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ABSTRACT 

We present an indoor location determination system based 
on signal strength probability distributions for ta ckling the 
noisy wireless channel and clustering to reduce computation 
requirements. We provide two implementation techniques, 
namely, Joint Clustering and Incremental Triangulation and 
describe their tradeoffs in terms of location determination 
accuracy and computation requirement. Both techniques have 
been incorporated in two implemented context-aware systems: 
User Positioning System and the Rover System, both running on 
Compaq iPAQ Pocket PC’s with Familiar distribution of Linux 
for PDA’s. The results obtained show that both techniques give 
the user location with over 90% accuracy to within 7 feet with 
very low computation requirements, hence enabling a set of 
context-aware applications. 

1 Introduction 
 

As ubiquitous computing becomes more popular, the 
need for context-aware applications increases. One of the 
most important contextual information is the user location, 
with which the system can provide location-specific 
information and services. There have been many systems that 
provide context-aware services to the users based on their 
locations [1] including automatic call forwarding to the user 
based on his current location, helping shoppers through the 
stores based on their location, providing information to the 
tourist about his current location and office assistant that 
interacts with visitors and manages the office owner’s 
schedules. 

Many systems over the years have tackled the problem of 
determining and tracking user position. Examples include 
GPS [2], wide-area cellular-based systems [3], infrared-based 
systems [4][5], magnetic tracking systems [6], various 
computer vision systems [7], physical contact systems [8], 
and radio frequency (RF) based systems [9]-[14]. Of these, 
the class of RF-based systems that use an underlying wireless 
data network [12]-[14], such as 802.11, to estimate user 
location has gained attention recently, especially for indoor 
application. Unlike infrared-based systems, which are limited 
in range, RF-based techniques provide more ubiquitous 
coverage and do not require additional hardware for user 
location determination, thereby enhancing the value of the 
wireless data network. 

We present an RF-based location determination system 
that achieves better positioning accuracy than existing 
systems with low computation overhead. Given an indoor 
region covered by multiple access points, the system collects 
access point signal strengths at various locations and 
constructs a histogram-based radio map. Then given a new 
signal strength reading from an arbitrary location, the system 
estimates the closest map location corresponding to the 
arbitrary location. The estimation procedure has two key 
features: 

• It uses the histogram distributions (rather than just the 
mean) to enhance accuracy and tackle the noisy nature of 
the wireless channels. 

• It uses clustering of map locations to reduce the 
computation requirements. We present two techniques: 
The Joint Clustering (JC) technique that uses explicit 
clustering and the Incremental Triangulation (IT) 
technique that features implicit clustering. 
 
We have evaluated the system in an indoor space of 

corridors spanning a 20,000 square foot floor of a building. 
Results obtained show that using the signal strength values 
collected from the access points, both the Joint Clustering and 
Incremental Triangulation techniques give the user location 
with over 90% accuracy to within 7 feet with very low 
computation requirements. 

The closest related work to ours in the area of indoor 
location determination are the RADAR system [12], the 
CMU system proposed in [13], and the Nibble system from 
UCLA [14]. Our approach differs from RADAR and the 
CMU approach in that we use probabilistic ranking and 
clustering to better handle the noisy wireless channel and to 
reduce the search space. While our approach and Nibble are 
similar in some ways, there are significant differences: (a) we 
store only the marginal distribution of each access point, 
rather than the joint distribution of all the random variables of 
the system, thereby reducing the computational cost and 
significantly enhancing system scalability; (b) we use the 
received signal strength instead of the signal to noise ratio 
(SNR) because the former is a stronger function of location 
[12]; (c) we have a much finer quantization of the received 
signal strength, thereby achieving better accuracy; (d) we use 
clustering to control the computational cost. A detailed 
comparison of our approach with these approaches and other 

1 Also with the School of Information and Computer 
Engineering, Hongik University, Mapo-Gu Sangsoo Dong 
72-1, Seoul, Korea 



 

approaches for location determination is presented in Section 
7. 

The rest of the paper is organized as follows. Section 2 
presents our general architecture for location determination 
systems. Section 3 presents the details of radio map 
construction and location estimation with the Joint Clustering 
technique. Section 4 presents the details of location 
estimation with the Incremental Triangulation technique. In 
Section 5, we describe the evaluation of the techniques in the 
indoor space and the obtained results. Section 6 describes two 
applications implementing the general architecture for 
location determination, incorporating the JC and IT 
techniques as their location determination algorithms. Section 
7 surveys related work and compares the new techniques with 
previous RF-based location determination approaches that do 
not require additional hardware. Finally Section 8 concludes 
the paper. 

2 Location Determination System Architecture 
 
Figure 1 shows our location determination system 

architecture. The hardware layer covers mobile devices, such 
as laptops and handhelds, and fixed devices that need location 
information (e.g., for automatic configuration). All these 
devices are equipped with wireless cards. The operating 
system layer includes the operating systems running on the 
devices. The device driver interacts with the wireless card to 
collect the signal strength values from the access points in 
range. The Location Determination System layer runs the 
location determination algorithm, e.g. the JC algorithm that 
uses the signal strength values to estimate the user location. A 
wireless API provides, in a device driver-independent way, 
the Location Determination System layer with a method to 
get the required information from the driver, such as the 
access point MAC addresses and received signal strengths. In 
the same way, a Location API provides the user application 
with the device’s current position in a way independent of the 
location determination algorithm. 

In Section 6, we present 2 examples on implementing 
this architecture. In the next two sections, we describe the JC 
technique and the IT technique, respectively, which are part 
of the Location Determination System layer. 

 
3 The Joint Clustering Technique 
 

The Joint Clustering technique is based on two main functions: 
(a) estimating the joint distribution of the signal strength values 
received from access points at each location and (b) grouping the 
locations into clusters. The joint distributions are used to find the 
most probable location given the observation sequences of signal 
strength values. The JC technique also performs location clustering, 
by grouping locations that have a common feature, to reduce the size 
of the search space and, hence, reducing the computational 
requirements of the algorithm. Therefore, the operation of the JC 
technique can be divided into two phases: (a) offline phase, in 
which we perform the joint distribution estimation and 
locations clustering and (b) location determination phase, in 
which we run the location determination technique to infer 
the user location.  

Below, we introduce some notations and then describe 
the two phases in more details.  

