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ABSTRACT 

Title: MYOSTATIN RELATED GENE 
ASSOCIATIONS WITH MUSCLE MASS AND 
STRENGTH IN HUMANS 

 

     Sean Walsh, Ph.D., 2006 

Directed by:    Assistant Professor Stephen M. Roth, 
     Department of Kinesiology 
 

INTRODUCTION: The gradual decline in muscle mass with age is known as sarcopenia, 

and has been associated with an increased risk of falls, hip fractures, and functional 

decline.  However, there is large inter-individual variability in this decline, even among 

people of a similar age and sex.  Heritability studies have shown that genetic factors can 

account for up to 90% of this variation in muscle mass and ~65% in muscle strength.  

Myostatin is a negative regulator of skeletal muscle and plays a key role in muscle 

development and the maintenance of muscle mass. However, DNA sequence variation 

within this gene has not been consistently associated with skeletal muscle mass nor 

muscle strength in humans.  PURPOSE: The purpose of this dissertation was to examine 

genetic variation in follistatin and Activin RIIB (ACVR2B), two myostatin related genes, 

to explore associations with skeletal muscle related phenotypes.  METHODS: Three 

hundred fifteen Caucasian males and 278 Caucasian females aged 19-90 years from the 

Baltimore Longitudinal Study of Aging were genotyped to determine respective 

haplotype groupings.  Whole-body soft tissue composition was measured by dual-energy 

X-ray absorptiometry.  Peak torque (strength) was measured using an isokinetic 

dynamometer.  RESULTS: Women heterozygous for ACVR2B haplotype groups 1 and 2 
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exhibited significantly less concentric quadriceps muscle strength than women 

homozygous for haplotype group 2 (108.7 ± 2.2 vs 118.6 ± 4.1 N·m, .52rad/sec, 

respectively, p <0.05).  No significant association was observed in men.  However, men 

homozygous for follistatin haplotype group 1 exhibited significantly greater total leg 

FFM than men heterozygous for follistatin haplotype groups 1 and 3 (17.8 ± 0.2 vs 16.7 ± 

0.4 kg, respectively, p <0.05) and significantly greater total leg FFM than non-carriers of 

follistatin haplotype group 1 (17.8 ± 0.2 vs 16.5 ± 0.5 kg, respectively, p <0.05).  

Moreover, male carriers of follistatin haplotype group 3 exhibited significantly less total 

leg FFM than non-carriers (16.6 ± 0.3 vs 17.5 ± 0.2 kg, respectively, p <0.05).  No 

significant associations between these groups were observed in women.  

CONCLUSIONS: The data indicate that the ACVR2B and follistatin loci may contribute 

to the inter-individual variation in skeletal muscle mass and strength.    
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INTRODUCTION 

Skeletal muscle mass gradually declines starting at about age 45 years (61) and it 

is estimated that after the fifth decade 6% of muscle mass is lost per decade until the 

eighth decade of life in men (80).  This loss of muscle mass that occurs with healthy 

aging is commonly known as sarcopenia, a Greek term coined by Rosenberg referring to 

the “poverty of flesh” (106) denoting this tissue loss with age.  $18.5 billion dollars was 

the estimated direct healthcare cost attributable to sarcopenia in 2000 and it is currently 

estimated that ~45% of the older population ( > 60 yrs of age) is sarcopenic (61) with 

sarcopenic women having 3.6 times higher rates of disability and men 4.1 times higher 

rates of disability than non-sarcopenic individuals (8).   Furthermore, the loss of muscle 

strength is an independent predictor of mortality in the elderly (88; 101).  The negative 

economic impact of sarcopenic related disability at the societal level is clear, while the 

cost of the reduction in quality of life for these individuals can’t be easily calculated. 

Despite its relatively short history, myostatin has quickly become an established 

target of study for skeletal muscle researchers interested in identifying mechanisms of 

muscle development and therapies for muscle-related disorders.  First reported in 1997 by 

McPherron et al. (85), myostatin (growth and differentiation factor-8) was identified in 

mice as a transforming growth factor-β (TGF-β) family member that acts as a negative 

regulator of skeletal muscle growth.  Soon after the initial report of myostatin’s 

discovery, several groups identified mutations in the myostatin gene in naturally-bred 

“double-muscled” cattle breeds (41; 86), providing additional evidence for a critical role 

for myostatin in muscle development, and thus establishing myostatin as the key target it 

has become for muscle researchers. 
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Identifying how myostatin influences skeletal muscle and what processes regulate 

myostatin expression and activity has dominated the myostatin literature in the past few 

years.  Following up their initial discovery, Lee and McPherron (74), established putative 

myostatin receptors (activin-type II receptors A and B; ACVR2A and B) and negative 

regulators (the myostatin propeptide and follistatin), and formalized a basic model of 

myostatin regulation.  With the identification of ACVR2B as a primary myostatin 

receptor and the myostatin propeptide (124; 139) and follistatin as negative regulators of 

myostatin activity, Lee and McPherron (74) put forth the following model of myostatin 

regulation in 2001: the myostatin C-terminal dimer remains in a latent complex with the 

inhibitory propeptide. This latent complex can be further negatively regulated by binding 

with follistatin, and upon release of the negative regulators, myostatin is free to signal 

through its receptors, primarily ACVR2B.  Lee and McPherron (74) demonstrated that 

myostatin binding to ACVR2B receptors was specific and saturable, and transgenic mice 

with increased muscle expression of a dominant negative form of ACVR2B had 

increased muscle weights, with individual muscles weighing up to 125% more than those 

of control nontransgenic animals.   

Several studies have shown that follistatin can function as a potent myostatin 

antagonist and plays an important role in vivo.  First, follistatin is capable of blocking 

myostatin activity in both receptor binding and reporter gene assays (74; 142).  Secondly, 

genetic studies in mice have shown that overexpression of follistatin in muscle can cause 

dramatic increases in muscle growth.  Lee and McPherron (74) generated transgenic mice 

in which the myosin light chain promoter/enhancer was used to drive the expression of 

follistatin and dramatic effects on skeletal muscle were seen.  In one animal muscle 
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weights were increased by 194-327% relative to control animals; thus it appears, 

follistatin appears to be a potent myostatin antagonist (74). 

Despite myostatin’s remarkable influence on skeletal muscle and the well-

established effect of myostatin gene mutations in double-muscled cattle breeds, studies of 

myostatin genetic variation in humans have shown little association with muscle 

phenotypes.  Ferrell and coworkers (33) identified several common polymorphisms in the 

human myostatin gene, with six nucleotide changes observed, of which five are predicted 

to lead to amino acid sequence changes, but in follow-up work by that group and others 

only minor associations have been observed for the most common of these 

polymorphisms with muscle mass or strength (58; 118).   Scheulke and colleagues (116) 

reported a novel loss-of-function mutation in the myostatin gene of a young child who 

when born appeared extraordinarily muscular, with protruding muscles in his thighs and 

upper arms.  However, the mutation is not common and is considered rare. The mutation 

was absent in 200 alleles from control subjects with a similar ethnic background.  Recent 

work has focused on genetic variation in myostatin pathway genes (55; 56),  specifically 

genes involved in the signaling cascade once myostatin signaling has been initiated. 

However, myostatin pathway genes upstream of this signaling cascade have yet to be 

examined. 

Therefore, the purpose of this study was to examine genetic variation in follistatin 

and ACVR2B to determine associations with skeletal muscle mass and skeletal muscle 

strength.   
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HYPOTHESES 

Hypothesis 1:  Polymorphic genetic variation in a primary myostatin receptor, 

ACVR2B, will be associated with significantly different levels of muscle mass 

and strength. 

 
Hypothesis 2:  Polymorphic genetic variation in follistatin will be associated with 

significantly different levels of muscle mass and strength. 
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METHODS 

Subjects 

The subjects included in this study were Caucasian and came from the Baltimore 

Longitudinal Study of Aging (BLSA), an ongoing NIA-funded investigation of normal 

aging.  All volunteer subjects enrolled in this study  receive a complete physical 

examination, a bone scan, a joint pain assessment questionnaire, a physical-activity 

questionnaire, and a functional assessment, among other tests; those with clinical 

cardiovascular and musculoskeletal disease are excluded, as are subjects with active neck 

and back pain, frequent and severe joint pain, prior joint surgery, prior bone scan below 

normal for their age, any recent (6 mo) major surgery, or other condition that might be 

aggravated by testing. All subjects are asked questions on a physical-activity 

questionnaire concerning their involvement in weight training exercise. The average 

number of minutes per week is recorded, analyzed, and compared among the various age 

groups.  Only a very small percentage of subjects (<1%) participate in any type of regular 

resistive exercise, and there is no significant difference in participation by age or gender 

(77).  Before the study, all subjects receive a complete explanation of the purpose and 

procedures of the investigation and give their written informed consent. 

Body Composition 

Data collected for body composition variables were obtained using methods 

previously approved by the BLSA (77).  Body mass and height were measured to the 

nearest 0.1 kg and 0.5 cm, respectively, using a Detecto medical beam scale.  Total body 

fat and soft tissue fat free mass (FFM) and total leg fat and FFM (both legs combined) 
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were assessed by dual-energy X-ray absorptiometry (DEXA) (model DPX-L Lunar 

Radiation, Madison, WI) using previously described methods (77).  Soft tissue  FFM was 

used as a valid indicator of muscle mass based on previous work (39; 136).  

Measurement of Muscle Strength 

Data collected for muscle strength variables were obtained using methods 

previously approved by the BLSA (77).  Peak torque (strength) was measured using the 

Kinetic Communicator isokinetic dynamometer (Kin-Com model 125E, Chattanooga 

Group, Chattanooga, TN). Concentric (Con) peak torque was measured at angular 

velocities of 0.52 rad/s (30 deg/sec) and 3.14 rad/s (180 deg/sec) for the dominant knee 

extensors.  All subjects performed a 5-min warm-up on a stationary cycle ergometer, 

followed by mild stretching of the hamstring and quadriceps muscle groups.  Three 

graded submaximal practice repetitions were performed prior to each test. For each test, 

subjects performed three maximal efforts, separated by 30-s rest intervals. Each test is 

separated by a 2-min rest period. The best of the three maximal efforts was used as peak 

torque.  Peak torque was assessed by using the Kin-Com computer software (version 3.2). 

Reliability of strength testing when using the Kin-com dynamometer has been reported 

elsewhere (50). However, Lindle et al. (77) performed a test-retest reliability study using 

10 older men to determine reliability of the specific test machine and protocol used by the 

BLSA.  Subjects were tested twice, separated by a 1-wk interval.  For concentric torques 

at both test velocities in the knee extensor muscle groups, intra-class correlation 

coefficients ranged between 0.96 and 0.99.  Coefficients of variation ranged between 

1.5 and 7.5%, with a mean coefficient of variation value for all tests of 5%.  Detailed 
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procedures regarding subject positioning and stabilization, gravity correction, and Kin-

Com calibration are described elsewhere (77; 80).  

Haplotype Block Determination 

 A graphical genome browser maintained by the International HapMap Project 

website (http://www.hapmap.org) was used to navigate to the particular regions 

surrounding the candidate genes of interest and retrieve HapMap genotype data for all 

genotyped markers in the selected regions in a format accepted by Haploview, a software 

program designed to provide a number of tools for haplotype analysis (6).  Haploview 

calculated pairwise measures of linkage disequilibrium (LD) among the polymorphisms 

in each region and created haplotype blocks based on the definition of haplotype blocks 

provided by Gabriel and colleagues, one of several commonly used block definitions 

used to partition the region of interest into segments of strong LD (6).  Block structures 

and specific polymorphisms for each gene are shown in the results section. 

Haplotype Grouping 

One issue inherent in haplotype association studies is haplotype complexity.  

Although haplotypes may be more informative than single markers, the power of 

haplotype analysis is reduced by the potentially large number of haplotypes that are 

present in large haplotype blocks.  A statistical approach known as the sliding window 

has been developed to address this issue (9; 20; 126; 141).  The sliding window helps to 

focus on the candidate region of interest and assess evidence for association within each 

window, helping to reduce the dimensionality of haplotype analysis (141).  Therefore, 

given the size and complexity of the block containing the follistatin gene, the four single 

nucleotide polymorphisms (SNPs) closest to the follistatin gene that fell within the 
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greater haplotype block structure were used as the window for analysis regarding this 

haplotype in order to create three haplotype groups rather than five groups.  The rationale 

for inclusion of these four SNPs is that all four of these SNPs fall within the follistatin 

gene, therefore any true causal variants within the follistatin gene would be linked to one 

of the three haplotype groups analyzed.   

Genotyping 

All subjects participating in the present study consented to and provided DNA for 

genetic analysis of muscle-related phenotypes.  Standard procedures were used to obtain 

a 10 ml blood sample from consented subjects, and genomic DNA was prepared from the 

EDTA-anticoagulated whole blood samples by standard salting-out procedures (Puregene 

DNA Extraction, Gentra Systems Inc.).  Genotyping of SNPs was performed using the 5' 

nuclease allelic discrimination or TaqMan assay (79) for high-throughput genotyping. 

 Each 12.5 µL polymerase chain reaction (PCR) contained 1.5 µL (10-20 ng) of 

genomic DNA, 0.625 µL of 20X diluted SNP mix (SNP rs #’s are shown in the results 

section), 4.125 µL DNAse free dH20, and 6.25 5 µL of 2X TaqMan Universal PCR 

master mix (Perkin-Elmer, Applied Biosystems Division), which is a solution containing 

buffer, Uracil-N-glycosylase, deoxyribonucleotides, uridine, passive reference dye 

(ROX), and TaqGold DNA polymerase. The PCR cycling protocol consisted of the 

following: 50º  for 2 minutes, 95 º for 10 minutes, 70 cycles of 92 º for 15 seconds and 60 

º for 1 minute.  Fluorescence in each well was measured using an ABI 7300 Real Time 

PCR System machine (Perkin Elmer, Applied Biosystems Division).  Analysis of raw 

data to determine genotypes was performed by the ABI 7300 Sequence Detection System 



9   
 

software.  For quality control purposes, twelve samples were directly sequenced for each 

assay and used in each 96 well plate as sequencing controls.    

Statistical Analyses 

Statistical analysis relied on analysis of co-variance (ANCOVA) to compare 

means among haplotype groups for all outcome variables controlling for possible 

confounding factors by adding covariates such as age, height, and weight when 

significant.  Given the complexity of the follistatin haplotype structure, specific 

haplotype groups were collapsed to improve statistical power (Appendix C). Analyses 

were performed within each sex group.  Data presented are least squares means ± 

standard error (SE), except where noted.  Analysis of variance (ANOVA) models were 

used to test for differences in physical characteristics among ACVR2B and follistatin 

haplotype groups.  Physical characteristic data are presented as means ± SE.  Statistical 

significance for the ANCOVA and ANOVA models was accepted at p < 0.05.  For all 

non-significant results, the omnibus p-value is shown in the tables; for all significant 

results, the specific contrast p-values are reported.  

 All analyses shown were performed in Caucasians only.  Although the BLSA 

cohort is of mixed race (though predominantly Caucasian), differences in allele 

frequencies for each of the three SNPs in the present study between Caucasians and 

African Americans prevented combining race groups for statistical analysis.  Although 

underpowered due to small sample size, exploratory analyses performed in African 

Americans only did not reveal any significant associations (data not shown). 
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RESULTS 
 

ACVR2B Receptor Haplotype  
 

HapMap database research into the haplotype structure of the genome sequence 

surrounding the myostatin receptor gene, ACVR2B, revealed the following haplotype (Hap) 

block and frequencies: 

Table 1: ACVR2B Haplotype Structure. 

 Snp1 Snp3 Snp5 Snp8 Snp10 Snp11 Snp14 Snp15 Snp16 Freq 
Hap 1 A T T T A A A T T 0.615 
Hap 2 C C C C G G C C G 0.273 
Hap 3 C C C C G A A T G 0.05 
Hap 4 A T T T A G A T T 0.034 
Hap 5 C C C C A G C C G 0.01 

 

Genotyping SNP 8 (rs: #2268757), located in intron 1 of the ACVR2B gene, 

captured the majority of the information of this haplotype block and created two related 

Haplotype Groups.  Hap1 (.615) along with Hap 4 (.034) were considered one group 

(Haplotype Group 1) due to their high degree of similarity, sharing eight of nine alleles, 

and Hap 2 (.273), Hap 3 (.05), and Hap 5 (.01) were considered a second haplotype group 

(Haplotype Group 2), sharing a minimum of five of nine alleles to a maximum of eight of 

nine alleles.  

 In men, haplotype group frequencies were 25.1 % for homozygous haplotype 

group 1, 58.4 % for heterozygous haplotype groups 1 & 2, and 16.5 % for homozygous 

haplotype group 2, while in women, haplotype group frequencies were 23.7 % for 

homozygous haplotype group 1, 58.1% for heterozygous haplotype groups 1 & 2, and 

18.2 % for homozygous haplotype group 2.  Subject characteristics are shown by 

ACVR2B haplotype group in Table 2.  No significant differences existed by ACVR2B 
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haplotype group for any physical characteristic, however, women heterozygous for 

haplotype groups 1 and 2 tended to be younger in comparison to the other haplotype 

groupings. 

Table 2:  Subject characteristics by ACVR2B haplotype for Caucasian Men and 
Women. 

