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Abstract
This paper investigates a pursuit-evasion game with a single pursuer and evader in a bounded
environment, inspired by observations of predation attempts by lionfish (Pterois sp.). The pursuer
tracks the evader with a pure pursuit strategy while using an additional bioinspired tactic to trap
the evader, i.e. minimize the evader’s escape routes. Specifically, the pursuer employs symmetric
appendages inspired by the large pectoral fins of lionfish, but this expansion increases its drag and
therefore its work to capture the evader. The evader employs a bioinspired randomly-directed
escape strategy to avoid capture and collisions with the boundary. Here we investigate the trade-off
between minimizing the work to capture the evader and minimizing the evader’s escape routes. By
using the pursuer’s expected work to capture as a cost function, we determine when the pursuer
should expand its appendages as a function of the relative distance to the evader and the evader’s
proximity to the boundary. Visualizing the pursuer’s expected work to capture everywhere in the
bounded domain, yields additional insights about optimal pursuit trajectories and illustrates the
role of the boundary in predator-prey interactions.

1. Introduction

Interactions between predators and their prey have
fascinated a variety of scientific disciplines for several
decades. For biologists, predator-prey interactions
inform the structure of ecosystems [1–3] and char-
acterize the pursuit and evasive behaviors of predat-
ors and prey [1, 4–13]. Engineers andmathematicians
use these interactions to develop dynamic and kin-
ematic models for missile guidance [14] and differen-
tial games [15, 16] and to derive pursuit and evasion
strategies for robotic systems [17–24].

For example, lionfish (Pterois sp.) will actively
pursue maneuverable prey fishes with a pure pur-
suit targeting strategy, often approaching their prey
slowly to avoid inducing a startle response [3, 5, 10].
In addition, lionfish have large fan-like pectoral fins
(depicted in figures 1(a) and (b)) that may serve to
restrict prey movement [7, 8]. The purpose of using

the lionfish’s pectoral fins during predation is not well
studied, but the observations in [7, 8] briefly men-
tion this behavior and hypothesize that the lionfish
use their fins to herd prey to confined areas like coral
reefs.

Expanding the pectoral finsmay increase the lion-
fish’s perceived size and studies have shown that the
perceived larger size of predators can initiate a prey’s
flee response quicker than a smaller predator [25, 26].
The large surface area of the pectoral fins are also
likely drag inducing, yet lionfish rarely pursue a prey
without expanding them. After examining the obser-
vations in [6–8], we hypothesize that there is a trade-
off between expanding the pectoral fins to trap prey
and retracting the fins to minimize hydrodynamic
drag. We seek to understand the trade-off between
these two strategies and we seek to understand the
role a boundary plays in predator-prey interactions.
To answer the questions of when and why a predator
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Figure 1. Lionfish (Pterois sp.) serve as bioinspiration for a shape-changing predator. (a) Lateral view of a lionfish (Pterois miles);
(b) dorsal view of a lionfish (Pterois volitans; in black and white); (c) depicts the model of the pursuer with appendages in the
resting orientation; and (d) the pursuer’s appendages are in an active orientation.

should prioritize trapping prey over minimizing its
drag during predation in a bounded setting, we derive
a pursuit-evasion game in a bounded environment
with a single pursuer with symmetric appendages and
a single evader.

Pursuit-evader games attempt to derive optimal
pursuit strategies by modeling both agents as
particles. These particle models are often based on
kinematic modeling [14] and used in theoretical
differential games [15]. In [14], Shneydor derives
kinematic models for missile guidance for a vari-
ety of pursuit strategies like classical pursuit (also
known as pure pursuit), deviated pure pursuit, and
parallel navigation (also known as motion camou-
flage). Differential games consider the kinematics of
both agents and study how their pursuit and eva-
sion strategies affect the outcome of the interaction.
For zero-sum differential games, the pursuer seeks to
minimize some cost function and the evader seeks to
maximize it such that the total sum of their costs is
zero [15]. The work presented here adopts the pure
pursuit kinematicmodels from [14] and applies them
in a novel zero-sum pursuit-evasion game.

A common assumption of kinematic pursuit
models is that the pursuer is faster than the evader,
which guarantees capture [14, 17, 21]. However, cap-
ture of a faster evader is possible for a slower pur-
suer by using the Apollonius circle pursuit method.
In the Apollonius circle method, a slow pursuer
computes reachable positions that intersects the
non-maneuvering evader’s trajectory. The points of
intersection between the pursuit and evasion traject-
ories lie on the Appollonius circle which contain pos-
itions where the pursuer and evader are projected
coincide. The circle’s center and radius correspond

to the positions where capture is guaranteed [20, 24,
27]. The method of Appollonius circle assumes pur-
suit of a faster non-maneuvering evader, whereas [14]
assumes the evader is non-maneuvering and is slower
than the pursuer. These mathematical frameworks
give insight about pursuit trajectories and provide
conditions on both the pursuer and the evader for
successful capture. When these conditions are satis-
fied, the time required to capture the evader can be
determined. In the present work, the time to cap-
ture is used to compute the work required to cap-
ture the evader, which is maneuvering to avoid the
predator.

