
CAR-TR-577 August 1991
CS-TR-2748

Visual User Interfaces for Information Exploration

Ben Shneiderman
Human-Computer Interaction Laboratory & Department of Computer Science

University of Maryland, College Park, MD 20742

Abstract:
The next generation of database management, directory browsing, information retrieval, hypermedia, scientific data management, and
library systems can enable convenient exploration of growing information spaces by a wider range of users. User interface designers
can provide more powerful search techniques, more comprehensible query facilities, better presentation methods, and smoother
integration of technology with task. This paper offers novel graphical and direct manipulation approaches to query formulation and
information presentation/manipulation. These approaches include a graphical approach to restricted boolean query formulation based
on generalization/aggregation hierarchies, a filter/flow metaphor for complete boolean expressions, dynamic query methods with
continuous visual presentation of results as the query is changed (possibly employing parallel computation), and color-coded 2-
dimensional space-filling tree-maps that present multiple-level hierarchies in a single display (hundreds of directories and more than a
thousand files can be seen at once).

Proceeding of the 54th Annual Meeting of The Amercian Society for Information Sciences, vol. 28 (Washington, DC, Oct. 27-31, 1991)
379-384.

1. INTRODUCTION

Exploring information resources becomes increasingly difficult
as the volume grows. A page of information is easy to explore,
but when the information becomes the size of a book, library or
larger, it may be difficult to locate desired information or to
browse to gain an overview. The computer is a powerful tool for
searching, but current user interfaces may be a hurdle for novice
users and an inadequate tool for experts (Borgman, 1986). This
paper suggests some novel possibilities for novice and expert
users. There will certainly be other inventions and refinements,
but this report presents some novel ideas to gain feedback and to
enable other researchers and developers to create still more
effective variants.

We will take the model of information-seeking (Marchionini &
Shneiderman, 1988) over documents (containing text, graphics,
images, etc.) organized into collections. The user’s goals range
from specific (fact-finding) to general (browsing):

• to locate the documents in the collection that are relevant to
their needs, for example:

- get the document on corn production in Iowa in 1977
- find the document with the birthdate of Louis Daguerre

• to gain an overview of what is in the collection, for example:
- are there more documents related to architecture than to

oceanography?
- what percentage of the microbiology documents deal with

bacteria?
- how many documents are there on Marco Polo?

The users might range from high school students wanting an
introduction to French history, to expert historians wanting to
find every primary source on Madame de Stael’s salons and as
many of her contemporaries as possible. Of course, readers
could start at the beginning and simply work their way through
the entire document collection, but the time required makes this
approach unrealistic for large document collections.

Developing computerized filters to reduce the set of documents
that need to be examined is a primary goal of researchers in
computer and information science. The broad range of users and
tasks makes the designers’ role difficult, but computerized search
interfaces do provide some useful and powerful tools:

Full text string search: users type a word and the system locates
the next occurrence of the word in a document or the complete
list of documents that contain the word. For example, (human
OR person OR man) AND (computer OR machine). Many
variants of string search exist:

- word stemming (plurals and other variants are retrieved),
- boolean combinations (AND, OR, NOT, and parentheses),
- online thesaurus, used to add synonyms, broader, or

narrower terms,
- relevance feedback, indicating strength of relationship

between the search terms and the documents,
- more-like-this document retrieval: users indicate which

documents are relevant and the system provides more
documents with similar terms.

String search is effective and widely used (Salton, 1989).

Formatted field search: users write queries in a database query
language (Reisner, 1988; Jarke & Vassiliou, 1986) and specify
matches on specific field values such as author, date of publica-
tion, language, publisher, etc. For example, (DATE > 1986 AND
DATE < 1990) AND (LANGUAGE = ENGLISH OR FRENCH)
AND (PUBLISHER = ASIS OR HFS OR ACM). Each docu-
ment has values for the formatted fields and database manage-
ment methods enable rapid retrieval even with millions of
documents.

Library index search: rather than supplying a string for
searching in the text, users explore a hierarchical index of subject
terms that have been created by the document collection owner
and can retrieve all the documents that have been indexed under
that subject term (Soergel, 1985). With a rapid display it may be
possible to browse productively through the subject index and
learn its structure. Index terms may be alphabetically organized
as in the Library of Congress Subject Headings or meaningfully
organized as in the Dewey Decimal System. Other indexes may
be organized geographically, chronologically (by publication date
or by historical contents), etc.

