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Genome assemblies have various types of deficiencies or misassemblies.  This 

work is aimed at detecting and correcting a type of misassembly that we call 

Compression/Expansion or CE misassemblies whereby a section of sequence has been 

erroneously omitted or inserted in the assembly.  Other types of deficiencies include gaps 

in the genome sequence.   

We developed a statistic for identifying Compression/Expansion misassemblies 

called the CE statistic.  It is based on examining the placement of mate pairs of reads in 

the assembly.  In addition to this, we developed an algorithm that is aimed at closing gaps 

and validating and/or correcting CE misassemblies detected by the CE statistic.  This 

algorithm is similar to a shooting algorithm used in solving two-point boundary value 

problems in partial differential equations.  We call this algorithm the Shooting Method.  

The Shooting Method finds all possible ways to assemble a local region of the genome 

contained between two target reads.   

We use a combination of the CE statistic and Shooting Method to detect and 

correct some CE misassemblies and close gaps in genome assemblies.  We tested our 

techniques both on faux and real data.  Applying this technique to 22 bacterial draft 

assemblies for which the finished genome sequence is known, we were able to identify 5 

out of 8 real CE misassemblies.  We applied the Shooting Method to a de novo assembly 



 
 

of the Bos taurus genome made from Sanger data.  We were able to close 9,863 gaps out 

of 58,386.  This added 8.34 Mbp of sequence to the assembly, and resulted in a 7 % 

increase of N50 contig size. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

Part 1.1: Introduction 

With the completion of the draft of the human genome in 2001 (Venter, et al. 

2001), the world’s attention has turned to sequencing the genomes of other living things.  

The human genome was expensive to finish in terms of both cost and time, and as the 

number of additional organisms we wish to sequence grows, we are trying to find cheaper 

and faster ways of creating a quality draft of the genome’s sequence called a genome 

assembly.  

 Virtually all assemblies produced today contain errors and omissions in the 

sequence.  For example, the human genome has been worked on far more extensively and 

with great expense out of any genome currently sequenced.  However, even human 

chromosome 1 (which we analyze later in this dissertation), is missing up to 10% of its 

sequence.  We have no way to count the number of errors.  The goal of our research is to 

detect and correct certain types of errors and to fill gaps in draft genome assemblies using 

existing data.  Our focus is on developing post-processing techniques which will improve 

an existing draft assembly without needing any additional sequencing or data from other 

assemblies (of the same or closely related organisms).  Our hope is this will decrease the 

cost, both in time and money, of assembling and finishing genomes. 

The rest of this chapter provides a brief introduction to the biological concepts 

necessary for this paper.  We also describe current sequencing techniques, and then 

discuss the dominant assembly programs in use today.  We review the current state of 

genome assemblies being produced, including the prevalence of gaps and certain types of 

errors in the sequence.  We then describe the motivation for our methods of detecting 
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these errors, correcting them, and filling gaps in draft assemblies.   

In Chapter 2, we describe our method of detecting certain types of errors in 

assemblies.  We develop a statistic, called the CE statistic which we use to analyze 

potential (erroneously) inserted and deleted regions in genome assemblies.  We then 

evaluate the use of this statistic using simulated data. 

In Chapter 3, we discuss an algorithm called the Shooting Algorithm for filling 

gaps in assemblies, and describe how we also use this method to improve the detection of 

errors by the CE statistic and to attempt to correct such errors.  We put forward results of 

implementing and evaluating both the CE statistic and the Shooting Algorithm on 22 

bacterial assemblies for which we have high quality finished sequence.  We then describe 

the use of the Shooting method on a de novo assembly of Bos taurus.  Finally, we present 

some results of using the CE statistic and the Shooting method on an assembly of human 

chromosome 1 using faux data created to simulate an actual data set produced using the 

newer short read technology.   

Part 1.2: Background 

Section 1.2.1: A tour through Biology 

We will first go through a very brief tour of the basic well-known biological 

concepts we will need for this paper.  DNA or deoxyribonucleic acid is a molecule 

contained in all living cells.  The molecules are in the form of the familiar double helix.  

Each strand is made up of a chain of molecules called nucleotides.  Each nucleotide is 

made up of a sugar-phosphate group and a nitrogenous base.  There are four nitrogenous 

bases (or simply bases):  adenine (A), thymine (T), cytosine (C), and guanine (G).  These 

bases pair up (into base pairs) connecting the two individual strands into one double 
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helix.  The bases pair up in the following way:  adenine with thymine and cytosine with 

guanine.  (See figure 1).  Because of this one-to-one pairing, if we know the sequence of 

bases of one strand of the double helix, we will know the sequence of the other strand 

(called the complementary sequence).  

 

Figure 1: The familiar double helix. 

 

Each chromosome contains one DNA molecule, together with support structures 

(such as histones).  Most bacteria have only one chromosome.  Humans have 46 

chromosomes, 44 of which come in pairs and 2 of which are sex chromosomes, which are 

paired only in females.  Cows have 29 pairs of chromosomes and 2 sex chromosomes.  

Organisms whose chromosomes come in pairs are called diploid, and the paired 

chromosomes are called homologues of each other.  In the case of diploid organisms that 
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reproduce sexually, each homologue comes from a different parent, one maternal and one 

paternal.  Organisms that have more than 2 sets of chromosomes are called polyploid.  

Polyploidy is fairly common in the plant kingdom including some ferns and flowering 

plants (for example, Coffee arabica is tetraploid).  Each homologous chromosome is 

almost identical to its partner(s) often with only small differences.  Variations like these 

in homologous chromosomes are called polymorphisms.  The size of these variations can 

range from single nucleotide polymorphisms (SNPs) to longer rearrangements and 

deletions usually up to 100 bp, but sometimes much longer.  The SNP rate in the typical 

human genome is about 1/1000 (The International HapMap Consortium 2007).  These 

polymorphisms are usually inherited in blocks called linkage groups, and the specific 

pattern of polymorphisms in a block in a single homologue is called a haplotype. 

DNA contains all the hereditary information for an organism.  This information, 

as far as we know, can be completely characterized by the sequence of bases in each 

chromosome.  The sequences of bases in each chromosome together comprise what we 

call a genome.  It is this information we are interested in finding out, and in the next 

section we will see how we get this information by sequencing the genome. 

Section 1.2.2: An Overview of Genome Sequencing 

DNA is one very long molecule, and there is currently no way to read all of the 

bases of the sequence in a single chromosome all at once in a single process, although 

research is active in this area.  Instead, alternative methods of reading the bases in shorter 

strings and reconstructing the original sequence are used.   

Sanger Sequencing.  The data we used in our research was produced using 

Sanger chemistry methods.  In this method, DNA is sequenced by first taking many 



5 

copies of each molecule.  These copies are then cut randomly into pieces usually with 

mechanical shearing or shock waves.  After this random shearing, we do not know where 

the pieces come from on the chromosome (or to which chromosome they belong).  These 

pieces, called inserts, are then sorted by size, and certain size ranges are selected for use 

in the assembly.  As we will see, good estimates of insert sizes as well a good selection of 

varying sizes is important to an assembly procedure.   

The actual base letter sequences of the inserts are read by another laboratory 

process.  This process will read the bases in only one direction, and it may not be able to 

read every letter along the entire length of each insert.  In our data, only the sequence 

near each end of the insert is read.  There usually is a portion of the middle of the insert 

whose sequence is unknown.  The pieces from the ends of each insert for which we have 

sequence are called reads.  The lengths of these reads are usually 500-1000 bp (after 

trimming off low quality or contaminant sequence from the ends of the read).  Two reads 

from each end of the same insert make up a mate pair.  We know the approximate length 

of each insert (usually +/- 10%), and thus we can estimate how far apart each read in a 

mate pair is from the other in the genome. 

We should note here that in the case of diploid and polyploid organisms, DNA is 

taken from all chromosomes, so sequence from all homologues may be represented in the 

read data.  We will have no way of knowing which reads come from which 

chromosomes. 

Other sequencing technologies: short reads.  While most of the experiments in 

this thesis used Sanger reads, our ideas can be used with the newer short read data using 

Illumina and 454 (Shendure et al. 2005), (Margulies et al. 2005) technology.  These reads 
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also come in pairs, but the reads are significantly shorter than those produced in the 

Sanger process.  To test our methods, we need to refer to genome assemblies which are of 

very high quality, so called “finished genomes.”  These are currently available only for 

assemblies made with Sanger reads.  Indeed, most finished genomes are viral or bacterial.  

Other examples of species with very high quality assemblies include Drosophila 

melanogaster and Caenorhabditis elegans.  To evaluate our methods, we use read data to 

create a draft assembly, and then use our techniques to improve the assembly.  We then 

compare our results to the reference assembly to see if in fact our improvements are 

correct.  For this reason, we would like to use only high quality assemblies in our testing.  

As we shall see, due to the dearth of high quality assemblies using short read data, in 

order to evaluate our methods on short read assemblies, faux data must be used. 

Major Assembly Algorithms.  There are several different assembly algorithms 

in use today.  Each may use a different method for assembling genomes.  We will 

describe one of the most popular, the overlap-layout-consensus paradigm (OLC).  This is 

used by the Celera Assembler, which we use here in our research, and by other OLC 

assemblers including ARACHNE (Batzoglou et al. 2002), Atlas (Havlak et al. 2004), 

PCAP (Huang et al. 2003), JAZZ (Aparicio et al. 2002), TIGR assembler (Sutton et al. 

1995), and Phrap.  Other newer, non-OLC programs have been developed for short read 

assembly (Schatz, Arthur L. Delcher, and Steven L. Salzberg 2010) and (Ruiqiang Li et 

al. 2010). 

Finding overlaps between reads.  We say that two reads overlap if the sequence 

(consisting of As, Cs, Gs, and Ts) at the end of one read is the same as the sequence at 

the end of another (see Figure 2).  The first step in OLC assembly after trimming is 
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usually to find all overlaps between reads.   

Contigs.  The Celera Assembler uses these overlaps to produce longer pieces of 

sequence called contigs (contiguous sequence) by putting together overlapping reads for 

which there are few (or no) conflicting overlaps.  A conflict can occur as follows: read B 

can overlap read A on one end, and read C can overlap read A on the same end, but read 

C does not overlap read B.  When these conflicts occur, the assembler stops extending the 

sequence of overlapping reads, and the contig ends.  

 

Figure 2: A,B,C represent reads where A overlaps B and C.  However, read C does not overlap read B.  

Their sequence differs on the right side. 

 

 

In contrast, the ARACHNE assembler looks for what it calls “paired pairs.”  

Given a mate pair a, with reads a1 and a2, the assembly algorithm attempts to find another 

mate pair, b with reads b1 and b2, such that a1 overlaps b1 and a2 overlaps b2 in a manner 

that is consistent with the orientation of the reads in the mate pair and with implied 

distance between the reads given by the insert length.  This constraint that both reads 

from the mate pair must overlap both reads in its “paired pair,” means that very few of 

these initial overlaps are incorrect; the paired pair must be entirely contained in a large 

repeat in order for there to be a problem (base-calling errors excepted).  The assembler 

then repeats the same procedure looking for an insert whose reads c1 and c2 overlaps both 

ends of the previous paired pair.  If there is a conflicting overlap on either end (such as c1 

overlaps a1 and should overlap b1 but does not), this insert is not added to this collection 



8 

of paired pairs.  The collections of paired pairs are then merged together to form short 

contigs (Batzoglou et al. 2002).   

Layout.  With these contigs, the assembler now makes a layout of the assembled 

sequence.  Since the placement of the reads in each contig is known, the assembly 

program can look for mate pairs for which each read is in a different contig.  Since we 

know the estimated length of each insert, we can estimate how far apart these contigs are 

and their relative orientation.  This information gives us an arrangement of the contigs in 

relation to each other.  These longer sequences of contigs are called scaffolds; the contigs 

may be overlapping in the scaffold or there may be gaps between them.  The layout is the 

sequence of contigs in each scaffold along with the placements of all the reads in the 

contigs. 

 

Figure 3: Overview of genome assembly.  The top line of this schematic symbolically describes the 

complicated process of finding overlapping reads, leading to contigs.  Using mate pairs, one creates a 

layout, ordering and orienting contigs with gap sizes between contigs labeled d1 and d2.   

 

Creating a consensus sequence.  The last step in creating draft assemblies is to 

produce an actual sequence of letters with gaps that represent most of the genome.  

