
 1 

ABSTRACT 
 

Title of dissertation:             Spatial and Temporal Characteristics of 
                                             Electromagnetic Activity in the Brain Prior to  
                                             Reaches to Visual Targets 
                                  
                                             Claudia Bonin, Doctor of Philosophy, 2010 
  
Dissertation directed by:      Professor Jonathan Simon 
                                             Department of Biology 

 
 
 
The electromagnetic activity in the brain prior to reaching movements has been 

studied extensively in monkeys using direct cell recordings from neurons and in 

humans using electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI). The research presented here extends those lines of 

investigation into human reaching movements using magnetoencephalography 

(MEG), an advanced electrophysiological tool that allows analysis of higher 

frequencies than EEG and better temporal resolution than fMRI. Several new 

findings of signature events in the electromagnetic activity in the brain associated 

with visuomotor and cognitive components of a reaching movement are reported 

in this study. The most fascinating is related to target location: an 

electromagnetic power increase in the beta band (15-25Hz)  occurs in the left 

intraparietal sulcus 2.5 seconds prior to movement for contralateral targets only – 

not for ipsilateral targets.  It is claimed here that this is electrophysiological 

evidence of a default bias toward reaches to ipsilateral targets, also known as the 

“proximity-to-hand effect.”  
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l. Introduction: Mindlessness and Margaritas at Happ y Hour at 

Tippy's Taco Shack  

 

      Wittgenstein posed the famous query, “What is left over if I 

subtract the fact that my arm goes up from the fact that I raise my 

arm?” (Wittgenstein L 1958) It is a philosophical question that 

arises from one of the paradoxes of neuroscience:  movement, the 

most transparent, directly measurable, evidence of human agency, 

is itself largely under the control of implicit processes, blocked off 

and hidden, even from the actors themselves. The covert nature of 

the human motor system makes the neurological processing that 

precedes voluntary movement particularly difficult to probe. 

Indeed, human movement is not unlike the closed watch Einstein 

used to describe his efforts at understanding the universe, "we are 

somewhat like a man trying to understand the mechanism of a 

closed watch. He sees the face and the moving hands, even hears 

it ticking, but he has no way of opening the case. If he is ingenious 

he may form some picture of the mechanism which could be 

responsible for all the things he observes, but he may never be 

quite sure his picture is the only one which could explain his 

observations. He will never be able to compare his picture with the 
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real mechanism and he cannot even imagine the possibility of the 

meaning of such a comparison."   

     In a similar way that few people know much about what is going 

on inside their watches, people typically know or give little 

attention to the details of their movements.  At a conscious level, 

the human motor system appears to be organized around higher-

order cognitive states such as intention or “wish,” as Freud called 

it.  There is generally little awareness of further details:  the 

precise metrics and kinematics, the seamless timing and 

assembling of dynamic combinations of forces and muscle groups 

that must be recruited and ordered just-so when we act are mostly 

unknown to us. For instance, the act of reaching to drink from a 

glass requires a much different motor program than the act of 

reaching to throw a glass, but typically people do not concern 

themselves with those differences.  Rather, all that is held in mind 

is the goal. The unconscious mechanisms that subserve the 

human motor system take care of the rest.   

      The research completed here was designed to probe the 'black 

box' of neurological processing that precedes the initiation of 

movement. Experiments were modeled to explore action that in 

real life would occur something like this:  
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      You're at happy hour at Tippy Taco Shack looking out on the 

coast of Encinatas, Mexico, sipping a strong margarita and 

snacking on home-made tortilla chips. You reach to pick up a chip 

from the basket to your right on the bar. Occasionally you reach to 

pick up the margarita sitting to your left on the bar. That's all you're 

doing, casually fulfilling your desire for salt and alcohol and pink 

and purple sunsets--or so you think.   

     Actually, each time you make these carefree moves, you are in 

fact resolving physical uncertainty in the space time continuum. 

More importantly to those who seek to study and understand the 

human brain, you are using a mix of hard-wired circuitry that 

evolved on the savannas of Africa over millions of years and an ad 

hoc cocktail of neurotransmitters and receptor-forming-dendrites 

that can create new pathways in the brain on a time scale of 

minutes, to resolve fundamentally human questions.  Time for 

another sip of that margarita.   

     Ok. Now where were we?  ........ Fundamental questions to 

resolve before you can make your move at the bar toward happy 

hour happiness, like:  

WHICH one do you want this time, a chip or a sip?   

WHERE in 3-d space is this target you've selected?  
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HOW does your hand get there since it can't see and has no GPS 

to call out the step by step navigation?    

And then there's the hard question: 

WHO is making up your mind anyway? Who is in charge? The 

drink? The chip? Your hand?  A part of your brain? Your whole 

brain?   

     By deductive reasoning, it is clear that you must have answers 

to all of these questions in order to accomplish your goals at 

Tippy's Tacos.   By experience, we know that we hardly think 

about things like this at all.  Evidence is needed then to settle the 

contradiction of what's going on at this taco shack in Encinatas.  

We proceed with an inquiry into the covert cognitive processing 

that precedes reaching for chips and a margarita by posing two 

questions reminiscent of those from a 1972 investigation of a 

different set of covert operations:  

WHAT does your brain know and WHEN does it know it?  

          The research presented here utilized magneto- 

encephalography (MEG), one of the modern tools of neuroscience 

that have allowed investigation of the black box of covert activity 

occurring in the brain.  Specifically, it was used to examine when and 

where information is encoded in the brain about two aspects of 
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reaching movements:  the selection of a target of a reach and the 

spatial localization of the target of a reach.  Additionally, imagined 

reaches were analyzed for characteristic patterns. Finally, pattern 

recognition techniques were used with single trial data to construct 

real-time decision prediction models that could someday make it 

possible to actually  “read your mind” about whether you want a chip 

or a margarita before you have moved a muscle.  

 

II.   Literature Review 

II.A. Neuropsychological Evidence of the Covert Nat ure of 

Events Preceding Voluntary Movement 

         Feedback and feedforward mechanisms for information 

processing are common in the brain. The structure of the motor 

control system, in particular, relies to a great extent on anticipatory 

programs and forward models.  This type of advance preparation 

provides the ability to respond more quickly to events in the 

environment, conferring clear advantage from both an evolutionary 

and everyday perspective.  

     Forward models in animal studies are established in detail at 

the neuronal level. It has been shown that aspects of movement 

are planned and predicted in advance. (Hollerman Tremblay Schultz 2000; 
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Schultz Tremblay Hollerman 2003; Graybiel 1998; Schultz 1997;  Aosaki Graybiel Kimura 

1994) Advanced programming also appears to be the mechanism 

that converts repetition of movement sequences into skills or 

habits. The movements are programmed and stored as seamless 

'chunks' to be automatically executed when needed as a whole 

unit. (Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM 2005; Kennerley SW, Sakai K, 

Rushworth MF.  2004;   Sakai K, Kitaguchi K, Hikosaka O.  2003;  Goldstone RL. 1998; 

Graybiel 1998; Kermadi and Joseph 1995; Aldridge JW, Berridge KC.  1998). Less 

detail is known about the mechanisms of implicit forward models in 

human behavior, but evidence is plentiful that such operations 

exist. The procedural memory system of the human brain has 

been shown to be the neural substrate for the acquisition of 

cognitive and motor skills and habits and is characterized by 

anticipation and feed forward mechanisms. As described in a 

paper by Pascual-Leone, Grafman and Hallett (1995), “Procedural 

learning may be used to refer to the process by which repeated 

exposure to a task, regardless of whether the subject does or does 

not form a conscious memory of this exposure, eventually results 

in improved performance on that task.”   Studies have shown, for 

example, that reaction times for movements are significantly faster 

when information about the direction or distance of the target of a 
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movement is available prior to movement (Deiber MP et al 1996, Bock and 

Arnold 1992).  Reaction times also decrease in motor tasks even 

when the information about upcoming moves is implicitly given, 

such as in the classic Serial Reaction Time (SRT) paradigm. In 

this task, subjects execute cued keypress sequences in two 

conditions: some blocks contain an implicit pattern, while other 

blocks are completely random. The typical result is that reaction 

times improve in the blocks with the implicit pattern, but not in the 

blocks with random cues, implying that the difference is due to the 

feedforward effects (Honda M et al 1998; Wilkinson L and Jahanshahi M 2007).  

Similarly, implicit forward models have been documented in 

studies with eye movements. Efferent copies of eye movement 

commands have been shown to implicitly update gaze signals that 

provide a frame of reference for the hand during reaching 

movements (Pierrot-Deseilligny et al 2003 Lewis RF Gaymard BM Tamargo RJ 1998  

Wurtz RH Sommer MA 2006). The efferent copy enables a person to 

respond to environmental disturbances even before the subjective 

experience of the disturbance has occurred, as demonstrated in a 

series of experiments by Castiello and Jeannerod (1991).  Motor 

responses to perturbations of the target in a reaching task were 

measured and subjects were asked to report their awareness of 
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the perturbation with the vocalization, “tah”.  Corrections in 

trajectory preceded subjective reports of the target change by 150-

300 ms. Studies of forward models in reaching experiments have 

also shown that the motor system's implicit anticipatory pathways 

can be powerful enough to override an explicit, volitional 

"intention" or "will" to move.  Pisella et al (2000) asked subjects to 

point to targets that could unexpectedly change location or color. 

There were stop signals to create conflict between automatic 

correction systems and voluntary motor control. Corrections were 

made by subjects, however, even when instructions were to stop. 

The correction system for on-line motor control automatically 

activated even when subjects had another motor intention. Such 

evidence implies that feed forward models, or stored motor 

programs, may dominate when they are in competition with 

volitional, “willed” processes.   

     Further evidence of the mechanical nature of ‘voluntary’ 

movement was demonstrated by the subconscious initiation of 

movement in a study that compared reaction times to perceived 

and unperceived visual stimuli (Taylor, 1996).  Subjects were asked to 

make a movement as soon as the stimulus appeared, with half of 

the reaction time tasks containing a masked stimulus that was not 
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perceived by the subjects. The masked stimulus occurred 50 msec 

before the larger, perceived stimulus. Reaction times for the 

perceived and unperceived stimuli were similar, suggesting that 

unperceived stimuli may trigger “voluntary” movement.  This 

subservience of volitional control to implicit motor commands 

exhibited by normal subjects in the preceding studies seems 

similar in some ways to the loss of willed behavior seen in a 

disorder due to damage of the parietal cortex, known as alien 

hand syndrome.  In this condition, “the ongoing activity exerts a 

more powerful influence than the intended action,” (Pisella et al 2000) 

leading patients to mistakenly attribute self-generated actions of 

their own hand to external forces. For example,  Brion and 

Jedynak (1972) described patient MA this way, “M.A… was putting 

on his shirt with difficulty, and looking for the sleeves behind his 

back, when, incidentally, he took hold of one hand with the other; 

he pulled on it, tried to get away and said, “Let go of my hand.  

You’re keeping me from getting dressed.”  K Goldstein wrote in 

1908 of another patient with alien hand syndrome following a 

stroke, “on one occasion the hand grabbed her own neck and tried 

to throttle her, and could only be pulled off by force. Similarly, it 

tore off the bed covers against the patient’s will……She soon is 
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complaining about her hand; that it is a law unto itself, an organ 

without will….”    

    Evidence from alien hand syndrome as well as other 

neuropsychological studies of humans with optic ataxia and 

lesions in posterior parietal cortex (PPC) supports the claim that 

the posterior parietal region is an important neural substrate for 

the planning and on-line control of reaching movements (Medendorp, 

Goltz, Crawford, Vilis 2005 ; Crawford JD, Medendorp WP, Marotta JJ. 2004; Karnath and 

Perenin 2005).   

      The neuropsychological evidence just reviewed indicates that 

aspects of human “voluntary” movement can be implicitly 

programmed in advance and are not always under volitional 

control.  It also supports the posterior parietal cortex as a region of 

interest in the study of the related cognitive events that occur prior 

to reaches.  More precise measures of the time course in which 

specific parameters of a movement are planned relative to the time 

that movement is initiated can be determined with 

electrophysiological experiments, as examined next. 
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II. B. Electrophysiological Evidence of Events Prec eding   

         Voluntary Movement 

      The existence of electrical currents in the brain was discovered in 

1875 by an English physician, Richard Caton, using exposed brains 

of rabbits and monkeys. In 1924 Hans Berger, a German neurologist, 

used ordinary radio equipment to amplify the electrical activity 

measured on the scalp of a human brain.  This pioneering work 

opened up the possibility of evaluating claims about the operations 

taking place prior to movement without relying solely on parameters 

of the output such as speed and accuracy.  This possibility is being 

realized today with electrophysiological measurements made by three 

primary methods:  electric fields due to electric currents in the brain 

are recorded from the surface of the scalp with 

electroencephalography (EEG) or from a sub-dural grid with 

electrocorticography (ECOG); and, magnetic fields created by the 

electric currents in the brain are recorded non-invasively at the scalp 

using magnetoencephalography (MEG). 

