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ABSTRACT

We present an indoor location determination systembased
on signal strength probability distributions for tackling the
noisy wireless channel and clustering to reduce coputation
requirements. We provide two implementation techniges,
namely, Joint Clustering and Incremental Triangulation and
describe their tradeoffs in terms of location detemination
accuracy and computation requirement. Both techniqes have
been incorporated in two implemented context-awaresystems:
User Positioning System and the Rover System, bottunning on
Compagq iPAQ Pocket PC’s with Familiar distribution of Linux
for PDA’s. The results obtained show that both teclmiques give
the user location with over 90% accuracy to within 7 feet with
very low computation requirements, hence enabling aset of
context-aware applications.

We present an RF-based location determination syste
that achieves better positioning accuracy than texgs
systems with low computation overhead. Given anoind
region covered by multiple access points, the aystellects
access point signal strengths at various locaticar
constructs a histogram-baseaddio map. Then given a new
signal strength reading from an arbitrary locatithe system
estimates the closest map location correspondingthi®
arbitrary location. The estimation procedure ha® tkey
features:

It uses the histogram distributions (rather thastjthe
mean) to enhance accuracy and tackle the noisyr@atu
the wireless channels.

e It uses clustering of map locations to reduce the
computation requirements. We present two technigues
The Joint Clustering (JC) technique that uses eipli
clustering and the Incremental Triangulation (IT)

1 Introduction

As ubiquitous computing becomes more popular, the
need for context-aware applications increases. Ohehe

most important contextual information is the usecdtion,
with which the system can provide
information and services. There have been manyesystthat
provide context-aware services to the users basedheir

locations [1] including automatic call forwarding the user
based on his current location, helping shoppersugh the
stores based on their location, providing inforroatito the

tourist about his current location and office atmsig that
interacts with visitors and manages the office orse
schedules.

Many systems over the years have tackled the proldg
determining and tracking user position. Exampleslude
GPS [2], wide-area cellular-based systems [3],ardd-based
systems [4][5], magnetic tracking systems [6], wvas
computer vision systems [7], physical contact sys€[8],
and radio frequency (RF) based systems [9]-[14].tiafse,
the class of RF-based systems that use an undgnlyireless
data network [12]-[14], such as 802.11, to estimaitser
location has gained attention recently, especiédly indoor
application. Unlike infrared-based systems, which lémited

location-specific

technique that features implicit clustering.

corridors spanning a 20,000 square foot floor dblding.
Results obtained show that using the signal stiengtiues
collected from the access points, both the Joints@ring and
Incremental Triangulation techniques give the useation
with over 90% accuracy to within 7 feet with verpw
computation requirements.

The closest related work to ours in the area ofoiod
location determination are the RADAR system [12het
CMU system proposed in [13], and the Nibble systtom
UCLA [14]. Our approach differs from RADAR and the
CMU approach in that we use probabilistic rankingda
clustering to better handle the noisy wireless cterand to
reduce the search space. While our approach antlélidre
similar in some ways, there are significant diffeces: (a) we
store only the marginal distribution of each accesmsnt,
rather than the joint distribution of all the randovariables of
the system, thereby reducing the computational cosd

in range, RF-based techniques provide more ubigsito significantly enhancing system scalability; (b) wese the

coverage and do not require additional hardware User
location determination, thereby enhancing the vabdighe
wireless data network.

! Also with the School of Information and Compu
Engineering, Hongik University, Map@Gu Sangsoo Dor
72-1, Seoul, Korea

received signal strength instead of the signal tise ratio
(SNR) because the former is a stronger functioriochtion
[12]; (c) we have a much finer quantization of theceived
signal strength, thereby achieving better accurédywe use
clustering to control the computational cost. A alkd
comparison of our approach with these approachesactimer

We have evaluated the system in an indoor space of



approaches for location determination is preseimesection
7.

The rest of the paper is organized as follows. Bect
presents our general architecture for location eieation
systems. Section 3 presents the details of radiop m
construction and location estimation with the Jahtistering
technique. Section 4 presents the details of |ocati
estimation with the Incremental Triangulation tehre. In
Section 5, we describe the evaluation of the teghas in the
indoor space and the obtained results. Sectionsgritees two
applications implementing the general architectuier
location determination, incorporating the JC and I
techniques as their location determination alganith Section
7 surveys related work and compares the new teclasquith
previous RF-based location determination approatiesdo
not require additional hardware. Finally Sectiom@cludes
the paper.

2 Location Determination System Architecture

Figure 1 shows our location determination system
architecture. The hardware layer covers mobile desj such
as laptops and handhelds, and fixed devices thed fecation
information (e.g., for automatic configuration). |IAthese
devices are equipped with wireless cards. The dpera
system layer includes the operating systems runwinghe
devices. The device driver interacts with the wasd card to
collect the signal strength values from the accpsBits in
range. The Location Determination System layer rtims
location determination algorithm, e.g. the JC aitfon that
uses the signal strength values to estimate thelasation. A
wireless API provides, in a device driver-independeay,
the Location Determination System layer with a nuethto
get the required information from the driver, suel the
access point MAC addresses and received signaigins. In
the same way, a Location API provides the user igptibn
with the device’s current position in a way indeplent of the
location determination algorithm.

In Section 6, we present 2 examples on implementing
this architecture. In the next two sections, weatidse the JC
technique and the IT technique, respectively, whach part
of the Location Determination System layer.

3 The Joint Clustering Technique

The Joint Clustering technique is based on two rhaiations:
(@) estimating the joint distribution of the sigrsttength values
received from access points at each location ahgrtuping the
locations into clusters. The joint distributiongarsed to find the
most probable location given the observation secgeiof signal
strength values. The JC technique also perfornatitot clustering,
by grouping locations that have a common featoreeduce the size
of the search space and, hence, reducing the catignal
requirements of the algorithm. Therefore, the ofieraof the JC
technique can be divided into two phases: (a) néflphase, in
which we perform the joint distribution estimatioand
locations clustering and (b) location determinatgmase, in
which we run the location determination techniqueintfer
the user location.

3.1

User Application
Location AP

Location Determination Syste
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Figure 1. Location determination system architeetur

Below, we introduce some notations and then describ

the two phases in more details.

We define the following notations:

* | . | denotes the number of elements in a givenoset
sequence.

» *’denotes all possible values for a given index.