Haplotype 
Group 

Homozygous 
Haplotype Group 1 

Heterozygous 
Haplotype 

Groups 1 & 2 
 

Homozygous 
Haplotype Group 2 

P-value 

  MEN   
N 78 181 51  
Age (y) 64.6 ± 1.9 62.1 ± 1.2 59.4 ± 2.4 0.228 
Height (cm) 176.6 ± 0.8 176.2 ± 0.6 176.1 ± 1.0 0.92 
Weight (kg) 86.2 ± 1.5 83.6 ± 1.0 83.9 ± 1.8 0.34 
  WOMEN   
N 70 172 54   
Age (y) 59.4 ± 1.9 a 55.0 ± 1.2 b 59.4 ± 2.1 c a vs b 0.051 

b vs c 0.073 
Height (cm) 163.3 ± 0.8 163.3 ± 0.5 163.4 ± 0.9 0.99 
Weight (kg) 68.4 ± 1.5 67.5 ± .9 65.7 ± 1.7 0.48 
Data are means ± SE.   

As shown in Table 3, women heterozygous for haplotype groups 1 and 2 

exhibited significantly less concentric quadriceps muscle strength than women 

homozygous for haplotype group 2 (108.7 ± 2.2 vs 118.6 ± 4.1 N·m, 30º/sec, 

respectively, p= 0.036).  In a combined analysis of carriers of haplotype group 1 versus 

homozygous haplotype group 2 the same association was observed (109.2 ± 1.9 vs 118.6 

± 4.1 N·m, 30º/sec, respectively, p= 0.039).  No significant strength differences among 

ACVR2B haplotype groups were observed in men.   
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Table 3: Concentric knee extensor peak torque values by ACVR2B haplotype in 
Caucasian Men and Women. 

Haplotype 
Group 

 

Homozygous 
Haplotype 
Group 1 

Heterozygous 
Haplotype 

Groups 1 & 2 

Homozygous 
Haplotype 
Group 2 

P-value  

    MEN       

N  80  184   49    
Concentric 
(N·m, 30º/sec) 

175.7 ± 4.5  167.7 ± 3.0 172.8 ± 5.8 0.307  

Concentric 
(N·m, 180º/sec 

117.6 ± 2.9  114.2 ± 2.0 118.0 ± 3.7 0.495  

  WOMEN 
 

  

N 61 158 48   
Concentric 
(N·m, 30º/sec) 

110.5 ± 3.6  108.7 ± 2.2 a 118.6 ± 4.1 b a vs b 0.036 
   

Concentric 
(N·m, 180º/sec 

72.8 ± 2.4  70.4 ± 1.5 75.4 ± 2.7 0.250 

Data are least squares means ± SE.  Age and height were included in the model as significant 
covariates. 
 

No significant differences were observed in total body FFM or total leg FFM in 

either men or women by ACVR2B haplotype group, however there was a tendency for 

ACVR2B haplotype to be associated with these phenotypes in both men and women.  As 

shown in Table 4, men heterozygous for haplotype groups 1 and 2 tended to have slightly 

lower total body FFM (p = 0.066) and lower total leg FFM (p = 0.07) than men 

homozygous for haplotype group 1, while women homozygous for haplotype group 2 

tended to have slightly lower total body FFM than women homozygous for haplotype 

group 1 (p = 0.10).  
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Table 4:  Soft tissue FFM variables by ACVR2B haplotype in Caucasian Men and 
Women.  

Haplotype Group 
 

Homozygous 
Haplotype 
Group 1 

 

Heterozygous 
Haplotype 

Groups 1 & 2 
 

Homozygous 
Haplotype 
Group 2 

P-value 

    MEN  
 

    

 N  78  181  51   
Total Body FFM (kg) 57.8 ± 0.5 a 56.5 ± 0.3 b 57.8.0 ± 0.7  a vs b 0.066 
Total Leg FFM (kg) 17.7 ± 0.3 a 16.9 ± 0.2 b 17.5 ± 0.4 a vs b 0.07 
  WOMEN   

N  70  172  54   
Total Body FFM (kg) 40.1 ± 0.4 a 39.4 ± 0.2  39.1 ± 0.5 b a vs b 0.10 
Total Leg FFM (kg) 11.3 ± 0.2  11.3 ± 0.1 11.2 ± 0.3 0.891 
Data are least square means ± SE.  Age and height were included in the model as significant 
covariates. 
 
Follistatin Haplotype 
 

HapMap database research into the haplotype structure of the genome sequence 

surrounding the follistatin gene revealed the following haplotype block and frequencies: 

Table 5: Follistatin Haplotype Structure. 

  Snp1 Snp2 Snp3 Snp4 Snp5 Snp6 Snp7 Freq 
Hap 1 A C C C T A T 0.367
Hap 2 A C C T C A C 0.217
Hap 3 A A T C T A C 0.20 
Hap 4 G C C C T G T 0.133
Hap 5 G C C C T A T 0.042
  

SNPs 2, 3, 4 & 5 comprise all the SNPs within the follistatin gene within this 

block and are all intronic.  SNP 2 (rs: # 3797297) is located 7,677 base pairs downstream 

of SNP 1 (rs: # 10080213) while SNP 4 (rs: #12152850) resides 233 base pairs upstream 

of SNP 5 (rs: # 12153205).  By genotyping SNP 2 (rs: # 3797297) and SNP 4 (rs: # 

12152850) the majority of the information of this haplotype structure could be gained.  

Genotyping SNP 2 (rs: # 3797297) separated Hap 3 (Haplotype Group 3) from the rest of 

the haplotypes and by genotyping SNP 4 (rs: #12152850) Hap 2 (Haplotype Group 2) 
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was separated from the remaining haplotypes creating a final group of Hap 1, Hap 4, and 

Hap 5 (Haplotype Group 1) that share a minimum of four of six alleles.  In some 

analyses, different combinations of these three haplotype groups were collapsed to 

improve statistical power. 

In men, haplotype group frequencies were 40.6 % for homozygous haplotype 

group 1, 1.3 % for homozygous haplotype group 2, 3.8 % for homozygous haplotype 

group 3, 21.3 % for heterozygous haplotype groups 1 & 2, 26.3 % for heterozygous 

haplotype groups 1 & 3, and 6.7 % for heterozygous haplotype groups 2 & 3, while in 

women, haplotype group frequencies were 38.8 % for homozygous haplotype group 1, 

3.6 % for homozygous haplotype group 2, 6.1 % for homozygous haplotype group 3, 

19.1 % for heterozygous haplotype groups 1 & 2, 23.4 % for heterozygous haplotype 

groups 1 & 3, and 9.0 % for heterozygous haplotype groups 2 & 3.  Subject 

characteristics are shown by follistatin haplotype group in Table 6.  Men homozygous for 

haplotype group 1 were significantly younger than men heterozygous for haplotype 

groups 1 & 2 (p=0.015) and men heterozygous for haplotype groups 1 & 3 (p= 0.004).  

Women homozygous for haplotype group 1 weighed significantly less than women 

heterozygous for haplotype groups 1 & 2 (p=0.005), while non-carriers of haplotype 

group 1 also weighed significantly less than women heterozygous for haplotype groups 1 

& 2 (p=0.045). 
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Table 6:  Subject characteristics for Follistatin haplotype group 1 homozygous 
carriers, haplotype group 1 heterozygous carriers, and non-carriers of haplotype 
group 1 in Caucasian Men and Women. 

Haplotype 
Group 

Homozygous 
Haplotype  
Group 1 

Heterozygous 
Haplotype 

Groups 1 & 2 
 

Heterozygous 
Haplotype 

Groups 1 & 3 
 

Non-Carriers 
of 

Haplotype  
Group 1 

P-value 

MEN 
N 128 67 83 37  
Age (y) 59.4 ± 1.5 a 65.4 ± 2.0 b 66.1 ± 1.8 c 58.9 ± 2.7 d a vs b 0.015 

a vs c 0.004 
b vs d 0.052 
c vs d 0.027 

Height (cm) 176.9 ± 0.7 175.3 ± 0.9 176.1 ± 0.8 175.9 ± 1.2 0.533 
Weight (kg) 85.4 ± 1.1 82.8 ± 1.6 83.1 ± 1.4 85.6 ± 2.1 0.388 

WOMEN 
N 108 53 65 52  
Age (y) 58.8 ± 1.5 55.7 ± 2.2  55.8 ± 2.0 57.3 ± 2.3 0.583 
Height (cm) 163.2 ± 0.7 164.9 ± 0.9 163.1 ± 0.8 162.3 ± 0.9 0.258 
Weight (kg) 65.4 ± 1.2 a  71.3 ± 1.7 b 68.9 ± 1.5 c 66.4 ± 1.7 d a vs b 0.005 

a vs c 0.066 
b vs d 0.045 

Data are means ± SE.   

 As shown in Table 7, men homozygous for haplotype group 1 exhibited 

significantly more total leg FFM than men heterozygous for haplotype groups 1 and 3 

(17.8 ± 0.2 vs 16.7 ± 0.4 kg, respectively, p=0.007) and exhibited significantly more total 

leg FFM than non-carriers of haplotype group 1 (17.8 ± 0.2 vs 16.5 ± 0.5 kg, 

respectively, p=0.023). Also, when men homozygous for haplotype group 1 were 

compared to men heterozygous for haplotype groups 1 and 3 there was tendency for 

higher levels of total body FFM (57.4 ± 0.4 vs 56.1 ± 0.5 kg, respectively, p=0.061). No 

significant differences were observed for muscle strength phenotypes in men (Appendix 

E-Table A).  No significant associations were observed for FFM or muscle strength 

phenotypes in women for follistatin haplotype groups. 
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Table 7: Soft tissue FFM variables for Follistatin haplotype group 1 homozygous 
carriers, haplotype group 1 heterozygous carriers, and non-carriers of haplotype 
group 1 in Caucasian Men and Women. 

MEN 
Haplotype 

Groups 
 

Homozygous 
Haplotype 
Group 1 

Heterozygous 
Haplotype 

Groups 1 & 2 

Heterozygous 
Haplotype 

Groups 1 & 3 

Non-Carriers of 
Haplotype 
Group 1 

P-value 

Total Body 
FFM (kg) 

        (N) 

57.4 ± 0.4 a  
 

(128) 

56.8 ± 0.6 
 

(67) 

56.1 ± 0.5 b  
 

(83) 

57.9 ± 0.8  
 

(37) 

a vs b 0.061 
  

Total Leg FFM 
(kg)  
(N) 

17.8 ± 0.2 a 
 

(116) 

17.1 ± 0.4 
 

(62) 

16.7 ± 0.3 b 
 

(72) 

16.5 ± 0.5 c 
 

(36) 

a vs b 0.007 
 

a vs c 0.023 
WOMEN 

Haplotype 
Groups 

Homozygous 
Haplotype 
Group 1 

Heterozygous 
Haplotype 

Groups 1 & 2 

Heterozygous 
Haplotype 

Groups 1 & 3 

Non-Carriers 
of Haplotype  

Group 1  

P-value 

Total Body 
FFM (kg) 

        (N) 

39.5 ± 0.4  
 

(108) 

39.7 ± 0.4  
 

(53) 

39.5 ± 0.3  
 

(65) 

39.5 ± 0.4 
 

(52) 

0.903 
  

Total Leg FFM 
(kg)  
(N) 

11.1 ± 0.2   
 

(99) 

11.4 ± 0.3  
 

(49) 

11.6 ± 0.3  
 

(61) 

11.4 ± 0.3 
 

(46) 

0.606 
 
 

Data are least square means ± SE.  Age and height were included in the model as significant 
covariates.   Weight was added as an additional significant covariate for the female analysis. 
 

Due to statistical power limitations a sub-analysis was performed by collapsing all 

carriers of haplotype group 2 into one group and all non-carriers of haplotype group 2 

into a second group.  No significant differences were observed for any muscle mass or 

muscle strength phenotypes in the sub-analysis of haplotype group 2, data not shown 

(Appendix E-Tables C & D).  Similarly, a sub-analysis was performed for haplotype 

group 3 by collapsing all carriers of haplotype group 3 into one group and all non-carriers 

of haplotype group 3 into a second group.  Subject characteristics are shown in Table 8.  

As shown in Table 9, male carriers of haplotype group 3 exhibited significantly less total 

FFM than non-carriers of haplotype group 3 (16.6 ± 0.3 vs 17.5 ± 0.2 kg, respectively, p= 

0.012) and displayed a tendency to have lower total body FFM as well (56.3 ± 0.5 vs 57.4 

± 0.3 kg, respectively, p= 0.055).  No significant differences were observed in either men 
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or women for muscle strength for the haplotype 3 sub-analysis (Appendix E-Table E).   

 
Table 8:  Subject characteristics for Follistatin haplotype group 3 carriers and non-
carriers of haplotype group 3 in Caucasian Men and Women. 

Haplotype 
Group 

Carriers of 
Haplotype Group 3 

Non-Carriers of 
Haplotype Group 3 

 

P-value 

MEN 
N 111 204  
Age (y) 64.3 ± 1.6 61.3 ± 1.1 0.123 
Height (cm) 176.3 ± 0.7 176.2 ± 0.5 0.877 
Weight (kg) 83.8 ± 1.2 84.5 ± 0.9 0.636 

WOMEN 
N 107 171  
Age (y) 56.2 ± 1.5 57.9 ± 1.2  0.387 
Height (cm) 162.7 ± 0.7 163.7 ± 0.5 0.236 
Weight (kg) 67.8 ± 1.2 67.3 ± 0.9 0.718 
Data are means ± SE. 

   

Table 9:  Soft tissue FFM variables by carriers and non-carriers of haplotype group 
3 in Caucasian Men and Women.  

Haplotype Group 
 

Carriers of 
Haplotype 
Group 3 

Non-carriers of 
Haplotype 
Group 3 

P-value 

MEN 
Total Body FFM (kg) 
(N) 

56.3 ± 0.5  
(111) 

57.4 ± 0.3  
(204) 

 0.055 

Total Leg FFM (kg) 
(N) 

16.6 ± 0.3  
(93) 

17.5 ± 0.2  
(187) 

0.012  

WOMEN 
Total Body FFM (kg) 
(N) 

39.7 ± 0.3 
(107)  

39.3 ± 0.3  
(171) 

0.458  

Total Leg FFM (kg) 
(N) 

11.5 ± 0.2  
(97) 

11.2 ± 0.2 
(158) 

 0.276 

Data are least square means ± SE.  Age and height were included in the model as 
significant covariates. 
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DISCUSSION 
 

The principal findings of the present study indicate that the ACVR2B and 

follistatin loci may contribute to the inter-individual variation in muscle mass and 

strength phenotypes.  The present study is one of the first to explore haplotype structure 

of candidate genes and their associations with skeletal muscle phenotypes.  The use of 

haplotype structure has previously served as a tool for human genetic research with the 

initial step of first finding an association to a haplotype, and then subsequently 

identifying the causal mutation(s) that it carries (123). This tool has played a key 

beginning role in helping identify causal genes for mendelian diseases such as diastrophic 

dysplasia (48) and cystic fibrosis (64), and recently for complex disorders such as age-

related macular degeneration (29; 45; 65; 123).  Previous work has shown that there is 

inter-individual variability in the loss of muscle strength with age (77) indicating a 

potential role for genetic variability in the risk for sarcopenia (107).   Given the 

complexity of skeletal muscle mass and strength, the present results regarding the 

haplotype structure of ACVR2B and follistatin will need to be verified in other 

populations with subsequent studies aimed at identifying causal mutations.   

To our knowledge, the present study is the first to explore associations between 

the haplotype structures of the follistatin and ACVR2B genes with skeletal muscle mass 

and strength phenotypes.  Men heterozygous for follistatin haplotype groups 1 & 3 

exhibited significantly less total leg FFM than men homozygous for follistatin haplotype 

group 1 and there was a tendency for the same observation in regards to total body FFM.  

Similarly, male carriers of follistatin haplotype group 3 also showed significantly less 

total leg FFM than non-carriers.  It appears that the influence of follistatin haplotype 
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group 3 has a negative impact on skeletal muscle mass in men.  Sowers and colleagues 

have shown that the loss of 2.5 kg of total lean mass over a 3 year period resulted in 

lower levels of physical functioning (119).  When examining the difference in skeletal 

muscle mass with follistatin haplotype structure, in specific total leg FFM differences, 

follistatin haplotype structure was associated with a 1.3 kg difference in FFM.  We feel 

that leg muscle mass could be a stronger indicator of physical functioning than total lean 

mass.  Lower extremity function has been shown to accurately predict disability across 

diverse populations (44).  Work by Rolland et al. (105) has shown that older individuals 

with lower calf circumferences have greater disability and lower physical function 

leading the authors to suggest “that topography of muscle loss is more associated than 

global muscle mass loss with physical function and disability”.  Although we don’t have 

physical function measures as in the Sowers et al. study, given the importance of muscle 

mass to physical functioning, a difference of 1.3 kg of total leg FFM is likely 

physiologically significant for physical function.   

Women carriers of ACVR2B haplotype group 1 exhibited significantly less 

skeletal muscle strength than women homozygous for ACVR2B haplotype group 2 when 

measured as isokinetic peak torque at 30º /sec.  The difference of ~10 N·m between 

groups is important when considering the age of these subjects.  In a longitudinal study 

by Hughes et al. (53) involving older female subjects (60.4 ± 7.4 yrs) the women 

experienced a 12% decrease in knee extensor strength (-11 N·m) over an ~ 10 year 

follow-up period, measured as isokinetic peak torque at  60º/sec.  The difference in 

muscle strength associated with ACVR2B haplotype is similar to losses of skeletal 

muscle strength that occurred over a decade in women in the study by Hughes et al.  



20   
 

Given the well documented impact that the loss of skeletal muscle strength has on the 

slowing of gait speed, increased risk in falls and hip fractures (4; 15; 100), and as an 

independent predictor of mortality in the elderly (88; 101),  the difference in skeletal 

muscle strength observed in this present study may have important implications.  These 

findings, if verified, may allow for the identification of women who are genetically 

susceptible to low levels of muscle strength.   