Because the quality of the read data is not perfect, we do not require that overlaps 

between reads be perfect.  We may tell the assembly program to allow a small percentage 

of the overlapping region to have discrepancies between the reads.  This results in single 
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base differences between reads in our contigs.  These differences can include substitution 

of one base for another in a specific single base position, an insertion of an additional 

base, or the deletion of a base.  The assembly program can examine these differences 

between all the reads that it has placed covering a given location x, and it can choose 

which letter occurs with more frequency at x in the reads.  In this way, it can build a final 

sequence called the consensus sequence. 

 

Figure 4: Resolving small differences in overlapping reads to create consensus sequence.  Each horizontal 

sequence below the blue line represents a read.  When aligning reads with each other, allowances must be 

made for the case where some reads have one or more extra letters.  Dashes indicate spaces to show that 

some other read(s) have additional letters in that location.  That can be due to errors in sequencing or actual 

differences in genomic sequences. 

 

Section 1.2.3 Detection and Correcting Assembly Errors and Omissions: Our Goal.   

Creating a draft assembly is not a rigorous process.  Ideally, when the assembler 

makes a choice in the sequence, the choice it makes is overwhelmingly probable.  One 

program may be more conservative, making fewer choices, resulting in a smaller 

assembly with more gaps.  Another program will be more aggressive yielding a draft 

assembly with bigger contigs and more sequence and possibly more errors.  It is easy to 

see which draft assembly has better statistics, but it is quite difficult to detect assembly 

errors without doing additional sequencing.  Our goal is (1) to detect certain types of 

errors (see Chapter 2) and (2) close gaps and correct detected errors (see Chapter 3). 

We repeat again: A draft assembly is imperfect and can in fact contain thousands 

A T T C G G T A - A C C

    T C G G T A - A C C

    T C G G T T - A C C

    T C G G T A A A C C

    T C G G T A - A C C

    T C G G T - - A C C

consensus sequence

individiual read sequencesinsertion

substitution

deletion

}
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of omissions and uncounted errors.  Our aim is to correct two classes of deficiencies: (1) 

misassemblies resulting from erroneous insertion or deletion of sequence in the assembly 

and (2) gaps between contigs in the assembly.   

We call the first class of deficiencies compression/expansion or CE 

misassemblies.  A compression occurs when there is a portion of the genomic sequence 

missing from the interior of a contig in the draft assembly.  An expansion is when the 

opposite occurs, and there is sequence erroneously inserted in a contig that is not found in 

that corresponding position in the genome.  These types of errors can result from:  

1. errors made by the assembly algorithm;  

2. a region of the DNA being uncloneable; 

3. poor quality read sequence;  repetitive sequence in the genome; or  

An example of a repeat region causing an error would be  if there is a part of the 

genome with sections A, R, B, and C which occur as follows: A R B R C, the assembler 

may compress the region, and produce the sequence, A R C, completely omitting the B 

section.  Alternately, there could be another part of the genome that is laid out as A R C, 

and our assembler could expand the region to be A R B R C.  The assembler could also 

get confused in this region, and leave a gap: A – C.   

The second class of shortcoming we wish to correct in draft assemblies is gaps 

between contigs in the same scaffold.  Closing gaps in genome assemblies is one of the 

steps towards upgrading the draft assembly to a finished one (Celniker et al. 2002).  Also, 

more of the genes will lie entirely contigs.  Traditional gap closing techniques involve 

creating new sequence data using targeted sequencing and primer walking.  These 

techniques are expensive and time-consuming. We find that in some cases there is 
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enough information in the original read data to properly close a gap.  The assembly 

program simply could not figure out the correct way to assemble a region.   

There are four major reasons for gaps in genome assemblies:  

1. the assembly program may incorporate a poor quality read, so the program 

may not be able to extend the assembly beyond that read; 

2.  polymorphisms can cause gaps in the regions where the two haplotypes 

differ because reads from different chromosomes may conflict and contigs 

on the two sides of the gap can represent different haplotypes of the same 

region (see Figure 5); 

3.  repetitive sequence can lead to ambiguities, where there are multiple ways 

to assemble a region causing the assembler to leave a gap; and 

4.  there may be no reads that cover a part of the genome.   

 

Figure 5: Here Haplotype 1 on top differs from Haplotype 2.  In particular, the orange region B is different 

from the blue B’.  In the assembly these two regions lie on either side of the gap, as the assembler could not 

place these regions on top of each other.  If B and B’ are less than the length of a read, then the assembler 

could resolve these differences by choosing a read which covers this location.  But if they are larger, the 

assembler may not be able to choose between the two, and can leave a gap instead. 

 

The goal of our method is to use existing data to close gaps that are due (1), (2), 

and (3).  Gaps that are due to (4) require additional read data.  While we may not be able 
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to provide a definitive assembly for some gaps that are due to repetitive sequence (3), our 

goal is to report all possible assemblies for that region.  For our research, we would like 

to identify all misassembled and omitted regions in our assembly, find all possible ways 

to assemble these parts, and identify situations in which there is a single acceptable way. 

Our method partially finishes the genome and will reduce the cost of traditional finishing.   

In the next section we will discuss how prevalent these types of errors and 

omissions are in draft assemblies as well as other methods of assembly or correcting 

errors that are currently in use. 

Section 1.2.4: The State of Genome Assemblies Today, and Current Methods to 

Improve Them 

To examine the prevalence of gaps in genome assemblies, we surveyed a 

collection of genomes which were deposited in GenBank.  There were 994 bacterial 

genomes.  As we would expect, due to their small size and the relatively low amount of 

repetitive sequence of these genomes, there were very few gaps in these assemblies.  

There were only 33 assemblies which had a total of 157 gaps.  As we progress to larger 

genomes, the picture changes slightly.  For example, there were 23 fungal genomes in 

GenBank.  Of these, 14 contained gaps in sequence.  There were 258 gaps in all of the 

assembled fungal genomes.   

As genomes grow in size and complexity, we can see that the number of gaps 

grows as well (see Table 1).  

Assemblies with gaps 
(Mean) Length of 

Genome 

Number 

of Gaps 

33 Bacteria 3.658Mb 157 
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14 Fungi 16.56Mb 258 

Beetle (T. castaneum) 187.5Mb 5,405 

Mosquito (A. gambiae) 230.5Mb 6,302 

Grape Vine (V.vinifera) 303.1Mb 7,715 

Platypus (O. anatinus) 437.1Mb 45,223 

Wild Boar (S. scrofa) 813.0Mb 54,957 

Zebra Finch (T. guttata) 1.021Gb 59,924 

Chicken (G. gallus) 1.032Gb 53,173 

Zebrafish (D. rerio) 1.277Gb 35,420 

Hydra (H. 

magnipapillata) 
1.279Gb 103,809 

Purple Sea Urchin (S. 

purpuratus) 
1.840Gb 175,267 

Dog (C. familiaris) 2.445Gb 23,037 

Chimpanzee (P. 

troglodytes) 
3.188Gb 224,294 

Opossum (M. domestica) 3.502Gb 53,825 

 

Table 1: Assemblies with gaps. 

 

It is important to note that the gaps reported are only supposed gaps.  There, in 

fact, may be no missing sequence in these assemblies; the assembly algorithm used may 

have erroneously put a gap there.  The adjoining contigs may actually overlap.  

Sequencing centers are simply reporting regions of their assemblies where there is an 

ambiguity.  

Examples of compressions and expansions in other assemblies.  We now 

describe other studies that have shown that there are compression and expansion errors as 
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well in genomes considered finished.  A study (Deshayes et al. 2007) on the bacterial 

genome Mycobacterium smegmatis identified regions with possible errors by comparing 

the sequence to other reference bacterial genomes.  Researchers then resequenced these 

regions and found that there were 28 sequencing errors (compressions and expansions) 

which resulted in finding that18 previously predicted genes do not actually exist in this 

species, and one new gene exists which was previously unknown for this organism.  

Another recent study (Mandel, Stabb, and Ruby 2008) of a microbial genome, Vibrio 

fischeri, found that there existed 174 individual compression, expansion, or substitution 

misassemblies, which were corrected by the study’s researchers.  This included 14 large 

errors ranging in size from 318 bp to 1264 bp.  All of these errors affected suspected gene 

locations in the genome.  An earlier letter (Steven L. Salzberg and Yorke 2005) cited 

compressions in the Drosophila assemblies where the deleted regions could be quite long, 

on the order of 5000-10,000 bp, and in some cases such misassemblies can total 1% of 

the whole genome. 

The previous examples highlight the real reason we would like to correct gaps and 

errors in genomes.  While the actual amount of sequence we are correcting may be small, 

it may come from scientifically important parts of the genome, such as regions containing 

genes or regulatory information.  We will now see how assemblers currently deal with 

gaps, and also how other post-processing methods attempt to fill these gaps and correct 

other misassemblies. 

Other methods for correcting misassemblies and gaps.  The assembly 

algorithms we mentioned in the previous sections have methods of filling gaps between 

contigs within a scaffold.  The ALLPATHS approach is similar to the methods we 



15 

present in our research, but there are a few key differences.  A fuller treatment of these 

differences can be found in the Appendix. 

The ARACHNE assembler looks for a path of overlapping contigs (from a list of 

not yet used or repeat contigs) that will fill the gap. It first constructs a graph where the 

nodes are contigs and an edge connects two nodes if the contigs overlap.  Then the 

shortest path between any two contigs in the graph is recorded (within reason – path 

lengths are restricted by a threshold).  If any two contigs flanking a gap in the scaffold 

have a shortest path, then this gap is filled in.  Otherwise, the assembler looks for contigs 

that can be placed in the gap using mate pairs, and then again looks to see if there is a 

recorded shortest path between any of these contigs. 

The Celera Assembler has two main methods to deal with gaps.  The first utilizes 

mate pair information to fill in a gap.  It looks for an unplaced or repetitive contig, which 

contains a read whose mate is placed in a contig flanking the gap.  Using information 

about insert lengths and the orientation of the placed read, the algorithm can order and 

orient this unplaced contig in the gap.  The contig will be placed there depending on the 

number of mate pair links which infer this location.  The algorithm can also repeat this 

step looking for contigs that could potentially lie between this newly placed contig and 

the flanking one. 

The other way in which the Celera Assembler attempts to close (or at least reduce 

in size) gaps in the draft assembly is to attempt to extend the flanking contigs into the 

gap.  It does this by relaxing some of their error thresholds for overlaps and for quality of 

sequence, and then looking for overlapping reads that could extend the contigs into the 

gap. 
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Another approach (which we use in our research) is to create a post-processor to 

close gaps left by an assembly program.  A current method (Zimin et al. 2008) for closing 

gaps and identifying and correcting misassemblies involves comparing the sequence to 

other assemblies of the same organism, which were assembled in different ways.  

Similarly, the increasing number of related genomes being assembled means that new 

draft assemblies can also be aligned to closely related species in order to fill in gaps or 

correct potential errors.  Still, the gold standard method is to resequence problematic 

portions of the genome in the wet lab using biochemical techniques, which is a costly and 

time consuming process. 

Ideally, the assembly of a genome evolves over time.  Re-assembly, resequencing 

and re-annotation of assemblies can continue; genomes are rarely completely finished.  

Our goal is to help these efforts by closing gaps and identifying and correcting 

compression/expansion misassemblies without resorting to resequencing to garner 

additional data.  As we shall see in Chapter 2, our method for detecting compressions and 

expansions in draft assemblies is very different from those employed by other algorithms 

and software.   

Additionally, in Chapter 3, we will show how our procedure for closing gaps is 

different from the algorithms used by the major assemblers.  So when there are gaps or 

misassemblies in the draft assemblies made by these algorithms, we could provide some 

improvement.  
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CHAPTER 2: THE CE STATISTIC 

In this chapter, we develop the CE statistic to use in detecting compressions and 

expansions.  In Chapter 3, we will combine this method with another method called the 

Shooting Algorithm in order to further refine our detection and attempt to correct such 

errors.   

Section 2.1: Theoretical Framework 

CE misassemblies.  As was previously discussed, compression and expansion 

misassemblies occur when portions of sequence are erroneously missing or inserted in a 

contiguous part of the draft assembly.  Our goal is to identify where such errors occur.  

To do this we examine the placement of mate pairs in the assembly. 

The CE statistic.  Recall from the introduction that when DNA is sequenced, we 

have many copies of the same DNA, which are then randomly cut into inserts.  Inserts are 

collected into size-selected libraries.  Let L be a library with mean insert length µ and 

standard deviation σ.  A position x in a contig will be spanned by an insert if the two 

reads at the ends of the insert lie in the contig and x lies strictly between the two reads.  

