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The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this
species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The
germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus
(MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not
directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC
genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225
chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of
which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial
and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is
highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding
to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating
structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and
dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T.
thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known
with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence
supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA
as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein,
and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for
functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental
importance.

Citation: Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, et al. (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol
4(9): e286. DOI: 10.1371/journal.pbio.0040286

Introduction

Tetrahymena thermophila is a single-celled model organism
for unicellular eukaryotic biology [1]. Studies of T. thermophila
(referred to as T. pyriformis variety 1 or syngen 1 prior to 1976
[2]) have contributed to fundamental biological discoveries
such as catalytic RNA [3], telomeric repeats [4,5], telomerase
[6], and the function of histone acetylation [7]. T. thermophila is
advantageous as a model eukaryotic system because it grows
rapidly to high density in a variety of media and conditions,

its life cycle allows the use of conventional tools of genetic
analysis, and molecular genetic tools for sequence-enabled
experimental analysis of gene function have been developed
[8,9]. In addition, although it is unicellular, it possesses many
core processes conserved across a wide diversity of eukaryotes
(including humans) that are not found in other single-celled
model systems (e.g., the yeasts Saccharomyces cerevisiae and
Schizosaccharomyces pombe).
T. thermophila is a member of the phylum Ciliophora, which

also includes the genera Paramecium, Oxytricha, and Ichthyoph-
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thirius. A cartoon showing the phylogenetic position of T.
thermophila relative to other eukaryotes for which the genomes
have been sequenced is shown in Figure 1. The ciliates are
one of three major evolutionary lineages that make up the
alveolates. The other two lineages are dinoflagellates and the
exclusively parasitic apicomplexa, which includes the Plasmo-
dium species that cause malaria. Although experimental tools
are improving for the apicomplexa [10–12], they can still be
challenging to work with, and in some situations T. thermophila
can serve as a useful ‘‘distant cousin’’ model for this group
[13].

As is typical of ciliates, T. thermophila cells exhibit nuclear
dimorphism [14]. Each cell has two nuclei, the micronucleus
(MIC) and the macronucleus (MAC), containing distinct but
closely related genomes. The MIC is diploid and contains five
pairs of chromosomes. It is the germline, the store of genetic
information for the progeny produced by conjugation in the
sexual stage of the T. thermophila life cycle. Conjugation
involves meiosis, fusion of haploid MIC gametes to produce a
new zygotic MIC, and differentiation of new MACs from
mitotic copies of the zygotic MIC (for details, see [15]). After
formation of the MAC, cells reproduce asexually until the
next sexual conjugation. During this asexual growth, all gene
expression occurs in the MAC, which is thus considered the
somatic nucleus.

The MAC genome derives from that of the MIC, but the two
genomes are quite distinct. During MAC differentiation,
several types of developmentally programmed DNA rear-
rangements occur [16,17] (Figure 2). One such rearrangement
is the deletion of segments of the MIC genome known as
internally eliminated sequences (IESs). It is estimated that
approximately 6,000 IESs are removed, resulting in the MAC
genome being an estimated 10% to 20% smaller than that of
the MIC [18]. A key aspect of the process is the preferential
removal of repetitive DNA, which results in 90% to 100% of
MIC repeats being eliminated [19,20]. Thus the process can be
considered analogous to and more extreme than other forms
of repeat element silencing phenomena such as repeat-
induced point mutation (RIP) in Neurospora and heterochro-
matin formation [21,22]. A second programmed DNA
rearrangement is the site-specific fragmentation at each
location of the 15–base pair (bp) chromosome breakage
sequence (Cbs) [23–25]. During fragmentation, sections of the
MIC genome containing each Cbs, as well as up to 30 bp on
either side, are deleted [26]. Telomeres are then added to
each new end [27], generating some 250 to 300 MAC
chromosomes [28,29].

Another process that occurs during MAC differentiation is
the amplification of the number of copies of the MAC
chromosomes. The rDNA chromosome, which encodes the
5.8S, 17S, and 26S rRNAs, is maintained at an average of 9,000
copies per MAC [30]. Six other chromosomes that have been
examined are each maintained at an average of 45 copies per
MAC [31]. During asexual reproduction, the MAC divides
amitotically, with apparently random distribution of chro-
mosome copies that behave as if acentromeric. In contrast,
MIC chromosomes are metacentric [32] and are distributed
mitotically [33,34]. Parental MAC DNA is not transmitted to
sexual progeny, although it does have an epigenetic influence
on postzygotic MAC genome rearrangement, mediated by
RNA interference [35].

The Tetrahymena research community has coordinated an

effort to develop genomic tools for T. thermophila [9,36]. The
MAC genome was selected for initial sequencing because it
contains all the expressed genes and because the complexity
of the assembly process was expected to be reduced due to
the lower amounts of repetitive DNA. These advantages,
however, are countered by some complexities not seen in
other eukaryotic genome projects, including the presence of
several hundred medium-sized to small chromosomes, the
possibility of unequal copy number of at least some
chromosomes, the existence of polymorphisms that are
generated during MAC development, and the inability to
completely separate the MIC from the MAC prior to DNA
isolation.
We report here on the shotgun sequencing, assembly, and

analysis of the MAC genome of T. thermophila strain SB210, an
inbred strain B derivative that has been extensively used for
genetic mapping and for the isolation of mutants. We discuss
how the complexities of sequencing the MAC were success-
fully addressed, as well as the biological and evolutionary
implications of our analysis of the genome sequence.
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Results/Discussion

Genome Assembly and General Chromosome Structure
Sequencing and assembly. Using physical isolation meth-

ods, MAC were purified from a culture of T. thermophila strain
SB210 and used to create multiple differentially sized shotgun
sequencing libraries (Table S1). Construction of large (greater
than 10 kb) insert libraries was not successful—a common
problem in working with AT-rich genomes. Approximately
1.2 million paired end sequences were generated from the
libraries and assembled using the Celera Assembler [37]. In an
initial assembly, the mitochondrial genome (mtDNA; which
was present due to some contamination of the MAC
preparation with mitochondria) and the highly amplified
rDNA chromosome did not assemble well compared to the
published sequences of these molecules [38,39]. This was
probably because contigs from these molecules had higher
depths of coverage than those from other chromosomes,
which caused the Celera Assembler to treat them as repetitive
DNA. Thus we divided sequence reads into three bins
(mtDNA, rDNA, and bulk MAC DNA) and generated
assemblies for each bin separately. This resulted in a
moderate improvement, and the three separate assemblies

Figure 1. Unrooted Consensus Phylogeny of Major Eukaryotic Lineages

Representative genera are shown for which whole genome sequence data are either in progress (marked with asterisks * ) or available. The ciliates,
dinoflagellates, and apicomplexans constitute the alveolates (lighter yellow box). Branch lengths do not correspond to phylogenetic distances. Adapted
from the more detailed consensus in [197].
DOI: 10.1371/journal.pbio.0040286.g001

Figure 2. Relationship between MIC and MAC Chromosomes

The top horizontal bar shows a small portion of one of the five pairs of
MIC chromosomes. MAC-destined sequences are shown in alternating
shades of gray. MIC-specific IESs (internally eliminated sequences) are
shown as blue rectangles, and sites of the 15-bp Cbs are shown as red
bars (not to scale). Below the top bar are shown macronuclear
chromosomes derived from the above region of the MIC by deletion
of IESs, site-specific cleavage at Cbs sites, and amplification. Telomeres
are added to the newly generated ends (green bars). Most of the MAC
chromosomes are amplified to approximately 45 copies (only three
shown). Through the process of phenotypic assortment, initially
heterozygous loci generally become homozygous in each lineage within
approximately 100 vegetative fissions. Polymorphisms located on the
same MAC chromosome tend to co-assort.
DOI: 10.1371/journal.pbio.0040286.g002
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were thus used for all subsequent analyses. Detailed sequence
and assembly information is presented in Tables 1 and S2.

The bulk MAC assembly contains 1,971 scaffolds (contigs
that have been linked into larger pieces by mate pair
information) with a total estimated span of 104.1 Mb.
Perhaps most important, using a combination of computa-
tional and experimental identification of telomeres, we have
found that many scaffold ends correspond to chromosome
ends. One hundred twenty-five scaffolds, encompassing 44%
of the assembled genome length, are telomere-capped at
both ends and thus likely represent complete MAC chromo-
somes. One hundred twenty additional scaffolds, encompass-
ing another 31% of the genome, are telomere-capped at one
end (Tables 1 and S3).

Assembly accuracy and completeness. Overall, all analyses
indicate that the bulk MAC assemblies are highly accurate.
For example, all 75 MAC loci that are in distinct genetic co-
assortment groups (and thus should be on different chromo-
somes [40]) map to different scaffolds, and all pairs of loci
that coassort (and thus should be on the same chromosome)
either map to the same scaffold or to two non–fully capped
scaffolds whose cumulative size is less than that of the
corresponding MAC chromosome (Table S4). For the 24
completely assembled chromosome scaffolds for which we
know the corresponding chromosome physical size, there is a
very strong correlation between physical size and assembly
length. In addition, there are no cases where a scaffold is
significantly longer than the physical size of the correspond-
ing chromosome (Figure 3A). Finally, all of the 96 MIC
sequences known to be adjacent to Cbs sites [24,41,42] that
matched to a MAC scaffold did so only at the scaffold’s end.

The general accuracy of the assemblies indicates that many
of the potential difficulties discussed in the Introduction were
not significant. For example, we see little evidence for
polymorphism among reads, which is likely a reflection of
the use of an inbred strain and the process of phenotypic
assortment, which leads to whole-genome MAC homozygous
lineages [43]. Also, searches for known MIC-specific sequen-
ces indicate that the amount of MIC contamination is very
low (e.g., Cbs junctions are at 0.0443 coverage which is
approximately 200-fold less than the bulk MAC chromo-
somes) and limited to small contigs (most less than 5 kb). The
uniform depth of contig coverage and accuracy of assemblies
also suggest that the chromosomes are present in roughly
similar copy number and that only limited amounts of
repetitive DNA are present in the MAC, both of which are
discussed further below.

The total scaffold length is much smaller than the
predicted genome size of 180 to 200 Mb [14]. Given the
accuracy of the assemblies, the large number of chromosomes
partially or completely capped, and the fact that all (more
than 200) known MAC DNA sequences are found in the
assemblies, we conclude that the assemblies represent a very
large (more than 95%) fraction of the genome. We conclude
therefore that previous genome size estimates were inaccu-
rate (which is not surprising given that they were made almost
30 years ago) and that the genome is close to 105 Mb in size. It
is possible, however, that some chromosomes or regions were
underrepresented in our libraries due to purification or
cloning bias, and thus one cannot infer the absence of any
particular gene or feature simply due to its absence from our
current assemblies.

Estimating the number of MAC chromosomes. The total
number of MAC chromosomes is unknown. The telomere-
capping of scaffolds allows us to place a minimum boundary
on this number at 185 (125 plus half of 120). One way of
estimating the actual number is through analysis of the non–
rDNA telomere-containing reads; 3,328 such reads can be
linked to a total of 370 scaffold ends. This corresponds to
approximately 9-fold coverage (3,328/370), which is not
significantly different from the bulk MAC chromosome
coverage of 9.08, indicating that there is no significant
underrepresentation of telomere reads (Tables 1 and S3).
Thus since there are 4,058 such reads total (the others could
not be linked), we estimate that there are approximately 451
telomere ends (4,058/9), and thus that there are approx-
imately 225 chromosomes (451/2). An independent estimate
of the actual chromosome number can be made by assuming
that the size distribution of fully capped chromosomes (see
Figure 3B) is representative of the genome as a whole. Since
these 125 capped chromosomes represent 43.5% of the total
assembly length, this would predict 287 chromosomes in total
(125/0.435). This is likely to be an overestimate, since larger
chromosomes are statistically less likely to be in the
completely assembled set. Indeed, the average size of
completely assembled chromosomes is 359 kb, whereas
estimates of the average MAC chromosome size obtained
through pulsed-field gel electrophoresis are substantially
higher [29,41]. Thus, we conclude that there are between
185 and 287 chromosomes, most likely somewhere near 225.
Absence of many standard global features of eukaryotic

chromosomes. We note that we searched for but could not

Table 1. Important Genome Statistics

Category Number

Sequence reads

Total 1,180,981

Reads in contigs 1,137,759 (96.3% of total)

Estimated coverage 9.08-fold

Contigs

In scaffolds 2,955

Total bp in contigs 103,927,049 bp

Total bp in contigs .10 kb 99,668,989 bp (95.9% of total)

