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Introduction

Methanogenesis is an important anaerobic process in the global carbon cycle 

whereby organic carbon is recycled into the atmosphere as methane gas.  In the 

natural environment, the process requires a consortium of at least three metabolic 

groups of anaerobic microorganisms.  Fermentative bacteria convert complex 

polymers and monomers to fatty acids and alcohols, which are subsequently 

converted by acetogenic bacteria, to acetate, formate, methanol, carbon dioxide and 

hydrogen gas.  Finally, the latter products are converted to methane and carbon 

dioxide by methanogenic Archaea (Sowers 2004).  Methanogenesis only occurs in a 

phylogenetically distinct group of Archaea that grow by the production of methane 

produced by CO2 reduction with H2, by dismutation of acetate, or methylotrophically 

using substrates such as methanol, methyl-sulfides and methyl-amines.  At least two-

thirds of global methane is produced via the aceticlastic pathway (Lovley and Klug 

1982), where an acetate molecule is dismutated into one methyl group, which is 

reduced to methane, and a carboxyl group, which is oxidized to CO2. This globally 

important process is mediated only by methanogens of the order Methanosarcinales 

(Ferry 1993).  Of these, the most metabolically diverse group is the genus 

Methanosarcina, which possesses the ability to grow by all three methanogenic 

pathways (Sowers 2000). 

Methanosarcina acetivorans was originally isolated from methane-generating 

marine sediments (Sowers et al. 1984).  M. acetivorans can grow on acetate, 

methanol, methyl-amines and methyl-sulfides (Sowers et al. 1984).  There is also 

evidence that M. acetivorans can grow non-methanogenically using carbon monoxide 
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(Rother and Metcalf 2004).  Aceticlastic Methanosarcina spp. show preferential 

metabolism of substrates with higher free-energy yields resulting in preferential use 

of hydrogen and methylotrophic substrates to acetate (Smith and Mah 1978; Zinder 

and Elias 1985). Also, the low free-energy yield associated with aceticlastic growth 

results in a much lower growth rate (Smith and Mah 1978). 

The modern study of the molecular biology and biochemistry of an organism 

or group of organisms is greatly enhanced by the use of genomic information and a 

genetic system.  The complete genome of M. acetivorans is available (Galagan et al. 

2002), as well as the completed genomes of two other Methanosarcina spp.: 

Methanosarcina mazei (Deppenmeier et al. 2002) and Methanosarcina barkeri 

(http://genome.jgi-psf.org).  Several genetic tools have been developed for use in 

methanogens of the genus Methanosarcina (Sowers and Gunsalus 1988; Apolinario 

and Sowers 1996; Metcalf et al. 1997; Zhang et al. 2000; Zhang et al. 2002; Pritchett 

et al. 2004).  An efficient genetic system exists for the organism, combining the 

ability to grown clonal colonies on solidified medium (Apolinario and Sowers 1996), 

the use of a natural plasmid isolated from M. acetivorans to engineer recombinant 

plasmids containing selectable markers (Sowers and Gunsalus 1988; Metcalf et al. 

1997), and a liposome-mediated transformation protocol with a high efficiency of 

transformation (Metcalf et al. 1997).  Other genetic tools that are available for M. 

acetivorans include transposon-mediated random mutagenesis (Zhang et al. 2000) 

and directed gene disruption techniques, including a recent markerless genetic 

exchange system (Zhang et al. 2002; Pritchett et al. 2004).  Because the genetic 

system for M. acetivorans is among the most advanced available for the 
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methanogenic Archaea, it serves as a tractable model for the study of the molecular 

biology of methanogenic Archaea. 

Due to advances in sequencing technology in the past decade, an increasing 

number of microbial genomes have become available.  As of January 2004, there 

were over 150 microbial genomes available, and hundreds more in progress (Nelson 

et al. 2004).  After a genome has been sequenced, the genes are identified and their 

function is inferred by sequence similarity to known genes.  Many of the new genes 

discovered by genome sequencing are of unknown function.  In order fully 

understand the metabolic capabilities of an organism, the functional analysis of these 

unknown genes must be performed to determine their role.    

Functional analysis of a protein ultimately requires the protein’s purification 

for activity assays.  Experiments are conducted to assess protein’s function, e.g. its 

substrates and products, the elements that regulate the enzyme activity, and the rates 

of activity of the enzyme.  Purified proteins are also required for structural analysis in 

which a protein is crystallized and analyzed by X-ray crystallography.  By 

determining the three-dimensional structure of a protein, the function can be inferred 

by comparing the structural motifs to a database of structures of proteins with known 

function .  Purified proteins are required for many other biochemical applications, e.g. 

the metal content analysis of a protein, the identification of prosthetic groups 

associated with a protein and the identification of the proteins associated with that 

protein.  Purified proteins are also required for many industrial purposes, where they 

are used for many purposes from food additives to pharmaceuticals. 
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Prior to genome sequencing, gene discovery generally occurred after enzyme 

discovery.  The investigator studying a specific metabolic capability fractionates 

cellular proteins, purifying and then characterizing and sequencing the protein from 

the fractions possessing the desired activity.  In this way, the gene for the enzyme of 

interest can be identified in the genome of the organism.  With the wealth of genomic 

information that is now available, it is common to identify a gene for a protein of 

interest, amplify it from the organism’s genomic DNA, and place it under the control 

of a strong promoter for expression and subsequent purification.  This recombinant 

protein expression provides abundant material for the study of the gene product 

directly and requires little initial information about the function of the protein. 

 Functional and structure analyses of specific proteins also frequently require 

that the protein be purified in relatively large quantities.  These amounts can be 

obtained by mass culturing of the organism that produces the protein and purifying 

the protein from the cell material.  This method may not be a possibility for proteins 

that are produced as a small fraction of total cellular protein or for organisms that do 

not grow rapidly or to high densities.  For Archaea, obtaining dense cultures in 

preparative volumes often involves a great deal of time, expense and difficulty.  This 

is due to the “extreme” habitats to which many Archaea are adapted, e.g. 

hydrothermal vent systems, hypersaline lakes and polar ice lakes.  Organisms from 

these habitats require specific growth conditions that can be expensive to maintain 

and have often not been completely optimized in the laboratory, resulting in low 

yields of cell material.  Because of these limitations, large quantities of protein for 
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subsequent analysis are most commonly produced by expressing the protein in a 

recombinant system that employs a readily grown, high-yield microorganism. 