Librarian or author defined indexes have the advantage that the
terms are selected carefully, synonyms are cross referenced and
hierarchic structures help by clustering related documents. By
contrast, automatically generated keyword indexes with terms
extracted from a document (except for a filter list of commonly
used words) are easier to construct, but tend to be larger, more
chaotic, and more ambiguous.

Book index search: A back-of-the-book index is usually author
created, while a concordance is an automatically generated index
on all words (except for a filter list of commonly used words). A
table of contents is author generated and usually much shorter
than an index, but sequential by topic (rather than alphabetical).
Tables of contents or brief indexes have the advantage that they
can be scanned to get an overall impression of scope of coverage.

Hypertext: users follow links in documents and jump rapidly
from document to document. This works well for following a set
of related items, but it may be difficult to find all relevant
documents. Hypertext links may be author generated or
automatically produced. Hypertext browsing enables simple
point-and-click access and is also applicable to indexes, tables of
contents, keyword lists, etc.

Of course, combinations of these approaches exist and are widely
used. String search can provide an initial set of documents from
which hypertext traversals begin. Index terms may be combined
with full text string search, or a table of contents may be used to
limit the range of a string search. The most effective strategy or
combination of strategies will depend on the tasks, document
collection structure, system response time, and experience of the
users.

Refinements of the user interface can make a powerful differ-
ence. For example the Library of Congress’s SCORPIO system
is an effective query language in use since 1975 by thousands of
Capitol Hill staffers and library visitors. However, the users need
at least some training and practical experience to gain even basic
proficiency (Stevens & Shneiderman, 1981). The first time user
will need the assistance of a librarian acting as an intermediary.
SCORPIO supports index searching (for authors, titles, and

subjects) and formatted field search (for dates of publication,
national language, etc.). Boolean combination can be specified
but only one operator at a time can be applied to a numbered set
of already selected documents (for example COMBINE 3 AND
5). Full text search is not supported, and neither is hypertext
traversal. The recent development of a touchscreen interface has
made life easier for first time users, and shortcuts to permit easier
link following are being implemented.

Continuing research on improving the user interface for these
search methods is needed because novice and first time users
have great difficulty in learning new systems and because even
expert users fail to find relevant information efficiently. As the
flood of available information increases in online databases,
electronic mail, bulletin board systems, etc., improved interfaces
can help users cope successfully.

2. ARGUMENTS FOR VISUAL APPROACHES

The success of direct manipulation interfaces is indicative of the
power of using computers in a more visual or graphic manner. A
picture is often cited to be worth a thousand words and for some
tasks (not every task) it is clear that a visual presentation, such as
a map or photo, is dramatically easier to use than a textual
description or a spoken report. As computer speed and display
resolution increase, graphical interfaces are likely to have an
expanding role. If a map of the United States is displayed then it
should be possible to rapidly point at one of a thousand cities to
get tourist information. Of course, a foreigner who knows a city
name (for example, New Orleans), but not its location may do
better with a scrolling alphabetical list. Visual displays become
even more attractive to provide orientation or context, to enable
selection of regions, and to see dynamic feedback for identifying
changes (for example, a weather map).

Overall, the bandwidth of information presentation seems
potentially higher in the visual domain than with any of the other
senses. Users can scan, recognize, and remember images rapidly
and detect changes in size, color, shape, movement, or texture.
They can point to a single pixel, even in a mega-pixel display,
and can drag one object to another to perform an action. User
interfaces have been largely text oriented, so it seems likely that
as visual approaches are explored some new opportunities will
emerge.

There have been many attempts at graphical query formulation
(Wong & Kuo, 1982; Jarke & Vassiliou, 1986; Kim et al., 1988)
but the focus has often been on specifying linkages across
relations, between components of an entity-relationship diagram,
or between components of a binary relationship diagram (Senko,
1977; Mark, 1989). Graphical selection of attribute values and
graphical specification of boolean operations (Michard, 1982) is
likely to be a worthy direction for expansion.

There have been fewer efforts at graphical displays of database
search results, although the potential seems very strong
(Roussopoulos & Leifker, 1984). There is a growing movement
among researchers in user interfaces for Geographic Information
Systems that have a graphic orientation (Egenhofer, 1990). The
attraction of visual displays, when compared to textual displays,
is that the representation may be closer to the more familiar 3-
dimensional world in which we were raised and in which we live.