« For any sequence x(i) denotes thé&" element ofx.

» SSis the discrete signal strength space.

» TrLocsis a set of locations for which we build the
radio map.

» TsLocsis a set of locations for which we test the
performance of the algorithms.

» TrSampleg, is a sequence of training signal strength
values at locatioh /7 TrLocsfrom access poird.

» TsSamplegis a test sequence of signal strength values
for a locationl //TsLocsfrom access poirg.

* TrAR, = {a: TrSampleg,(n)>0 for some n}is the set
of access points heard in the training set at locet

* TsAR = {a: TsSampleg(n)>0 for some njis the set of
access points heard in the test sequnce at lochtion

* Hist 4 is the normalized histogram for signal strength
values at locatiorl /7 TrLocs from access poina 7/
TrAP.

{n:Trsampleg, (n) = 5}

By definition, Hist, . (s) =
’ [TrSamples,

for anys /7SS.

» SortedAP(l, n, AP, Samples the function that sorts
the set of access points AP at locationl, according to
the average signal strength value calculated from
Samplesand returns the firsh elements of the sorted
AP set as a sequence. |AP| is less thann, the
function returns the sortedlP set as a sequence.

 Cluster(key, q)s a function that returnf /7 TrLoc :
SortedAP(l, g, TrAR TrSampleg)= key}. The
parameterkey represents a common set of access
points that is shared between all the locationgha
cluster.

Offline Phase



During the offline phase we perform two tasks: join
probability distribution estimation and locatiorustering.

3.1.1 Estimating the Joint Signal Strength Disttilon

At each location in the set of training locationge store
a model for the joint probability distribution ohé access
points at this location. Therefore, our radio magstored as a
collection of models for joint probability distrittions.

The problem of estimating the joint distributionsrc
further be divided into three sub-problems:

1- How to choose a valu) for the dimension of the joint
distribution?

2-
covering a certain location, to choose to be inelddn
the joint distribution?

3- How to estimate the joint distribution betweehet

choserk access points?
In determining the best value férwe need to take into

i.e. the number of times that the signal strengétues tuple
(s1, &, ..., §) appeared in the entire training set divided bg th
size of the training set.

The problem of this approach is that it requireaege
training set to obtain good estimate of the joinstdbution
and the required size increases exponentially vidithFor
example, if we have 3 access points each havingrge of
11 signal strength values, then the number of déffe
possible tuples for the joint distribution is *#1 1331, and
hence the training data size cannot be less thanrthmber
(actually it must be much bigger).

Since our goal was to use a method that gives adgoo

Which k access points, from the set of access pointgccuracy and, at the same time, requires reasorshtaunt

of training data and computational power, this aygmh can
only be used with small values & which may affect the
technique accuracy. Instead, we chose to make an
approximation that the access points are independierthis
case, the problem of estimating the joint probapili

account 2 factors: (a) dsincreases, the process of estimatingiistribution becomes the problem of estimating tharginal

the joint probability distribution (sub-problem 3)ecomes
more complex and (b) we need a value fosuch that all
locations are covered by at ledsaccess points most of the
time.

The second factor is important because at the enli
phase, we get a number of samples from some ofttoess
points and some of the access points that coveemam
location may be missing from the samples due toribésy
nature of the wireless channel and hence the nundfer
access points covering a location is varying witing. The
second factor lessens the affect of variabilityfhe number of
access points and hence should lead to better acgur
Typical values for the parametkican be found in Section 5.

The solution to sub-problem 2 is related to theusioin
of sub-problem 1. If the number of access pointsering a
location is varying with time, which access poisisould we
choose? Intuitively, we should choose the accesstpdhat
appear most of the time in the samples. We did samaysis
of the data and found that the access points with largest
signal strength are those that appear in most efsamples.
This is expected as the access points with wealnaig
strength are less probable to be heard than the wriih the
strong signal strength.

To summarize, for a given locatioh /7 TrLocs we
choose the firstk access points from the sd@rAP, when
sorted according to the average signal strengthesli.e. we
useSortedAP(l, k, TrAR TrSamples).

The problem of estimating the joint probability
distribution can be done in different ways with feifent
accuracy levels. The problem can be stated as:ngiaccess
points AP;...AR, we want to estimate
P(AR =s,AR =s,,...,AR =s,) where s is a signal
strength value fronAP.. One good way to estimate this joint
distribution is to use the Maximum Likelihood Esttion
(MLE) method which estimate the joint probabilitiess
follows:

) B _ . _ Counf(s,s,,....s,)
P(ARP =s AP, =s,,....AP, = = (1)
(AR =5, AR, =5,,..AR =5,) SizeofTraiingData

probability distributions as:
P(AR=5,AB =s,,... AR =5) = P(AR =5) P(AR =s,)..P(AR =)

)

since the random variablég?;, .. ,AR are independent. For a

ngiven location /7TrLocs, P(AP =5) = His{ » (S)-

Figure 2 gives a typical example of the signal sgg#h
normalized histogram from an access point.

This approach reduces the size of the training set
required. Using the same example as before, thebaurof
distinct values for each access point is 11, anshall size
training set can be used to estimate the margirgtidutions.
The independence assumption has other advantageiti be
described in the discussion section.

3.1.2  Locations Clustering

To reduce the computation overhead, we group the
locations into clusters according to the accessnisothat
cover the locations. The problem can be statedddis\fs:
Given a locatior, we want to determine the cluster to which
| belongs.
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Figure 2. An example of a histogram of the signaéegth
of an access point




The most obvious way to do clustering is to groupcluster to search within for the most probable hkima. We,
locations according to the access points that coem. i.e. then, use Baye's theorem to estimate the probghiliteach
two locationsl, and L are placed in the same clustéf location within the cluster given the observed s&mp
TrAR =TrAR, . However, this approach for clustering hassequences and the radio map built during the dcfiphase.

The most probable location is reported as the estiiah user
location.

The above algorithm works assuming ideal wireless
channel. However, for a practical environment, weed to
tackle two problems:

1- The number of access points in a test sampla at

locationt, | TSAR|, may be less thaq.

2- | TsAR| may be less thak, the dimension of the

joint distribution.