Therefore, recombinant protein expression is an attractive option because:  1) 

proteins can be produced in organisms that have fast growth rates and are easy to 

cultivate (Balbas and Lorence 2004); 2) yields can be increased by producing 

recombinant proteins under the control of a promoter that allows the protein to be 

expressed as a greater fraction of the cellular protein (Studier et al. 1990); and 3) 

recombinant protein expression can allow the investigator to include a translational 

fusion to aid in protein purification (Palva and Silhavy 1984; Hochuli et al. 1987; 

Hochuli 1988; Maina et al. 1988). 

Most recombinant proteins that have been expressed for structural analysis 

have been expressed in Escherichia coli because genetic manipulations in this 

organism are relatively easy and inexpensive (Balbas and Lorence 2004).  E. coli has 

historically been a model organism for genetic manipulation and investigations of 

bacterial genetics.  Therefore, a multitude of genetic systems for E. coli exist, 

including many systems for the expression of recombinant protein. 

There are many other organisms in which recombinant protein expression 

systems are available and new systems are developed regularly.  These include many 

prokaryotes, e.g. the gram-negative bacterium Ralstonia eutropha (Srinivasan et al. 

2002) and the gram-positive bacteria Bacillus subtilis (Balbas and Lorence 2004), 

Lactococcus lactis (de Ruyter et al. 1996) and Rhodococcus spp. (Nakashima and 

Tamura 2004).  Many systems for recombinant protein expression in eukaryotes are 

also available, including fungal, mammalian, amphibian, insect, plant and yeast cells.  
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Filamentous fungi of the genus Aspergillus are widely used for the expression of 

recombinant proteins for industrial purposes (Punt et al. 2002).  Other widely used 

systems are the yeast Pichia pastoris (Cereghino and Cregg 2000) and insect cells 

with baculovirus-based expression vectors (Jarvis 1997).  No common system exists 

for recombinant protein expression in the Archaea.  Very few examples of published 

recombinant protein expression in Archaea can be found.  Systems have been 

published describing recombinant expression of homologous proteins in Haloferax 

volcanii and Halobacterium salinarum (Jolley et al. 1996; Long and Salin 2000).  

Although no examples of heterologous recombinant protein expression for 

subsequent purification in Archaea could be found, genetic markers for plasmid 

maintenance in archaeal genetic systems often contain heterologous genes; for 

example the puromycin resistance gene from Streptomyces albolinger, pac, is used as 

a selectable marker in the plasmid-based genetic system for M. acetivorans and 

effectively confers resistance to the antibiotic puromycin (Metcalf et al. 1997).  Other 

examples include selectable and phenotypic marker expression and reporter genes 

expressed in the Archaea (Allers and Mevarech 2005). 

The yields obtained using the various protein expression systems vary.  Some 

systems are designed to yield high levels of proteins, while some systems are 

designed to ensure the correct folding or correct post-translational modifications of 

the recombinant proteins.  In general, the most basic systems result in higher yields of 

recombinant proteins to compensate for low specific activities and the more complex 

systems yield proteins that are more likely to have wild-type level activities (Balbas 

and Lorence 2004).  For example, E. coli systems can yield up to 1000 mg L-1 of 
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recombinant proteins (Invitrogen.com, accessed December 7, 2005), yeasts and 

filamentous fungi yield from 0.1 to 300 mg L-1 of recombinant proteins (Punt et al. 

2002) and mammalian cell expression systems can yield from 0.1 to 50 mg L-1 of 

recombinant proteins (Wurm 2004).  Conversely, E. coli are not capable of many 

posttranslational modifications and mammalian cells are capable of the most 

posttranslational modifications (Balbas and Lorence 2004). 

Such a wide range of recombinant protein expression systems exists because 

recombinant protein expression is often a rate-limiting step in the investigation of 

many proteins.  This is because, while some proteins are expressed in an active form 

on the first attempt, others are not expressed in an active form and variations in the 

expression system are required.  No protein expression system has yet been 

developed that works universally for all proteins (Balbas and Lorence 2004).   

The most common problem resulting in poor expression of recombinant 

protein is the formation of inclusion bodies, which are insoluble aggregates of 

recombinant protein.  The exact mechanisms by which these aggregates form is 

unknown, however, it has been proposed that inclusion body formation is a stress 

response associated with high-level expression of recombinant protein (Villaverde 

and MarCarrió 2003).  Data on the success rate of recombinant protein expression is 

not available because negative results are often not reported.  One example of the 

success rate using E. coli expression systems comes from the Southeast Collaboratory 

for Structural Genomics (SECSG), a research group with a mission to achieve high 

throughput structural characterization of many proteins.  Of the 6,397 proteins that 

they have expressed in E. coli, only 23% have been soluble (www.secgc.org,
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accessed November 1, 2005).  Apart from inclusion body formation, other problems 

resulting in poor expression include improper folding of the recombinant protein, 

proteolytic degradation of the target protein, lack of post-translational modifications 

in the expressed protein, poor expression due to codon usage differences between the 

native organism and the host organism, and rearrangement of foreign DNA by the 

host organism. 

The multiple systems available utilize a range of tools to enhance protein 

expression.  A simple approach is solubilization of inclusion bodies using strong 

denaturants and subsequent removal of the denaturants under conditions that allow 

protein refolding (Nagai et al. 1988).  Another approach is the co-expression of 

various molecular chaperones and foldases with the protein of interest to enhance 

protein folding and increase solubility (Georgiou and Pascal 1996).  The disadvantage 

of these two methods is that they do not work for all proteins and, when they do 

work, a number of conditions need to be tested to achieve the correctly folded protein 

(Middelberg 2002; Sorensen and Mortensen 2005).  Another approach is the use of 

stronger promoters (Studier et al. 1990).  This can result in increased expression of 

recombinant protein, but can still result in inclusion body formation (Sorensen and 

Mortensen 2005).  Gene fusions with genes for proteins that enhance solubility of the 

protein of interest are also used to enhance solubility of recombinant proteins (Pryor 

and Leiting 1997; Davis et al. 2000).  These enhance the solubility of the protein with 

a relatively good success rate.  The main disadvantage to this technique is that the 

protein fusion needs to be removed from the protein of interest.  Again, this process 

must be optimized for each protein and the correctly folded protein often cannot be 
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recovered at high yield after cleavage of the fusion partner (Sorensen and Mortensen 

2005). 