The unique ability of animals to alter their
behavior, locomotion, and morphology in response
to a stimuli inspires and informs both biologists
and engineers. Fishes are widely studied by engin-
eers interested in developing control systems and
autonomous underwater vehicles. Bioinspiration also
plays an integral role in pursuit-evasion games [16,
17] and pursuit-evasion models have previously been
applied to a handful of fish species [4, 9, 10, 13, 21].
For the present game, the pursuer is modeled as a
rigid streamlined bodywith symmetric appendages in
pure pursuit of the evader. In the resting orientation,
the pursuer’s appendages are held against the body,
parallel to the pursuer’s sagittal plane as in figure 1(c),
whereas in the active orientation the appendages are
expanded perpendicular to the sagittal plane as in
figure 1(d). The pursuer uses its appendages in an
effort to trap the evader, i.e. minimize the evader’s
escape routes by blocking its view of possible flee dir-
ections, but this appendage orientation increases the
pursuer’s surface area and therefore its hydrodynamic
drag.
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In biological systems, animal prey may employ
an optimal evasion strategy (classical evasion), where
the evader attempts to maximize the relative distance
to the pursuer [10, 13, 28], or a protean strategy,
where the evader senses the relative position of the
pursuer and flees in a random direction to be less
predictable [10–12, 29]. Observations of an evader’s
escape direction yields a probability density func-
tion that is used for mathematical predictions [12].
The movement patterns of animals also play a role in
the pursuit-evasion interaction. Mathematical mod-
els often assume constant locomotion, however, a
variety of aquatic, aerial, and terrestrial species use
intermittent locomotion [30, 31]. For many fishes,
intermittent locomotion is split into two discrete
phases that correspond to acceleration and decelera-
tion.During the acceleration phase the fishwill gener-
ate thrust and actively steer itself, whereas during the
deceleration phase the fish glides through the water
without active steering [4, 32]. Inspired by observa-
tions of intermittent prey [5, 6], the evader in the
present study uses an intermittent-steering kinematic
model (with a constant speed) and a protean strategy
to evade the pursuer and to avoid collisions with
the boundary. The evader’s random flee direction
has a probability density function that is affected by
the evader’s proximity to the walls of the environ-
ment, the proximity to the pursuer, and the pursuer’s
appendage orientation.

We introduce a pursuit-evasion game with a
single pursuer and a single evader moving at a con-
stant speed in a still fluid. We aim to study the
trade-off between the pursuer using its appendages
to minimize its hydrodynamic drag andminimize the
evader’s escape routes. In an effort to study the effects
of a bounded environment on predation, the game
occurs in a planar convex environment. The con-
vex assumption provides geometric conditions that
simplify the environment while maintaining its role
in pursuit-evasion interactions. Using the expected
work required to capture the evader as an object-
ive function, we show that minimizing the evader’s
escape routes can outweigh the effect of incurring
additional drag. With this metric, we determine the
regions in the bounded environment where it is
advantageous for the pursuer to expand its append-
ages in the active orientation. Similarly, we show that
the presence of a boundary positively affects the pur-
suer by expanding the size of the active orientation
shape-changing region.

The contributions of this paper are as fol-
lows: (1) a pursuer-evader interaction model with
a shape-changing pursuer and an intermittently-
steering evader; (2) a mathematical model for the
probability density of the evader’s escape heading in
a bounded environment; (3) a metric to determine
when the pursuer should change shape to minim-
ize the evader’s escape routes; and (4) a qualitative

assessment of the optimal pursuit trajectories as a
function of the evader’s position in a bounded envir-
onment. These results provide a framework for a new
bioinspired pursuit-evasion interaction, give insight
into the predation behaviors found in nature, and
give a fundamental understanding of how a bounded
environment influences predation strategies.

This paper is organized as follows. Section 2
provides mathematical and physical preliminaries,
including an overview of the complex numbers and
random variables used for analysis, and pursuit and
evasion strategies. Section 3 formulates the prob-
lem, equations of motion, the evader’s avoidance
and escape regions, and the evader’s escape heading
probability density function. Section 4 presents the
expected work required to capture the evader, dis-
cusses when the pursuer should prioritize trapping
the evader over minimizing the work to capture, and
provides a qualitative assessment of the optimal pur-
suit trajectories. Section 5 summarizes the results and
describes ongoing and future work.

2. Background

This section reviews complex numbers, random vari-
ables, and the kinematics of classical pursuit and the
protean evasion strategy.

2.1. Complex variables
To reduce the number of equations, this paper uses
complex numbers to express the position and orient-
ation of the pursuer and the evader. A complex num-
ber has real and imaginary components and can be
expressed as h= x+ jy. The imaginary component
of h is multiplied by the imaginary unit j such that
Im(h) = y, and the real component of h is Re(h) = x.
Since complex numbers have two components, they
can be visualized in a two-dimensional space called
the complex plane C.

A common tool for dimension reduction is to
express vectors with two orthogonal components as
a complex number. Let the horizontal and vertical
components of vector v be v= [x,y], where the bold
notation represents a vector. By aligning the hori-
zontal direction with the real axis and the vertical dir-
ection with the imaginary axis, we can express vector
v as a complex number v= x+ jy.

Similarly, the orientation of a vector v can be
expressed as the phase θ of a complex number v,
where

θ = arg(v). (1)

The arg() operator is the argument of the complex
number. Likewise, the magnitude of a complex num-
ber is determined by taking its absolute value.

Using the phase θ and magnitude |v| of v, we can
express the position of a particle in complex polar
form with Euler’s formula [33], such that

3
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v= |v|ejθ = |v|(cosθ+ j sinθ) . (2)

In general, since the imaginary component is ortho-
gonal to the real component of a complex number,
multiplying that number by j rotates its phase by π/2
radians in the counter-clockwise direction.

2.2. Expected value of a random variable
To analyze the stochastic nature of a random variable,
we use tools from probability theory. Let X be a ran-
dom variable on the real number line. The probabil-
ity density function f(X ) is the likelihood of X being
within a certain range of values. The expected value
of X is [34]

E[X ] =

ˆ ∞

−∞
X f(X )dX . (3)

If random variable X is used in a function Y=
h(X )with probability density function f(X ), then the
expected value of the function is [34]

E[Y] =

ˆ ∞

−∞
h(X )f(X )dX . (4)

We adapt (4) to compute the expected work required
for the pursuer to capture an evader using the protean
evasion strategy in section 4.