We first use an example to demonstrate the firstybem
and our approach to solve it. Assume that numbeaafess
points to use in clusteringj, was set to &nd assume further
that during the location determination phase we sgrnples
from two access points onlytP; and AR. The problem here
is that we cannot find a cluster whose key BR;, AP,}. To

problems when applied in a real environment. Sirthe
wireless channel is noisy, an access point may lgsimg
from some of the samples and, therefore, usingethiire set
of access points that cover a location for clustgrmay fail
to find the correct cluster due to the missing axpoint.

Instead of using the entire seTr@R) that covers a
locationl for clustering, we use a subset of this set coriteyn
only q elements and the problem becomes: Given a number
we want to put all the locations that shayeccess points in
one cluster. Therefore, we have 2 sub-problems:

1- How to determine the value of?

2-  Whichg access points to choose for clustering ?

For the first sub-problem, we need to chogssuch that
all locations are covered by at leastaccess points most of

the time. This factor is important due to similaasons as in solve this problem, we search for all clusters whd®y has

the discussion of the choice of a value for thegmaeterk. : ;
This suggests that the value @&hould be less than or equal.{Apl’ APz} as a subset. We use the union of all the locagion

. in these clusters as our target locations set.
to min(|TrAR]) for alll L/TrLocs.Moreover, we need a value =y, o formally, we define the set of target locatioas:
for g that distributes locations evenly between the tdisto | The set of target
reduce the required computations. Determining thkie for 1 2rgetLocs= (JCluster(s)-
g is discussed in the Section 5. _ SonedARta.TsAR TsSamplas)lis _

For sub-problem 2, we chose to use thaccess points locations reduces to the locations within one aust |TSAR]

with the largest signal strength values at eaclafion, again S 9reater than or equal tp

for similar reasons as in the previous section. For the second similar problem, we use the sameaggh
During the data analysis we found that, at somé&P Solve it by reducing the dimension of the jodistribution

locations, the order of the access points withitrgest signal 10 Min(k, [TSARH). _ o

strength values changes when the signal strendtresgrom The only thing that remains to be explained is hmwse

these access points are near to each other, eipadien we Baye’s theorem to calculate the most probable locadut of

take a small number of samples at the online phasi® target locations set given the observation eeqges

Therefore, we chose to treat theaccess points as a set andlsSamplgs We want to find| /7 TargetLocssuch that

not as an ordered tuple. For example,gi#2 and the two P(/TsSampleg) for all a [/ SortedAP(t, k, TsAP

access points with the largest and second largagtas TsSamples), is maximized. i.e. we want

strength value at locatioh are (AP, AP;) respectively, and argmay{ P(I / TsSampleg)] 3)

(AP,, AP, for another locatiorl,, then we place locatioh ! ) )

and locationl, in the same cluster regardless of the order of USing Baye’s theorem, this can be rewritten as:

the access points. P(TsSamplgs, /1)P(l)

To summarize, for a given locatidn/7 TrLocs we use argmax{P(l / TsSamplgs, )] = argmax
the set &: a is in Sorted\P(l, g, TrAR, TrSamples)} to l
determine the cluster to whidtbelongs. (4)

We want to emphasize here that the values of the ; ;
parametersk (dimension of the joint distribution) and S|.nce PGsSampIq§) 's constant for alll, we can
(number of access points to use in clustering) arkeWrite equation (4) as:
independent. For example, we can use one access(peil) argmaxP(l/ TsSamples)] =argmax{P(TsSampleg/I)P(1)]
for clustering and use a 3-dimenstionak=8) joint ! !

P(T sSampIe@a)

distribution. ) _ .
The next subsection describes the location deteatitin P(l) can be determined from the user profile basedfen t
phase. fact that if the user is at a given location, itrigore probable
] o that he will be at an adjacent location in the figtulf the user
3.2 Location Determination Phase profile information is not known, or not used, theve can

assume that all the locations are equally likelylahe term

The general idea of what happens during the locatiop() can be factored out from the maximization process.
determination phase is as follows: we get samplemfsome . .
Equation (4) becomes:

access points at an unknown location. We usedgleecess
points with the largest signal strength values édeimine one



argmaxP(l/ TsSampleg] = argmaxP(TsSamplgs/1)]

(6)
The remaining termP(TsSamples, /1) can be calculated

by using:
‘TSSampIq_sd‘
P(TsSamplgg /) = l_l Hist ,(TsSamplgg(n))
n=1 alJSortedARt,k,TsAR, TsSamplgs )
(1)

assuming independence of access points and sanijies.
details of the algorithm are given in Figure 3.

The next section presents a discussion of the Joint

Clustering technique.
3.3 Discussion

Many operations of the algorithm can be optimiz€dr
example, we do not need to calculate the actualrape
signal strength of each access point. All we negdust to
calculate the sum of the signal strength valuesabee we
need to compare the averages and the number oflearip
constant. The sorting operations in the algorithonret take
a long time. Sorting the access points accordingthie
average signal strength takes a short time as yipécal
number of access point at any location is 4 (averagmber
for the specific experiment we performed was 4 asogoints
per location). The independence assumption helgsae the
computations required by converting the multiplioas to
additions, if we use the logarithms of the probdias instead
of the probabilities themselves. The clusteringfpened by
the algorithm makes the list candidate locationpidglly
small, so sorting the list of candidate locatiorecarding to
their probabilities should be a fast process.

The memory requirements of the algorithm are limite
the average number of access points per locatioad and

average range of each access point is 11 distialites, then
for each location we need to store 11* 4 parameters
corresponding to the histograms of each accesst,painich

is a small number. We could instead approximate the
histogram by a continuous distribution, e.g. a Naim
distribution, and save only the mean and varianéethe
distribution for each access point. However, this
approximation affects the accuracy of the systeml dme
saving of the memory requirement does not justify i

4 The Incremental Triangulation Technique

The JC technique introduced in the previous sedioulates
the probability of a location using access points all at the same
time, usingk operations per sample. The Incremental Trianguiat
technique uses a different approach to calculaepthbabilities. It
tries to use the access points incrementally, dee the other, until
it can estimate the location with certain accuracging a
predetermined threshold. As we will explain, the t@chnique
performs implicit clustering at multi-levels leadinto a more
reduced search space than the JC approach, ana ffener
number of operations, on the average, per samplaeier, treating
each access point incrementally, instead of usihg joint
distribution, leads to the loss of some informatiand thus one
should expect that the accuracy of the IT shouldoleer than the
JC technique.