Within visual displays there are opportunities for showing
relationships by proximity, by containment, by connected lines,
or by color coding. Highlighting techniques (for example,
boldface text or brightening, inverse video, blinking, underscor-
ing, or boxing) can be used to draw attention to certain items in a
field of thousands of items. By pointing on a visual display
selection can be rapid and feedback is apparent. The eye, the
hand, and the mind seem to work smoothly and rapidly in
performing actions on visual displays.

3. SPECIFYING COMPLEX BOOLEAN EXPRESSIONS

Commercial information retrieval systems, such as DIALOG or
BRS, permit complex boolean expressions with parentheses, but
widespread use has been inhibited by their difficulty for users.
Numerous proposals have been put forward to reduce the burden
of specifying complex boolean expressions (Reisner, 1988). Part
of the confusion stems from informal English usage where a
query such as “List all employees who live in New York and
Boston” would result in no results because the “and” would be
interpreted as an intersection. Similarly the English usage “I’d
like Russian or Italian salad dressing” is meant to be mutual
exclusion, not union.

This section describes two research projects to develop more
graphical visualizations of boolean expressions. One of the
advantages of direct manipulation interfaces is that users are
reminded of attribute names and values and merely select from
the list provided by the designer. This approach works very well
for lists up to a few hundred values, because recognition is easier
than recall, typographic errors are eliminated, keystrokes are
reduced, and fast scrolling can be accomplished on modern
displays.

Imaginative designers have discovered that the lists need not be
limited to scrolling columns of words, 2-dimensional graphical
selectors can be very attractive. For example, a graphical
selector for states in the United States might be a map on which
the users click on as many of the states as they wish. Numeric
values are nicely represented with some form of a slider in which
the user can specify:

- a point,
- a range that is less than a given value,
- a range that is greater than a given value, or
- upper and lower bounds for values.

For example, to search for books published between 1968 and
1975, the users simply mark the desired range on a time line.
When the list of numbers or names for selection grows very long,
either keyboard entry or some hierarchical menu approach is
needed.

3.1 Boolean expressions based on aggregation/generalization
hierarchies

Our hypertext version of the Guide to Opportunities in Volunteer
Archaeology (GOVA) was a success with Smithsonian Institution
visitors, because it allowed them to explore possible dig sites by
following links (Shneiderman et al., 1989). Museum visitors
could touch a region on a world map and then see a close-up map
with dig sites labeled in blue letters that could be touched to get

an article about the dig site. Other articles discussed periods of
history or special projects such as underwater archaeological
explorations. This low cognitive load approach coupled with
complete reversibility of actions and the touchscreen interface
made for a low-risk and easy-to-browse environment.

However, to satisfy queries such as: Give me all the Hellenistic
or Roman dig sites in the Middle East that accept volunteers in
May or June? would be difficult and time consuming since
dozens of relevant articles would have to be located and read.
Responding to this need, an alternate query facility was imple-
mented.

A linear keyword-oriented search language is a typical solution,
but it hardly seemed possible to teach museum visitors the use of
such a language. Our approach was to turn the map items into set
selectors (instead of merely links), so that the users could select
several world regions and get the union of the possibilities,
without ever thinking of the OR operator or typing field names
and values (Figure 1). Similarly, the 12 months of the year were
laid out as a sequence of buttons and the users could select as
many as they wished. The months selected are ORed together
and then ANDed with the world regions. Periods of history were
specified by a scrolling list, and the cost was shown by a vertical
bar on which users could select ranges (for example $400 to
$600/week). As each selection was made, the list of matching
dig sites was immediately shown on the display. This progres-
sive refinement approach was very much appreciated by users,
since they could immediately see the impact of adding or deleting
a selected value. Since the permitted combinations were
conjuncts of disjuncts (ANDing over ORed groups), some
queries could not be constructed (for example, selecting dig sites
in the Mediterranean region in July OR the Middle East in
August).