      Since 1964 when Kornhuber and Deecke first described a 

negative cortical potential that began 1.5 seconds prior to the onset of 

a self-paced movement, the motor related cortical potential, the 

lateralized readiness potential (Coles and Gratton 1986), the contingent 
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negative variation (Walter et al 1964) and event-related 

synchronizations/desynchronizations (Pfurtscheller and Lopes da Silva 1999) 

have become the most-established electrophysiological phenomena 

associated with human voluntary movement.  

    

II.B.1 Motor Related Cortical Potentials 

      Motor-related cortical potentials (MRCPs) are stereotyped 

phenomena that are often detected beginning two seconds prior to 

voluntary movements. They consist of slow changes in the measured 

voltage over the sensorimotor cortex as seen in the time series trace 

in figure 1. 

   

 

 

BP1 

BP2 

Motor  
Potential 

Return to 
Baseline 

Figure 1: Schematic representation of the time course 
and components of the Motor Related Cortical 
Potential prior to voluntary movement. 
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  The MRCP has four distinct stages:  an early slowly rising negativity 

called the bereitschaftspotential, labeled BP1; followed by the more 

steeply rising BP2; a peak just after movement onset labeled Motor 

Potential (MP); and a return to baseline (Wheaton L et al 2005,  Deecke L and  

Kornhuber HH. 1978,  Shibasaki H, et al 1980).   MRCPs are detected by 

averaging multiple events in the time domain and generally require at 

least 40-50 events to allow detection of the signal within the noise. 

The bereitschaftspotential appears to be a phenomenon restricted to 

self-initiated or predictable, stimulus-induced movements. It has not 

been established in conditions of unpredictable, stimulus-induced 

movements (Jahanshahi M et al 1995 Papa SM 1991).  A 2004 EEG study of 

gestures pushed back the time window of movement-related brain 

activity even earlier with a demonstration that activation in the 

posterior parietal area contributes to the MRCP up to 3 seconds 

before movement onset (Wheaton LA et al 2005).  

     Simple movement parameters such as force (Kutas and Donchin 1980) 

and rate (Mackinnon et al 1996), as well as higher order processes such as 

movement complexity (Simonetta et al 1991) affect the slope, amplitude 

and latency of the bereitschaftspotential (BP) component of the 

MRCP.  These variables of the BP have been shown to be abnormal 
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in neurological disorders such as Parkinson's Disease (Dick et al 1989; 

Jahanshahi et al 1995; Cunnington et al 1995; Praamstra et al 1996a), Huntington's 

Disease (Johnson et al 2001), dystonia (Van der Kemp et al , 1995; Deuschl et al 1995), 

and cerebellar disease (Shibasaki et al 1978; Verleger et al 1999, Wessel et al 1994) 

among others.  The generators of the MRCP are generally agreed to 

be sensorimotor cortex and SMA (which includes pre-SMA, SMA 

proper and the anterior cingulate motor area). The 

bereitschaftspotential is typically bilateral at onset and later, during 

the motor potential, becomes predominantly contralateral to 

movement.   

     A host of processes including motor preparation, anticipation, 

attention, intention, motivation, effort, and timing are proposed to 

contribute to the MRCP, however, it has proven difficult to 

disentangle the relative contributions of these processes and relate 

them specifically to the slope, latency or amplitude of the MRCP.    

       The exception is the effect of right vs. left hand on the MRCP. 

The lateralized readiness potential (LRP) is a measure of the 

asymmetric brain activity associated with left or right hand 

movements that is consistently observed. It is determined through a 

double subtraction procedure as follows (Eimer 1998):  

1) Activity from electrodes on the left side of motor cortex are 



 

 15  

subtracted from activity recorded on the right side of motor cortex 

separately for the left hand movement condition and for the right hand 

movement condition 

2) Then that value that was calculated in step one for the left hand 

condition is subtracted from the value calculated in step one for the 

right hand condition.   

         Since the 1980’s many research programs have focused on 

investigating the relationship between the MRCP and the urge to 

initiate movement. In a classic experiment often referred to as “Libet’s 

Clock” ( Libet B, Gleason CA, Wright EW, Pearl DK. 1983), electroencephalography 

(EEG) recordings were made while subjects made spontaneous 

voluntary movements. The subjects were asked to report the time on 

a clock when they felt the first awareness of the urge to move. This 

time was called W for "will".  The MRCP was analyzed for each 

subject and compared with time, W.  In a striking result, it was found 

that W occurred 300-500 ms prior to the subject’s reported perception 

of the intention to move, W.  See Figure 2.  
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  These findings appeared to demonstrate that the onset of electrical 

activity associated with movement preparation occurred from a third 

to a half second prior to the awareness of the intention to move.  This 

evidence seems to suggest that conscious intention, and more 

generally, the perception of free will, is a mere echo of events 

planned and initiated covertly by the human brain.  The authors 

concluded, “that cerebral initiation of a spontaneous, freely voluntary 

act can begin unconsciously, that is, before there is any (at least 

recallable) subjective awareness that a 'decision' to act has already 

been initiated cerebrally” (Libet et al 1983). These results were 

reproduced by Haggard and Eimer (1999) using the lateralized 

Figure 2 Schematic representation of Libet’s findings. Neural 
preparation in the brain can begin 1 second before movement 
onset. The conscious experience of intending the movement 
begins on average before movement. 
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readiness potential (LRP, the difference in the voltage of right and left 

central regions). In a task in which subjects moved either their right or 

left hands, the onset of the LRP always preceded the subjective 

awareness of the intention to move. These findings demonstrated 

that, in addition to movement intention, movement effector selection 

also might precede awareness.  

     Evidence for subliminal motor activation processes was also 

obtained using LRPs in a paradigm that evaluated responses to 

masked stimuli. When two stimuli are presented quickly and close 

together the first stimulus is masked; in other words, it is not 

consciously perceived.  Leuthold and Kopp (1988) recorded EEG 

during a movement experiment in which target location determined 

response hand.  A masked stimulus of a target location preceded a 

second, perceived, stimulus that also indicated a target location. Both 

stimuli that were congruent and those that were incongruent with the 

second stimuli were presented.  The LRPs revealed that the masked 

stimuli triggered an early activation of the LRP. Moreover, on 

incongruent trials early incorrect response activation was observed, 

whereas early correct response activation was present for congruent 

trials. This evidence supports the idea that sensory stimuli have 

immediate access to motor response pathways, even though 
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conscious perceptual analysis of the stimulus does not take place. 

  

*note on detection of MRCP using MEG 

       In the past it has been difficult to detect the early phases of the 

MRCP, the bereitschaftspotential (BP), using magneto-

encephalography because of cancellation that occurs at the vertex 

from opposing tangential sources; however, in 1999 it was reported 

that the BP was detected  at -1.9 to -1.7 in the supplementary motor 

area using MEG (Deecke L, Lang W, Uhl F, Beisteiner R, Lindinger G, Cui RQ.1999).  

 

II.B.2 Contingent Negative Variation 

    The contingent negative variation, (CNV), is a slow negative wave 

that begins in the interval between a warning (S1) cue and a "go" 

(S2) cue (Walter et al 1964).  It is considered to have two components 

(Hamano et al 1997 Connor and Lang 1969).  It has been posited that the first 

component is related to stimulus processing, anticipation or timing; 

while the second component has been proposed to be related to 

anticipatory attention, timing or motor preparation (Boxtel and Brunia 1994, 

Macar and Besson 1985, Loveless 1979). These are hypotheses only.  As yet, 

no general consensus or clear evidence disentangles the putative 

processes associated with the phenomenon. 
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II.B.3 Event Related Synchronization and Desynchron ization 
       (ERD and ERS) 
 

II.B.3.a   Alpha and Beta band ERD and ERS 

     In 1934 Lord Adrian published a paper on "human brain waves" 

and identified regular oscillations around 10 - 12 Hz which he termed 

"alpha rhythm."  This is a type of electrophysiological phenomenon 

which describes electrical activity in the frequency domain; that is, 

instead of looking at the time course of events, the data have been 

temporally transformed to measure fluctuations that happen 

periodically during a particular time window.  Decreases in power in 

the frequency domain are termed Event-Related-Desynchronization 

(ERD).  Increases are termed Event-Related-Synchronizations.  

Figure 3:  Contingent negative variation waveforms, 
beginning four seconds prior to S2 response. Late wave 
shows larger amplitude for faster response (Brunia and 
Vingerhoets 1980) 
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   ERD in the alpha band (8-13 Hz), as well as the beta band (13-30 

Hz), routinely occurs about two seconds before movement onset over 

contralateral sensorimotor areas (Toro C, et al 1994, Pfurtscheller 1981, 

Pfurtscheller G, Lopes da Silva 1999, Jurkiewicz MT et al, 2006 Leocani L et al 1997).  Alpha 

band activity over the sensorimotor cortex is often referred to as the 

“mu” band. Beta band ERD has been found to be slightly anterior to 

mu band ERD, suggesting beta ERD may be generated in pre-

rolandic motor areas. Beta band has a more discrete somatotopic 

distribution than alpha band ERD.  Alpha ERD appears to be 

generated in post-rolandic somatosensory cortex with a more diffuse 

distribution (Pfurtscheller G, Lopes da Silva, 1999; Pfurtscheller G. Stancak Jr., A, Neuper C 

1996; Salmelin R, Hamalainen M, Kajola M, Hari R, 1995 ; Crone, NE, Miglioretti DL, Gordon B, 

Sieracki JM, Wilson MT, Uematsu S, Lesser R 1998).  Beta ERD is contralateral 

from the onset and becomes bilateral around execution (Crone, NE, 

Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser R ,1998 ; Babiloni C, 

Carducci Filippo, Cincotti Febo, Rossini Paolo,  Neuper C,  Pfurtscheller G,  Babiloni F,1999 ; 

Toro C, Deuschl G, Thatcher R, Sato S, Kufta C, Hallett M 1994).   Increases in power, 

known as Event-Related-Synchronization (ERS), occur just after 

movement onset in the beta band with somatotopic distribution over 

contralateral sensorimotor cortex (Pfurtscheller G, Lopes da Silva 1999; Leocani L, 

Toro C, Manganotti P, Zhuang P, Hallett M1997; Toro C, Deuschl G, Thatcher R, Sato S, Kufta C, 

Hallett M 1994; Pfurtscheller 1981 ; Salmelin et al 1995; Jurkiewicz MT, Gaetz WC, Bostan AC, 
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Cheyne D  2006).  These same patterns of ERD and ERS occur during 

imagination of movement (Pfurtscheller G. Neuper C, Brunner C, Lopes da Silva FH 

2005). 

 

 

 

 

 

II.B.3.b Gamma band ERS 

    Changes in power in the gamma band have also been reported 

(Pfurtscheller G, Lopes da Silva 1999), typically close to movement onset, 

although not as consistently.  It is difficult to study them with EEG 

because of the low amplitudes and because the skull filters out high 

frequencies in EEG recordings (Nunez PL  and Katznelson RD, 1981).  With 

MEG, gamma oscillations have been reported in M1 and S1 during 

and after movement (Salenius S, Salmelin R,  Neuper C, Pfurtscheller G, Hari R 1996; 

 

Figure 4: Temporal evolution of B) Beta ERD C) ERD of mu 
rhythm D) rectified EMG channel for one subject during thumb 
movement. 
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Ihara A, Hirata M, Yanagihara K, Ninomiya H, Imai K, Ishii R, Osaki Y 2003). In ECOG, 

gamma ERS has been reported ranging from 30-100 Hz, also both 

before during and after movement  (Crone N, Miglioretti, Gordon, Lesser 1998; 

Pfurtscheller G, Neuper C, Kalcher J  1993; Szurhaj W 2005).  Compared with alpha 

and beta ERD, the topographical patterns of the gamma ERS are 

more discrete and somatotopically specific and only occur over 

contralateral sensorimotor cortex while alpha and beta changes can 

be observed over ipsilateral cortex as well as contralateral cortical 

areas . (Crone N, Miglioretti, Gordon, Lesser 1998; Pfurtscheller G, Neuper C, Kalcher J  

1993) .  