The IT technique works in two phases, in the sarag as the
JC technique: (a) offline phase, in which we estienne signal
strength distribution from each access point andldbation
determination phase, in which we run the location
determination technique to infer the user location.

Note that in the IT technique, we do not need to do
clustering in the offline phase as clustering isfpemed in an
implicit way as will be explained in the location
determination phase.

e Input:
o t: Unknown user location.
TrLocs Set of locations in the radio map.

Cluster. Clustering function.
TsSamples: Test sequence at location

O O O0OO0OO0OO0OOo

Output:

=

SefrargetLocs=

| Clustex(s) -

SortedARt,q,TsAR, TsSamplgs.)0s

‘TsSamplq%‘

to the sorteX.
5. Assign Ordered(1) to t.

g: Number of access points to use in clustering.
k: Number of access points in the joint distribution

Hist, ,: Histogram of each access point at each locatradip map)

TsAR: Set of access points heard in the test sequeniceationt.

0 The most probable location ifrLocsassigned to t.

2. If TargetLocds empty then sefargetLocs= TrLocs.
3. Calculatex ={p(TsSamples /1) = l_'
n=1 alSortedARt,k,

4. Sort the elements of in a descending order. L&rderedLbe the sequence dlargetLocscorrespondin

Hist, , (TsSamples (n)), Ol OTargetLoc} -

SAR,TsSamplgs )

Figure 3: Detailed inference algorithm for the Xdrobability Distribution with Explicit Clusteringechnique.



In the rest of this section, we describe the 2 @sas range of this access point only, as those are dbations that

followed by introducing the implicit clustering plermed by
the algorithm in the online phase, and finally aaission of
the algorithm.

4.1 Offline Phase

In this phase, we estimate the discrete distributior
each access point at a given location using theobiam and
store this information in the radio map. So theicathap for
the JC technique and the IT technique are identiBalcall
that in the JC case we use the marginal distributid each
access point to approximate the joint distribution.

4.2 Location Determination Phase

We start with an example to motivate the algorithm.

Given a sequence of observations from each acoass, pve

start by sorting the access points in a descendinger

according to the average signal strength valuesived from

them. For the first access point, the one with #teongest
average signal strength, we calculate the prokghilf each

location in the radio map seffLocs)given the observation
sequence from this access point alone. This wilkgis a set
of candidate
probability). If the probability of the most probkblocation
is “significantly” higher, according to a measurefihed in

the algorithm, than the probability of the secomdost
probable location, we return the most probable tmraas our
location estimate, after consulting only one accpssit. If

this is not the case, we go to the next access tpioirthe

sorted access point list. For this access point,reeat the
same process again, but only for the set of carndittacations
obtained from the first access point. This procesk
calculating the probabilities and determining thgn#icance
of the most probable location is repeated increrakiyt for

each access point in order, until the location barestimated
or all access points are consulted. In the lattase; the
algorithm returns the most probable location in taadidate
list that remains after consulting all the acces@gs.

locations (locations that have norezer

have histograms for this specific access point. réfae,
depending on the access point that has the strorayesage
signal strength value, the algorithm examines dedint set
of locations in its initial step.

Moreover, in the iterative process, the algorithhecks
only locations that lie in the coverage area of finst access
point and then the locations within those locatidhat lie in
the coverage area of the second access point andnso
leading to a multi-level clustering. This multi-lekclustering
approach reduces the search space significantlyeaath
iteration, and hence leads to less computation.

4.4 Discussion

The parameteiThreshold is usedo determine if the
information obtained from consulting an access pam
significant enough to make a judgment or not. Tlaue of
this parameter ranges from 0 to 1. A value of Odeao
consulting only one access point, reducing the atgm
accuracy while a value of 1 leads to consulting &mdire set
of access points at a given location, and hencereiased
accuracy.

We use the paramet&indowin the algorithm to select
a subset of all the candidate locations after cttimayithe first
access point, if the set of candidate location®dslarge.

The NAP parameter is used to set a maximum on the
number of access points consulted by the algorithihe max
number of access points parameter is importantet® Isow
the technique will perform if the number of accessints is
limited. Section 4 provides more detailed analyseisthe
effect of the parameters on performance.

Sorting the access points in a descending ordesradaty
to the average signal strength has an intuitiveseefor the IT
technique. We want to sort the access points adogrib the
amount of information we can get from each of thassing
information theory concepts, the access point thas the
most variability in its signal strength values shbgive us
the maximum amount of information. From the anadysf

It should be now clear why we call our approach thehe data collected, we found that the access phiat has the

Incremental Triangulation technique. The reasorthist we
start by a set of candidate locations using thetfiaccess
point and reduce this set using other access pditatively.

In contrast, the standard triangulation approaértstby an
infinite number of locations on a circle and redscthis

number to 2 points using another circle and finaljduces
these two points to only one point using a thirdrcta

(assuming every thing is perfect). However, typligdhis is

done by solving a set of nonlinear equations antl incan

iterative manner.

Figure 4 shows the details of the algorithm.

4.3 Implicit Clustering

The algorithm performs implicit clustering usingeth
access points. Starting with the access point thas the
strongest average signal strength value, the algorrestricts
itself to calculating the probability for locationsside the

greatest variability is the one that has the stesigaverage
signal strength. Also, as we mentioned before, Hoeess

points that have the largest signal strength appeane often

in the samples than the access points with weakaig
strength, as will be explained in Section 5, andd¢etaking

the decision based on the access points with thengest

signal strength should give better results.

The implicit clustering performed by the technique
reduces the required computations. In addition,ngisan
iterative approach can make the algorithm termingitbout
examining the entire set of access points, agaituceng the
required computation.