We define the following notations:  
• | . | denotes the number of elements in a given set or 

sequence. 
• ‘*’ denotes all possible values for a given index. 
• For any sequence x, x(i) denotes the i th element of x. 
• SS is the discrete signal strength space. 
• TrLocs is a set of locations for which we build the 

radio map. 
• TsLocs is a set of locations for which we test the 

performance of the algorithms. 
• TrSamplesl,a is a sequence of training signal strength 

values at location l ∈ TrLocs from access point a. 
• TsSamplesl,a is a test sequence of signal strength values 

for a location l ∈ TsLocs from access point a. 
• TrAPl  = {a: TrSamplest,a(n)>0 for some n} is the set 

of access points heard in the training set at location l.  
• TsAPl = {a: TsSamplest,a(n)>0 for some n} is the set of 

access points heard in the test sequnce at location l. 
• Histl,a is the normalized histogram for signal strength 

values at location l ∈ TrLocs from access point a ∈ 
TrAPl.  

By definition,
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for any s ∈ SS. 
• SortedAP(l, n, AP, Samples) is the function that sorts 

the set of access points in AP at location l, according to 
the average signal strength value calculated from 
Samples, and returns the first n elements of the sorted 
AP set as a sequence. If |AP| is less than n, the 
function returns the sorted AP set as a sequence. 

• Cluster(key, q) is a function that returns {l ∈ TrLoc : 
SortedAP(l, q, TrAPl, TrSamplesl,a)= key}. The 
parameter key represents a common set of access 
points that is shared between all the locations in the 
cluster. 

3.1 Offline Phase 
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Figure 1. Location determination system architecture 
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During the offline phase we perform two tasks: joint 
probability distribution estimation and location clustering. 

3.1.1 Estimating the Joint Signal Strength Distribution  

At each location in the set of training locations, we store 
a model for the joint probability distribution of the access 
points at this location. Therefore, our radio map is stored as a 
collection of models for joint probability distributions. 

The problem of estimating the joint distributions can 
further be divided into three sub-problems: 
1- How to choose a value (k) for the dimension of the joint 

distribution? 
2- Which k access points, from the set of access points 

covering a certain location, to choose to be included in 
the joint distribution? 

3- How to estimate the joint distribution between the 
chosen k access points? 

In determining the best value for k we need to take into 
account 2 factors: (a) as k increases, the process of estimating 
the joint probability distribution (sub-problem 3) becomes 
more complex and (b) we need a value for k such that all 
locations are covered by at least k access points most of the 
time. 

The second factor is important because at the online 
phase, we get a number of samples from some of the access 
points and some of the access points that cover a certain 
location may be missing from the samples due to the noisy 
nature of the wireless channel and hence the number of 
access points covering a location is varying with time. The 
second factor lessens the affect of variability in the number of 
access points and hence should lead to better accuracy. 
Typical values for the parameter k can be found in Section 5. 

The solution to sub-problem 2 is related to the solution 
of sub-problem 1. If the number of access points covering a 
location is varying with time, which access points should we 
choose? Intuitively, we should choose the access points that 
appear most of the time in the samples. We did some analysis 
of the data and found that the access points with the largest 
signal strength are those that appear in most of the samples. 
This is expected as the access points with weak signal 
strength are less probable to be heard than the ones with the 
strong signal strength.  

To summarize, for a given location l ∈ TrLocs, we 
choose the first k access points from the set TrAPl when 
sorted according to the average signal strength values, i.e. we 
use SortedAP(l, k, TrAPl, TrSamplesl,*). 

The problem of estimating the joint probability 
distribution can be done in different ways with different 
accuracy levels. The problem can be stated as: given k access 
points AP1…APk, we want to estimate 

),...,,( 2211 kk sAPsAPsAPP ===  where si is a signal 

strength value from APi. One good way to estimate this joint 
distribution is to use the Maximum Likelihood Estimation 
(MLE) method which estimate the joint probabilities as 
follows: 
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i.e. the number of times that the signal strength values tuple 
(s1, s2, …, sk) appeared in the entire training set divided by the 
size of the training set. 

The problem of this approach is that it requires a large 
training set to obtain good estimate of the joint distribution 
and the required size increases exponentially with k. For 
example, if we have 3 access points each having a range of 
11 signal strength values, then the number of different 
possible tuples for the joint distribution is 113= 1331, and 
hence the training data size cannot be less than this number 
(actually it must be much bigger). 

Since our goal was to use a method that gives a good 
accuracy and, at the same time, requires reasonable amount 
of training data and computational power, this approach can 
only be used with small values of k, which may affect the 
technique accuracy. Instead, we chose to make an 
approximation that the access points are independent. In this 
case, the problem of estimating the joint probability 
distribution becomes the problem of estimating the marginal 
probability distributions as: 

)()...().(),...,,( 22112211 kkkk sAPPsAPPsAPPsAPsAPsAPP =======
 (2) 
since the random variables AP1, .. ,APk are independent. For a 
given location l ∈ TrLocs, )()( , iAPlii sHistsAPP

i
== . 

Figure 2 gives a typical example of the signal strength 
normalized histogram from an access point. 

This approach reduces the size of the training set 
required. Using the same example as before, the number of 
distinct values for each access point is 11, and a small size 
training set can be used to estimate the marginal distributions. 
The independence assumption has other advantages as will be 
described in the discussion section. 

3.1.2 Locations Clustering 

To reduce the computation overhead, we group the 
locations into clusters according to the access points that 
cover the locations. The problem can be stated as follows: 
Given a location l, we want to determine the cluster to which 
l belongs.  
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Figure 2. An example of a histogram of the signal strength 
of an access point 



 

The most obvious way to do clustering is to group 
locations according to the access points that cover them. i.e.  
two locations l1 and l2 are placed in the same cluster iff 

21 ll TrAPTrAP = . However, this approach for clustering has 

problems when applied in a real environment. Since the 
wireless channel is noisy, an access point may be missing 
from some of the samples and, therefore, using the entire set 
of access points that cover a location for clustering may fail 
to find the correct cluster due to the missing access point.  