The present study is not the first to examine genes within the myostatin pathway 

for an influence on skeletal muscle phenotypes.  Despite myostatin’s remarkable 

influence on skeletal muscle in animal models, studies of myostatin genetic variation in 

humans have shown little association with muscle phenotypes (58; 118).  This has led 

researchers to explore variation in genes involved in the regulation/signaling of 

myostatin.  Two linkage analyses have been performed examining myostatin pathway 

genes with knee strength in humans (55; 56).  Huygens et al. (55) single point linkage 

analysis provided suggestive evidence that GDF8, CDKN1A and MYOD1 may explain a 

portion of the inter-individual variance of knee strength.  However, Huygens and 

colleagues (56) multipoint linkage analysis failed to replicate these findings but did 

observe significant linkage for the CDK2 and RB1 genes as potent quantitative trait loci 

for muscle strength.  While Huygens and colleagues examined genes downstream of 

myostatin (e.g., after myostatin signaling has been initiated), we chose to focus on genes 

upstream of this signaling cascade.  The two candidate genes chosen for the present study 

were follistatin and ACVR2B; follistatin has been shown to be a potent antagonist of 

myostatin (3; 74), capable of binding myostatin and inhibiting its ability to bind to its 

primary receptor, ACVR2B (74; 142).  
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 The molecular basis for the associations observed for the ACVR2B and follistatin 

genes with skeletal muscle phenotypes in the present study is uncertain and cannot be 

addressed by the current study.  However, follistatin has been shown to have a strong 

affinity for myostatin and can completely prevent myostatin receptor activation and 

downstream phosphorylation of Smad3 (3).  Phosphorylation of Smad3, a key step in the 

myostatin cascade in negatively regulating skeletal muscle, induces binding of Smad3 to 

MyoD and represses the activity of the MyoD family of transcription factors resulting in 

inhibition of myoblast differentiation (70; 78). We speculate that perhaps a causal 

mutation yet to be identified within the follistatin haplotype group 3 leads to a decreased 

ability of follistatin to bind and inhibit the activity of myostatin, leading to a greater 

phosphorylation of Smad3, and therefore a reduction in skeletal muscle mass in men.   

In regards to ACVR2B haplotype structure and its observed association with 

muscle strength in women, the absence of myostatin in myostatin null mice has been 

shown to lead to an overall faster and more glycolytic muscle phenotype in these animals 

(40).  The soleus muscle of myostatin null mice display a larger proportion of fast twitch 

type II fibers and a reduced proportion of slow type I fibers compared with wild-type 

animals (40).  Although speculative and without fiber type data in support, perhaps 

ACVR2B haplotype structure influences the ability of myostatin to interact with its 

receptor and therefore impacts the resulting signaling cascade leading to differences in 

fiber type distribution.  Specifically, perhaps myostatin’s interaction with its receptor in 

women homozygous for ACVR2B haplotype group 2, leads to a greater proportion of fast 

twitch muscle fibers, helping to explain the greater level of muscle strength observed in 

these individuals.   
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There is no obvious explanation for the sex differences observed in the present 

study (i.e., a relationship between follistatin and muscle mass in men, and a relationship 

between ACVR2B and muscle strength in women).  Previous candidate gene association 

studies involving skeletal muscle phenotypes by our group (110; 134) and others (18; 

129; 130) have also observed sex-specific differences. Although speculative, perhaps the 

sex differences that have been observed in several studies are partially due to sex-specific 

gene x hormonal environment interactions. 

The present study is not without limitations.  Due to statistical power limitations 

regarding the follistatin haplotype analysis, specific haplotype groupings needed to be 

collapsed in order to increase statistical power.  Specifically, due to the low number of 

both homozygous follistatin haplotype group 2 individuals and homozygous follistatin 

haplotype group 3 individuals, sub-analyses were performed for each of these haplotype 

groupings by creating two groups, carriers of the respective haplotype or non-carriers.  

Another limitation is that this study examines the relationship between only two genes 

with skeletal muscle phenotypes and we don’t do a combined analysis of the two genes.  

Skeletal muscle mass and strength are complex phenotypes and most likely are 

influenced by multiple genes, environmental factors, and gene x environment 

interactions.  To date, variation in the ciliary neurotrophic factor (109), ciliary 

neurotrophic factor receptor (108), vitamin D (111), interleukin-6 (110), androgen 

receptor (134), type I collagen (131), alpha-actinin-3 (19), glucorticoid receptor (66; 

129), insulin like growth factor-1 (66), and insulin like growth factor-2 (66; 115) genes 

have all been shown to be associated with skeletal muscle mass and/or strength.  The 

current study adds the ACVR2B and follistatin genes to a growing list of genes that have 
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been tentatively identified as contributing to inter-individual variation in skeletal muscle 

phenotypes.  The importance of all of these genes will need to be confirmed and the 

interactions among them will also need to be examined. Moreover, for genes with a 

verified influence on muscle, potential interactions with therapeutic strategies (e.g., 

strength training or hormonal therapy) will need to be explored, as the ultimate goal of 

this research is to allow for optimization of individual prescriptions for maintaining 

muscle function throughout the age span. 

The strong role for myostatin in both muscle development and the maintenance of 

muscle mass in adults (82) provides a rationale to address whether genetic variation in 

members of its pathway (e.g., ACVR2B and follistatin) influence muscle phenotypes. 

Although the heritability of both muscle mass and strength have been well established, 

the identification of specific genes and allelic variants contributing to these phenotypes is 

in its infancy (111).  Understanding the genetic factors that underlie these phenotypes 

will require researchers to continue to identify the genes important to muscle phenotypes, 

identify polymorphic variation within those genes, determine the influence of the 

observed genetic variation on muscle phenotypic variation, with subsequent studies 

aimed at assessing the mechanisms and interactions of observed associations and 

developing clinically-relevant strategies for at-risk individuals with low levels of skeletal 

muscle mass and strength. Although the present study is not specifically examining 

sarcopenia, such genetic work may prove important for helping to explain the inter-

individual variation in muscle mass and strength. Considering the continued increase in 

the proportion of older men and women in the U.S. population and the high economic 

cost associated with sarcopenia (61), results from this project and others may allow for 
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the early identification of individuals genetically susceptible to low levels of muscle mass 

and strength, thus allowing the introduction of interventions prior to the onset of 

associated infirmities. 

In conclusion, this is the first study to explore associations between the haplotype 

structures of the ACVR2B and follistatin genes with skeletal muscle mass and strength 

phenotypes.  These data indicate that the ACVR2B and follistatin loci may contribute to 

the inter-individual variation in skeletal muscle mass and strength.  These results will 

help generate the direction of hypotheses for future studies and in combination with 

previous and future studies will contribute to the growing understanding of the role of 

genetic variation and its influences on skeletal muscle mass and strength. 
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CONCLUSIONS 
 

 

Hypothesis 1:  Polymorphic genetic variation in a primary myostatin receptor, ACVR2B, 

will be associated with significantly different levels of muscle mass or strength. 

This hypothesis was only partially supported.  ACVR2B haplotype structure was 

significantly associated with skeletal muscle strength in men but not in women.  No 

significant association was found between ACVR2B genetic variation and muscle mass.   

 

Hypothesis 2:  Polymorphic genetic variation in follistatin will be associated with 

significantly different levels of muscle mass or strength. 

This hypothesis was only partially supported.  Follistatin haplotype structure was 

significantly associated with skeletal muscle mass in men but not women.  No significant 

association was found between follistatin genetic variation and muscle strength.   
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REVIEW OF LITERATURE 
 

The following review of literature is divided into three main areas and provides 

background information on sarcopenia, myostatin including myostatin related genes, and 

the genetic analysis developed for this dissertation.  Across these three areas the review 

will focus on the following topics:  1) the importance of muscle mass and strength to 

health and function 2) mechanisms of sarcopenia, 3) prevention and treatment of 

sarcopenia through strength training, 4) the heritability of skeletal muscle mass/strength, 

5) candidate gene studies, 6) myostatin, 7) regulation of myostatin-ACVR2B and 

follistatin as candidate genes, 8) background of the genetic analysis-haplotype, 9) 

Haploview software program, 10) sliding window analysis, and 11) TaqMan genotyping 

assays. 

 Importance of Muscle Mass and Strength to Health and Function 

Skeletal muscle mass gradually declines starting at about age 45 years (61) and it is 

estimated that after the fifth decade 6% of muscle mass is lost per decade until the eighth 

decade of life in men (80).  This loss of muscle mass that occurs with healthy aging is 

commonly known as sarcopenia, a Greek term coined by Rosenberg referring to the “poverty 

of flesh” (106) denoting this tissue loss with age.  $18.5 billion dollars was the estimated direct 

healthcare cost attributable to sarcopenia in 2000 and it is currently estimated that ~45% of the 

older population ( > 60 yrs of age) is sarcopenic (61) with sarcopenic women having 3.6 times 

higher rates of disability and men 4.1 times higher rates than non-sarcopenic individuals (8).   

Furthermore, the loss of muscle strength is an independent predictor of mortality in the elderly 

(88; 101).  The negative economic impact of sarcopenic related disability at the societal level is 

clear, while the cost of the reduction in quality of life for these individuals can’t be easily 
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calculated.  By the year 2030 approximately 30% of the United States population will be 

elderly and will potentially experience some health problems as well as loss of independence.  

This loss of independence occurs on many levels, but one undoubtedly important component is 

loss of mobility, due in part to losses in both muscle mass and strength.  Therefore, sarcopenia 

presents a major public health concern to our aging population. 

Many studies have shown a correlation between muscle mass and strength (34; 

37).  Muscle strength has been reported to reach peak values between 25 and 35 yrs of 

age, is maintained or is slightly lower between 40-49 yrs of age, and then is ~12-14 % 

less per decade after 50 yrs of age (71; 77; 87).  Even when corrected for the decreased 

muscle mass that occurs with age, there is significant decline in peak torque, suggesting 

that the quality of skeletal muscle or efficiency of muscle strength per muscle mass is 

reduced.  Reduction in muscle strength is determined by not only a decrease in muscle 

mass but also due to changes in the quality of the muscle.  

 It seems intuitive that loss of muscle quantity, quality, and strength would result 

in a quantifiable loss of function in task performance.  A number of groups have studied 

and quantified this loss of function.  Brown et al. (11) studied 16 elderly (aged 75-88) 

healthy community volunteers and showed that composite lower extremity strength 

correlated with gait speed and negatively correlated with the time required to perform 

five stand-ups.  Wolfson et al. (138) compared the strength, balance, and gait speed of 17 

nursing home residents that had two or more documented falls in the preceding year 

(fallers) with 17 matched non-falling controls.  Ankle and knee flexion and extension 

were significantly weaker in fallers than in controls.  Bassey et al. (7) measured muscle 

strength and the amount and speed of customary walking in a large sample of men and 
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women older than 65 yrs.  They found an age-related decline in muscle strength and a 

significant negative correlation between strength and chosen normal walking speed for 

both sexes.   Fiatarone et al. (34) showed that in frail institutionalized men and women 

over the age of 86 there is a close correlation between the loss of quadriceps muscle 

strength, loss of skeletal muscle mass, and the slowing of gait speed.  These data suggest 

that with advancing age muscle strength is a critical component of walking ability. 

 The New Mexico Study (8) lends further insight into the relationship between 

sarcopenia and function.  Sarcopenic women had 3.6 higher rates of disability, and men 

4.1 times higher rates compared with study participants with normal muscle mass.  There 

were significantly greater risks of use cane or walker and a history of falling in the 

sarcopenic subjects as well.  These odd ratios were significant after adjustments for age, 

race, obesity, income, alcohol intake, physical activity, current smoking, and 

comorbidity.  Thus, the authors concluded that sarcopenia is independently associated 

with important health outcomes and disabilities in this relatively healthy ambulatory 

population. 

Mechanisms of Sarcopenia 

Determinants of sarcopenia are likely to be a combination of both intrinsic factors such 

as hormonal changes, mitochondrial damage due to oxidative stress, denervation, and 

extrinsic/environmental factors, such as nutrition, physical inactivity.  Thus, it follows that the 

etiology of sarcopenia will turn out to be multifactorial (113).  The relative importance of each 

of these factors is extremely complex and variable and has yet to be completely resolved.   

Each area is reviewed below. 
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Hormones and Aging 

 Aging causes loss of many of the anabolic signals to muscle that are present in 

young adulthood. Recent research suggests that there is also an increase in catabolic 

signals with age.  Loss of muscle with age may be caused by the loss of anabolic factors 

such as testosterone and growth hormones as well as an increase in catabolic factors such 

as inflammatory cytokines; or by a combination of the two. 

 Levels of bioavailable “free” testosterone are known to decrease with age.  Cross 

sectional population based studies have shown varying rates of decline.  Van den Beld et 

al. (128)  showed that between the ages of 73-94 there is about a 3% per year decline in 

free testosterone levels.  Cross-sectional and longitudinal data from Harman and 

colleagues (47) on relatively healthy men in the BLSA demonstrated unequivocally that 

testosterone concentrations are not only lower in older men, but that they decline 

progressively with aging, beginning in the third decade of life.  This decrease is thought 

to parallel the decrease in lean muscle mass and the loss of strength that occurs in aging 

men.  Low bioavailable testosterone concentrations have been associated with low fat 

free mass and decreased strength of knee extension (96; 114) and Katznelson and 

colleagues demonstrated that low testosterone concentrations were associated with 

decreased fat free mass in healthy hypogonadal men compared with human adult controls 

(63). 

 Circulating levels of growth hormone (GH) and its peripheral mediator, insulin-

like growth factor-1 (IGF-1), decrease with age (52) and many studies have demonstrated 

that GH levels begin to decline in the fourth decade of life and progressively continue to 
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decline over ensuing years. This loss of GH and IGF-1 is thought to be causally related to 

the loss of muscle mass and strength that occurs with age (42).   

 Interleukin-6 (IL-6) is one of several proinflammatory cytokines.  Under normal 

circumstances in young individuals, its expression is tightly regulated by the interplay of 

several transcription factors and hormonal factors including the secondary sex steroids.  

IL-6 expression increases late in life, this increase is thought to result from loss of the 

normally inhibiting sex steroids.  Ershler and Keller (30) point out that testosterone, 

which diminishes with age, is a key factor that downregulates IL-6 gene expression and 

propose that the age associated increase in IL-6 could help to account for the phenotypic 

changes that occur in the elderly, including decreased lean body mass.  Roubenoff (112) 

has suggested that IL-6 and other cytokines could function through direct catabolic 

effects or, more indirectly by inducing anorexia, lowering GH and IGF-1 concentrations, 

or by triggering loss of muscle cells in the elderly—even in the absence of overt 

inflammatory disease.  Visser and colleagues (132) reported that higher plasma 

concentrations of IL-6 were associated with lower muscle mass and strength in healthy 

older individuals. 

The aging-associated inflammation affecting skeletal muscle also includes 

elevated circulating levels of  tumor necrosis factor-α (TNF-α) as well as the local 

expression of TNF-α by skeletal muscle (97). This age-related increase in circulating 

levels of TNF-α in skeletal muscle may be a contributing stimulus for apoptosis and fiber 

loss.   Chronic exposure of skeletal muscle to TNF-α can cause apoptosis in both 

myoblasts and myofibers.  TNF-α causes existing differentiated muscle fibers to 

degenerate and at the same time limit the ability for regeneration via proliferation and 
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fusion of myoblasts.  Myoblasts exposed to chronically elevated TNF-α have also been 

shown to undergo apoptosis (26; 120). 

 Because sarcopenia develops over many decades, only a small change in the 

balance of muscle protein catabolism and anabolism is needed to effect a large change in 

body composition over such a long time span.  The combination of the withdrawal of 

anabolic stimuli, such as testosterone and growth hormone, and the possible increase in 

catabolic stimuli, such as IL-6 and TNF-α , may thus weave a complex web of signals 

whose ultimate result is a decline in muscle mass and strength that we now recognize as 

sarcopenia (113). 

Oxidative Stress and Mitochondrial Damage 

  Dr. Denham Harman in 1956 (46) developed the Free Radical Theory of Aging.  

The basic tenet of this theory is that reactive oxygen species (ROS) underlie the 

fundamental changes found in aging.  Harman hypothesized a correlation between 

aerobic metabolism, cumulative oxidative damage, and senescence.  Due to the high level 

of oxygen consumption seen in skeletal muscle compared to other tissues along with the 

attention that has been given to mitochondria because of their role in oxidative 

phosphorylation (the electron transport system (ETS) consumes ~ 85% of all the oxygen 

used in the cell)  and the fact that the vast majority of cellular ROS, with some estimates 

as high as 90%, can be traced back to the mitochondria, recent research has begun to 

investigate the role that ROS may play in mitochondrial damage and sarcopenia. 

Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in mammalian 

cells. The mtDNA contains 37 genes, encoding 13 proteins (all of which are respiratory 

chain subunits), 22 tRNAs, and two rRNAs.  Mutation in the regulatory regions of 
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mtDNA could interfere with replication, transcription, or processing of mitochondrial 

transcripts.  Deletion or mutation of mtDNA has been found to be responsible for 

dysfunction of energy production and an increase in necrosis of skeletal muscle fibers. 

It has been proposed that mtDNA, which encodes a small number of critical 

mitochondrial genes and may be exceptionally sensitive to oxidative damage (14; 21; 

103).  High levels of oxidative damage and mutation in mtDNA have been ascribed to 

location of the DNA near the inner mitochondrial membrane where oxidants are formed, 

lack of protective histones, and lack of DNA repair activity.   Damage to mtDNA by 

mitochondrial oxidants, it has been suggested, may result in faulty mitochondrial 

proteins, decreased oxidative phosphorylation capacity, increased mitochondrial oxidant 

generation, and increased mtDNA damage.  This hypothetical positive feedback loop is 

generally referred to as the “vicious cycle”   

mtDNA somatic mutation   → defective mtDNA-encoded proteins→ 

defective ETS→ generation of mutagenic oxidants→ mtDNA somatic mutation    

This vicious cycle of mutation and oxidant production eventually leads to cellular 

catastrophe, organ failure, and senescence (81). 