Comparing the JC technique with the IT techniquees on
expects that the former should lead to better amcyras it
takes into account more information in one steptéad of
iteratively going through the different access psin
However, the computation requirement of the Incrataé
Triangulation approach may be less as at eachtiterave
perform the computation for one access point coragatio



* Input:
o t: Unknown user location.
0 Window Window size parameter.
0 Threshold Stopping threshold.
o NAP. Maximum number of access points to be consulted.
0 TrLocs Set of locations in the radio map.
0 Hist, 5: Histogram of each access point at each locatiadi¢ map)
0 TsSamples: Test sequence at location
0 TsAR: Set of access points heard in the test sequeniogationt.
 Output:
0 The most probable location.
1. SetOrderedAR= SortedAPf, o, TSAP, TsSamplgs)

‘TsSampIQ§‘

2. Leta= OrderedAR(1). Calculate y ={P(TsSamples /) = |—1 Hist ,(TsSamples(j)), lisin TrLocs} -
j=

3. Sort the elements of in a descending order. L&rderedLbe the sequence dfLocscorresponding to the sorted
4.LetConfidence=X®0) =X |
X@
5.1f Confidence> Threshold assign Orderdd1) tot and return.
6. LetN be the number of non-zero elementsofSetwindow= minimum(Window, N)
7. SetCandidatelto the firstWindowelements oOrderedL
8.ForCount 2 to min ( TSAR|, NAP)

[Tssamples,|

9. Leta= OrderedAR(Count) Calculatex ={p(TsSamples /1) = |‘l Hist, ,(TsSamples (j)),isin Candidate} -
j:

10. Sort the elements of in a descending order. L&rderedLbe the sequence @fandidateLcorresponding to tt
sortedX.
11. LetConfidence=X® =X (2)
X(@)
12. If Confidence> Threshold assignOrderedL(1)to t and return.
13. LetN be the number of non-zero elementsxof
14. SetCandidatelto the first N' elements ofOrderedL
15.End
16.AssignOrderedL(1)ot and return.

Figure 4: Detailed inference algorithm for the ldchnique.

the JC technique which performs the computationdibthe  The entire wing is covered by 12 access pointsaited in the

access points but to locations inside the clustdy.o third and fourth floors of the building.
A detailed comparison of the performance of the two For building the radio map, we took the radio map
algorithms is given in the next section. locations on the corridors on a grid with cells g¢al 5 feet
i . apart (the corridors width is 5 feet). We have &atmof 110
5 Experimental Evaluation locations along the corridors. On the average, dacétion is

) ) _ ) covered by 4 access points.
In this section, we discuss the experimental tedtbe

describe the data collection process, discuss tfeeteof the ﬁ.Z

B oS o P, oo ACcoding 10 the genera ocaton dterminatoieye
proposed techniques and, finally, present the perémce archnecture_descnbeq in Section 2, we modified ’gkuce.nt
evaluation of both techniques under an indepentissitset. Wavelan driver for Linux to return all the accessifts in
] range associated with the current signal strengtlues from
5.1 Experimental Testbed each access point using the active scanning teden[d5]
) ) _ (our driver was the first driver to support thisateire under

We performed our experiment in the south wing o€ th | jnyx).  we also developed a wireless API [15] that
fourth floor of the Computer Science Departmentlthaig.  nterfaces with any device driver that supports thigeless
The layout of the floor is shown in Figure 5. Theng has a extensions [16]. The device driver and the wirel&8d have

dimension of 224 feet by 85.1 feet. Both techniqwesre peen available for public download and have beeedui
tested in the Computer Science Department wiretesa/ork.  other wireless research.

Data Collection and Analysis



IIII
# 4157 la1e1|a163l4155LIINY | 4169 la171lar73| 2175 41?941314135
LAl LAl LAl 1L/
ﬁ 4101
4160 4166 4172 4176 | 4180 [
| |
85.1 fee
M +— 4103
4140 4132 4122 4120 | 4116 |4104 %
4147 4107
[Y1 Y1 Y1 Yidn 14108
4145
v [ 4148 |4 farzsfarsrfaras] a1a1 Jarzefarezjarzs] 4121 4119411?4113 4111

< 224 fee |

Figure 5: Plan of the south wing of th& floor of the Computer Science Department buildimgere the experiment
was conducted. Readings were collected in the dors (shown in gray).

Using the device driver and the API, we collecte@03 increasing function of the average signal strengththis

samples at each location, one sample per seconddiVitbed

access point, which justifies the use of the stestgaccess

this data at random into two sets: training set angointsin our techniques.

development test set. The training set constiti@e#o of the
300 samples and was used to estimate the distobwtf each
access point at each location using the method ipusly
described. The development test set constitutedehmining
20% and we used it to estimate the initial perfonoa of the
algorithms and tune the models parameters. We adsa an
independenttest set, different from the entire training sk,
test the performance of the algorithms. Unless time
specified, we take the length of the testing segeasrio be 3
samples in the rest of the paper.

5.3 Effect of the Parameters on Performance

Each of the proposed techniques has a number aittien
parameters. In this section, we study the effecttioése
parameters on the performance of the technique&elction
5.3.1, we define the performance measures thathelused
to compare the techniques. Section 5.3.2 discusseeffect
of the Joint Clustering parameters on the perforogan
measures. The effect of the parameters of the mergal

Both the JC and the IT techniques depend on th&riangulation technique on performance is discussed

property that the access points with the strongsghal
strength values are the ones from which we receamples
most of the time. Figure 6 shows the relation betwehe
average signal strength received from an acces# poid the
number of samples we receive from it during a pdriaf 5

minutes (300 samples). The figure shows that thelmer of
samples collected from an access point is a moncady
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Figure 6: Relation between the average signal gtiervalue
from an access point and the number of samplesveddrom i
during a 5 minutes interval.

Section 5.3.3. Finally, the effect of the length dtfie
observation sequence on performance is discuss&gdtion
5.3.4.

5.3.1 Performance Measures

» Accuracy:This measure is defined as the percentage of
time in which the technique gives the correct ldoat
estimate. However, we give the complete CDF of the
error in distance in Sections 5.4 and 5.5.

* Average number of access points consulted for each
location estimateThis measure is important because it
shows a practical aspect of the technique. For gtam
there may be two techniques that give the sameracgy
but one uses information from 3 access points wttile
other requires information from 5 access pointssiich
as situation, the first technique should be prefdrras it
requires less information and hence less computatio

* Number of operations per location estimatdhis
measure is defined as the total humber of operation
(additions when using the logarithm of the probéieit)
performed for a single location estimate. Combineth
the previous measure, this measure indicates tipained
computation needed for each access point consulted.



This is important in minimizing the computation tan value increase, more access points are consultadach a
but more so in minimizing the power consumption. decision. As the number of access points consltiettases,
the number of operations per location estimateéase and
the so does the accuracy. It is important to natechthat the
average number of access points consulted and ikeage
Clustering technique has two contronumber of operations per location estimate is srmdlich
support our previous discussion that the computatio
requirements of the Incremental Triangulation teghe is
modest.

