sets. The framework for the algo-
rithm is the same as the one we described for the
primal-dual serial algorithm. The parallel algorithm
runs in “rounds”. In each round, we simultane-
ously raise all dual variables w; corresponding to
the uncovered elements. In the serial algorithm
we pick one set in each iteration, namely a set .5;
such that (3 ;;eq wi = ¢/(55)). (Recall that ¢
denotes the modified cost function.) We change
this step in the algorithm to pick «all sets such that
(c'(55) = Xises; wi < ec’(S5)). (This condition will
let us prove that ¢'(5;) < (Xjyes, wi)/(1 —€).) We

stop as soon as we have covered at least k elements.

Suppose the algorithm covers at least k elements
after £ rounds. The main problem is that in the
last round we can include many sets simultaneously,
while we can afford to include only a few. Let ¢ be
the number of elements that we need to cover after
round £ — 1. To select an appropriate subset of the
chosen sets, we need to pick a minimal collection of
chosen sets that cover at least § elements. To ac-
complish this, we order the sets chosen in the last
iteration arbitrarily. Now compute in parallel the
“effective” number of elements each set covers and
choose a minimal collection based on the fixed order-
ing. (All these steps can be implemented in parallel
using prefix computations.)

Theorem 2.3: The parallel algorithm runs in (1 +
flog(1/e))(1+logn) rounds. The number of proces-
sors is linear in the size of the input. The parallel

algorithm produces a L—approximate solution.

1—¢

3. Set Cover for Small Sets

Problem: Given a collection C' of small subsets of
a base set U. Each small subset in the collection has
size at most A, and their union is U. The objective
is to find a minimum size sub-collection that covers
at least k elements.

Here we have the original partial set cover instance
with the additional information that the sets are of
“small” size, i.e., A is small. We obtain an approx-
imation factor of 4/3 for the case when A = 3 us-
ing the the idea of (s,t) semi-local optimization [15].
This technique consists of inserting up to s 3-sets
(sets of size 3) and deleting up to ¢ 3-sets from the
current cover. Then the elements that are not cov-
ered by the 3-sets (already existing ones + the newly
added) are covered optimally using 2-sets and 1-sets.
This can be solved in polynomial time using max-
imum matching [16]. The vertices are the uncov-
ered elements of U and the edges are the admissible
2-sets. The 2-sets corresponding to the maximum
matching edges and the 1-sets corresponding to the
vertices not covered by the maximum matching form
an optimum covering. We will order the quality of
a solution by the number of sets in the cover and
among two covers of the same size we choose the one
with fewer 1-sets and if the covers have the same size
and neither cover has a 1-set we choose the one that
covers more elements.

The algorithm starts with any solution. One solu-
tion can be obtained as follows. Choose a maximal
collection of disjoint 3-sets. Cover the remaining el-
ements optimally using 2-sets and 1-sets. Perform
semi-local (2, 1) improvements until no improvement
is possible.

The proof for the bound of 4/3 for full coverage
does not extend to the partial coverage version. For
the full coverage, to prove the lower bound on the
optimal solution Duh and Fiirer construct a graph G
in which the vertices are the sets chosen by O PT and
the edges are 1-sets and 2-sets of the approximate
solution. They prove that GG can not have more than
one cycle and hence argue that the total number of
1-sets and 2-sets in the solution is a lower bound on
OPT. This works well for the full coverage version
but breaks down for the partial covering problem.
For the partial covering case ¢ having at most one
cycle is a necessary but not a sufficient condition to



prove the lower bound.

In the full version of the problem, to bound the
number of 1-sets in the solution they construct a
bipartite graph with the two sets of vertices cor-
responding to the sets chosen by the approximate
solution and OPT. If a set corresponding the ap-
proximate solution intersects a set corresponding to
OPT in m elements then there are m edges between
their corresponding vertices in the graph. In each
component of the graph they show that the num-
ber of 1-sets of the solution in that component is
at most the number of 1-sets of OPT in that com-
ponent. This is clearly not the case in the partial
covering case. We obtain a bound on the number
of 1-sets as a side effect of the proof for the lower

bound on OPT.

The detailed proof of our theorem is shown in Ap-
pendix B.

Theorem 3.1: The semi-local (2,1)-optimization
algorithm for 3-set partial covering problem pro-
duces a solution that is within %OPT + 1.