McKenzie and colleagues (84) hypothesize that oxidative damage to the 

mitochondrial genome has the potential to trigger a mitochondrial deletion event.  

Accumulation of these mtDNA deletion mutations would cause a decline in the energy 

production of the affected cells, result in abnormal electron transport enzyme phenotypes, 
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and the fibers would no longer be capable of self maintenance, resulting in intrafiber 

atrophy, and ultimately, lead to fiber loss.   

Work by Aiken and colleagues (1) involving rhesus monkeys, rats, and mice have 

proposed the following mechanism for muscle fiber loss with age. An early event is a 

mtDNA replication error that results in the deletion of a large region of the mitochondrial 

genome. This smaller genome apparently out-replicates the wild-type genome, becoming 

the predominant species in an expanding region of the muscle fiber. The high abundance 

of the deletion mutation in a specific region of a muscle fiber results in a focal decline in 

cytochrome c oxidase (COX) activity. A common ETS-abnormal phenotype observed in 

aging skeletal muscle is the complete loss of detectable COX activity (COX-).  The 

nuclear response to this decline in ETS efficiency appears to result in nuclear 

upregulation of mitochondrial biogenesis, further exacerbating the problem and 

producing the COX- phenotype. This process expands along the length of the muscle fiber 

until the resulting energy deficit triggers the fiber atrophy and, eventually, fiber breakage. 

This fiber breakage could produce the fiber loss observed with age.  Therefore given the 

increase in oxidative damage that accumulates with age, it is conceivable mitochondrial 

DNA deletion events that occur as a result of oxidative damage thereby helps to promote 

muscle fiber loss with age, thus sarcopenia. 

Work by Kujoth et al. (68) have also examined mitochondrial DNA mutations and 

their role in cell death.  The researchers showed that mice expressing a proofreading-

deficient version of the mitochondrial DNA polymerase g (POLG) accumulate mtDNA 

mutations and display features of accelerated aging.  The authors cloned the mouse 

POLG locus, PolgA, and used gene targeting in embryonic stem cells to introduce an AC 
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to CT two-base substitution. This mutation results in a critical residue substitution in the 

conserved exonuclease domain of POLG, impairing its proofreading ability.  Transgenic 

mice homozygous for this mutation were generated and given the name D257A. Young 

D257A mice were indistinguishable from wild-type littermates, but long-term follow-up 

revealed a striking premature aging phenotype beginning at ~9 months of age, consisting 

of hair loss, graying, and kyphosis.  Consistent with a causal role for mtDNA mutations in 

sarcopenia, the D257A mice displayed age-related loss of skeletal muscle.  At 3 months 

of age, muscle weight in the D257A mice was similar to that of wild-type mice; at 9 

months of age, however, the mutant mice showed a significant reduction in the weight of 

both gastrocnemius (~10% decrease) and quadriceps (~10% decrease) muscles. 

Therefore, the authors concluded that age-related accumulation of mtDNA mutations is 

likely to contribute to sarcopenia (68). 

Denervation 

If there is a single most important endogenous cause of sarcopenia, it is probably 

the loss of alpha motor neuron input to muscle that occurs with age (12).  This decline of 

muscle innervation may be one of the key events in the sarcopenic process since 

innervation is crucial to the maintenance of muscle mass, as well as strength.  In the 

elderly there is a decrease in the number of functional motor units associated with a 

concomitant enlargement of the remaining units. This motor unit remodeling seems to be 

caused by selective denervation of muscle fibers with re-innervation by axonal sprouting 

from juxtaposed innervated units (10). This process leads not only to a net loss of fibers 

and functional motor units but also an increase in motor unit size (28).  This age related 

net loss of muscle fibers has been demonstrated to be fiber type specific and has been 



35   
 

shown to involve a greater loss of fast fiber cross sectional area.  Lexell et al. (76) in a 

comprehensive study of the entire vastus lateralis in 43 male cadavers aged 15-83, 

showed that there is an age related loss in fiber number and based on measurements of 

cross sectional area, there is a selective loss of fast twitch type II fibers as compared to 

slow twitch type I fibers.  The end result is a decrease in the number of fast twitch motor 

units and fast twitch muscle fibers and the skeletal muscle appears to compensate for this 

reduction in motor units by hypertrophy of existing smaller and slower motor units that 

attempt to reinnervate faster fibers and transform them into slower fiber types (25; 28). 

Cycling of Denervation-Reinnervation 

Investigators reason that the normal cycling of denervation-reinnervation that is 

evident in younger muscle is impaired in aged muscle.  Consequently, there is a net effect 

of denervation affecting skeletal muscle of the elderly, which significantly contributes not 

only to the loss of motor units, but also to the loss of muscle fibers that mainly accounts 

for sarcopenia (76).   

The mechanism(s) of the denervation occurring during aging has yet to be fully 

elucidated, however ciliary neurotrophic factor (CNTF) has been identified as an 

important molecule in the survival of motor neurons (94).  Recent research has shown 

that relative to young motor neurons, CNTF production is attenuated in aged peripheral 

nerves (43).  In work performed by Guillet and colleagues (43), a strong correlation was 

established between the decline of CNTF expression and muscle strength measured 

among aged rats.   
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Nutrition-Anorexia 

The concept that there is a physiological decline in food intake from the ages of 

20-80 yr is now well established in both large populations and in highly healthy persons 

(90).  It is well recognized that aging is associated with a decline in food intake and this 

has been termed the "anorexia of aging" and in most cases is an appropriate response to 

the decrease in physical activity that occurs over the lifespan (91).  However 

physiological anorexia in older men and women may outstrip the reduction of physical 

activity, leading to weight loss and sarcopenia in the elderly (89).  Inadequate intake of 

calories, particularly sufficient protein, results in a negative nitrogen balance and muscle 

breakdown and loss. 

For muscle to maintain its mass, the rate of protein synthesis must be in balance 

with the rates of degradation to amino acids in combination with dietary absorption 

maintaining the difference in amino acid utilization.  For sarcopenia to occur, only small 

imbalances between synthesis and degradation over many years are necessary to 

eventually result in a significant loss of muscle mass (92).  With advancing age combined 

with inadequate dietary intake of amino acids can decrease the rates of protein synthesis 

and ultimately exacerbate the onset of sarcopenia.    

The current Recommended Dietary Allowance (RDA) for protein to meet the 

needs of adults over the age of 19 years is 0.8 grams/kg/day.  However, recent studies 

suggest that the protein requirements of older individuals may be higher (~ 1g/kg/day).  

Campbell et al. (16) examined studies in the literature examining nitrogen-balance in 

elderly people and recalculated the balance data using currently accepted values for 

miscellaneous losses.  The conclusion of this retrospective analysis and new balance data 
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presented was that the current RDA is inadequate to meet the dietary protein needs of 

most elderly people.  Campbell (17) then confirmed this conclusion in a study that 

examined the long term consequences of consumption of the protein RDA.  This study 

enrolled healthy elderly men and women and provided the 0.8 gr/kg/day over a 14 week 

period in a metabolic ward.  Using computerized tomography, the researchers 

demonstrated that a significant reduction in the cross sectional area of thigh muscle.  

Thus, the authors concluded that the data suggest that the protein RDA for elderly people 

is not adequate, even while consuming a weight maintenance diet. 

 Physical Inactivity 
 
 The extent to which lifelong activity patterns and training can prevent declines in 

muscle mass and strength has not been prospectively examined (27).  Therefore it is 

difficult to causally determine the relative importance of physical inactivity in the 

development of sarcopenia, especially regarding the cross-sectional nature of many 

studies in this area.  However, it has been well demonstrated that elderly persons who are 

less physically active have less strength and lean mass than do active elderly individuals 

(69; 99) and it is very well known that short term muscle inactivity severely reduces 

muscle mass and strength even in young individuals (133).  A typical example of this is 

bed rest (31).  However, it has been shown that these muscle changes can be counteracted 

by exercise, typically resistance exercise (32), which perhaps provides the most 

convincing evidence of the importance of physical activity and maintenance of skeletal 

muscle mass and strength. 
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Prevention and Treatment of Sarcopenia through Strength Training 

By the year 2030 approximately 30% of the United States population will be elderly 

and will potentially experience some health problems as well as loss of independence.  This 

loss of independence occurs on many levels, but one undoubtedly important component is loss 

of mobility, due in part to losses in both muscle mass and strength.  Therefore, sarcopenia 

represents a major public health concern to our aging population.   Prevention of muscle loss 

before it occurs would be one of the most important interventions we could hope to make.  

Exercise trials have provided some of the most promising data for both prevention and 

treatment of loss of muscle mass and strength.   

Although sarcopenia is a multi-factorial process, decreases in physical activity 

throughout the lifespan may play a key role.  Hunter and colleagues (54) argue the 

reduction of strength and muscle function that occurs with age are mediated by decreases 

in physical activity.  The result is a positive feedback loop as reduced physical activity 

further decreases strength, ease of physical activity, and participation in physical activity.  

These authors state that interrupting this feedback loop is a vital step toward maintaining 

the quality of life and health of an aging population.  A growing body of evidence 

supports resistance training as an effective means of disrupting this deleterious loop.  

Latham et al. in 2004 (72) reviewed the literature on progressive resistance training in 

older adults.  Their analysis of 41 randomized controlled trials revealed that progressive 

resistance training results in improvements in muscle strength and some aspects of 

functional limitation, such as gait speed, in older adults.   

Although some clinicians are reluctant to recommend high-intensity resistance 

training, many reports have shown that resistance training can be performed safely in an 
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elderly population.  Sullivan et al. (122) performed a 10 week study of lower body 

resistance training in a group of 19 recuperating nursing home patients whose mean age 

was 83 years. 1-RM strength increased by 74% and maximum gait speed increased in 

53% of subjects without any adverse effects.  Similarly, Hauer et al. (49) studied 28 

elderly subjects (mean age 81 years) with a history of injurious falls.  These subjects 

performed 12 weeks of lower body resistance training at 70-90% 1-RM and obtained 

increases of 22-87% in 1-RM strength with no training related medical problems.  A 

review of the literature by Fielding (35) demonstrates that a training stimulus of 

appropriate intensity (70-90% of  1–RM) produces gains in muscle size and strength in 

healthy older individuals that are comparable with gains produced in young individuals.  

Work by Ivey and colleagues (59) further solidified this finding.  Eleven young men, 11 

young women, 12 older men, and 11 older women had bilateral quadriceps muscle 

volume measurements performed using magnetic resonance imaging (MRI) before and 

after strength training.  The training consisted of five sets of knee extension exercise 

designed to include a combination of heavy resistance and high volume exercise.  After 

nine weeks of training strength training induced muscle volume changes in the older 

subjects were not significantly different than in the young subjects. 

Perhaps some of the most impressive evidence in support of resistance training in 

the elderly as an efficacious intervention comes from work by Fiatarone and colleagues 

(34) published in JAMA in 1990.  Ten frail, institutionalized volunteers aged ~90 years 

undertook 8 weeks of high-intensity resistance training. Strength gains averaged 174% in 

the 9 subjects who completed training. Mid-thigh muscle area increased 9.0 % and mean 

tandem gait speed improved 48% after training. The authors concluded that high-
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resistance weight training leads to significant gains in muscle strength, size, and 

functional mobility among frail residents of nursing homes up to 96 years of age.  

Work by Lemmer and colleagues (34; 75) have now provided suggestive evidence 

for how much of the age-associated losses in strength and muscle mass can be reversed 

with strength training.  Strength losses assessed from isokinetic peak torque values occur 

at the rate of about 12-14% per decade after the age of about 50 years and strength gains, 

assessed from 1-RM values, of >30% occur within the first couple of months of heavy 

resistance strength training in 65-75 year old men and women (75).  Thus, about two 

months of strength training essentially reverses at least 2 decades of strength loss with 

advancing age.  Similar reversals can be observed with muscle mass, which is lost at a 

rate of about 6% per decade after the age of 50 years and increases by about 12% within 

the first couple of months of strength training (127).  Thus, 2 decades of age-induced 

muscle mass loss can be reversed with only about 2 months of strength training. 

Heritability of Skeletal Muscle Mass and Strength 

Skeletal muscle mass and strength are known to vary among individuals of a 

given age and sex.  Differences in muscle mass and strength between individuals may be 

due to environmental or genetic factors or to both of these factors.  Heritability (h2) refers 

to the proportion of the total variation that can be attributed to genetic effects (Vg/Vtot). 

Assessment of heritability is based on the basic genetic model that the total variation 

(Vtot) in traits such as muscular strength/muscle mass is partitioned into genetic (Vg), 

common environmental (Vc) and individual-specific environmental (Ve) variation 

components (Vtot = Vg + Vc + Ve).  The most commonly used strategy to identify 
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genetic and environmental contributions to muscle strength and mass has been twin 

studies. 

Arden et al. (5) examined the heritability of lean body mass in healthy 

postmenopausal women in 227 pairs of monozygotic (MZ) twins and 126 dizygotic (DZ) 

twins and concluded that genetic factors explain about half (.52) of the total variance of 

lean body mass in this cohort. Forbes et al. (36) found a heritability of 70% in 49 MZ and 

38 DZ twin pairs.  Seeman et al. (117) estimated the genetic component of lean body 

mass explained 80% of the total variance found in a twin study of pre and post 

menopausal women and concluded that greater muscle mass is likely to be determined by 

genes regulating tissue size.   

Muscle strength is also a highly heritable phenotype.   Arden et al. (5) examined 

the heritability of lean body mass in healthy postmenopausal women in 227 pairs of MZ 

twins and 126 DZ twins and concluded that genetic factors explain about one third (.30) 

of the total variance in grip strength in this cohort.  Reed et al. (102) reported that genetic 

factors accounted for 65% of the variance in grip strength in a study of 260 MZ and DZ 

male twins from the National Heart, Lung, and Blood Institute (NHLBI) Twin Study who 

were 59-69 yr of age, even after adjusting for body weight, height and age.    

Most recently, Huygens et al. (57) reported that heredity accounted for up to 90% 

of the inter-individual variation in muscle mass and ~60% in strength providing further 

evidence that genetic factors make important contributions to these muscle phenotypes. 

Although the heritability values for both muscle mass and strength have been well 

established, the identification of specific genes and allelic variants contributing to these 

phenotypes is in its infancy (111).    
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Candidate Gene Studies 

With the completion of the human genome project (HGP), a high-quality 

reference sequence of the gene rich portion of the human genome is now available.  This 

has opened up the possibility to systematically identify all possible gene variants in 

different human populations, associate their presence with individual phenotypes, 

including disease susceptibility, and determine the functional impact of such variation.  

The most abundant source of genetic variation in the human genome comprises single 

nucleotide polymorphisms (SNPs) (121).  Associating SNPs with human disease 

phenotypes has great potential for direct clinical application by providing new and more 

accurate genetic markers for diagnostic and prognostic purposes, and possibly novel 

therapeutic targets (121). 

Association studies using a candidate gene approach looks for a statistical 

correlation between a specific genetic variant and a disease.  The candidate gene 

approach can be defined as the study of genetic influences on a complex trait by: 

generating hypotheses about, and identifying candidate genes that might have a role in, 

the etiology of the disease; identifying variants in or near those genes that might either 

cause a change in the protein or its expression, or be in linkage disequilibrium (LD) with 

functional changes; genotyping the variants in a population; and then using statistical 

methods to determine whether there is a correlation between those variants and the 

phenotype.  Given the possible promising aspects of association studies, association 

studies with candidate genes have been wide to study the genetic aspects of complex 

diseases. Before 1992, less than 10 genetic association studies were published per year, 

but by 2000, the number had increased to 120 (51).    
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Myostatin  

Bullough (13) in 1962 proposed that tissue size is controlled by the activity of 

negative growth regulators that he dubbed chalones.  According to this hypothesis, 

individual tissues secrete distinct chalones, which circulate throughout the body and act 

to inhibit the growth of the tissue producing the specific chalone.  Recent work suggests 

that at least one tissue may, in fact, utilize this general type of regulatory mechanism to 

control tissue mass.  This tissue is skeletal muscle, and the mediator appears to be 

myostatin. The identification of myostatin as a negative regulator of muscle growth has 

raised many important questions about the control of muscle growth.  Understanding the 

mechanisms by which myostatin regulates muscle mass will be critical not only for 

understanding the control of tissue size in general but also for developing new strategies 

for increasing muscle growth for human therapeutic applications (73).    

 First reported in 1997 by McPherron et al. (85), myostatin (growth and 

differentiation factor-8) was identified in mice as a transforming growth factor-β (TGF-

β) family member that acts as a negative regulator of skeletal muscle growth. Soon after 

the initial report of myostatin’s discovery, several groups identified mutations in the 

myostatin gene in naturally-bred “double-muscled” cattle breeds (41; 86).  Perhaps the 

most exciting research involving genetic variation within the myostatin gene comes from 

a case report published in JAMA in 2004.  Scheulke and colleagues (116) reported a rare 

and novel variation in the myostatin gene in a young child, who when born appeared 

extraordinarily muscular, with protruding muscles in his thighs and upper arms.  Results 

from ultrasonongraphy when the child was 4.5 years of age showed that cross-sectional 

plane of the patients quadriceps muscle was 7.2 SD above the mean for 10 age and sex 
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matched controls.  All three exons and flanking intronic regions were sequenced and 

although no mutations were detected in the coding region a g-a transition in intron 1 was 

discovered and present in both alleles of the patient.  This g-a transition results in a 108 

base pair insertion adding a single lysine residue followed by a premature termination 

codon giving rise to a severely truncated protein.  The authors attempted to measure 

myostatin levels in the patient’s serum but failed to detect any.  The authors concluded 

that the results strongly indicated that the patient has a loss of function mutation in the 

myostatin gene.  This suggests the inactivation of myostatin has similar effects in 

humans, mice, and cattle, providing further evidence for a critical role for myostatin in 

muscle development in humans, and thus establishing myostatin as the key target it has 

become for muscle researchers. 