Empirical testing was conducted with 16 subjects in a counterbal-
anced-ordering within-subjects design that compared this
graphical approach to a linear keyword approach (Weiland &
Shneiderman, 1991). The novice users had more problems than
anticipated with the graphical approach because of inadequate
experience with the mouse, scrolling menus, and an unwieldy
window manager. Still, error rates with the graphical interface
were approximately one-tenth of what they were with the linear
keyword interface, although significant time differences did not
emerge. Graphical selection of attribute values, progressive
refinement of queries, and immediate re-computation and re-

display of the results appears to contribute many benefits.
Subjective comments favored the graphical interface. Improved
window management should enable shorter training and more
rapid performance.

3.2 Filter/flow representation of boolean expressions

The desire for full boolean expressions, including nested
parentheses and NOT operators, led us towards novel metaphors
for query specification.

Venn diagrams (Michard, 1982) and decision tables (Greene et
al., 1990) have been used, but these both get clumsy as query
complexity increases. We sought to support arbitrarily complex
boolean expressions with a graphical specification. Our
approach was to apply the metaphor of water flowing from left to
right through a series of pipes and filters, where each filter lets
through only the appropriate documents and the pipe layout
indicates relationships of AND or OR.

ANDs are shown as a linear sequence of filters, suggesting the
successive application of required criteria (Figure 2). As the flow
passes through each filter the flow is reduced and the visual
feedback shows a narrower bluish stream of water. ORs are
shown two ways: within an attribute, multiple values can be
selected in a single filter; and across multiple attributes, filters
are arranged in parallel paths (Figure 3). When the parallel paths
converge the width of the flow reflects the size of the union of
the document sets.

Negation was handled by a NOT operator that, when selected,
inverts all currently selected items in a filter. For example, if
California and Georgia were selected and then the NOT operator
was chosen, those two states would become deselected and all
the other states would become selected. Finally, clusters of filters
and pipes can be made into a single labeled filter. This ensures
that the full query can be shown on the display at once and
allows clusters to be saved in a library for later reuse.

We believe that this approach can help novices and intermittent
users in specifying complex boolean expressions and learning
boolean concepts. A usability study is being conducted.

4. DYNAMIC QUERIES

The results of the graphical boolean query methods described in
Section 3 are merely a list of items. This traditional approach is
appropriate in many problem solving tasks, but we found that
displaying the results in a graphical manner was an advantage in
some situations. For example, in GOVA, if the user had selected
July or August and costs of less than $600 per week, it would be
nice to show the set of dig sites by bright yellow spots on the
world map. Then users could click on the yellow spots to get the
full information on the dig site. If there were only a few dig sites
that satisfied this query, users would discover this immediately
and could move the slider to a slightly higher cost producing
more yellow spots in the desired geographic regions.
Other geographic applications emerge naturally. A college
selection tool could be built based on sliders for location, size,
cost, and male/female ratios. A system for real estate brokers and
their clients could locate homes by price, number of bedrooms,
maintenance costs, quality of schools, etc. (Figure 4). Another

Figure 1: Graphical query for GOVA found 8 dig sites that were
Hellenistic or Roman in the Middle East during May or June for
$530 to $760 per week.

Figure 3: Filter/flow representation of boolean OR query showing (Manager = Deji) OR (Title = Driver).
Implemented in Toolbook by Degi Young.

Figure 2: Filter/flow representation of boolean AND query showing (Location = California) AND (Salary =
50,000). Implemented in Toolbook by Degi Young

neighborhoods but then discover that there are one or two
bargains in the downtown sections.

Dynamic queries might be called direct manipulation queries,
since they share the same concepts of visual display of actions
(the sliders or buttons) and objects (the query results in the task
domain display); the use of rapid, incremental, and reversible

Figure 4: Dynamic query of D. C. HomeFinder showing sliders to select house by distance, cost, and
number of bedrooms. Implemented on an IBM PC by Christopher Williamson.

Figure 5: Dynamic query mock-up of US demographic search
using sliders for age, income, air quality, etc. with results shown
by highlighting of states.

geographic application would be to highlight states of the United
States that satisfied values such as per capita income, air quality,
employment, housing costs, etc. to help users choose a potential
state to live in (Figure 5).

Other applications also seem attractive when there is natural 2-
dimensional background to show search results: calendars,
building layouts, circuit diagrams, or airplane seating. Imagine a
chemical table of elements with a set of sliders for melting point,
specific heat, ionization energy, or other properties (Figure 6).
As the sliders are moved, the appropriate chemicals are high-
lighted and students can refine their intuitions about the relation-
ships among these properties and the atomic number or position
in the table. Concert seat selection might by dynamic query:
after indicating the number of seats you need together, you could
move the price slider to see how spending more would bring you
closer to the stage. Scientific applications seem abundant:
imagine a star map with sliders for attributes of the stars, or DNA
chains with selectors for specific sequences. Sociological data
exploration would highlight individuals satisfying a range of
attributes such as economic status, family size, education level,
age, etc.