Instead of using the entire set (TrAPl) that covers a 
location l for clustering, we use a subset of this set containing 
only q elements and the problem becomes: Given a number q, 
we want to put all the locations that share q access points in 
one cluster. Therefore, we have 2 sub-problems: 

1- How to determine the value of q ? 
2- Which q access points to choose for clustering ? 
For the first sub-problem, we need to choose q such that 

all locations are covered by at least q access points most of 
the time. This factor is important due to similar reasons as in 
the discussion of the choice of a value for the parameter k. 
This suggests that the value of q should be less than or equal 
to min(|TrAPl|) for all l ∈ TrLocs. Moreover, we need a value 
for q that distributes locations evenly between the clusters to 
reduce the required computations. Determining the value for 
q is discussed in the Section 5. 

For sub-problem 2, we chose to use the q access points 
with the largest signal strength values at each location, again  
for similar reasons as in the previous section.   

During the data analysis we found that, at some 
locations, the order of the access points with the largest signal 
strength values changes when the signal strength values from 
these access points are near to each other, especially when we 
take a small number of samples at the online phase. 
Therefore, we chose to treat the q access points as a set and 
not as an ordered tuple. For example, if q=2 and the two 
access points with the largest and second largest signal 
strength value at location l1 are (AP1, AP2) respectively, and 
(AP2, AP1) for another location l2, then we place location l1 
and location l2 in the same cluster regardless of the order of 
the access points.  

To summarize, for a given location l ∈ TrLocs, we use 
the set {a: a is in SortedAP(l, q, TrAPl, TrSamplesl,*)} to 
determine the cluster to which l belongs.  

We want to emphasize here that the values of the 
parameters k (dimension of the joint distribution) and q 
(number of access points to use in clustering) are 
independent. For example, we can use one access point (q=1) 
for clustering and use a 3-dimenstional (k=3) joint 
distribution.  

The next subsection describes the location determination 
phase. 

3.2 Location Determination Phase 
 

The general idea of what happens during the location 
determination phase is as follows: we get samples from some 
access points at an unknown location. We use the q access 
points with the largest signal strength values to determine one 

cluster to search within for the most probable location. We, 
then, use Baye’s theorem to estimate the probability of each 
location within the cluster given the observed sample 
sequences and the radio map built during the offline phase. 
The most probable location is reported as the estimated user 
location. 

The above algorithm works assuming ideal wireless 
channel. However, for a practical environment, we need to 
tackle two problems: 

1- The number of access points in a test sample at a 
location t, | TsAPt |, may be less than q. 

2- | TsAPt | may be less than k, the dimension of the 
joint distribution. 

We first use an example to demonstrate the first problem 
and our approach to solve it. Assume that number of access 
points to use in clustering, q, was set to 3 and assume further 
that during the location determination phase we got samples 
from two access points only: AP1 and AP2. The problem here 
is that we cannot find a cluster whose key is {AP1, AP2}. To 
solve this problem, we search for all clusters whose key has 
{ AP1, AP2} as a subset. We use the union of all the locations 
in these clusters as our target locations set.  

More formally, we define the set of target locations as: 

U
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sClusterTargetLocs
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locations reduces to the locations within one cluster if |TsAPt| 
is greater than or equal to q. 

For the second similar problem, we use the same approach 
to solve it by reducing the dimension of the joint distribution 
to min(k, |TsAPt|). 

The only thing that remains to be explained is how to use 
Baye’s theorem to calculate the most probable location out of 
the target locations set given the observation sequences 
TsSamplesl,*.  We want to find l ∈ TargetLocs such that 
P(l/TsSamplest,a) for all a ∈ SortedAP(t, k, TsAPt, 
TsSamplest,*),  is maximized. i.e. we want 
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Using Baye’s theorem, this can be rewritten as: 
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since )( ,atTsSamplesP is constant for all l, we can 

rewrite equation (4) as: 
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(5) 
P(l) can be determined from the user profile based on the 

fact that if the user is at a given location, it is more probable 
that he will be at an adjacent location in the future. If the user 
profile information is not known, or not used, then we can 
assume that all the locations are equally likely and the term 

)(lP  can be factored out from the maximization process. 

Equation (4) becomes: 
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assuming independence of access points and samples. The 

details of the algorithm are given in Figure 3. 
 
The next section presents a discussion of the Joint 

Clustering technique. 
 

3.3 Discussion 
 

Many operations of the algorithm can be optimized: For 
example, we do not need to calculate the actual average 
signal strength of each access point. All we need is just to 
calculate the sum of the signal strength values because we 
need to compare the averages and the number of samples is 
constant. The sorting operations in the algorithm do not take 
a long time. Sorting the access points according to the 
average signal strength takes a short time as the typical 
number of access point at any location is 4 (average number 
for the specific experiment we performed was 4 access points 
per location). The independence assumption helps reduce the 
computations required by converting the multiplications to 
additions, if we use the logarithms of the probabilities instead 
of the probabilities themselves. The clustering performed by 
the algorithm makes the list candidate locations typically 
small, so sorting the list of candidate locations according to 
their probabilities should be a fast process.  

The memory requirements of the algorithm are limited. If 
the average number of access points per location is 4 and 

average range of each access point is 11 distinct values, then 
for each location we need to store 11* 4 parameters, 
corresponding to the histograms of each access point, which 
is a small number. We could instead approximate the 
histogram by a continuous distribution, e.g. a Normal 
distribution, and save only the mean and variance of the 
distribution for each access point. However, this 
approximation affects the accuracy of the system and the 
saving of the memory requirement does not justify it. 

 
4 The Incremental Triangulation Technique 

 
The JC technique introduced in the previous section calculates 

the probability of a location using k access points all at the same 
time, using k operations per sample.  The Incremental Triangulation 
technique uses a different approach to calculate the probabilities. It 
tries to use the access points incrementally, one after the other, until 
it can estimate the location with certain accuracy, using a 
predetermined threshold. As we will explain, the IT technique 
performs implicit clustering at multi-levels leading to a more 
reduced search space than the JC approach, and hence fewer 
number of operations, on the average, per sample. However, treating 
each access point incrementally, instead of using the joint 
distribution, leads to the loss of some information and thus one 
should expect that the accuracy of the IT should be lower than the 
JC technique.   

The IT technique works in two phases, in the same way as the 
JC technique: (a) offline phase, in which we estimate the signal 
strength distribution from each access point and (b) location 
determination phase, in which we run the location 
determination technique to infer the user location.  