Despite myostatin’s remarkable influence on skeletal muscle and the well-

established effect of myostatin gene mutations in double-muscled cattle breeds, studies of 

common myostatin genetic variation in humans have shown little association with muscle 

phenotypes.  Ferrell and coworkers (33) identified several polymorphisms in the human 

myostatin gene, with six nucleotide changes observed, of which five are predicted to lead 

to amino acid sequence changes, but in follow-up work by that group and others only 

minor associations have been observed for the most common of these polymorphisms 

with muscle mass or strength (58; 118).  For example, comparisons of myostatin 

variation, in two of the variants found to be common (A55T) and (K153R), in those who 

were rated in the top two categories to those who were rated in the bottom two categories 

for muscle mass increase in response to strength training showed no significant 

relationship between genotype and response to training (26; 33).  Only suggestive 
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associations of the K153R polymorphism with muscular strength have been reported for 

older females.  Seibert et al. (118) investigated polymorphism variation in the myostatin 

gene in a cohort of 286 older women and state that their data suggest an association of the 

R153 allele with lower strength in high-functioning older women.  Finally, work by Ivey 

et al. (58) examined the effect of myostatin genotype on the hypertrophic response to 

heavy resistance strength training and  myostatin genotype (K153R) did not explain the 

hypertrophic response to strength training when all 32 subjects were assessed.    

Myostatin Structure/Function 

 Myostatin is synthesized in skeletal muscle as a 376 amino acid propeptide which 

gives rise to a 15kDa active, processed, and mature protein.  Structurally, it contains all 

the characteristic features of the TGF-β family, such as a proteolytic processing signal 

site and an active carboxy terminal region.  Myostatin exists as a large, latent complex 

with other proteins, including its propeptide. The function of myostatin was elucidated by 

gene targeting studies in mice (85).  Mice carrying a deletion of the portion of the gene 

encoding the C-terminal domain of myostatin were shown to have dramatic and 

widespread increases in skeletal muscle mass, with individual muscles weighing about 

twice as much as those of wild type mice.   

Regulation of Myostatin-ACVR2B and Follistatin as Candidate Genes 

 Identifying how myostatin influences skeletal muscle and what processes regulate 

myostatin expression and activity have dominated the myostatin literature in the past few 

years.  Similar to other TGF-β family members, myostatin is synthesized as a precursor 

protein that undergoes two proteolytic processing events in order to generate the 

biologically active molecule.  The first event removes the N-terminal signal sequence, 
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most commonly referred to as the propeptide, and the second generates the C-terminal 

fragment which possesses receptor binding activity and is the biologically active species. 

 Myostatin exists as a large latent complex, including its propeptide.  Following up 

their initial discovery, Lee and McPherron (74) demonstrated that activin type II 

receptors are involved in myostatin signaling.  Myostatin binding to ACVR2B receptors 

was specific and saturable, and transgenic mice with increased muscle expression of a 

dominant negative form of ACVR2B had increased muscle weights, with individual 

muscles weighing up to 125% more than those of control nontransgenic animals.  These 

results showed that expression of a truncated form of ACVR2B lacking the kinase 

domain and placed downstream of a skeletal muscle-specific myosin light chain 

promoter/enhancer can cause increases in muscle mass similar to those seen in myostatin 

knockout mice.  In vitro work demonstrated that the propeptide blocked myostatin 

binding to its receptor.  In vivo work by Lee and McPherron (74) showed that increased 

expression of the propeptide in transgenic mice resulted in increased muscle mass, thus, 

the propeptide acts as a myostatin inhibitor. 

 In addition to the propeptide, other proteins have also been shown to be capable 

of binding and inhibiting the activity of the myostatin C-terminal dimer.  Several studies 

suggest that follistatin can function as a potent myostatin antagonist and plays an 

important role in vivo.  First, follistatin is capable of blocking myostatin activity in both 

receptor binding and reporter gene assays (74; 142).  Secondly, genetic studies in mice 

have shown that overexpression of follistatin in muscle can cause dramatic increases in 

muscle growth.  Lee and McPherron (74) generated transgenic mice which the myosin 

light chain promoter/enhancer was used to drive the expression of follistatin and dramatic 
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effects on skeletal muscle were seen.  In one animal muscle weights were increased by 

194-327% relative to control animals; thus it appears, follistatin appears to be a potent 

myostatin antagonist (74).   

With the identification of ACVR2B as the primary myostatin receptor and the 

myostatin propeptide and follistatin as negative regulators of myostatin activity, Lee and 

McPherron (74) put forth the following model of myostatin regulation in 2001: the 

myostatin C-terminal dimer remains in a latent complex with the inhibitory propeptide. 

This latent complex can be further negatively regulated by binding with follistatin, and 

upon release of the negative regulators, myostatin is free to signal through its receptors, 

acting primarily through ACVR2B.    

Downstream Targets 

Upon activation from its latent state, the myostatin C-terminal dimer is capable of 

binding to its receptor and activating a signal transduction cascade in the target cell.  

Myostatin signaling results in an upregulation of p21 which is an inhibitor of Cdk2.  This 

causes a hypophosphorylation of retinoblastoma and a cell cycle arrest (G1) in 

proliferating myoblasts.  Thus myoblast number and, hence, fiber number is regulated by 

myostatin (125).  Myostatin can also inhibit differentiation by upregulation of Smad 3 

proteins that bind to MyoD.  This interaction represses MyoD transcriptional activity.  As 

a result several regulatory factors are downregulated, which results in improper cell cycle 

withdrawal and inhibition of myoblast differentiation (70).  In embryonic myogenesis, 

myostatin regulates myoblast number. In adult muscle, myostatin is specifically 

expressed in the regenerative satellite cells and myostatin null mice have greater numbers 

of both satellite cells per muscle fiber and activated satellite cells (82).   
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Background of the Genetic Analysis-Haplotype 

Variation in the human genome sequence plays a powerful but poorly understood 

role in the etiology of common diseases.  A comprehensive search for genetic influences 

on disease would involve examining all genetic differences in a large number of affected 

individuals and controls.  It may eventually become possible to accomplish this by 

complete genome sequencing.  In the meantime, it is increasingly practical to 

systematically test common genetic variants for their role in disease; such variants 

explain much of the genetic diversity in our species (2). 

 Systematic studies of common genetic variants are facilitated by the fact that 

individuals who carry a particular single nucleotide polymorphism (SNP) allele at one 

site often predictably carry specific alleles at other nearby variant sites. This correlation is 

known as linkage disequilibrium (LD); a particular combination of alleles along a 

chromosome is termed a haplotype (2).   

Linkage disequilibrium plays a central role in association studies for identifying 

genetic variation responsible for common diseases (67; 93; 104; 137).  The number of 

SNPs required for an association study depends on the pattern of LD.  Recent studies 

showed that LD pattern varies greatly across the human genome with some regions of 

high LD interspersed by regions of low LD (22; 23; 38; 62; 95).  These high LD regions 

are referred to as blocks in the literature. Only a small number of characteristic "tag" 

SNPs is sufficient to capture most of the haplotype structure of the human genome in high 

LD regions (62; 95). Thus, genotyping efforts could be greatly reduced without much loss 

of power for association studies (38; 140). 
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The correlations between causal mutations and the haplotypes on which they 

arose have previously served as a tool for human genetic research: first finding 

association to a haplotype, and then subsequently identifying the causal mutation(s) that 

it carries. This was pioneered in studies of the HLA region, extended to identify causal 

genes for mendelian diseases for example, cystic fibrosis (64) and diastrophic dysplasia 

(48), and most recently for complex disorders such as age-related macular degeneration 

(29; 45; 65).     

Haploview-Software Program 

 Given the increase in the number of association studies and the enormous amount 

of public genotype data from HapMap, tools for analyzing, interpreting and visualizing 

these data are of critical importance to researchers (6).  The software program Haploview 

is designed to provide a number of tools for haplotype analysis.  Haploview generates LD 

information, haplotype blocks, and population frequencies in a user friendly format.   

 Haploview calculates several pairwise measures of LD and the user has the option 

to select one of several commonly used block definitions (6; 38; 135).  Alternatively, the 

user may manually select groups of markers for subsequent haplotype analysis.  Once 

groups of markers are selected (either automatically or manually), the program generates 

haplotypes and their population frequencies (6). 
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Background of the ACVR2B haplotype structure 

HapMap database research into the haplotype structure of the genome sequence 

surrounding the myostatin receptor gene, ACVR2B, has revealed the following haplotypes: 

 Snp1 Snp3 Snp5 Snp8 Snp10 Snp11 Snp14 Snp15 Snp16 Freq 
Hap 1 A T T T A A A T T 0.615 
Hap 2 C C C C G G C C G 0.273 
Hap 3 C C C C G A A T G 0.05 
Hap 4 A T T T A G A T T 0.034 
Hap 5 C C C C A G C C G 0.01 

 

By genotyping SNP 8 (rs: #2268757), the majority of the information of this 

haplotype (Hap) is gained by creating two related groups.  Hap1 (.615) along with Hap 4 

(.034) can be considered one group due to their high degree of similarity, sharing eight of 

nine alleles,  and then Hap 2 (.273),  Hap 3 (.05), and Hap 5 (.01) can be considered a 

second haplotype group, sharing a minimum of five of nine alleles to a maximum of eight 

of nine alleles  

Background of Follistatin haplotype structure 

HapMap database research into the haplotype structure of the genome sequence 

surrounding the follistatin gene has revealed the following haplotypes: 

  Snp1 Snp2 Snp3 Snp4 Snp5 Snp6 Snp7 Freq 
Hap 1 A C C C T A T 0.367
Hap 2 A C C T C A C 0.217
Hap 3 A A T C T A C 0.20 
Hap 4 G C C C T G T 0.133
Hap 5 G C C C T A T 0.042
 

Sliding Window 

One issue inherent in haplotype association studies is haplotype complexity.  

Although haplotypes may be more informative than single markers, the power of 

haplotype analysis is reduced by the potentially large number of haplotypes that need to 
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be studied.  A statistical approach known as the “sliding window” has been developed to 

address this issue (9; 20; 126; 141).  The sliding window helps to focus on the candidate 

region of interest and assess evidence for association within each window, helping to 

reduce the dimensionality of haplotype analysis (141). The sliding window approach 

serves two purposes.  First, the number of haplotype groups in each window may be 

significantly less than that in the whole region, so the association analysis involves fewer 

groups and likely has better power to detect an association between phenotype and 

haplotype.  Second, it is anticipated that associations near true causal variants are 

stronger than those in other regions.    Therefore, given the complexity of follistatin 

haplotype groups, by using SNPs 2, 3, 4, and 5, noted by the grey shading above, as the 

window for analysis regarding this haplotype in order to create three haplotype groups 

rather than five groups.  The rationale for inclusion of SNPs 2, 3, 4, and 5 is that all four 

of these SNPs fall within the follistatin gene, therefore any true causal variants within the 

follistatin gene would be linked to one of the three haplotype groups analyzed.   

By genotyping SNP 2 (rs: # 3797297) Hap 3 is separated from the rest of the haplotypes 

and genotyping SNP 4 (rs: #12152850) separates Hap 2 from the remaining haplotypes 

creating a final group of Hap 1, Hap 4, and Hap 5 that share a minimum of four of six 

alleles. 

Taqman Genotyping Assays 

 
Candidate gene studies are one of the most widely used approaches in the 

dissection of the genetic basis of disease. High-throughput methods for genotyping single 

nucleotide polymorphisms are necessary to perform large-scale association studies (83).  

Genotyping of SNPs in the present study was performed using the 5' nuclease allelic 
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discrimination or TaqMan assay (79) for high-throughput genotyping. In this method, the 

regions flanking the polymorphisms, typically 100 base pairs, are amplified in the 

presence of two probes each specific for one or the other allele. Probes have a fluor, 

called a "reporter," at the 5' end but do not fluoresce when free in solution because they 

have a "quencher" at the 3' end that absorbs fluorescence from the reporter. During 

polymerase chain reaction (PCR), the Taq polymerase encounters a probe specifically 

base-paired with its target and unwinds it. The polymerase cleaves the partially unwound 

probe and liberates the reporter fluor from the quencher, thereby increasing net 

fluorescence.  In each PCR cycle, the cleavage of one or both allele-specific probes 

produces an exponentially increasing fluorescent signal by freeing the 5' fluorophore 

from the 3' quencher.  The presence of two probes, each labeled with a different fluor, 

allows one to detect both alleles in a single tube. Moreover, because probes are included 

in the PCR, genotypes are determined without any post-PCR processing, a feature that is 

unavailable with most other genotyping methods (98). 

The TaqMan SNP genotyping assay is read at the PCR endpoint.  DNA samples 

are genotyped simultaneously on a 96 well plate and genotype calls for individuals are 

made by plotting the normalized intensity of reporter dyes in each sample well on a 

scatter plot.  A clustering algorithm in the data analysis software assigns individual 

sample data to a particular genotype cluster (24). 

Taqman SNP Genotyping Assays provide a number of significant technological 

advances (24): they require only a single enzymatic step, all assays use universal 

reactions and thermal cycling conditions, the location of primers is flexible in the region 



53   
 

surrounding the SNP site, and they are close-tubed assays and require no post PCR 

processing. 

Summary 

In summary, skeletal muscle mass gradually declines starting at about age 45 

years and it is estimated that after the fifth decade 6% of muscle mass is lost per decade 

until the eighth decade of life in men (80).  This loss of muscle mass, referred to as 

sarcopenia (106), has been associated with an increased risk of falls, hip fractures, 

functional decline, and mortality (4; 60; 88; 101).  Skeletal muscle mass and strength are 

known to vary among individuals of a given age and sex.  Heritability studies have shown 

that genetic factors can account for up to 90% of the inter-individual variation in muscle 

mass (57) and ~65% in strength (102) providing evidence that genetic variation makes 

important contributions to these muscle phenotypes.  Myostatin, a negative regulator of 

skeletal muscle (73), has been shown to play a key role in both muscle development and 

the maintenance of muscle mass (41; 70; 74; 82; 85; 86; 116). However, variation within 

this gene has not been consistently associated with skeletal muscle mass nor muscle 

strength (33; 58; 118).  Therefore, to further understand the inter-individual difference 

seen in muscle mass and strength research studies examining genetic variation in 

physiologically relevant candidate genes among myostatin related genes are needed to 

explore associations with skeletal muscle related phenotypes.  Two genes whose variation 

has yet to be examined and explored with these phenotypes are follistatin, a known 

antagonist of myostatin, and the myostatin receptor, Activin IIRB (74). 
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APPENDIX A: Limitations of the Study 

Delimitations 

1.  The scope of this study will be delimited to 315 Caucasian males and 278 Caucasian 

females aged 19-90 yr. from the Baltimore Longitudinal Study of Aging (BLSA).  The 

results are expected to apply only to populations with similar characteristics. 

2. Variables such as age, height, and weight may have effects on muscle mass and 

strength.  Therefore, statistical control for these variables was applied where appropriate. 

3.  Total body fat and soft tissue fat free mass (FFM) and total leg fat and FFM (both legs 

combined) was assessed by dual-energy X-ray absorptiometry (DEXA) (model DPX-L 

Lunar Radiation, Madison, WI). 

4.  Peak torque (strength) was measured using the Kinetic Communicator isokinetic 

dynamometer (Kin-Com model 125E, Chattanooga Group, Chattanooga, TN). 

5.  Genomic DNA was prepared from the EDTA-anticoagulated whole blood samples by 

standard salting-out procedures (Puregene DNA Extraction, Gentra Systems Inc.).  

6. Genotyping of SNPs was performed using the 5' nuclease allelic discrimination or 

TaqMan assay for high-throughput genotyping.  Fluorescence in each well was measured 

using an ABI 7300 Real Time PCR System machine (Perkin Elmer, Applied Biosystems 

Division).  Analysis of raw data to determine genotypes was performed by the ABI 7300 

Sequence Detection System software.   

8.  The International HapMap Project website’s graphical genome browser was used to 

navigate to the particular regions surrounding the candidate genes of interest and retrieve 

HapMap genotype data for all genotyped markers in the selected regions in a format 

accepted by the software program Haploview.  Haploview calculated pairwise measures 
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of linkage disequilibrium (LD) among the polymorphisms in each region and created 

haplotype blocks based on the definition of haplotype block provided by Gabriel and 

colleagues (38).   
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Limitations 

1.  The subjects in the study were generally healthy Caucasian volunteers from the 

Baltimore Longitudinal Study of Aging and not randomly selected from the general 

population.   

2.  Subjects self reported physical activity levels.  Because physical activity was not 

directly measured the accuracy of these reports can not be verified.  Inaccurate self 

reporting of physical activity could have confounded the results of this study. 

3.  Dietary intake and nutritional profiles of the subjects was not measured.  Differences 

in caloric and macronutrient intake could have confounded the results of this study. 

4.  This study examines the relationship between only two genes with skeletal muscle 

phenotypes and combined association of these two genes was not assessed.   

4.  Genotypes other than the three SNPs genotyped in the present study that have 

previously been associated with muscle mass and strength were not genotyped or 

controlled for their potential influence on muscle phenotypes. 

5.  Due to statistical power limitations regarding the follistatin haplotype analysis, 

specific haplotype groupings needed to be collapsed in order to increase statistical power.  