The effect of theWindowparameter on performance is

5.3.2  Joint Clustering Technique

The Joint
parameters. In this section, we study the effecttioése
parameters, specifically(dimension of the joint distribution)
and g (number of access points to use in clustering)itsn
performance.

We start by showing the effect of changimgon the
clustering process. For this experiment, we charthed/alue
of g from 1 to 4 and calculated the number of clustere
average size of each cluster, and the standarchtiemiof the
cluster size. This is shown in Figure 7. From thgufe we

shown in Figures 13 through 15treshold& 0.4, NAP=10).
A large value of the window parameter leads to deviset of
candidate locations to work on, if the decision gah be
taken based on consulting the first access poimnel
Therefore, as the value of the window parametereases,

can see that ag increases, the number of clusters increasebe set of candidate location from the first accessnt

and the average size of each clusters decreasisventeach

increases leading to consulting more access poimiste

a saturation point ag=2. For the standard deviation, the operations per location estimate, and better aagura

variation of the size of the clusters decreased wa reach a However, the average number of operations per lonat

minimum value, af=3, and it increases again. A small valueestimate does not increase significantly. This ssjgthat, in

for the standard deviation means that the sizethefclusters most of the time, the number of candidate locatiqns.

are more uniform, which is a desirable property. eTh locations with non-zero probability) is small thae do not

minimum value afy=3 can be explained by noting that gs reach the upper bound provided by #ndowparameter.

increases from 1 to 3, more locations are diffei@et into The maximum number of access points parameter is

different clusters due to the addition of new acc@®ints. important to see how the technique will perform tifie

Whengq is increased past 3, i.g=4, different locations start number of access points is limited. The effect banging the

to share the saméd access points, especially for locationsNAP parameter is shown in Figures 16 through 18

close to each other (recall that the average nunobercccess (Threshole 0.4, Window=12). It is shown from the figures

points per location was 4 in our experiment), ahdig the that 3 access points per location are sufficienbiain good

number of locations per cluster starts to deviatarf being performance (94% accuracy). This makes intuitivasseas

uniform across clusters leading to increased stahdathe triangulation technique requires 3 access goint

deviation. Unless otherwise specified, we chose to take tHees
Figures 8 and 9 show the effect of parametgrandk of the parameters ahreshold= 0.4 Window=12ndNAP=4

together on performance. From the figures we sedt 5 as these values lead to the best performance fer ITh

dimensionk increases, the accuracy increases as we hawafgorithm in our experiment.

more information due to the addition of access p®iand,

due to the same reason, the number of operatiangned per

location estimate increases. As the number of acqesnts

5.3.4  Effect of the Length of the Observation Segaeon
Performance

used in clusteringd) increases, the number of elements per

cluster decreases leading to increased accuracy lessl
number of operations per location estimate.
For the rest of the paper, we chose to take theeslof

This section studies the effect of increasing thegth of
the observation sequence, used in location detextioin
phase, on the performance of the algorithms. Figuit®

the parameters ag=3 and k=4 as these values lead to thethrough 21 show the results.

best performance for the JC algorithm for our expent.

5.3.3 Incremental Triangulation Technique

As the length of the observation sequence increabes
accuracy of the both technique increases till iaakes a
saturation point at 3 samples. This is expectedh@smore
samples we have the more information we have altbet

The Incremental Triangulation technique has thresignal strength distribution and hence better theusacy.

parameters: Threshold, Window, and the maximum remmb

of access points (NAP). We consider the effect atle of

these parameters on the performance of the teckniqu
Figure 10 through 12 show the effect of th@reshold

parameter on performance. For this experiment, iwedfthe

The number of operations per location estimatedases
linearly with the increase of the length of the ebsation
sequence for the JC technique. The curve for thelmer of
operations per location estimate of the IT techeigis
interesting. The minimum point at 2 samples can

be

value of theWindow parameter at 12 and the value of theexplained by noting that as the length of the olsagon
NAP parameter at 10 (equivalent to examining all theess sequence increases we have 2 conflicting factosy: the
points that the technique can use, if needed).dpaall values number of operations performed per access pointefach
of the Thresholdparameter, the decision is taken quickly aftetocation increases (linearly with the sequence tehgnd (b)
examining a small number of access points. As theghold the technique has more information from tekamples and
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hence should consult fewer number of access poifiss 99 40

explains the minimum point when the sequence leingth 98 | | mAccuracy 135 4
For Figure 21, the number of access points condtbe mAW. AP 130 <
the JC technique is constant, equals the dimensidhe joint 97 1+ OP/.Sam e Sy
distribution k, and independent of the length of the § 96 | = P T2 <
observation sequence. For the IT technique, theremes 5 120 2
number of access points consulted is slightly dasirg due g 95 115 %
to the availability of more information with the ¢nease in < 94 3
the observation sequence length. 110
93 lg O
5.4 Comparison Between the Proposed Techniques 92 - 0
Figure 22 shows the CDF of the error distance foe t 2 )€
two techniques (note that the y-axis starts from¥®4lt is Technique
interesting to note that both techniques give mitran 94% Figure 23: A comparison between the IT and JC
accuracy for the exact position. This can be expdi by techniques.

noting that our development test set was takenhatdame
grid positions as the training test set, and hetize exact
match (0 error distance). This is different frometh 55 Using an Independent Test Set
independent test set where all locations were lo# grid as

will be discussed in Section 5.5. . _ To better test the proposed techniques, we ran the
A comparison of the two techniques in terms of thgechniques against an independent test set. Thisstt was
performance measures is shown in Figure 23. From thyollected at different days and times of the dagrththe
figures we note that the Joint Clustering techniqgiees original training sample set and, hence, shouldeggood
better accuracy than the Incremental Triangulatechnique indication of the performance of the algorithm iiffeirent
and its tail is much lower than the Incrementalamjulation  environments. To collect the testing set, we moaézhg the
technique. However, the average number of operatioRorridors and selected locations randomly for teghe
performed per location estimate for the Incrementaoordinates of each location along with the teshpkes were
Triangulation  technique is much lower than thecgllected. We compare the results of running thehtéques
corresponding number of Joint Clustering techniqueith the coordinates stored in the files to deterenthe error
Therefore we have a tradeoff here, if one is intéed in (istance.
accuracy more than power consumption then the Joint Figure 24 shows the CDF of the error distance foe t
Clustering technique is the one to use. If on theeo hand  joint Clustering and Incremental Triangulation teicjues.
the power consumption is the key factor then onewth The figure shows that both techniques give an aacyiof 7

choose the Incremental Triangulation techniquetdsads to  feet for more than 90% of the time, lower than tresults
less computation and hence better power consumption
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obtained by the development test set by approximété%.
It is worth mentioning here that, to the best of dmowledge,
the best results reported using other RF-basedantbzation

Difference of Arrival (TDOA) and Angle of Arrival AOA).
TDOA systems use the principle that the emitteralben can
be estimated by intersection of the hyperbolae ofistant

determination systems was 75% to within 3 meterdifferential Time of Arrival (TOA) of the signal atwo or

(approximately 9.6 feet) [13], which is an indicati that
using a probabilistic approach for RF-based indmwation
determination leads to better results.