Let N be the number of inserts (from library L) spanning the position x.  We can compute 

the lengths of all the inserts spanning x from the positions of reads in the assembly.  Let 

M (= Mx) be the mean length of the inserts which span x.  We can compare the sample 

mean M to the population mean µ for the library.  We make this comparison using a 

statistic that we call the CE statistic (for Compression-Expansion statistic).  Formally, the 

CE statistic Z is the Z-score of the sample of inserts: 
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A weighted mean for a library for use in the CE statistic. Using the mean of 

the library as the µ in the CE statistic raises two issues which can yield biased results.  

The main issue is that within a single library, inserts longer than µ cover more bases than 

shorter inserts.  Therefore, these longer inserts will be overrepresented in the sample of 

inserts covering the location x, and the expected value of the lengths of this sample will 

be longer than the library mean.  The second issue is that close to the end of a contig, the 

inserts that span x and lie completely in the contig will be shorter than µ.  To compute the 

correct mean length of the inserts spanning a particular location x, we will first develop a 

formal set of assumptions. 

To avoid annoying problems at the ends of chromosomes, we will assume a 

circular genome in which the size of the genome is larger than any insert size. For 

mammalian genomes, the genome size is about 10,000 times the length of the largest 

inserts used in assemblies called Bacterial Artificial Chromosomes (BACs).  Let GS be 

the number of base pairs in the genome.  We denote individual bases by the integers 

1,2,3,…,GS, though we could equivalently denote them by the integers mod GS to reflect 

the circularity of the genome.  We write A for a subset of the genome (which represents 

the assembled portion of the genome) and connected components of A are called contigs. 

Assumption XU:  Let  be the set of all possible insert lengths, i.e.  = { l | l is a 

positive integer, lmin ≤  l  ≤ lmax}; here lmin and lmax are positive integers.  We define a 

probability measure (l) on  which is the probability that an insert has length l.  Let µ be 

the expected value of l  , and let σ be the standard deviation of l.  Let S be the set of 

all possible starting positions of inserts in the genome, S = {s | s {1,2,…,GS}.  Inserts 

are selected at random from the product space   =   S = {(l,s) | l ; s S }, where 
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the starting position s is selected at random from a uniform distribution on S and l is 

selected according to .  We define a measure Q on , where Q(l) is the probability that 

an insert of length l starts at position s; Q(l) is independent of s.  Let  be the number of 

inserts selected for the genome.   

Let the integer x > 0 denote the position in bases from the beginning of the contig.  

Let µx be the expected value of the length of an insert subject to the conditions that it lies 

completely in the contig and spans x.  In particular, µx is undefined when x is contained in 

no inserts that lie completely in the contig.   

To simplify notation, we assume reads are very short compared to the insert 

length, so short that we assume they have length 0. 

     

The following proposition relates µx and µ when a point x in a contig is far from 

the ends of the contig. 

 

Proposition X0: Assume XU.  Assume the interval J = [x-lmax, x+ lmax] lies in a 

contig.  Then  

        
  

 
  

 Proof: 

From the definition of J, it follows that every insert spanning x lies entirely in the 

contig of x.  The probability that a random insert of length l spans x is l / GS.  Then the 

probability that an insert spans x is 
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Then,  

      
 
 
     

    

  
 
     

            

 

   
      

         
   

 

From here we can see that, 

   
 

 
       

   

 

 
     

 
 

(where (l
2
)  is the expected value of l

2 
with respect to the probability distribution 

). 

 
      

 
  

  

 
     

  

 

In Assumption XU, we introduce a probability distribution of lengths .  There is 

another probability distribution              (see above) which we will refer to as the 

weighted probability distribution.  Then µw is the mean of this distribution. 

The above proposition analyzes the case where x is far from the ends of a contig.  

We now remove that assumption.   

Proposition X1: Assume XU.  Assume the interval J = [x, x+ lmax] lies in a 

contig.  If 1 < x < lmin, then µx= µ.  For 1 < x < lmax, µx is monotonically increasing in x (as 

long as x+ lmax is in the contig).   
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Since we have assumed reads have length 0, µx is defined when x > 1.  More 

generally for the result to be true, we should say µx is monotonically increasing in x 

where µx is defined. 

 Proof: 

If 1 < x < lmin, then every insert which starts in the interval [1,x] will span x.  The 

expected length of these inserts will be the expected length of the inserts in , and thus 

µx= µ.   

Let P(y) be the probability that an insert length is greater than y, for y  0, i.e. 

                  .  Let H(y) be the expected value of all insert lengths greater than y; 

H(y) =                         .  Then, given x > 1, the expected length of all inserts 

which start at the first base of the contig and span x is H(x).  In particular, we are 

interested in the expected length of all inserts which start between the beginning of the 

contig and x which are also long enough to span x.  Let m > 0 be the expected number of 

inserts starting at each point x.  The expected number of inserts starting at position x - y 

that span x is                     and the expected length of these is H(y).  Thus, 

   
             
   

         
   

  

 
            
   

        
   

        

And, 

      
                      

   

              
   

        

Note that  
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This is because the expected length of an insert given that the length is greater 

than x is at least as large as the expected lengths of the inserts with lengths greater than y 

ranging from 1 to x-1 (H is monotonically increasing).  Then,  

        

    
 
            
   

        
   

           

We use the following fact:  

For           
 

 
 
 

 
 implies 

     

     
 
 

 
       

Inequality 3 has the form 
 

 
 

 

 
.  While 2 has the form 

     

     
 for the same 

A,B,C,D.  Therefore, inequality 4 implies µx+1  µx.  Therefore, µx is monotonically 

increasing in x. 

 

Variance of the sample of inserts spanning x.  In the previous section, we stated 

our assumptions and derived the expression for µw, the expected length of an insert 

spanning a location x in a contig.  We now derive the expression for   
 , the variance of 

the weighted probability distribution g defined above.  Write Eg(Y) and E(Y) for the 

expected values of Y with respect to probability distributions g and  respectively. 

 

Proposition X2    
        

  

  
  

        
  

 
   

 Proof: 
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The skewness of  is: 

         
       

         
      

          

Therefore, 

    
                        

where  is the standard deviation of the distribution .  Then, substituting for 

    
   in  5, yields 

  
     

  

  
 
          

 
 

as claimed. 

 

 

We note the similarity in the form of        
  

  
  and   

       
  

  
  when 

probability distribution  has zero skewness, i.e.                 

Section 2.2: Implementation of the Method 
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Determining each library’s distribution of insert lengths.  The sequencing 

center that produces a library provides an estimated mean, µest, and standard deviation, 

σest, of all the insert lengths in the library.  These estimates are educated guesses.  To 

improve upon these estimates, we take all contigs whose lengths are much longer than µ.  

We examine all of the inserts for which both reads are placed in the same contig, 

avoiding those that are placed completely within µest + 3σest from the ends of the contig 

because inserts that are placed close to the contig’s edge are often shorter than average, 

and including them in a sample can bias our estimates.  We then compute the length of 

each selected insert based on read placements in the contig, (and discard lengths that are 

clear outliers).  From this collection of lengths, we compute the probability distribution of 

lengths and refer to it as the library distribution.  The mean, µ, and standard deviation, , 

of this distribution are often significantly different from the reported library statistics.   

 

Figure 6: Unweighted and weighted insert size distributions for a library from the rat genome data.  This 

library has µ= 1978, = 937, and µw= 2422, w = 1061. 
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The weighted mean in practice.  In practice, we are given a library consisting of 

n inserts with lengths lj for j = 1 to n.  This collection defines the probabilities (l) of 

each length l.  So, 

   
   

  
   

   
 
   

 

where    is the length of insert j in the library and n is the number of inserts in the library.  

This is the formula derived in Proposition X0 for a point x away from the end of a contig 

using       
 

 
   
 
   .  From proposition X1, we know that µx is monotonically 

increasing in x, so the minimum value for µx will be µ, and therefore the largest bias we 

will have using µw is on the order of 
2
/ µ near the end of a contig.  To avoid this bias, 

we do not compute the CE statistic in regions within µ of the end of a contig. 

We assume throughout that n is large, so we can compute the weighted standard 

deviation as: 

     
          

  
   

   
 
   

 

 

These values are then used to compute the CE statistic, 

  
    

σ 

  

  

 With this weighting of the mean and standard deviation, the distribution of the values Z 

of the CE statistic approaches             as average coverage increases.   

The value M - µw gives us an estimate for the size of the compression or 
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expansion.  For reasons which will be outlined below, this estimate is not always 

accurate, and therefore in practice, as we shall see, we use the standard deviation of this 

estimate (     ) in evaluating our CE statistic. 

The Composite Mean for Multiple Libraries.  Most assembly projects have 

more than one library.  Each point can be spanned by inserts from multiple libraries.  In 

theory, in computing the CE statistic, Z, with multiple libraries, we would compare a 

composite sample mean of the insert lengths spanning a location to the composite library 

mean.  The weighting which would minimize the standard deviation of the mean over the 

different libraries is (Wild 2000): 

   
      

  

       
   

   

 

where wi is the weight given to the ith insert spanning x, and wi is the weighted standard 

deviation of the library containg insert i.  Then the new composite sample mean is 

         
 
   .   We could similarly weight the combined library mean which would 

be          
       

  
   

  
   , where n* is the total number of inserts in all libraries.  In 

practice, there is little gain in resolution of CE misassemblies using this composite 

approach.  Instead, we identify CE misassemblies using individual libraries. 

Detecting compressions and expansions. If there is a compression in location x 

in the assembly, we would expect, on average, the inserts spanning x to be shorter than µ, 

and therefore location x would have a negative CE statistic.  Conversely, if there is an 

expansion, the sample mean M would be greater than µ resulting in a positive CE 

statistic.  In this way, the CE statistic can suggest there is a misassembly in a certain 

region and provide an estimate of how much the region may have been compressed or 
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expanded.  Figure 7 shows an example of a compression misassembly whereby a section 

of sequence, shown in blue, has been erroneously omitted from the assembly.  This 

compression causes inserts 1 and 2 to appear shorter in the assembly. 

 

Figure 7: An example of a compression misassembly.  The blue interval in the true genome is omitted in 

the assembly (bottom line).  Inserts 1 and 2 appear compressed in the assembly. 

 

In order to use the CE statistic to detect possible misassemblies, we need to 

choose a threshold T and define each point x to be a CE problem point when |Z| > T.  

These points are near suspected locations for compression or expansion misassemblies.  

The size of the CE misassemblies we can detect is dependent on the insert library 

statistics and, of course,  .  The length of a compression that can be detected in practice 

is approximately bounded above by the library mean µ, since a longer region that is 

omitted will have no inserts which span it.  The lengths of both compression and 

expansion misassemblies are bounded from below by        .  Z can be large due to a 

small fraction of the inserts spanning the point being very large while the majorities are 

of expected length.  Such outliers should be ignored. 

CE misassemblies can cause reduced spanning insert coverage and 

underestimation of the CE problem size.  In computing the sample mean, M, the CE 

statistic uses the average insert length of all inserts spanning a point x.  In order to 

compute the lengths of these inserts, both mates must be placed in the assembly.  
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However, when there is a compression, one of the mates may be missing, as it would 

normally have been placed in the omitted section of the assembly.  Therefore N, the 

number of inserts spanning x, decreases near the site of a compression.    

Another consequence of the compression is that the inserts that span it will be 

those inserts which are long enough to span the compression.  Shorter inserts will not be 

represented in the sample.  If the compression is large relative to library mean, then µw – 

M will be less than the true size of the compression, since M will be the average of the 

longer inserts at the site of the compression.   

As an illustration of these phenomena, we used a library from an actual set of data 

used to assemble the rat genome to show how misassemblies affect spanning insert 

coverage and the sample mean M at the site of a compression.  This library had a 

weighted mean of 2422 bp, and a weighted standard deviation of 1061.  We chose this 

library because it was far from being normally distributed, and it had a large standard 

deviation relative to the mean (see figure 8), so the effects we described above would be 

more pronounced.  It should be noted that libraries such as these can be common in 

sequencing projects.   Before continuing with this example, we introduce some notation.   