Note that in the IT technique, we do not need to do 
clustering in the offline phase as clustering is performed in an 
implicit way as will be explained in the location 
determination phase. 

• Input: 
o t: Unknown user location. 
o q: Number of access points to use in clustering. 
o k: Number of access points in the joint distribution. 
o TrLocs: Set of locations in the radio map. 
o Histl,a: Histogram of each access point at each location (radio map) 
o Cluster: Clustering function. 
o TsSamplest.a: Test sequence at location t. 
o TsAPt: Set of access points heard in the test sequence at location t. 

• Output: 
o The most probable location in TrLocs assigned to t.  
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4. Sort the elements of X in a descending order. Let OrderedL be the sequence of TargetLocs corresponding 
to the sorted X. 

5. Assign OrderedL(1) to t. 
 

Figure 3: Detailed inference algorithm for the Joint Probability Distribution with Explicit Clustering technique. 
 



 

In the rest of this section, we describe the 2 phases 
followed by introducing the implicit clustering performed by 
the algorithm in the online phase, and finally a discussion of 
the algorithm. 

 
4.1 Offline Phase 
 

In this phase, we estimate the discrete distribution for 
each access point at a given location using the histogram and 
store this information in the radio map. So the radio map for 
the JC technique and the IT technique are identical. Recall 
that in the JC case we use the marginal distribution of each 
access point to approximate the joint distribution.  

4.2 Location Determination Phase 
 

We start with an example to motivate the algorithm. 
Given a sequence of observations from each access point, we 
start by sorting the access points in a descending order 
according to the average signal strength values received from 
them. For the first access point, the one with the strongest 
average signal strength, we calculate the probability of each 
location in the radio map set (TrLocs) given the observation 
sequence from this access point alone. This will give us a set 
of candidate locations (locations that have non-zero 
probability). If the probability of the most probable location 
is “significantly” higher, according to a measure defined in 
the algorithm,  than the probability of the second most 
probable location, we return the most probable location as our 
location estimate, after consulting only one access point. If 
this is not the case, we go to the next access point in the 
sorted access point list. For this access point, we repeat the 
same process again, but only for the set of candidate locations 
obtained from the first access point. This process of 
calculating the probabilities and determining the significance 
of the most probable location is repeated incrementally, for 
each access point in order, until the location can be estimated 
or all access points are consulted. In the latter case, the 
algorithm returns the most probable location in the candidate 
list that remains after consulting all the access points.  

It should be now clear why we call our approach the 
Incremental Triangulation technique. The reason is that we 
start by a set of candidate locations using the first access 
point and reduce this set using other access points iteratively. 
In contrast, the standard triangulation approach starts by an 
infinite number of locations on a circle and reduces this 
number to 2 points using another circle and finally reduces 
these two points to only one point using a third circle 
(assuming every thing is perfect). However, typically this is 
done by solving a set of nonlinear equations and not in an 
iterative manner. 

Figure 4 shows the details of the algorithm. 

4.3 Implicit Clustering 
 

The algorithm performs implicit clustering using the 
access points. Starting with the access point that has the 
strongest average signal strength value, the algorithm restricts 
itself to calculating the probability for locations inside the 

range of this access point only, as those are the locations that 
have histograms for this specific access point. Therefore, 
depending on the access point that has the strongest average 
signal strength value, the algorithm examines a different set 
of locations in its initial step. 

Moreover, in the iterative process, the algorithm checks 
only locations that lie in the coverage area of the first access 
point and then the locations within those locations that lie in 
the coverage area of the second access point and so on, 
leading to a multi-level clustering. This multi-level clustering 
approach reduces the search space significantly at each 
iteration, and hence leads to less computation. 

 
4.4 Discussion 
 

The parameter Threshold is used to determine if the 
information obtained from consulting an access point is 
significant enough to make a judgment or not. The value of 
this parameter ranges from 0 to 1. A value of 0 leads to 
consulting only one access point, reducing the algorithm 
accuracy while a value of 1 leads to consulting the entire set 
of access points at a given location, and hence, increased 
accuracy.  

We use the parameter Window in the algorithm to select 
a subset of all the candidate locations after consulting the first 
access point, if the set of candidate locations is too large.  

The NAP parameter is used to set a maximum on the 
number of access points consulted by the algorithm. The max 
number of access points parameter is important to see how 
the technique will perform if the number of access points is 
limited. Section 4 provides more detailed analysis of the 
effect of the parameters on performance. 

Sorting the access points in a descending order according 
to the average signal strength has an intuitive sense for the IT 
technique. We want to sort the access points according to the 
amount of information we can get from each of them. Using 
information theory concepts, the access point that has the 
most variability in its signal strength values should give us 
the maximum amount of information. From the analysis of 
the data collected, we found that the access point that has the 
greatest variability is the one that has the strongest average 
signal strength. Also, as we mentioned before, the access 
points that have the largest signal strength appear more often 
in the samples than the access points with weak signal 
strength, as will be explained in Section 5, and hence taking 
the decision based on the access points with the strongest 
signal strength should give better results.  

The implicit clustering performed by the technique 
reduces the required computations. In addition, using an 
iterative approach can make the algorithm terminate without 
examining the entire set of access points, again reducing the 
required computation.  

Comparing the JC technique with the IT technique one 
expects that the former should lead to better accuracy as it 
takes into account more information in one step instead of 
iteratively going through the different access points. 
However, the computation requirement of the Incremental 
Triangulation approach may be less as at each iteration we 
perform the computation for one access point compared to 



 

the JC technique which performs the computation for all the 
access points but to locations inside the cluster only. 

A detailed comparison of the performance of the two 
algorithms is given in the next section. 

5 Experimental Evaluation 
 

In this section, we discuss the experimental testbed, 
describe the data collection process, discuss the effect of the 
parameters of the Joint Clustering and Incremental 
Triangulation techniques on performance, compare the two 
proposed techniques and, finally, present the performance 
evaluation of both techniques under an independent test set. 

5.1 Experimental Testbed 
 
We performed our experiment in the south wing of the 

fourth floor of the Computer Science Department building. 
The layout of the floor is shown in Figure 5. The wing has a 
dimension of 224 feet by 85.1 feet. Both techniques were 
tested in the Computer Science Department wireless network. 