Maximum contig sizea 715,652 bp

Scaffolds

Total 1,971

Total bases in scaffolds 103,927,049 bp

Span of scaffolds 104,194,423 bp

Longest scaffolda 2,214,258 bp

Average GC content 22%

Telomere reads and scaffolds

Telomere-containing readsb 4,058

Telomere reads linked to scaffold ends 3,328 (82% of total)

Telomere-capped scaffold ends 370 (82% of total)d

Telomere coveragec 8.99-fold

Scaffolds capped at both ends 125

Base pairs in two-cap scaffolds 45,191,229 (44% of total)

Scaffolds capped at only one end 120

Base pairs in one-cap scaffolds 31,827,449 (31% of total)

aPotentially limited by natural fragmentation of the MAC genome.
bNon-rDNA chromosomes.
cFor telomere-capped ends.
dAssuming a total of 450 ends (225 MAC chromosomes).
DOI: 10.1371/journal.pbio.0040286.t001
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find many of what are considered standard global features of
eukaryotic chromosomes. For example, we could not find
sequence or structural features shared across multiple
chromosomes that could be considered candidates for
centromeric regions. This is consistent with experimental
studies [44]. In addition, although in many eukaryotes certain
genes and repeat elements cluster near telomeres [45–51], we
cannot detect any such clustering here. This is not because
there is no variation in these features; for example, GC
content (Figure S1) and gene density (Figure S2) do vary
greatly. Instead, the absence of similar global structure
between MAC chromosomes is likely due to the absence of
the processes that help generate the key features of normal

eukaryotic chromosomes (e.g., mitosis and meiosis, which in
T. thermophila are confined to the MIC).
MAC chromosome copy number is uniform. The high

quality and completeness of the assemblies suggest that copy
number variation among at least most MAC chromosomes is
relatively small since otherwise the assembler would have
treated contigs from overrepresented chromosomes as
repetitive DNA. Such uniform copy number is consistent
with genetic experimental data for six chromosomes [31], but
its generality for all chromosomes has been unknown. We
realized that the relative chromosome copy number could be
estimated from depth of coverage in our assemblies (assum-
ing that cloning and sequencing success were relatively
random). When all scaffolds are examined, the depth of
coverage is remarkably uniform (Figure 4). The decrease in
uniformity and coverage seen as scaffold size decreases is
likely a reflection of both chance low coverage of some
regions and some of the small scaffolds being MIC contam-
inants. When only scaffolds capped by telomeres at both ends
are included in the analysis, observed sequence coverage is
even more uniform (red diamonds in Figure 4). Although we
cannot rule out that some smaller, incompletely assembled
chromosomes are maintained at different copy numbers, the
observed uniformity indicates that the replication and/or
segregation of most or all bulk MAC chromosomes is under
coordinated regulation.

General Features of Predicted Protein Coding Genes and
Noncoding RNAs
Protein coding gene predictions. We identified 27,424

putative protein-coding genes in the genome (Table 2), a high
number for a single-celled species. These gene models were
tested by aligning expressed sequence tags (ESTs) to the
genome assemblies using PASA [52]. We note that most of
these ESTs were generated after the models were built (Table
S5). Of the 9,122 EST clusters identified, most have either no
conflicts with the gene models (49.5%) or relatively small ones
(17.7% have a missed exon and 9.8% suggest the models need
to be merged or split). Only 408 (4.4%) clusters are intergenic
relative to the gene models. Although these could represent

Figure 4. Depth of Coverage versus Scaffold Size

Black diamonds indicate all scaffolds; red diamonds, scaffolds capped
with telomeres on both ends.
DOI: 10.1371/journal.pbio.0040286.g004

Figure 3. Scaffold Sizes

(A) Scaffold sizes versus MAC chromosome size. Blue diamonds represent
scaffolds capped by telomeres on both ends. Red squares and green
triangles represent incomplete scaffolds capped by telomeres at one or
neither end, respectively.
(B) Size distribution of scaffolds capped by telomeres on both ends.
DOI: 10.1371/journal.pbio.0040286.g003
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missed genes or gene regions, they could also be noncoding
RNAs (ncRNAs) or genomic DNA contamination of cDNA
libraries. In addition, the predicted and EST-derived introns
are quite similar in size distribution except at the short and
long extremes (Figure S3), GC content (16.3% versus 16.7%),
and splice sites [only a small number (85) of EST-based introns
have exceptions to the 59-GT. . .AG-39 junctions assumed by
the model—these could simply be sequencing errors]. These
analyses indicate that the gene models are relatively robust
and should be more than sufficient for making general
predictions about the coding potential of this species.

Two other lines of evidence suggest the predicted gene
number is not inflated. First, a large number of the predicted
genes have matches to known or predicted genes from other
species (14,916 have a BLASTP match with an E-value better
than 10�10), and second, experimental studies of mRNA
complexity predict transcription of at least 25,000 genes of an
average size of 1,200 bp [53]. We also note that the sequence
of the largest MAC chromosome of another ciliate, Para-
mecium tetraurelia, indicates a high coding density, and
extrapolation to the complete genome predicts at least
30,000 protein-coding genes [54].

ncRNAs and the use of all 64 codons to code for amino
acids. The ncRNAs found in the genome are listed in Table
S6. We call attention to a few new findings. Of the 174
putative 5S rRNA genes (Table S6A), 19 do not correspond to
any of the four previously reported T. thermophila sequences
[55,56]. These 19 differ from one another by single
nucleotide substitutions at 34 positions, as well as by various
insertions, deletions, and truncations and may represent
pseudogenes. In addition, there are two forms of U2 snRNA
present (Table S6C), which we have termed U2 (four genes)
and U2var (five genes). Functional RNA gene families are
expressed ubiquitously during the T. thermophila life cycle and
under stress conditions as well (representative data shown in
Figure S4). The largest class is tRNAs with 700 identified
(Tables S6B and S6D), a number consistent with hybrid-
ization-based estimates [57].

One of the more unusual features of T. thermophila and
certain other ciliates is the use of an alternative genetic code
in which the canonical stop codons UAG and UAA code for
glutamine [58]. The importance and age of this alternative
code are reflected in the genome by the presence of 39 tRNAs
for these codons. Remarkably, analysis of the genome has also
revealed the presence of a tRNA that is predicted to decode
the remaining stop codon, UGA. Multiple lines of evidence
indicate that this is a functioning tRNA for selenocysteine
(Sec), the so-called 21st amino acid. In those eukaryotic
species that use Sec, most UGA codons still cause translation
termination while those mRNAs that encode Sec-containing

peptides have a characteristic stem-loop sequence motif in
the 39 UTR region that directs Sec incorporation [59,60]. The
putative T. thermophila tRNA-Sec was identified by analysis of
the genome sequence and shown to be transcribed and
acylated [61], and we have found that it is expressed and
charged and that its charging may be under distinct
regulatory control from other tRNAs (Figure S4A). In
addition, we identified six T. thermophila genes with in-frame
UGA codons that align (after editing of the gene models) with
known Sec codons of their homologs from other eukaryotic
species and that have the stem-loop consensus and thus are
likely to encode selenoproteins. Thus we conclude that UGA
is almost certainly translated into Sec, which would make T.
thermophila the first organism known to use all 64 triplet
codons to specify amino acid incorporation.

Genome Evolution
Codon and amino acid usage bias. Although T. thermophila

can use all 64 codons, it does not use all equally. The most
significant aspect of the codon usage in this species is that the
AT-rich codons tend to be used more frequently than others
[62,63]. Thus although the AT bias in the genome is strongest
in noncoding regions, where selection is thought to be
relaxed, it is seen even in coding regions. In fact, the AT pull
is so strong in coding regions that amino-acid composition of
proteins is shifted toward those coded by codons with high
AT content, as seen in other species with extreme AT bias
(e.g., [64]). Although the overall codon usage is biased against
GC-rich codons, on a gene-by-gene level there is significant
variation in the degree of bias. We have identified two
dominant patterns to this gene-by-gene variation. The major
pattern is that for most genes, the codons used are simply a
reflection of the overall AT content of the gene (Figure 5).
The variation among genes is due to genomewide variation in
AT content (see Figure 5A), although we have been unable to
discern a mechanism underlying this variation (e.g., there is
no clustering of high or low AT genes near telomeres). There
is, however, a less common pattern in the gene-by-gene
variation that is very important. There exists a subset of genes
(shown in red) that use a common preferred codon set that is
different from that of the average gene, and the codons in
this set are not strongly correlated to the genes’ AT content.
Although the existence of such a preferred codon set for this
species has been reported [62,63], analysis of the genome
allows the set and the genes that use it to be more precisely
defined. In total, using a relatively conservative cutoff (Figure
5B), we have identified 232 such genes.
The use of preferred codons by a gene is thought to allow

for more efficient or accurate translation [65]. This appears
to be the case here as, of the predicted genes using the
preferred subset, many have likely housekeeping functions,
and, although they account for only 0.85% of all predicted
genes, 12.5% of all ESTs map to them (Table S7). Although
some do not have EST matches and theoretically could
represent falsely predicted genes, it seems unlikely that
spurious genes would use the preferred codon set. Thus we
predict that these outlier genes are either highly expressed (in
at least some of the conditions normally encountered by the
organism) or have some critical function requiring accurate
translation.
Codon usage differences between genes are thought to

have only small fitness effects. For natural selection to

Table 2. Characteristics of Ab Initio Predicted Genes

Feature Average (bp) Minimum (bp) Maximum (bp) %GC

Genes 1,815.4 27 47,334 22.3

Exons 420.6 3 14,390 27.6

Introns 165.2 26 3,116 16.3

Intergenic regions 1,422.5 22 17,406 17.8

DOI: 10.1371/journal.pbio.0040286.t002
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effectively work on codon usage differences and to thus
create a preferred subset, factors that enhance genetic drift
(e.g., small population sizes, inbreeding) must be weaker than
the selective forces [66]. Thus although codon usage is
probably under selective pressure in all species, not all are
able to evolve preferred codon sets. For example, although it
has a similar AT bias to T. thermophila, no preferred set could
be detected in the apicomplexan Plasmodium falciparum
(Figure 5C), possibly a reflection of its parasitic lifestyle and
limited effective population size. The presence of a preferred
subset in T. thermophila is likely a reflection of a large effective
population size due to its free-living, sexually reproducing
lifestyle (see [66,67] for additional discussion on the large
population size of this species).
No plastid-derived genes can be identified. One question of

particular interest that the T. thermophila genome might shed
light on relates to the timing of the origin of the plastids
found in apicomplexans and dinoflagellates, the other
members of the alveolates [68,69]. Although the plastids in
these lineages differ (e.g., that in apicomplexans, known as an
apicoplast, is not even involved in photosynthesis), both are
thought to be of red algal origin [70]. This has led to the
proposal that the plastids in these lineages are the result of a
single endosymbiotic event between an ancestor of apicom-
plexans and dinoflagellates and a red alga, with the algal
nucleus being lost and the algal plastid being kept. A key
question is whether this secondary endosymbiosis occurred
before or after the ciliates split off from the other two
lineages. The possibility that it occurred before the ciliate
split is known as the chromalveolate hypothesis [71].
For the chromalveolate hypothesis to be correct, plastid

loss would have to have occurred in ciliates, most likely at the
base of the ciliate tree since no modern ciliates are known to
harbor plastids. If the ancestor of ciliates once had a plastid,
it is possible that some plastid-derived genes would have been
transferred to the nuclear genome (as has occurred in many
lineages including apicomplexans and dinoflagellates [72]),
and furthermore that some such genes would still be found in
T. thermophila. To test this possibility, we built phylogenetic
trees of all genes in the genome and searched for those with a
branching pattern consistent with plastid descent (see
Materials and Methods). For T. thermophila, we do not see
any signal for genes of plastid descent that rises above the
noise seen in such automated phylogenetic analyses.
Several lines of evidence suggest that this is not a general

flaw in the phylogenetic approach used here. For example, we
have used the same approach to identify and catalog the
plastid-derived genes in other lineages including the plant
Arabidopsis thaliana and the apicomplexan P. falciparum. In
addition, such an approach has been used to detect past
endosymbioses in other eukaryotic lineages [73]. Finally,
using the same approach we identified 91 likely mitochond-
rion-derived genes (Table S8) in the T. thermophila nuclear
genome. This is significant because mitochondrion-derived
genes are generally more difficult to identify than plastid-
derived genes [74], in part because the plastid symbiosis was
more recent [75].
Nevertheless, since it is possible that our phylogenomic

screen might have missed some plastid-derived genes, we also
did a targeted search for genes that might be expected to be
retained, using the apicoplast as a model. Apicoplasts are
involved in biosynthesis of fatty acids, isoprenoids, and heme.