Suppose there is a compression at a location x in the assembly.  Let C be the size 

of the compression, and let M be the (compressed) sample mean of inserts which span the 

compression.  To estimate M, we will use the library distribution.  We first shift the insert 

lengths in this library by C, such that lcompressed = l – C, l  .  We need to account for the 

bias in the sample of inserts spanning the compression towards longer inserts, and the 

drop in spanning insert coverage.  To do this, for l-C > 0, we weight the probability of 

each insert by (l-C)/l, an estimate of the proportion of the inserts which are left after the 
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compression.  We then compute the weighted mean as before using this additional 

weight, M = 
        

  
   

       
 
   

.  This new weighted mean will be the estimate of M.  We would 

also like to estimate the drop in spanning insert coverage.  We again use lcompressed and the 

new weighted frequency to compute this value. 

For a compression of size C = 500, M is estimated to be 2187 bp, and the 

spanning insert coverage is 74.7% of the original coverage.  We would expect to compute 

M = 1922, which is 255 bp shorter than the estimate M; hence, the compression size is 

underestimated by 255 bp.  The bias towards longer inserts has skewed the sample mean 

to be larger.  For C = 1000, the effect is more evident: M is estimated to be 1936 bp 

(when, without bias, we would expect it to be 1422 bp, and hence the compressions size 

is underestimated by 514 bp), and coverage drops to 49.4% of the coverage in a non-

compressed region.  As this example shows, the CE statistic can be an underestimate, and 

we should take care in choosing a threshold T which takes this into account. 

As with any probabilistic approach, using the CE statistic to identify CE problem 

points will result in a number of false positives and false negatives.  We will discuss 

these issues further below.   

Evaluation of the CE Statistic.  A misassembly that results in a CE problem 

point will most often result in a cluster of such points.  In creating an algorithm that 

searches for problems, we chose to progress monotonically through the assembly.  We 

define a point x to be a robust problem point if it is followed immediately by two more 

problem points.   We use two measures: (1) the sensitivity and (2) the false discovery 

rate.  Let    be the number of true positives, the number of CE problems points which 

correctly identify CE misassemblies, both in type and location.  We say a CE problem 
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region is a true positive if (1) it overlaps the location of the true misassembly in the 

sequence and (2) if the estimated size of the misassembly is within three standard 

deviations (     ) of the true size.  Let    be the number of false negatives, the 

number of CE misassemblies that were missed by the CE statistic.  Then, sensitivity is 

defined as:  

            
  

     
  

Let    be the number of false positives which is the number of regions that were 

incorrectly identified as being CE misassemblies by the CE statistic.  Then, the false 

discovery rate (FDR) is defined as: 

    
  

     
  

 Ideally, one would like to choose a threshold T which maximizes the difference 

between these two, i.e. we would like sensitivity to be large and the false discovery rate 

to be low. 

 

Figure 8: Size of the region around location x, where the number of inserts spanning x exceeds the number 

of inserts which do not span x, is on average µ/2. 

 

Resolving neighboring CE problem points.  We calculate the CE statistic along 
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the assembly at all locations where the insert coverage changes, i.e. where an insert 

begins or ends.  In general, in our method of detecting a CE problem point, we are 

looking for locations x in the assembly whose CE statistic exceeds the threshold T.  In our 

implementation, we require the point to be at a peak in the CE statistic, so that the 

absolute value of the CE statistic decreases on either side of that point.  We can detect at 

most two CE problem points per mean insert length (see figure above).  In order to be 

resolved, the two CE problem points have to have two disjoint sets of inserts covering 

them.  Any inserts that span both points will make it difficult to resolve between the two.  

If there are several inserts spanning both problems, they will be detected as a single CE 

problem point. Below, you can see a plot of how the CE statistic varies along one section 

of an assembly where there is a compression at around 50000 bp.  

 

Figure 9: A graph of the CE statistic computed at each insert start position and end position for a simulated 

assembly with a compression near the 50,000 bp location. 
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Estimating the natural rate of CE problem regions.  The goal of this section is 

to estimate the natural rate of false CE problem regions by studying cases where there are 

no actual assembly errors.  Such problem regions can cause us to miss some true 

misassemblies.  For example, if there is a false positive CE problem point which is an 

expansion next to (within µ/2) a true compression, this compression may not get detected 

by the CE statistic.   

At each location x, there is a collection of inserts (from a specified library) that 

span x.  These inserts have a mean length Mx, and our goal is to approximate the 

distribution of these mean lengths using a sampling distribution.  While the insert 

coverage varies with x, we compute the sampling distribution for a fixed N, which 

corresponds to the mean insert coverage, given the library distribution (which we 

compute as mentioned above at the beginning of this section).  We note that for higher 

insert coverage, N > 30, according to the Central Limit Theorem this distribution is 

nearly normal.  The sampling distribution allows us to estimate the number of points 

where the CE statistic is above or below the threshold T.  From the sampling distribution, 

we can estimate the probability,       , of    deviating from µw by more than T 

standard deviations.   

A CE misassembly will cause a number of inserts to be compressed or expanded.  

Thus, a sufficiently large misassembly will result in the CE statistic being above the 

threshold in the neighborhood of the CE problem point.  The size of this neighborhood 

varies depending on the size of the misassembly, the threshold T, and the library mean µ.  

The size of this correlated neighborhood is bounded above by µ for compressions. 

Let us assume that we have a perfect genome assembly of length G bp. We can 
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estimate the natural rate of the CE problem regions by estimating the average size of the 

CE neighborhood as α , where α is a constant. Then the number of such neighborhoods, 

where the CE statistic is above the threshold can be estimated as:  

       
       

  
  

Note that some CE neighborhoods may be overlapping especially at low 

thresholds where CE problem neighborhoods are more numerous. We can correct for this 

by assuming that the CE problems are distributed along the assembly as if their locations 

were chosen from a uniform distribution. Then, according to the Poisson distribution, the 

fraction of the genome covered by CE neighborhoods (Lander and Waterman 1988) is 

               

Since the majority of the neighborhoods do not overlap for high thresholds, we can 

estimate the total number of CE problems as 

     
                

  
  

that is,   

     
             

  
              

Since it is difficult to estimate α theoretically and in general, we estimate α by 

fitting the resulting curve for F(T) to the simulation.  This argument is only intended to 

describe the behavior of the natural CE problem rate as function of T. 

Estimating F(T) is not an easy problem because we can only estimate the 

probability of the CE statistic going above the threshold at every point assuming that 

points are uncorrelated.  In fact, as stated above, the values of the CE statistic at 
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neighboring points are correlated and the autocorrelation varies between 1 and zero over 

a length between 0 and µ, so our estimate of the correlation length of µ/2 is only that.  

Therefore, to truly describe the behavior of the CE statistic, we had to simulate the 

problem, and our theoretical estimate was only intended to roughly approximate this 

behavior. 

Section 2.1 Experimental Evaluation of the CE Statistic 

Experiments with perfect simulated assemblies.  We created a simulated 

assembly of five contigs with length 10 Mbp.  These contigs were designed to be perfect 

with no errors.  We sampled the insert lengths for the assembly from a normal 

distribution with   = 1997 and σ = 200.  Insert coverage for this assembly was on average 

50.  Each read in the assembly was 100 bp.  We would expect the results to be 

independent of read size as long as the size of the misassembly is longer than the read 

size.  Shorter misassemblies would be rare.  We then computed the CE statistic for this 

assembly.  Below, we can see the average number of CE problem points detected per 

contig, as well as the estimated number we should expect using the formula     .  Here, 

we fit the estimated curve to the data using α = 0.5.  Since our assembly is perfect, all of 

these problem points can be considered false positives.   
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Figure 10: Number of false positives generated by the CE statistic for an assembly made from an ideal 

normal library.  This graph uses alpha = 0.5, and the two curves cross at T = 2.1.  Choosing alpha is a 

tradeoff between a good fit at small T and large T. 

  

In practice insert libraries are not perfectly normal.  While T = 3 corresponds to 

events that occur with probability 0.003 for a normal distribution, this probability varies 

considerably for other insert library distributions.  Thus, we created a simulated assembly 

using insert sizes from an actual insert library from an assembly of the rat genome (see 

figure above).  This library has a weighted mean insert length of 2771 with a weighted 

standard deviation of 183.  This simulated assembly consisted of five 10 Mbp contigs 

with average insert coverage of 50.  We then computed the CE statistic for this simulated 

assembly.  Note that this assembly is perfect with no real compression or expansion 

misassemblies, so any CE problem points found will be false positives.  In the following 

figure we can see the average number of CE problem points found per contig for each 



36 

threshold  ,             . 

 

Figure 11: Histogram of the insert sizes for the 2771 library 

 

It should be noted that in estimating the number of false CE problem points using 

the formula 8 above, we used a sampling distribution with sample size        In 

reality, insert coverage fluctuates along the assembly.  For this particular simulation, 

insert coverage varied from 40 to 60 with an average coverage of 50.  Varying   from 40 

to 60 does not change        significantly, and did not affect our estimates greatly.  

With the sample size varying from 40 to 60, the number of estimated false positives at T 

= 3.3 varies from 40 to 45.   The effect of varying coverage is more pronounced for 

poorer (further from normal) quality libraries. 
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Figure 12: Plot of average number of CE problem points found in a perfect simulated assembly for the 

library with weighted mean 2771.  The theoretical model (blue crosses) captures most of the variation in 

the number of false positives as a function of the threshold T.  The model slightly overestimates the actual 

number of false positives (orange x’s) when T < 2.3 and underestimates it for T > 2.3. 

 

Detection of real CE misassemblies.  The previous experiments only give us 

information about the probability of seeing a false positive region.  To find the sensitivity 

and false discovery rate of the CE statistic using the same library as above, we produced 

an assembly that was identical to the one described above with the exception that a CE 

misassembly of length 100-150 bp was inserted every 500,000 bp.  We inserted an equal 

number of compression and expansion misassemblies.  We would expect to be able to 

detect many of the 100 bp misassemblies for T = 3.8 and below.  We then computed the 

CE statistics for this assembly.  Below is a plot of the sensitivity and false discovery rate 

of the CE statistic for different thresholds T.  A good range of thresholds to choose from 

would be between 3.1 and 3.7.   
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Figure 13: Plot of sensitivity (red crosses) and FDR (green x’s) for different thresholds for the CE statistic 

using the library with weighted mean 2771.  The blue stars represent the difference between the sensitivity 

and FDR which we would like to maximize.  This can aid us in choosing a reasonable range of thresholds 

for the CE statistic.  In this case, a good threshold would be 3.2 < T <  4.   

 

For some libraries, the insert coverage may not be high enough for the distribution 

of the sample mean to approach normal, especially if the libraries are poorly constructed.  

As an example, we chose another library from the rat assembly which was not as close to 

being normally distributed as the previous library.  This library had a weighted mean of 

2422 and a weighted standard deviation of 937.  As we can see the standard deviation is 

almost forty percent of the mean.  In practice, we often have libraries that lie between 

these two extremes. 
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Figure 14: Histogram of insert sizes of the library with weighted mean 2422. 

 

We again created an assembly as before including the alternating compressions 

and expansions.  This time, however, since the standard deviation was so large, we 

increased the CE misassembly size to 500.  The figure below shows a plot of the resulting 

sensitivity of the CE statistic using this library.   
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Figure 15: The sensitivity and FDR of the CE statistic for thresholds 2 < T < 5 for a simulated assembly.  

This assembly consisted of 5 10 Mbp contigs each with alternating 500 bp compressions and expansions 

every 500,000 bp.  The assembly was made with a library with weighted mean 2422. 

 

As we can see the sensitivity rate is lower than with the better distributed library.  

If we increase the size of the misassemblies to 1500, the sensitivity and FDR improve: 
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Figure 16: The sensitivity and FDR of the CE statistic for thresholds 2 < T < 5 for a simulated assembly.  

This assembly consisted of 5 10 Mbp contigs each with alternating 1500 bp compressions and expansions 

every 500,000 bp.  The assembly was made with a library with weighted mean 2422. 

 

 Since we have seen that false positives can occur, we often need to use additional 

information to judge whether or not a CE problem point is a true misassembly.  As we 

shall see, the Shooting Method can aid us in evaluating CE problem points. 
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CHAPTER 3: THE SHOOTING METHOD and RESULTS 

Part 3.1: The Shooting Method 

Section 3.1.1: The Shooting Algorithm 

We will first discuss the general algorithm of our method for filling gaps between 

contigs and then describe how we adapt this method to fixing compression/expansion 

misassemblies. 