Therefore, while expressing proteins using a recombinant system is often an 

attractive option, there are many disadvantages.  These disadvantages can be even 

more pronounced when attempting to express archaeal genes in a eubacterial or 

eukaryal system.  The Archaea differ in their molecular biology as much from the 

eubacteria as they do from the eukarya (Woese et al. 1990).  While Archaea are 

similar to eubacteria in morphology, archaeal transcriptional machinery, e.g. their 

large multicomponent RNA polymerase and transcription initiation mechanisms, are 

more similar to that of the eukarya (Lange and Ahring 2001).  Archaeal genes may 

also vary from eubacterial genes due to differences in sequence and codon usage 

(Reeve 1993).  Also, in-frame amber codons exist in some archaeal genes, encoding 

for the nonstandard amino acids.  For example, pyrrolysine is encoded for by the stop 

codon UAG and is only found in methanogenic Archaea (Burke et al. 1998; 

Srinivasan et al. 2002).  Proteins containing this nonstandard amino acid would 

presumably not be expressed in an active form in an organism that did not possess the 

translational machinery to override this stop codon.  In one study, the expression of 

six archaeal genes was attempted in E. coli, four from Methanocaldococcus jannascii 

and two from Pyrobaculum aerophilum. All proteins were poorly expressed, 

however expression was enhanced by the introduction of genes encoding the rare 

tRNAs (Kim et al. 1998).   

In a study by Frankenberg et al. (2001), the M. jannaschii 20S proteosome 

was expressed in E. coli and the activity and thermostability of the recombinant 
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proteosome was compared to the wild-type proteosome.  The optimum activity of the 

recombinant proteosome occurred at 95°C compared to 119°C for the wild-type 

proteosome.  The half-life of the recombinant proteosome was also much shorter 

compared to the wild-type proteosome.  However, when the recombinant proteosome 

was chemically denatured and then refolded at elevated temperatures, the wild-type 

activity and half-life was restored.  This demonstrates that the folding environment in 

E. coli may not be suitable for some archaeal proteins.  In this case, elevated 

temperature enhanced folding of the hypertheromophilic enzyme (Frankenberg et al. 

2001 ).   

In a study by Bayley and Jarrell (1999) flagellin from the mesophile 

Methanococcus voltae was expressed in E. coli and Pseudomonas aeruginosa. The 

protein was expressed in both systems, but the leader peptide, which is cleaved in M. 

voltae, was not cleaved in either eubacterium.  When the unprocessed peptide was 

incubated with M. voltae membranes, the peptide was cleaved, allowing the 

researchers to localize the peptidase activity to the M. voltae membrane.  While the 

researchers were still able to answer some interesting questions using the unprocessed 

flagellin, this study demonstrates that the eubacteria used did not contain the correct 

cellular machinery to correctly process some archaeal genes (Bayley and Jarrell 

1999). 

Difficulties in expression of archaeal genes in E. coli may also arise due to 

lack of posttranslational modifications of proteins. It is well known that eukaryotic 

proteins, which require significant levels of posttranslational modifications including 

proteolytic cleavage, glycosylation and amino acid modifications, are often not well 
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expressed in eubacteria, which have less complex mechanisms of posttranslational 

modifications.  The mechanisms of posttranslational modifications in the Archaea are 

not well understood but possess elements that appear eukaryal, eubacterial, and those 

that are unique to the Archaea (Eichler and Adams 2005).  These differences have the 

potential to cause significant problems when heterologously expressing proteins in 

organisms from different domains.  When Pyrococcus abyssi alkaline phosphatase 

was expressed in E. coli, it was present in an active form but with a low yield (Zappa 

et al. 2003).    When genes for rare tRNAs were introduced the yield of the 

recombinant protein expressed in E. coli increased.  When the enzyme was expressed 

in the methylotrophic yeast Pichia pastoris, the protein was expressed with a lower 

yield but with a greater activity (Zappa et al. 2003).  This suggests that, while 

recombinant protein yield can be increased in E. coli with enhanced expression of 

rare tRNAs, the activity of the archaeal protein may have been enhanced due to the 

translational or posttranslational machinery present in the eukaryal expression system. 

In order to enhance expression of archaeal genes, M. acetivorans was chosen 

for development of a recombinant protein expression system. There are several 

advantages to the use of M. acetivorans for recombinant protein expression.  Firstly, 

it is a mesophilic archaeon that can be mass cultured to high densities (Sowers et al. 

1984).  Secondly, an efficient genetic system and several genetic tools are available 

for the organism, including an E. coli-M. acetivorans shuttle plasmid which is present 

at 15 copies per cell and is stable over dozens of generations (Sowers and Gunsalus 

1988; Apolinario and Sowers 1996; Metcalf et al. 1997; Zhang et al. 2000; Zhang et 

al. 2002; Pritchett et al. 2004; Apolinario et al. 2005).  Thirdly, the species contains 
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genes for all four known chaperoning systems, a trait that has not been found in any 

organisms outside of the Methanosarcina spp., which should facilitate the correct 

folding of many heterologous proteins (Macario et al. 2004).  Fourth, a well-

characterized promoter exists for the Methanosarcina spp. that is highly regulated in 

response to growth substrate.  Expression from the cdh promoter, which controls 

transcription from the carbon monoxide dehydrogenase/acetyl coenzyme A operon, is 

30-fold higher when the organism is grown on acetate vs. methylotrophic substrates. 

(Apolinario et al. 2005)   

Methanosarcina spp. also utilize a range of metalloenzymes and cofactors that 

are not synthesized in other organisms.  For example, corronoid cofactors are 

synthesized and incorporated into enzymes involved in the methanogenesis pathway 

(Stupperich et al. 1990; Weiss and Thauer 1993).  Because of this metabolic ability, 

enzymes requiring corronoid cofactors may be expressed in an active form using the 

M. acetivorans system.  Also, M. acetivorans is one of the few organisms that has 

been found to express peptides containing the nonstandard amino acid, pyrrolysine, 

which is encoded for by UAG, a universal stop codon in eubacterial, eukaryal and 

archaeal systems.  Genes encoding pyrrolysine would be synthesized in a truncated 

form in systems which did not possess the pyrrolysine tRNA synthetase (Soares et al. 

2005). 

An expression system using M. acetivorans was developed that incorporates 

the M. acetivorans native plasmid, the highly-regulated promoter for M. thermophila 

carbon monoxide dehydrogenase, cdh, and a multiple cloning site with coding 

sequence for optional N- and C- terminal 6xHis fusions.  The protein yield obtained 



13 
 

using this system was enhanced by improving the techniques for mass cultivation of 

acetate-grown M. acetivorans in a stainless steel bioreactor.  Several recombinant 

proteins were investigated using this system.   