2.3. Pursuit and evasion strategies
Pursuit and evasion are well-studied topics with
applications in missile guidance [14], biological
predation [9, 10, 21], and engineered systems [17, 20,
22, 23]. Pure pursuit [14] is characterized by having a
pursuer P heading directly towards an evader E along
their line-of-sight vector, i.e. the vector from P to E.

Let the pursuer’s position be rP = xP + jyP ∈ C.
Let θP and VP be the pursuer’s velocity orientation
and speed, respectively. Similarly, let rE, θE, and VE

be the evader’s position, heading, and speed, respect-
ively. The line-of-sight vector is

rE/P = rE − rP (5)

and the orientation of the line-of-sight vector is

α= arg(rE/P), (6)

as shown in figure 2.
Common assumptions in the pursuit literature

are that both pursuer and evader have constant speeds
and that the pursuer has a higher speed than the
evader [14, 15]. The ratio of the two speeds is K=
VP/VE. In the present model, the pursuer’s speed is
arbitrarily set to VP = 1.05 m s−1 and the evader’s
speed is VE = 1 m s−1 such that K = 1.05.

In pure pursuit, the time required to capture a
non-maneuvering evader is [14]

∆t=
|rE/P|
VE

K+ cos(α− θE)

K 2 − 1
. (7)

Figure 2. Pure pursuit model using particle kinematics.

Note that (7) is only valid for K > 1, i.e. when the
pursuer is strictly faster than the evader.

The line-of-sight orientation (6) is used as the ref-
erence heading for the pursuer in section 3 and (7)
is used to compute the work required to capture the
evader in section 4.

An evasion strategy observed in animals is the
protean strategy [10, 11], where the evader senses
the pursuer and flees in a random escape direction
θd. The stochastic nature of this evasion strategy
makes the evader less predictable to the pursuer. The
random escape direction has a probability density
function that depends on the evader’s proximity to
the boundary and relative distance to the pursuer.
The probability density function of θd is derived in
section 3 and used to compute the expected value of
the work required to capture the evader in section 4.

To compute the work executed during pursuit, let
TP be the pursuer’s thrust, which we assume is aligned
with its velocity. Assuming the pursuer has constant
speed, the work performed byTP depends on the path
the pursuer takes from time t0 to t0 +∆t, where∆t is
given by (7), such that [35]

WP =

ˆ t0+∆t

t0

TPVPdt. (8)

To find the work required to capture the evader, sub-
stitute (7) into (8) and evaluate the integral, i.e.

WP = TP|rE/P|
K2 +Kcos(α− θE)

K2 − 1
. (9)

Note that thework required for the pursuer to capture
the evader depends on the evader’s heading θE.

The randomness of the evader’s protean evasion
strategy makes the work in (9) a stochastic process
and we use tools from probability theory to analyze
the expected value of work, also called the expected
work. In section 4, (9) is adapted to analyze the work
required to capture the evader.

3. Problem formulation

This paper considers a pursuit-evasion game with a
single pursuer P and evader E in a planar convex

4
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environment. The pursuer is modeled as a stream-
lined rigid bodywith symmetricmovable appendages
and its objective is to capture the evader using pure
pursuit. The evader is modeled as a self-propelled
particle and employs the protean strategy in an effort
to avoid capture. Capture is defined as the coincid-
ence of the frontmost point on the pursuer’s body and
evader.

During pursuit, the pursuer orients its append-
ages to minimize the evader’s escape directions; how-
ever, expanding the appendages increases drag. We
explore the trade-off between minimizing the work
to capture the evader and minimizing the evader’s
escape directions by using the expected work to cap-
ture as the cost function.

The following subsections present the planar
interaction model between a pursuer P and an evader
E in a bounded environment. First, we derive the
equations of motion for the pursuer and evader.
Second, we introduce the evader’s avoidance and
escape regions that are used to derive the probabil-
ity density function of the evader’s escape heading.
Third, we derive the probability density function for
the evader’s escape heading.

3.1. Equations of motion
Let the pursuer’s body length, width, and appendage
length be lP, wP, and lf, respectively. The pursuer’s
center of mass is positioned at rP = xP + jyP and the
body’s frontmost point is

rPf = rP +
lP
4
ejθP , (10)

where θP is the pursuer’s heading.
Inspired by the predation strategies of lionfish [1,

7, 10], the pursuer uses its appendages to minim-
ize the evader’s escape routes, but doing so affects
the pursuer’s size and surface area. Let ψ be the
appendage orientation with respect to θP. Since the
appendages are symmetric, ψ is the orientation of
the right appendage and −ψ is the orientation of the
left appendage. The endpoints of the left and right
appendages are positioned at rAL and rAR, respect-
ively, where

rAL = rP +
1

2
wPje

jθP + lfe
j(θP−ψ) (11)

rAR = rP −
1

2
wPje

jθp + lfe
j(θP+ψ). (12)

When ψ= 0, the appendages are held parallel
to the line-of-sight vector and the pursuer is in its
narrowest configuration, and when ψ = π/2, the
appendages are perpendicular to the line-of-sight vec-
tor and the pursuer is in its widest configuration. For
simplicity, let ψ be treated as a switching parameter
with values of eitherψ= 0 orψ = π/2. Increasing the

frontal area of the pursuer comes at the cost of addi-
tional drag, modeled as

Dp = b(1+H sin(ψ))VP, (13)

where b> 0 is the nominal drag coefficient andH> 0
is the percent drag increase due to the orientation of
the appendages. We use (13) in section 4 to compute
the work and expected work to capture the evader as
a function of ψ.