Initial Setup and Goal.  The existing information available for filling gaps is as 

follows.  The positions of reads in contigs as well as an estimated mean and standard 

deviation of the size of the gap between two contigs are known.  There is also a given 

pool of reads and a list of overlaps between these reads.  We will discuss later how our 

dataset is chosen.  For now, we will simply describe the algorithm.  Given this dataset, 

our goal is to find all possible ways to fill a gap.  

The first step in our method is to choose two reads, one from each contig on either 

side of the gap. Contigs are usually constructed by merging together overlapping reads 

until there are ambiguities as to what sequence comes next. These ambiguities can arise 

for three reasons.  (1) There may be multiple ways to continue the contig due to a repeat 

or polymorphism in the genome; (2) there are no ways to continue the contig due to poor 

quality sequence at the end of the last read resulting in few to no overlaps; or (3) there are 

no ways to continue due to no read coverage of this region of the genome.  For these 

reasons, we choose reads whose positions are a given threshold distance (usually one read 

length) from the end of a contig to ensure that we are not including reads that could 

contain erroneous or repetitive sequence.  

 In some cases, neighboring contigs may overlap producing a negative gap.  In 
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these cases, we choose the reads to be at least one read length away from the overlapping 

regions in each contig.  The goal is to find all possible ways to connect the contigs by 

replacing these overlapping regions. 

We arbitrarily label one of these reads read 1 and the other read 2.  Since an 

estimate of the gap size is known, we can infer a mean, , and standard deviation, , of 

the length of the region between read 1 and read 2.  Now, more specifically, our goal is to 

construct all possible assemblies of the region bounded by read 1 and read 2. 

We can speak of a consistent set of “placed reads” (that is reads with positions) if 

every pair of reads in the set whose positions suggest they overlap do in fact overlap. A 

path is a collection of reads for which a consensus sequence exists; the consensus 

sequence should be connected (i.e. without gaps) and the collection of reads should 

include both read 1 and read 2.  The Shooting Algorithm produces sets of read 

placements for each gap.   

   

 

Figure 17: A schematic demonstrating the Shooting Algorithm.  The two contigs, contig 1 and contig 2, 

flank a gap.  The orange lines are the target reads chosen from each contig far enough away from the ends 

to avoid poor quality sequence (grey section of contig).  We “shoot” from read 1 to read 2.  The blue lines 

are reads which overlap read 1.  They are the beginning of the wave front which will extend from read 1 to 

read 2. 

 

The Shooting Algorithm. We start with read 1 and attempt to shoot for read 2 on 
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the other side of the gap building a wave front of reads.   This terminology and approach 

is motivated by the standard shooting method for solving two-point boundary value 

problems for ordinary differential equations.  Given read 1, we look for all overlaps in 

our list which are on the “right” side of read 1, the side closest to read 2 (See figure 18).  

We will refer to a read with a position as a placed read.  We will refer to a read with a 

possible position as a read placement.  We note these overlapping reads and their 

positions relative to read 1 as pairs (readi, positioni), for the i
th

 read in the list, and these 

pairs are added to the wave as the new wave front.  Next, we look for all overlaps of 

these overlapping reads on their right sides and extend our wave again by adding the 

additional overlapping reads (and their positions) to the wave front.  In this way we 

define the wave front to be the set of pairs whose right overlaps have not yet been 

checked.   

 

Figure 18: The orange reads represent the reads that make up the wave front as we iteratively build wave 1 

from read 1 to read 2. 

 

We set a maximum threshold, M, usually M =  + 3, such that if positioni > M, 

we do not add (readi, positioni) to the wave front, and when there are no possible pairs 

that can be added to the wave front, this wave, wave 1 (from read 1 to read 2), terminates.  

If read 2 never appears in the forward wave, we stop and fail to close this gap.  
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Figure 19: Wave 1 of the Shooting Algorithm.   

 

If the wave 1 reaches read 2, we can trace back from read 2 to read 1 in a second 

wave, wave 2, using the exact same procedure as used in the forward direction, with one 

exception.  This time, we use the pool consisting only of reads that are in the forward 

wave.  The result is a smaller pool, pool 2, consisting of reads that can be reached from 

both read 1 and read 2.  Tracing back eliminates any erroneous branches seen in the 

forward direction. Wave 2 includes all possible (read, position) pairs between read 1 and 

read 2 in this local region (see figure 21).  Reads may occur in more than one position, 

indicating that there are multiple ways to assemble this region that result in different 

distances between read 1 and read 2.  Sometimes, there are multiple ways to assemble a 

gap, only one of which is consistent with the estimated gap length and standard deviation.  

We will discuss this situation further in the next section. 

 

Figure 20: The blue and orange segments denote reads in wave 1.  The orange reads are the reads that are in 

both wave 1 and wave 2.  Any path of reads between read 1 and read 2 must be built from the orange reads. 
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       Localizing the Dataset.  What we call the global Shooting Method uses the 

entire pool of reads available for the whole genome and all of the overlaps.  However, 

there were two problems with this method.   The first problem was that there were 

spurious overlaps in the set due to repetitive sequence.  There were reads which 

overlapped each other, but which were from two different parts of the genome.  This led 

to erroneous paths that would contain reads from portions of the genome that were not 

from our local region.  For example, in testing our global Shooting Method on an 

assembly of Brucella suis, an organism for which the finished sequence is known, we 

encountered one case where the true sequence was 1346 bp long, but our algorithm also 

found a second assembly with length 1573 bp long.  This spurious assembly was due to a 

section of sequence that had been inserted which didn’t belong in this location.  Aligning 

this section to the whole finished genome showed that this section was actually placed 

elsewhere.   

The second problem was that sometimes our global set was missing overlaps 

between reads that belonged in our local region.  This problem can occur because 

overlapping algorithms attempt to reduce the number of spurious overlaps in order to 

decrease computational time in assembly and reduce misassemblies.  To this end, they 

may eliminate overlaps that occur in extremely repetitive portions of the genome.  

Therefore, these regions are often omitted in the draft assembly.  Since these are precisely 

the regions we are trying to assemble with the Shooting Algorithm, we need to recover 

these overlaps. 

There is additional information available to us that would allow us to recover the 
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missing overlaps.  The types of additional information include mate pairs, BAC clone 

localization information, and targeted sequence.  In our method, we mostly employ mate 

pair information to localize the set of reads.  In sequencing projects using BACs 

(bacterial artificial chromosomes), large fragments of DNA on the order of 100 – 400 

kbp are cloned by inserting them into a BAC and replicating them inside a bacterium.  

These fragments are then broken into smaller reads and sequenced as usual.  However, it 

is known which reads come from which BACs, so one can localize to within a region 100 

- 400 kb long.  Finally, certain regions of the genome can be targeted for additional 

sequencing, so again it is known which reads come from these target areas. 

We now create a smaller pool of reads from which to assemble the gap region.   

Our goal is to, as much as possible, include only the reads in the pool that are likely to 

belong to the region of the gap.  Our pool consists of the following groups: (1) reads in 

the contigs which flank the gap; (2) mates of reads in group 1, which, according to the 

orientation and placement of the reads, would be expected to lie in the local region to be 

assembled; (3) reads which overlap the reads in groups 1 and 2 (given by the global set of 

overlaps); and (4) reads which overlap the reads in groups 1, 2, and 3.  The smaller size 

of the pool allows us to compute more overlaps between these reads (which was 

computationally infeasible before) and to eliminate any spurious overlaps that would lead 

to false paths.  This approach also speeds up the computation of our paths since our set of 

overlaps is much smaller than the global set. 

Producing Consensus Sequence.  Once we have produced a set of read 

placements for a possible assembly of the gap region, we must produce actual sequence.  

This final step can be done using many different tools.  In our experiments (see Part III), 
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we used two algorithms to do this: (1) the make-consensus module from the AMOS 

assembler, and (2) the consensus module from the Celera Assembler.  Both of these 

modules can take in the read placements produced by our Shooting Algorithm and 

produce a consensus sequence provided that our read placements are consistent.  As we 

shall see in Part III, occasionally, our method produces inconsistent placements 

especially when haplotypes are present.  Then, no consensus sequence is produced. 

The Shooting Algorithm in conjunction with the CE statistic.  As we 

described in Chapter 2, the CE statistic detects locations where it is plausible that there 

are compressions and expansions in a genome assembly.  We have shown that the CE 

statistic can generate many false positives in identifying misassemblies.  We can use the 

Shooting Algorithm to rule out these false positives, leaving a relative handful that can be 

investigated further, for example by doing additional targeted sequencing.  In some cases, 

we can even correct these misassemblies.   

To apply the Shooting Algorithm to a CE problem, we split the contig at the 

location of the CE problem point.  The CE statistic provides an estimate of the size of the 

misassembly – it is M – µw (the difference between the sample mean of insert lengths 

covering the location and the weighted library mean of insert lengths) as well as a 

standard deviation of this estimate.  We use this value to estimate the size of the gap 

between the split contigs.  We choose a read 1 and read 2 on either side of the suspected 

location of the CE problem region, again choosing these reads to be at least one read 

length away from the region.  We then find all possible paths between these two reads as 

described above. 

The Shooting Method can aid us in improving the sensitivity and false discovery 
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rate of the CE statistic.  For example, if the Shooting Algorithm produces a unique path 

between read 1 and read 2 around a CE problem point, and the consensus sequence of 

this path matches that of the original assembly, then in it is likely that this CE problem 

point is in fact not a real misassembly.  We would consider all problem points for which 

there is no unique path matching the assembly to be a possible CE misassembly which 

should be further investigated.   

We can also partially apply the Shooting Method to the set of mate pairs in the 

original data.  We use the set of overlaps from the all of the reads in the original data set 

to walk from a read to its mate and back using the Shooting Method.  We then record 

which inserts are found to have a single path between the two mates.  We call such inserts 

rigid.  Now we examine all CE problem points and see if there is at least one rigid insert 

which covers this location.  We found that CE problem points that have no rigid inserts 

covering them are likely candidates for true CE misassemblies.  If a CE problem point 

has at least one rigid insert covering it and the distance between the two reads is 

consistent with their placements in the assembly, then it is unlikely that this location is 

misassembled.  For example, in our experiments, we computed the CE statistic for an 

assembly of Listeria monocytogenes str. 4b F2365.  There were 6 CE problem points 

found, 5 expansions and 1 compression.  We then used the Shooting Method to 

reassemble these 6 regions.  We found only one way to assemble each region.  The 

consensus sequences from these unique paths were identical to the regions in the 

assembly and when compared to the finished sequence.  So in fact, these were all false 

positives. 

If the Shooting Algorithm produces more than one path with differing lengths, it 
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is likely that the CE problem point in question is in fact a real CE misassembly.  In the 

next section, we will see how we can evaluate which path is the most likely (both in the 

case of gaps and CE problem points). 

Section 3.1.2: Multiple Paths 

The Shooting Algorithm sometimes produces more than one way to assemble a 

region.  We describe below how we can sometimes rule out paths as being too long or too 

short.  Multiple paths can result from a variety of reasons.  Chief among them are 

polymorphisms and repeat regions in the genome.  As we have discussed above, many 

organisms have chromosomes which come in pairs.  Because of the way DNA is 

sequenced, sequence from both chromosomes is present in the read data.  Therefore, it is 

occasionally possible to construct two different paths from these two different 

haplotypes.  Both paths may be correct.  In the case of repeat regions, the algorithm may 

produce paths that have different numbers of copies of repeats in them.  Some paths 

could also contain parts of the genome not from this region.  We would like to evaluate 

these different paths in order to find the one whose length is much more likely to occur 

than the others, if there is one. 

The distribution of insert sizes spanning a gap can allow us to determine upper 

and lower bounds for the size of the gap and the likelihood of each path length.  We 

compute these bounds by calculating the distribution of possible sizes for the gap.  Each 

insert spanning the gap has its ends at known locations in the contigs.  The length of the 

insert is unknown but comes from a known library distribution.  Knowing how far the 

ends of the insert are from the gap implies a distribution of possible gap sizes.  This 

shifted distribution has the same shape as the library distribution. 
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Let Q denote the set of inserts spanning a given gap, and let m denote the number 

of inserts in Q.  Let γ be the mean size of the gap as estimated by the assembly program 

(or by the CE statistic in the case where the gap was introduced due to a CE problem 

point).  We assume no information about the distribution of gap sizes is given.  We 

consider each insert length to be an independent random variable from its library 

distribution.  For each i, we shift its library distribution, Pi, by γ – µi, so that it is a 

distribution of the implied gap sizes.  We compute the probability distribution, P, of sizes 

of the gap as the distribution of a weighted average of these random variables 

representing the shifted insert lengths of inserts in Q (where the sum of the weights is of 

course 1).  Choosing the following weighting ensures that we are minimizing the variance 

of P (Wild 2000):  the weight wi for the shifted length of the ith insert is 

   
     

  

      
   

   

 

We will denote the distributions of the weighted random variables (the shifted 

insert lengths) as Pi, where the probability that an insert has length y is Pi(y) = Pi(y/wi).  