The M.  jannaschii prolyl tRNA synthetase (MjProRS), which is one of the 21 

aminoacyl synthetases which are involved in the charging of tRNA during protein 

synthesis, was expressed in M. acetivorans. This hyperthermophilic protein can be 

actively expressed in E. coli (Lipman et al. 2000), which provided a means of 

comparing the activities of the products expressed in the archaeal and the bacterial 

systems.   

The M. acetivorans mesophilic prolyl tRNA synthetase (MaProRS) was also 

expressed using this system in order to study the proteins incorporated in the prolyl-

tRNA complex during translation.  In higher eukaryotes, prolyl tRNA synthetase is 

one of the nine aminoacyl synthetases that are associated with other peptides.  These 

other peptides appear to be involved in increasing the fidelity of protein translation 

(Mirande 1991; Norcum and Dignam 1999).  In eubacteria, no multi-peptide 

aminoacyl synthetase complexes are known to exist.  MjProRS has been shown to be 

associated with other peptides, providing evidence for the existence of multi-peptide 

aminoacyl synthetase complexes in Archaea (Lipman et al. 2003).  By purifying the 

recombinant MaProRS under various conditions in the homologous system, proteins 

that bind to the enzyme in vivo may be identified. 

The carbonic anhydrase from the thermophilic archaeon Methanosarcina 

thermophila (MtCam) was also investigated.  Carbonic anhydrases catalyze the 

hydration of carbon dioxide to bicarbonate and are present in all domains of life.  
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MtCam is interesting as it belongs to the gamma-class of carbonic anhydrases, which 

are hypothesized to have evolved at the estimated time of the origin of life (Smith et 

al. 1999).  While this protein has been shown to be a zinc-containing metalloenzyme 

when expressed in E. coli, it has been hypothesized that the native protein may 

instead contain iron in its active site (Tripp et al. 2004).  Expression of this protein in 

M. acetivorans, a mesophilic methanogen that is closely related to M. thermophila,

will likely provide evidence to resolve this question. 

The trichloroethylene (TCE) reductive dehalogenase from Dehalococcoides 

ethenogenes (DeTCE-RD) was also expressed using the M. acetivorans expression 

system.  TCE dehalogenases catalyze the conversion of TCE to lesser-chlorinated 

ethenes (Neumann et al. 1995; Magnuson et al. 1998).  Chlorinated ethenes such as 

TCE are very common groundwater contaminants and are toxic chemicals which pose 

a public health risk.  TCE has been shown to be dechlorinated to the harmless 

product, ethene, by DeTCE-RD (Magnuson et al. 1998).  Yields of dechlorinating 

bacteria such as D. ethenogenes are low and they are very difficult to mass culture, 

which limits the ability to produce cell material for purifying large quantities of 

specific enzymes (Maymo-Gatell et al. 1997).  Attempts by several laboratories to 

express an active dehalogenase in a recombinant system have failed (Neumann et al. 

1998).  M. acetivorans may be more likely to produce active dehalogenases than E. 

coli because D. ethenogenes and M. acetivorans are both obligate anaerobes and are 

capable of producing corronoid cofactors, which are required for synthesis of the 

TCE dehalogenase (Magnuson et al. 1998).  Also, M. acetivorans may possess the 

molecular chaperones required for biosynthesis of active dehalogenases.  If the 



15 
 

dehalogenase expressed in M. acetivorans is indeed active, this expression system 

may be ideal for expression of dehalogenases for other chlorinated compounds that 

occur as environmental contaminants. 

This body of research describes the development of a recombinant expression 

system in M. acetivorans. The characterization of the cdh promoter and other 

promoters with respect to utility in recombinant protein expression was also 

investigated.  A variety of proteins were expressed using the system, and the results 

obtained will be discussed. 

The primary goal of this research is to enhance the genetic tools available for 

the study of proteins that are difficult to express using existing systems, including 

archaeal proteins and proteins from obligate anaerobes.  To this end, a system for 

recombinant protein expression in M. acetivorans was developed and tested.  By 

analyzing the expression of proteins using this system, it can be determined whether 

this system is an effective research tool for expression and functional analysis of the 

target proteins. 

 

Materials and Methods

Cultivation of M. acetivorans Using Batch Processes 

Methanosarcina acetivorans C2A (DSM 2834) was obtained from sources 

described previously and maintained as frozen stocks (Sowers and Johnson 1984).  

Small cultures (10 mL, 100 mL and 1 L) of M. acetivorans were grown in marine 

disaggregating medium (M-medium) prepared anaerobically under an 80% N2:20% 
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CO2 atmosphere (Sowers and Gunsalus 1988).  Medium (10 ml) was dispensed into 

30 ml anaerobe tubes (Belco) and 100 ml in 160 ml serum bottles, which were sealed 

under N2-CO2 (80/20) with 20 mm butyl stoppers (West Co.) secured with aluminum 

crimp seals (Wheaton).  Medium volumes of 1L were prepared in 2 L round bottom 

flasks, which were sealed under N2-CO2 (80/20) with a rubber stopper secured with 

20 gauge steel wire.  The medium was sterilized by autoclaving at 121°C for 20 

minutes.  For phosphate limitation batch experiments medium was prepared without 

dibasic sodium phosphate and phosphate was added to the desired concentration from 

an anaerobic, sterile 1 M sodium phosphate solution at the time of inoculation.  

Solidified medium for colony growth was prepared by adding agar to liquid medium.  

Solidified medium was prepared in Petri plates and inoculation of solidified medium 

was performed in an anaerobic glove box as described previously (Apolinario and 

Sowers 1996).  Recombinant strains of M. acetivorans (Table 1) were maintained in 

medium containing 2 µg mL-1 puromycin (Invivogen). 

Growth of M. acetivorans in a pH-auxostat was performed as described by 

(Sowers et al. 1984) with the exception that a BioFlo IV bioreactor (New England 

Biolabs) was used.  Briefly, M-medium (14 L) was prepared and degassed with N2

without the addition of bicarbonate buffer.  Sodium acetate was added to a 

concentration of 50 mM and the medium was autoclaved in-place in the stainless steel 

(SS) bioreactor.  Bioreactors were inoculated with 0.5 to 1.0 L M. acetivorans grown 

on 0.1 M sodium acetate.  After inoculation, the pH was maintained by the addition of 

acetic acid.  The pH and all other growth parameters were maintained with the BioFlo  
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Table 1. Plasmids and recombinant M. acetivorans strains described in the text. 
 