4. Probabilistic Approaches for k-
Vertex Cover

We now present a randomized rounding approach
to the natural LP relaxation of k-vertex cover. An-
alyzed in three different ways, this leads to three
new approximation results mentioned in §1:
lating to vertex cover (full coverage) for expander
graphs of constant average degree, k-vertex cover on
bounded-degree graphs, and multi-criteria k-vertex
cover problems. We first describe the basic method
and prove some probabilistic properties thereof, and
then consider the three applications.

re-

The k-vertex cover problem on a graph G = (V, F)
can be formulated as an integer program as follows.
We assign binary variables z; for each v; € V' and
z; ; for each (¢,7) € E. In this formulation, z; = 1 iff
vertex v; belongs to the cover, and z; ; = 1 iff edge
(i,7) is covered. The corresponding LP relaxation
can be obtained by letting each z; and z;; lie in

[0, 1].

i3
min E $]
i=1

subject to
i+, > zijg, (1,j)EE (1)
Z zi; >k (2)
(¢,7)eE
xj,z; € [0,1], Vi,j.

Our basic approximation recipe will be as follows.
The LP relaxation is solved optimally. Let {z’},
{#7;} denote an optimal LP solution, and let A =
2(1—¢), where € € [0,1/2]is a parameter that will be
chosen based on the application. Let 51 = {v;|a} >
1/A}, and S = V — S;. Include all the vertices in
51 as part of our cover, and mark the edges incident
on vertices in 57 as covered. Now independently for
each j € S5, round z; to 1 with a probability of
Az}, and to 0 with a probability of 1 — Az7. Let
W be the random variable denoting the number of
covered edges at this point. If W < k, we choose any
k—W uncovered edges and cover them by arbitrarily
choosing one end-point for each of them.

We now introduce some notation to analyze the
above process. Throughout, we let Pr[-] and E[-] de-
note probability and expectation, respectively. Let
y* represent the optimal objective function value of
the LP, and define Sy C 51 by Sy = {v; : xy = 1}.
Let y7 and yp be the contribution to y* of the ver-
tices in Sp and V' — Sp respectively. Denote by U, ;
the event that edge (¢,7) is uncovered. Let Cy be
the cost of the solution produced by our randomized
scheme before the step of covering &k — W edges if
necessary, and let C's be the cost incurred in cover-
ing these k — W edges, if any. The total cost C' is of
course Cq + Cy; thus, E[C] = E[C1] + E[C3]. Now,
it is easy to check that E[C4] < y5 + Ayp, and that
E[C;] < E[max{k — W,0}]. So we have

E[C] < yj + Ayp + Elmax{k - W,0}].  (3)

The following lemma on the statistics of W will
be useful. As usual, let £ denote the complement of
an event £.

Lemma 4.1: (i) E[W] > k(1—¢€?*). (ii) Suppose the
graph GG has maximum degree d. Then, the variance

Var[lW] of W is at most dE[W].

Proof: (i) Consider any edge (¢,7). Now if 7
L/Aor o > 1/A, Pr[U; ;] = 0; otherwise, Pr[U; ;]

v



(1 = Az7)(1 — Az7). Consider the latter case. Since
x; + a7 > z7;, we can check that for any given 27, €
[0,1], (1 = Az7)(1 — Az7) is maximized when 2} =
xy = 27, /2. Hence,
PrUi;] < (1-Az;/2)
= (1-(1- G)zzj)z

< 1=zl - €.

Thus, since E[W] = 37 ;e Pr[Ui ], we get
E[W] > Z (1= €)= k(1—€).

(7,4)eE

(ii) We have W = 37 g U j. Tt is also an easy
calculation to see that if a random variable W’ is
the sum of pairwise independent random variables
each of which lies in [0, 1], then Var[W’] < E[W’].
However, the terms U; ; that constitute W do have
some dependent pairs: if edges (7, j) and (7', j') share
an endpoint, then U; ; and Uy ;s are dependent (pos-
itively correlated). Define v to be the sum, over
all unordered pairs of distinct edges (¢,7) and (', j')
that share an end-point, of Pr[U;; A Uy ;1]. Using
the above observations and the definition of variance,

a moment’s reflection shows that Var[W] is upper-
bounded by E[W]+ v. Now, for any events A and
B,

Pr[AA B] < min{Pr[A], Pr[B]}

< (Pr[A] + Pi[B])/2.