Then             where   is the convolution operator: 

  
      

         
        

      

 

  

We compute P by using the convolution algorithm in MATLAB.   

Recall that the probability distributions Pi are computed from data and are far 

from smooth.  We smooth P to eliminate high frequency oscillations, and we abuse 

terminology by calling the smoothed distribution P as well.  We use this distribution P to 

evaluate the different paths given by our Shooting algorithm.  We compute a confidence 

interval of P at a set level C, often 95%.    
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Our criteria depend on a likelihood ratio threshold R and are as follows:  (1) The 

path length must be within the confidence interval C of our distribution.  (2) If there are 

multiple paths, we consider the path length l
*
 which has the highest likelihood      .  Let 

li be the next most likely path length.  If  
     

     
  , we accept the path of length l

*
 as the 

correct assembly.  Otherwise, we simply report all possible assemblies satisfying 

criterion (1) and their likelihoods P(l).   

The only exception to these criteria is if we are considering a CE problem point 

(not a gap) for which the Shooting Method produces a unique path.  If this assembly of 

this path is the same as the draft assembly in this location, we presume the problem point 

is a false positive and leave the assembly unchanged.  

Part 3.2: Results and Discussion 

Section 3.2.1: Bacterial Assemblies 

In this section, we describe the experimental procedure we use to assess the 

Shooting Algorithm’s ability to fix compression/expansion errors and fill gaps.  We also 

discuss the results of these experiments.  We test our method on a set of finished bacterial 

genomes. 

Bacterial genomes are easier to assemble than those of organisms whose genomes 

are larger and for which, typically, repeats are a much larger fraction of the genome. 

Also, bacteria are also haploid organisms, and therefore polymorphisms are not present in 

their genomes.  Recall that while such larger organisms would potentially be better test 

organisms, there are no large organisms whose genomes are finished and for which there 

is WGS read data available.  While Drosophila melanogaster is essentially finished and 

was originally assembled using WGS data (Myers et al. 2000), significant parts of the 
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WGS data are not available.  We chose to create draft assemblies of bacterial genomes 

that have been previously finished and for which WGS data is readily available.  In our 

routines, we use the same reads (without prior error correction and trimming) as were 

used in creating the original draft genome, but not the reads used in finishing.   

Description of bacterial genomes. We study 22 bacteria which were sequenced 

using Sanger techniques with sequence data (reads, mate, and insert library data) 

deposited in GenBank.  These genome assemblies are considered finished according to 

the standards set by the International Human Genome Project.  An assembly is 

considered finished if there are few to no gaps in the assembly and no more than 1 error 

per 10,000 bp (National Human Genome Research Institute 2009) .   

Table 1 lists the bacteria that were used for this experiment and the sizes of their 

genomes. 

Organism Genome size 

Listeria monocytogenes 4b F2365 2.90 Mb 

Wolbachia pipientis wMel 1.26 Mb 

Bacillus anthracis Ames Ancestor 5.23  Mb 

Bacillus anthracis Ames 5.23 Mb 

Burkholderia mallei ATCC:23344 5.84 Mb 

Brucella suis 1330 3.32 Mb 

Streptococcus agalactiae 2603V/R 2.16 Mb 

Coxiella burnetii RSA 493 2.00 Mb 

Campylobacter jejuni RM1221 1.78 Mb 

Chlamydophila caviae GPIC 1.17 Mb 

Dehalococcoides ethenogenes 195 1.47 Mb 

Neorickettsia sennetsu Miyayama 859 kb 

Fibrobacter succinogenes S85 3.84 Mb 

Mycoplasma capricolum ATCC27343 1.01 Mb 

Prevotella intermedia 17 2.70 Mb 

Pseudomonas syringae pv. tomato DC3000 6.40 Mb 

Staphylococcus aureus subsp. aureus COL 2.81 Mb 

Candidatus Koribacter versatilis Ellin345 5.65 Mb 

Staphylococcus aureus subsp. aureus JH1 2.91 Mb 

Geobacter uraniumreducens Rf4 5.14 Mb 

Pelodictyon luteolum DSM273 2.36 Mb 
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Streptococcus thermophilus LMD-9 . 1.86 Mb 
 

Table 1: Listing of bacterial genomes and their sizes which were used to evaluate both the CE statistic and 

the Shooting Method 

   

New draft assemblies.  We constructed draft assemblies of these bacteria using 

the Celera Assembler version 3 starting from overlaps computed by the UMD Overlapper 

(Roberts et al. 2004).  We then computed CE statistic for each of these assemblies with a 

threshold T = 3.3, and applied the Shooting Algorithm to close gaps and validate and 

correct CE problem points.  The same set of overlaps used in making the draft assemblies 

was used to create the pools of reads for the Shooting Algorithm.  Recall that when we 

calculate the overlaps for the local pools of reads, we include all overlaps between reads.  

The global set of overlaps used by the Celera Assembler did not include overlaps from 

highly repetitive regions.   

Estimates of gap sizes.  As we saw in Part 3.1, our method depends on knowing 

an estimate of the size of the gap or CE misassembly.  As we stated above, the CE 

statistic gives us an estimate of the size of the suspected expansion or compression.  In 

the case of intrascaffold gaps, we use the estimate provided by the assembly program.  In 

the Celera Assembler, the scaffolding module caps the negative gap size between two 

neighboring contigs at -20.  For these gaps, we chose to use a mean gap size of 0 with a 

standard deviation equal to the standard deviation of the largest library.  As we discuss in 

Section 3.2.2, the estimate of the gap size is a crucial piece of information contributing to 

the success of the Shooting Algorithm.   

Results.  The Celera Assembler, possibly the best assembly program currently in 

use, has been developed continuously for over 10 years.  A major goal of assembly is to 

produce an assembly without gaps.  It is not easy to improve on the quality of the 
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assembly produced by CA.  Our achievement is that our techniques correctly close 23% 

of the CA gaps, where the read coverage was available, while making an error in 1% of 

the gaps. 

The average N50 contig size over all the assemblies was 86,729 bp.  The average 

gap size (for positive gaps) was 1352 bp.  For negative gaps (where the contigs overlap), 

the average size of the overlap was 468 bp.  For the CE problem points, the average 

suspected compression size was 1040 bp, and the average suspected expansion size was 

866 bp.  The average size of the local pools of reads used to build the paths for each gap 

and CE problem point was 519 reads.   

To evaluate the sequences produced by the Shooting Algorithm, we align them to 

the finished sequence using the Nucmer module of the Mummer sequence alignment 

software (Kurtz et al. 2004).  Those gaps and CE problem points where the new sequence 

matched the finished sequence were considered correctly closed.  We considered a 

sequence to match if it aligned with 99% identity over 99% of the length of the sequence.  

We also aligned the entire set of reads to the finished sequence, and we only attempted to 

close 488 gaps of the 1810 total that had contiguous coverage by the original WGS reads.  

We were able to find at least one path for 117 of these gaps, and the path was unique for 

86 of them. 

The results are shown in the following tables.  We set the likelihood ratio 

threshold R = 2 when there were multiple paths, that is we chose the path that was at least 

twice as likely as any other path.  We found that using this value seemed to maximize the 

number of correct paths (when aligned to finished sequence) minus the number of 

incorrect paths. 
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Table 2: There were 1810 gaps in all of the bacterial draft assemblies.  Of these, 488 had contiguous read 

coverage.  Correct paths are those that match the finished sequence.  For multiple paths, Correct Path 

Present means that the correct path was present in the set of paths generated by the Shooting Method.  

Correct Path Absent means none of the paths matched finished sequence.  If the correct path was present, 

but using our criteria, we chose the wrong one, then this path is considered incorrect.   

 

 We see from Table 2 that if there is a unique path, it is the correct path in 95% of 

cases.  However, when there are multiple paths, the method usually fails to identify the 

correct path, presumably because the initial estimate of the size of the gap is incorrect.  In 

particular, the correct path may not lie within 3 standard deviations of the mean that the 

Celera Assembler provides (using the standard deviation that Celera provides).  Most 

often, the Celera Assembler provides a mean that is too small.  It would be possible to 

develop independent estimates of the gap sizes following the ideas (in Chapter 2) used in 

estimating the size of CE problems.  Recall that the mean size of the gap or compression 

has to be corrected due to the tendency to have inserts that are mostly longer than average 

spanning the gap – due to the failure of shorter inserts to span the gap.   

 There were 153 CE problem points in all of the draft assemblies.  140 of them 

were identified as false positives because the Shooting Algorithm produced a single path 

which matched both the assembly and the finished sequence.  In 7 of these cases, this was 

incorrect, and there was in fact a misassembly.  The remaining 13 cases were identified 

as suspected CE misassemblies by our technique.  These 13 cases can be investigated 

 Correct Incorrect 

Unique path 86  5 

Multiple Paths   

 Correct Path Present 8 10 

 Correct Path Absent N/A 8 
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further with targeted sequencing to determine the actual sequence.  It is, nonetheless, 

interesting to see how often the Shooting Algorithm can correct the problems without 

further sequencing.  In 5 of these cases, one of the paths that were produced was correct, 

and in 3 of these, we were able to choose the correct path according to our criteria. 

 

Total CE problem points 153 

Unique paths matching assembly and finished sequence – false 

positives 
133 

Unique path matching assembly, but not finished sequence (the 

assembly is wrong, but we did not identify these as errors) 
7 

Remaining points needing investigation 13 

No path 6 

Multiple paths  

 Correct path present and not chosen 2 

 Correct path present and chosen 3 

 No correct path 2 
 

Table 3: Results of the Shooting Algorithm applied to CE problems in the bacterial assemblies.  If there 

was a unique path matching the finished sequence and the assembly, we conclude that the CE problem 

point was not a CE misassembly.  In all other cases, the draft assembly contained a misassembly.  Rows 5 

and 6 categorize the 13 CE problems that are suspected to be misassemblies by our method.   

 

 There were 8 CE misassemblies in the entire collection of bacterial assemblies.  

Of these, the CE statistic identified 6 as CE problem points.  After using the Shooting 

Algorithm to rule out potential false positives, there were 5 remaining cases that were 

correctly identified as CE misassemblies.  We were able to choose the correct path in 3 of 

these cases. 

Section 3.2.2: Limitations of the Method 

As with any computational method, our algorithm is only as good as the data we 

give it.  Sequence data is notoriously inconsistent, so every dataset we encounter has 

different challenges.  We attempted to make a robust method that could be modified to 
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work effectively on most genome assemblies, but of course there are limitations.  The 

biggest limitation we have is that we are dependent on the estimated size (mean and 

standard deviation) of the gaps we are trying to close (or the size of the 

compression/expansion) in the draft assembly.  A related problem occurs when we do not 

have an appropriate library that could fill the gap.  And finally, sometimes we cannot tell 

how many copies of a short repeat sequence should be placed in a gap.   

Poor estimate of the gap size.  Since we allow the assembler to estimate the gap 

size, we often do not properly assemble the region if the gap size estimate is incorrect.  In 

the case of the Celera Assembler, it is difficult to evaluate the validity of its estimates of 

the mean and standard deviation of the gaps because in its evaluation, it chooses some 

mate pairs as correct and others as incorrect and bases its estimate on the pairs it has 

declared correct.  We do not know how it makes this determination of “correctness.” 

Example – underestimated gap size.  This example illustrates two independent 

phenomena.  First, if the gap size estimate is too short, then the Shooting Algorithm could 

stop before reaching read 2, or if it finds multiple paths (of different lengths), it can 

choose the wrong path, or all paths generated can be too short.  This example is of note 

because it contained 26 copies of a tandem repeat, that is, situations where copies of the 

repeat unit are adjacent to each other with no other sequence in between.  As we shall see 

later on, in situations with such a high copy number (where the collection of repeats is 

longer than any read), it is impossible to determine the number of copies without 

additional sequencing together with careful analysis.   