To model the planar locomotion of the pursuer,
we model a thrust force TP, linear drag force DP, and
turning rate uP. uP directly controls rate of change
of the the pursuer’s direction of motion. The body is
aligned with this direction. We also assume that the
pursuer has a constant speed VP, i.e. the thrust and
drag forces cancel. The equations of motion of P are

ṙP = VPe
jθP (14)

θ̇P = uP. (15)

Using the pure pursuit strategy, the pursuer seeks
to align its heading with the line-of-sight vector such
that

uP = KP sin(α− θP), (16)

where α is (6) and KP > 0 is a steering control gain.
The evader, on the other hand, is modeled as a

point mass self-propelled particle E with intermittent
steering. The intermittent steering is divided into an
active steering phase during which the evader changes
its heading over a duration of β seconds and a non-
steering phase during which the evader has a constant
heading over a duration of T seconds. Let the evader’s
constant speed be denoted asVE and its heading be θE.
Adapting the planar intermittent locomotion model
from [36], the equations of motion of E are shown
in figure 3. We assume β is much smaller than T .
The completion of a single active steering phase and
single non-steering phase is called a cycle, where k is
the cycle number [36].

Using the protean evasion strategy, the evader
steers towards a random escape heading θd dur-
ing the active steering phase and continues to travel
along θd during the non-steering phase. Let uE =
KE sin(θd − θE) be the steering control input, where
KE > 0 is a control gain, and the closed-loop head-
ing dynamics during the active steering phase are
θ̇E = KE sin(θd − θE).

Figure 4 illustrates the pursuer-evader interaction
model.

The pursuit and evasion trajectories are governed
by the closed-loop dynamics of the pursuer and the
evader. Figure 5 illustrates the pursuer’s pure pur-
suit strategy and the evader’s protean strategy in a
bounded environment shown by solid black lines.
In figure 5(a), both the pursuer and evader are in
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Figure 3. Evader intermittent dynamics split into active
steering and non-steering phases. β is the time duration of
active steering, T is the non-steering duration, t is the
current time, and tk is the time when the kth active steering
phase started.

Figure 4. Illustration of the pursuer and the interaction
with the evader.

their initial configuration where the pursuer has its
appendages retracted and is not sensed by the evader.
The evader has a limited sensing range with max-
imum radius R, here arbitrarily set to 1 m, shown as
the lightly shaded blue region in figure 5. LetRS ∈ R2

be the set of points within the evader’s sensing range.
If the pursuer or the boundary is outside of RS ,
then the evader does not respond to their presence.
However, if the pursuer or boundary are inside ofRS ,
then the evader responds by steering away from them
in a random direction θd according to its probability
density function.

At the start of the simulation, the evader enters
its active steering phase during which it randomly
selects a desired heading θd. The next snapshot in
figure 5(b) shows the pursuer entering the evader’s
sensing region and expanding its appendages. The
evader senses the pursuer while in its non-steering
phase, so it continues to move in the θd direction
until the next cycle. In figure 5(c), the evader has
entered the next cycle during which a new θd is ran-
domly selected to avoid the pursuer by steering in

the opposite direction. The pursuer keeps its append-
ages expanded tominimize the evader’s escape routes.
Lastly, in figure 5(d), the evader again steers in a
random direction to avoid the pursuer, however, the
pursuer captures the evader during the non-steering
phase. The simulation parameter values for the pur-
suer and the evader are shown in table 1. The size of
the pursuer’s body length, body width, and append-
age length were adapted from [37].

3.2. The evader’s avoidance and escape regions
The goal of the evader is to avoid capture from the
pursuer and avoid collisions with the boundary B ∈
R2. Due to the limited sensing range, the evader can
only respond to these obstacles when they are in its
sensing regionRS .

When the pursuer is within the sensing range, the
evader detects its relative direction and size. Let rE/AL
and rE/AR be the relative positions of the pursuer’s
left and right appendages with respect to the evader,
respectively, i.e.

rE/AL(ψ) = (rE − rP)−
1

2
wPje

jθP − lfe
j(θP−ψ) (17)

rE/AR(ψ) = (rE − rP)+
1

2
wPje

jθp − lfe
j(θP+ψ). (18)

The corresponding relative directions of the left and
right appendages are

θAL(ψ) = arg(rE/AL(ψ)) (19)

θAR(ψ) = arg(rE/AR(ψ)), (20)

respectively, and the perceived size of the pursuer is
the smallest counter-clockwise arc length δP between
θAL and θAR projected onto the evader’s maximum
sensing radius, i.e.

δP(ψ) = R
(
arg
(
ej(θAL(ψ)−θAR(ψ))

))
. (21)

Note that δP(ψ)⩾ 0 is the counter-clockwise arc
length and has its maximum value when the append-
ages are fully expanded.

Similarly, when the boundary is within its sens-
ing range, the evader detects its direction and angular
displacement relative the evader’s position and head-
ing, respectively. Let θBi and θBi+1 be the angles of
the ith intersection between the sensible region and
the boundary, and let δBi ⩾ 0 be the smallest counter-
clockwise arc length between θBi and θBi+1 projected
onto the evader’s maximum sensing radius, i.e.

δBi = R
(
arg
(
ej(θBi

−θBi+1)
))

. (22)

To avoid capture, the evader avoids all directions
between θAL and θAR along arc length δP and, to avoid
collisions, the evader avoids all directions between θBi

and θBi+1 along arc length δBi . We now introduce the

6
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Figure 5. Pure pursuit and protean evasion trajectories in a bounded environment at intervals of 0.6350 s, showing (a) the initial
configuration where the blue dot and black arrow is the evader and its velocity orientation, the large blue circle is the evader’s
sensing region; and (b)–(d) the trajectories of the pursuer (red line) and evader (blue line) until capture is achieved.

Table 1. Parameter values for the pursuer and evader for simulations.