Thus, the term “Pt[U; ; A Uy j/]” in 5 is at most
(Pr[U; ;] + Pr[Uy ;7])/2. Finally, since each edge has
at most 2(d — 1) other edges that share an end-point

with it, we get that

y< Y (2(d=1)/2)- Pr[T; ] = (d - DE[W].
(i))EE

So, Var[W] < E[W] 4+ ~v < dE[W]. O

4.1. Vertex Cover on Expanders

Suppose we have a vertex cover problem; i.e., k-
vertex cover with & = m. The LP relaxation here
has “1” in place of “z; ;” in (1), and does not require
the variables z; ; and the constraint (2). We focus

here on the case of expander graphs of constant av-
erage degree. That is, for some constants ¢ and d, we
are studying graphs where: (i) the number of edges
m is at most nd, and (ii) for any set X of vertices
with | X| < n/2, at least ¢| X | vertices outside X have
a neighbor in X.

Since k = m, it is well-known that we can ef-
ficiently compute an optimal solution z* to the
LP with all entries lying in {0,1/2,1}. Let H =
{vjlz7 = 1/2} and F' = {v;[27 = 1}. Also, since
W < k = m always holds, E[max{k — W,0}] =
E[k — W] < me*, by Lemma 4.1(i). Thus, (3) shows
that E[C] is at most y5 + 2(1 — €)y}; + me®. (The
overall approach of: (i) conducting a randomized
rounding and then doing a greedy fixing of violated
constraints, and (ii) using an equality such as our
“E[max{k — W,0}] = E[k — W]” here, is suggested
in [33]. We next show how the expansion prop-
erty is useful in bounding E[C] well. However, in
the context of partial covering, an equality such as
“E[max{k—W,0}] = E[k—W]” does not hold; so, as
discussed in §4.2 and §4.3, new analysis approaches
are employed there.) Choosing ¢ = yj;/m to mini-
mize y5 + 2(1 — €)y}y + me?, we get

B[C] < yi(2 - v /m) + v

(4)

Case I: |H| < n/2. Note that the edges incident
on vertices in H must have their other end-point in
F; otherwise the LP constraint on such edges will be
violated. Since G is an expander, |F| > ¢-|H]|. Also,
vy = |F| and yj; = [H]| /2. So, since y* = y3 + Y7,
we have y5; = y*/(1 + a) for some a > 2¢. We can
now use (4) to get

E[C] <2y +yp = (2 - a/(1 + a)y™
i.e., at most (2 — 2¢/(1 4 2¢))y™ since a > 2c.

Case II: |H| > n/2. So, we have yj; > n/4. Bound
(4) shows that E[C] < (2 — y3;/m)y*; we have m <
nd by assumption. So, E[C] < (2—1/(4d))y* in this
case.

Thus we see that E[C] < [2 — min{2¢/(1 +
2¢),1/(4d)}] - y*. In other words, for the family of
expanders of constant average degree, we can get a

constant-factor approximation that is strictly better
than 2.



4.2. k-Vertex Cover:
Graphs

Bounded-Degree

We now show that any constant d, k-vertex cover
on graphs of maximum degree at most d can be ap-
proximated to within 2(1 — Q(1/d)), for any value of
the parameter k. We also demonstrate that the inte-
grality gap in this case is at most 2(1 —Q(1/d)). We
start with a couple of tail bounds that will be of use
now, as well as in §4.3. First, suppose X is a sum
of independent random variables X; each of which
lies in [0,1]; let E[X] = p. Then for any é € [0, 1],
the Chernoff bound shows that Pr[X > u(1 4+ 6)]
is at most e #%*/3. We will also need tail bounds
for certain non-independent situations. Suppose X
is a random variable with mean p and variance o?;
suppose a > 0. Then, the well-known Chebyshev’s
inequality states that Pr[|X — p| > «] is at most
o?/a?. We will need stronger tail bounds than this,
but only on X’s one-sided deviations (say, below its
mean). We will use the Chebyshev-Cantelli inequal-
ity (see, e.g., [1]), which shows that Pr[X — p <
—a] < o?/(a? + d?).

We now analyze the performance of our basic al-
gorithm (of randomized rounding of the LP solu-
tion followed by a simple covering of a sufficient
number of edges), for the k-vertex cover problem
on graphs with maximum degree bounded by some
given constant d. The notation remains the same.
The main problem in adopting the method of §4.1
here is as follows. Since k equaled m there, we could
use the equality E[max{k — W,0}] = E[k — W],
thus substantially simplifying the analysis. Here,
however, such an equality is not true; furthermore,
E[max{X,Y}] > max{E[X], E[Y]} for any pair of
random variables X, Y. (In fact, the two sides of this
inequality may differ a lot. For instance, suppose
X is the sum of n independent random variables,
each of which is uniformly distributed on {—1,1};
let Y be the constant 0. Then the r.h.s. is zero,
while the Lh.s. is ©(y/n).) Instead, we take re-
course to the Chebyshev-Cantelli inequality, and use
Lemma 4.1(ii).