In addition to the sense of power and fun in dragging the sliders,
the dynamic queries offer a unique capacity for finding cutpoints
in the data when the number of satisfying records moves from a
few to many. For example, in the real estate database it is useful
to discover that moving from $80,000 to $85,000 might double
the number of available homes but that moving up to $90,000
hardly makes any difference. Another cutpoint exploration
benefit is to find that the minimum price for 3 bedroom houses is
$65,000. Outliers are also located easily with dynamic queries;
users can see that all low-priced houses are located in suburban

Figure 6: Dynamic query of periodical table of elements with color coding (shown here by gray shades) and sliders for atomic mass,
ionization energy, electronegativity, etc. Implemented on the Sun SparcStation 1+ in OPENLOOK by Christopher Ahlberg.

shows files with an area proportional to their size (Figure 7).
Thus with a few moments of observation it is possible to find
several large candidate files, and by moving the cursor on to
these files, the users can get a pop-up window that reveals the file
and path name plus other attributes. Area can be used to show
size, and color can be used to show other file properties such as
date of creation, security status, file type, etc.

Tree-maps are attractive for applications such as stock portfolio
analysis where industry groups are decomposed into specific
stocks, and then specific purchases. Area could indicate amount
of money invested and then color might indicate whether the
owner was in the black (making a profit) or in the red (suffering a
loss). Similarly, tree-maps might be used to show library
holdings organized by Dewey Decimal numbers to cluster
biology, chemistry, physics, etc. books. Area could indicate the
number of books on each topic and color might indicate
frequency of use.

It takes a few minutes for new users to understand the tree-map

actions (sliders); and the immediate display of feedback. The

benefits of no error messages and the encouragement of explora-
tion are common to both concepts.

These dynamic queries can reveal global properties as well as
assist users in answering specific questions. As the database
grows it will be more difficult to update the display fast enough
and specialized data structures or parallel computation may be
required. These dynamic queries have been attracting much
attention in our lab, although manyuser interface problems
remain, for example how to:

- select a set of sliders from a large set of attributes,
- specify ranges such as greater than, less than, or greater than

and less than,
- deal with boolean combinations of slider settings
- choose among highlighting by color, points or light, regions,

blinking, etc.
- cope with thousands of points by zooming

Usability studies are being conducted.

5. TREE-MAPS

In exploring visual presentations for common information,
designers often have to deal with hierarchical structures such as
tables of contents, menu structures, organization charts, the
Dewey Decimal System, stock portfolios, or computer programs.
A variety of tree diagram formats have been developed and there
are numerous algorithms for displaying partial diagrams that
have traversal mechanisms to show remaining portions of the
diagram. Our goal was to show the entire tree structure on the
display at one time (no scrolling) by using every pixel as part of a
space-filling representation of trees (Shneiderman, 1991; Johnson
& Shneiderman, 1991).

We were confronted with the problem of an 80 megabyte
computer disk filling up and having to find large files as
candidates for deletion. With 14 user folders at the root directory
and a total of 3200 files in 400 folders at 6 levels, this was a
challenging task. This problem led to the development of a novel
2-dimensional space filling representation of tree structures that

Figure 7: Tree-map showing 1008 files where each file size is
represented by the proportional area and color coding (shown
here by gray shades) to indicate file type. Implemented on an
Apple Macintosh by Brian Johnson.

layout, but once they do, they have unusual powers to cruise
rapidly from one subtree to another, crossing many levels of the
hierarchy. Our first usability test will be with experienced UNIX
users browsing a large multi-level hierarchy of files.

6. CONCLUSIONS

Our research has led us to some novel approaches to presenting
information in a more visual manner. These ideas are attractive
because they present more information rapidly and allow for
more rapid exploration. To be fully effective some of these
approaches require novel data structures, high resolution color
displays, fast data retrieval, specialized data structures, parallel
computation, and some training. We are in the process of
collecting the empirical data to refine our intuitions and our
designs, so these approaches will certainly be modified, but the
preliminary studies and our excitement compels me to share
these ideas and seek feedback from the community of informa-
tion scientists. However, we believe that these ideas represent
only the beginning steps towards more effective visual interfaces
to support information exploration by novices and experts.