The entire wing is covered by 12 access points installed in the 
third and fourth floors of the building.  

For building the radio map, we took the radio map 
locations on the corridors on a grid with cells placed 5 feet 
apart (the corridors width is 5 feet). We have a total of 110 
locations along the corridors. On the average, each location is 
covered by 4 access points. 

 
5.2 Data Collection and Analysis 

According to the general location determination system 
architecture described in Section 2, we modified the Lucent 
Wavelan driver for Linux to return all the access points in 
range associated with the current signal strength value from 
each access point using the active scanning technique [15] 
(our driver was the first driver to support this feature under 
Linux).  We also developed a wireless API [15] that 
interfaces with any device driver that supports the wireless 
extensions [16]. The device driver and the wireless API have 
been available for public download and have been used in 
other wireless research. 

Figure 4: Detailed inference algorithm for the IT technique. 
 

• Input: 
o t: Unknown user location. 
o Window: Window size parameter. 
o Threshold: Stopping threshold. 
o NAP: Maximum number of access points to be consulted. 
o TrLocs: Set of locations in the radio map. 
o Histl,a: Histogram of each access point at each location (radio map) 
o TsSamplest.a: Test sequence at location t. 
o TsAPt: Set of access points heard in the test sequence at location t. 

• Output: 
o The most probable location.  
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5. If Confidence > Threshold, assign OrderedL(1) to t and return. 
6. Let N be the number of non-zero elements of X. Set Window= minimum(Window, N). 
7. Set CandidateL to the first Window elements of OrderedL. 
8. For Count= 2 to min (| TsAPt |, NAP) 
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12. If Confidence > Threshold, assign OrderedL(1) to t and return. 
13. Let N be the number of non-zero elements of X. 
14. Set CandidateL to the first ‘N’ elements of OrderedL. 

15. End 
16. Assign OrderedL(1) to t and return. 

 



 

Using the device driver and the API, we collected 300 
samples at each location, one sample per second. We divided 
this data at random into two sets: training set and 
development test set. The training set constituted 80% of the 
300 samples and was used to estimate the distribution of each 
access point at each location using the method previously 
described. The development test set constituted the remaining 
20% and we used it to estimate the initial performance of the 
algorithms and tune the models parameters. We also used an 
independent test set, different from the entire training set, to 
test the performance of the algorithms. Unless otherwise 
specified, we take the length of the testing sequences to be 3 
samples in the rest of the paper. 

Both the JC and the IT techniques depend on the 
property that the access points with the strongest signal 
strength values are the ones from which we receive samples 
most of the time. Figure 6 shows the relation between the 
average signal strength received from an access point and the 
number of samples we receive from it during a period of 5 
minutes (300 samples). The figure shows that the number of 
samples collected from an access point is a monotonically 

increasing function of the average signal strength of this 
access point, which justifies the use of the strongest access 
points in our techniques. 

 
5.3 Effect of the Parameters on Performance 
 

Each of the proposed techniques has a number of tunable 
parameters. In this section, we study the effect of these 
parameters on the performance of the techniques. In Section 
5.3.1, we define the performance measures that will be used 
to compare the techniques. Section 5.3.2 discusses the effect 
of the Joint Clustering parameters on the performance 
measures. The effect of the parameters of the Incremental 
Triangulation technique on performance is discussed in 
Section 5.3.3. Finally, the effect of the length of the 
observation sequence on performance is discussed in Section 
5.3.4. 

5.3.1 Performance Measures 

• Accuracy: This measure is defined as the percentage of 
time in which the technique gives the correct location 
estimate. However, we give the complete CDF of the 
error in distance in Sections 5.4 and 5.5.  

• Average number of access points consulted for each 
location estimate: This measure is important because it 
shows a practical aspect of the technique. For example, 
there may be two techniques that give the same accuracy, 
but one uses information from 3 access points while the 
other requires information from 5 access points. In such 
as situation, the first technique should be preferred, as it 
requires less information and hence less computation. 

• Number of operations per location estimate: This 
measure is defined as the total number of operations 
(additions when using the logarithm of the probabilities) 
performed for a single location estimate. Combined with 
the previous measure, this measure indicates the required 
computation needed for each access point consulted. 
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Figure 6: Relation between the average signal strength value 
from an access point and the number of samples received from it 
during a 5 minutes interval. 

Figure 5: Plan of the south wing of the 4th floor of the Computer Science Department building where the experiment 
was conducted. Readings were collected in the corridors (shown in gray). 
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This is important in minimizing the computation time, 
but more so in minimizing the power consumption. 

 

5.3.2 Joint Clustering Technique 

The Joint Clustering technique has two control 
parameters. In this section, we study the effect of these 
parameters, specifically k (dimension of the joint distribution) 
and q (number of access points to use in clustering) on its 
performance. 

We start by showing the effect of changing q on the 
clustering process. For this experiment, we changed the value 
of q from 1 to 4 and calculated the number of clusters, the 
average size of each cluster, and the standard deviation of the 
cluster size. This is shown in Figure 7. From the figure we 
can see that as q increases, the number of clusters increases 
and the average size of each clusters decreases until we reach 
a saturation point at q=2. For the standard deviation, the 
variation of the size of the clusters decreases until we reach a 
minimum value, at q=3, and it increases again. A small value 
for the standard deviation means that the sizes of the clusters 
are more uniform, which is a desirable property. The 
minimum value at q=3 can be explained by noting that as q 
increases from 1 to 3, more locations are differentiated into 
different clusters due to the addition of new access points. 
When q is increased past 3, i.e. q=4, different locations start 
to share the same 4 access points, especially for locations 
close to each other (recall that the average number of access 
points per location was 4 in our experiment), and thus the 
number of locations per cluster starts to deviate from being 
uniform across clusters leading to increased standard 
deviation. 

Figures 8 and 9 show the effect of parameters q and k 
together on performance. From the figures we see that as 
dimension k increases, the accuracy increases as we have 
more information due to the addition of access points and, 
due to the same reason, the number of operations required per 
location estimate increases. As the number of access points 
used in clustering (q) increases, the number of elements per 
cluster decreases leading to increased accuracy and less 
number of operations per location estimate.  

For the rest of the paper, we chose to take the values of 
the parameters as q=3 and k=4 as these values lead to the 
best performance for the JC algorithm for our experiment.  
 