We now claim that
Pr[W < (k(1—é%) - 2Vkd)] < 1/5.  (5)

This is trivially true if k& < 4d, since Pr[W > 0] = 1.
So suppose k > 4d. Lemma 4.1 and the Chebyshev-
Cantelli inequality show that g = E[W] > k(1 — €?),

and that Pr[W < p — 2y/dp] < 1/5. Subject to
> k(1 —€e%) > 4d(1 - %), p — 2¢/du is minimized
when p = k(1 — €*). Thus we have (5).

Next, for a suitably large constant ¢p, we can as-
sume that k& > cod®. (Any optimal solution has size
at most k, since in an optimal solution, every ver-
tex should cover at least one new edge. So if k is
bounded by a constant-such as cod®~then we can
find an optimal solution in polynomial time by ex-
haustive search.) Also, by adding all the constraints
of the LP and simplifying, we get that y* > k/d.
Thus, letting 6 = 1/(3d), a Chernoff bound shows
that immediately after the randomized rounding, the
probability of having more than 2y*(1 — €)(1 + §)
vertices in our initial cover is at most 1/5 (if the
constant ¢g is chosen large enough). Recall (5). So,
with probability at least 1 — (1/5+ 1/5) = 3/5, the
final cover we produce is of size at most

20 (1 — )(1 4 6) + ké* + 2Vkd.

We now choose € = y*(1 4 6)/k; since y* > k/d >
cod? with cq sufficiently large, some simplification
shows that the final cover size is at most 2y*(1 —

Q(1/d)).

4.3. k-Vertex Cover: Multiple Criteria

We now briefly consider multi-criteria k-vertex cover
problems on arbitrary graphs. Here, we are given
a graph G and, as usual, have to cover at least k
edges. We are also given { “weight functions” w;,
and want a cover that is “good” w.r.t. all of these.
More precisely, suppose we are given vectors

w; = (wi71,wi72,. . .,wm) € [0,1]n, 7= 1,2,. . .,ﬁ

and a fractional solution z* to the k-cover prob-
lem on G. Define yr = >, wi i for 1 < @ <
{. We aim for an integral solution z such that
for each i, y; = >, wijz; is not “much above”
y".  Multi-criteria optimization has recently re-
ceived much attention, since participating individu-
als/organizations may have differing objective func-
tions, and we may wish to (reasonably) simulta-
neously satisfy all of them if possible. The result
we show here is that if y* > ¢;log?(¢ + n) for all
i (where ¢ is a sufficiently large constant), then
we can efficiently find an integral solution z with

v < 2(14 1/y/log({ + n))y’ for each i. Please see
Appendix C for a short description of the analysis.



5. Geometric Packing and Covering

Problem: Given n points in a plane, find the small-
est number of (identical) disks of diameter D that
would cover at least &k points.

A polynomial time approximation scheme exists
for the case when k& = n (full covering). The al-
gorithm uses a strategy, called the shifting strategy.
The strategy is based on a divide and conquer ap-
proach. The area, I, enclosing the set of given points
is divided into strips of width D. Let [ be the shifting
parameter. Groups of [ consecutive strips, resulting
in strips of width [D are considered. For any fixed
subdivision of I into strips of width D, there are [
different ways of partitioning I into strips of width
[D. The [ partitions are denoted by 5, 52,...,9].

The solution to cover all the points is obtained
by finding the solution to cover the points for each
partition, S;,1 < j <[, and then choosing a mini-
mum cost solution. A solution for each partition is
obtained by finding a solution to cover the points in
each strip (of width (D) of that partition and then
taking the union of all such solutions. To obtain a
solution for each strip, the shifting strategy is re-
applied to each strip. This results in the partition of
each strip into “squares” of side length [D. As will
be shown later, there exists an optimal covering for
such squares.

We modify the use of shifting strategy for the case
when k < n (partial covering). The obstacle in di-
rectly using the shifting strategy for the partial cov-
ering case is that we do not know the number of
points that an optimal solution covers in each strip
of a partition. This is not a problem with the full
covering case because we know that any optimal so-
lution would have to cover all the points within each
strip of a partition. For the partial covering, this
problem is overcome by “guessing” the number of
points covered by an optimal solution in each strip.
This is done by finding a solution for every possible
value for the number of points that can be covered
in each strip and storing each solution. A formal
presentation is given below.