 

 

 

 

 

 

 



57   
 

APPENDIX B: Definitions 

Allele: one of a pair of alternative forms of a gene that occur at a given locus in a 

chromosome. 

Genome: the total set of genes in a nucleus of a cell. 

Genotype: the genetic makeup of an individual.  It may also apply to a specific locus or 

to a combination of alleles. 

Haplotype: a set of closely linked genetic markers present on one chromosome which 

tend to be inherited together. 

Haploview: a software program designed to provide a number of tools for haplotype 

analysis. 

Heritability: refers to the proportion of the total variation in a phenotype that can be 

attributed to genetic effects or the degree to which a given trait is controlled by 

inheritance.   

Linkage Disequilibrium: the nonrandom association between two or more alleles such 

that certain combinations of alleles are more likely to occur together on a chromosome 

than other combinations of alleles. 

Loss-of Function Mutation: a mutation that impairs or abolishes gene expression, or the 

function of a gene product. 

Sarcopenia: a condition characterized by the loss of muscle mass, muscle strength, and 

muscle quality with aging. 

Single Nucleotide Polymorphism: a DNA sequence variation involving the substitution 

of one nucleotide with a single different nucleotide. 
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Sliding Window Analysis: a statistical approach that helps to focus on the candidate 

gene region of interest and assesses evidence for association within each window, helping 

to reduce the dimensionality of haplotype analysis. 

TaqMan: a high-throughput method for genotyping single nucleotide polymorphisms. 
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APPENDIX C: Statistical Power Analysis 
 

Statistical power analyses 

 Statistical power calculations were estimated for haplotype association with both 

muscle mass and strength phenotypes.  These analyses were performed using effect size 

and standard deviation data obtained from previously published work.  The effect size of 

2.5 kg for FFM differences and the effect size of 11 N·m for skeletal muscle strength 

differences was chosen based on previous work. Sowers et al. (119) demonstrated in 

women that a loss of 2.5 kg of lean mass resulted in lower levels of functioning, slower 

walking velocity, and less leg strength.  The value of 2.5 kg for FFM reflects a minimum 

difference we expect to see or consider comparable to previous studies that have shown 

losses in function associated with a 2.5 kg loss of lean mass.  Hughes et al. (53) 

demonstrated that 11 N·m or ~12% of knee extensor strength is lost per decade in older 

women.   Given the high correlation of low muscle strength to impaired physical function 

(7; 11; 34; 138) we feel a minimum difference in skeletal muscle strength comparable to 

that which is lost per decade in older women is a physiologically important difference to 

expect. 

The subject numbers in Table 1 reflects the minimum number of subjects needed 

for the analysis at 80% power for both mass and strength phenotypes.  For FFM 

differences, the minimum number of subjects required is ~ 47 in each group and a 

minimum number of ~58 for skeletal muscle strength is required with an alpha level at 

0.05 and a power level of 0.80 (Table 1).  
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Table 1.  Calculation results to determine number of subjects and statistical power 

for proposed hypotheses.   

Dependent  
Variable 

Effect  
Size1 

 
Standard 
Deviation 

 

Effect Size 
/Standard 
Deviation 

Alpha Power 
Number of  

subjects  
required 

Muscle 
 Mass2  

  
2.5  4.3 0.581 0.05 0.80 47 

Muscle 
 Strength3 

 
11 21 0.523 0.05 0.80  58 

 1Values in unit difference between groups. 
 2 Kg (Total Muscle Mass) 
 3 N·m (Knee extensor peak torque) 

 
Table 2.  Calculation results for statistical power from current data.   

Dependent  
Variable 

Effect  
Size1 

 
Standard 
Deviation 

 

Alpha Power 

Muscle 
 Mass2  

  
1.3  4.3 0.05 0.97 

Muscle 
 Strength3 

 
10 21 0.05 1.0  

 1Values in unit difference between groups. 
 2 Kg (Total Muscle Mass) 
 3 N·m (Knee extensor peak torque) 
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APPENDIX D- Human Subjects Approval 
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APPENDIX E- Tables 

 
Table A.  Concentric knee extensor peak torque values in Follistatin haplotype 
group 1 homozygous carriers, haplotype group 1 heterozygous carriers, and non-
carriers of haplotype group 1 in Caucasian Men and Women. 

Haplotype Groups 
 

Homozygous 
Haplotype 
Group 1 

Heterozygous 
Haplotype 

Groups 1 & 2 

Heterozygous 
Haplotype 

Groups 1 & 3 

Non-Carriers 
of Haplotype 

Group 1 

P-value 

MEN 
Concentric (N·m, 
30º/sec) 
(N) 

171.1 ± 3.6  
 

(125) 

168.7 ± 4.7 
 

(73) 

173.7 ± 4.5  
 

(79) 

175.9 ± 6.4 
 
(39) 

0.788 

Concentric (N·m, 
180º/sec) 
(N) 

117.8 ± 2.3 
 

(122) 

112.6 ± 3.1 
 

(67) 

117.0 ± 2.9 
 

(78) 

117.3 ± 4.2 
 

(37) 

0.601 

WOMEN 
Concentric (N·m, 
30º/sec) 
(N) 

111.4 ± 2.8 
 

(94) 

111.5 ± 3.8 
 

(52) 

111.2 ± 3.7 
 

(57) 

110.9 ± 4.0 
 
(46) 

0.999 

Concentric (N·m, 
180º/sec) 
(N) 

74.2 ± 1.8 
 

(94) 

72.2 ± 2.5 
 

(50) 

69.9 ± 2.3 
 

(55) 

70.5 ± 2.5 
 

(46) 

0.458 

Data are least square means ± SE.   Age and height were included in the model as significant 
covariates.  
 

Table B:  Subject characteristics for Follistatin haplotype group 2 carriers and non-
carriers of haplotype group 2 in Caucasian Men and Women. 

MEN 
Haplotype 

Group 
Carriers of 

Haplotype Group 2 
Non-Carriers of 

Haplotype Group 2 
 

P-value 

N 97 218  
Age (y) 62.8 ± 1.7 62.2 ± 1.1 0.773 
Height (cm) 175.4 ± 0.8 176.6 ± 0.5 0.195 
Weight (kg) 83.9 ± 1.3 84.4 ± 0.9 0.777 

WOMEN 
N 88 190  
Age (y) 56.0 ± 1.7 57.8 ± 1.2  0.388 
Height (cm) 164.0 ± 0.7 162.9 ± 0.5 0.234 
Weight (kg) 68.7 ± 1.3 66.9 ± 0.9 0.258 
Data are means ± SE.  

 

 



64   
 

Table C:  Soft tissue FFM variables by carriers and non carrier of haplotype group 
2 Caucasian Men and Women.  

Haplotype Group 
 

Carriers of 
Haplotype 
Group 2 

Non-carriers of 
Haplotype 
Group 2 

P-value 

  MEN   
Total Body FFM (kg) 
(N) 

57.3 ± 0.5  
(97) 

56.9 ± 0.3  
(218) 

 0.487 

Total Leg FFM (kg) 
(N) 

16.8 ± 0.3  
(88) 

17.4 ± 0.2  
(192) 

0.112  

WOMEN 

Total Body FFM (kg) 
(N) 

39.8 ± 0.4 
(88)  

39.4 ± 0.3  
(190) 

0.299  

Total Leg FFM (kg) 
(N) 

11.4 ± 0.3  
(81) 

11.3 ± 0.2 
(174) 

 0.739 

Data are least square means ± SE.  Age and height were included in the model as 
significant covariates. 
 
 
 Table D:  Concentric knee extensor peak torque values in carriers and non-carriers 
of haplotype group 2 in Caucasian Men and Women.  

Haplotype Group 
 

Carriers of 
Haplotype 
Group 2 

Non-carriers of 
Haplotype 
Group 2 

P-value  

MEN 
Concentric (N·m, 30º/sec) 
(N) 

172.2 ± 3.9 
(105) 

171.6 ± 2.7  
(211) 

 0.917 

Concentric (N·m, 180º/sec) 
(N) 

115.0 ± 2.6 
(98) 

117.1 ± 1.8 
(206) 

0.516 

WOMEN 
Concentric (N·m, 30º/sec) 
(N) 

111.7 ± 3.0 
(84)  

111.1 ± 2.1  
(165) 

0.864  

Concentric (N·m, 180º/sec) 
(N) 

71.7 ± 1.9  
(82) 

72.3 ± 1.4 
(163) 

 0.819 

Data are least squares means ± SE.  Age and height were included in the model as 
significant covariates. 
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Table E:  Concentric knee extensor peak torque values in carriers and non-carriers 
of haplotype group 3 in Caucasian Men and Women.  

Haplotype Group 
 

Carriers of 
Haplotype 
Group 3 

Non-carriers of 
Haplotype 
Group 3 

P-value 

MEN 
Concentric (N·m, 30º/sec) 
(N) 

173.2 ± 3.9 
(107) 

171.1 ± 2.8  
(209) 

 0.648 

Concentric (N·m, 180º/sec) 
(N) 

116.8 ± 2.5 
(104) 

116.2 ± 1.8 
(200) 

0.843 

WOMEN 

Concentric (N·m, 30º/sec) 
(N) 

111.4 ± 3.8 
(96)  

111.4 ± 2.2  
(153) 

0.948  

Concentric (N·m, 180º/sec) 
(N) 

69.9 ± 1.8  
(94) 

73.4 ± 1.4 
(151) 

 0.13 

Data are least square means ± SE.  Age and height were included in the model as 
significant covariates. 
 
 
Table F. Soft tissue FFM variables for Follistatin haplotype group 3 homozygous 
carriers, haplotype group 3 heterozygous carriers, and non-carriers of haplotype 
group 3 in Caucasian Men and Women. 

Haplotype 
Groups 

 

Homozygous 
Haplotype 
Group 3 

Heterozygous 
Haplotype 

Groups 3 & 1 

Heterozygous 
Haplotype 

Groups 3 & 2 

Non-Carriers of 
Haplotype 
Group 3 

P-value 

MEN 
Total Body 
FFM (kg) 
(N) 

56.5 ± 1.9  
(7) 

56.1 ± .5 a 
(83) 

57.0 ± 1.0  
(21) 

57.4 ± .3 b 
(204) 

 a vs b 0.045 

Total Leg FFM 
(kg) 
(N) 

19.1 ± 1.4 a 
 

(4) 

16.6 ± 0.7 b 
 

(72) 

15.8 ± 0.7 c 
 

(17) 

17.5 ± 0.2 d 
 

(187) 

   a vs b 0.10 
a vs c 0.041 
b vs d 0.031 
c vs d 0.018 

WOMEN 
Total Body 
FFM (kg) 
(N) 

39.8 ± 0.9 
(17) 

39.8 ± 0.4 
(65) 

39.2 ± 0.7 
(25) 

39.3 ± 0.3 
(171) 

0.738 

Total Leg FFM 
(kg) 
(N) 

11.8 ± 0.6 
 

(14) 

11.7 ± 0.3  
 

(61) 

10.8 ± 0.5 
 

(22) 

11.2 ± 0.2 
 

(158) 

0.229 

Data are least square means ± SE.  Age and height were included in the model as significant 
covariates.  
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Table G:  Subject characteristics by Follistatin (rs: # 3797297) genotype for 
Caucasian Men and Women. 

Genotype 
Group 

CC AC 
 

AA P-value 

  MEN   
N 199 104 12  
Age (y) 61.8 ± 1.2 64.1 ± 1.6 57.2 ± 4.8 0.28 
Height (cm) 176.2 ± .5 176.3 ± .7 176.6 ± 2.2 0.976 
Weight (kg) 84.7 ± .9 83.9 ± 1.3 80.3 ± 3.7 0.505 
  WOMEN  P-value 
N 173 91 20  
Age (y) 57.7 ± 1.2  55.6 ± 1.7  58.3 ± 3.6 0.428 
Height (cm) 163.6 ± .5 162.9 ± .7 161.7 ± 1.5 0.99 
Weight (kg) 67.2 ± 1.0 67.5 ± 1.3 68.3 ± 2.8 0.929 
Data are means ± SE.   

 

Table H: Soft tissue FFM variables by Follistatin (rs: # 3797297) genotype in 
Caucasian Men and Women.  

Genotype Group 
    

CC 
  

AC 
  

AA 
  

P-value 

    MEN  
 

    

Total Body FFM (kg) 
(N) 

57.4 ± 0.3 a 
(199) 

56.3 ± 0.5 b 
(104) 

57.4 ± 1.4  
(12) 

a vs b 0.067 

Total Leg FFM (kg) 
(N) 

17.6 ± 0.2 a 
(182) 

16.5 ± 0.3 b 
(89) 

17.4 ± 1.0 
(9) 

a vs b 0.004 

  WOMEN   

Total Body FFM (kg) 
(N) 

39.4 ± 0.3 
(173) 

39.6 ± 0.4 
(91) 

39.7 ± 0.8 
(20) 

0.832 

Total Leg FFM (kg) 
(N) 

11.2 ± 0.2 
(160) 

11.5 ± 0.2 
(84) 

11.8 ± 0.6 
(17) 

0.482 

Data are least square means ± SE.  Age and height were included in the model as significant 
covariates. 
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Table I: Concentric knee extensor peak torque values by Follistatin (rs: # 3797297) 
genotype in Caucasian Men and Women. 
 
Genotype Group 

 
CC 

 
AC 

 
AA 

 
P-value 

  MEN 
 

  

Concentric (N·m, 
30º/sec) 
(N) 

170.4 ± 2.8 
 

(205) 

173.3 ± 4.0 
 

(101) 

175.4 ± 11.7 
 

(12) 

0.795 

Concentric (N·m, 
180º/sec 
(N) 

115.8 ± 1.8 
 

(196) 

117.5 ± 2.6 
 

(98) 

112.9 ± 7.8 
 

(11) 

0.783 

  WOMEN 
 

  

Concentric (N·m, 
30º/sec) 
(N) 

111.6 ± 2.2 
 

(156) 

111.8 ± 3.0 
 

(84) 

105.7 ± 6.9 
 

(16) 

0.705 

Concentric (N·m, 
180º/sec) 
(N) 

73.7 ± 1.4 
 

(154) 

69.7 ± 1.9 
 

(82) 

66.8 ± 4.3 
 

(16) 

0.122 

Data are least square means ± SE.  Age and height were included in the model as significant 
covariates. 
 

Table J:  Subject characteristics by Follistatin (rs: #12152850) genotype for 
Caucasian Men and Women. 

Genotype 
Group 

CC CT 
 

TT P-value 

  MEN   
N 225 91 4   
Age (y) 61.6 ± 1.1 a 63.0 ± 1.8 b 77.2 ± 8.3 c a vs c 0.065 

b vs c 0.098 
Height (cm) 176.6 ± .5 a 175.7 ± .8 b 167.7 ± 2.2 c a vs c 0.019 

b vs c 0.037 
Weight (kg) 84.7 ± .9 83.9 ± 1.3 80.3 ± 3.7 0.505 
  WOMEN   
N 205 84 10   
Age (y) 56.8 ± 1.1  56.0 ± 1.8 59.7 ± 5.2 0.774 
Height (cm) 163.2 ± .5 164.2 ± .7 163.2 ± 2.1 0.513 
Weight (kg) 66.9 ± .9 68.7 ± 1.4 67.2 ± 3.9 0.556 
Data are means ± SE.   
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Table K: Soft tissue FFM variables by Follistatin (rs: #12152850) genotype in 
Caucasian Men and Women.  

Genotype Group 
    

CC 
  

CT 
  

TT 
  

P-value 

    MEN  
 

    

Total Body FFM (kg) 
(N) 

57.0 ± 0.3 a 
(225) 

57.0 ± 0.5 b 
(91) 

65.2 ± 2.4 c 
(4) 

a & b vs c 0.001 

Total Leg FFM (kg) 
(N) 

17.4 ± 0.2  
(199) 

16.9 ± 0.3  
(82) 

17.4 ± 1.4 
(4) 

 0.501 

  WOMEN   

Total Body FFM (kg) 
(N) 

39.5 ± 0.2 
(205) 

39.9 ± 0.4 
(84) 

39.2 ± 1.1 
(10) 

0.668 

Total Leg FFM (kg) 
(N) 

11.8 ± 0.7 
(186) 

11.4 ± 0.3 
(76) 

11.3 ± 0.2 
(10) 

0.82 

Data are least squares means ± SE.  Age and height were included in the model as significant 
covariates. 
 
 
Table L: Concentric knee extensor peak torque values by Follistatin (rs: #12152850) 
genotype in Caucasian Men and Women. 
 