5.3.3 Incremental Triangulation Technique 

The Incremental Triangulation technique has three 
parameters: Threshold, Window, and the maximum number 
of access points (NAP). We consider the effect of each of 
these parameters on the performance of the technique. 

Figure 10 through 12 show the effect of the Threshold 
parameter on performance. For this experiment, we fixed the 
value of the Window parameter at 12 and the value of the 
NAP parameter at 10 (equivalent to examining all the access 
points that the technique can use, if needed). For small values 
of the Threshold parameter, the decision is taken quickly after 
examining a small number of access points. As the threshold 

value increase, more  access points are consulted to reach a 
decision. As the number of access points consulted increases, 
the number of operations per location estimate increase and 
the so does the accuracy. It is important to note here that the 
average number of access points consulted and the average 
number of operations per location estimate is small which 
support our previous discussion that the computation 
requirements of the Incremental Triangulation technique is 
modest. 

The effect of the Window parameter on performance is 
shown in Figures 13 through 15 (Threshold= 0.4, NAP= 10). 
A large value of the window parameter leads to a wider set of 
candidate locations to work on, if the decision cannot be 
taken based on consulting the first access point alone. 
Therefore, as the value of the window parameter increases, 
the set of candidate location from the first access point 
increases leading to consulting more access points, more 
operations per location estimate, and better accuracy. 
However, the average number of operations per location 
estimate does not increase significantly. This suggests that, in 
most of the time, the number of candidate locations (i.e. 
locations with non-zero probability) is small that we do not 
reach the upper bound provided by the Window parameter. 

The maximum number of access points parameter is 
important to see how the technique will perform if the 
number of access points is limited. The effect of changing the 
NAP parameter is shown in Figures 16 through 18 
(Threshold= 0.4, Window= 12). It is shown from the figures 
that 3 access points per location are sufficient to obtain good 
performance (94% accuracy). This makes intuitive sense as 
the triangulation technique requires 3 access points. 

Unless otherwise specified, we chose to take the values 
of the parameters as Threshold= 0.4 Window=12 and NAP=4 
as these values lead to the best performance for the IT 
algorithm in our experiment. 

 

5.3.4 Effect of the Length of the Observation Sequence on 
Performance 

This section studies the effect of increasing the length of 
the observation sequence, used in location determination 
phase, on the performance of the algorithms. Figures 19 
through  21 show the results.  

As the length of the observation sequence increases, the 
accuracy of the both technique increases till it reaches a 
saturation point at 3 samples. This is expected as the more 
samples we have the more information we have about the 
signal strength distribution and hence better the accuracy.  

The number of operations per location estimate increases 
linearly with the increase of the length of the observation 
sequence for the JC technique. The curve for the number of 
operations per location estimate of the IT technique is 
interesting. The minimum point at 2 samples can be 
explained by noting that as the length of the observation 
sequence increases we have 2 conflicting factors: (a) the 
number of operations performed per access point for each 
location increases (linearly with the sequence length) and (b) 
the  technique  has  more  information  from  the  samples and  



 

Figure 7: Effect of q on the clustering process. 
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Figure 8: Effect of parameters q and k on accuracy. 
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Figure 9: Effect of parameters q and k on average number of 
operation per estimate. 
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Figure 10: Effect of the Threshold parameter on accuracy. 

Figure 11: Effect of the Threshold parameter on average number of 
AP consulted. 
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Figure 12: Effect of the Threshold parameter on average number 
of operation per estimate. 
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Figure 13: Effect of the Window parameter on accuracy. 

Figure 14: Effect of the Window parameter on average 
number of AP consulted. 
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Figure 15: Effect of the Window parameter on average 
number of operation per estimate. 
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Figure 16: Effect of the NAP parameter on accuracy. 

Figure 17: Effect of the NAP parameter on average number 
of AP consulted. 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

Max Number of AP

A
vg

. #
 o

f A
P

 C
on

su
lte

d

Figure 18: Effect of the NAP parameter on average number of 
operation per estimate. 
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Figure 19: Effect of the length of testing sequence on 
accuracy. 
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Figure 20: Effect of the length of testing sequence on the 
average number of operations per location estimate. 
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hence should consult fewer number of access points. This 
explains the minimum point when the sequence length is 2. 

For Figure 21, the number of access points consulted for 
the JC technique is constant, equals the dimension of the joint 
distribution k, and independent of the length of the 
observation sequence. For the IT technique, the average 
number of access points consulted is slightly decreasing due 
to the availability of more information with the increase in 
the observation sequence length. 

 
5.4 Comparison Between the Proposed Techniques 

 
Figure 22 shows the CDF of the error distance for the 

two techniques (note that the y-axis starts from 94%). It is 
interesting to note that both techniques give more than 94% 
accuracy for the exact position. This can be explained by 
noting that our development test set was taken at the same 
grid positions as the training test set, and hence the exact 
match (0 error distance). This is different from the 
independent test set where all locations were off the grid as 
will be discussed in Section 5.5. 

A comparison of the two techniques in terms of the 
performance measures is shown in Figure 23. From the 
figures we note that the Joint Clustering technique gives 
better accuracy than the Incremental Triangulation technique 
and its tail is much lower than the Incremental Triangulation 
technique. However, the average number of operations 
performed per location estimate for the Incremental 
Triangulation technique is much lower than the 
corresponding number of Joint Clustering technique. 
Therefore we have a tradeoff here, if one is interested in 
accuracy more than power consumption then the Joint 
Clustering technique is the one to use. If on the other hand 
the power consumption is the key factor then one should 
choose the Incremental Triangulation technique as it leads to 
less computation and hence better power consumption. 

 
5.5 Using an Independent Test Set 

 
To better test the proposed techniques, we ran the 

techniques against an independent test set. This test set was 
collected at different days and times of the day than the 
original training sample set and, hence, should give good 
indication of the performance of the algorithm in different 
environments. To collect the testing set, we moved along the 
corridors and selected locations randomly for test. The 
coordinates of each location along with the test samples were 
collected. We compare the results of running the techniques 
with the coordinates stored in the files to determine the error 
distance. 