The CE statistic detected a compression in the assembly of the bacteria 

Pelodictyon luteolum DSM 273 in this location with an estimated gap size of 3552 bp 
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long.  However, in the finished sequence, this gap was actually 7652 bp.  The library 

which detected this misassembly had a weighted mean of 6794 bp and was the longest 

library available for this assembly.  So it is unlikely that we could detect the true length 

of the compression.  The inserts which span this location must be longer than average in 

order to span a compression of this size.  In principle, if we ignore mate pair data, any 

number of copies of the repeat would be possible.  In the finished sequence there were 26 

copies of a repeat unit with length 363 bp.  Our threshold for how far we should extend 

our paths was too short to recover all 26 copies.  The longest path the Shooting 

Algorithm produced had only 22 copies of the repeat.  In section 3.1.2, we described how 

we compute likelihood estimates for comparing different path lengths.  Since our 

estimate of the gap size was too short, the range of acceptable paths for correcting this 

compression contained between 12 and 16 copies of the repeat. 

Example -- overestimated gap size. Conversely, if the estimated gap size is too 

large, we will usually still recover the correct path.  However, if there are multiple paths, 

we may not choose the correct one when deciding whether the path is likely to occur.  

One example of this is a case where there was a true expansion in the draft assembly; two 

neighboring contigs overlapped by 789 bases when aligned to finished sequence.  

However, the Celera Assembler reported the gap size between the contigs to be 1 bp.  

Our shooting method found two ways to assemble this region.  The correct path was, of 

course, deemed to be unlikely since it was much shorter than the expected length of the 

path.  The other path found was actually too long; it contained two short repeats on the 

order of 200 bp, as well as some extra sequence in between.  The algorithm may not have 

found this other assembly if the gap size had been correctly estimated.  It would not have 
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overshot the correct path.  These examples show that our method is quite dependent on 

accurate scaffolding of contigs and a good estimate of gap size by the CE statistic. 

Poor collection of library sizes.  Having a variety of library sizes is important to 

our method for two reasons.  First, when our software creates the initial pool of reads 

from which to assemble a local region, it needs reads whose mates are expected to lie in 

the gap of the draft assembly (or the disputed region in the case of an expansion).  

Second, when we are trying to determine which path is more likely to occur, we are 

relying on there being inserts that span our gap in order to determine the distribution 

representing the possible gap sizes.  Because insert sizes affect gap closing in two 

different ways, we would like library sizes that are well distributed (not to be confused 

with the distribution of insert sizes within a library).  Shorter libraries tend to have 

smaller standard deviations.  We need library sizes which are short enough that the mates 

of reads which flank a gap can plausibly lie in the gap, but we also need libraries that are 

long enough for the inserts with mates in flanking contigs to fill the gap.  Sometimes, the 

mean of the library distribution was around the size of a gap, which means only longer 

inserts were actually spanning the gap, which skewed the joint distribution of the gap 

size.  Because of this, the way in which the collection of insert libraries is constructed is 

crucial to the success of our method.   

Poor distribution of inserts lengths within a library.  Another problem we 

encountered was libraries with poor distributions, nearly bimodal with large standard 

deviations.  Ideally the distributions should be nearly normally distributed with a single 

peak.  See figure below which appears to have two libraries merged into one.  Bimodal 

distributions can arise when the laboratory producing the inserts labels two libraries with 
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different insert sizes as being a single library.   

 

Figure 21: A smoothed histogram of a library from an assembly of Acidobacterium bacteria Ellin345 with 

µ= 6882 and  = 662.  Note the double peak. 

 

Trouble estimating the copy number of repeats.  The third limitation of our 

algorithm is that sometimes it cannot choose between different paths when there are short 

repeats in the sequence.  In one instance, in an assembly of the bacterium Burholderia 

mallei, there was a gap in the draft.  The finished sequence contained the pattern ARBRC, 

where A, B, and C are unique sequences in this region, and R is a repeat unit of length 

135 bp.  The Shooting Algorithm was able to assemble the correct sequence, but it also 

produced some longer paths which contained additional copies of the sequence RB.  If RB 

is longer than a read, the available read overlaps will not be able to rule out any of the 

patterns A(RB)
n
RC, for any n = 1,2,3….  The set of overlaps cannot rule out RB being a 

repeat though in the finished sequence it is not.  Furthermore, ARC is a path that the 
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algorithm will produce, and it currently can only be ruled out by being too short.  Since 

the repeat unit RB is so short, it was difficult to tell which path was correct using our 

criterion for choosing among multiple paths.  While the chief criterion we have for 

differentiating between different paths is path length, we can also examine the 

placements of the reads in the paths along with the implied placements of their mates to 

assess if one path fits better in this region than another.   However, in all cases we 

checked in this experiment, this was not helpful in choosing between the paths which 

could, in cases of short repeats like these, differ by only one read.  This was not enough 

of a difference.  

In principle, read coverage of the sequence B might allow an algorithm to 

accurately estimate the number of copies of B, that is, the value of n.  We did not build 

read coverage into the Shooting Algorithm because our approach is to produce local 

assemblies of gap regions using relatively small pools of reads.  To compute the read 

coverage, we would need to align all reads from the entire global data set to this region, 

which is outside the scope of the local assembly.  Our local methods are likely to miss 

some of the reads that could be placed in the gap, reads that are not necessary to create 

the set of paths.  The existence of a gap is often connected with the presence of a copy of 

a repeat, which might occur many times in the genome.  In such a case, a huge number of 

reads might be consistent with the gap sequence, and we chose not to create a pool 

involving all such reads (see Section 2.1.1).   

It should be noted that this last difficulty in determining the copy number of 

repeats affects only a small fraction of gaps and CE problem points.  Better insert 

libraries (with smaller deviations) would solve some of our problems. 
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An alternative not pursued.  One approach to estimating a gap size uses the 

number of inserts (from a library) spanning the gap and infers from this the size of the 

gap.  Choose a gap size and an insert coverage of the genome.  Create random samples of 

inserts and determine by experiment the expected number that span the gap and its 

standard deviation.  The expected number would decrease as the gap size increases.  

From this experiment, a likely range of gap sizes could be estimated. 

Section 3.2.3: Bos taurus 

The Assemblies of Bos taurus.  The Baylor College of Medicine assembled the 

cow genome and published its results in Science (The Bovine Genome Sequencing and 

Analysis Consortium et al. 2009).  Simultaneously, our group published our own 

assembly (Zimin et al. 2009) using the same data as the Baylor assembly.  Our group 

reassembled the cow genome using the Celera Assembler version 4.2 and this data which 

was obtained from the NCBI trace archive.  This resulted in a draft assembly which had a 

total of 81,556 contigs mapped to the chromosomes in 11,082 scaffolds, many of which 

were single contig scaffolds.  There were 59,983 intra-scaffold gaps.  My objective in this 

project was to use the Shooting algorithm to close as many of these gaps as possible.  

Using repetitive overlaps. As described earlier, genome assemblers are designed 

to ignore the overlaps of reads that cover highly repetitive sections of the genome, 

because a majority of such overlaps would be spurious and thus using them will be 

problematic for the assembly.  The strength of our Shooting Method is that it constructs a 

local assembly using smaller pools of reads.  As we mentioned in the methods section, 

the reads in these pools are chosen using mate pair and overlap information. We can then 

compute all overlaps for each pool of reads and that may include some overlaps that were 
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originally discarded by the assembler. This provides an advantage over the assembler and 

will allow us to close some gaps that the Celera assembler was unable to. 

Gap closing statistics. We attempted to close all gaps whose size was less than 

30,000 bp as estimated by the Celera Assembler or whose size was unknown.  The 

number of gaps meeting this criterion was 58,386.  Using the Shooting Method, we were 

able to find paths spanning a total of 12,374 gaps, of which 10,076 had a unique path 

length (though not necessarily a unique path).  We remark that in our investigations of 

bacteria, every gap for which we produced a unique length in fact had a unique path with 

a consensus sequence.  The average size (using Celera’s estimate) of the gaps that we 

attempted to close was 3,613 bp.  This average ignores the gaps for which we had no 

estimate.  The average size of the gaps we were able to close was 2,704 bp.  The average 

size of the pool of reads used to assemble the local regions was 210.    

 We were able to produce consensus sequence for 9,863 paths using the make-

consensus program that is part of the AMOS package (cite).  The consensus algorithm 

failed for some gaps with unique path length, because the only characteristic that we use 

to define a path is the path length. If there are two paths of the same length, which may 

occur due to haplotype differences, all reads in those paths would be reported together. 

This will cause the consensus program to fail.  

Assembly improvement. We used these gap sequences (i.e. consensus sequence 

from a unique path) to join together the contigs on either side of the closed gap. In some 

instances three or more contigs were merged together with the gap sequences into a 

single contig.  The additional sequence generated from the Shooting Method totaled 8.34 

Mbp. In total, we were able to merge 16,814 contigs into 7,945 contigs.  Of these 7,945 
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merged contigs, 5,068 were placed on the chromosomes.  The total number of placed 

contigs decreased to 75,880 contigs, a decrease of 7%. 

  A metric used to evaluate assemblies is the N50 contig size.  The N50 contig size 

is the size of the largest contig such that it plus all larger contigs together contain at least 

50 percent of the assembly.  For the original assembly, the N50 contig size was 87,934 

bp.  After gap closing, the N50 contig size increased to 94,027 bp, an increase of 7%. 

Removing redundant contigs.  Closing gaps not only generated additional 

sequence for the assembly, but it also helped us place that sequence in the correct 

positions.  Draft genomes (usually the word “draft” is omitted) can have contigs that are 

misplaced: the mate pair information allows multiple orderings of contigs, and the 

assembler or the assembly team chooses one of these orderings.  Alternatively, the contig 

may be placed in its own scaffold.  In some cases, repeat regions in the genome caused 

sequence that should be in a gap to be reported in a separate single-contig scaffold.  In 

these cases such sequence was placed incorrectly around the gap on the chromosome by 

the chromosome-building algorithm (Zimin et al., 2009).   

Haplotype sequence was dealt with in a similar way.  The original DNA for this 

assembly came from two B. taurus individuals, a bull and his daughter.  This additional 

heterozygosity increased the number of haplotype differences present in the data which 

complicated the assembly process, and was a potential cause for some of the gaps.  The 

Celera Assembler and the chromosome-building algorithm place contigs so that they do 

not overlap.  Therefore contigs which should lie on top of each other (based on mate 

pairs), but cannot be merged into a single contig, are sometimes placed next to each other 

in the assembly instead.  The fact that the two contigs were not merged by the assembly 
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program suggests either the two contigs came from different homologous chromosomes--

that is they are different haplotypes--or there is bad sequence on the end of a contig, very 

low quality sequence from the end of a read. 

After doing gap closing and placing the new merged contigs on the chromosomes, 

some of this misplaced sequence became redundant to the assembly.  To remove this 

redundant sequence, all of the new merged contigs were aligned to contigs placed nearby 

(see figure 23).  In some cases, a neighboring contig aligned well to the new gap 

sequence with greater than 97 percent identity for greater than 90 percent of the length of 

the contig.  These neighboring contigs were deemed to be redundant and were removed 

from the assembly.  1,439 contigs were removed from the chromosome assembly in this 

fashion.  However, if the redundant contig is not identical to the sequence in the gap, we 

make a note of this sequence as being a possible haplotype variant.   

 

Figure 22: A schematic showing a merged contig containing two “original” contigs (black segments), and 

new gap sequence produced by the Shooting Algorithm (orange segment) as well as a now redundant 

contig placed next to the merged contig on the chromosome.  The redundant contig’s sequence matches that 

of the gap sequence, and so it is removed from the assembly.  This contig was probably erroneously placed 

next to the other contigs instead of being placed between them in the original assembly.  The sequence is 

now correctly placed. 

 

Difficulties in closing gaps: poor collection of library sizes.  As we discussed in 

Section 3.2.2, library sizes heavily impact the success of our algorithm.  In this assembly 

project, the sequencing center chose to make a variety of libraries of mean size about 

3000-6500 Kbp (perhaps motivated by their BAC-by-BAC assembly process).  They also 



67 

had a library of mean size 150 Kbp (which was useful in scaffolding) with a large 

standard deviation.  Large libraries tend to have large standard deviations of their insert 

lengths.  The library choice makes it difficult or impossible to detect CE misassemblies 

of size greater than 6Kbp.  Similarly, a gap of 10 Kbp cannot be accurately estimated.  

Also, 6 Kbp would not give us enough mate pairs to build a local pool of reads from 

which to fill the gap, as the mates of the reads in the flanking contigs would not reach the 

middle of the gap. The best datasets are ones in which there are libraries which vary in 

size.   