Genotype Group 

 
CC 

 
CT 

 
TT 

 
P-value 

  MEN   
Concentric (N·m, 
30º/sec) 
(N) 

172.1 ± 2.7 
 

(223) 

171.4 ± 4.1 
 

(96) 

175.8 ± 16.5 
 

(6) 

0.963 

Concentric (N·m, 
180º/sec 
(N) 

117.6 ± 1.7 
 

(218) 

114.5 ± 2.7 
 

(89) 

115.7 ± 10.5 
 

(6) 

0.632 

  WOMEN   
Concentric (N·m, 
30º/sec) 
(N) 

110.6 ± 2.1 
 

(182) 

113.0 ± 3.1 
 

(82) 

110.6 ± 2.1 
 

(7) 

0.736 

Concentric (N·m, 
180º/sec) 
(N) 

71.6 ± 1.4 
 

(180) 

72.3 ± 2.0 
 

(80) 

73.1 ± 6.9 
 

(7) 

0.95 

Data are least squares means ± SE.  Age and height were included in the model as 
significant covariates. 
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Table M:  Subject characteristics by Follistatin haplotype groups in Caucasian Men 
and Women. 
Haplotype 

Groups 
 

Homo 
Haplotype 
Group 1 

Homo 
Haplotype 
Group 2 

Homo 
Haplotype 
Group 3 

Hetero 
Haplotype 

Group  
1 & 2 

Hetero 
Haplotype 

Group  
1 & 3 

Hetero 
Haplotype 

Group  
2 & 3 

P-value 

MEN 
N 128 4 12 67 83 21   
Age (y) 59.4 ± 1.4 

a 
77.2 ± 8.1 

b 
57.2 ± 4.7 

c 
65.4 ± 2.0 

d 
66.1 ± 1.8 

e 
56.3 ± 3.6 

f 
a vs b, d, & 
e <0.05 
b vs c & f 
<0.05 
d vs f 
<0.05 
e vs f 
<0.05 
 

Height 
(cm) 

176.9 ± 0.6  167.7 ±3.7  176.6 ± 2.2  175.3 ± 0.9  176.1 ± 0.8  177.0 ± 1.6 b vs a, c, d, 
e, & f 
<0.05 

Weight 
(kg) 

85.4 ± 1.1 91.8 ± 6.4 80.4 ± 3.7 82.8 ± 1.6 83.1 ± 1.4 87.5 ± 2.8 0.271 

WOMEN 
N 108 10 17 53 65 25  
Age (y) 58.8 ± 1.6 59.7 ± 5.1 59.0 ± 4.0  55.7 ± 2.2 55.9 ± 2.0  55.1 ± 3.3  0.732 
Height 
(cm) 

163.2 ± 0.7 
 

(99) 

163.2 ± 2.2 
 

(10) 

161.2 ± 1.7 
 

(14) 

164.9 ± 0.9 
 

(49) 

163.1 ± 0.8 
 

(61) 

162.6 ± 1.4 
 

(22) 

0.460 

Weight 
(kg) 

65.4 ± 1.2 
a 

67.3 ± 3.9 69.2 ± 3.0 71.3 ± 1.7 
b 

69.0 ± 1.5 64.1 ± 2.5 
c 

b vs a 
0.005 
b vs c  
0.018 

Data are means ± SE. 
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Table N: Soft tissue FFM variables for Follistatin haplotype groups in Caucasian 
Men and Women. 
Haplotype 

Groups 
 

Homo 
Haplotype 
Group 1 

Homo 
Haplotype 
Group 2 

Homo 
Haplotype 
Group 3 

Hetero 
Haplotype 

Group  
1 & 2 

Hetero 
Haplotype 

Group  
1 & 3 

Hetero 
Haplotype 

Group  
2 & 3 

P-value 

MEN 
Total Body 
FFM (kg) 
(N) 

57.4 ± 0.4 
a 

(128) 

65.1 ± 2.4 
b 

(4) 

57.4 ± 1.3 
c 

(12) 

56.9 ± 0.6 
d 

(67) 

56.1 ± 0.5 
e 

(83) 

56.9 ± 1.0 
f 

(21) 

b vs a, c, 
d, e, f 

< 0.008 
Total Leg 
FFM (kg) 
(N) 

17.8 ± 0.3 
a 

(116) 

17.4 ± 1.4 
 

(4) 

17.4 ± 1.0 
 

(9) 

17.1 ± 0.4 
 

(62) 

16.7 ± 0.3 
b 

(72) 

15.8 ± 0.7 
c 

(17) 

a vs b & c 
 

0.007 
WOMEN 

Total Body 
FFM (kg) 
(N) 

39.0 ± 0.3 
a 

(108) 

39.2 ± 1.1 
 

(10) 

39.8 ± 0.8 
 

(17) 

40.3 ± 0.5 
b 

(53) 

39.9 ± 0.4 
 

(65) 

39.2 ± 0.7 
 

(25) 

a vs b 
 

0.029 
Total Leg 
FFM (kg) 
(N) 

11.0 ± 0.2 
 

(99) 

11.8 ± 0.7 
 

(10) 

11.8 ± 0.6 
 

(14) 

11.6 ± 0.3 
 

(49) 

11.8 ± 0.3 
 

(61) 

10.8 ± 0.5 
 

(22) 

0.176 

Data are least squares means ± SE.  Age and height were included in the model as 
significant covariates. 
 
Table O: Concentric knee extensor peak torque values for Follistatin haplotype 
groups in Caucasian Men and Women. 
Haplotype 

Groups 
 

Homo 
Haplotype 
Group 1 

Homo 
Haplotype 
Group 2 

Homo 
Haplotype 
Group 3 

Hetero 
Haplotype 

Group  
1 & 2 

Hetero 
Haplotype 

Group  
1 & 3 

Hetero 
Haplotype 

Group  
2 & 3 

P-value 

MEN 
Concentric 
(N·m, 
30º/sec) 
(N) 

171.1 ± 3.6 
 
 

(125) 

175.4 ± 16.5 
 
 

(6) 

175.1 ± 11.6 
 
 

(12) 

168.7 ± 4.7 
 
 

(73) 

173.7 ± 4.5 
 
 

(79) 

176.6 ± 8.8 
 
 

(21) 

0.957 

Concentric 
(N·m, 
180º/sec 
(N) 

117.8 ± 2.3 
 

 
(122) 

115.4 ± 10.6 
 
 

(6) 

113.2 ± 7.8 
 
 

(11) 

112.6 ± 3.2 
 
 

(67) 

117.0 ± 2.9 
 
 

(78) 

120.2 ± 5.8 
 
 

(20) 

0.786 

WOMEN 
Concentric 
(N·m, 
30º/sec) 
(N) 

111.4 ± 2.9 
 
 

(94) 

105.8 ± 10.5 
 
 

(7) 

108.3 ± 7.4 
 
 

(14) 

111.6 ± 3.9 
 
 

(52) 

111.2 ± 3.7 
 
 

(57) 

113.7 ± 5.5 
 
 

(25) 

0.986 

Concentric 
(N·m, 
180º/sec 
(N) 

74.2 ± 1.8 
 

(94) 

72.8 ± 6.5 
 

(7) 

68.8 ± 4.7 
 

(14) 

72.2 ± 2.5 
 

(50) 

70.0 ± 2.4 
 

(55) 

70.8 ± 3.5 
 

(25) 

0.724 

Data are least square means ± SE.  Age and height were included in the model as 
significant covariates 

 



71   
 

Reference List 
 

 1.  Aiken J, Bua E, Cao Z, Lopez M, Wanagat J, McKenzie D and McKiernan S. 

Mitochondrial DNA deletion mutations and sarcopenia. Ann N Y Acad Sci 959: 

412-423, 2002. 

 2.  Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ and Donnelly 

P. A haplotype map of the human genome. Nature 437: 1299-1320, 2005. 

 3.  Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R 

and Patel K. Follistatin complexes Myostatin and antagonises Myostatin-

mediated inhibition of myogenesis. Dev Biol 270: 19-30, 2004. 

 4.  Aniansson A, Zetterberg C, Hedberg M and Henriksson KG. Impaired muscle 

function with aging. A background factor in the incidence of fractures of the 

proximal end of the femur. Clin Orthop Relat Res 193-201, 1984. 

 5.  Arden NK and Spector TD. Genetic influences on muscle strength, lean body 

mass, and bone mineral density: a twin study. J Bone Miner Res 12: 2076-2081, 

1997. 

 6.  Barrett JC, Fry B, Maller J and Daly MJ. Haploview: analysis and 

visualization of LD and haplotype maps. Bioinformatics 21: 263-265, 2005. 



72   
 

 7.  Bassey EJ, Bendall MJ and Pearson M. Muscle strength in the triceps surae and 

objectively measured customary walking activity in men and women over 65 

years of age. Clin Sci (Lond) 74: 85-89, 1988. 

 8.  Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, 

Ross RR, Garry PJ and Lindeman RD. Epidemiology of sarcopenia among the 

elderly in New Mexico. Am J Epidemiol 147: 755-763, 1998. 

 9.  Bourgain C, Genin E, Quesneville H and Clerget-Darpoux F. Search for 

multifactorial disease susceptibility genes in founder populations. Ann Hum Genet 

64: 255-265, 2000. 

 10.  Brooks SV and Faulkner JA. Skeletal muscle weakness in old age: underlying 

mechanisms. Med Sci Sports Exerc 26: 432-439, 1994. 

 11.  Brown M, Sinacore DR and Host HH. The relationship of strength to function 

in the older adult. J Gerontol A Biol Sci Med Sci 50 Spec No: 55-59, 1995. 

 12.  Brown WF. A method for estimating the number of motor units in thenar muscles 

and the changes in motor unit count with ageing. J Neurol Neurosurg Psychiatry 

35: 845-852, 1972. 

 13.  Bullough WS. The control of mitotic activity in adult mammalian tissues. Biol 

Rev Camb Philos Soc 37: 307-342, 1962. 



73   
 

 14.  Cadenas E and Davies KJ. Mitochondrial free radical generation, oxidative 

stress, and aging. Free Radic Biol Med 29: 222-230, 2000. 

 15.  Campbell AJ, Borrie MJ and Spears GF. Risk factors for falls in a community-

based prospective study of people 70 years and older. J Gerontol 44: M112-

M117, 1989. 

 16.  Campbell WW, Crim MC, Dallal GE, Young VR and Evans WJ. Increased 

protein requirements in elderly people: new data and retrospective reassessments. 

Am J Clin Nutr 60: 501-509, 1994. 

 17.  Campbell WW, Trappe TA, Wolfe RR and Evans WJ. The recommended 

dietary allowance for protein may not be adequate for older people to maintain 

skeletal muscle. J Gerontol A Biol Sci Med Sci 56: M373-M380, 2001. 

 18.  Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal 

MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello 

LS, Visich PS, Zoeller RF, Seip RL and Hoffman EP. ACTN3 genotype is 

associated with increases in muscle strength in response to resistance training in 

women. J Appl Physiol 99: 154-163, 2005. 

 19.  Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal 

MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello 

LS, Visich PS, Zoeller RF, Seip RL and Hoffman EP. ACTN3 genotype is 



74   
 

associated with increases in muscle strength in response to resistance training in 

women. J Appl Physiol 99: 154-163, 2005. 

 20.  Clayton D and Jones H. Transmission/disequilibrium tests for extended marker 

haplotypes. Am J Hum Genet 65: 1161-1169, 1999. 

 21.  Croteau DL, Stierum RH and Bohr VA. Mitochondrial DNA repair pathways. 

Mutat Res 434: 137-148, 1999. 

 22.  Daly MJ, Rioux JD, Schaffner SF, Hudson TJ and Lander ES. High-

resolution haplotype structure in the human genome. Nat Genet 29: 229-232, 

2001. 

 23.  Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM, Pabial J, 

Dibling T, Tinsley E, Kirby S, Carter D, Papaspyridonos M, Livingstone S, 

Ganske R, Lohmussaar E, Zernant J, Tonisson N, Remm M, Magi R, 

Puurand T, Vilo J, Kurg A, Rice K, Deloukas P, Mott R, Metspalu A, Bentley 

DR, Cardon LR and Dunham I. A first-generation linkage disequilibrium map 

of human chromosome 22. Nature 418: 544-548, 2002. 

 24.  De l, V, Lazaruk KD, Rhodes MD and Wenz MH. Assessment of two flexible 

and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and 

the SNPlex Genotyping System. Mutat Res 573: 111-135, 2005. 



75   
 

 25.  Desypris G and Parry DJ. Relative efficacy of slow and fast alpha-motoneurons 

to reinnervate mouse soleus muscle. Am J Physiol 258: C62-C70, 1990. 

 26.  Dirks AJ and Leeuwenburgh C. Tumor necrosis factor alpha signaling in 

skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 2005. 

 27.  Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol 95: 1717-

1727, 2003. 

 28.  Doherty TJ, Vandervoort AA and Brown WF. Effects of ageing on the motor 

unit: a brief review. Can J Appl Physiol 18: 331-358, 1993. 

 29.  Edwards AO, Ritter R, III, Abel KJ, Manning A, Panhuysen C and Farrer 

LA. Complement factor H polymorphism and age-related macular degeneration. 

Science 308: 421-424, 2005. 

 30.  Ershler WB and Keller ET. Age-associated increased interleukin-6 gene 

expression, late-life diseases, and frailty. Annu Rev Med 51: 245-270, 2000. 

 31.  Ferrando AA, Lane HW, Stuart CA, vis-Street J and Wolfe RR. Prolonged 

bed rest decreases skeletal muscle and whole body protein synthesis. Am J 

Physiol 270: E627-E633, 1996. 



76   
 

 32.  Ferrando AA, Tipton KD, Bamman MM and Wolfe RR. Resistance exercise 

maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 82: 

807-810, 1997. 

 33.  Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM and Hurley BF. 

Frequent sequence variation in the human myostatin (GDF8) gene as a marker for 

analysis of muscle-related phenotypes. Genomics 62: 203-207, 1999. 

 34.  Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA and Evans 

WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. 

JAMA 263: 3029-3034, 1990. 

 35.  Fielding RA. The role of progressive resistance training and nutrition in the 

preservation of lean body mass in the elderly. J Am Coll Nutr 14: 587-594, 1995. 

 36.  Forbes GB, Sauer EP and Weitkamp LR. Lean body mass in twins. 

Metabolism 44: 1442-1446, 1995. 

 37.  Frontera WR, Hughes VA, Lutz KJ and Evans WJ. A cross-sectional study of 

muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 71: 

644-650, 1991. 

 38.  Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, 

Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, 



77   
 

Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ and Altshuler D. The 

structure of haplotype blocks in the human genome. Science 296: 2225-2229, 

2002. 

 39.  Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, 

Pierson RN, Harris T and Heymsfield SB. Appendicular skeletal muscle mass: 

effects of age, gender, and ethnicity. J Appl Physiol 83: 229-239, 1997. 

 40.  Girgenrath S, Song K and Whittemore LA. Loss of myostatin expression alters 

fiber-type distribution and expression of myosin heavy chain isoforms in slow- 

and fast-type skeletal muscle. Muscle Nerve 31: 34-40, 2005. 

 41.  Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, 

Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R 

and Georges M. A deletion in the bovine myostatin gene causes the double-

muscled phenotype in cattle. Nat Genet 17: 71-74, 1997. 

 42.  Grounds MD. Reasons for the degeneration of ageing skeletal muscle: a central 

role for IGF-1 signalling. Biogerontology 3: 19-24, 2002. 

 43.  Guillet C, Auguste P, Mayo W, Kreher P and Gascan H. Ciliary neurotrophic 

factor is a regulator of muscular strength in aging. J Neurosci 19: 1257-1262, 

1999. 



78   
 

 44.  Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, 

Studenski S, Berkman LF and Wallace RB. Lower extremity function and 

subsequent disability: consistency across studies, predictive models, and value of 

gait speed alone compared with the short physical performance battery. J 

Gerontol A Biol Sci Med Sci 55: M221-M231, 2000. 

 45.  Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer 

KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, 

Postel EA and Pericak-Vance MA. Complement factor H variant increases the 

risk of age-related macular degeneration. Science 308: 419-421, 2005. 

 46.  HARMAN D. Aging: a theory based on free radical and radiation chemistry. J 

Gerontol 11: 298-300, 1956. 

 47.  Harman SM, Metter EJ, Tobin JD, Pearson J and Blackman MR. 

Longitudinal effects of aging on serum total and free testosterone levels in healthy 

men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 86: 724-

731, 2001. 

 48.  Hastbacka J, de la CA, Kaitila I, Sistonen P, Weaver A and Lander E. 

Linkage disequilibrium mapping in isolated founder populations: diastrophic 

dysplasia in Finland. Nat Genet 2: 204-211, 1992. 



79   
 

 49.  Hauer K, Specht N, Schuler M, Bartsch P and Oster P. Intensive physical 

training in geriatric patients after severe falls and hip surgery. Age Ageing 31: 49-

57, 2002. 

 50.  Highgenboten CL, Jackson AW and Meske NB. Concentric and eccentric 

torque comparisons for knee extension and flexion in young adult males and 

females using the Kinetic Communicator. Am J Sports Med 16: 234-237, 1988. 

 51.  Hirschhorn JN, Lohmueller K, Byrne E and Hirschhorn K. A comprehensive 

review of genetic association studies. Genet Med 4: 45-61, 2002. 

 52.  Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, 

Furlanetto R, Rogol AD, Kaiser DL and Thorner MO. Effects of sex and age 

on the 24-hour profile of growth hormone secretion in man: importance of 

endogenous estradiol concentrations. J Clin Endocrinol Metab 64: 51-58, 1987. 

 53.  Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R and 

Fiatarone Singh MA. Longitudinal muscle strength changes in older adults: 

influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med 

Sci 56: B209-B217, 2001. 

 54.  Hunter GR, McCarthy JP and Bamman MM. Effects of resistance training on 

older adults. Sports Med 34: 329-348, 2004. 



80   
 

 55.  Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen R, Vlietinck RF 

and Beunen G. Linkage of myostatin pathway genes with knee strength in 

humans. Physiol Genomics 17: 264-270, 2004. 

 56.  Huygens W, Thomis MA, Peeters MW, Aerssens J, Vlietinck R and Beunen 

GP. Quantitative trait loci for human muscle strength: linkage analysis of 

myostatin pathway genes. Physiol Genomics 22: 390-397, 2005. 

 57.  Huygens W, Thomis MA, Peeters MW, Vlietinck RF and Beunen GP. 

Determinants and upper-limit heritabilities of skeletal muscle mass and strength. 

Can J Appl Physiol 29: 186-200, 2004. 

 58.  Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, Martel 

GF, Siegel EL, Fozard JL, Jeffrey ME, Fleg JL and Hurley BF. Effects of age, 

gender, and myostatin genotype on the hypertrophic response to heavy resistance 

strength training. J Gerontol A Biol Sci Med Sci 55: M641-M648, 2000. 