Figure 24 shows the CDF of the error distance for the 
Joint Clustering and Incremental Triangulation techniques. 
The figure shows that both techniques give an accuracy of 7 
feet for more than 90% of the time, lower than the results 

Figure 24: Error Distance CDF for the independent test set. 
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obtained by the development test set by approximately 10%. 
It is worth mentioning here that, to the best of our knowledge, 
the best results reported using other RF-based indoor location 
determination systems was 75% to within 3 meters 
(approximately 9.6 feet) [13], which is an indication that 
using a probabilistic approach for RF-based indoor location 
determination leads to better results. 

 
6 Applications 
 

We have implemented the location determination system 
architecture described in Section 2 in two applications. Both 
applications are implemented on Compaq iPAQ Pocket PC’s 
(model H3650) running the Familiar distribution (release version 0.4 
and 0.5) of Linux for PDA’s. The iPAQ was running a modified 
version of our device driver, designed specially for iPAQ’s, and our 
wireless API. 

One application, called User Positioning System, 
provides a user moving in a building with the current position 
as well as directions to specific places of interest. The iPAQ 
collects the signal strength measurements and sends them to a 
central monitoring system, which determine the user location 
and displays it. The user can request directions from his 
current location to places of interests.  

The other application, called Rover [20], provides 
location-based services, as well as the traditional time-aware, 
user-aware and device-aware services. Examples of such 
services are displaying the user location on a map, giving the 
user directions from one place to another and identifying 
places of interests near the user. Rover also allows the user to 
see the positions of other people of interest, e.g. members of 
his group. 

Rover has been tested in indoor and outdoor environments. At 
startup, the clients determine their position and request position-
appropriate services, e.g., map, from the Rover server. Unlike the 
User Positioning System, the client estimates the user position and 
forwards it to the server. This assures that the proposed location 
determination techniques are lightweight enough to be implemented 
on iPAQ’s. 

 
7 Related Work 

 
There have been many systems over the years tackling 

the problem of user positioning and tracking. Examples 
include GPS, wide-area cellular-based systems, infrared-
based systems, magnetic tracking systems, various computer 
vision systems, physical proximity systems, and radio 
frequency (RF) based systems.  

The GPS system [2] is very useful in outdoors 
environments. However, the line-of-sight to GPS satellites is 
not available inside buildings and hence the GPS system 
cannot be used indoors.  

Locating users in the wide-area cellular-based systems 
has been motivated in recent years by the FCC 94-102 order 
[17], mandating wireless E911 (automatically locating 911 
callers). The two most widely known location technologies 
used in the wide-area celluar-based systems are Time 

Difference of Arrival (TDOA) and Angle of Arrival (AOA). 
TDOA systems use the principle that the emitter location can 
be estimated by intersection of the hyperbolae of constant 
differential Time of Arrival (TOA) of the signal at two or 
more pairs of base stations. AOA systems use simple 
triangulation based on estimated AOA of a signal at two or 
more base stations to estimate the location of the desired 
transmitter [3]. While these systems are promising in outdoor 
environments, their effectiveness in indoor environments is 
limited by the multiple reflections suffered by the RF signal, 
which leads to inaccurate estimate of the TOA or AOA, and 
the lack of off-the-shelf and inexpensive hardware to provide 
fine-grain time synchronization.  

Many infrared-based (IR) based systems have been 
proposed and reported. In the Active Badge system [4], a 
badge worn by a person emits a unique IR signal. Fixed IR 
receivers pick up this signal and relay it to the location 
manager software. The walls of a room blocks the IR signal, 
thus the user can be identified accurately within a room. In 
[5] IR transmitters attached to known positions in the ceiling 
emit beacons. A head mounted optical sensor senses these 
beacons. This enables the system software to determine the 
user location. 

IR based techniques suffer from several drawbacks: (a) 
they scale poorly due to the limited range of IR, (b) incur 
significant installation and maintenance costs and (c) perform 
poorly in the presence of direct sunlight. 

Magnetic tracking has been used to support virtual 
reality and motion capture for computer animation. For 
example, Ascension [6] offers a variety of motion capture 
solutions such as the MotionStar DC magnetic tracker. These 
tracking systems generate axial DC magnetic field pulses 
from a transmitting antenna in a fixed location. The system 
computes the position and orientation of the receiving 
antennas by measuring the response in three orthogonal axes 
to the transmitter field pulse, combined with the fixed effect 
of the earth's magnetic field. Such systems suffer from the 
steep implementation costs and the need to tether the tracked 
object to a control unit. Furthermore, the sensors must remain 
within 1 to 3 meters of the transmitter, and accuracy degrades 
with the presence of metallic objects in the environment. 

Several groups have explored using computer vision 
technology for locating objects. Microsoft research's Easy 
Living [7] provides one example of this approach where real-
time 3D cameras provide a stereovision positioning 
capabilities in a home environment. Computer-vision based 
techniques have two drawbacks: (a) they use substantial 
processing power to analyze frame captured with 
comparatively low-complexity hardware; (b) the analysis 
becomes more complex when the scene complexity increases 
or more occlusive motion occurs. 

In Georgia Tech's Smart Floor proximity location system 
[8], embedded pressure sensors capture footfalls, and the 
system uses Hidden Markov Models to recognize the users 
according to their profiles. The system has the disadvantages 
of poor scalability and high incremental cost as the floor of 
each building in which Smart Floor is deployed must be 
physically altered to install the pressure sensor grids. 



 

Recently, there has been ongoing research on RF based 
techniques. These techniques can be categorized into two 
broad categories. One that uses specialized hardware and 
another that uses the underlying data network. 

Many systems fall into the first category: The Active Bat 
[10], [11] system is based on combining the RF and the 
ultrasonic technologies. A short pulse of ultrasound is emitted 
from a transmitter (a Bat) attached to the object to be located 
in response to an RF request from a local controller. The local 
controller sends, at the same time as the request packet, a 
synchronized reset signal to the ceiling sensors using a wired 
serial network. The system measures the times-of-flight of 
the pulse to the mounted receivers on the ceiling. The system 
uses the speed of sound in air to calculate the distances from 
the Bat to each receiver. The local controller forwards these 
distances to a central controller that performs the location 
determination computation. The scalability and ease of 
deployment are disadvantages to this approach.  