Figure 5. Codon Usage

(A) Effective number of codons (ENc; a measure of overall codon bias) for
each predicted ORF is plotted versus GC3 (the fraction of codons that are
synonymous at the third codon position that have either a guanine or a
cytosine at that position). The upper limit of expected bias based on GC3
alone is represented by the black curve; most T. thermophila ORFs cluster
below the curve [red dots as in (B)].
(B) Principal component analysis of relative synonymous codon usage in
T. thermophila. The 232 genes in the tail of the comma-shaped
distribution (those with the most biased codon usage) are colored red.
(C) Principal component analysis of relative synonymous codon usage in
P. falciparum.
DOI: 10.1371/journal.pbio.0040286.g005
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Fatty acid and isoprenoid biosynthetic pathways are of
special interest because the plastid-derived pathways are
distinct from analogous pathways in the eukaryotic cytoplasm
[76]. In the case of isoprenoid biosynthesis, genes for proteins
in the canonical eukaryotic cytosolic mevalonate pathway are
present as expected based on experimental studies [77–79],
but no enzymes involved in the plastid-derived DOXP
pathway were evident. For fatty acid biosynthesis, while T.
thermophila does not require an exogenous supply of fatty
acids for growth, no evidence for a complete version of a type
I (normally cytosolic) pathway could be found. Although at
least some genes for a type II pathway are present, these are
insufficient for de novo fatty acid synthesis and appear more
likely to be derived from the mitochondrion than a plastid.

Based on the general and targeted searches, we conclude
that there is presently no evidence for a plastid or ancestrally
plastid-derived genes in T. thermophila. This does not preclude
the possibility that other ciliates have plastid-derived
enzymes or even a plastid, but there is presently no evidence
to suggest this despite extensive ultrastructural observations
[80,81]. If ciliates do lack all evidence of a plastid, it could
either mean that the hypothesized early origin of the
chromalveolate plastid is incorrect or that an ancestor of T.
thermophila (and perhaps all ciliates) lost its plastid and all
detectable plastid-derived genes outright. The latter possi-
bility is not without precedent, as some apicomplexans such
as the Cryptosporidia have lost their apicoplasts and have
few, if any, plastid-derived genes in their nuclear genomes
[82,83]. This loss has been suggested to be the result of
metabolic streamlining in response to its parasitic lifestyle.
Resolving whether a plastid was present in the ancestor of
ciliates will be important to our understanding of the
evolution of plastids and their biochemical relationship with
eukaryotic hosts.

IES excision targets foreign DNA rather than repetitive
DNA per se. As discussed in the Introduction, there are
multiple parallels between the IES excision process and other
repeat element silencing phenomena such as RIP and
heterochromatin formation. Despite these parallels, the
processes differ significantly in their mechanisms of action
and therefore likely have different short- and long-term
evolutionary consequences. For example, in species with RIP,
all repetitive DNA becomes a target for mutational inactiva-
tion, which has resulted in a drastic suppression of evolu-
tionary diversification through gene duplication [84,85]. The
IES excision process results in the exclusion of certain MIC
DNA sequences from the transcriptionally active MAC.
Experimental introduction of foreign transgenes into the
MIC has shown that as MIC copy number increases, so does
the efficiency of transgene excision [86]. One might therefore
predict a similar suppression of gene duplication as in RIP.
However, rather than targeting repetitive DNA per se, it has
been proposed that IES excision specifically targets foreign
DNA that has invaded the germline MIC but is not
represented in the MAC [35,87,88]. MIC gene duplication
and functional diversification should still be possible under
this scenario as long as, at each conjugation event, the gene
copies have not diverged in sequence enough to be
recognized as foreign and excluded from the MAC; since
sex is frequent in natural populations of T. thermophila [89],
this should be the case. We therefore sought to use the
genome sequence data to both test the foreign DNA

hypothesis and to examine what the consequences of the
IES excision process have been on the evolution of the T.
thermophila genome.
Analysis of the genome reveals several lines of evidence

that provide strong support for the foreign DNA hypothesis.
First, small but nevertheless significant amounts of repetitive
DNA are present in the MAC. This is best seen in analysis of
the scaffolds that correspond to complete MAC chromosomes
which are unlikely to contain MIC IES contamination. These
scaffolds contain dispersed repeats that make up 2.3% of the
total DNA. This means that some repetitive DNA bypasses the
IES excision process. The second line of evidence comes from
examining the small contigs and singletons (nonassembled
sequences) in the assembly data. Known MIC-specific ele-
ments such as the REP and Tlr1 transposons [90,91] are found
only in these small contigs, which are thus clearly enriched
for MIC-specific DNA (and also for repetitive DNA; see Figure
S5). In fact, the small contigs contain homologs of an
unusually wide range of transposable element (TE) clades
for a single-celled eukaryote [92,93] including many pre-
viously unreported in Tetrahymena (Table S9). We do not find
any good matches to TEs in any of the large contigs. Thus,
transposons in general appear to be filtered out very
efficiently by the IES excision process. The tandem and
dispersed repeats in the MAC appear to correspond to
noninvasive DNA (e.g., the 5S rRNA genes). Taken together,
the fact that mobile (and likely invasive) DNA elements are
kept out of the MAC, combined with the fact that both
tandem and dispersed noninvasive repeats avoid the excision
process, indicates strong support for the foreign DNA
hypothesis.
In organisms with RIP, since all duplicated DNA is targeted

[94], gene diversification by duplication is suppressed. For
example, the fraction of all Neurospora crassa genes found in
paralogous families is only 19%, a value that falls below the
overall correlation line between this fraction and total gene
number [84]. In addition, very few gene pairs share greater
than 80% amino acid sequence identity [84]. Consistent with
the foreign DNA hypothesis, we do not see such signs of
suppression of gene family diversification in T. thermophila.
Large numbers of paralogous genes are found in the genome
(1,970 gene families including 10,851 predicted proteins)
(Table 3). The fraction of genes in such families in T.
thermophila (39%) is much higher than that seen in N. crassa.
Although this fraction is not as high as would be predicted
from the observed correlation between total number of genes
and the fraction found in paralogous families [84], the
fraction of gene pairs sharing greater than 80% amino acid
identity is much higher than in N. crassa and similar to that
found in other sequenced eukaryotes.
Since it is possible some of the 1,970 gene families could

have originated by duplications that occurred prior to the
origin of the IES excision process, it is more useful to
examine recent duplications. We searched for such duplica-
tions in multiple ways, including the identification of genes
duplicated in the T. thermophila lineage relative to other
lineages for which genomes are available (Table S10) and by
searching for pairs of paralogs with very similar sequences.
Both of these classes are abundant in T. thermophila, further
indicating that the IES excision does not significantly affect
expansion of gene families of ‘‘native’’ genes. Thus the ciliate
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system of targeting invading DNA has significantly different
consequences than RIP.

High gene count in T. thermophila. The expansion of gene
families helps explain the high gene count in T. thermophila,
which is higher than that of other protists and even surpasses
that of some metazoans (Table 4). The duplication events
appear to be spread out over evolutionary time with some
being ancient and some quite recent. We searched for but did
not find evidence for either whole genome or segmental
duplications. We do find extensive numbers of tandemly
duplicated genes. In total, 1,603 tandem clusters of between
two and 15 genes were found, comprising 4,276 total genes;
67% of these clusters are simple gene pairs and 96% contain
five or fewer genes. Thus it appears many of the paralogous
genes in T. thermophila are the results of separate small
duplication events.

The high gene count in T. thermophila relative to some other
single-celled eukaryotes is not simply a reflection of gene
family expansions. For example, when recent gene expan-
sions are collapsed into ortholog sets, we find that humans
and T. thermophila share more orthologs with each other
(2,280) than are shared between humans and the yeast S.
cerevisiae (2,097) or T. thermophila and P. falciparum (1,325)
(Figure 6), despite the sister phyla relationships of animals
and fungi on the one hand and ciliates and apicomplexans on
the other. We note that this does not mean that humans and
T. thermophila are overall more similar to each other than
either is to species in sister phyla. For example, humans and S.
cerevisiae do share some processes that evolved in the common
ancestor of fungi and animals. In addition, for orthologs
found in all eukaryotes, the human and S. cerevisiae genes are
more similar in sequence to each other than either is to genes
from T. thermophila. The higher number of orthologs shared
between humans and T. thermophila is a reflection of both the
loss of genes in other eukaryotic lineages and the retention of
a variety of ancestral eukaryotic functions by T. thermophila.
Consistent with this conclusion, there are 874 human genes
with orthologs in T. thermophila but not S. cerevisiae, 58 of
which correspond to loci associated with human diseases
(Table S12). Thus genome analysis reveals many cases where
T. thermophila can continue to complement experimental
studies of yeast as a model system for eukaryotic (and human)
cell biology [13].

Gene Duplication as an Indicator of Important Biological
Processes
One motivation for obtaining the genome sequence of an

organism is to advance the study of processes already under
investigation. Many researchers, including those who have
never worked on this species before, have taken advantage of
the publicly available data in an effort to achieve this goal
(e.g. [24,95–103]). Rather than focus our bioinformatic
analysis on these well-studied processes, we decided to search
for evidence in the predicted proteome of processes of
particular importance to the organism. Our approach was
relatively straightforward—we looked for overrepresenta-
tions (compared to other eukaryotes) in the lists of
paralogous gene families or lineage-specific gene family
expansions associated with a variety of processes. This
approach was taken for several reasons. First, searches for
differences in large gene families are not as biased by
annotation errors as searches focused on individual genes.
In addition, large gene families clearly contribute to the large
number of genes present in T. thermophila compared to other
single-celled eukaryotes. We note that many of the available
genomes of single-celled eukaryotes are of parasites that were

Table 4. Numbers of Protein-Coding Genes in Various Eukar-
yotes

Species Predicted Gene

Number

Genome Size (Mb) Genes/Mb

T. thermophila 27,424 104 264

S. cerevisiae 6,561 13 505

S. pombe 4,824 14 345

P. falciparum 5,279 23 230

T. pseudonana 11,242 34 331

D. discoideum 12,500 34 368

D. melanogaster 13,679 180 76

C. elegans 19,971 103 194

A. thaliana 26,207 125 210

Oryza sativa 46,976 466 101

Fugu rupripes 34,312 365 94

Mus musculus 37,854 Approximately 2,500 15

H. sapiens 35,845 Approximately 2,900 12

DOI: 10.1371/journal.pbio.0040286.t004

Table 3. Gene Families

Family Size Range Number of Families Total Number of Genes Examples of Families

201 to 500 5 1,525 Kþ channel protein

101 to 200 5 691 Protein kinase; cysteine proteinase; surface antigen

51 to 100 8 522 ABC transporter ABCB/ABCC; cation-transporting ATPase; serine/threonine kinase

21 to 50 37 1,177 Kinesin II; calcium/calmodulin-dependent protein kinase; GTP-binding protein;

glutathione S-transferases; surface antigen; cytochrome P450; histidine kinase;

ABC transporter ABCG; ABC transporter ABCA; dynein heavy chain; carboxypepti-

dase-like protein; triacylglycerol lipase; oxalate:formate antiporter; metalloprotei-

nase/leishmanolysin-like peptidase; AAA family ATPase; Kazal-type proteinase inhi-

bitor 1; Kþ channel protein; Tlr 5Rp protein; sugar transport protein; protein

phosphatase

11 to 20 91 1,292

6 to 10 195 1,423

2 to 5 1,629 4,221

DOI: 10.1371/journal.pbio.0040286.t003
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selected for sequencing mostly due to their medical relevance
and that these are not representative (e.g., many have quite
small genomes). Most important, the presence of large gene
families and recent gene duplications are likely indications of
functional diversity, recent evolutionary innovations, and
selective pressures placed on this organism.

Our analysis of paralogous gene families and in particular
the recently duplicated members of such families reveals the
importance of processes associated with the sensing of and
responding to environmental changes. We highlight five such
processes here: signal transduction, membrane transport,
proteolytic digestion, construction and manipulation of cell
shape and movement, and membrane trafficking. These
processes are all critical to the free-living heterotrophic
lifestyle of this organism. In the following sections, we discuss
what the analysis of the genome reveals about these processes
in T. thermophila with a particular focus on expansions of
genes associated with these functions relative to other species.