Parameter Symbol Value

Pursuer speed VP 1.05 m s−1

Pursuer steering gain KP 50 rad s−1

Pursuer appendage length lf 316× 10−3 m
Pursuer body length lP 378× 10−3 m
Pursuer body width wP 44.8× 10−3 m
Evader sensing range R 1.0 m
Evader steering gain KE 50 rad s−1

Evader speed VE 1.0 m s−1

Evader burst duration β 0.25 s
Evader coast duration T 2.75 s
Environment bounds B {B ∈ R2 | |x|⩽ 1.5 m, |y|⩽ 1.5 m}

concept of an avoidance region A⊂RS , defined as
any intersection of the sensing region and the bound-
ary and any intersection of the sensing region and the
pursuer. Let there be a single avoidance region per set
of intersections such that there are N⩾ 0 avoidance
regions in total. Let ϕA(ψ) be a matrix containing
each set of avoided directions, where

ϕA(ψ) =


θAL(ψ) , θAR(ψ)

θB1 , θB2

...
θBN , θBN+1

=


ϕA1 , ϕA2

ϕA3 , ϕA4

...
ϕAN , ϕAN+1

 ,
(23)

and let ϕAn and ϕAn+1 be the intersection angles for
the nth avoidance region.

We define the evader’s escape region E ⊂RS as
the compliment of A, as shown in figure 6; let there
beM⩾ 1 escape regions. Let ϕE(ψ) be a matrix con-
taining each set of escape directions where

ϕE(ψ) =


ϕA2 , ϕA3

ϕA4 , ϕA5

...
ϕAN+1 , ϕA1

=


ϕE1 , ϕE2

ϕE3 , ϕE4

...
ϕEM , ϕEM+1

 ,
(24)
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Figure 6. Illustration of the evaders sensing region divided
into avoidance regions and escape regions. The gray
avoidance regions are defined by the intersection angles
between the sensing region, the pursuer’s appendages, and
the boundary (black lines). The green escape regions are the
spaces where the evader’s possible escape routes exist.

and let ϕEm and ϕEm+1 be the intersection angles for
the mth escape region. The size of the mth escape
region is

δEm(ψ) =



R
(
2π− arg

(
ej(ϕEm−θEm+1)

))
,

ccw arc length> π

R
(
arg
(
ej(ϕEm−θEm+1)

))
,

otherwise.

(25)

Note that δEm and ϕE are also implicitly depend-
ent on the relative distance between the pursuer and
evader.

If there are N = 0 avoidance regions, then ϕA is
a null matrix and there are M= 1 escape regions,
where ϕE = [0,2π]. When there are N⩾ 1 avoidance
regions, there areM=N escape regions. We use (24)
and (25) to compute the probability density function
for the evader’s protean strategy and to compute the
expected work required for the pursuer to capture the
evader in section 4.

3.3. Probability density function of the evader’s
heading
This section defines the evader’s probability density
function for the random escape heading θd. During
the active steering phase, the evader steers to θd to
avoid capture from the pursuer and to avoid collisions
with the boundary. The probability density function
for θd is dependent on the number of escape regions
M and the arc length of each individual escape region
δEm .

When there are N = 0 avoidance regions and
M= 1 escape regions, the evader chooses θd with a
uniform probability density such that 0⩽ θd ⩽ 2π.
The corresponding probability density function for
the N = 0 case is

f(θd) =


1
2π , 0⩽ θd ⩽ 2π

0, otherwise
. (26)

For the generalN=M⩾ 1 case, let ϕEn and ϕEn+1

be the pair of headings for the nth escape region and
let δEn be the corresponding arc length. The probab-
ility density function for θd is

f(θd) =



δE1∑N
m=1 δ

2
Em

, ϕE2 − δE1/R< θd < ϕE2

...
δEN∑N
m=1 δ

2
Em

, ϕEN+1 − δEN/R< θd < ϕEN+1

0, otherwise

.

(27)
Figure 7 illustrates the evader’s probability dens-

ity function for θd. The positions of the pursuer and
evader are shown in figure 7(a), where the evader is
also near two boundaries. The corresponding prob-
ability density function θd is computed using (27) and
is shown in figure 7(b).

In the next section, we use (27) to compute the
expected work to capture the evader for the resting
appendages case,ψ= 0, and for the active appendages
case, ψ = π/2. We can determine when it is advant-
ageous for the pursuer to expand its appendages by
comparing the expected work for these two cases.

4. Shape-changing predation strategy

This section analyzes the use of the pursuer’s append-
ages to aid in capturing the evader. First, we com-
pute the work required for the pursuer to capture the
evader as a function of the appendage orientation ψ.
Second, we derive the expected work to capture the
evader using the evader’s probability density function
for its escape heading. Third, we compare the expec-
ted work for the ψ= 0 and ψ = π/2 cases to determ-
ine when the efforts to trap the evader outweighs the
additional effort due to increased drag.

4.1. Work to capture the evader and the expected
work
Since the pursuer has a constant speed VP, its
thrust and drag forces are balanced, i.e. TP = Dp,
and TP is aligned with the pursuer’s velocity VP.
Substituting (13) into (9) gives the work required
to capture the evader during its non-active steering
phase, i.e.

WP(ψ) = b(1+H sin(ψ))VP|rE/Pf |

×
(
K2 +Kcos(α− θe)

K2 − 1

)
. (28)

8
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Figure 7. Probability density function of the evader’s escape direction as a function of the relative position with the pursuer and
proximity to the boundary (black lines). (a) The pursuer and the boundary are in the evader’s blue sensing region, the solid green
lines represent the evader’s possible escape directions, and the dashed gray lines represent the evader’s avoidance directions;
(b) the corresponding probability density function for the evader’s escape heading.