          Gamma oscillations have been consistently reported in 

movement experiments with monkeys using local field potentials 

(LFP's), which correspond to the collective discharge of local 

neuronal clusters on a similar scale as those sampled by EEG and 

MEG (10^4 - 10^6 neurons).  As reported in a 2005 study, (Scherberger 

H, Jarvis MR, Andersen RA. 2005) an increase in synchronization (ERS) in 

local field potentials of frequencies up to 100 Hz was observed in the 

planning phase and at movement onset in a reaching task with 

monkeys.  Donoghue et al (1998) reported high frequency oscillations 

(20-90Hz) in their monkey studies and suggested they were more 

likely to be related to movement planning than motor execution 
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(Donoghue JP, Sanes JN, Hatsopoulos NG, Gaal G, 1998). MacKay and Mendonca 

(1995) reported gamma ERS at movement onset in a reaching task 

with monkeys. Mehring et al (2003) and Shenoy et al (2003) were able 

to decode movement direction in reaching tasks with gamma 

oscillations in the local field potentials (Mehring C, Rickert J, Vaadia E, Cardosa 

de Oliveira S, Aertsen A, Rotter S  2003; Shenoy KV, Meeker D, Cao S, Kureshi SA, Pesaran B, 

Buneo CA, Batista AP, Mitra PP, Burdick JW, Andersen RA.  2003). LFP's in the range 

of high gamma up to high frequency oscillations (HFOs) were 

recorded in monkeys’ motor cortex during hand movements.  Eighty 

Hz - 200 Hz oscillations were relevant for discriminating four 

directions of hand movements (Richert et al 2005). 

  
     Although it has been posited that oscillations in the gamma band 

serve to link spatially distant cell assemblies (Singer 1993), it has been 

shown by Kopell et al (2000) that gamma oscillations are not able to 

synchronize over the long conduction delays corresponding to signals 

traveling a significant distance in the brain. These authors suggest 

that gamma rhythms are used for relatively local computations, 

whereas the beta band is used for higher level interactions involving 

distant structures (Kopell N. Ermentrout GB Whittington MA, Traub RD, 2000).  In 

general, changes in power in the electromagnetic fields recorded by 

EEG, MEG and ECOG are thought to reflect dynamic shifts in 
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synchronization of firing of neuronal ensembles. These shifts in 

oscillatory properties have been found to parallel changes in 

functional states of the brain, suggesting such phenomena may 

represent the organization of neuron populations into temporary 

functional groups, depending on the momentary computational 

demand. 

 

II.C Electrophysiological Research of Brain Activit y Preceding 

Reaching Movements  

       Reaching is one of the most complex of common human 

movements. The complexity arises from several factors that include 

the need for: 

- calculation of kinematics in 3 dimensional space,  

- dynamic musculoskeletal control over multiple muscle groups with 

a large number of degrees of freedom  

- and, perhaps most interesting from a systems neuroscience 

perspective, the integration and even hybridization of motor and 

visual inputs to the brain. 

  Specifying how those visual and motor inputs are combined or 

parceled out by the brain is a monumental and intriguing challenge all 

its own.  Even as various measures and associations are made 
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between physiological phenomena and functional properties, it should 

always be with the qualifier that the actual primitives of the neural 

coding are something we may not even be able to imagine.  Indeed, 

identifying the fundamental functional units of a reach encoded by the 

brain will bring a deeper understanding of the brain than the relatively 

simple task of distributing them, once discovered, onto the anatomical 

maps.  

      Currently the functional architecture of a ‘reaching system’ model 

is being constructed mostly with components that are strictly motor or 

strictly visual, although some studies have discovered neurons with 

receptive properties that are a hybrid of both (Ferraina S, Johnson PB, Garasto 

MR, Battaglia-Mayer A, Ercolani L, Bianchi L, Lacquaniti F, Caminit R 1997; Buneo C Jarvis 

M,Batista A, Andersen RA 2002; Crawford JD, Medendorp WP, Marotta JJ, 2004). Purely 

motor system variables that have been found to modulate neuronal 

activity during a reach include effector (laterality, dominance), 

direction, load, velocity, force, muscle length and joint angles. Visual 

system variables modulated by a reach include target localization in 

3-d space, target location (peripheral vs foveal), target size (metric vs 

relative), persistent vs remembered targets, and target motion (covert 

displacement, smooth pursuit).   In addition to purely visual and 

purely motor properties, single cell studies with monkeys have 
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demonstrated that parietal and frontal neurons appear to have 

combinatorial properties, that is, they are tuned to features of both 

sensory and motor inputs during a reach (Lacquanti 1997; Crawford JD, 

Medendorp WP, Marotta JJ, 2004). For example, certain neurons in the 

intraparietal sulcus appear to be tuned to such a hybrid dimension. 

Their activity can be used to read out the spatial correspondence 

between the image on the retina and the position of the hand, 

referred to as the motor error vector (Ferraina S, Johnson PB, Garasto MR, 

Battaglia-Mayer A, Ercolani L, Bianchi L, Lacquaniti F, Caminit R 1997; Buneo C Jarvis M,Batista 

A, Andersen RA 2002).  

            Such hybrid features are thought to arise from the 

computational demands specific to organizing 2-d visual information 

from the retina and proprioceptive information from the joints and 

muscles of the body into a 3-d map that can be used to direct the 

muscles in the arm to the target. As an example of the complexity of 

the computations, consider that to perform a transformation from 

retinal to body-based coordinates would require not only combining 

information about the retinal location of an image and the direction of 

gaze relative to the body, but during head movements the 

transformation must take into account a translation with respect to the 

retinal reference frame  and a rotation with respect to the shoulder 
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reference frame. The most commonly accepted working theory on 

how this gets done is that the various inputs, in retina-, shoulder-, 

arm- or hand based coordinates are re-mapped either through a 

series of transfer functions or a parallel network of transfer functions.  

Single cell recordings with monkeys have yielded some possible 

encoding schemes in this process. In area 7a neurons’ firing rates 

depend on both the location of the target in retinal coordinates and 

the direction of gaze. The signal corresponding to gaze direction is 

represented as a constant input to all neurons irrespective of their 

preferred stimulus angle.   Shifts in gaze then result in an overall gain 

modulation of the retinotopic visual field. This gaze-dependent gain 

field combines two different input signals in a non-linear, multiplicative 

way (Buneo CA, Andersen RA 2005).  In the parietal reach region (PRR), area 

5, a different coding scheme appears to be in place.  Those neurons 

were found to represent the vector subtraction of the hand location 

from the target location, with both locations in retinal coordinates. 

This vector difference has been called the motor error vector (Buneo C, 

Jarvis MR, Batista AP, Andersen RA 2002; Ferraina S, Johnson PB, Garasto MR, Battaglia-

Mayer A, Ercolani L, Bianchi L, Lacquaniti F, Caminiti R  1997). 

     Related to the general challenge of identifying the functional 

primitives of behavior, there is also the difficulty of interpreting claims 
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about anatomical regions that are purported to be the “neural 

correlate” of a particular mental state or event.  For example, 

consider the anatomical regions reported in recent papers to 

subserve target selection of reaching movements.   Cisek and 

Kalaska titled their report published in 2005,   “Neural Correlates of 

Reaching Decisions in Dorsal Premotor Cortex”, after demonstrating 

that neurons in that cortical region of monkeys were modulated by the 

direction and selection of a reach target (Cisek P and Kalaska JF 2005).  Yet, 

after a similar study of reaching movements, a different set of authors 

claimed in 2007,  “Target Selection signals for arm reaching in the 

posterior parietal cortex” (Scherberger H, Andersen RA, 2007).      

      Similar ambiguity exists in the literature regarding claims of 

lateralization of target location processing.  Two independent PET 

(positron emission tomography) studies concluded that the 

representation of spatial information about a target is localized to the 

right hemisphere, specifically the temporo-parietal region (Butler A et al 

2000; Kertzman et al 1997).  However, an EEG study of externally triggered 

pointing and event-related lateralization reported no hemispheric 

effects. Instead it found that a premotor focus of the ERL was 

contralateral to the arm used for pointing while a parietal cortex focus 

was ipsilateral to the target (Berndt I, Franz VH, Bulthoff HH, Wascher E 2002).  An 
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fMRI study reported that parietal activation was found to be 

significantly greater to targets ipsilateral to the hand (Medendorp WP Goltz 

HC, Crawford JD, Vilis T, 2004).   

      Most of the details about the anatomical pathways that have been 

implicated in reaching movements come from studies with monkeys.  

Single cell or local field potential recordings are often made during 

‘instructed delay’ tasks. This is a paradigm which has the same 

structure as the S1/S2 paradigm discussed earlier in the section on 

contingent negative variation responses. In these tasks, an instruction 

stimulus, usually a visual cue, specifies information about the 

movement, but the subject has to wait for a second cue which is the 

instruction to perform the movement.  These studies have revealed a 

highly nested cortical network of connections between posterior 

parietal cortex and dorsal premotor cortex that underlies the covert 

processing that precedes reaching movements (Hoshi E and Tanji J  2007; 

Johnson PB, Ferraima S, Caminiti R  1993; Picard and Strick 1996; Caminiti et al 1996; Battaglia-

Mayer et al 2001) Parallel cortico-cortical pathways from the superior 

parietal lobule to PMd form a gradient with the most rostral regions of 

PMd connected with the most caudal regions of PPC and moving 

inward until the most caudal region of PMd connects with the most 

rostral region of PPC (Johnson PB, Ferraima S, Caminiti R 1993). See figure 5.  
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Human brain imaging studies also support a distributed frontal-

parietal network that subserves reaching movements (Medendorp Goltz, 

Crawford, Vilis, 2005; Kertzman C, Schwarz U, Zeffiro TA, Hallett M1997), as have studies 

with patients with brain lesions diagnosed with optic ataxia (Karnath HO 

and Perenin MT 2005) 

     Saccades and reaches are tightly coupled movements that could 

reasonably be considered as an action unit. Double dissociation 

Figure 5. Nested pathways of reaching network from 
PMd to Parietal cortex. (Picard and Strick 1996) 
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studies, however, have demonstrated that the intent to saccade and 

the intent to reach are subserved by different regions of the posterior 

parietal cortex. The lateral intraparietal region (LIP) neurons have 

been associated with the intent to saccade and the parietal reach 

region (PRR) neurons have been associated with the intent to reach. 

(Snyder LH, Batista AP, Andersen RA, 1997). The parietal reach region (PRR) in 

monkeys was also shown not only to encode the intention to reach, 

but to have a response field corresponding to the particular target 

location of the hand in eye-centered coordinates (Andersen R and Buneo C 

2002;  Buneo C, Jarvis MR, Batista AP, Andersen RA, 2002).  

      Functional MRI activation showing the human homolog of PRR in 

its spatial selectivity for the target of a reach was found to be in 

parietal cortex, situated anterior to the parieto-occipital sulcus, 

posterior to the sub-parietal sulcus and medial to the intra-parietal 

sulcus (Connolly J, Andersen R, Goodale M Exp Brain Res. 2003).  See figure 6. 
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II. D. Free Choice Vs Instructed Conditions in Movement  Tasks 

 

Target Selection 

     Decision making is a crucial aspect of cognitive behavior that has 

spawned volumes of theories on its neural basis. The results of the 

diverse types of tasks used to test the theories are as wide-ranging 

as the tasks and theories themselves. Visuomotor decision making 

tasks have generally focused on identifying the spatial distribution of 

Figure 6. Top. Reach region (MIP) in macaque brain. Below. 
Human analog of MIP, the Parietal Reach Region, (PRR). From 
Connolly J, Andersen R, Goodale M 2003 
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decision processing. For example, movements made by subjects 

under “free choice” or “instructed” conditions have been associated 

with different levels of activity in SMA (Deiber MP et al 1991).  A PET study 

of joystick movements reported that the mean SMA activity was 

higher in a condition of selecting from four possible motions than in a 

condition of fixed motions (Deiber MP et al 1991).  In this same task, the 

bereitschaftspotential was found to have higher amplitude in the free 

choice condition compared with the instructed condition (Praamstra et al 

1995, Touge et al 1995). This result was replicated with a finger sequence 

task by Dirnberger et al (1998). This study also showed a larger 

lateralization of the BP in the free choice condition.  The brain regions 

associated with free selection of a movement were investigated with 

repetitive transcranial magnetic stimulation (Hadland et al 2001). The 

results suggested that the dorsolateral prefrontal cortex and the 

medial frontal cortex were important during response selection. This 

agrees with the generally held view regarding targeting decisions that 

medial premotor areas underlie freely chosen action, whereas lateral 

premotor areas subserve instructed ones (Passingham 1993, Chen et al 1995, 

Thaler et al 1995).  

      A widely discussed theory of the brain mechanism for movement 

selection is known as the accumulator model. It posits a parallel 
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distributed network of frontal and parietal regions in which motor 

programs are stored. Inputs from sensory regions to the fronto-

parietal network accumulate until a threshold is reached and 

movement is generated.  Dr. Steven Wise refers to this steady build 

up in neuronal activity seen at the single cell level in non-human 

primates as a “ramp to threshold” process (Wise 2003 for a review; Schall 2003 

for a review; Gold and Shadlen 2000; Gold and Shadlen 2001; Kim and Shadlen 1999; Schall 

1995; Schall and Thompson 1999; Newsome et al 1989; Platt and Glimcher 1999; Shadlen and 

Newsome 2001). Tests of the accumulator model typically rely on the 

effects of manipulating sensory inputs on targeting decisions. Indeed, 

inherent in the accumulator model is the concept that sensation 

precedes the targeting decision and that the targeting decision 

precedes action.  Tests of the accumulator model with humans are 

more difficult to design but it has been shown that in a study with free 

choice of the time to initiate a movement, larger amplitudes in the BP 

were generated than in instructed conditions (Jahanshahi et al 1995).            