6 Applications

more pairs of base stations. AOA systems use simple

triangulation based on estimated AOA of a signatvad or
more base stations to estimate the location of dlesired
transmitter [3]. While these systems are promisimgutdoor
environments, their effectiveness in indoor enviramts is
limited by the multiple reflections suffered by ti signal,

We have imp|emented the location determination egyst which leads to inaccurate estimate of the TOA Or%@nd

architecture described in Section 2 in two applicat. Both
applications are implemented on Compag iPAQ PodREls

(model H3650) running the Familiar distributioniéase version 0.4

and 0.5) of Linux for PDA’s. The iPAQ was runningraodified
version of our device driver, designed speciallyiRAQ’s, and our
wireless API.

One application, calledUser Positioning System,
provides a user moving in a building with the curtg@osition
as well as directions to specific places of intérdhe iPAQ
collects the signal strength measurements and gbedsto a
central monitoring system, which determine the Ueeation
and displays it. The user can request directioramfrhis
current location to places of interests.

The other application, calledrover [20], provides
location-based services, as well as the traditidima¢-aware,

the lack of off-the-shelf and inexpensive hardwergrovide
fine-grain time synchronization.

Many infrared-based (IR) based systems have been

proposed and reported. In the Active Badge systdin &
badge worn by a person emits a unique IR signate#ilR
receivers pick up this signal and relay it to thecétion
manager software. The walls of a room blocks thesignal,
thus the user can be identified accurately withinoam. In
[5] IR transmitters attached to known positionstlire ceiling
emit beacons. A head mounted optical sensor setisese
beacons. This enables the system software to déterthe
user location.

IR based techniques suffer from several drawbaék:
they scale poorly due to the limited range of IR) (ncur
significant installation and maintenance costs é&)derform

user-aware and device-aware services. Examplesuoh s Poorly in the presence of direct sunlight.

services are displaying the user location on a ngiyggng the
user directions from one place to another and iifigng
places of interests near the user. Rover also allthe user to
see the positions of other people of interest, mgmbers of
his group.

Rover has been tested in indoor and outdoor enviests. At
startup, the clients determine their position aaduest position-
appropriate services, e.g., map, from the RoveresetJnlike the
User Positioning System, the client estimates e position and
forwards it to the server. This assures that treppsed location
determination techniques are lightweight enougdbetimplemented
oniPAQ’s.

7 Related Work

There have been many systems over the years tackli

the problem of user positioning and tracking. Exadesp
include GPS, wide-area cellular-based systems,aiafi-
based systems, magnetic tracking systems, varioogater

vision systems, physical proximity systems, and ioad

frequency (RF) based systems.

The GPS system [2]
environments. However, the line-of-sight to GPSeHes is
not available inside buildings and hence the GPStewn
cannot be used indoors.

Locating users in the wide-area cellular-based esysst
has been motivated in recent years by the FCC @-drder
[17], mandating wireless E911 (automatically loogti911
callers). The two most widely known location tectogies

used in the wide-area celluar-based systems areeTi

is very useful in outdoors

Magnetic tracking has been used to support virtual

reality and motion capture for computer animatiofor

example, Ascension [6] offers a variety of motioapture
solutions such as the MotionStar DC magnetic trackbese
tracking systems generate axial DC magnetic fieldses
from a transmitting antenna in a fixed location.eThystem
computes the position and orientation of the reggjyv
antennas by measuring the response in three ortt@gxes
to the transmitter field pulse, combined with threfd effect

of the earth's magnetic field. Such systems suffem the

steep implementation costs and the need to tetietracked
object to a control unit. Furthermore, the sensuorsst remain
within 1 to 3 meters of the transmitter, and acayrdegrades
with the presence of metallic objects in the enuimgent.

Several groups have explored using computer vision

ﬁechnology for locating objects. Microsoft resedscltasy
Living [7] provides one example of this approachewvé real-

time 3D cameras provide a stereovision positioning

capabilities in a home environment. Computer-vistmsed
techniques have two drawbacks: (a) they use subatan
processing power to analyze
comparatively low-complexity hardware; (b) the arss
becomes more complex when the scene complexityeases
or more occlusive motion occurs.

In Georgia Tech's Smart Floor proximity locatiorsggm
[8], embedded pressure sensors capture footfals, the
system uses Hidden Markov Models to recognize tkersi
according to their profiles. The system has theadismantages
of poor scalability and high incremental cost ae floor of

fach building in which Smart Floor is deployed mus

physically altered to install the pressure sensalygy

frame captured with



Recently, there has been ongoing research on REdbaghe transmitter is measured by a set of fixed reees and is

techniques. These techniques can be categorizexd tunb
broad categories. One that uses specialized haedwad
another that uses the underlying data network.

Many systems fall into the first category: The ActiBat
[10], [11] system is based on combining the RF aihe

sent to a central controller. The central controllses a K-
nearest approach to determine the location from rémdio
map that best fits the collected signal strengfloiimation.

The CMU system proposed in [13] uses two techniques

pattern matching (PM) and triangulation, mappingdan

ultrasonic technologie# short pulse of ultrasound is emitted interpolation (TMI). The PM approach is very similto the
from a transmitter (8at) attached to the object to be locatedRADAR approach. In the TMI technique, the physical

in response to an RF request from a local controllée local
controller sends, at the same time as the requaskqt, a
synchronized reset signal to the ceiling sensomsgua wired

serial network. The system measures the timesighfl of

the pulse to the mounted receivers on the ceiliftge system
uses the speed of sound in air to calculate theadies from
the Bat to each receiver. The local controller fards these
distances to a central controller that performs tbeation

determination computation. The scalability and easfe
deployment are disadvantages to this approach.