Signal transduction and the expansions of kinase families.
A variety of genes with putative roles in signal transduction
were identified in our screens of paralogous genes. Of these,
we chose to perform an in depth analysis of the kinases
because they are such a diverse family of proteins and
because they have been found to have critical roles in sensory
and regulatory processes across the tree of life. In total, 1,069
predicted protein kinases (Tables 5 and S11A) were identified
in the genome. This corresponds to approximately 3.8% of
the predicted proteome, a fraction significantly larger than
the approximately 2.3% in fungi, Drosophila, and vertebrates
[104]. Among these, representatives were found of 54 of the
known kinase families and subfamilies [105]. Some families
found in a wide diversity of eukaryotes [106] were not
detected. This includes the checkpoint kinase CHK1/RAD53,
the PI3 kinase–related kinase TRRAP, two cyclin-dependent

kinases (CDK7 and CDK8, which may be functionally replaced
by the related expanded CDC2 family), and two poorly
conserved classes (Bub1 and Haspin) that may have been
missed by sequence homology searches. Despite the reported
presence of phosphotyrosine in T. thermophila [107], no clear
members of the tyrosine kinase group could be identified.
However, the genome encodes some proteins that might be
alternative tyrosine kinases including multiple dual-specific-
ity kinases (e.g., Wee1, Ste7, TTK, and Dyrk) as well as five
members of the related TKL group, which may mediate
tyrosine phosphorylation in the slime mold Dictyostelium
discoideum [106]. Twelve kinase classes are found in T.
thermophila and humans but not yeast, and thus are apparent
examples of the retention of ancestral eukaryotic functions
discussed above. Several of the genes in these classes have
been implicated in the etiology of human disease (Dyrk1A,
DNAPK, SGK1, RSK2, Wnk1, and Wnk4) [108].
A key feature of the T. thermophila kinome is the expansion

of several kinase classes relative to other sequenced organ-
isms (Table 5). The implications of some of these expansions
can be predicted based on the known functions of family
members. For example, the mitotic kinase families Aurora,
CDC2, and PLK are all substantially expanded, perhaps
reflecting the additional signaling complexity required by two
nuclei that simultaneously engage in very different processes
within the same cell cytoplasm. Also expanded are multiple
kinases that interact with the microtubule network [109,110]
[e.g., Nima-related kinases (NRKs) and the ULK family],
possibly reflecting diversification of cytoskeletal systems
(discussed more below). Of the kinase families with known
functions, the most striking expansion is the presence of 83
histidine protein kinases (HPKs), which are generally involved
in transducing signals from the external environment [111].
HPKs are found predominantly in two-component regulatory
systems of bacteria, archaea, protists, and plants and are
absent from metazoans. Most of the T. thermophila HPKs have
substrate receiver domains, and many are predicted to be
transmembrane receptors.
The full meaning of the kinome diversity in T. thermophila is

hard to predict as a great deal of the diversification has
occurred in classes for which the functions are poorly
understood. For example, in many of the known kinase
families, the T. thermophila proteins are highly diverse in
sequence, both relative to those in other species as well as to
each other (e.g., see Figure S6). The scope of the diversifica-
tion in T. thermophila is perhaps best seen in the fact that 630
(approximately 60%) of the kinases could not be assigned to
any known family or subfamily [105]. Overall, 37 novel classes
of kinases and hundreds of unique proteins were identified in
this genome. The presence of so many novel kinases and
expansions in many known classes of kinases is both an
indication of the versatility of the eukaryotic protein kinase
domain seen in other lineages [112] and suggestive of a great
elaboration of ciliate-specific functions.
Diversification of membrane transport systems. Many of

the most greatly expanded T. thermophila gene families encode
proteins predicted to be involved in membrane transport.
Membrane transporters play critical roles in responding to
variations in the environment and making use of available
resources. We therefore conducted a more thorough analysis
of the predicted transporters in this species. Overall, T.
thermophila possesses a robust and diverse collection of

Figure 6. Orthologs Shared among T. thermophila and Selected

Eukaryotic Genomes

Venn diagram showing orthologs shared among human, the yeast S.
cerevisiae, the apicomplexan P. falciparum, and T. thermophila. Lineage-
specific gene duplications in each of the organisms were identified and
treated as one single gene (or super-ortholog). Pairwise mutual best-hits
by BLASTP were then identified as putative orthologs.
DOI: 10.1371/journal.pbio.0040286.g006
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predicted membrane transport systems (Tables 6 and S11B).
Comparison to other eukaryotes [113] reveals some interest-
ing differences in terms of both classes of transporters and
predicted substrates being moved. For example, T. thermophila
has more representatives in each of the four major families
than do humans. In addition, it encodes a much higher
number of transporters in the ABC superfamily, voltage-
gated ion channels (VICs), and P-type ATPases than any other
sequenced eukaryotic species (Table 6) including the other
free-living protists, the diatom Thalassiosira pseudonana, and
the slime mold D. discoideum. Regarding substrates, an
extremely extensive set of transporters likely specific for
inorganic cations has been identified (Table 6). Most of these
are channel-type transporters and cation-transporting P-type
ATPases. Interestingly, despite the apparent massive ampli-
fication of cation transporters, T. thermophila has a very
limited repertoire of transporters for inorganic anions: only
one member each for sulfate, phosphate, arsenite, and
chromate ion were identified, and there are no predicted
anion channels. The reason for the difference in the
amplification of cation versus anion transporters is unclear.

As with kinases, some of the most interesting properties are

revealed by examination of the lineage-specific duplications
of transporters. The recent clusters include Kþ channel
proteins (285 members), ABC transporters (152 members),
cation-transporting ATPases (59 members), Kþ channel beta
subunit proteins (22 members), oxalate:formate antiporters
(24 members), sugar transporters (22 members), and phos-
pholipid-transporting ATPases (20 members). The expansion
of the Kþ channel proteins, which are VIC-type transporters,
was particularly large and was pursued further.
In total, 308 VIC-type Kþ-selective channels have been

predicted, many more than in any other sequenced species
and over three times as many as identified in humans (89). A
multigene family of potassium ion channels has also been
identified in P. tetraurelia [114] and thus may be a general
characteristic of some ciliates. Some lines of evidence suggest
that this expansion in ciliates could be adaptive. First, Kþ

channels control the passive permeation of Kþ across the
membrane, which is essential for ciliary motility [115].
Second, a novel adenylyl cyclase with a putative N-terminal
Kþ ion channel regulates the formation of the universal
second messenger cAMP in ciliates and apicomplexans

Table 5. Distribution of Selected Protein Kinase Classes in T. thermophila and Other Classified Kinomes

Group Family Subfamily T. thermophila D. discoideum Yeast Worm Fly Human

Human kinases with T. thermophila but not yeast homologs

AGC MAST 3 5 0 1 2 5

AGC RSK RSK 2 0 0 1 1 4

Atypical PIKK DNAPK 1 1 0 0 0 1

CMGC CDK PITSLRE 1 2 0 2 1 1

CMGC CDKL 4 0 0 1 1 5

CMGC Dyrk PRP4 1 1 0 1 1 1

CMGC Dyrk Dyrk1 1 1 0 1 1 2

CMGC Dyrk Dyrk2 5 1 0 3 2 3

CMGC MAPK p38 2 0 0 3 3 4

CMGC MAPK Erk7 3 1 0 1 1 1

Other TLK 2 0 0 1 1 2

Other Wnk 2 0 0 1 1 4

Expanded in T. thermophila

Atypical HistK 83 14 1 0 0 0

Other ULK 52 2 1 2 3 5

Other Nek/NRK 39 4 1 4 2 11

Other Aur 15 1 1 2 2 3

CMGC CDK CDC2 11 1 1 2 2 3

CMGC RCK 8 1 1 1 1 3

CAMK CAMKL AMPK 7 1 1 2 1 2

CMGC MAPK Erk7 3 1 0 1 1 1

Other PLK 8 1 1 3 2 4

CAMK CAMKL MARK 9 3 1 2 3 4

CMGC CDKL 4 0 0 1 1 5

STE Ste20 MST 4 2 1 1 1 2

CMGC Dyrk Dyrk2 5 1 0 3 2 3

CMGC MAPK Erk 7 1 6 1 1 5

Other TLK 2 0 0 1 1 2

Eukaryotic ‘‘core’’ kinases not found in T. thermophila

Atypical PIKK TRRAP 0 1 1 1 1 1

CAMK RAD53 0 5 1 2 1 1

CK1 CK1 CK1-D 0 1 1 1 1 2

CMGC CDK CDK7 0 1 1 1 1 1

CMGC CDK CDK8 0 1 1 1 1 2

Other Bub 0 1 1 1 2 2

Other Haspin 0 1 2 13 1 1

Counts are numbers of kinase domains.
Yeast, S. cerevisiae; worm, C. elegans; fly, D. melanogaster.
DOI: 10.1371/journal.pbio.0040286.t005
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[116,117], which could assist in responding to sudden changes
of the ionic environment. T. thermophila encodes six homologs
of this adenylate cyclase/Kþ transporter, whereas the parasitic
apicomplexans P. falciparum and Cryptosporidium parvum
encode only one each.
The robust transporter systems present are likely a

reflection of T. thermophila’s behavioral and physiological
versatility as a free-living single-celled organism and its
exposure to a wide range of different substrates in its natural
environment. Examination of the specific types of expansions
suggests that functions associated with transport of Kþ and
other cations have been greatly diversified. Thus such
functions may play a role in many of the unique aspects of
the biology of this species and ciliates in general.
Proteolytic processing. T. thermophila is a voracious pred-

ator and thus might be expected to have a wide diversity of
proteolytic enzymes. Analysis of the predicted proteins in T.
thermophila reveals some conflicting results relating to this
idea. On the one hand, many of the largest clusters of lineage-
specific duplications are of proteases (e.g., papain, leishma-
nolysin). On the other hand, the total number of proteases
identified (480) is relatively low in terms of the fraction of the
proteome (1.7%) compared to other model organisms that
have been sequenced and annotated [118–120]. The conflict is
most likely a reflection of the diversity of physiological
processes in which proteases function [121]. Thus we
examined the subclassification of types of proteases present
in more detail.
Using the Merops protease nomenclature, which is based on

intrinsic evolutionary and structural relationships [119] the T.
thermophila proteases were divided into five catalytic classes
and 40 families. These are: 43 aspartic proteases belonging to
two families, 211 cysteine proteases belonging to 11 families,
139 metalloproteases belonging to 14 families, 73 serine
proteases belonging to 12 families, and 14 threonine proteases
belonging to the T1 family (Tables 7 and S11C). Some unique
features of T. thermophila can be seen by comparison to P.
falciparum which is the most closely related sequenced species
to have a detailed analysis of its proteases published [122].
Twenty-one protease families are present in both genomes.
For example, the highly conserved threonine proteases and
the ubiquitin carboxyl-terminal hydrolase families (C12 and
C19) reflect the crucial role of the ATP-dependent ubiquitin-
proteasome system, which has been implicated in cell-cycle
control and stress response [123]. Nineteen protease families
are present in T. thermophila but not P. falciparum. One of these
includes leishmanolysin (M8), originally identified in the
kinetoplastid parasite Leishmania major and thought to be
involved in processing surface proteins [124–126]. This family
is greatly expanded (to 48 members, including 15 in a tandem
array) in T. thermophila and suggests that surface protein
processes may be important here, although the functions of
leishmanolysin-related proteases in nonkinetoplastid eukar-
yotes remain unclear. The carboxypeptidase A (M14) and
carboxypeptidase Y (S10) families are expanded to 28 and 25
members, respectively, in T. thermophila, which may reflect
numerous and diverse functions. Only four protease families
present in P. falciparum are not found in T. thermophila. Among
these are metacaspase (C14), an ancestral type of caspase that
is characteristic of apoptosis or apoptosis-like signal trans-
duction pathways [127].
The largest clusters of expanded proteases in T. thermophilaT
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are all cysteine proteases, which comprise 44% of the total
protease complement. The two most prominent families from
this class are the papain family (C1), which is the most
abundant and complex family, with 114 members, and the
ubiquitin carboxyl-terminal hydrolase 2 family (UCH2, C19)
with 47 members. It is possible that the biochemical activity
among the paralogs within these families is conserved but
that they are used in different parts of the cell (or outside the
cell) or in different developmental stages in T. thermophila.

Cytoskeletal components and regulators. Ciliates have
highly complex cytoskeletal architecture [128] with highly
polarized cell types which assemble 18 types of microtubular
organelles in specific locations along the anteroposterior and
dorsoventral axis. We therefore sought to determine whether
this diversity was reflected in the genome. As with the protease
analysis described above, initial comparisons of the number of
particular types of cytoskeletal and microtubule-associated
proteins was somewhat ambiguous (the numbers for humans
and T. thermophila are shown in Tables 8 and S11D). For
example, although kinesin and dynein motors as well as
kinases associated with microtubules appear to be expanded,
structural components of the cilia and participants in the
intraflagellar transport pathway are not. In addition, some
cytoskeletal protein types are apparently absent from T.
thermophila; these include intermediate filament proteins
(including nuclear lamins) as already suggested by biochem-
ical studies [129], some microtubule-associated proteins
(MAP2, MAP4, and Tau, for which no nonanimal eukaryotic
homologs have been found) and some actin-binding proteins
(e.g., a-actinin). To better understand what role genes
involved in microtubule and cytoskeletal functions might
have played in the diversification of this species, we focused
analysis on some of the genes with apparent expansions:
tubulins, dyneins, and regulatory proteins.