Other essential features of the accumulator model include that it is a 

winner-takes-all mechanism and that it is comprised of both “bottom-

up” and “top-down” influences. In addition to the obvious “bottom-up” 

nature of the theory, it includes the biasing of responses by 

expectations based on past experience with probabilities in the 
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environment in a “top-down manner”. Such biases are posited to be 

manifested as altered thresholds for a particular movement.   The 

accumulator model may be thought of as Bayesian in nature in that it 

relies on hypothesis- testing based on constant updating of a prior 

state. It has also been noted that it is fractal in nature, in that it bears 

a close resemblance to the integration of inputs and threshold-driven 

responses of the neuron itself.        

 
 
 
II.E. Magnetoencephalography: Overview  

          Magneto-encephalography (MEG) was chosen as the 

neurological investigative tool for these studies for several reasons. 

First, MEG is a non-invasive technique for measuring electromagnetic 

activity of the brain: it poses no risk to subjects. Second, unlike other 

research methods used with human subjects, MEG provides 

millisecond resolution of brain activity which makes it particularly 

useful for studying the timing of neurological events.  Third, a forward 

model of magnetic fields due to electric dipoles placed at voxels 

throughout the brain has proven to be highly accurate in localizing the 

sources of recorded magnetic fields. Fourth, MEG is less susceptible 

than EEG to the attenuation of high frequency signals by interactions 
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with the skull.  This independence from the distribution of conductivity 

within brain structures allows MEG to transmit weak cortical signals 

and high-frequency cortical signals that are often filtered out of EEG 

recordings, and provides superior source localization capabilities as 

compared with EEG. Finally, studies with monkeys demonstrated that 

shifts in the LFPs recorded from neuronal ensembles were useful in 

discriminating between functional brain states. Since MEG also 

samples from close collections of synchronized parallel fibers, shifts 

in oscillatory properties in the MEG data should also parallel changes 

in functional brain states.   The MEG signals derive from the net 

effect of ionic currents flowing in the dendrites of neurons during 

synaptic transmission. In accordance with Maxwell's equations, any 

electrical current will produce an orthogonally oriented magnetic field. 

It is this field which is measured with MEG. The net currents can be 

thought of as current dipoles, which, according to the right-hand rule, 

give rise to a magnetic field that flows around the axis of its vector 

component.   In order to generate a signal that is detectable, 

approximately 50,000 active neurons are needed. Since current 

dipoles must have similar orientations to generate magnetic fields 

that reinforce each other, it is often the layer of pyramidal cells in the 

cortex that give rise to measurable magnetic fields. Furthermore, it is 
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often bundles of these neurons located in the sulci of the cortex with 

orientations tangential to the surface of the head that project 

measurable portions of their magnetic fields outside of the head.   

Magnetic signals are most readily measured using induction coils 

composed of loops of wire. The spontaneous or evoked magnetic 

fields emanating from the brain induce a current in these coils, which 

in turn produce a magnetic field in a special device called a 

superconducting quantum interference device (SQUID). When a time-

varying magnetic flux passes perpendicular to the coil, it induces a 

time-varying electrical current within the wire. For typical metal wires, 

this current is quickly dissipated as heat by the electrical resistance of 

the wire. Clinical biomagnetometers therefore use special induction 

coils made of superconducting wire. Superconducting coils have 

essentially no electrical resistance; thus, the amount of current 

induced within the coil instantaneously tracks even very small 

changes in the magnitude of the impinging magnetic flux.  The 

SQUID and induction coils of biomagnetometers are generally 

maintained in a superconducting state by immersion within a liquid 

helium bath contained in an insulated cryogenic vessel known as a 

dewar. Because the magnetic signals emitted by the brain are on the 

order of a few femtoteslas (1 fT = 10 − 15 T), shielding from external 
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magnetic signals, including the Earth's magnetic field, is necessary 

so recordings take place in a magnetically shielded room.  

 
III.  Dissertation Aim and Hypotheses  

     The conclusions in the literature just reviewed are contradictory on 

many points. Some studies concluded that the neurons associated 

with spatial location of a target of a reach are in parietal regions 

{Scherberger H, Andersen RA, 2007); others concluded they are in pre-motor 

regions (Cisek P and Kalaska JF 2005). Some studies concluded that the 

brain regions that process target location are ipsilateral to the location 

(Medendorp WP Goltz HC, Crawford JD, Vilis T, 2004) while others concluded the 

brain regions were contralateral to location (Berndt I, Franz VH, Bulthoff HH, 

Wascher E 2002). Still other studies concluded that the spatial location of 

a target was encoded in the right hemisphere, claiming that 

hemisphere to be specialized for spatial processing (Butler A et al 2000; 

Kertzman et al 1997).  The aim of the research presented here is to 

investigate several of these contradictory claims regarding the spatial 

and temporal characteristics of the brain activity preceding reaching 

movements using more advanced methods. The features of MEG 

discussed earlier that make it superior to EEG, fMRI or PET will 

produce results that will add credible support to previous findings it 
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confirms or evidence that  leads to eventually dispel spurious ones 

the evidence presented here does not favor.  More specifically, the 

research presented here tests hypotheses designed to isolate 

electromagnetic events that are associated with motor components, 

with visuomotor components and with cognitive aspects of reaches to 

a target.  These studies are designed not only to add to current 

knowledge about early processes in human motor control but also to 

provide the basis for future studies on the human motor system 

including the perception of volition and attribution.  

       Analysis of seven aspects of reaching movements was 

completed to test the following hypotheses:  

 

Hypothesis 1  The characteristics of the temporal and spatial 

networks of electromagnetic activity prior to reaching movements 

can be identified in data averaged across subjects.   

 

Hypothesis 2    Reaching movements to targets in the spatial field 

ipsilateral or contralateral to the effector can be discriminated by 

the spatial and temporal characteristics of the electromagnetic 

signals prior to the reach.  

Hypothesis 3  The characteristics of the temporal and spatial 
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networks of electromagnetic activity prior to imagined reaching 

movements can be identified in data averaged across subjects.   

 

    Hypothesis 4   Decision-making processes distinguish conditions  

    of movement to a freely-chosen visual target and movement to a 

    visually-instructed target.  Differences in the MEG data recorded    

    during these conditions will indicated brain regions and frequencies  

    of activation associated with target selection. 

 

     Hypothesis 5  The location of the target of reaching movements     

     to the spatial field either ipsilateral or contralateral to the effector     

     can be predicted prior to movement onset from single trial MEG  

     data in off-line analysis using pattern recognition techniques to  

      construct classification models.    

 

IV. Experimental Methods and Procedures 

IV. A. Subjects 

Twenty-two subjects were recruited between the ages of 21 and 32. 

All subjects were right-handed and underwent a neurological exam by 

clinical fellows at NIH to assure that exclusionary criteria, such as 

neurological damage or disorders, were not present   Due to the 
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hazards of metal inside the magnetic resonance imaging scanners, 

subjects were also excluded if they had implanted or otherwise 

irremovable metal.  Subjects were given a copy of the consent form 

and an opportunity to ask questions regarding the study and its 

procedures. Witnessed, signed consent was obtained from each 

subject prior to testing.  

  

IV.B. Experimental Paradigm 

An S1/S2, paradigm also referred to as a contingent negative 

variation or instructed delay paradigm, was used in these studies. 

The task was constructed to maximize information acquired for 

comparisons by nesting multiple conditions within a single task. All 

conditions required visual fixation in order to eliminate eye movement 

artifacts and cortical activity not associated with reaching.  The task 

included stimuli that cued six different experimental conditions. All of 

the conditions are for reaches with the right hand only. They are:  

(1) “all reaches”,   comprised of all trials of actual reaching 

movements including left and right visual targets, free choice and 

instructed conditions; 

(2) reaches to a spatial target ipsilateral to the effector; 

(3) reaches to a spatial target contralateral to the effector; 
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(4) reaches to a visual target in which the location is freely chosen by 

the subject; 

(5) reaches to a visual location which has been instructed in the task; 

(6) and imagined reaches in which no actual movement occurs. 

 

Subjects were seated at arms’ length from a screen displaying the 

computer-generated visual stimuli. See figure 8. The left and right 

edges of the screen were the endpoints for the reaching movements.  

Each trial began with a fixation ‘plus’ sign and the subject’s right wrist 

resting on a button on a tabletop.  The table was positioned in the 

subjects’ lap such that the button was at the midline (left-to-right) of 

the body. The button was activated when the subject’s wrist lifted off, 

thereby detecting the onset of the reaching movement. 

 

 

 

 

 

 

 

    An optical beam was placed on either side of the display screen. 

 

Figure 8. Subject during magnetoencephalography recording. 
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When a subject reached toward a target, the beam was interrupted 

and a signal was sent to the data acquisition computer indicating the 

subject’s response was either “Left” or “Right”.  See Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

Subjects performed three sessions of 150 reaches each: two 

sessions with real reaching movements and one with imaginary 

movements. The task was an S1/S2 response cuing paradigm, also 

known as a contingent negative variation paradigm (discussed earlier 

in detail in the introduction section).  In the real movement sessions, 

randomized trials of two interspersed conditions were presented: the 

Figure 9. Subject breaks optical beam on the right 
with a reach to the right spatial field.  
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instructed condition with left and right targets cued and the free-

choice condition in which a target to the left or to the right was chosen 

by the subject. See Figure 10.  

 

 
Instructions for Subjects: 
 
“Begin with your right wrist resting on the cushion. Throughout the 
experiment keep your eyes focused on the plus sign in the center of 
the screen.  
 
 
 
 
 
 
 
 
 
 
You will be reaching with your right hand to either the edge of the 
screen on the left or to the edge of the screen on the right or making 
no movement at all. You will be presented with two types of screens. 
The screens with a single-sided arrow such as the one below on the 
left indicate which direction you should reach. The screens with a 
double arrow such as the one below on the right indicate that you 
should choose the direction to reach, either to the left or the right. For 
any screen, you may choose to rest and not reach at all. This is 
completely acceptable and will not adversely affect the experimental 
results at all.    
 

 

 

 

Figure 10.   Task instruction script that was read to subjects.  
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A short time after the screen with the arrows is presented instructing 
you with a direction to reach or to choose a direction to reach, the 
arrows will turn green, the signal to begin the movement.  Do not 
begin the reaching movements until you see this go signal.  
 
 
 
 
 
 
 
 
 
 
After each reach, return your wrist immediately to the cushion and 
wait quietly for the next screen to appear. “ 
 

                                      -end instruction script- 

 

 

 

Instructed condition: Subjects were first presented with a fixation plus. 

Two seconds later the S1 cue was presented. In instructed trials this 

consisted of an arrow in the center as the instruction for which 

direction to reach. After three seconds  +/- 300 ms of jitter the central 

arrow turned green was the S2 cue signaling the subjects to perform 

the instructed reaching movement.  

Free choice condition: Trials again began with a fixation plus. The S1 
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cue followed the fixation ‘plus’ sign. S1 was an arrow pointing in both 

directions in the center of the screen. This cue indicated that the 

subjects should choose the direction of the upcoming reach. Three 

seconds +/- 300 ms of jitter later the double-sided arrow turned 

green, the signal to perform the reaching movement.  

     The two conditions of free-choice and instructed were randomly 

interspersed to control the timing of the subjects’ decision. Since 

subjects did not know which condition would be presented on any 

given trial, they were constrained to make a decision within the S1/S2 

window.  

 

IV. C. MEG DATA ACQUISITION 

All experiments were conducted in the MEG Core Facility at the 

National Institutes of Health in Bethesda, Maryland.  Neuromagnetic 

data were recorded at 1200 Hz using a CTF 275 MEG system (CTF 

Systems, Inc., Canada) composed of a whole-head array of 275 

radial 1st order gradiometer/SQUID channels housed in a 

magnetically shielded room. Synthetic 3rd gradient balancing was 

used to remove background noise on-line.  Gradient balancing is an 

active noise cancellation technique that uses a set of reference 

channels to subtract background interference. 
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     Three fiducial localization coils were placed at the nasion and 

auricular points for each subject. These function as landmarks to 

establish a coordinate system for the subject’s head position. They 

are then used to monitor and warn of excessive head motion during 

data acquisition. In data analysis the information from the fiducials is 

used to throw out trials that exceed a movement tolerance threshold. 

The fiducials are also used in analysis to co-register the head position 

localized during the MEG recording with the position of the head 

during the MRI scan.  The same fiducial marks are used for the MRI 

scan immediately following the MEG recording, thereby minimizing 

the margin of error in the source localization process which depends 

on accurately aligning the brain-space coordinates of the MEG data 

with the brain-space coordinates of the MRI data. Sampling 

frequency was 120 Hz. 