Difficulties in closing gaps: waves that are too complex.  The B. taurus genome 

was much larger and more repetitive than the particular bacterial genomes discussed in 

section 3.2.1.  Therefore, it was more challenging to assemble, and there were problems 

which we did not face in our previous experiments.  We could not close some gaps 

because the gaps were long.  Also, the estimates of the gap size for some of the gaps 

could have been incorrect.  In running our Shooting Method, we limited the number of 

overlapping reads in each wave to 10,000.  We chose the bound of 10,000 to limit run 

time and because we rarely found that using larger upper bounds yielded additional gap 

closings (move to methods section).  For very long gaps, this may not have been enough 

to close the gap.   

Difficulties in closing gaps: contigs that are too short.  Another reason we had 

difficulty in gap closing in the cow genome was that some of the contigs flanking a gap 

were quite short.  Recall that we create our local pools of reads based on mate pair and 

overlap information of the reads in the flanking contigs.  If there were not very many 

reads in these contigs, then we would not have enough reads in the pool to close the gap.  
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Finally, the placement of the contigs by the scaffolding algorithm in the Celera 

Assembler and the chromosome-building algorithm may have been incorrect.  It may 

have in fact been impossible to find any paths between some of the contigs in our 

experiment as their sequences may not actually lie near each other in the genome. 

From our studies with the bacteria in the previous section, we found it was 

difficult to distinguish between multiple paths produced by the Shooting Method for a 

single gap unless there was an improvement in estimates of gap sizes.  At the time of the 

assembly of B. taurus, no such improvement had yet been made, so this portion of our 

algorithm was not used here.   

Potential application of the Shooting method: Using the Shooting method on mate 

pairs where one mate is in a contig, and the implied placement of the other is in a gap.  

Hence, we would determine the sequence between the two mates, and thereby we would 

extend the contig.  This would allow us to detect bad sequence on the ends of contigs, 

which in turn might allow more gaps to be closed. 

Section 3.2.4: An Assembly of Simulated Short Read Data from Human 

Chromosome 1 

In this section, we describe an application of the CE statistic and Shooting 

Algorithm to an assembly of human chromosome 1 produced by Celera Assember 5.4 

from simulated or faux short read data.  The reason we chose to assemble faux data is 

because there are no finished eukaryotic genomes for which enough short read data to 

produce an assembly is publicly available.  The CE statistic and Shooting Algorithm do 

not depend on the size of the individual reads.  Therefore, they are directly applicable to 
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assemblies produced from short read data.  The purpose of this experiment is to illustrate 

this fact. 

Description of the faux data set.  In this experiment we used the most recent 

publicly available sequence of human chromosome 1 by the Human Genome Project 

Consortium (Genome Reference Consortium 2010).  This sequence contains some gaps.  

For the purposes of this experiment, we simply removed these gaps and put the sequence 

together into a single contiguous sequence.  We simulated 20X coverage by 100 bp reads.  

We did not introduce any errors in read sequences.  Read positions were chosen from a 

uniform distribution along the sequence.  10X coverage was by unmated reads and the 

remaining 10X coverage was by mate pairs of reads in 3 different libraries (see Table 1).  

These libraries were chosen to simulate the actual libraries that can be produced by 

Illumina sequencing technology (cite).  

µw = 

Weighted 

Mean 

Insert Size 

w   = 

Weighted 

Standard 

Deviation 

Average 

insert 

coverage 

N = 

Average 

spanning 

insert 

coverage 

(excludes 

reads) 

Compressions 

that can be 

detected at T = 

3.5 (heuristic 

estimate) 

Sizes of 

compressions 

found 

excluding 

5% smallest 

and largest 

10,236 bp 1481 48 47 ~800 -10,000  bp 697-1556 bp 

2044 bp 297 20 18 ~250 -2000 bp 223-654 bp 

406 bp 50 14.5 7.4 ~50-200 bp 58-147 bp 
 

Table 2: The size of compressions that can be detected.  The spanning size of an insert is the size of the 

insert minus 200 bp, the total length of the reads at the ends of the insert.  This size is used in computing 

the average spanning insert coverage.  Recall that we estimate the minimum size of the compression that 

can be detected from the formula         .  This is an underestimate since the spanning insert coverage 

decreases at the site of a compression.  The upper bound is the spanning size of the insert library.  Because 

of the fluctuations in insert size, occasional compressions outside of the range may be detected. 

 

We then used the Celera Assembler version 5.4 to assemble this faux data.  The assembly 

statistics are listed in Table 2.   
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Scaffolds Contigs N50 contig size Total assembly size 

105 3971 213 Kbp 

217Mbp (original 

chromosome is 

225Mbp) 
 

Table 3: Statistics of faux assembly of human chromosome 1.  Recall that the N50 contig size is the largest 

contig such that the sum of the number of bases in all larger contigs comprise 50% of the assembly.  The 

original chromosome is the finished sequence. 

 

CE misassemblies. We aligned the assembly to the original finished sequence 

and identified 482 compression misassemblies and 31 expansion misassemblies.  The 

reason why the number of compressions was larger than the number of expansions is that 

assemblers have difficulty assembling repeat regions, which are the most frequent cause 

of compression misassemblies.  Recall that for tandem repeats where each copy of the 

repeat is longer than the read length, the Celera Assembler can only estimate the number 

of appears to err on the side of fewer copies of the repeat region rather than extra copies.   

We computed the CE statistic for this assembly.  The assembly has so few 

expansions that the false positives greatly outnumber the true positives for each threshold 

T.  The following table shows the sensitivity and false discovery rates for the CE statistic 

in detecting expansions at various thresholds T: 

Threshold T 

# true positives 

 out of a  

total of 31 

# false 

positives Sensitivity FDR 

2.1 26 60042 0.839 1 

2.3 20 42517 0.645 1 

2.5 17 27585 0.548 0.999 

2.7 16 16920 0.516 0.999 

2.9 14 10098 0.452 0.999 

3.1 13 5595 0.419 0.998 

3.3 10 2890 0.323 0.997 

3.5 10 1461   0.323 0.993 

3.7 8 746 0.258 0.989 

3.9 9 350 0.29 0.975 

4.1 8 189 0.258 0.959 
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4.3 7 100 0.226 0.935 

4.5 7 60 0.226 0.896 

4.7 7 36 0.226 0.837 

4.9 7 29 0.226 0.806 

5.1 7 24 0.226 0.774 

5.3 6 23 0.194 0.793 

5.5 6 19 0.194 0.76 

5.7 5 18 0.161 0.783 

5.9 5 15 0.161 0.75 
 

Table 4: Sensitivity and false discovery rate (FDR) of the CE statistic in detecting expansions for various 

thresholds T. 

 

Below, you can see a graph of the true compressions that were detected by the CE 

statistic with T = 3.5 according to which library was used in the detection: 

 

Figure 23: Compressions found using three libraries.  We created faux reads from human chromosome 1 

sequence.  We created three libraries of mated reads and one library of unmated reads.  Using the Celera 
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Assembler 5.4, we created a (draft) assembly, which turned out to have 482 compressions (red circles).  We 

were able to identify 284 of them using one or more of the libraries.  The compressions range from 40 bp to 

1935 bp (vertical axis).  We numbered the compressions, sorted by size, from smallest to largest (horizontal 

axis).  When a red circle indicates a compression that was identified by one of the three libraries, this is 

indicated by symbols shifted upward (for the sake of clarity) from the red circle.  We required that the 

position and size of the compression be correctly estimated (see text). 

 

 Working with short read data.  To test the Shooting Algorithm, we used the 

largest scaffold in the assembly.  This scaffold was 28.1 Mbp long and contained 584 

contigs.  One of the problems we faced in working on an assembly made from short read 

data, is that these assemblies usually have very high read coverage.  This can make our 

local pools quite large, and computing overlaps between the reads in the pools can 

become infeasible especially for reads from highly repetitive portions of the genome.  

Therefore, we chose to only close gaps less than 2000 bp in size.  The other modification 

we made was to allow a minimum of 25 bp overlap between reads when computing the 

paths.  (This is lower than the minimum 40 bp we used for the bacterial assemblies and 

Bos taurus which were sequenced with longer Sanger reads). 

 Results.  There were 517 gaps in the scaffold that were less than 2000 bp.  Of 

these, we were only able to find a path for 34 of these.  The major reason for the inability 

of the Shooting Algorithm to find a path was the fact that we only used mates in the 

contigs flanking the gap for building local pools of reads.  In 407 of the gaps, one of the 

flanking contigs was much shorter than the 2000 bp, and therefore no mates of inserts 

from the 2 Kbp and 10 Kbp libraries could be used.  This shortcoming in our method 

could be overcome by using inserts whose mates may be in nearby contigs, not just those 

in the contigs directly adjacent to the gap.  Of 517 gaps, 110 were flanked by two contigs 

both of which were longer than 2Kbp.   
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 Our CE statistic in combination with the Shooting Algorithm identified 48 

suspected CE misassemblies.  Of these, 24 (50%) were real misassemblies.  We were 

able to find the correct sequence for 7 of the 24.  The total number of real misassemblies 

was 47, and therefore we missed 23 of them.   
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APPENDIX A: THE ALLPATHS ALGORITHM 

In this section we discuss the similarities and differences between our Shooting 

Method and the ALLPATHS (Maccallum et al. 2009), assembler. Like the Celera 

Assembler, it is a de novo assembler, creating assemblies from read and mate pair data 

without using a reference genome. As of this writing, there have been no published 

papers reporting genomes created with ALLPATHS.   The ALLPATHS assembler 

includes a module which seeks to identify all possible paths of reads spanning a mate 

pair. The ALLPATHS assembler also uses mate pairs to build local clouds of reads 

similar to the pools used in the Shooting Method.   

While this step is similar to our technique, there are some differences.  This is a 

complicated program which we cannot hope to do justice here.  Hence, we discuss some 

features, and the reader should recognize that we take shortcuts and do not tell the whole 

story.  ALLPATHS chooses an integer k > 0, determines all k-mers, strings of length k, in 

the collection of reads, and creates a directed graph (de Bruijn graph) in which the k-mers 

are nodes, and there is an edge between two k-mers if there is a read in which the two k-

mers occur, one being shifted from the other by one base (hence, the last k-1 bases of one 

will be the first k-1 bases of the other).   Hence, ALLPATHS does not compute overlaps 

between reads.   

A big difference between the two algorithms is our goals.  The goal of 

ALLPATHS technique is to create a de novo assembly, whereas our technique is a 

precise post-processor aimed at extracting all possible information from existing read 

data to close gaps and correct CE misassemblies in the assembly and therefore save time 

and effort used for finishing the genome.  
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Another difference is that ALLPATHS never explicitly computes all overlaps 

between the reads in the cloud.  The ALLPATHS algorithm constructs the paths using 

minimal extensions of the reads found using a technique for k-mer database lookups done 

on the fly.  The reason ALLPATHS does not compute overlaps is that their clouds of 

reads are big, encompassing relatively large (on the order megabases) regions of the 

genome. We construct a much more localized pool of reads for each gap, and thus our 

pools are much smaller, allowing us to compute overlaps with a smaller likelihood that an 

overlap will be spurious. 

Finally, an important difference between the two algorithms is that ALLPATHS is 

only applicable to short read assembly with reads of length 25-50 bp.  It is not applicable 

to longer reads over a 100 bp such as Sanger sequenced reads or reads made with the 454 

technology.  Ideally, the k-mer size, k, should be a bit less than the read size since if k is 

much less than the read size, a great deal of information is left out of the de Bruijn graph.  

Paths are allowed by the de Bruijn graph which are not allowed in the genome whenever 

there is a repeat of size at least k which is spanned by a read.  While, technically, one can 

use the reads to weed out these paths, this work becomes a large factor in the assembly 

process.  If the reads are long (perhaps 100 bp), and k is perhaps 90, then a large fraction 

of the 90-mers may contain sequencing errors.  While ALLPATHS tries to do error 

correction of reads or k-mers, the process becomes much more difficult if most of the k-

mers occur only once in the set of reads.  To circumvent this, it is possible to generate 

much deeper read coverage, but then one needs more memory to do error correction, and 

the reason for using the de Bruijn approach is to reduce memory needs.  Better algorithms 

may permit effective use of large k.  In particular, it is unlikely that this approach could 
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be used effectively when some of the read data is Sanger read data.  The Shooting 

Method is applicable to reads of any size and produced by any technology.  
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