Tubulins. Tubulins are the key structural components of
microtubules and they come in many forms in eukaryotes
[130]. In the T. thermophila genome, phylogenetic analysis of
tubulin homologs (Figure 7) reveals the presence of one or two
genes, each within the essential alpha (a), beta (b), and gamma
(c) subfamilies (as reported previously [131–133]) and one in

each of the delta (d), epsilon (e), and eta (g), which are found in
organisms that possess centrioles/basal bodies [134–136]. In
addition, T. thermophila encodes noncanonical tubulin homo-
logs that can be divided into two categories. In the first
category are genes that are most similar to the canonical a- or
b-tubulins. These nine genes (three a-like and six b-like) lack
characteristic motifs for the tail domain post-translational
modifications (polyglutamylation and polyglycylation) that are
essential to the function of their canonical counterparts [137–
139]. Three of the b-like genes (BLT1/TTHERM_01104960,
TTHERM_01104970, and TTHERM_01104980) form a tan-
dem cluster with intergenic intervals of less than 2 kb. We
hypothesize that these genes function, perhaps redundantly, in
formation or function of some of the many highly specialized
microtubule systems of T. thermophila cells. Experimental
analysis of BLT1, a b-like tubulin, indicated that its product
localizes to a small subset of microtubules and is not
incorporated into growing ciliary axonemes (K. Clark and M.
Gorovsky, unpublished data). Genetic deletion of this gene or
of the a-like gene TTHERM_00647130 did not yield an
obvious phenotype (R. Xie and M. A. Gorovsky, unpublished
data).
The second category of noncanonical tubulin homologs

consists of three novel proteins (TTHERM_00550910,
TTHERM_01001250, and TTHERM_01001260) that fall
into a clade with P. tetraurelia iota tubulin. Two of these
(TTHERM_01001250 and TTHERM_01001260) are closely
related to each other (Figure 7) and closely linked in the
genome and thus likely arose by a recent tandem duplication.
The functions of these genes are unknown, but because they
are, so far, unique to ciliates, they might be responsible for
microtubule functions specific to this phylum.
Dyneins. Dyneins, which were first discovered in Tetrahy-

mena [140], are molecular motors that translocate along
microtubule tracks, a process critical to many activities in T.
thermophila including ciliary beating, karyokinesis, MAC
division, cortical organization, and phagocytosis. Many of
these activities are critical for sensing and responding to
changes in the environment. Each dynein complex consists of
one, two, or three heavy chains (containing the motor

Table 7. Protease Complements in T. thermophila and Other Model Organisms

Organism Catalytic Class Total Percentage of

the Genomea

Aspartic Cysteine Metallo Serine Threonine

T. thermophila 43 (9.0%)b 211 (44.0%) 139 (28.9%) 73 (15.2%) 14 (2.9%) 480 1.7

P. falciparumc 10 (10.5%) 33 (34.7%) 21 (22.1%) 16 (16.9%) 15 (15.8%) 95 1.8

S. cerevisiae 14 (9.5%) 43 (29.0%) 49 (33.1%) 26 (17.6%) 16 (10.8%) 148 2.4

A. thaliana 203 (24.5%) 154 (18.6%) 110 (13.2%) 326 (39.3%) 37 (4.4%) 830 2.7

C. elegans 27 (6.0%) 114 (25.3%) 180 (40.0%) 105 (23.3%) 24 (5.3%) 450 2.2

D. melanogaster 46 (6.6%) 80 (11.4%) 191 (27.2%) 351 (50.1%) 33 (4.7%) 701 5.1

M. musculus 91 (11.7%) 162 (20.9%) 205 (26.4%) 285 (36.7%) 33 (4.3%) 776 2.8

H. sapiens 312 (31.6%) 167 (16.9%) 223 (22.6%) 247 (25.1%) 37 (3.8%) 986 4.1

E. coli 12 (6.2%) 30 (15.5%) 60 (31.1%) 87 (45.1%) 4 (2.1%) 193 3.9

Methanococcus jannaschii 2 (5.3%) 11 (29.0%) 17 (44.7%) 5 (13.1%) 3 (7.9%) 38 2.6

aThe percentage of the whole genome that encodes putative proteases.
bPercentage of individual catalytic class in the protease complement is included in parentheses.
cThe distribution of proteases in P. falciparum is based on Wu et al. [122], and the distributions in the other model organisms are based on the results published in the Merops database
Release 7.00.
DOI: 10.1371/journal.pbio.0040286.t007
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activity) and specific combinations of smaller subunits,
including intermediate, light-intermediate, and light chains,
which regulate motor activity and the tethering of dynein to
its molecular cargo [141–143]. In organisms with cilia or
flagella, there are multiple isoforms of dyneins, including the
axonemal outer arm dyneins, the axonemal inner arm
dyneins, and nonaxonemal or ‘‘cytoplasmic’’ dyneins. Each
is specialized in its intracellular location and the cellular task
it performs [144].
In total we identified 21 light chains, five intermediate

chains, two light-intermediate chains, and 25 heavy chains
(Table S13). The expression of each gene, as well as the exon/
intron structures of most, was confirmed by RT-PCR and, if
necessary, sequencing of the RT-PCR product. For the most
part, the families of T. thermophila dynein subunits appear to
be similar to those of other model organisms; however, there
are some interesting differences. T. thermophila light chains
LC3A and 3B are most similar to the green alga Chlamydomo-
nas reinhardtii’s LC3 and LC5 [145]. These proteins belong to
the larger family of thioredoxin-related proteins, and, with-
out biochemical evidence identifying one or both of the
proteins as part of a dynein complex, it may be premature to
label these as dynein components. Light chain LC4 belongs to
the calmodulin-related family of proteins and may regulate

Figure 7. Tubulin Gene Diversity in T. thermophila

The figure shows a neighbor-joining tree built from a clustalX alignment.
Species abbreviations: Hs, H. sapiens; Dm, D. melaogaster; Sc, S. cerevisiae;
Tt, T. thermophila; Pt, P. tetraurelia; Cr, C. reinhardtii; Tb, T. brucei; Ec, E.
coli; Xl, Xenopus laevis. A prokaryotic tubulin ortholog, Escherichia coli
FtsZ, was used as the outgroup.
DOI: 10.1371/journal.pbio.0040286.g007

Table 8. Numbers of Loci Encoding Selected Types of
Cytoskeletal Genes in T. thermophila and H. sapiens

Protein Type T. thermophila H. sapiens

Actin-related 14 19

Actin-binding proteins

Profilin 1 2

a-Actinin 0 4

Fascin 0 3

Cofilin 1 3

Gelsolin 0 2

CapZ 1 3

Tropomodulin 0 4

Paxillin 1 4

Fimbrin 1 2

Intermediate filaments

Desmin 0 1

Vimentin 0 1

Keratin 0 8

Lamin (A/C, B) 0 3

Tubulins

a�tubulin 1 9

a�tubulin-like 3 0

b�tubulin 2 9

b-tubulin-like 6 0

c�tubulin 1 2

e�tubulin 1 1

d-tubulin 1 1

g-tubulin 1 0

j-tubulin 3 0

Microtubule-associated proteins

MAP1A 0 1

MAP1B 0 1

MAP2 0 1

MAP4 0 1

Tau 0 1

TPX2 1 1

XMAP215 2 1

EB1 7 3

Centrin 6 3

Pericentrin 0 2

Katanin (p60) 2 2

Motor proteins

Kinesin motor chain 78 48

Dynein motor chain 25 46

Myosin motor chain 13 22

Tubulin-modifying enzymes

Tubulin deacetylase HDAC6 2 1

Tubulin tyrosine ligase-like 50 14

Intraflagellar transport (IFT) components

IFT20 1 1

IFT52 1 1

IFT57 1 1

IFT71 1 1

IFT81 1 1

IFT88 2 1

IFT140 1 1

IFT172 1 1

Structural components of cilia

and flagella

Radial spoke protein 4/6 3 2

Radial spoke protein 2 3 1

PF16 1 1

PF20 1 1

Cytoskeleton-associated

serine-threonine kinases

NIMA-related kinase (NRK) 39 11

Aurora kinase 16 3

Polo kinase 8 4

DOI: 10.1371/journal.pbio.0040286.t008
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calcium-dependent ciliary reversal. T. thermophila expresses
two LC4 genes, perhaps providing alternative or additional
ways to control ciliary motility compared to species that
express only one. In other systems, LC8 is associated with
several different dynein and nondynein complexes, and T.
thermophila expresses one canonical LC8 as well as five
divergent LC8-like genes, with unknown functions.

Perhaps the most interesting revelation is that T. thermo-
phila expresses 25 dynein heavy chains. These include the 14
DYH genes previously described [146,147] and 11 new ones,
all of which appear to be axonemal. The complexity of the
DYH family may represent a mechanism by which the
organism can fine-tune ciliary activity, produce specialized
cilia (e.g., oral and posterior cilia), and/or generate large
numbers of new cilia quickly. Along these lines, there has also
been an expansion in other motor proteins. For example,
there are 78 kinesins, more than in any other sequenced
organism ([101] and Table 8). In addition, although there are
fewer myosins than in humans (13 versus 22), 12 of 13 of the
T. thermophila genes comprise a single novel myosin class not
found in other organisms [102,148].

Regulation of microtubules and microtubule-associated
processes. Among the expanded genes in T. thermophila are
a variety implicated in the regulation of microtubules or
microtubule-associated processes. One example is the tubulin
tyrosine ligase-like domain proteins of which multiple
members have been identified as enzymes responsible for
polyglutamylation of either a- or b-tubulin [149]. T. thermo-
phila encodes 50 tubulin tyrosine ligase-like proteins com-
pared with 14 in human. Another example is the NRK family
of protein kinases which, as mentioned above, has undergone
a large expansion in T. thermophila. NRKs are often found
associated with microtubular organelles [150] such as
centrioles, basal bodies, and flagella and play multiple roles,
including the regulation of centrosome maturation [151] and
flagellar excision [152]. We identified 39 NRKs in T.
thermophila, roughly three times the number of such loci in
humans. Phylogenetic and functional analyses have suggested
that this diversification has adapted the members of this
family for distinct subcellular localizations and cytoskeletal
roles [103]. Thus, such gene expansions could allow differ-
entially targeted protein isoforms to regulate the function of
the same organelle type in different locations or generate
different properties of the same structural building materials
(e.g., microtubules), which are used as frameworks to build
different types of organelles.

Secretory pathways and membrane trafficking. Besides the
conventional organelles, T. thermophilamaintains several more
specialized membrane-bound compartments, including al-
veoli (shared with other alveolates), a contractile vacuole
(found in many protists), and separate, functionally distinct
macronuclei and micronuclei [128]. It also has multiple
pathways for plasma membrane internalization, as well as
both constitutive and regulated exocytosis [128,153]. The
sorting and trafficking of membrane components are critical
functions for all these activities. Analysis of the genome
reveals homologs of many of the key proteins known from
other eukaryotes to be involved in vesicle formation and
fusion, including all major classes of coat proteins (Table
S14). One interesting finding that came from genome analysis
is that T. thermophila encodes eight dynamin-related proteins,
more than most other sequenced unicellular eukaryotes, and

two of them, Drp1p and Drp2p, have evolved a new function
in endocytosis [96] (A. Rahaman and A. P. Turkewitz,
unpublished data). Furthermore, phylogenetic analysis in-
dicated that the recruitment of dynamin to a role in
endocytosis occurred independently by convergent evolution
in the animal and ciliate lineages [96].
The diversification of membrane trafficking is more

apparent in regard to Rab proteins, which are small
monomeric GTPases that regulate membrane fusion and
fission events. T. thermophila, with 69 Rabs (Table S15), has a
number more along the lines of humans (which have 60) than
many single-celled species, such as Saccharomyces cerevisiae,
which has 11 [154] and Trypanosoma brucei, which has 16 [155].
Based on localization and functional studies, including
comparisons between yeast and humans [156], Rabs have
been divided into eight groups [157]. Phylogenetic analysis
(Figure S7) indicates that T. thermophila encodes representa-
tives of all but groups IV and VII, which are involved in late
endocytosis and Golgi transport, respectively. For group VII
this appears to reflect a lineage-specific loss, since the
genomes of both T. brucei and Entamoeba histolytica have several
homologs in this group. Two T. thermophila Rabs appear
homologous to Rab28 and Rab32, which have not been
assigned to any of these groups; Rab32 was previously thought
to be restricted to mammalian lineages. Rab groups II and V,
involved in endocytosis, are especially large in T. thermophila
and include several Rab2, Rab4, and Rab11 homologs in
group II. This may reflect the intricacy of maintaining at least
two major pathways of membrane internalization. Addition-
ally, 29 Rabs in T. thermophila fail to cluster with any of the
Rab groups found more widely among eukaryotes. Within this
group, 20 cluster into three clades, designated Tetrahymena
clades I, II, and III in Figure S7, which may represent ciliate-
specific radiations. The remaining nine are very divergent
and may represent very ancient duplication events and/or
changes related to recruitment for novel function. Because
unambiguous alignment among such divergent Rabs is
difficult, their relationships will become clearer as additional
related genomes are sequenced.
Recently, large numbers of Rabs have been found in a

variety of amoeboid protists including D. discoideum, E.
histolytica [158], and the parabasalid Trichomonas vaginalis
[159]. The diversification in these species was proposed to
relate to their amoeboid lifestyle [159]. However, the
presence of significant diversification in T. thermophila
suggests that different protist lifestyles may be accompanied
by their own brand of significant Rab diversification.