   Electro-oculogram (EOG) was also recorded during data 

acquisition.  

 

V. Data Processing 

The data was analyzed across subjects for task-related power 

changes in the magnetic field during the interval between S1 and S2 

which characterize six conditions:  
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-“all reaches”,   comprised of all trials of actual reaching movements 

including left and right visual targets, free choice and instructed 

conditions; 

-reaches to a spatial target ipsilateral to the effector; 

-reaches to a spatial target contralateral to the effector; 

-reaches to a visual target in which the location is freely chosen by 

the subject; 

-reaches to a visual location which has been instructed in the task; 

-and imagined reaches in which no actual movement occurs. 

   In addition to looking at the characteristics of the electromagnetic 

activity in the brain associated with each of these six conditions 

considered alone, comparisons were also made between conditions, 

including: reaches to the ipsilateral versus contralateral spatial field; 

free choice versus instructed reaches; and, actual versus imagined 

reaches.  

 

V.A. Pre-Processing 

Each trial of every dataset was visually inspected for artifacts and 

trials were rejected if artifacts were found. The electro-oculogram 

channel was inspected for eye movement activity so that trials 

containing any could be rejected. Continuous head localization 
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channels which carry the information recorded from the fiducial coils 

were inspected. All trials in which the threshold for head movement 

was exceeded were rejected.  For each trial, markers were assigned 

at the ‘go’ cue and at movement onset indicating the condition 

presented: left or right target, free choice or instructed condition. The 

continuous data were epoched into individual trials that extended five 

seconds prior to the go cue and two seconds after the go cue.  

 

V.B.  Data Validation 

In order to validate that the data were generally reliable and of good 

quality, the time series data  for several individual subjects were 

averaged to confirm that the well-established motor readiness field 

that precedes movement onset was present. Similarly, several data 

sets were processed with a Fourier Transform into the frequency 

domain to confirm the presence of the well-established beta band 

ERD preceding movement onset beginning at -1.5s. Both of these 

validation measures confirmed that the data were reliable and of 

good quality.  

 

V.C. Source Localization 

For each subject the MRI and MEG head position were co-registered 
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using the fiducial marks that had been recorded during data 

acquisition.  This aligned the spatial coordinates of the MEG data with 

the spatial coordinates of the anatomical data from the MRI.  

The sources of peak activation, regions oscillating with the largest 

signal to noise ratio, were identified in the MRI image using SAM  

(synthetic aperture magnetometry) spatial filters.   SAM is a 

beamformer algorithm that is commonly used with MEG data to 

identify areas in the brain associated with stimulus or movement-

related events.  It uses the patterns in the data (determined through a 

covariance matrix), which are in sensor space, along with a forward 

model to estimate locations of sources in brain space (Cheyne D, 

Bakhtazzad L, Gaetz W 2006). The brain is divided into many target locations 

(voxels with dimensions of 1x1x1mm). For each voxel an optimal 

spatial filter is then computed, linking the signal at the target location 

to the signals recorded at the MEG sensor locations. Each spatial 

filter is designed so that signals from the location of interest are 

unperturbed, while signals from other locations are attenuated. This 

focusing, or "beam forming" of the spatial filter is achieved by 

selectively weighting the contribution that each sensor makes to the 

overall output of the spatial filter. The output of the spatial filter is a 

measure of the neuronal activity at that target location. A spatial filter 



 

 51  

is sequentially constructed for a set of voxels in the brain, creating a 

map of activity in the brain, which typically shows peaks in brain 

regions involved in the task that the subject performed in the MEG 

scanner.  After these maps were created, each of the individual 

brains were warped into Talairach space using AFNI software (Cox RW, 

1996). Finally a grand average was computed and statistically tested.  

 

V.D. Source-Space Time Frequency Analysis 

After source localization, the coordinates of the peak activations were 

identified and used to construct ‘virtual’ channels, which are weighted 

combinations of sensors that represent the source in brain space.  

The MEG data were then projected onto these ‘virtual’ channels to 

allow further analysis to be carried out in source space rather than 

sensor space.  Due to the nature of magnetic fields, which are 

emitted at right angles to electrical current dipoles, this transformation 

of the data from sensor space to source space was essential in order 

to interpret the data accurately with respect to the anatomy of the 

brain. 

 

Time frequency analysis was done with respect to a specified marker. 

For the conditions of “all reaches”  and “imagined reaches”, analysis 
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was time-locked to the S2, ‘go’ cue, so that in addition to showing any 

motor related effects, there would be a more precise representation 

of any effects directly related to stimulus presentation or to a timing 

function during the delay period between S1 and S2. For the other 

four conditions (reaches to ipsilateral spatial field, reaches to 

contralateral spatial field, reaches to locations freely chosen, reaches 

to instructed location) analysis was time-locked to movement onset in 

order to focus on the behavioral components of the task.   

    After the data was projected onto the virtual channels it was 

transformed from a time series into the frequency domain. The 

temporal filter selected was the multi-taper method (MTM).  After 

comparison with Fourier transforms and wavelet methods, MTM was 

found to have the best time resolution in the upper frequency bands. 

This was an important factor since one of the areas of particular 

interest in this study was activity in the high gamma (40-100Hz) range 

and high frequency oscillation (HFO) range. A 300 Hz low pass filter 

was applied (using the CTF software, “DataEditor”). A high pass filter 

of 4Hz was also applied to reduce low frequency movement artifacts.  

A baseline correction was done by subtracting the mean based on all 

data in the epoch (five seconds); thereby normalizing to relative 

changes in power with respect to the average power over the entire 
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epoch. The scale of the power change, represented by color intensity 

in the plots, was scaled between 1 and -1 in order to make valid 

comparisons between different regions.  For each data set, a 

validation procedure was performed at this stage of processing.  The 

data sets were divided into two equal parts and time frequency 

analysis was performed on each half and compared to insure that 

there were not spectral effects present that were driven by large 

artifacts in the data.  This was confirmed by visual inspection of the 

results of each half to ascertain that they were consistent with each 

other.  

 

V.E. Statistical Analysis of Time-Frequency Power C hanges 

While the time frequency plots give a useful “big picture” of spectral 

perturbations over time, statistical testing was performed on each 

time frequency analysis to determine which spectral perturbation 

effects were statistically significant.  AFNI (Analysis of Functional 

Neuroimages), the same software used for co-registering the MRI 

and MEG data and displaying the results of the source localization, 

was used to run the statistical tests. A basic t-test with a False 

Discovery Rate (FDR) correction for multiple comparisons was used. 

Activations with a q value of less than .05 were considered 
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significant. If there were none at q=.05 then a threshold of q=.1 was 

used and activations at this level were also considered significant.  

Both thresholds for FDR are commonly accepted as significant in the 

literature for studies with MEG.  

 

VI. Results 

VI. A.   “All Reaches”, Signature of Right-Handed R eaching 

Movements 

VI.A.1. Location of Peak Activity  

Source analysis of “all reaches” as a group yielded a spatially-

distributed network as well as a temporal network of various 

frequency bands.  The brain regions found to be activated in this 

condition were closely related to those that comprise the dorsal 

stream, “the where pathway”, of visual processing.  The following 

locations of peak activations were found to be significant during the 

time window of 4.5 s prior to .5s after the presentation of S2, the “go” 

cue for the condition of “all reaches”  (q=.05 See figure 13 for color 

scale for all AFNI images. Note that BA refers to Brodmann Areas. 

Also note that the cross-hairs visible in the brain images are an 

artifact of processing and do not convey information about the 

resulting image).  
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Further detail on the timing and functional nature of each of these 

components will be analyzed and discussed later in this paper (pg 68) 

using time-frequency graphs: 

- left medial frontal gyrus (ERS) and left superior parietal gyrus/ BA7 

(ERD) in the 5-300 Hz frequency range (figure 14) ;  

- right medial frontal gyrus (ERS) and left superior parietal gyrus /BA7 

(ERD) in the 5-50 Hz frequency range (figure 15); 

- left precentral gyrus/BA4 (ERD) in the 15-25 Hz and 35-45 Hz 

ranges (figure 16); 

- right middle occipital/BA19 and right middle temporal gyrus/BA39 

(ERS) in the 40-50Hz range (figure 17); 

- left middle occipital gyrus/left BA 18 (ERS) in the 50-150Hz range 

(figure 18); 

- right superior parietal (ERS) in the 150-300 Hz range (figure 19); 

-and right medial frontal gyrus (ERS) in the 140-160 Hz range (figure 

20) 
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VI.A.2 Source-Space Time Frequency Plots 

Time-frequency plots of the averaged data generated for those 

regions identified as sources of peak activation for all reaches as a 

group are displayed in figures 21-28.  
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VI.A.3. Statistical Significance  

VI.A.3.a Sensory Response 

The time frequency plots in figures 21 – 28 display changes in power 

in different frequencies in the different brain regions over time.  The 

power values are baseline-corrected. The baseline was calculated as 

the average power throughout the entire epoch (-4.5 s to 0.5s with 

respect to the “go” cue). This average was then subtracted from 

power at each time point so the average across any horizontal line in 

the graph is zero. Moreover, the graphs display the results with the 

power values scaled between 1 and -1 in order to be able to make 

comparisons across images.  In such a comparison, for example, 

between figure 21 and figure 22, it is clear that the beta ERD at 

approximately -2.5 seconds is darker blue, indicating a larger 

desynchronization, on the left hemisphere than the right hemisphere. 

Visual inspection and comparison of all time-frequency plots (figures 

21-28) indicates that responses to the S1 instruction cue were 

strongest in the middle occipital gyrus, with activation on the left 

hemisphere of the brain greater than that on the right. More 

specifically, the response to the SI cue appears to consist of two 

events beginning at -2.8s with respect to the go cue: a 75-300Hz 
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ERS burst in the left middle occipital cortex and the onset of a 400ms 

Beta (15-25Hz) band ERD in left middle occipital cortex. The ERS 

HFO burst was not evident in the right middle occipital cortex.  The 

beta ERD was bilateral but noticeably stronger on the left. These 

observations were confirmed by statistical testing of the time-

frequency results using a standard t-test with a multiple comparisons 

correction using the false discovery rate method (Figures 29 and 30). 

   

     

 
Figure 29. Left Middle Occipital Cortex.  Statistical Testing Results of Time Frequency 
Analysis.  HFO burst of ERS and Beta Band ERD coinciding at -2.8s (q=.05) note: 
cross hairs are to be disregarded. 
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VI.A.3.b. Motor Preparation 

Visual inspection of the time frequency plots showed activity just prior 

to S2, the ‘go’ cue, was centered in contralateral parietal cortex and 

in central motor areas.  The well established pattern of beta band 

ERD can be seen beginning two seconds prior to movement onset in 

motor cortex, with stronger levels in the left hemisphere, as expected 

given the well-established contralateral structure of cortical activation 

associated with motor processing (figures 25 and 26). In addition, 

beta band ERS is present at -2.2 seconds with respect to the go cue 

Figure 30. Right Middle Occipital Cortex. Statistical Testing Results of Time Frequency 
Analysis of Grand Average of All Reaches.  Absence of HFO burst of ERS and weaker Beta 
Band ERD at -2.8s compared with Left Middle Occipital Cortex in figure 29 (q=.05) note: cross 
hairs are to be disregarded. 
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in left motor cortex only. It is not present in the right motor cortex. 

Statistical testing of the time-frequency transformed data confirms 

these patterns (figures 31, 32).   

 Superior parietal cortex also has a strong beta band ERD occurring 

earlier than that in the motor cortex, although with less intensity 

(figures 33 and 34).  Similar to the primary cortex activity, the parietal 

activation appears to be lateralized to the left hemisphere.  

   

       

 

 

 

 

Figure 31 Left Central Motor Cortex. Statistical Testing Results of Time Frequency Analysis of 
Grand Average of all reaches.  Beta Band ERD seen 1.8s prior to movement onset. Beta Band 
ERS occurs at -2.2 s with respect to the go cue in left motor cortex only, not in right motor cortex. 
(q=.05) Disregard cross-hairs. 
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Figure 32. Right Central Motor Cortex. Statistical Testing Results of Time 
Frequency Analysis of Grand Average of all reaches. Beta Band ERD seen 1.8s 
prior to movement onset. Beta Band ERS  at -2.2 s with respect to go cue in left 
motor cortex only, not in right motor cortex. (q=.05) Disregard cross-hairs. 
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Figure 33. Left Superior Parietal Cortex. Statistical Testing Results of Time Frequency 
Analysis of Grand Average of  All Reaches.  Bilateral ERD 1.8 s prior to movement onset.  
(q=.05) Disregard cross-hairs. 
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VI.A.3.c. Cognitive Components 

 

The frontal sources identified by SAM are likely associated with 

cognitive aspects of the task. There are clear patterns in the time 

frequency plots of both left and right frontal cortex (figures 27 and 

28).  The HFO bursts of ERS at -4s and -1s in left frontal cortex occur 

precisely one second prior to S1 and S2, respectively. These seem 

likely to be a brain correlate of an aspect of timing. The more precise 

Figure 34. Right Superior Parietal Cortex. Statistical Testing Results of Time Frequency 
Analysis of Grand Average of  All Reaches.  Bilateral ERD 1.8 s prior to movement onset.  
(q=.05) Disregard coss-hairs. 
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nature of the burst at -4s and the less narrow nature of the burst 

around -1s would support this view since there was a jitter of +/- 300 

ms in between S1 and S2 but no jitter before S1 presentation. There 

is approximately a smearing of 300 ms of the event that precedes S2, 

which would be the case if that event is based on the timing between 

S1 and S2.   Statistical testing of the time frequency results does not 

show these timing- associated HFO bursts at a q value of .05 (figure 

36) but does show them as significant at q=.10, a threshold that is 

less rigorous than .05 but also commonly reported.  