 59.  Ivey FM, Tracy BL, Lemmer JT, NessAiver M, Metter EJ, Fozard JL and 

Hurley BF. Effects of strength training and detraining on muscle quality: age and 

gender comparisons. J Gerontol A Biol Sci Med Sci 55: B152-B157, 2000. 

 60.  Janssen I, Heymsfield SB and Ross R. Low relative skeletal muscle mass 

(sarcopenia) in older persons is associated with functional impairment and 

physical disability. J Am Geriatr Soc 50: 889-896, 2002. 



81   
 

 61.  Janssen I, Shepard DS, Katzmarzyk PT and Roubenoff R. The Healthcare 

Costs of Sarcopenia in the United States. Journal of the American Geriatrics 

Society 52: 80-85, 2004. 

 62.  Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di GG, Ueda H, 

Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, 

Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, 

Clayton DG and Todd JA. Haplotype tagging for the identification of common 

disease genes. Nat Genet 29: 233-237, 2001. 

 63.  Katznelson L, Rosenthal DI, Rosol MS, Anderson EJ, Hayden DL, 

Schoenfeld DA and Klibanski A. Using quantitative CT to assess adipose 

distribution in adult men with acquired hypogonadism. AJR Am J Roentgenol 170: 

423-427, 1998. 

 64.  Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti 

A, Buchwald M and Tsui LC. Identification of the cystic fibrosis gene: genetic 

analysis. Science 245: 1073-1080, 1989. 

 65.  Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, 

SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, 

Barnstable C and Hoh J. Complement factor H polymorphism in age-related 

macular degeneration. Science 308: 385-389, 2005. 



82   
 

 66.  Kostek MC, Delmonico MJ, Reichel JB, Roth SM, Douglass L, Ferrell RE 

and Hurley BF. Muscle strength response to strength training is influenced by 

insulin-like growth factor 1 genotype in older adults. J Appl Physiol 98: 2147-

2154, 2005. 

 67.  Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of 

common disease genes. Nat Genet 22: 139-144, 1999. 

 68.  Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer 

T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van RH, Sedivy JM, 

Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C and Prolla TA. 

Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian 

aging. Science 309: 481-484, 2005. 

 69.  Kuta I, Parizkova J and Dycka J. Muscle strength and lean body mass in old 

men of different physical activity. J Appl Physiol 29: 168-171, 1970. 

 70.  Langley B, Thomas M, Bishop A, Sharma M, Gilmour S and Kambadur R. 

Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. 

J Biol Chem 277: 49831-49840, 2002. 

 71.  Larsson L, Grimby G and Karlsson J. Muscle strength and speed of movement 

in relation to age and muscle morphology. J Appl Physiol 46: 451-456, 1979. 



83   
 

 72.  Latham NK, Bennett DA, Stretton CM and Anderson CS. Systematic review 

of progressive resistance strength training in older adults. J Gerontol A Biol Sci 

Med Sci 59: 48-61, 2004. 

 73.  Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20: 61-

86, 2004. 

 74.  Lee SJ and McPherron AC. Regulation of myostatin activity and muscle 

growth. Proc Natl Acad Sci U S A 98: 9306-9311, 2001. 

 75.  Lemmer JT, Hurlbut DE, Martel GF, Tracy BL, Ivey FM, Metter EJ, Fozard 

JL, Fleg JL and Hurley BF. Age and gender responses to strength training and 

detraining. Med Sci Sports Exerc 32: 1505-1512, 2000. 

 76.  Lexell J, Taylor CC and Sjostrom M. What is the cause of the ageing atrophy? 

Total number, size and proportion of different fiber types studied in whole vastus 

lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84: 275-294, 1988. 

 77.  Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA and 

Hurley BF. Age and gender comparisons of muscle strength in 654 women and 

men aged 20-93 yr. J Appl Physiol 83: 1581-1587, 1997. 



84   
 

 78.  Liu D, Black BL and Derynck R. TGF-beta inhibits muscle differentiation 

through functional repression of myogenic transcription factors by Smad3. Genes 

Dev 15: 2950-2966, 2001. 

 79.  Livak KJ, Flood SJ, Marmaro J, Giusti W and Deetz K. Oligonucleotides with 

fluorescent dyes at opposite ends provide a quenched probe system useful for 

detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4: 357-

362, 1995. 

 80.  Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, Fleg JL 

and Hurley BF. Muscle quality. I.áAge-associated differences between arm and 

leg muscle groups. J Appl Physiol 86: 188-194, 1999. 

 81.  Mandavilli BS, Santos JH and Van HB. Mitochondrial DNA repair and aging. 

Mutat Res 509: 127-151, 2002. 

 82.  McCroskery S, Thomas M, Maxwell L, Sharma M and Kambadur R. 

Myostatin negatively regulates satellite cell activation and self-renewal. J Cell 

Biol 162: 1135-1147, 2003. 

 83.  McGuigan FE and Ralston SH. Single nucleotide polymorphism detection: 

allelic discrimination using TaqMan. Psychiatr Genet 12: 133-136, 2002. 



85   
 

 84.  McKenzie D, Bua E, McKiernan S, Cao Z and Aiken JM. Mitochondrial DNA 

deletion mutations: a causal role in sarcopenia. Eur J Biochem 269: 2010-2015, 

2002. 

 85.  McPherron AC, Lawler AM and Lee SJ. Regulation of skeletal muscle mass in 

mice by a new TGF-beta superfamily member. Nature 387: 83-90, 1997. 

 86.  McPherron AC and Lee SJ. Double muscling in cattle due to mutations in the 

myostatin gene. Proc Natl Acad Sci U S A 94: 12457-12461, 1997. 

 87.  Metter EJ, Conwit R, Tobin J and Fozard JL. Age-associated loss of power 

and strength in the upper extremities in women and men. J Gerontol A Biol Sci 

Med Sci 52: B267-B276, 1997. 

 88.  Metter EJ, Talbot LA, Schrager M and Conwit R. Skeletal muscle strength as 

a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 

57: B359-B365, 2002. 

 89.  Morley JE. Anorexia and weight loss in older persons. J Gerontol A Biol Sci Med 

Sci 58: 131-137, 2003. 

 90.  Morley JE. Anorexia, body composition, and ageing. Curr Opin Clin Nutr Metab 

Care 4: 9-13, 2001. 



86   
 

 91.  Morley JE, Mooradian AD, Silver AJ, Heber D and fin-Slater RB. Nutrition 

in the elderly. Ann Intern Med 109: 890-904, 1988. 

 92.  Mosoni L, Malmezat T, Valluy MC, Houlier ML, Attaix D and Mirand PP. 

Lower recovery of muscle protein lost during starvation in old rats despite a 

stimulation of protein synthesis. Am J Physiol 277: E608-E616, 1999. 

 93.  Nordborg M and Tavare S. Linkage disequilibrium: what history has to tell us. 

Trends Genet 18: 83-90, 2002. 

 94.  Oppenheim RW, Prevette D, Yin QW, Collins F and MacDonald J. Control of 

embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science 

251: 1616-1618, 1991. 

 95.  Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer 

CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, 

Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas 

KR, Frazer KA, Fodor SP and Cox DR. Blocks of limited haplotype diversity 

revealed by high-resolution scanning of human chromosome 21. Science 294: 

1719-1723, 2001. 

 96.  Perry HM, III, Miller DK, Patrick P and Morley JE. Testosterone and leptin 

in older African-American men: relationship to age, strength, function, and 

season. Metabolism 49: 1085-1091, 2000. 



87   
 

 97.  Phillips T and Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha 

signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19: 

668-670, 2005. 

 98.  Ranade K, Chang MS, Ting CT, Pei D, Hsiao CF, Olivier M, Pesich R, 

Hebert J, Chen YD, Dzau VJ, Curb D, Olshen R, Risch N, Cox DR and 

Botstein D. High-throughput genotyping with single nucleotide polymorphisms. 

Genome Res 11: 1262-1268, 2001. 

 99.  Rantanen T, Era P and Heikkinen E. Physical activity and the changes in 

maximal isometric strength in men and women from the age of 75 to 80 years. J 

Am Geriatr Soc 45: 1439-1445, 1997. 

 100.  Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, 

Ling S and Fried LP. Disability, physical activity, and muscle strength in older 

women: the Women's Health and Aging Study. Arch Phys Med Rehabil 80: 130-

135, 1999. 

 101.  Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K and 

Guralnik JM. Muscle strength and body mass index as long-term predictors of 

mortality in initially healthy men. J Gerontol A Biol Sci Med Sci 55: M168-M173, 

2000. 



88   
 

 102.  Reed T, Fabsitz RR, Selby JV and Carmelli D. Genetic influences and grip 

strength norms in the NHLBI twin study males aged 59-69. Ann Hum Biol 18: 

425-432, 1991. 

 103.  Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS 

Lett 241: 1-5, 1988. 

 104.  Risch N and Merikangas K. The future of genetic studies of complex human 

diseases. Science 273: 1516-1517, 1996. 

 105.  Rolland Y, Lauwers-Cances V, Cournot M, Nourhashemi F, Reynish W, 

Riviere D, Vellas B and Grandjean H. Sarcopenia, calf circumference, and 

physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51: 

1120-1124, 2003. 

 106.  Rosenberg IH and Roubenoff R. Stalking sarcopenia. Ann Intern Med 123: 727-

728, 1995. 

 107.  Roth SM, Ferrell RF and Hurley BF. Strength training for the prevention and 

treatment of sarcopenia. J Nutr Health Aging 4: 143-155, 2000. 

 108.  Roth SM, Metter EJ, Lee MR, Hurley BF and Ferrell RE. C174T 

polymorphism in the CNTF receptor gene is associated with fat-free mass in men 

and women. J Appl Physiol 95: 1425-1430, 2003. 



89   
 

 109.  Roth SM, Schrager MA, Ferrell RE, Riechman SE, Metter EJ, Lynch NA, 

Lindle RS and Hurley BF. CNTF genotype is associated with muscular strength 

and quality in humans across the adult age span. J Appl Physiol 90: 1205-1210, 

2001. 

 110.  Roth SM, Schrager MA, Lee MR, Metter EJ, Hurley BF and Ferrell RE. 

Interleukin-6 (IL6) genotype is associated with fat-free mass in men but not 

women. J Gerontol A Biol Sci Med Sci 58: B1085-B1088, 2003. 

 111.  Roth SM, Zmuda JM, Cauley JA, Shea PR and Ferrell RE. Vitamin D 

receptor genotype is associated with fat-free mass and sarcopenia in elderly men. 

J Gerontol A Biol Sci Med Sci 59: 10-15, 2004. 

 112.  Roubenoff R. Catabolism of aging: is it an inflammatory process? Curr Opin 

Clin Nutr Metab Care 6: 295-299, 2003. 

 113.  Roubenoff R and Hughes VA. Sarcopenia: current concepts. J Gerontol A Biol 

Sci Med Sci 55: M716-M724, 2000. 

 114.  Roy TA, Blackman MR, Harman SM, Tobin JD, Schrager M and Metter EJ. 

Interrelationships of serum testosterone and free testosterone index with FFM and 

strength in aging men. Am J Physiol Endocrinol Metab 283: E284-E294, 2002. 



90   
 

 115.  Schrager MA, Roth SM, Ferrell RE, Metter EJ, Russek-Cohen E, Lynch NA, 

Lindle RS and Hurley BF. Insulin-like growth factor-2 genotype, fat-free mass, 

and muscle performance across the adult life span. J Appl Physiol 97: 2176-2183, 

2004. 

 116.  Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun 

T, Tobin JF and Lee SJ. Myostatin mutation associated with gross muscle 

hypertrophy in a child. N Engl J Med 350: 2682-2688, 2004. 

 117.  Seeman E, Hopper JL, Young NR, Formica C, Goss P and Tsalamandris C. 

Do genetic factors explain associations between muscle strength, lean mass, and 

bone density? A twin study. Am J Physiol 270: E320-E327, 1996. 

 118.  Seibert MJ, Xue QL, Fried LP and Walston JD. Polymorphic variation in the 

human myostatin (GDF-8) gene and association with strength measures in the 

Women's Health and Aging Study II cohort. J Am Geriatr Soc 49: 1093-1096, 

2001. 

 119.  Sowers MR, Crutchfield M, Richards K, Wilkin MK, Furniss A, Jannausch 

M, Zhang D and Gross M. Sarcopenia is related to physical functioning and leg 

strength in middle-aged women. J Gerontol A Biol Sci Med Sci 60: 486-490, 

2005. 



91   
 

 120.  Stewart CE, Newcomb PV and Holly JM. Multifaceted roles of TNF-alpha in 

myoblast destruction: a multitude of signal transduction pathways. J Cell Physiol 

198: 237-247, 2004. 

 121.  Suh Y and Vijg J. SNP discovery in associating genetic variation with human 

disease phenotypes. Mutat Res 573: 41-53, 2005. 

 122.  Sullivan DH, Wall PT, Bariola JR, Bopp MM and Frost YM. Progressive 

resistance muscle strength training of hospitalized frail elderly. Am J Phys Med 

Rehabil 80: 503-509, 2001. 

 123.  The International HapMap Consortium. A haplotype map of the human 

genome. Nature 437: 1299-1320, 2005. 

 124.  Thies RS, Chen T, Davies MV, Tomkinson KN, Pearson AA, Shakey QA and 

Wolfman NM. GDF-8 propeptide binds to GDF-8 and antagonizes biological 

activity by inhibiting GDF-8 receptor binding. Growth Factors 18: 251-259, 

2001. 

 125.  Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J and Kambadur 

R. Myostatin, a negative regulator of muscle growth, functions by inhibiting 

myoblast proliferation. J Biol Chem 275: 40235-40243, 2000. 



92   
 

 126.  Toivonen HT, Onkamo P, Vasko K, Ollikainen V, Sevon P, Mannila H, Herr 

M and Kere J. Data mining applied to linkage disequilibrium mapping. Am J 

Hum Genet 67: 133-145, 2000. 

 127.  Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL, Metter 

EJ, Fozard JL, Fleg JL and Hurley BF. Muscle quality. II. Effects Of strength 

training in 65- to 75-yr-old men and women. J Appl Physiol 86: 195-201, 1999. 

 128.  van den Beld AW, de Jong FH, Grobbee DE, Pols HA and Lamberts SW. 

Measures of bioavailable serum testosterone and estradiol and their relationships 

with muscle strength, bone density, and body composition in elderly men. J Clin 

Endocrinol Metab 85: 3276-3282, 2000. 

 129.  van Rossum EF, Voorhoeve PG, te Velde SJ, Koper JW, Delemarre-van de 

Waal HA, Kemper HC and Lamberts SW. The ER22/23EK polymorphism in 

the glucocorticoid receptor gene is associated with a beneficial body composition 

and muscle strength in young adults. J Clin Endocrinol Metab 89: 4004-4009, 

2004. 

 130.  Van P, I, Goemaere S, Nuytinck L, De PA and Kaufman JM. Association of 

the type I collagen alpha1 Sp1 polymorphism, bone density and upper limb 

muscle strength in community-dwelling elderly men. Osteoporos Int 12: 895-901, 

2001. 



93   
 

 131.  Van P, I, Goemaere S, Nuytinck L, De PA and Kaufman JM. Association of 

the type I collagen alpha1 Sp1 polymorphism, bone density and upper limb 

muscle strength in community-dwelling elderly men. Osteoporos Int 12: 895-901, 

2001. 

 132.  Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman 

AB, Nevitt M and Harris TB. Relationship of interleukin-6 and tumor necrosis 

factor-alpha with muscle mass and muscle strength in elderly men and women: 

the Health ABC Study. J Gerontol A Biol Sci Med Sci 57: M326-M332, 2002. 

 133.  Volpi E, Nazemi R and Fujita S. Muscle tissue changes with aging. Curr Opin 

Clin Nutr Metab Care 7: 405-410, 2004. 

 134.  Walsh S, Zmuda JM, Cauley JA, Shea PR, Metter EJ, Hurley BF, Ferrell RE 

and Roth SM. Androgen receptor CAG repeat polymorphism is associated with 

fat-free mass in men. J Appl Physiol 98: 132-137, 2005. 

 135.  Wang N, Akey JM, Zhang K, Chakraborty R and Jin L. Distribution of 

recombination crossovers and the origin of haplotype blocks: the interplay of 

population history, recombination, and mutation. Am J Hum Genet 71: 1227-

1234, 2002. 



94   
 

 136.  Wang ZM, Visser M, Ma R, Baumgartner RN, Kotler D, Gallagher D and 

Heymsfield SB. Skeletal muscle mass: evaluation of neutron activation and dual-

energy X-ray absorptiometry methods. J Appl Physiol 80: 824-831, 1996. 

 137.  Weiss KM and Clark AG. Linkage disequilibrium and the mapping of complex 

human traits. Trends Genet 18: 19-24, 2002. 

 138.  Wolfson L, Judge J, Whipple R and King M. Strength is a major factor in 

balance, gait, and the occurrence of falls. J Gerontol A Biol Sci Med Sci 50 Spec 

No: 64-67, 1995. 

 139.  Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD and Wall RJ. 

Expression of myostatin pro domain results in muscular transgenic mice. Mol 

Reprod Dev 60: 351-361, 2001. 

 140.  Zhang K, Calabrese P, Nordborg M and Sun F. Haplotype block structure and 

its applications to association studies: power and study designs. Am J Hum Genet 

71: 1386-1394, 2002. 

 141.  Zhao H, Pfeiffer R and Gail MH. Haplotype analysis in population genetics and 

association studies. Pharmacogenomics 4: 171-178, 2003. 



95   
 

 142.  Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson 

KN, McPherron AC, Wolfman NM and Lee SJ. Induction of cachexia in mice 

by systemically administered myostatin. Science 296: 1486-1488, 2002. 

 

 