Tetrahymena Genome Database
An integral part of the effort to make the genomic

resources and analyses described above widely available to
researchers working with T. thermophila and other organisms
has been the creation of the Tetrahymena Genome Database
(TGD; http://www.ciliate.org), a Web-accessible resource on
the genetics and genomics of T. thermophila. TGD provides
information about the T. thermophila MAC genome, its genes
and gene products, facts about the ciliate scientific commun-
ity, and tools for querying the genome and collected scientific
literature. TGD was created using the database environment
developed for the Saccharomyces Genome Database and
software tools contributed to the Generic Model Organism
Database (GMOD) project.
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Information from the published literature on T. thermophila
is distilled in multiple ways. Results from published studies of
T. thermophila genes are curated and provided, including
community-approved gene names, other nonstandard aliases,
nucleotide and amino acid sequences, and literature cita-
tions. In addition, free-text descriptions are associated with
predicted gene models, and full-text searching is provided
using Textpresso [160]. To enable intra- and cross-species
comparisons, when information on characterized genes is
curated, TGD staff members capture aspects of a gene
product’s biology (i.e., molecular function, biological role,
and cellular localization) using terms from the Gene
Ontology (http://www.geneontology.org). This is comple-
mented by automated functional annotation of all predicted
genes. Other resources include tools for searching the
annotation by keywords, similarity searching using BLAST
and BLAT, Gbrowse-based genome visualization [161], in-
formation about Tetrahymena research laboratories, links to
other ciliate-related resources, and various tutorials. The
TGD staff is always available to help individual researchers by
answering questions, finding information, and generating
datasets specific to their needs.

Conclusions and Future Plans
In sequencing and assembling the T. thermophila MAC

genome, there were many anticipated major challenges not
commonly seen in eukaryotic genome projects. Overall,
however, the assemblies are remarkably accurate and repre-
sent excellent coverage of the genome. This is likely in large
part due to low levels of repetitive DNA, one of the features
of the MAC genome that initially led us to select it for
sequencing. The sequence data in our current assemblies are
certainly complete enough for detailed analyses of the
predicted biology of this species as we have reported here
and others have shown. In addition, the genome sequence is
already being used in many functional genomic studies taking
advantage of the powerful experimental tools available.
Along these lines, it will be of great value to do comparative
analyses with the genome sequences of other ciliates such as
P. tetraurelia and Oxytricha trifallax, which are in progress.

One of our main goals is to obtain a complete sequence of
the MAC genome, and there are still some challenges left to
its achievement. Since we were unable to obtain quality
sequence data from large insert clones, any region of the
MAC genome containing significant amounts of repetitive
DNA would not have assembled well. To overcome this pitfall
we are now using HAPPY mapping [162] as an alternative
approach to obtaining such linking information. Also, it is
known that at least the ends of at least two MAC
chromosomes present immediately following conjugation
disappear during subsequent vegetative growth, perhaps an
indication that these chromosomes are incapable of long-
term maintenance [41]. As expected, we do not find
sequences corresponding to these ends in our database. Thus
alternative methods will be required to obtain the sequences
of these regions and any others lost during early vegetative
growth. Despite these challenges, all the evidence suggests
that it will be possible to close the entire MAC genome.

Of course, the entire MAC genome alone does not provide
us with a complete picture of the T. thermophila genome.
Sequencing the MIC genome will be more challenging due to
the greater abundance of repetitive DNA. However, we will be

able to use the MAC genome as a scaffold and thus in a way
MIC sequencing will be equivalent to genome closure rather
than an independent project. We have already begun in this
area by determining the sequence adjacent to MIC Cbs
junctions and mapping these to MAC assemblies as well as the
reverse—using MAC telomere-adjacent sequences to pull out
MIC Cbs-flanking regions [24,41].
Having a MIC sequence and mapping the MIC to the MAC

will be useful in understanding many aspects of T. thermophila
biology that we cannot study through the MAC. These include
centromere function, MIC telomere features, and the extent
to which the MAC and MIC in T. thermophila and other ciliates
are the equivalent of somatic and germ cells. Perhaps most
important, having both genomes will allow detailed analyses
of the genome-wide DNA rearrangement process. It is only by
having both genome sequences that we can fully understand
the biology of this fascinating species.

Materials and Methods

Cell growth, DNA isolation, and library construction. T. thermophila
cell lines currently in laboratory use were first isolated from the
wild in the 1950s [163] and were maintained by serial passage and
inbreeding for over 16 y before viable freezing methods were
developed. Strain SB210 [164] is the end result of about 25 sexual
reorganizations in laboratory culture, including a series of sexual
inbreedings by the equivalent of brother-sister matings giving rise
to the inbred strain B genetic background [165]. Following the final
conjugation, a thoroughly assorted cell line was isolated after at
least three serial single-cell isolations (SCIs). The last SCI was
approximately 150 fissions after conjugation. These serial SCIs
provided abundant opportunity to isolate a cell line that had
become pure for most of the MAC developmental diversity but not
necessarily all because assortment brings about a stochastic,
exponential decay in diversity. The chosen cell line was then
subjected to a genomic exclusion cross [166], which generates a
whole-genome homozygous MIC but does not generate a new MAC.
At least one additional SCI occurred at this step, after which this
cell line was frozen. As needed, frozen stocks were replenished
following a minimal number of vegetative fissions. The strain has
been deposited in the Tetrahymena Stock Center at Cornell
University as suggested [167].

A culture was started from a fresh thaw of strain SB210. Purified
macronuclei were prepared by differential sedimentation, and DNA
was extracted from the purified macronuclei as described [168]. The
preparation was checked by Southern blot hybridization to verify that
the level of contamination with MIC DNA was low. Genomic libraries
were prepared as described [169]. DNA was randomly sheared, end-
polished with consecutive polynucleotide kinase and T4 DNA
polymerase treatments, and size-selected by electrophoresis in 1%
low-melting-point agarose. After ligation to BstXI adapters (Invitro-
gen, Carlsbad, California, United States; catalog No. N408–18), DNA
was purified by three rounds of gel electrophoresis to remove excess
adapters, and the fragments, now with 39-CACA overhangs, were
inserted into BstXI-linearized plasmid vector (pHOS2, a medium-
copy pBR322 derivative) with 39-TGTG overhangs. Libraries with
average sizes of inserts were constructed: 1.8, 2.5, 3.5, 5.0, and 8.5 kb
(Table S1). Libraries with larger insert sizes were unstable, presumably
due to the high AT content in the genomic DNA.

Sequencing was done from paired-ends primarily at the J. Craig
Venter Science Foundation Joint Technology Center. Possible
contaminating sequences from other projects have been filtered out
using BLASTN searches against all other genome projects conducted
at the same time at TIGR and the Joint Technology Center. Whole
genome assemblies were performed using the Celera Assembler [37]
with modifications implemented by researchers at the J. Craig Venter
Science Foundation and TIGR. Sequence reads corresponding to the
mitochondrial and rDNA chromosomes were identified using the
latest version of the MUMmer program [170] and comparison to the
published sequences.

Linking open ends of assembled scaffolds to telomeres. The initial
assembly contained 85 telomere-capped scaffold ends. However,
these ends correspond to a minority of the total number of non–
rDNA telomere–containing sequence reads, which we estimate to be
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4,058. Computational and experimental methods were used to
identify and confirm scaffold ends that were very close to a telomere,
marking the end of a chromosome.

One method matched read-mates of telomere-containing reads
(Tel-reads) that the assembly program failed to incorporate into
scaffolds. These were identified by searching the sequence read
database for exact matches to a 12-mer encompassing two telomeric
repeats (GGGGTTGGGGTT). Read-mates were identified for 95% of
the Tel-reads. Two internal 40-nt tags were extracted from each Tel-
read mate and tested for at least one exact match with the terminal 5
kb of every scaffold (or the entire scaffold if less than 10 kb long).
After clustering the matches, a nonredundant list of Tel-linked
scaffold ends was generated.

A second method matched previously identified MIC DNA
sequences flanking cloned Cbs junctions to scaffold ends (see Figure
2). Telomeres are added within 30 bp of the Cbs element. Thus, if
Cbs-adjacent sequence from MIC DNA can be aligned with a MAC
scaffold end, the end can be inferred to be telomere-linked. BLASTN
searches were carried out with the ‘‘no filter’’ option because very
AT-rich sequence was being compared.

A third method involved PCR walking from scaffold open ends to
telomeres. Primers designed from scaffold ends were used in
combination with the generic 14-nt telomere primer, 59-
CCCCAACCCCAACC-39. The authenticity of each PCR product was
confirmed by sequencing.

Cloning and sequencing RAPDs and sizing their associated MAC
chromosomes. Conditions and reagents for RAPD PCR were as in
[171]. The 10-mer primers were from Operon Technologies. The
polymorphic RAPD PCR products were size-fractionated by electro-
phoresis in a 1.5% agarose gel. Polymorphic bands were excised and
the DNA was extracted with a QIAquick gel extraction kit (Qiagen,
Chatsworth, California, United States). The DNA was reamplified
using the same PCR conditions and primer combination initially used
to detect the polymorphism. Amplified fragments were cloned into
the pCR2.1-TOPO vector (Invitrogen) according to the manufac-
turer’s directions. Insert-containing clones, identified as white
colonies, were screened for insert size by colony PCR as in [172].
The authenticity of each correctly sized insert was confirmed by
hybridization to a Southern blot of RAPD products from a panel of
ten Tetrahymena strains in which the alleles of the RAPD locus were
meiotically segregating [40].

Plasmid DNA was isolated using a QIAprep Miniprep kit (Qiagen,
Valencia, California, United States), and inserts were sequenced using
the Big Dye Terminator Cycle-Sequencing-Ready Reaction kit (PE
Applied Biosystems, Foster City, California, United States). Nucleo-
tide sequences were determined using an ABI 310 Genetic Analyzer.
Insert sequences were then searched against the assemblies using
BLASTN.

High-molecular-weight DNA was prepared by embedding live cells
from strain SB210 in agarose plugs and lysing them using a
modification of Birren and Lai [173]. The DNA plugs were inserted
into the wells of a 1% Pulsed Field Certified Agarose gel (Bio-Rad,
Hercules, California, United States) in 13 TAE buffer. Preliminary
sizing of MAC chromosomes was obtained from gels run using the
following conditions: 30 h at 6 V/cm with a 60- to 120-s switch time
ramp at an included angle of 1208, 13 TAE recirculated at 10 8C.
Running conditions were varied when the above conditions did not
provide adequate resolution in the size range of a particular MAC
chromosome (E. P. Hamilton, unpublished data). The DNA in the gel
was acid-depurinated, neutralized, and transferred to a positively
charged nylon membrane by downward alkaline transfer (CHEF-DR
III Instruction Manual and Applications Guide; Bio-Rad). After
blotting, the DNA was crosslinked to the membrane using a Bio-Rad
GS Gene Linker. 32P-labeled probes were made from the PCR
products obtained from each RAPD clone. Methods for making
probes, Southern hybridization, and autoradiography were as in [40].

cDNA library construction and sequencing. cDNA libraries were
generated from cells in either the conjugative or vegetative stages of
the life cycle. For the conjugative library, cells from a mating
between strains CU428 and B2086 were harvested at 3, 6, and 10 h
after mixing, and RNA was purified using TRIzol. PolyAþ RNA was
isolated and cDNA was generated by Amplicon Express (Pullman,
Washington, United States). Inserts were cloned into EcoRI and XhoI
sites in pBluescript IISKþ (Stratagene, La Jolla, California, United
States) and had an average size of 1.4 kb. Clones were picked at
random and sequenced from the 59 end of the transcript using the
T3 primer. For the vegetative library, which was made by DNA
Technologies (Gaithersburg, Maryland, United States), CU428 cells
were harvested in exponential growth and RNA was purified using
TRIzol. PolyAþ mRNA was isolated using oligo(dT) cellulose, cDNA

was generated, and inserts were cloned into the EcoRV and NotI sites
of the pcDNA3.1(þ) vector (Invitrogen). Clones were picked at
random and sequenced from the 59 end using the custom
pcDNA(�48) primer. All sequences were submitted to the dbEST
division of GenBank, to the Taxonomically Broad EST Database
(TBestDB) at http://tbestdb.bcm.umontreal.ca/searches/login.php, and
to TIGR’s Tetrahymena Gene Index at http://www.tigr.org/tigr-scripts/
tgi/T_index.cgi?species¼t_thermophila. Subsequent analyses used
comparisons of the conjugative sequences with all vegetative
sequences including those in GenBank not generated at TIGR.