     

         

 Figure 35. Left Frontal Cortex. Statistical testing results of grand average of ‘all reaches’ 
condition.  q=.05 Note: disregard cross-hairs. 
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Figure 36. Right Frontal Cortex.  Statistical Testing Results. Grand Average of “all 
reaches’ condition.  (q=.05) Note: disregard cross-hairs. 
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The other interesting pattern to appear in the frontal cortex during the 

“all reaches” condition is a theta rhythm ERS just after S1 from -2.9s 

to  -2.2s and a theta rhythm ERD 1.5s to .5s prior to S2 in both left 

and right frontal cortex.  The functional significance of frontal theta 

rhythms is much speculated on in the literature. There is a wide range 

of cognitive functions attributed to this phenomenon including reward, 

feedback, attention and most recently evidence pointing to a 

decision-making function (Cohen MX, Elger CE, Fell J 2008). The variables 

Figure 37.  Right Frontal Cortex. Statistical Testing Results of Grand 
Averages, All Reaches condition.  (q=.10)  Disregard cross-hairs. 
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that might modulate the theta rhythm in this task include decision-

making since many of the trials were free-choice; a timing function 

since there is a strong timing aspect in all trials; or finally, the recently 

much-discussed theta oscillation coupling with high frequency 

oscillations as a mechanism for integration of spatially distributed 

networks such as the one that is activated in this task.   

 

VI. B. Reaching Movements to Ipsilateral and Contra lateral        

            Targets 

VI.B.1. Location of Peak Activity  

Results of the source analysis for the conditions of reaches to a 

contralateral target and reaches to an ipsilateral target revealed 

sources were generally the same as those for the condition of all 

reaches. (NOTE:  It is important to remember that the analysis of 

location of target discussed here was time locked to movement onset 

and not the ‘go’ cue in order to focus on motor –related components; 

whereas the all reaches condition discussed earlier was time-locked 

to the ‘go’ cue to emphasize stimulus-related events. Times for the 

same events in the different conditions will therefore be 

approximately 500ms different due to the reaction time for the 

movement.) 
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VI.B.1. Statistical Tests of Time Frequency Analysi s of Reaches 

to Ipsilateral or Contralateral Targets 

 

As before, virtual channels were created from the sources of peak 

activation that were identified through SAM analysis. Those channels 

were then used for time frequency analysis of the data in source 

space. Statistical testing was performed on the resulting frequency 

plots.  As in the analysis of the condition of all reaches, the response 

to S1 is centered in the left middle occipital/temporal region with an 

HFO burst of ERS and a beta band ERD for reaches to both the 

ipsilateral and contralateral targets (figures 38 and 39).  
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(A) 

        

            

(B)  

          

             

Figure 38. (A) Left Middle Occipital/Temporal Cortex. Statistically significant areas 
of activation for reaches to the contralateral target (B) Statistically significant 
areas of activation for reaches to the ipsilateral target.  
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No significant response to S1 was discovered in right middle occipital 

cortex (figure 39).  

(A) 

             

                   

(B) 

             

                  

 
Figure 39. . (A) Right Middle Occipital Cortex. Statistically significant areas of activation for 
reaches to the contralateral target (B) Statistically significant areas of activation for 
reaches to the ipsilateral target. (q=.05)  Disregard cross-hairs. 
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The right intraparietal sulcus had more intense activation from -1.5s 

to movement onset for reaches to the right (ipsilateral) target than to 

the left (contralateral) target (figure 40). 

(A) 

       

            

(B) 

        

             

 
Figure 40. (A) Right Intraparietal Sulcus. Statistically significant areas of activation for reaches to the 
contralateral target (B) Statistically significant areas of activation for reaches to the ipsilateral target.  
(q=.05) Disregard cross-hairs. 
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The most interesting finding in the analysis of reaches to ipsilateral 

and contralateral targets occurred in the left intraparietal sulcus 

(figure 41). In this region, reaches to the contralateral (left) target 

activated a strong Beta band ERS from -2.7s to -2.3s (with respect to 

movement onset); whereas there was no significant activation for 

reaches to the ipsilateral (right) target in that same time period 

(q=.05). Additionally, the beta band ERD 1.5s prior to movement was 

stronger for reaches to the contralateral (left) target than for reaches 

to the ipsilateral (right) target in the left intraparietal sulcus (figure 41).   

 

(A) 
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(B) 

             

                 

 

 

 

The source of this activation in left intraparietal sulcus is shown in 

figures 42 and 43. It is within 1mm of the left inferior parietal lobule, 

within 1mm of the left superior parietal lobule and BA 7 and 2mm 

from BA 39.  

 

 

 

 

 

Figure 41  (A) Statistical map showing significant areas of activation in left 
intraparietal sulcus for reaches to the contralateral target (B) Statistical map 
showing significant areas of activation in left  intraparietal sulcus for reaches to 
the ipsilateral target.  (q=.05) Disregard cross-hairs. 



 

 77  

 

The difference in activation in the left intraparietal sulcus between 

reaches to targets in the ipsilateral or contralateral spatial field was 

confirmed by a two group t-test comparison with q=.10 .  

The results of the analysis of (ipsilateral target – contralateral target) 

are shown in figure 45. The circled blue region represents a stronger 

ERS for reaches to the contralateral target just after S1 and the 

circled yellow/orange regions represent earlier and stronger ERD for 

reaches to the contralateral target just prior to movement onset.     

       

            

 

 

 

 

Figure 45. Left Intraparietal Sulcus. Statistically significant activation for right target 
minus left target. Circled blue region is a negative value after subtraction which 
represents stronger ERS  to left target than to right target. Circled orange/yellow regions 
represent earlier and stronger ERD for targets to the left (contralateral)  See figure 41 
for beta ERD for contralateral reaches only resulting in this statistical result.  
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The only other region with a statistically significant difference in 

activation between these two conditions was the right frontal cortex. 

The frontal theta rhythm is stronger in reaches to the left 

(contralateral) target (figure 46).  The subtraction of activity during 

reaches to left target from activity during reaches to right target was 

statistically significant at q=.1 as can be seen in figure 47. The circled 

blue region (-3s to -2.5s) represents a negative value and thus a 

stronger ERS for left targets than for right. The circled orange region 

(-1.7s to -1.3s) represents a positive difference for right- left, and thus 

a stronger ERD for left targets than for right in this time period.  

A) 

              

     

(B) 
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Figure 46. (A) Right Frontal Cortex. Statistically significant activation for reaches to contralateral 
(left) targets. (B) Statistically significant activation for reaches to ipsilateral (right) targets.  q=.05  

Figure 47. Right Frontal Cortex. Statistically significant activation in a two-group 
comparison of reaches to right target minus reaches to left target. q=.1 
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No differences were found between conditions of left and right target 

location in other brain regions tested: right and left middle occipital 

cortex, left and right motor cortex, or left frontal cortex.  

VI. C.   Reaching Movements under Free-Choice Condi tion 

VI.C.1. Location of Peak Activity  

In the free-choice condition subjects were given an S1 cue that 

allowed them to choose the target on the left or the target on the 

right.  For the group analysis, all free-choice reaches were analyzed 

across the target location variable. The free-choice group included 

reaches to both left and right targets so the factor of target location 

cancels out in the average and any new effects observed in this 

analysis should be strictly due to the cognitive component of 

decision-making.  

SAM analysis identified four sources of peak activation during the 

free-choice reaching condition: 

-left  superior parietal lobule and left precuneus, ERD for the 

frequency bin of 5-300 Hz 

-left middle occipital gyrus, ERD for the frequency range of 5-50Hz 

-right superior frontal gyrus, ERS for the frequency bins of 5- 300Hz,  

5-50Hz and 150-300Hz 

- right middle occipital gyrus, ERS for 50-150 Hz 
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VI.C.2 Source-Space Time-Frequency Plots 

Using the coordinates of the sources generated by SAM, virtual 

channels were created. Time-frequency analysis in source space was 

possible using these virtual channels.  Plots of this analysis are in the 

figures that follow.  

Visual inspection of the time-frequency plots for the left and right 

middle occipital cortex (figure 48) show patterns similar to all reaches: 

beta band ERD, with stronger intensity on the left cortex, following S1 

and just after S2. In addition there appears to be a bilateral gamma to 

high gamma rhythm ERS following the S1 beta band ERD.  

 

(A) 

 

(B) 
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The source-space time-frequency plot of choice-condition reaches for 

the right frontal cortex (figure 50) has the effect seen previously of 

ERS in the theta rhythm just after S1 and ERD in the theta rhythm 

just before S2.  These effects were statistically significant with q=.05. 

In addition there was a statistically significant beta band ERD from -2 

to -1.5s from movement onset that had not been observed in analysis 

of other reaching conditions in this study.  

 

 

 

 

 

VI.C.2.a. Trends  

The phenomenon of theta-modulated HFO bursts is evident in the 

time-frequency plots of Left Middle Occipital Cortex, Right Middle 

Occipital Cortex (figure 48) and Left Superior Parietal Cortex (figure 

49) in the condition of “free-choice” reaches. It is a noteworthy and 

interesting trend throughout the entire analysis time window; 

however, this trend did not meet the threshold for statistical 

significance at q=.10.  
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VI. D.   Reaching Movements under Instructed Condit ion 

VI.D.1. Location of Peak Activity 

The instructed condition was analyzed across target location so that it 

includes all instructed reaches to either the left or right spatial field. 

SAM analysis yielded peak activation for this condition in the 

following locations: 

-right superior frontal gyrus, ERS in the frequency range of 5-300 Hz 

-right inferior parietal lobule, ERS in the frequency range of 5-50Hz 

-left precuneus, ERD in the range of 5-50Hz 

-right middle occipital, ERS in the range of 50-150 Hz 

 

 

VI.D.2 Source-Space Time-Frequency Plots 

The time frequency analysis for the right middle occipital source 

showed statistical significant for beta ERD after S1 and the beta ERS 

that follows it (figure 51).  The beta ERD following S1 effect is also 

statistically significant in the left middle occipital cortex; however 

there is no beta band ERS effect as there was on the right middle 

occipital cortex (figure 52).   
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Figure 51. Right Middle Occipital Cortex. Statistically significant activation in source-space 
time-frequency plot of instructed condition reaches. (q=.05) Disregard cross-hairs. 

Figure 52. Left Middle Occipital Cortex. Statistically significant activation in source-space 
time-frequency plot of instructed condition reaches. (q=.05) Disregard cross-hairs. 
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In the instructed condition, the beta ERS that occurs around -2.5s in 

the right but not left middle occipital cortex is also a statistically 

significant effect in the right inferior parietal cortex (figure 53, q=.05).  

The beta ERD just after S1 that was found to be stronger on the left 

side of posterior cortex in the all reaches condition is not evident in 

the right inferior parietal cortex for the instructed condition, supporting 

this phenomenon as lateralized to the left posterior cortical structures.   

 

    

        

 

 

Figure 53 . Right Inferior Parietal Cortex. Statistically significant activation in 
source-space time-frequency plot of instructed condition reaches.  (q=.05) 
Disregard cross-hairs. 
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In right frontal cortex, the time frequency analysis shows one 

statistically significant effect associated with the instructed reaches: a 

beta band ERD 1.5 seconds prior to movement onset (figure 54).  

This effect was observed 2 seconds prior to movement in the free-

choice condition.  

 

        

           

  

 

 

VI.E. Free Choice Minus Instructed, Two Group Compa rison 

In a two group t-test with multiple comparisons corrections, the 

Figure 54. Right Frontal Cortex. Statistically significant activation in 
source-space time-frequency plot of instructed condition reaches. 
(q=.05) 
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statistically significant effects that distinguished the instructed and 

free choice conditions occurred in right frontal cortex (figure 55). The 

frontal theta rhythm ERS that follows S1 and the frontal theta rhythm 

ERD that precedes S2 were larger in the choice condition than in the 

instructed condition. Also, the choice condition had a beta band ERD 

around -2 seconds that was not present in the instructed condition.   