The Cricket location support system [9] uses
combination of RF and ultrasound technologies tovite a
location-support service to users and applicatioGiall- and
ceiling-mounted beacons are spread through thedimgj)
publishing information on an RF signal operatingtie 418

position of all the access points in the area ndedse known
and a function is required to map signal strengthtoo
distances. They generate a set of training poiritseach
trained position. The interpolation of the trainidgta allows
the algorithm to use less training data than the &dproach.
During user location determination phase, they uke
approximate function they got from the training aato
generate contour and they calculate the intersediiestween
different contours yielding the signal space pasitiof the
user. The nearest set of mappings from the sigpats to the
physical space is found by applying a weighted ager,
based on proximity, to the signal space position.

Our proposed techniques differ from the RADAR and
(@ we use a

the CMU approaches in many ways:
probabilistic approach to rank the candidate userations

MHz AM band. With each RF advertisement, the beacoreducing the search space; (b) both of our techesoquerform

transmits a concurrent ultrasonic pulse. Listeratached to
devices and mobiles listen for RF signals, and upeneipt of
the first few bits, listen for the correspondingtralsonic
pulse. When this pulse arrives, they obtain a distaestimate
for the corresponding beacon. The listeners run imar-
likelihood estimators to correlate RF and ultrastwamples
and pick the best pair. The disadvantages lie i ldke of
centralized management or monitoring and
computational, and hence the power consumption dxyret
the receiver due to timing and processing the REadnd
ultrasound pulses.

Another indoor RF system is the 3D-iD RF tag built
PinPoint Corporation [18]. Antennas planted aroarfdcility
emit RF signals. Tags, acting like RF mirrors, sant a
response signal along with an identification cod&&arious
antennas receive the response signal and senc$dts to a
central controller that triangulates the user |gmat The cost
of the entire system is quite high.

All the techniques that fall in the specialized deare

clustering, either explicit or implicit, which funer reduces
the search space; (c) user profile information teneasily
added to the probabilistic models.

The Nibble location system from UCLA uses a Bayesia
network to infer a user location [14]. Their Bayasinetwork
model include nodes for location, noise, and acqessits
(sensors). The signal to noise ratio observed fammaccess

th@oint at a given location is taken as an indicatiohthat

location. The system also quantizes the SNR inta fevels:
high, medium, low, and none. While our approached the
Nibble approach are similar in some ways, they algter in

significant ways: (a) our approaches do not stdre joint
distribution between all the random variables o tystem.
Instead, we store only the marginal distribution e&ch
access point, which reduces the computation sicguifily and
enhances system scalability; (b) we use the recesignal
strength instead of the SNR as the signal strenigtha
stronger function of location than the SNR [12]) {ee have a
much finer quantization of the received signal sg#h, which

category have common disadvantages: (a) requirernént gives us more information, and thus should leadbtiter
specialized hardware leading to more deployment araccuracy without affecting performance or scalayil{d) our

maintenance cost, and (b) poor scalability.

In the last few years, many techniques have been

proposed that fall into the second category, RFebasy/stems
that do not require additional hardware. The Daadailroject
[19] developed a system for coarse-grained useatlon. A

mobile host estimates its location to be the samé¢ha base
station to which it is attached. Therefore, the wecy of the
system is limited to the coverage area of the asqasnt.

techniques perform clustering.

systems in the area of RF indoor location detertidmawith
our proposed techniques.

8 Conclusions and Future Work

In this paper, we presented the design, impleméentat

The RADAR system [12] uses the RF signal strength agnd evaluation of two novel probabilistic indoorchtion

an indication of the distance between the trangmitind
receiver. During an offline phase, the system bwidradio
map for the RF signal strength from a fixed numbfr
receivers. During normal operation, the RF sigried¢isgth of

determination techniques: the Joint Clustering tégbe and
the Incremental Triangulation technique. Both tdgies
depend on (a) probability distributions to handlee tnoisy

Table 1 gives a comparison between the previous



System RADAR | Nibble CMU JC IT
Technique Pattern matchingg  Bayesian Netwprk Tridauippn- Probability with Probability with
Mapping and joint distribution. incremental
Interpolation, triangulation
Pattern matching
Clustering None None None Explicit Implicit
Feature used Signal strength SNR Signal strength  gn&aistrength Signal strength
Quantization of No Yes No No No
feature
Ease of adding Not part of the | Part of the model. Not part of the | Part of the model| Part of the model
user profile model. model
Position of AP’s | Needed for Radio  Not needed Needed for Not needed Not needed
propagation Triangulation.
model.

Table 1: Qualitative comparison between other R€atmn based techniques with IPS.

characteristics of the wireless channel, and (bjsiring to
manage the computational cost.

The Joint Clustering technique gives better accythan
the Incremental Triangulation technique. Howevehe t

1992, pp 91-102.
[5] Ronald Azuma, “Tracking requirements for augrtezh
reality,” Communications of the ACM, Jul. 1995, V@6, No. 7.
[6] http://www.ascension-tech.com
[7] J. Krumm et al., “Multi-camera multi-person tieing for Easy

average number of operations performed per locationlLiving,” Proc. 3%IEEE Intl Workshop Visual Surveiliance, |IEEE

estimate for the Incremental Triangulation tech®idsl much
lower than the corresponding number of the Joinis#ring
technique. Therefore a tradeoff exists between mmuand
computation power. Both techniques lead to accuraty
more than 90% to within 7 feet in our experiments.

During the course of our implementation, we develdp
a new device driver for the Lucent Wavelan card andew
wireless API. Both software pieces are available fablic
download and are being used by many researchevsghout
the world.

Currently we are working to enhance accuracy an{j1

reduce computational cost. By using the user hisfmofile
and better clustering techniques, the accuracyheflbcation
determination techniques can be enhanced. Intetipgla
between a number of the most probable locationanisther
direction that we are looking into to improve thecaracy.
We believe that understanding the nature of théoratiannel
and building accurate models for it are importamt building
more accurate location determination systems feritidoor
environments and for reducing the overhead of bngdhe
radio map.

Our results gave us confidence that, despite th&tileo
nature of the wireless channel, we can infer therdscation
with a high degree of accuracy enabling a set oftegt-
aware applications for the indoor environments.
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