The work to capture the evader depends on the
evader’s heading θe and the pursuer’s appendage ori-
entation ψ. Regardless of the evader’s heading, the
work for ψ= 0 is always less than the work for ψ =
π/2 for all H> 0, where H is the drag increase
due to appendage expansion. Computing the work
alone does not account for the minimization of the
evader’s escape routes by expanding the appendages,
so instead we use the expected work.

Due to the stochastic nature of the evader’s head-
ing, we compute the expected value of work by sub-
stituting (28) into (4) and evaluate the integral with
the appropriate probability density function for the
evader’s heading.

For the N = 0 case, neither the pursuer nor the
boundary are in the sensing region and the evader’s
escape heading probability density function is (26).
The corresponding expected work is

E[WP(ψ)] =
b(1+H sin(ψ))VP|rE/Pf |

K2 − 1
K2. (29)

Since the pursuer is beyond the sensing region, (29)
does not depend on the minimization of escape
routes, and the expected work for ψ= 0 is always less
than the expected work for ψ = π/2, i.e. E[Wp(ψ =
0)]< E[WP(ψ = π/2)] for N = 0. Therefore, when
there are no avoidance regions and when |rE/Pf |> R
it is never advantageous for the pursuer to expand the
appendages.

For the generalN⩾ 1 case, the probability density
function for the evader’s escape heading is (27) and
the expected work is

E[WP(ψ)] =
b(1+H sin(ψ))VP|rE/Pf |
(K2 − 1)

∑N
m=1 δ

2
Em
(ψ)

X(ψ), (30)

where

X(ψ) =
N∑

q=1

δEq(ψ)

(
K2 δEq(ψ)

R
+K

(
sin(α−ϕE2q)

− sin

(
α−ϕE2q −

δEq(ψ)

R

)))
. (31)

Unlike the actual work in (28), the expected work
in (30) accounts for the reduction in the evader’s
escape region due to the boundary and the orienta-
tion of the pursuer’s appendages.

4.2. Minimizing the expected work
This section uses the expected work in (30) to analyze
the trade-off between minimizing the evader’s escape
region and minimizing the work to capture. In gen-
eral, the advantages from expanding the appendages
depends on the additional dragH felt by the pursuer.
To analyze this trade-off we evaluate the conditions
on H that satisfy

E[WP(ψ = π/2)] ⩽ E[WP(ψ = 0)]. (32)

Condition (32) is called the shape-changing condi-
tion and is satisfied if the expectedwork to capture the
evaderwith expanded appendages is less than or equal
to the expected work with swept back appendages.

Substituting (30) into (32) yields the following
condition on H:

H⩽
(

X(0)

X(π/2)

N∑
m=1

δ2Em
(π/2)

δ2Em
(0)

)
− 1. (33)

Condition (33) is called the max drag increase condi-
tion and acts as an upper limit to the amount of addi-
tional drag due to appendage expansion when condi-
tion (32) is also satisfied.

9
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Figure 8. Numerical illustrations of the shape-changing boundary (orange region) during pursuit with a 15% increase in drag
due to appendage expansion: (a) the evader (blue dot) is far from the boundary so the shape-changing boundary has axial
symmetry; (b) the pursuer enters the evader’s sensing region (blue circle) and the shape-changing boundary so it expands it
appendages to minimize the evader’s escape directions; (c) the evader is near the domain boundary so the shape-changing
boundary loses axial symmetry and the evader is also captured; (d) the shape-changing boundary for a variety of evader positions
in the bounded environment.

During pursuit, if the pursuer’s additional drag
H> 0 satisfies the condition in (33), then the min-
imization of the evader’s escape region outweighs the
minimization of the pursuer’s work to capture, and
the pursuer should expand its appendages. For prac-
tical systems, the exact value ofH depends on the geo-
metry of the pursuer’s body.

The remainder of this paper discusses how condi-
tions (32) and (33) affect the predation strategy of the
pursuer.

4.3. The optimal shape-changing boundary
This section numerically analyzes the spaces where
conditions (32) and (33) are satisfied in the bounded
environment. To illustrate the spaces where it is
advantageous for the pursuer to extend the append-
ages, we place the evader in a fixed location and
evaluate condition (32) for varying positions of the
pursuere additional drag was assumed t. The bound-
ary of the area under which conditions (32) and (33)
are satisfied is called the shape-changing boundary.
During pursuit, if the pursuer crosses the shape-
changing boundary, then it should extend its append-
ages to minimize the evader’s escape directions; oth-
erwise, it should relax its appendages to minimize
drag. The geometry of the shape-changing bound-
ary depends on the evader’s proximity to the walls
of the domain and the geometrical changes in the

shape-changing boundary gives insights to the role of
environment in the pursuit-evasion interaction.

In figures 8(a)–(c), we numerically compute the
shape-changing boundary for the predation traject-
ories shown in figure 5 with the additional drag set
to H= 0.15. When the evader is far from the walls of
the environment, the shape-changing boundary has
axial symmetry with a radius less than the evader’s
max sensing range, see figures 8(a) and (b). Due to
the evader’s inability to respond when the pursuer is
beyond the sensing range, the radius of the shape-
changing boundary is always less than or equal to the
sensing radius. When the evader is near the walls of
the environment, the shape-changing boundary loses
axial symmetry and its geometry depends on the its
proximity to one or multiple walls; see figure 8(c).

Figure 8(d) shows the shape-changing bound-
ary for multiple evader positions with H= 0.15 and
R= 1. When the evader is near a single wall, the
shape-changing boundary’s maximum radial dis-
tance is parallel to the wall and the minimal radial
distance is perpendicular to the wall. The maximal
radial distances implies that the pursuer canminimize
its expected work earlier in the interaction, whereas,
the minimal radial distances implies that the pur-
suer needs to get closer to the evader before it can
expand its appendages. As the evader approaches a
single wall, the area of the shape-changing boundary

10
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Figure 9. Numerically computed level curves for the percent difference in expected work to capture the evader during pursuit and
a 15% increase in drag: (a) the evader is far from the domain boundaries and the level curves of the percent difference in expected
work have axial symmetry; (b) the evader is near a single wall with optimal pursuit trajectories being approximately parallel to the
boundary minimizing the number of the evader’s escape regions; (c) the percent difference level curves for variety of evader
locations.

decreases and it becomes increasingly less advantage-
ous to approach the evader in directions perpendicu-
lar to the wall. Similar trends are observed, when the
evader is near multiple walls.