 

       

           

 

 

 

VI. F.  Imagined Reaches  

VI.F.1. Location of Peak Activity  

Figure 55.  Right Frontal Cortex. Statistically significant activation in source-
space time-frequency plot of two group t-test, choice condition minus instructed 
condition. (q=.10)  Disregard cross-hairs.  
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There were less data for analysis for the imagined reaches condition 

that for the other condition because subjects got sleepy during the 

recording sessions so the sessions had to be shorter. Also note that 

because there is no movement onset in this condition, analysis is 

time-locked to the go cue as it was for the condition of “all reaches”. 

SAM analysis of the imagined reaching condition yielded the following 

peak sources of activation: 

-left inferior parietal lobule, BA40,  ERD in 15-25Hz 

-left precuneus and BA7, ERS in 40-50 Hz 

-left BA18, ERS in 50-60Hz 

-left middle occipital gyrus, ERS in 60-70 Hz 

-right middle temporal gyrus, ERS in 130-140 Hz 

-right superior frontal gyrus, ERS in 35-45 Hz 

 

VI.F.2 Source-Space Time-Frequency Plots 

Virtual channels were created at the sources identified by SAM.  Time 

frequency analysis in source space using these virtual channels 

produced interesting effects in three regions. In the right middle 

temporal region (figure 56), the familiar burst of HFO ERS and the 

beta band ERD occurs just after S1. In addition, an effect is evident 

that was not seen in previous analysis in this study: a beta band ERS 
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1.5 seconds prior to the go cue. In previous conditions, the 

movement-related beta band ERD would be beginning at about this 

time. Because no actual movement is produced, this event could be 

associated with the function of blocking a motor program that has 

been prepared. Similarly, in the left inferior parietal region there is no 

movement-related beta band ERD (figure 57) as there had been in all 

other reaching conditions analyzed in this study.  

 

 

 

 

  

 

 

The time frequency plot of the source in right frontal cortex produced 

the same interesting ‘timing’ marks that were also present in the “all 

reaches” condition (figure 58). The effect likely emerges from the fact 

that these are the only two conditions that were analyzed time-locked 

to the S2 ‘go’ cue, thereby increasing the precision of the responses 

to the presented stimuli.  One difference notable in this effect in the 

time frequency plots for ‘all reaches’ and imagined reaches is that the 
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timing-related events in the ‘all reaches’ condition occur 1 second 

prior to S1 and S2 whereas in the imagined reaches trials, the timing-

related events occurred  .5 s prior to S1 and S2.  The imagined 

reaches trials took place in a separate session following the real 

reaches session. Training effects or actual differences in the timing of 

covert brain processes associated with imagined movement could 

account for the different timing of the “timing-related” events in real 

and imagined reaches.  

 

 

  

 

VII. Single Trial Analysis, Pattern Recognition  

    Analysis of single trial data is extremely challenging because of the 

low signal to noise ratio. Data mining and pattern recognition 

techniques are being applied to a wide spectrum of fields today: the 

identification of terrorist networks, automatic recognition of 

handwritten zip codes on postal mail, irregular/fraudulent credit card 

use, speech recognition technology, and computer-aided diagnosis 

for physicians, to name a few.  In the case of the research presented 

here, patterns were extracted from the electromagnetic activity in the 



 

 91  

brain to classify the target of a reaching movement: either to the 

ipsilateral field or to the contralateral spatial field. The basic steps of 

pattern recognition are very similar despite the application:  reduction 

of noise, extraction of statistically relevant features, and construction 

of a model based on those features and classification of new inputs 

by the model.  

    Essentially, the goal is to find features of the data that form an 

invariant pattern associated with one class and not with the other.  

Usually not all data points acquired are relevant to classification. 

Moreover, using irrelevant data can actually degrade the model’s 

performance on new inputs by over-fitting to the extraneous 

information.  Feature selection is the process used to address these 

issues before a model is constructed.  The feature selection process 

not only contributes to the success of the final model, it also 

contributes more generally to the understanding of the phenomenon 

being examined because the most important features for 

classification are likely related to signature aspects of the 

coding/structure of that phenomenon.  
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VII.A. Pre-Processing  

VII.A.1. Mark and Epoch 

Marker files were created for each trial for movement onset and left or 

right response. Each trial was epoched into a five-second interval 

starting one second prior to S1 and ending one second after S2.   

These intervals were further binned into 500ms time windows.   

 

VII.B. Temporal Transform 

Matlab software was used to perform temporal transformation of the 

data. The Welch method of power spectral density (PSD) estimation 

was used to transform the data into the frequency domain.  The 

length of the FFT and thus the width of the frequency bins used in 

analysis was varied to optimize classification accuracy.  

 

VII.C. Feature Pre-selection and Selection 

Partial Least Squares Regression was used to select features and to 

determine weights for the classification model. 

VII.D.    Classification and Cross-Validation 

Leave-one-out cross-validation (LOOCV) was used to compute 

classification accuracy. In LOOCV,  a single observation from the 

original sample was used as the validation data and the remaining 
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observations are used as the training data.  

A Receiver Operating Characteristics (ROC) Curve was generated for 

various levels of features and PLSR components.   

 

VII.E. Single Trial Classification Results 

 

The spatial field of the target was able to be classified in nine of the 

sixteen subjects using single trial data. Classification accuracies 

between 78%-98% were achieved in the time window from -2 

seconds to -1.5 seconds from movement onset.  In a power analysis 

completed prior to data collection, it had been concluded that 300 

trials would be required per subject in order to have sufficient power 

to find an effect between the two classes using single trial data.  

Indeed the datasets in which it was not possible to classify the 

location of the target had fewer than 250 trials due to artifacts, 

technical difficulties in the recording or excessive head motion. 
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A scatter plot showing the distribution of left and right trials after 

features were selected and weighted is shown in figure 59 for one 

subject. In the scatter plot of figure 59, the model score plotted on the 

y-axis of is the sum of a weighted combination of features obtained 

from multivariate regression. The x-axis of figure 59 is a question 

index in which each dot represents one trial.  The horizontal line 

drawn through the scatter plot represents a chosen threshold value. 

Trials with model scores above this threshold are classified as 

reaches to the right while trials with model scores below the threshold 

are classified as reaches to the left. The corresponding ROC curve is 

in figure 60.  

  

 

     In an ROC curve the straight, diagonal line as seen in figure 60 

represents classification of 50%, or chance for a two class condition.  

The blue line represents the results of the classification as a trade-off 

between true positive rate (classify left when left) and false positive 

rate (classify left when right). If the classifier identified every trial as 

left, it would have both a high true positive and false positive rate. 

Depending on the context of the experiment and its applications, the 
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investigator determines if it is worth increasing the FP rate in order to 

increase the TP rate. The results shown in figure 60 are very good 

since in order to get a true positive rate of 95%, the false positive rate 

only needs to be 20%. 

     The features used for classification were pairs consisting of a 

frequency bin of width 18 Hz ranging from 1- 300 Hz and an MEG 

sensor. The single trial classification analysis was done in sensor 

space rather than source space, however future studies are planned 

for single trial classification using the virtual sensors representing 

source space found using SAM analysis.  Issues regarding 

transferring data and analysis outputs between the different analysis 

software and operating systems currently used for single trial versus 

averaged data must first be resolved.  The features used for 

classification of the data for the subject whose data is shown in 

figures 59 and 60 are listed below and displayed in sensor space in 

figure 61: 

 

MLT15  99-108 Hz 

MLT16  99-108 Hz 

MLT27  18-27Hz 

MRC61 153-162 Hz 
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MRF52 91-99Hz 

MLC13 135-144Hz 

MRP23 18-27Hz 

MRP55 91-99Hz 

MZO 01  171-180Hz 

MLO14  18-27Hz 

MLO31  18-27Hz 

MLP11  99-108Hz 

MLP57 180-189Hz 
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VIII. Conclusions 

      Results of this study indicate there is evidence for several 

characteristic electrophysiological phenomena in the averaged and 

single trial data preceding reaching movements. The results from the 

testing of each hypothesis will be reviewed and interpreted in greater 

detail later in this section, however the highlights are summarized by 

these claims:  

(1)  The electrophysiological correlate of the proximity-to-hand 

effect (Tipper SP, Lortie C, Baylis GC 1992 Bryden PJ, Roy EA 2006 Meegan DV, 

Tipper SP 1998 .   Welsh TN, Zbinden M. 2009) demonstrated in behavioral 

studies is a beta band ERS in the intraparietal sulcus which 

represents an over-ride of a default bias for reaches to 

ipsilateral space. This electrophysiological event in averaged 

data can be used to identify whether a person is reaching for a 

target in the left or right spatial field two seconds before 

movement onset.  

(2)  Human sensitivity and anticipation of periodic events is 

neurologically encoded in part by a high frequency 

electrophysiological signal in left frontal cortex associated with 

a feed-forward timing mechanism.   

(3) The widely observed phenomenon of frontal theta rhythms, 
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largely believed to be cognitive in nature (Cohen MX, Elger CE, Fell J 

2009, Tsujimoto T, Shimazu H, Isomura Y, Sasaki K. 2003), was observed in 

this study in conditions of increased complexity, either 

physically (crossing mid-line) or cognitively (decision-making). 

The evidence reported here supports either a function of 

decision-making or of binding spatially distant ensembles of 

neurons into a temporary network for this phenomenon.  

(4) Choosing between target locations elicits activation that is not 

present when the target location is instructed in right frontal 

cortex in averaged data two seconds prior to movement. A 

right hemispheric specialization in frontal cortex for spatial 

selection (but not spatial localization) of targets accounts for 

this finding. 

(5)  Using single-trial electrophysiological data recorded from the 

scalp, it is possible to predict the spatial location of the target 

of a reach two seconds prior to movement.  

 

 

      The results of each hypothesis tested in this study will now be 

reviewed and interpreted in further detail. 
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Hypothesis 1 The characteristics of the temporal and spatial 

networks of electromagnetic activity prior to reaching movements 

can be identified in data averaged across subjects.   

 

     The first effect observed in the interval of interest, between the S1 

cue and movement onset, occurred immediately after the S1 

instruction cue at -3 seconds with respect to the S2, ‘go’ cue:  a burst 

of increased power in an HFO rhythm in the middle occipital gyrus, 

followed by the onset of a 400ms beta band power decrease in the 

same region.  These events were bilateral but significantly stronger in 

the left hemisphere of the brain. The effects, which immediately follow 

the presentation of a visual stimulus and occur in secondary visual 

cortex, are most certainly related to processing of the S1 cue; 

however, the lateralization of the effect to the left hemisphere, 

contralateral to the effector of an upcoming movement, may 

represent a modulation by early components of reaching preparation.  

      Just after the beta band ERD in left posterior regions, and two 

seconds prior to the S2 ‘go’ cue, power increases in the beta band 

simultaneously in occipital and motor regions.  The focus of this effect 

in regions associated with visual and motor processing suggests that 

it processes components related to both the sensory and movement 
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aspects of the reach such as target-related information. The timing of 

the effect which links the sensory processing of the cue instructing 

the location of the target and the motor-related ERD effects also 

supports a role for this effect in coding target-related information for 

the upcoming movement.  

      A strong beta band power decrease, long-established as 

associated with motor preparation, begins in the primary motor cortex 

approximately two seconds prior to movement onset.  An earlier 

motor preparation component begins at approximately 2.5 seconds 

prior to movement onset in superior parietal cortex.  Both of these 

motor-related components are stronger on the left hemisphere, 

contralateral to the movement effector (the right hand).  

    Interesting spectral effects were found in left and right frontal 

cortex (figures 27 and 28) during the task.  The HFO bursts of ERS at 

-4s and -1s in left frontal cortex occur precisely one second prior to 

S1 and S2, respectively. The temporal precision with which these 

events predict the onset of S1 and S2 points to timing as a possible 

functional correlate of the bursts.  While statistical testing of the time 

frequency results did not show these timing- associated HFO bursts 

as significant at a q value of .05 (figure 36), they were significant with 

q=.10. 
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   Another interesting pattern seen in frontal cortex during the “all 

reaches” condition were power changes in the theta rhythm activity. 

Theta ERS followed by theta ERD were localized to both left and right 

frontal cortex.  The functional significance of frontal theta rhythms has 

been attributed to a wide range of cognitive functions including 

reward, feedback, attention and decision-making (Cohen MX, Elger CE, Fell J 

2009, Tsujimoto T, Shimazu H, Isomura Y, Sasaki K. 2003). The variables that might 

modulate the theta rhythm in this task include decision-making since 

many of the trials were free-choice; a timing function since there is a 

strong timing aspect in all trials; or, the recent findings of theta 

oscillation coupling with high frequency oscillations as a mechanism 

for integration of spatially distributed regions (Doesburg SM, Green JJ, 

McDonald JJ, Ward LM 2009 Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch 

HE, Berger MS, Barbaro NM, Knight RT 2006 , Tort AB, Kramer MA, Thorn C, Gibson DJ, 

Kubota Y, Graybiel AM,  Kopell NJ 2008 Jensen O, Colgin L 2007 Sirota A, Montgomery S, 

Fujisawa S, Isomura Y, Zugaro M,  Buzsaki G. 2008) such as the many activated in 

this task.   