Functional ncRNA analysis. Most ncRNA annotations (Table S6)
were generated using covariance model (CM) scans [174]. Transfer
RNA annotations are those provided by the CM-based tRNAscanSE
program [175] run with default parameters. Most other scans were
based on CMs defined by the Rfam database [176,177] (release 7.0,
March 2005; 503 families). With a few exceptions, we used rigorous
filters [178] built from the Rfam models to identify exactly those
sequences that match the Rfam models with scores at or above Rfam’s
family-specific ‘‘gathering’’ cutoff. One exception was RF00005
(tRNA), as mentioned above. Another exception was RF00012, the
U3 small nucleolar RNA, for which the Rfam model found no hits.
Instead, we manually added one known Tetrahymena U3 sequence
[179] to the Rfam seed alignment, built a CM from it, and rescanned
the genome, finding the four U3 sequences reported in Table S6C.
The third class of exceptions consisted of the 44 Rfam families using
the ‘‘local alignment’’ feature of CMs. These families were scanned
using ML-heuristic filters [180], with a scan threshold chosen for each
such family such that approximately 1% of the genome was scored by
the CM. This setting generally shows good sensitivity but is not
guaranteed to find all sequences that match the Rfam model, unlike
the rigorous scans above. Hits against the Rfam T_box (RF00230),
group I self-splicing introns (RF00028), and ctRNA_pND324
(RF00238) involved in bacterial plasmid copy control all appear
implausible and are also unexpected by phylogenetic criteria. Hits
against Rfam small nucleolar RNAs (RF00086, RF00133, RF00309) also
appeared to be false positives, as were most hits to the iron response
element (RF00037) and selenocysteine insertion sequence (RF00031)
families. Other families not discussed here or in Table S6 yielded no
hits above threshold. See http://www.cs.washington.edu/homes/ruzzo/
papers/Tthermophila for full details about the ncRNA scans. It should
be noted that our annotation approach may be prone to reporting
ncRNA pseudogenes and that its accuracy may be affected by the high
AT content of the genome.

Protein-coding gene finding and coding region analysis. The gene
finder TIGRscan ([181], since renamed GeneZilla) was trained for T.
thermophila using a two-phase bootstrapping process [182], due to the
dearth of curated training data available at the time. In the first
round of training (termed ‘‘long-ORFs’’), all parameters were
estimated from a set of 193 full-length cDNAs from the apicomplexan
P. falciparum (including surrounding regions from the genomic
sequence; 1.6 Mb total) except for the exon state, which was trained
on 2,130 nonoverlapping, long ORFs (each at least 3,000 bp in length).
The default polyadenylation signal state and TATA-box state for this
gene finder utilize human TRANSFAC weight matrices [183]; these
were not modified. The gene finder was then used to predict genes in
the raw T. thermophila genomic sequence, and the predictions were
used to bootstrap the parameter estimation during the second round
of training (termed ‘‘hybrid’’). Sixty curated T. thermophila genes
which became available during the second round of training were
analyzed and their coding statistics were used to improve the exon
state by averaging with the original long-ORF statistics, appropriately
weighted to eliminate length bias. Exon length distributions were
estimated from the 60-gene set, with appropriate smoothing.
Interpolated and noninterpolated Markov chains [184] were utilized
by the content states, with the order of dependency (3rd for exons
and introns, 0th for intergenic, and 1st for UTR) selected so as to
optimize prediction accuracy on the 60-gene set. Splice site and start/
stop codon states were re-trained from pooled data consisting of the
60 curated genes and the original P. falciparum training data, using an
80%:20% T. thermophila/P. falciparum weighting to mitigate the effects
of overtraining due to small sample sizes in the sixty gene set. Weight
matrices utilized by the latter states were reduced to approximately
22 bp when it was noticed that longer matrices interfered with the
prediction of short introns. The ‘‘hybrid’’ and ‘‘long-ORFs’’ param-
eterizations were tested on a set of 300 partial genes inferred from
ESTs that were assembled against the chromosomes using the PASA
program [52]. The ‘‘hybrid’’ parameterization was chosen because it
was about three times more accurate at the exon level than ‘‘long-
ORFs’’ (see Table S16).

Multivariate analysis of codon usage was performed with the
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codonW package (http://codonw.sourceforge.net). Correspondence
analysis of relative synonymous codon usage values was carried out
to examine the major source of codon usage variation. Amino acid
composition of the predicted aggregate proteome was compared with
the corresponding data downloaded from dictyBase for the slime
mold D. discoideum and from Ensembl for Homo sapiens.

To find candidate tandem gene duplicates, we analyzed pairwise
alignments between neighboring genes using BLASTP. An all-versus-
all BLASTP search was performed using all Tetrahymena gene-encoded
proteins, requiring a maximum E-value of 1e�20, and reporting the
best 20 matches. Matching genes found at adjacent genome locations
were chained together and reported as candidate tandem gene arrays,
allowing only a total of two nonmatching genes to intervene
matching genes in a single array.

A Lek clustering algorithm [169] was applied for paralogous gene
family classification of the predicted proteins in the T. thermophila
genome. All predicted proteins were searched with BLASTP against
each other. Links were established between genes at an E-value cutoff
of 1310�20. Lek similarity scores, which were defined as the number of
BLASTP hits shared by any pair of proteins divided by the combined
number of hits for either of the two genes, were calculated for all pairs
of proteins. The links for which the Lek similarity scores were above a
cutoff of 0.66 were used to build gene family clusters by a single-
linkage clustering algorithm. Biological function roles were assigned
to the gene families based on the top BLASTP hits for individual genes
in each family against a nonredundant protein database.

Organelle-derived genes and APIS. Searches for plastid and
mitochondrial related genes were performed using the APIS
program. APIS (J. H. Badger, unpublished data) is a system that
automatically generates and summarizes phylogenetic trees for each
gene in a genome. It is implemented as a series of Ruby scripts, and
the results are viewable on an internal Web server which allows the
user to explore the data and results in an interactive manner. APIS
obtains homologs by comparing each query protein against a
database of proteins from complete genomes, and extracting the full
length sequences of homologs with E-values less than 1e�10. The
homologs are then aligned by MUSCLE [185] and bootstrapped
neighbor-joining trees are produced using QuickTree [186]. As
QuickTree (unlike most programs) produces bootstrapped trees with
meaningful branch lengths, the trees are then midpoint rooted. Then
a taxonomic analysis is performed of the proteins that are neighbors
in the tree with the query protein. This analysis makes use of the
NCBI taxonomy assigned to the other proteins in the tree. For each
taxonomic level (e.g., kingdom, phylum, class, etc.), the query protein
is assigned to a bin. If in the tree the query protein is within a clade of
sequences that are all from group X (for the taxonomic level being
examined) then the query protein is placed in a bin labeled
‘‘contained within group X.’’ If the query protein branches next to
(but not within) a clade of sequences from the same group, it is placed
in a bin labeled ‘‘outgroup of X.’’ If the neighbors of the query
sequence are in multiple groups, no binning is done for that
taxonomic level.

Candidates for mitochondrially derived genes were separately
identified by BLASTP searches using known mitochondrial proteins
as queries [187,188]. Phylogenetic trees were then constructed for
individual candidates in the context of all completely sequenced
genomes and representatives of mitochondria. Genes whose closest
neighbors were exclusively a-proteobacteria and/or mitochondria
were classified as possibly mitochondrion derived.

Analysis of repetitive DNA and TEs. The location and character-
ization of tandem minisatellite and microsatellite repeats were done
using Tandem Repeats Finder [189], using the default parameter
values. The location, length, period size, %GC, and consensus
sequence of each repeat were extracted for all scaffolds and listed
with the scaffold number and size. Vmatch (http://www.vmatch.de) was
used to search for repeats that are at least 50 bp long and 100%
identical (Table S17). We note that repeats that are larger than the
average insert size of our libraries would not be able to be uniquely
placed into any assembly by the Celera Assembler and thus do not
show up in our analysis.

The T. thermophila genome was searched against two sets of TEs
using BLASTN and/or TBLASTN [190], with default parameters and
E-value cutoff at 1310�5. One of the TE sets consisted of 12 complete
or partial ciliate TEs, namely Tec1, Tec2, and Tec3 from Moneuplotes
crassus, TBE1 from O. fallax, and REP1, REP2.2, REP3, REP6, TIE1,
TIE2, TIE3, and Tlr from T. thermophila [90,91,191,192]. The other TE
set consisted of 44 representative elements of the transposon
superfamily mariner/Tc1/IS630 [192], including members of the mariner,
Tc1, DD39D (plant), DD37D (nematodes and insects), and DD37D
(mosquitoes), Ant1/Tec, and Pogo families. In addition, the genome was

scanned for homology to TE-encoded ORFs using PSI-TBLASTN
[190]. Briefly, a reference ORF from each major family of
autonomous transposons and retrotransposons was searched against
the nonredundant protein database using BLAST-PGP with two
iterations, generating a TE ORF family-specific profile. Each
reference TE ORF and corresponding family profile were searched
against the genomic sequence using PSI-TBLASTN, and all matches
with E-value at most 1e�5 were captured for subsequent analysis.
Finally, a few scaffolds with putatively complete transposases
belonging to the mariner/Tc1/IS630 superfamily were further inves-
tigated for the presence of the inverted terminal repeats (ITRs) that
typically flank these elements. Identification of paired ITRs was done
using Owen [193] and searches were done against known consensus
ITR sequences of mariner and Tc1 elements to find individual ITRs.

Analysis of functional categories with gene family expansions.
Protein kinase genes were identified by comparison of peptide
predictions to a set of protein kinase profile hidden Markov models
[104] and by BLAST against divergent kinase sequences. A small
number of gene predictions were split or fused to adjacent
predictions based on presence of split or multiple kinase domains.
Kinases were classified by comparison of kinase domain sequences to
a set of group-, family-, and subfamily-specific hidden Markov models
as well as by BLAST-based clustering of T. thermophila and previously
classified kinases.

Predicted protein sequences were searched against a curated
database of membrane transport proteins [113] for similarity to
known or putative transport proteins using BLASTP. All proteins
with significant hits (E-value less than 0.001) were collected and
searched against the NCBI nonredundant protein and Pfam data-
bases [194]. Transmembrane protein topology was predicted by
TMHMM [195]. A Web-based interface was implemented to facilitate
the annotation processes, which incorporates number of hits to the
transporter database; BLAST and hidden Markov model search E-
value and score; number of predicted transmembrane segments; and
the description of top hits to the nonredundant protein database
(http://www.membranetransport.org) [113,196].

A total of over 30,000 sequences of characterized and predicted
proteases were obtained from the Merops database (http://www.
merops.ac.uk, release 7.00) [119]. These sequences were searched
against the T. thermophila predicted protein sequences using BLASTP
with default settings and an E-value cutoff of less than 10�10 for
defining protease homologs. Partial sequences (less than 80% of full-
length) and redundant sequences were excluded. The domain/motif
organization of predicted T. thermophila proteases was revealed by an
InterPro search. For each putative protease, the known protease
sequence or domain with the highest similarity was used as a
reference for annotation; the catalytic type and protease family were
predicted in accordance with the classification in Merops, and the
enzyme was named in accordance with SWISS-PROT enzyme
nomenclature (http://www.expasy.ch/cgi-bin/lists?peptidas.txt) and lit-
erature.