Since the geometry of the shape-changing bound-
ary changes with the evader’s proximity to the envir-
onmental boundaries, the walls can be used to aid
the pursuer by providing optimal pursuit trajector-
ies that minimize the expected work earlier in the
interaction. Notice that the area of shape-changing
boundary greatly decreases when the evader is close
to the corner of the closed environment; see lower
right corner of figure 8(d). The large decrease in area
implies that while there are optimal pursuit traject-
ories, the distance between the pursuer and evader
needs to be small before the shape-changing con-
dition is valid. Further implications of this scenario
suggest that as the evader gets more cornered by the
environment, it becomes less advantageous to trap
the evader with the appendages. Also, notice that
the shape-changing boundary exists even when the
evader is far from walls. This implies that there are
advantages to using the appendages to trap the prey
even in perceived open spaces. Optimal pursuit tra-
jectories become more evident when evaluating the
level curves of the percent difference in expected
work.

While figure 8 illustrates the outer limits of the
shape-changing boundary, the figures in figure 9
illustrate the level curves of the percent difference
in the expected work to capture the evader due to
extending the appendages. The percent difference in
expectedwork is computed by evaluating E[WP(π/2)]
and E[WP(0)], from (30), for a fixed evader location
and all possible pursuer locations, and using the fol-
lowing formula:

%Diff= 100

(
E[WP(π/2)]− E[WP(0)]

E[WP(0)]

)
. (34)

Following the gradient of the percent difference level
curves yields an optimal pursuit trajectory.

In cases where the evader is far from boundaries,
see figure 9(a), the level curves maintain axial sym-
metry with increasing reductions in expected work
as |rE/Pf | decreases. The axial symmetry of the level
curves implies that there are no sub-optimal pursuit
trajectories when the evader is far from boundaries.
Optimal pursuit trajectories appear when the evader
is near a boundary. Figures 9(b) and (c) show the level
curves of the percent difference when the evader is
near a single wall and the level curves for a variety
of evader positions respectively. When near a single
wall, the sub-optimal trajectories are perpendicular
to the detected boundary and the optimal trajectories
are parallel to the boundary. When the evader is near
a detected boundary, the optimal pursuit trajectories
imply that directly cornering the evader such that it
has an equal probability of choosing any escape dir-
ection parallel with the boundary is sub-optimal. In
cases when the evader is near a single wall or near a
corner, the optimal pursuit trajectories minimize the
number of escape regions for the evader. This qual-
itative analysis suggests that the optimal pursuit tra-
jectories seek to eliminate the evader’s split unpre-
dictable flee directions making the evader’s behavior
more predicable.

Thus far, the additional drag was assumed to be
H= 0.15; however, themax allowable additional drag
is computed with (33). To illustrate how the addi-
tional drag affects the shape-changing boundary, we
evaluate (33) for a fixed evader position and all pos-
sible pursuer positions in the bounded environment.
Figures 10(a) and (b) show snapshots during pursuit
with the level curves of the maximum additional drag
that satisfies (32). The level curve of the additional
drag for H= 0.15 is equivalent to the outer limit of
the shape-changing boundary in figure 8. In general,
as the value of H increases the radius of the shape-
changing boundary decreases; see figure 10(c). For
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Figure 10. Snapshots of the pursuit trajectories with numerical illustrations of the shape-changing boundary for various drag
coefficients: (a) as the pursuer approaches the evader and crosses the shape-changing boundary for H= 0.15 it expands its
appendages to minimize the evader’s escape directions; (b) the evader is captured near a detectable wall and the level curves of the
shape-changing boundary loses axial symmetry; (c) the level curves of the added drag for multiple evader positions.

Figure 11. Numerical illustrations of the the shape-changing boundary for various sizes of the evader’s sensing region and various
evader positions in a bounded environment: (a) the evader is placed at six positions in the environment where it does not sense
the walls and shape-changing boundary maintains axial symmetry; (b) the evader is near a single wall and the 20% of the sensing
region is excluded by the boundary; (c) the evader is in the corner of the environment and 20% of the sensing region is excluded
by the boundary.

higher values of H, the pursuer needs to get closer
to the evader before it is advantageous to minimize
the evader’s escape directions. While there are bene-
fits for this predation strategy for high values of addi-
tional drag, the close proximity requirement makes it
less tractable.

Due to the assumption that the evader is unre-
sponsive until the pursuer or boundary are in the
sensing region, the size of the evader’s sensing region
effects the interaction. Figures 11(a)–(c) illustrate
how the radius of the sensing region effects the shape
changing boundary for various evader interactions
with the walls. Depending on the evader’s position in
the environment, the sensing radius scales and trun-
cates the shape-changing boundary.