Hypothesis 2   Reaching movements to targets in the spatial field 

ipsilateral or contralateral to the effector can be discriminated by 

the spatial and temporal characteristics of the electromagnetic 

signals prior to the reach.  
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     The novel finding in the analysis of target location was the 

lateralization of the power changes in the beta band in the 

intraparietal sulcus modulated by the spatial field of the target. The 

right intraparietal sulcus had a stronger beta band power decrease 

prior to movement for reaches to the right (ipsilateral) target than to 

the left (contralateral) target. Similarly, in the left intraparietal sulcus, 

reaches to the contralateral (left) target activated a stronger beta 

band ERD prior to movement than reaches to the ipsilateral (right) 

target.  Additional evidence came from this analysis that the beta 

band ERS two seconds prior to S2 that was speculated in the 

previous analysis to be target-related was in fact modulated by target 

location. This effect was stronger for reaches to targets on the left 

field than on the right, adding further support to the view that this 

event carries information about target location. This effect can be 

accounted for as a neural correlate to the proximity-to-hand-effect, a 

well-established behavioral phenomenon (Tipper SP, Lortie C, Baylis GC 1992 

Bryden PJ, Roy EA 2006 Meegan DV, Tipper SP 1998 .   Welsh TN, Zbinden M. 2009). It 

holds that due to object proximity cues there is a behavioral 

preference for objects ipsilateral to the effector (Tipper SP, Lortie C, Baylis GC 

1992 Bryden PJ, Roy EA 2006 Meegan DV, Tipper SP 1998 .   Welsh TN, Zbinden M. 2009). 
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Based on the results of this study, I claim that the beta ERS in the 

intraparietal region prior to reaches to contralateral targets is 

evidence of an over-ride of the electrophysiological correlate of the 

proximity-to-hand effect. It is acting as an over-ride of the default 

preference for the ipsilateral target. 

 

     Frontal cortical activation was also modulated by target location. 

The frontal theta rhythm was stronger in reaches to the left 

(contralateral) target. Frontal theta rhythms have generally been 

associated with cognitive functions (Cohen MX, Elger CE, Fell J 2009, Tsujimoto T, 

Shimazu H, Isomura Y, Sasaki K. 2003), so it is not clear what aspect of the 

target location could account for this effect.  Perhaps a movement 

that crosses the mid-line requires higher levels of integration across 

brain regions, supporting the view that the frontal theta rhythm 

represents a binding of information within a widely distributed spatial 

and temporal network such as the one involved here.  

 

Hypothesis 3 The characteristics of the temporal and spatial 

networks of electromagnetic activity prior to imagined reaching 

movements can be identified in data averaged across subjects. 
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     The unique effect observed in imagined reaches compared with 

actual reaching movements was a beta band ERS 1.5 seconds prior 

to the go cue. In previous conditions, the movement-related beta 

band ERD would be beginning at about this time. Because no actual 

movement was produced, this event could be associated with the 

function of blocking a motor program that has been prepared, in 

essence a frequency-coded braking action. Such a conclusion is 

based on the widely accepted perspective that in general ERS 

functions as a “blocking” or “turning off” of active processing of inputs 

(Pfurtscheller G 1992).  

 

     Right frontal cortex produced the same interesting timing-related 

effects during imagined reaches that were evident in the “all reaches” 

condition for actual movements. The presence of this effect in just 

these two conditions likely emerges from the fact that these are the 

only two conditions that were analyzed time-locked to the S2 ‘go’ cue, 

thereby increasing the strength of the effects seen due to the stimuli 

presented.   One notable difference between this effect for ‘all 

reaches’ and for imagined reaches was the difference in the timing of 

the events themselves.  In the ‘all reaches’ condition, the HFO bursts 

occur 1 second prior to S1 and S2, whereas in the imagined reaches 
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trials, the HFO bursts occur  .5 s prior to S1 and S2.  This difference 

in timing could be accounted for by intrinsic differences in the brain 

mechanisms for movement and imagined movement or, alternatively, 

by training effects due to extensive repetition of the task.  The 

imagined reaches trials were recorded after subjects had been 

performing the actual reaching movements for more than an hour.    

Training effects, such as shorter reaction times, have been 

demonstrated in motor tasks (Arito H, Oguri M 1990) following fewer 

repetitions than those preceding the imagined reaches trials in this 

experiment, leading to the possibility that training effects could 

account for the difference in the timing of the bursts of frontal ERS.  

Actual differences in the timing of covert brain processes associated 

with moving and thinking about moving could also explain the 

different timing of the “timing-related” effects in frontal cortex.  

 

    Hypothesis 4  Decision-making processes distinguish conditions  

    of movement to a freely-chosen visual target and movement to a 

    visually-instructed target.  Differences in the MEG data recorded    

    during these conditions will indicated brain regions and frequencies  

    of activation associated with target selection. 
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     In left superior parietal cortex and middle occipital cortex there 

appears to be theta-modulated HFO bursts from the presentation of 

S1 to the end of the beta band posterior ERD S1 response; and then 

again one second prior to the S2 response until movement onset. 

This trend did not meet the threshold for statistical significance, 

although the significantly lower levels of power in the high 

frequencies compared with low frequencies could lead to the effect 

being ‘swamped’ by higher power values in the beta band. Statistical 

significance might be obtained in additional analysis done solely on 

the higher frequency range.   

 

    Right frontal cortex was the region that distinguished conditions of 

free choice and instructed reaches. Statistically significant beta band 

ERD was evident in right frontal cortex in the choice condition from -2 

to -1.5s with respect to movement onset but the same effect occurred 

later, from -1.5 to -1s, in the instructed condition.  In addition,  

the frontal theta rhythms were larger in the choice condition than in 

the instructed condition. This agrees with previous studies finding this 

affect associated with decision-making but could also represent a 

“binding” function of spatially distributed regions.  
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     Hypothesis 5 The location of the target of reaching movements     

     to the spatial field either ipsilateral or contralateral to the effector     

     can be predicted prior to movement onset from single trial MEG  

     data in off-line analysis using a classifier constructed with pattern      

     recognition techniques. 

 

     Classification of the spatial field of the target was possible with 

78% -98% accuracy with an alpha of .05 after multiple comparisons 

correction using single trial data for just more than half of the 

subjects.  Variables that affected the accuracy of classification 

included: the number of trials available for classification; the width of 

the frequency bin; the number of features in the model; the number of 

partial least squares regression components in the model.   

     The number of trials available to build the model was the single 

largest factor affecting the accuracy of classification. Data sets that 

included many trials that had to be discarded due to artifacts or 

technical malfunctions were not classified with accuracy better than 

chance.  More specifically, datasets with less than 250 events could 

not be classified.  The power analysis done prior to the experiment 

had suggested that 600 events would be required, however 
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classification was possible with as low as 250 events.  

     Two different widths for the frequency bins were tested as features 

for the classification model, 9 Hz and 18Hz. Better accuracies were 

obtained with the classifier based on 18 Hz frequency bins. 

    The number of features used in the classification model affected 

the accuracy of the classifier. Most models utilized 24 - 32 feature- 

pairs (frequency bin/MEG sensor).  Using more features created a 

condition of over-fitting.  In such a case the model classified the 

training set nearly perfectly, but did not do well in classifying new 

inputs.  Using too few features also resulted in poor accuracy of 

classification.  

    The number of components of the partial least squares regression 

(PLSR) included in the model affected the accuracy of classification. 

Classification for most datasets was optimized with 2-3 PLSR 

components. Each higher component of the regression accounts for 

additional variance between the two classes, so classification 

accuracy is increased as more components are added until too many 

components are included resulting in over-fitting of the data.  Just as 

over-fitting caused the accuracy of the classifier to deteriorate when 

too many feature-pairs were included, a model constructed with too 

many PLSR components did not generalize to new inputs. 
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     The features used for classification clustered in areas identified in 

the studies of the averaged data that were associated with reaching 

and in particular with target location: parietal, occipital, and frontal. In 

addition motor sensors were always selected as features by the 

algorithm.  

 

VIII. A. Cocktail Party, (or Happy Hour) Version of  the Findings  

     Now, to return to Tippy’s Taco Shack on the shore in Encinatas.  

So what is the brain doing while we sit at our table at happy hour, 

arms-length from a basket of chips and a frozen margarita? The 

signature patterns in the electromagnetic activity of the brain reported 

in this study shed some light on that question.   

     Assuming you are right-handed, it is a well-established finding that 

the left side of your brain processes the signals necessary to evoke 

movement. This study showed that the lateralized response for motor 

control also has an effect on the lateralization of brain activity 

associated with processing sensory aspects of the target of the 

movement.   In particular, immediately after you look at the chips or 

margarita as a possible treat, in the left middle 

occipital/temporal/parietal junction there is a strong 75-300Hz burst of 
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ERS followed by a half second of beta ERD that is only weakly 

present if at all in the right hemisphere.  This occurs whether or not 

the target (the margarita) is on the left or right, suggesting the 

lateralization is due to the stimulus being processed as a target of a 

movement rather than as an effect of the stimulus location. To 

dissociate whether this effect is present for all stimuli processed prior 

to an upcoming movement or just for the specific target of the 

movement cannot be determined from this study because all the 

stimuli tested were targets of upcoming movements.  A study 

comparing sensory processing of more than one stimulus prior to 

movement in which only one was the target, as well as a study with 

left-handed subjects in which the modulation would be expected in 

the right hemisphere, could be done to dissociate those two 

conclusions. If indeed the lateralized response to visual stimuli in the 

left occipital/temporal/parietal region as seen in this study reflects a 

modulation of sensory processing due to target status, it would be 

possible to use the electromagnetic activity of the brain to predict 

upcoming targets of movement up to two seconds prior to the 

movement itself.  In other words, if a miniature, portable MEG system 

were available (they are not) to put on your head, the lateralized 

response of the electromagnetic signal recorded from your brain to  
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the target stimulus could be used to predict whether you were about 

to eat a chip or drink your margarita before you even moved a 

muscle.  

    In a similar example of “mind-reading” during happy hour, this 

study also provided evidence of another neural electromagnetic 

signal recorded at the scalp that could be used to predict whether you 

were about to reach for the chips or the margarita prior to movement. 

On the table at Tippy’s Taco Shack, the chips are on your left on the 

table in front of you and the margarita is on the right.  Spatial 

reasoning theory based on behavioral studies predicts that you will 

reach for the margarita due to the proximity of the margarita. Such a 

claim now has electrophysiological support. There is an increase in 

power in the beta band in the left intraparietal sulcus 2.5 seconds 

before you move if you’re going for the chips, but not if you’re 

reaching for the margarita. This finding could be further tested using 

the same paradigm used here but with left-handed reaches.   
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IX. Future Studies 

The results discussed here suggest future studies to further 

dissociate components of the electromagnetic activity of the brain 

involved in reaching to visual targets. First,  it was suggested but not 

determined if there are movement related components in the 

responses to the S1 cue in occipital cortex. This would be a very 

early motor component. In this study the left hemisphere of the brain 

showed stronger activation during the beta band ERD sensory 

response to S1 in occipital cortex. I speculated that this may be an 

enhancement or ‘response bias’  present in the sensory response 

resulting from the fact that only right handed reaches were being 

executed , therefore biasing the contralateral dorsal stream of visual 

processing. This could be tested by running experiments with both 

right and left handed reaches.  

    The claim in this study that the beta band ERS in the intraparietal 

sulcus is a neural correlate of an over-ride of the proximity-to-hand 

effect could be confirmed with further testing, using the same 

paradigm used here but with left-handed reaches.   

     The other interesting effect I think deserves further investigation is 

the frontal theta rhythm, which was a component in the selection of a 

target and in the localization of contralateral targets in this study.  A 
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future study utilizing information about the phase of the electrical 

activity could identify whether phase coupling was present between 

theta and HFO activity.  Such a phenomenon could have a functional 

role in binding the various brain regions (Doesburg SM, Green JJ, McDonald JJ, 

Ward LM 2009 Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger 

MS, Barbaro NM, Knight RT 2006 , Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, 

Graybiel AM,  Kopell NJ 2008 Jensen O, Colgin L 2007 Sirota A, Montgomery S, Fujisawa S, 

Isomura Y, Zugaro M,  Buzsaki G. 2008) involved in preparing for a reach to a 

target.  Such a finding could contribute to one of the most actively 

pursued questions in neuroscience today: the  “binding problem”. An 

experiment that requires integration of simple visual and motor 

components would make a reasonable platform for study of such a 

phenomenon.  
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