Protein fused 
to cdh 

promoter 

M. 
acetivorans 

Strain 
Plasmid 

name Description 

β-galactosidase KSC8 pEA103 cdh promoter fused to lacZ for use in 
characterizing promoter (Apolinario et al. 2005) 

none KSC20 pES1 cdh promoter with 6xHis tags flanking multiple 
cloning site for overexpression 

MjProRS KSC19 pSM1 Gene for MjProRS in pES1 with N-term 6xHis 
DeTceA KSC41 pEA129 tceA in pES1 with N- and C-term 6xHis 
DeTceAB KSC42 pEA130 tceAB in pES1 with N-term 6xHis on tceA and no 

6xHis on tceB 
MtCam KSC43 pSM12 Gene for MtCam in pES1 without leader 

sequence, no 6xHis 
MaProRS KSC44 pMaProRS Gene for MaProRS in pES1 with 6xHis and TAP 

tags 

IV controller.  In order to optimize growth conditions, salts (NaCl, MgSO4, KCl, 

CaCl2 and NH4Cl), prepared as a 4X solution autoclaved separately in a 

polypropylene carboy, and a 1,400X filter-sterilized mineral supplement (final 

supplemental 10X concentration in medium: 25 µM iron, 30 µM cobalt, 10 µM

nickel, 8.4 µM molybdenium and 5.8 µM selenium) were added to the bioreactor 

after sterilization.  The recombinant strains of M. acetivorans were maintained in the 

presence of 1 µg mL-1 puromycin to maintain transformed plasmids. 

To test for promoter induction, M. acetivorans KSC19 (Table 1) was grown in 

a 20 L bioreactor containing 14 L M-medium, 0.1 M trimethylamine-HCl (TMA) and 

0.1 mM sodium acetate.  Sterile 4X salts solution, mineral supplement, sodium 

sulfide and puromycin were added separately to the medium after it was autoclaved.  

The bioreactor was inoculated with approximately 0.6 L M. acetivorans KSC19 

grown on 0.1 M TMA. As the culture entered the mid-exponential and stationary 
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phases of growth, samples (1 L) were removed from the bioreactor at regular intervals 

and pelleted aerobically by centrifugation for 30 min at 4°C at 10,000 x g.  Cell 

pellets were stored at -80ºC. 

 

Continuous Culture of M. acetivorans 

Continuous culturing of M. acetivorans KSC8 was done in a 20 L BioFlo IV 

bioreactor configured as a chemostat (Figure 1) by the addition of a SS outflow tube 

(0.635 cm OD) that was inserted through a top port of the vessel and protruded into 

the vessel to a level where the medium reached 5.6 L.  Outside the vessel the outflow 

was equipped with a SS cutoff valve immediately above the reactor vessel followed 

by a 6 meter length of SS tubing (0.635 cm OD) coiled 20 times and surrounded by a 

16 cm x 16 cm heating pad.  The outflow tube was maintained at 90 ± 5ºC with a 

Thermolyne type 45500 input controller to prevent backflow contamination of the 

culture vessel.  Bicarbonate-buffered M-medium (6 L) containing 0.1 M sodium 

acetate and no phosphate was prepared in the vessel.  Salts (NaCl, MgSO4, KCl, 

CaCl2 and NH4Cl, 4X solution prepared in a glass flask), sodium sulfide and 

puromycin were added separately.  The bioreactor was inoculated with 1 L M. 

acetivorans KSC8 grown on 0.1 M sodium acetate and 4.0 mM phosphate. 
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Figure 1. BioFlo IV bioreactor configured for continuous culture.  “A” indicates the 
feed carboy.  “B” indicates the peristaltic pump controlling the addition of medium.  
“C” indicates the medium input valve.  “D” Indicates the bioreactor, which contains 
the culture.  “E” indicates the cell density probe.  “F” indicates the culture outflow 
valve.  “G” indicates the heated coil which sterilizes culture outflow, preventing back 
contamination of the culture. 
 

Marine medium was prepared separately in a 13.75 L glass carboy containing 

a magnetic stir bar without the addition of sodium phosphate, cysteine or sodium 

sulfide.  Medium was prepared and sterilized aerobically.  A stopper was prepared 

that fit into the carboy and was fitted with three lengths of 0.635 cm (OD) SS tubing: 

one length connected externally to a gas line and was fit with a gassing stone 

extending to the carboy bottom to sparge the medium; one length extended to the 
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carboy bottom and was connected externally to a peristaltic pump to transfer medium 

from the carboy to the bioreactor; one length extended into the headspace of the 

carboy and was externally fit with a 6,894 Pa relief valve to vent the carboy and 

prevent excess pressurization.  This stopper was sterilized separately from the carboy 

by autoclaving and aseptically inserted into the carboy after the medium had cooled.  

The carboy was sparged with 80% N2:20% CO2 while stirring with a magnetic stir 

bar.  After 1 h of sparging, cysteine-HCl was injected anaerobically into the medium 

from an anaerobic sterile solution to a final concentration of 0.025% (w/v).  After 

another 1 h, sodium sulfide was injected anaerobically into the medium from an 

anaerobic sterile solution to a final concentration of 0.025% (w/v).  After sparging the 

medium until it turned clear, the tubing exiting the carboy was clamped and the 

medium outflow was attached to the BioFlo IV inlet port.  Once the culture in the 

fermentor reached mid-exponential growth the port was opened and medium was 

pumped into the bioreactor.   

Continuous dilution of the culture in the BioFlo IV was achieved by the 

constant addition of medium from the feed carboy into the BioFloIV, which was 

controlled by a peristaltic pump (Watson-Marlow).  Constant bubbling of the medium 

in the feed carboy with 80% N2:20% CO2 prevented negative pressure in the feed 

carboy while maintaining anoxic conditions.  Constant bubbling of the medium in the 

BioFloIV with 80% N2:20% CO2 maintained positive pressure in the vessel, enabling 

the culture to be pushed out of the vessel when it reached a level above 5.6 L once the 

outflow valve was opened; the volume in the BioFloIV was maintained by this 

mechanism, providing continuous dilution.  Contamination of the bioreactor outflow 
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was prevented by the heated coil connected to the outflow tubing.  Contamination of 

the inflow was prevented using aseptic technique when changing feed carboys and 

offline measurements were made through a resterilizable sample port.  Growth was 

monitored by a MAX Cell Mass Sensor (Cerex, Inc.) calibrated with offline optical 

density measurements at 550 nm.  The culture was monitored for contamination by 

light microscopy.  A sterile, anaerobic solution of dibasic sodium phosphate was 

added to both the culture and the medium carboy when the density of the culture 

began to decrease, indicating potential phosphate limitation.  Phosphate concentration 

was estimated by measuring soluble reactive phosphorous using a colorimetric 

technique (Murphy and Riley 1962). 