Let A be any algorithm that delivers a solution to
cover the points in any strip of width [D. Let A(S;)
be the algorithm that applies A to each strip of the
partition 5; and outputs the union of all disks in a

We will find such a solution for
each of the [ partitions and output the minimum.

feasible solution.

Consider a partition \5; containing p strips of width
ID. Let n; be the number of points in strip j. Let

?PT be the number of points covered by OPT in
strip j. Since we do not know n?PT, we will find fea-
sible solutions to cover points for all possible values
of n?PT. Note that 0 < nfFT <k, = min(k, n;).
We use dynamic programming to solve our problem.
The recursive formulation is as follows:

n

Clasy) = i, (DF +C( =1,y - 1)
where C'(z,y) denotes the number of disks needed to
cover y points in strips 1..z and D? is the number of
disks needed to cover ¢ points in strip 2. Computing
C(p, k) gives us the desired answer.

For each strip s, for 0 < i < k%, D? can be calcu-
lated by recursive application of the algorithm to the
strip s. We partition the strip into squares of side
length I D. We can find optimal coverings of points
in such a square by exhaustive search. With O((?)
disks of diameter D we can cover [D x[D square com-
pactly, thus we never need to consider more disks for
one square. Further, we can assume that any disk
that covers at least two of the given points has two of
these points on its border. Since there are only two
ways to draw a circle of given diameter through two

!
given points, we only have to consider 2 ( g ) pos-

sible disk positions where n’ is the number of given
points in the considered square. Thus, we have to
check for at most O(n’Q(lﬁ)Z)) arrangements of disks.

Let Z4 be the value of the solution delivered by
algorithm A. The shift algorithm 54 is defined for
a local algorithm A. Let rp denote the performance
ratio of an algorithm Bj; that is, rp is defined as the
supremum of Z? /|0 PT| over all problem instances.

Lemma 5.1: rg, < ra(l+ %) where A is the local
algorithm and [ is the shifting parameter.

Proof: Consider a partition S; with p strips of width
zA .

[D. We have that r4 > W, where j runs over all

strips in partition 5; and |OPT};| is the number of

OPT points in strip j.

disks in an optimal cover of n;
It follows that Z4(5) < ry Yjes, |0 PT]



Let OPT be the set of disks in an optimal solution
and OPTM, ..., OPTW the set of disks in O PT cov-
ering points in two adjacent [D strips in 1,2,...,!
shifts respectively. Thus we have

S joprr;| < |0PT|+‘0PT<Z’>
JES;
1 {
S PP
1 {
< f‘A(ZZlOPTjD
=1 jE€S;
1< :
< 7rA(Z|0PT|+‘0PT<Z> ).

=1

There can be no disk in the set OPT that covers
points in two adjacent strips in more than one shift
partition. Therefore, the sets OPTW ..., 0PTW
are disjoint and can add up to at most O PT. Tt fol-
lows that Y-, (|0PT| + [0 PTO|) < (1+1)|0PT].
Substituting this in the bound above for Z54 we get
that Z%4 is at most Tra.(l 4+ 1)|OPT] = ra.(1 +
Dlorr)|. O

Theorem 5.2: The above algorithm yields a PTAS
with performance ratio at most (14 1)%.

Proof: We use two nested applications of the shift-
ing strategy to solve the problem. The above lemma
applied to the first application of the shifting strat-
egy would relate the performance ratio of the final
solution, rs,, to that of the solution for each strip,

TA.

rs, <ra(l+1/1) (6)
The lemma when applied to the second application
of shifting strategy relates r4 to the performance
ratio of the solution to each square, say r4/. Thus,
ra < r4(l+1/l). But since we obtain an optimal
solution for each square, r4/ = 1. Bound (6) shows
that rg, < (14 1/1)% ]
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6. k-Vertex for Planar

Graphs

Cover

Full vertex cover for planar graphs of bounded tree-
width can be computed optimally in linear time.This
immediately leads to a PTAS for planar graphs
by a combination of results of Baker and Bodlaen-
der [3, 4]. Baker gives a general framework that con-
structs a PTAS for any problem which can be solved
optimally for [-outerplanar graphs — planar graphs
where all nodes have a path of length <[ to a node
on the outermost face [3]. This method is based on
the shifting strategy that is similar to the method
used for geometric covering in the previous section.
Bodlaender [4] proves that any [-outerplanar graph
has tree-width at most 3/—1. Vertex cover for graphs
of bounded tree-width can be solved optimally in
polynomial time, thus implying such a solution for
graphs that are [-outerplanar for a fixed constant [.