The Cricket location support system [9] uses a 
combination of RF and ultrasound technologies to provide a 
location-support service to users and applications. Wall- and 
ceiling-mounted beacons are spread through the building, 
publishing information on an RF signal operating in the 418 
MHz AM band. With each RF advertisement, the beacon 
transmits a concurrent ultrasonic pulse. Listeners attached to 
devices and mobiles listen for RF signals, and upon receipt of 
the first few bits, listen for the corresponding ultrasonic 
pulse. When this pulse arrives, they obtain a distance estimate 
for the corresponding beacon. The listeners run maximum-
likelihood estimators to correlate RF and ultrasound samples 
and pick the best pair. The disadvantages lie in the lake of 
centralized management or monitoring and the 
computational, and hence the power consumption burden, at 
the receiver due to timing and processing the RF data and 
ultrasound pulses. 

Another indoor RF system is the 3D-iD RF tag built by 
PinPoint Corporation [18]. Antennas planted around a facility 
emit RF signals. Tags, acting like RF mirrors, transmit a 
response signal along with an identification code. Various 
antennas receive the response signal and send the results to a 
central controller that triangulates the user location. The cost 
of the entire system is quite high. 

All the techniques that fall in the specialized hardware 
category have common disadvantages: (a) requirement of 
specialized hardware leading to more deployment and 
maintenance cost, and (b) poor scalability. 

In the last few years, many techniques have been 
proposed that fall into the second category, RF-based systems 
that do not require additional hardware. The Daedalus project 
[19] developed a system for coarse-grained user location. A 
mobile host estimates its location to be the same as the base 
station to which it is attached. Therefore, the accuracy of the 
system is limited to the coverage area of the access point. 

The RADAR system [12] uses the RF signal strength as 
an indication of the distance between the transmitter and 
receiver. During an offline phase, the system builds a radio 
map for the RF signal strength from a fixed number of 
receivers. During normal operation, the RF signal strength of 

the transmitter is measured by a set of fixed receivers and is 
sent to a central controller. The central controller uses a K-
nearest approach to determine the location from the radio 
map that best fits the collected signal strength information. 

The CMU system proposed in [13] uses two techniques: 
pattern matching (PM) and triangulation, mapping and 
interpolation (TMI). The PM approach is very similar to the 
RADAR approach. In the TMI technique, the physical 
position of all the access points in the area needs to be known 
and a function is required to map signal strength onto 
distances. They generate a set of training points at each 
trained position. The interpolation of the training data allows 
the algorithm to use less training data than the PM approach. 
During user location determination phase, they use the 
approximate function they got from the training data to 
generate contour and they calculate the intersection between 
different contours yielding the signal space position of the 
user. The nearest set of mappings from the signal space to the 
physical space is found by applying a weighted average, 
based on proximity, to the signal space position.  

Our proposed techniques differ from the RADAR and 
the CMU approaches in many ways: (a) we use a 
probabilistic approach to rank the candidate user locations 
reducing the search space; (b) both of our techniques perform 
clustering, either explicit or implicit, which further reduces 
the search space; (c) user profile information can be easily 
added to the probabilistic models. 

The Nibble location system from UCLA uses a Bayesian 
network to infer a user location [14]. Their Bayesian network 
model include nodes for location, noise, and access points 
(sensors). The signal to noise ratio observed from an access 
point at a given location is taken as an indication of that 
location. The system also quantizes the SNR into four levels:  
high, medium, low, and none. While our approaches and the 
Nibble approach are similar in some ways, they also differ in 
significant ways: (a) our approaches do not store the joint 
distribution between all the random variables of the system. 
Instead, we store only the marginal distribution of each 
access point, which reduces the computation significantly and 
enhances system scalability; (b) we use the received signal 
strength instead of the SNR as the signal strength is a 
stronger function of location than the SNR [12]. (c) we have a 
much finer quantization of the received signal strength, which 
gives us more information, and thus should lead to better 
accuracy without affecting performance or scalability; (d) our 
techniques perform clustering. 
 Table 1 gives a comparison between the previous 
systems in the area of RF indoor location determination with 
our proposed techniques. 

 
8 Conclusions and Future Work 

 
In this paper, we presented the design, implementation, 

and evaluation of two novel probabilistic indoor location 
determination techniques: the Joint Clustering technique and 
the Incremental Triangulation technique. Both techniques 
depend on (a) probability distributions to handle the noisy 



 

characteristics of the wireless channel, and (b) clustering to 
manage the computational cost. 

The Joint Clustering technique gives better accuracy than 
the Incremental Triangulation technique. However, the 
average number of operations performed per location 
estimate for the Incremental Triangulation technique is much 
lower than the corresponding number of the Joint Clustering 
technique. Therefore a tradeoff exists between accuracy and 
computation power. Both techniques lead to accuracy of 
more than 90% to within 7 feet in our experiments. 

During the course of our implementation, we developed 
a new device driver for the Lucent Wavelan card and a new 
wireless API. Both software pieces are available for public 
download and are being used by many researchers throughout 
the world.  

Currently we are working to enhance accuracy and 
reduce computational cost. By using the user history profile 
and better clustering techniques, the accuracy of the location 
determination techniques can be enhanced. Interpolating 
between a number of the most probable locations is another 
direction that we are looking into to improve the accuracy. 
We believe that understanding the nature of the radio channel 
and building accurate models for it are important for building 
more accurate location determination systems for the indoor 
environments and for reducing the overhead of building the 
radio map.  

Our results gave us confidence that, despite the hostile 
nature of the wireless channel, we can infer the user location 
with a high degree of accuracy enabling a set of context-
aware applications for the indoor environments.  
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System RADAR Nibble CMU JC IT 
Technique Pattern matching Bayesian Network Triangulation-

Mapping and 
Interpolation, 

Pattern matching 

Probability with 
joint distribution. 

Probability with 
incremental 
triangulation 

Clustering None None None Explicit Implicit 
Feature used Signal strength SNR Signal strength Signal strength Signal strength 

Quantization of 
feature 

No Yes No No No 

Ease of adding 
user profile 

Not part of the 
model. 

Part of the model. Not part of the 
model 

Part of the model Part of the model 

Position of AP’s Needed for Radio 
propagation 

model. 

Not needed Needed for 
Triangulation. 

Not needed Not needed 

 
Table 1: Qualitative comparison between other RF-location based techniques with IPS. 