 

Effects of stainless steel on growth of M. acetivorans 

Duplicate 10 mL cultures of M. acetivorans were grown in M-medium 

containing 0.1 M sodium acetate in 30 mL glass anaerobe tubes.  The medium was 

sealed under N2 -CO2 with butyl rubber stoppers secured with aluminum crimp seals. 

Prior to autoclaving and inoculating media, two 5 cm lengths of 0.64 cm (OD), 0.53 

cm (ID) type 3-16 stainless steel (SS) tubing (Alltech) were added to 2 replicate sets 

of tubes.  After autoclaving and before inoculating media, all culture tubes were 

aseptically opened in an anaerobic chamber containing 75% N2, 20% CO2 and 5% H2.

Sterile lengths of steel tubing were added to 2 sets of tubes.  Sterile mineral 

supplement solution (final supplemental concentration in medium: 25 µM iron, 30 

µM cobalt, 10 µM nickel, 8.4 µM molybdenium and 5.8 µM selenium) was added to 

one set of tubes autoclaved with lengths of SS tubing, one set of tubes with sterile SS 
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tubing added after autoclaving, and one set of tubes with mineral supplement alone.  

The tubes were inoculated anaerobically and incubated at 30 ºC for 2 weeks.  At 

regular intervals, methane was analyzed on a Hewlett Packard model 5890A Gas 

Chromatograph equipped with a flame ionization detector and 0.32 x 182 cm SS 

column packed with 80/100 mesh silica gel (Supelco).  The oven was run 

isothermally at 110 ºC with He as the carrier gas. Headspace samples (100 µL) were 

injected sequentially with 1 min spacing using a gas-tight syringe with valve.  

Purified methane (Matheson) was used as an external standard.  Methanogenesis rates 

were calculated over a 2 week time period. 

 

Substrate kinetics of cdh promoter in batch culture 

Substrate kinetics of the cdh promoter were investigated using the previously 

described M. acetivorans KSC8, a strain possessing a recombinant reporter plasmid 

with a cdh::lacZ fusion (Table 1; Apolinario-Smith, 2005 #6549].  M. acetivorans 

KSC8 was grown in 100 mL cultures containing either 10 mM TMA and sodium 

acetate in concentrations ranging from 0 to 0.1 M or in 10 mL cultures containing 10 

mM methanol and sodium acetate in concentrations ranging from 0 to 0.15 M sodium 

acetate (Table 2).  Some of these cultures were induced by addition of acetate to an 

additional concentration of 0.1 M (Table 2).  Cultures were incubated at 35ºC, optical 

density was monitored at 550 nm, and 1 mL samples were extracted anaerobically 

using a syringe for β-galactosidase activity assays at selected times between 24 and 

160 h.  Samples were immediately put on ice and pelleted at 14,900 x g for 5 min at 
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4ºC.  β-Galactosidase activity assays were performed as described previously 

(Apolinario et al. 2005). 

 

Table 2. Results of batch experiments to test the effects of substrates on cdh 
promoter activity over time using M. acetivorans KSC8.  β-galactosidase (β-gal) 
activity is expressed as specific activity per µg mL-1 protein.  “NA” stands for “not 
applicable”. 
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TMA 10 0 100 1 7 0.50 ± 0.05 1.16 ± 0.16 2.1 
TMA 10 10 100 1 7 0.38 ± 0.08 0.80 ± 0.03 2.1 
TMA 10 50 100 1 7 0.35 ± 0.08 0.81 ± 0.03 2.3 
TMA 10 50 0 NA 5 0.37 ± 0.04 1.27 ± 0.25 3.4 
TMA 10 100 0 NA 5 0.39 ± 0.02 2.11 ± 0.00 5.4 

Methanol 10 10 100 58 81 0.55 ± 0.03 0.89 ± 0.05 1.6 
Methanol 10 50 100 58 81 0.63 ± 0.23 0.95 ± 0.07 1.5 
Methanol 10 0 100 58 81 0.65 ± 0.17 0.81 ± 0.01 1.2 
Methanol 10 100 0 NA 81 1.12 ± 0.37 1.29 ± 0.10 1.2 
Methanol 10 150 0 NA 81 0.93 ± 0.19 1.26 ± 0.09 1.4 
Methanol 10 0 0 NA 81 0.75 ± 0.04 0.91 ± 0.08 1.2 

Analysis of alternate promoters for protein expression 

To test the induciblity of specific genes in M. acetivorans after the addition of 

acetate to a methanol-grown culture, M. acetivorans C2A was grown in a 10 mL 

culture in the presence of 50 mM methanol.  When the culture was in mid-

exponential phase, sodium acetate was added to the culture to a final concentration of 

0.15 M.  Prior to the addition of sodium acetate and 1 h and 24 h after the addition of 
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acetate, 1.5 mL of the culture was removed by syringe and pelleted by centrifugation 

at 14,900 x g for 5 min at 4ºC.  To test the inducibility of specific genes in M. 

acetivorans after the addition of TMA to an acetate-grown culture, M. acetivorans 

C2A was grown in a 100 mL culture containing 50 mM sodium acetate.  When the 

culture was in mid-exponential growth, TMA was added to a concentration of 0.15 

M.  Prior to the addition of TMA and 1 h and 24 h after the addition of acetate, 10 mL 

of the culture was removed by syringe and pelleted by centrifugation at 3,200 x g for 

10 min at 4ºC.  Cultures were grown in the presence of 0.1 M acetate or TMA for use 

as controls.  RNA from these cultures was extracted from 1.5 mL TMA-grown cells 

and 10 mL acetate-grown cells, which were removed by syringe during mid-

exponential growth and pelleted by centrifugation at 14,900 x g for 5 min or 3,200 x g 

for 10 min, respectively, at 4ºC.  Total RNA was extracted immediately from the cell 

pellets using the RNeasy Mini Kit (Qiagen) per the manufacturer’s protocols.  After 

eluting the RNA from the column provided in the RNeasy Mini Kit, the RNA was 

incubated with 20 U RQ1 DNase (Promega) in the buffer provided by the 

manufacturer.  The DNase was removed by another purification using the RNeasy 

Mini Kit.  RNA was stored in 10 µL aliquots at -20ºC.  The RNA was quantified by 

reading its absorbance at 260 nm and visualized to observe quality by formaldehyde 

gel electrophoresis.  Briefly, a 1.2% agarose (w/v) gel was prepared using 

diethylpyrocarbonate (DEPC) treated 40 mM MOPS, pH 7.0, containing 10 mM 

sodium acetate, 1 mM EDTA, and 6.7% formaldehyde (v/v).  RNA (1 µg) was 

incubated in buffer (final concentration: 6.7% formaldehyde (v/v), 50% formamide 

(v/v), 10 mM sodium acetate, 1 mM EDTA in 40 mM MOPS, pH 7.0) and incubated 
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at 55 ºC for 15 min.  Loading buffer (10 µL, 0.1 mM EDTA, 50% glycerol (v/v), 

0.25% bromophenol blue (w/v), 0.25% xylene cyanol (w/v)) was then added, the 

samples were added to the wells and electrophoresis was carried out at 50 mA for 105 

min in 40 mM MOPS, pH 7.0, containing 10 mM sodium acetate and 1 mM EDTA.  