First we describe how to create a collection of de-
compositions of a planar graph G into a set of [-
outerplanar graphs. Let d(v) = shortest path length
from » to any node on the outer face of G. For
each value of 6 = 0,1...,({ — 1), we generate a de-
composition as follows. Let G; = (V;, F;) be the ith
[-outerplanar graph for a fixed é. V; = {v|li+ 6 <
div) <l(i+ 1)+ 6 and E; = {(u,v)|u € V; and v €
Vi}. There are [ different ways of creating these de-
compositions, one for each 6. These correspond to
the [ partitions 57, 55,...,.5; in the geometric cover-
ing case. In the full covering case, the algorithm is to
find a vertex cover for each of the [ decompositions
and then to take the best solution. The vertex cover
for each decomposition is the union of the solutions
to each [-outerplanar graph in the decomposition.
As in the case of geometric covering the obstacle in
directly using the above algorithm for the partial
covering case is that we do not know the number
of edges covered by O PT in each outerplanar graph.
As in the previous section, we overcome this obstacle
by “guessing” the number of points covered by an
optimal solution in each [-outerplanar graph. The
dynamic programming formulation in the previous
section can be used once the following correspon-
dence between the various entities is noted. The
vertices in our case correspond to the disks and the
edges correspond to the points to be covered. An [-
outerplanar graph corresponds to the strip of width



[D. As in the previous case, we still have [ such
decompositions. In the geometric covering problem
the solution to each strip is calculated by recursively
applying the shifting strategy to each strip. In this
case, an optimal solution for the partial vertex cover
for l-outerplanar graphs is computed as shown in the
next section.

We now give a linear-time algorithm for bounded
tree-width graphs (if the graph has tree-width [, then
the time required for the algorithm to run will be
exponential in [ but linear in the size of the graph).
The following definition is standard (see, e.g., [4]).

Definition 1: Let G = (V, L) be a graph. A tree-
decomposition of G is a pair ({X; |1 € I},T =
(I,F)), where {X; | ¢ € I} is a family of subsets
of Vand T = (I, F) is a tree with the following
properties:

1. UiEIX’i - V

2. For every edge e = (v,w) € F, there is a subset
X, 1€, withv € X; and w € X;.

3. For alli,j,k € I, if j lies on the path from @ to
kin T, then X; (X C X]‘.

The tree-width of a tree-decomposition ({X; | i €
1}, T)ismax;er{| X;|—1}. The tree-width of a graph
is the smallest value k such that the graph has a tree-
decomposition with tree-width k.

Many problems are known to have linear time al-
gorithms on graphs with constant tree-width, and
there are frameworks for automatically generating
a linear time algorithm, given a problem specifica-
tion in a particular format [2, 5]. The partial ver-
tex cover problem can be solved by successively us-
ing solutions to the problem of finding the maxi-
mum number of edges that can be covered using
p vertices. The value of p can be selected by do-
ing a binary search on the set of vertices which re-
duces in half with every successive solution. This
problem can be expressed in the formalism of [5]
as:  max |Eq|[Vi CV A Vi <pA Ey = IncE(V)],
which states that we want to maximize the set of
edges that can be covered by any subset Vi of V
such that the size of V; is at most p.

Theorem 6.1 follows from Lemma 5.1 and the fact
that rg = 1.
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Theorem 6.1: The above algorithm gives a PTAS
with a performance ratio < (1 + }).
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Appendix

A. Pseudo-Code for k-Set Cover

PRIMAL-DUAL(T’, 8, ¢/ k')

1 /* Returns a subset C' of 8’ that is feasible; */

2 /*i.e., C covers > k' elements of 7' */

3 /* z is maintained implicitly in the algorithm. At all times z = max; u; */
4 C—10

5 E—T

6 while (' is not feasible

7 /* increase the dual variables u; for ¢; € E. */

8 /* When selecting .S, sum >, oo u; */

9 /* is taken over all the #; € S; before the start of the while loop. */

10 do Increase u; for all ¢; € £ until 3 a set S; s.t. Zi:t,eS, u; = ¢'(S;)
1 E—E\S;

12 C —Cu {SZ}

13 return C

SETCOVER(T, S, ¢, k)

1 if (k <0) return §

2 Sort the sets in increasing order of their cost

3 for j— 1ltom

4 do ¢'(S;) — oo

5 for j— 1ltom

6 /* create a modified instance I; = (77,87, ¢, k;). */

7 /* run PRIMAL-DUAL on this instance. */

8 /* SCj; is the cover obtained in iteration j. */

9 do ¢'(S;) < ¢(S;) /* S; is the highest cost set in OPT */
10 87— 8\ {S;} /* S; is removed from the instance */
11 TJ — T\ S; /* all elements of S; are removed */

12 ki — k — |S]

13 cost(SC;) = oo

14 if(|SlUSzU...USj)|ij)

15 then SC; — {S;}U PRIMAL-DUAL(77, 87, ¢, k)
16 cost(SC;) = Zskescj c(Sk)

17 SC = min{cost(SCY), cost(SCa), ..., cost(SCp )}
18  return SC

Figure 1: Algorithm for k-Set Cover (§2).
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B. Proofs for §3

B.1. Notation:

S: our solution.