In figure 11(a) the evader is placed in six loca-
tions far from the walls in the environment and the
shape-changing boundary maintains axial symmetry
regardless of sensing radius. For small sensing radii,

the radial distance of the shape-changing bound-
ary decreases. As the sensing radius increase, the
size of the shape-changing boundary increases until
it reaches an upper limit. Similar trends are fol-
lowed when the evader is near a single wall in
figure 11(b) and when the evader is near a corner
in figure 11(c). For consistency, the evader is posi-
tioned such that 20% of its sensing region is blocked
by the environmental boundary for each sensing radii
in figures 11(b) and (c). A small sensing radius in
conjunction with close proximity to a wall trun-
cates the shape-changing boundary and decreases
its scale; however, as the sensing region increases,
the scaling and truncation diminishes and the area
of the shape-changing boundary approaches a con-
stant. Overall, the shape and geometry of the shape-
changing boundary is determined by evader’s posi-
tion and proximity to the walls of the environment
and the scale and truncation of the shape-changing
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Figure 12. Lionfish (Pterois volitans) with its pectoral fins flared.

boundary is determined by the evader’s sensing
radius. The shape-changing boundary’s convergence
to a constant maximum area is due to the trade-off of
the shape-changing strategy. The pursuer’s append-
ages are less effective at blocking the evader’s field of
view at greater distances, so the pursuer should pri-
oritize minimizing drag until it reaches the shape-
changing boundary.

5. Conclusion

This paper presents a bioinspired pursuit-evasion
game in a closed environment with one pursuer
and one evader. We model the pursuer as a stream-
lined body with symmetrically actuated appendages
in pure pursuit of an intermittently steering point
mass evader. To avoid capture, the evader uses a pro-
tean strategy, which steers in a random escape direc-
tion to be less predictable to the pursuer. The evader’s
random escape direction has a probability density
function that depends on its proximity to the pur-

suer, the boundary, and the orientation of the pur-
suer’s appendages. This bioinspired shape-changing
predation strategy allows the pursuer to actively use
its appendages to trap the evader by minimizing
the evader’s escape routes, but at the cost of incur-
ring additional hydrodynamic drag. Ultimately, this
work investigates the trade-off between minimizing
the work to capture the evader and using appendages
to trap the evader. We show that actively using the
appendages to trap the evader outweighs the effects of
additional drag once the pursuer is sufficiently close
to the evader. Furthermore, we show that the envir-
onments boundaries can be used to aid the pursuer by
providing optimal pursuit trajectories that minimize
the expected work to capture the evader andmake the
evader’s flee direction more predictable.

During a pursuit-evasion interaction with a
stochastic evader, the pursuer does not know the dir-
ection the evader will steer, the total duration of the
interaction, or the total amount of work required to

capture the evader. In an effort to reduce the variance
of stochasticity during the interaction, the pursuer
can employ the shape-changing strategy. Once the
pursuer is in the evader’s sensing region, the pursuer
can expand its appendages to reduce the evader’s pos-
sible flee directions,making the evader’s next decision
more predictable, albeit at the cost of incurring addi-
tional drag and increasing the momentary work. The
shape-changing strategy is beneficial to the pursuer in
both open and closed environments, but additional
benefits exist for closed environments, or at least
environments with structures. The walls of the envir-
onment act as obstacles for the evader and further
reduce the variance of its flee direction. A pursuer can
exploit these obstacles in conjunction with the shape-
changing strategy to influence the evader. When the
evader is near a single wall or corner, approaching
it in certain directions can cause a bifurcation in
the evader’s flee direction. These bifurcations are less
favorable to the pursuer because it splits the overall
probability that the evader will choose either the left
or right direction. Instead, the pursuer should take a
trajectory that exploits the walls and forces the evader
to swim in one general direction. As the evader gets
closer to the boundary, the appendages become less
useful and the pursuers should prioritize minimizing
drag.

Drag has an integral role in the shape-changing
strategy. The pursuer’s nominal drag affects the mag-
nitude the work and expected work to capture, but
the added drag from appendage expansion makes
the shape-changing strategy viable. If the added drag
is above an upper limit, then using the appendages
to reduce the evader’s randomness never outweighs
minimizing the work to capture. As the added drag
decreases, the benefit of using the shape-changing
strategy increases. For practical robotic systems, the
design of the appendages can again draw inspiration
from the lionfish (Pterois volitans), whose pectoral
fins are comprised of several feather-like spines, see
figure 12. A similar appendage structure would allow
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the robot to greatly increase its ability to block the
evader’s field of view while not significantly increas-
ing its own hydrodynamic drag.

The evader’s sensing radius also plays a role in
the pursuit-evasion interaction. In open environ-
ments, the radius of the evader’s sensing region is
directly proportional to the scale of shape-changing
boundary until the sensing radius is greater than
the shape-changing boundary’s max-radial distance.
Near the walls of the environment the sensing radius
and the wall contribute to the scaling and truncation
of the shape-changing boundary. From the evader’s
point of view, a small sensing radius means that
the evader cannot respond to the pursuer until it
is maybe too late; whereas, a larger sensing radius
means that the evader can respond sooner. As the
sensing radius increases, the field of view blocked by
the expanded appendages decreases when the pur-
suer enters the sensing region. This inverse propor-
tional relationship implies that the pursuer’s width
and appendage length influence the scale of the
shape-changing boundary and that optimizing these
parameters yields the optimal size of the shape-
changing boundary. Understanding the full effects of
the evader’s sensing radius over the entire interaction
is a suitable topic for ongoing and future research.

Inspired by the characteristics of lionfish preda-
tion, the presentwork provides amathematicalmodel
that investigates the trade-off between minimizing
the work to capture and using drag-inducing append-
ages to trap an evader and implements a shape-
changing strategy. We do not claim that the shape-
changing strategy accurately models lionfish pursuit
behavior, but it may be a viable pursuit tactic for a
variety of engineered and robotic systems not limited
to the underwater domain.

Ongoing and future work seeks to vary the size of
the environment, the sensing radius, and the relative
speeds of both agents for the shape-changing strategy
and other pursuit strategies to measure its compar-
ative performance. Other possible research directions
to expand this work to include cases with a slower
pursuer and an intermittently faster evader, multiple
flocking evaders and a single pursuer, and the consid-
eration of additional structures in the environment.
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