RNA was visualized by UV after staining with SyBr Gold (Molecular Probes). 

Primers were designed to amplify intergenic regions in the mRNA 

approximately 200 to 350 nucleotides (nt) in length.  Primers were designed to 

amplify the 197 nt beginning 66 nt downstream of the start of transcription in the M. 

acetivorans gene MA2252 (forward primer: 5’- 

GCGCTTAATGCAGTTTCATTCACC-3’; reverse primer: 5’- 

GCCAGAGCACCAGCAGGAGG-3’), the 225 nt beginning 45 nt downstream of the 

start of transcription in MA4634 (forward primer: 5'-

CAACTGCACACATATATGGCTCAG-3'; reverse primer: 5'-

CCGATGAGCTTTATGACGGAATTG-3'), the 278 nt beginning 282 nt downstream 

of the start of transcription in MA0528 (forward primer: 5'-

GGGGCCGCGACAAGAAGTTC-3'; reverse primer: 5'-

GACGGGGTCGATGTGGTGG-3'), and the 349 nt beginning 571 nt downstream of 

the start of transcription in MA0932 (forward primer: 5'-

CCCGTGGGAGAGAATGTCG-3', reverse primer: 5'-

CCCTACGGGGGCAGTCCC-3').  

Reverse transcriptase PCR (RT-PCR) was done using reagents provided in the 

Access RT-PCR Kit (Promega).  The 50 µL reaction contained 100 ng total RNA, 1.5 

mM MgSO4, 0.4 mM dNTPs, 5 U reverse transcriptase, 5 U Tfl polymerase and 0.1 
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mM of both forward and reverse primer in the reaction buffer provided by the 

manufacturer.  Thermocycler conditions were as follows: one reverse transcription 

step at 45ºC for 45 min, followed by denaturation for 2 min at 94ºC, followed by 40 

amplification cycles of 30 s at 94ºC, 1 min at 60ºC, and 1 min at 68ºC, with a final 

extension time of 7 min at 68ºC.  PCR conditions for most probable number (MPN) 

RT-PCR were identical except that serial dilutions of RNA were added to reactions 

which contained 10, 1.0 or 0.1 ng total RNA.  Amplicons were visualized under UV 

with agarose gel electrophoresis using 1.2% (w/v) agarose gels stained with ethidium 

bromide. 

 

Construction of pES1 expression vector 

The pES1 expression vector was constructed by first amplifying the 1,114 bp 

region from 1105 bp upstream to 10 bp downstream of the beginning of the M. 

thermophila TM-1 cdhABCDE operon (Genbank accession no. U66032) from 

pCDH1 (Sowers and Gunsalus 1993).  The PCR reaction mixture contained PCR 

Buffer II (Applied Biosystems), 0.8 mM dNTPs, 1.5 mM MgCl2, 50 ng pCDH1, 100 

pmol of each primer, and 1.5 U AmpliTaq DNA polymerase (Applied Biosystems).  

The PCR reaction conditions were as follows: initial denaturation at 95ºC for 5 min, 

followed by 30 amplification cycles of 30 s at 95ºC, 1 min at 55ºC, and 1 min at 

72ºC, with a final extension time of 5 min at 72ºC.  The PCR fragment was directly 

ligated into the pCR2.1 plasmid using the TA Cloning Kit (Invitrogen) and the 

resultant plasmid contained the region upstream of the cdh promoter in the reverse 

orientation and was called pCDHPTA-IM.  The cdh promoter was amplified from this 
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plasmid with forward primer 5’- GCCCTCTAGATGCAT-3’ and reverse primer 5’- 

TGCCTCTAGAAGCTTTACCT-3’, which introduced flanking XbaI restriction sites 

using the same reaction conditions described above.  The 1,180 bp PCR product was 

directly ligated into pCR2.1 using the TA Cloning Kit (Invitrogen), creating a new 

construct which was named pMH2.  The pMH2 plasmid and the pET28b(+) plasmid 

(Novagen) were digested with SphI and XbaI (New England Biolabs).  The 1,172 and 

5,105 bp fragments were isolated using agarose gel electrophoresis from the pMH2 

and pET28b(+) plasmid digests, respectively, and purified using the Wizard PCR 

Purification Kit (Promega).  The resultant pET28b(+) vector and cdh promoter insert 

were ligated by overnight incubation at 14ºC with T4 DNA ligase (New England 

Biolabs).  The ligation reaction mixture was transformed into chemically competent 

E. coli BL21 by a MgCl2/CaCl2 transformation protocol, plated on LB agar plates 

containing kanamycin and incubated overnight at 37ºC.  The resultant colonies were 

screened by extracting the plasmids using the Wizard Plus MiniPreps DNA 

Purification System (Promega) and by subsequent restriction analysis.  The correct 

construct was named pMH5 and contained the cdh promoter with the coding 

sequence for 6xHis fusions at the 5’ end.  Primers were designed to amplify the cdh 

promoter and 6xHis sequence from the pMH5 plasmid.  The forward primer 5’- 

CACACCCGGCGCGCCTAAT-3’ and reverse primer 5’- 

CTCTTCCGGGCGCGCCCATGCC-3’ introduced flanking AscI sites.  The PCR 

reaction mixture contained PCR Buffer II (Applied Biosystems), 0.8 mM dNTPs, 3 

mM MgCl2, 180 ng pMH5, 100 pmol of each primer, 1.5 U AmpliTaq DNA 

polymerase (Applied Biosystems).  PCR reaction conditions were as follows: Initial 



28 
 

denaturation at 95ºC for 5 min, followed by 30 amplification cycles of 30 s at 95ºC, 1 

min at 55ºC, and 1 min at 72ºC, with a final extension time of 5 min at 72ºC. 