OPT: optimal solution.

a;: number of sets of size ¢ (1 =1,2,3)in S.

b;: number of sets of size ¢ (i = 1,2,3) in OPT.

D: set of elements that are covered by 2-sets and 3-sets
of OPT and not covered by 2-sets and 3-sets of S.

B: set of elements that are covered by 2-sets and 3-sets
of S and not covered by 2-sets and 3-sets of OPT.

C'" set of elements that are covered by 2-sets and 3-sets
of S and OPT.

Pep(Tep): a 2-set (3-set) of OPT that covers elements
in C' and D.

Pep(Tep): a 2-set (3-set) of S that covers elements in B
and C'.

If S consists only 3-sets then our solution is optimal,
hence we will not consider this case. In order to upper
bound the number of 1-sets and 2-sets we will construct
a graph in which the vertices correspond to 2-sets and
3-sets of OPT and the edges correspond to 1-sets and 2-
sets of S. Let H be a component of (G. Note that in H
a l-set of S would be represented as a 1-cycle (self loop).
Figures 2, 3,4, 5, and 6 that are referenced in the lemmas
below can be found in the appendix.

Lemma B.1: The semi-local (2,1)-optimization algo-
rithm produces a solution in which ai + 2as + 3az <

b1 + 2by + 3bs + 1.

Proof: 1f a; > 0 then S covers exactly k elements. If
a1 = 0 then it may cover an extra element and hence the
1 on the right hand side of the above inequality. a

Lemma B.2: H has at most one set of OPT that covers
elements in C' and D.

Proof: In H, (i) Tep cannot co-exist with another Tep
otherwise a semi-local (2,0) improvement that uses one
set less to cover the same number of elements is possible.
Figure 2(a) illustrates this case. In the figure it is shown
that Tep covers only one element in . The case in
which Tep covers two elements in D is only easier. (ii)
Tep can not co-exist with Pop, otherwise a (1,0) semi-
local improvement that uses the same number of sets to
cover an extra element is possible. This is shown in Figure
2(b). (iii) Pcp can not co-exist with another Pop as this
would mean that in H, there is a better 2-cover than the
one used by S. This is not possible as we find a 2-cover
optimally. Figure 2(c) illustrates this case.

O

Lemma B.3: If H has a Tep or Pop then H is acyclic.

Proof: If Tep is part of the cycle then a (1,0) semi-local
improvement is possible. If H has a T p that 1s not part
of the cycle then a (2, 0) semi-local improvement is possi-
ble. If H has a Pcp then a (1,0) semi-local improvement
is possible. All these cases are illustrated in Figure 3.

O
Lemma B.4: H does not have more than one cycle.

Proof: By Lemma B.3 this is true when H has a T¢p or
a Pop. Assume that H has no such set. In that case a
semi-local 2,0) improvement is possible. Figure 5 shows
this case. a

Lemma B.5: If ay > 0 and if H contains a T-p or Pcp
then H does not have a 2-set or a 3-set of OPT, say X,
such that X NY # 0, where Y is a 3-set of S.

Proof: Tf otherwise, a (0,1) semi-local improvement is
possible. The improved solution would have fewer 1-sets.
Figure 4 illustrates this case.

O

Lemma B.6: The (2,1) semi-local optimization tech-
nique produces a solution in which a1 +as < by+bo+b3+1.