Tubulin superfamily genes were identified by a BLASTP search
using T. thermophila a-tubulin Atu1p as the query. Twenty-one
candidate predicted ORFs were identified, but two showed only
moderate sequence s imi lar i ty to e i ther the amino-
(TTHERM_00834920) or the carboxyl- (TTHERM_00896110) ter-
minal halves of a- or b- tubulin and were not considered further. The
19 remaining were aligned with representative tubulins from other
organisms and a neighbor-joining tree constructed using default
settings of ClustalX (version 1.81) with 1,000 bootstrap runs. A
prokaryotic tubulin ortholog, Escherichia coli FtsZ, was used as the
outgroup (see Figure 7).

Using dynein subunit sequences obtained in the green alga C.
reinhardtii or in other species when appropriate, we searched the T.
thermophila MAC genome for orthologous sequence with TBLASTN.
Candidate sequences were aligned with the sequences available in the
databases of dynein subunits characterized in other experimental
systems. Exon-intron borders were first approximated using the
characteristics of the 64 introns previously experimentally deter-
mined in three dynein heavy chains, DYH1, DYH2, and DYH4. The 64
T. thermophila introns are AT rich (average 88%), are bounded by 59-
GT and AG-39 and are relatively short (average 80 nucleotides; range,
50 to 332). The exon-intron borders and the expression of each gene
were confirmed by RNA-directed PCR and, if necessary, sequencing
of the amplified RT-PCR product. The verification of the exon-intron
organizations of most of the heavy chains has not been completed.

Peptide sequence of Rab1A from H. sapiens was used to query T.
thermophila gene predictions using BLASTP. Candidate Rab homologs
were screened to include predicted proteins with complete Rab
domains. These sequences were individually used in BLASTP searches
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of GenBank to confirm that Rab proteins from another species were
the closest match. The minimum E score cut-off was 5e�13, but the
majority of homologs scored better than 1e�30. The top scoring Rab1
homolog from T. thermophila (TTHERM_00316280) was used in an
additional BLASTP search of the T. thermophila genome to confirm
that all Rab homologs were identified by the initial query. Homologs
of other GTPases in the Rabl, Ral, Rap, Ras, Rho, and Arf families
began to appear along with the lower scoring Rab homologs and were
discarded from the set. Rab protein sequences from H. sapiens
(Ensembl database), Drosophila melanogaster (Flybase), and S. cerevisiae
(Saccharomyces Genome Database), along with those identified as
described above from T. thermophila, were aligned using ClustalX. The
alignment was refined by eye and gaps removed. The tree in Figure S7
was generated using the neighbor-joining module in Phylip 3.6. Trees
constructed using maximum-likelihood and parsimony methods
largely corroborated this topology. T. thermophila Rab homologs
associated with clades of previously identified Rabs were given
putative names where consistent BLASTP results were evident and
are arranged in Table S15 according to functional groups. Prelimi-
nary annotations from the TGD were queried to identify predicted
coat protein homologs. Others were identified in queries with
peptide sequence from D. melanogaster homologs. T. thermophila
homologs were used in BLASTP queries of GenBank to confirm
annotations. Further analysis of AP subunits, clathrin, and dynamin-
related proteins is found in [96].

Sequence availability. All of the sequences, assemblies, and gene
predictions can be downloaded from the TIGR ftp site (ftp://ftp.tigr.
org/pub/data/Eukaryotic_Projects/t_thermophila). The sequence
reads and traces can be downloaded from the NCBI trace archive
at ftp://ftp.ncbi.nih.gov/pub/TraceDB/tetrahymena_thermophila. As-
semblies, sequence reads, and gene predictions can be searched
using multiple similarity search methods at the TIGR, TGD, and
NCBI Web sites. Sequences are also available in Genbank (see below).

Supporting Information

Figure S1. Nucleotide Composition

(A) Scaffolds larger than 1 Mb were sorted by size and concatenated
to make a pseudo molecule. Statistics of nucleotide composition were
calculated for 2,000 bp sliding windows with a shift length of 1,000 bp.
Yellow, GC skew; blue, GC%; purple, v2 score. The green lines delimit
the scaffolds (long) or contigs within each scaffold (short).
(B) Analysis of three T. thermophila scaffolds of diverse size. Red boxes,
genes on forward strand; green boxes, genes on reverse strand; blue,
v2 score; orange, GC%; brown, GC skew; salmon, AT skew. The
vertical light gray lines delimit contigs within each scaffold. Scaffold
sizes: 8254645, 1,076 kb; 8254654, 510 kb; 8254072, 37.3 kb.

Found at DOI: 10.1371/journal.pbio.0040286.sg001 (246 KB PDF).

Figure S2. Gene Density Distribution

Using scaffolds larger than 100 kb, the percentage of predicted gene
coding sequence was calculated within 10-kb windows. For the overall
gene density (black bars), a sliding 10-kb window was applied at 2-kb
intervals. Gray bars represent gene density in the 10-kb adjacent to
each telomere.

Found at DOI: 10.1371/journal.pbio.0040286.sg002 (92 KB PDF).

Figure S3. Intron Size Distribution

Comparison of the percentage of introns in various size classes for
both ab initio predicted genes (gray bars) and introns confirmed by
EST sequencing (black bars).

Found at DOI: 10.1371/journal.pbio.0040286.sg003 (17 KB PDF).

Figure S4. Expression of tRNA and Other ncRNAs

(A) tRNA charging and expression. Total RNA was harvested from T.
thermophila in log-phase growth (lanes 1 and 2) or after resuspension
in 10 mM Tris starvation buffer for the times indicated. Total RNA
samples were resolved by acid/urea acrylamide gel electrophoresis
and transferred to nylon membrane; the same total RNA sample
either untreated or deacylated at alkaline pH was used for lanes 1 and
2. Probing was performed using end-radiolabeled oligonucleotides
specific for the tRNA of interest.
(B) Expression levels of ncRNAs under various conditions. Total RNA
was harvested from T. thermophila under the growth or development
conditions indicated, resolved, transferred, and probed as in (A). As
an internal control for even loading, the same blot was hybridized to
detect tRNA-Sec and SRP RNA (RNA PolIII transcripts found

predominantly in the cytoplasm and involved in translation) and
also to U1 and U2 snRNAs (RNA PolII transcripts found predom-
inantly in the nucleus and involved in mRNA splicing).

Found at DOI: 10.1371/journal.pbio.0040286.sg004 (420 KB PDF).

Figure S5. Distribution of Repeat Content versus Scaffold Size

Orange points represent scaffolds that have been capped with
telomeres at both ends.

Found at DOI: 10.1371/journal.pbio.0040286.sg005 (30 KB PDF).

Figure S6. Expansion of the Polo Kinase Family in T. thermophila
Compared with Selected Eukaryotes

Neighbor-joining tree built from ClustalW alignment of polo kinase
domains. Species abbreviations: Hs, H. sapiens; Dm, D. melanogaster; Ce,
Caenorhabditis elegans; Sc, S. cerevisiae; Dd, D. discoideum; Tt, T.
thermophila. Note that T. thermophila has multiple members of both
the polo and sak subfamilies, and that even within the T. thermophila–
specific cluster, sequences are as divergent as orthologs from
vertebrates and lower metazoans. The bar indicates scale of average
substitutions per site.

Found at DOI: 10.1371/journal.pbio.0040286.sg006 (71 KB PDF).

Figure S7. Phylogenetic Analysis of Rabs

Unrooted neighbor-joining tree for Rab GTPases. Bootstrap values
over 40% (from 100 replicates) are indicated near corresponding
branches. Predicted T. thermophila genes are in bold. Other Rabs are
from H. sapiens (Hs), D. melanogaster (Dm), and S. cerevisiae (Sc).
Proposed Rab families [157] are shown in colored blocks. Asterisks
indicate Rabs for which there is functional evidence (**) or at least
localization data (*) consistent with their groupings. T. thermophila
genes cluster with the members of each Rab family except VII and IV
(not shown in a box). There are three clades comprised exclusively of
T. thermophila gene predictions (clades I, II, and III) shown in dark gray
boxes.

Found at DOI: 10.1371/journal.pbio.0040286.sg007 (39 KB PDF).

Table S1. Genomic DNA Libraries

Found at DOI: 10.1371/journal.pbio.0040286.st001 (28 KB DOC).

Table S2. Statistics on Chromosome Assemblies and Satellite Repeats

Found at DOI: 10.1371/journal.pbio.0040286.st002 (52 KB DOC).

Table S3. Scaffolds Capped by Telomeres

Found at DOI: 10.1371/journal.pbio.0040286.st003 (352 KB DOC).

Table S4. Matches of RAPD DNA Polymorphisms to Scaffolds

Found at DOI: 10.1371/journal.pbio.0040286.st004 (167 KB DOC).

Table S5. T. thermophila ESTs, including Available GenBank Entries

Found at DOI: 10.1371/journal.pbio.0040286.st005 (30 KB DOC).

Table S6. ncRNAs

(A) 5S.
(B) tRNA.
(C) Other ncRNAs.
(D) tRNA gene IDs.

Found at DOI: 10.1371/journal.pbio.0040286.st006 (1.0 MB DOC).

Table S7. Genes Predicted to Be Highly Expressed on the Basis of
Codon Usage Bias

Found at DOI: 10.1371/journal.pbio.0040286.st007 (388 KB DOC).

Table S8. Likely Mitochondrion-Derived Genes from the T. thermo-
phila Macronuclear Genome

Found at DOI: 10.1371/journal.pbio.0040286.st008 (114 KB DOC).

Table S9. Scaffolds with Similarity to Members of the mariner/Tc1/
IS630 Superfamily

Found at DOI: 10.1371/journal.pbio.0040286.st009 (73 KB DOC).

Table S10. Recent Gene Duplications

Found at DOI: 10.1371/journal.pbio.0040286.st010 (1.9 MB DOC).

Table S11. Expanded Versions of Tables 5 through 8, including TIGR
and GenBank IDs for All the Identified Genes

(A) Kinases.
(B) Membrane transporters.
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(C) Proteases.
(D) Cytoskeletal related.

Found at DOI: 10.1371/journal.pbio.0040286.st011 (3.6 MB DOC).

Table S12. Human Disease Genes with Orthologs in T. thermophila,
but Not the Yeast S. cerevisiae
Found at DOI: 10.1371/journal.pbio.0040286.st012 (90 KB DOC).

Table S13. Dynein Subunit Genes in T. thermophila
Found at DOI: 10.1371/journal.pbio.0040286.st013 (134 KB DOC).

Table S14. Membrane Traffic Component Homologs in T. thermophila
Found at DOI: 10.1371/journal.pbio.0040286.st014 (59 KB DOC).

Table S15. Rab Homologs in the T. thermophila Genome Assembly

Found at DOI: 10.1371/journal.pbio.0040286.st015 (159 KB DOC).

Table S16. Testing Different Gene Finder Parameterizations

Found at DOI: 10.1371/journal.pbio.0040286.st016 (25 KB DOC).

Table S17. The 50 Longest 100% Identical Repeats

Found at DOI: 10.1371/journal.pbio.0040286.st017 (93 KB DOC).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
bers for the T. thermophila genes are TTHERM_00047660, 00141160,
00279820, 00486500, 00522580, and 00823430 and for three dynein
heavy chains, DYH1, DYH2, and DYH4, are AF346733, AY770505, and
AF072878, respectively. The sequence contigs (AAGF01000001 to
AAGF01002955), the scaffold assemblies (CH445395 to CH445797
and CH670346 to CH671913), and the gene predictions (EAR80512 to
EAS07932) are available from GenBank. The Gene Identification
numbers in Figure 7 obtained from JGI Chlamy v2.0 (http://genome.
jgi-psf.org/chlre2/chlre2.home.html) are Ec_FtsZ, 16128088; Dm_al-
pha-1, 135396; Hs_alpha-1, 5174477; Cr_alpha-1, 135394; Tb_al-
pha,135440; Sc_alpha, 1729835; Pt_alpha, 1460090; Dm_beta-1,
158739; Hs_beta-1, 135448; Cr_beta, 8928401; Tb_beta, 135500;
Pt_beta-1, 417854; Sc_beta, 1174608; Dm_gamma-1, 45644955;
Hs_gamma-1, 31543831; Sc_gamma, 1729859; Cr_gamma,
8928436; Pt_delta, 10637981; Hs_delta, 50592998; Cr_delta,
75277286; Tb_delta, 13508430; Hs_epsilon, 7705915; Pt_epsilon,
18477270; Tb_epsilon, 259797; Xl_eta, 4266842; Pt_eta, 9501681;
Tb_zeta, 7341314; Pt_iota, 18478276; Pt_theta, 18478274; Pt_kap-
pa, 32812838; and Cr_epsilon (C_460065). The Ensembl Gene ID
(http: / /www.ensembl.org) for Rab1A from H. sapiens is
ENSG00000138069.
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