ACKNOWLEDGEMENTS

I gratefully acknowledge support for research from Apple, GE
Information Services, NCR, Sun Microsystems. I appreciate the
creative work of researchers at the Human-Computer Interaction
Laboratory at the University of Maryland, especially the students
whose work I have described: William Weiland, Degi Young,
Christopher Ahlberg, Chris Williamson, and Brian Johnson.
Helpful comments for this manuscript were provided by Rick
Chimera.

This article is an early draft of part of a new chapter for Design-
ing the User Interface: Second Edition, to be published by
Addison-Wesley Publishing Company.

NOTES

Christine L.Borgman, 1986. “Why are online catalogs hard to
Use? Lessons learned from information-retrieval studies”,
Journal of the American Society for Information Science 37, 6,
387-400.

S.L. Greene, S.J. Devlin, P.E. Cannata and L.M.Gomez, 1990.
“No IFs, ANDs, or ORs: A study of database querying”,
International Journal of Man-Machine Studies 32, (March 1990),
303-326.

M. Jarke and Y.Vassiliou, 1986. “A framework for choosing a
database query language”, ACM Computing Surveys 11, 3, 313-
340.

Brian Johnson, and Ben Shneiderman, 1991. “Tree-maps: a
space-filling approach to the visualization of hierarchical
information structures”, Proc. IEEE Visualization’91, IEEE,
Piscataway, NJ.

H. J. Kim, H. F. Korth and A. Silberschatz, 1988. “PICASSO: A
graphical query language”, Software: Practice and Experience

18, 3, 169-203.

Gary Marchionini and Ben Shneiderman, 1988. “Finding facts
and browsing knowledge in hypertext systems”, IEEE Computer
21, 1, (January 1988), 70-80.

Leo Mark, 1989. “A graphical query language for the binary
relationship model”, Information Systems 14, 3, 231-246.

A. Michard, 1982. “A new database query language for non-
professional users: Design principles and ergonomic evaluation”,
Behavioral and Information Technology 1, 3, (July-September
1982), 279-288.

Phyllis Reisner, 1988. “Query languages, In Helander”, Martin
(Editor), Handbook of Human-Computer Interaction, North-
Holland, Amsterdam, The Netherlands, 257-280.

N. Roussopoulos and D. Leifker,, “An introduction to PSQL: A
Pictorial Structured Query Language”, 1984 IEEE Workshop on
Visual Languages, IEEE Computer Society Press, Washington,
DC.

G. Salton, 1989. Automatic Text Processing: the Transformation,
Analysis, and Retrieval of Information by Computer, Addison-
Wesley, Reading, MA.

M. E. Senko, 1977. “DIAM II and FORAL LP: Making pointed
queries with light pen”, Proc. IFIP Congress 77, North-Holland
Publishers, Amsterdam, The Netherlands.

Ben Shneiderman, 1991. “Tree visualization with tree-maps: A
2-d space-filling approach”, ACM Transactions on Graphics, (To
appear, 1991).

Ben Shneiderman, Dorothy Brethauer, Catherine Plaisant and
Richard Potter, 1989. “Three evaluations of museum installa-
tions of a hypertext system”, Journal of the American Society for
Information Science, (May 1989), 172-182.

Ben Shneiderman and Greg Kearsley, 1989. Hypertext Hands-
On!, Addison-Wesley Publ., Reading, MA.

Dagobert Soergel, 1985. Organizing Information: Principles of
Data Base and Retrieval Systems, Academic Press, Inc., Orlando,
FL.

Pat Stevens and Ben Shneiderman, 1981. “Exploratory Research
on Training Aids for Naive Users of Interactive Systems”, Proc.
American Society for Information Science 1981, 65-67.

William J. Weiland and Ben Shneiderman, 1991. “A graphical
query interface based on aggregation/generalization hierarchies”,
Department of Computer Science Technical Report CS-TR-2702,
University of Maryland, College Park, MD.

H.K.T. Wong and I. Kuo, 1982. “GUIDE: Graphical User
Interface for Database Exploration”, Proceedings of the 8th Very
Large Databases Conference.