Proof: Consider the case when a; > 0. From Lemmas
B.2, B.3, B.4 and B.5 we conclude that if H contains a
Tep or Pop then there also exists at least one Pog in H.
In each component we will charge an edge to a vertex. In
H which either has a Top or a Pop we can charge Pop
to the Tp or Pop and the edges whose both ends are
covered can be charged to the other vertices. In H, let
e be the edges that are charged and eZ be the edges
that are uncharged. Let af be the 1-sets that are charged
to some set of OPT and let af be the remaining 1-sets.
al+as =Y el +5 el Each uncharged edge covers
an element in B. Since S and OPT cover exactly the
same number of elements, the number of elements covered
by the l-sets of OPT is at least equal to the number of
elements in a U B. Thus we have

af +> el <h (7)
H
alf—I-ZefI—l-Z@uHﬁh-l-bz-l-bs
H H

af +af +as < by +by+ b3
ay +as <by +by+ b3
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Consider the case when a; = 0. In this case Lemma
B.5 does not hold. Hence it is not necessary that if H
contains a To-p or Pop then there also exists at least one
Pep in H. In such components there exists exactly one
set of OPT that does not get charged by an edge in S.
Let this set be the set that covers an element in D. In
H, let ¢ff denote all the sets of OPT that are charged
by the edges of S and ¢Z denote the uncharged sets of
OPT. by + b3 = g + ¢, Since a; = 0, S may cover
k + 1 elements. Thus we have

ap+ Y el <> gl +h+1
H H

ar+y e+ el <Y ql + Y gl b+
H H H H
ar+az <by+ba+0b3+1

O

Lemma B.7: If H contains 1-set of S then H does not
have a 2-set or a 3-set of OPT', say X, such that XNY #
(), where Y is a 3-set of S.

Proof: Tf otherwise then a semi-local (0, 1) improvement
is possible by discarding Y. The resulting solution will
have one less singleton. Figure 6 illustrates this case. O

Lemma B.8: The semi-local (2,1)-optimization tech-
nique produces a solution in which a; < by

Proof: If a; = 0 the condition holds trivially. Hence
assume a; > 0. From equation (7) we have a¥ < b;.
Let b} = a¥ be the l-sets of OPT. Let b) = by — b} be
remaining 1-sets of OPT. We want to prove that a$ < bf.
Consider a H that has a 1-set of S. This 1-set corresponds
to a l-cycle in H. By Lemma B.4 H does not have a cycle
other than the l-cycle. By Lemma B.3 H does not have
aTep or Pop. By Lemma B.7 there can not be a 3-set,
Y, of S such that X NY # (, where X is a set of OPT in
H. Hence H must have a Pog. The edge corresponding
to Pop can not be charged to any set of OPT in H.
Hence it is charged to some 1-set of OPT. Thus we have
af < Yogel <. =

Proof of Theorem 3.1. Adding up the inequalities in Lem-
mas B.1,B.6 and B.8, we get

3(a1 + az + ag) < 4(b1 4+ by + b3) — by — by + 2

4 2
e(S)y=a1+as+asz < gOPT—I— 3

This completes the proof of Theorem 3.1.

C. Brief description related to §4.3

Briefly, we run our algorithm with € = 0. Lemma 4.1 and
the Chebyshev-Cantelli inequality show that

PriW < (k—1)] <nm/(nm+1)=1-1/(nm+1),

which, though large, is 1 — Q(1/n%M). Also, a Cher-
noff bound and “union bound” argument can be used to
show that the probability of existence of an ¢ for which
yi > 2(1 4 1/4/log(¢+ n))y} holds after our randomized
rounding, is at most 1/(2nm+2). Thus, with probability
at least 1/(nm+ 1) = 1/2nm +2) = 1/(2nm + 2) we
will have our desired solution; this can be boosted to a
high probability by repeating this basic algorithm O(nm)
times. Complete details will be presented in the full ver-
sion.
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Figure 2: In each of the following cases an improved partial cover (represented by figures on the right)
contains the sets of O PT marked by solid boundaries and the sets of § corresponding to the solid edges.
(a) Two Teop sets in H lead to a (2,0) semi-local improvement. (b) A Top and Pop in H leads to a

(1,0) semi-local improvement. (¢) Two Pop sets in O PT is not possible as our algorithm finds an optimal
2-cover. The figure on the left is not an optimal 2-cover.
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Figure 3: In each of the following cases an improved partial cover (represented by figures on the right)
contains the sets of O PT marked by solid boundaries and the sets of § corresponding to the solid edges.
(a) A Top set in H as part of the cycle leads to a (1,0) semi-local improvement. (b) A Top in H that is
not part of the cycle leads to a (2,0) semi-local improvement. (¢) A Pop set in H containing a cycle leads
to a (1,0) semi-local improvement.
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Figure 4: In the above instances (0,1) semi-local improvement yield a solution which uses an extra set to
cover an extra element. Thus a singleton can be discarded from our solution giving us a better solution.

Figure 5: In the above instance (2,0) semi-local improvement yields a solution which uses one set less to
cover the same number of elements.
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Figure 6: In the above instances (0,1) semi-local improvement yields a cover whose size is same as before
but has one less singleton.
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