Another plasmid was constructed by digesting the pEA103 plasmid 

(Apolinario et al. 2005) with ClaI (New England Biolabs) to delete a significant 

portion of the lacZ gene.  After digestion, the 10,446 bp DNA fragment was excised 

from an agarose gel, purified as described above and ligated together by incubation 

with T4 DNA ligase (New England Biolabs).  After transforming the plasmid into E. 

coli DH5α-λpir by techniques described above, the colonies were screened by 

restriction analysis.   The construct was designated pEA114.  This plasmid was 

digested with Eco47III and EcoRV to remove more of the residual lacZ gene.  The 

9,724 bp fragment was excised from an agarose gel, purified as described above and 

ligated back together and transformed into E. coli DH5α-λpir by techniques described 

above.  The transformants were screened by restriction analysis and the confirmed 

construct was called pEA115. 

The amplicon from pMH5 containing the cdh promoter and sequence for 

6xHis fusions (insert) and the pEA115 shuttle plasmid (vector) were digested with 

AscI. The linearized pEA115 vector was treated with shrimp alkaline phosphatase 

(USB Corporation) to prevent it from circularizing.  The shrimp alkaline phosphatase 

was denatured by incubating the vector for 16 h at 37ºC.  The AscI used to digest the 

insert was denatured by incubation for 20 min at 70°C.  The vector and insert were 

ligated by incubation overnight at 14ºC with T4 DNA ligase (New England Biolabs), 

transformed into chemically competent E. coli DH5α-λpir by a MgCl2/CaCl2

transformation protocol and plated onto LB agar medium containing ampicillin.  



29 
 

Transformants were screened by subsequent restriction analysis and then by 

sequencing.  The final plasmid construct, designated pES1, contains the cdh promoter 

upstream of a multiple cloning site flanked by 6xHis fusion sequence in a plasmid 

designed to propagate in and contain selectable markers for both E. coli and M. 

acetivorans.

Construction of expression plasmids 

Methanocaldococcus jannaschii prolyl tRNA synthetase (MJ1238, MjProRS) 

was amplified from M. jannaschii genomic DNA using the forward primer 5’-

TTAATTTGCTAGCAAATAAAAGG-3’ and the reverse primer 5’-

GTTCATAAATCGGATCCTAAAAATAAG-3’, which inserted flanking 

NheI/BamHI restriction sites.  These enzyme sites were designed to ensure an N-

terminal 6xHis translational fusion when the PCR product was inserted into and 

expressed using the pES1 vector.  The 50 µL PCR reaction contained PCR Buffer II 

(Applied Biosystems), 3 mM MgCl2, 0.4 mM dNTPs, 1.0 µg M. jannaschii genomic 

DNA, 2 mM of each primer and 1.5 U AmpliTaq DNA Polymerase (Applied 

Biosystems). After amplification, the PCR product and the pES1 vector were digested 

with NheI and BamHI (New England Biolabs).  The digested vector was treated with 

shrimp alkaline phosphatase (USB Corporation).  The enzymes were denatured and 

the PCR product and the vector were incubated with T4 DNA ligase (New England 

Biolabs) and transformed into E.  coli DH5α-λpir by a MgCl2/CaCl2 chemical 

transformation technique and incubated on LB agar plates containing ampicillin.  

Colonies were screened by digesting with NheI and BamHI and then by sequencing 
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with primers designed to sequence from the multiple cloning site in pES1 from both 

directions.  The MjProRS expression construct was named pSM1. 

The M. acetivorans prolyl tRNA synthetase (MA3886, MaProRS) expression 

plasmid was constructed in the laboratory of our collaborator Dr. Ya-Ming Hou at 

Thomas Jefferson University in Philadelphia, PA.  Briefly, MaProRS was amplified 

from M. acetivorans genomic DNA and cloned into the pES1 expression vector with 

the 6xHis fusion as well as the tandem affinity chromatography (TAP) fusion.  The 

MaProRS expression construct was named pMaProRS. 

Cloning of Methanosarcina thermophila carbonic anhydrase (MtCam) into the 

pES1 vector was performed similarly to the cloning of MjProRS.  Primers were 

designed to amplify the MtCam gene from an E. coli expression vector containing the 

MtCam gene (GenBank Accession no. U08885) without its leader sequence that was 

prepared in the laboratory of Dr. James G. Ferry at Pennsylvania State University 

(Alber and Ferry 1994).  The forward primer 5’-

GAAGGAGATCTAGATATGCAGGAAATAACCG-3’ and reverse primer 5’-

GCTTCAAGCTCATCGATTTATGAAGTTTC-3’ inserted flanking XbaI/ClaI 

restriction sites.  The PCR amplification was done similarly to the amplification 

described for MjProRS (PCR Buffer II (Applied Biosystems), 0.8 mM dNTPs, 1.5 

mM MgCl2, 70 ng pCCAM, 50 pmol each primer, 0.5 µL AmpliTaq DNA 

polymerase (Applied Biosystems)).  The PCR product was digested with XbaI and 

ClaI (insert, 677 bp).  The pES1 plasmid (vector) was prepared by digestion with ClaI 

first and then partial digestion with XbaI for 5 minutes.  The 11,023 bp band was 

excised from a 0.8% low-melt agarose gel run in TAE buffer for 1.5 h at 50 mA and 
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purified using the Wizard PCR Prep Kit (Promega).  The insert and vector were 

incubated with T4 DNA ligase (New England Biolabs) and transformed into E.  coli 

DH5α-λpir.  Colonies were screened by digestion with XbaI/ClaI and then by 

sequencing.  The MtCam expression construct was named pSM12. 

The TCE reductive dehalogenase from Dehalococcoides ethenogenes was 

cloned by first amplifying the tceAB gene (Genbank accession no. AF228507) from 

D. ethenogenes genomic DNA, which was a gift from Dr. Stephen H. Zinder of 

Cornell University.  The gene was amplified with approximately 100 bp of flanking 

DNA and cloned into a pCR2.1 vector for further cloning.  The resultant construct 

was called pTCE.  The genes were amplified from this construct using the forward 

primer 5’- GAGGTATGCTAGCAGTATGAGTGAA-3’, which inserted a NheI 

restriction site 9 bp upstream of the tceAB gene and two reverse primers, one (5’- 

GCACCACCCATAAAGATCTATTC-3’) inserted a BglII restriction site 16 bp 

downstream of the tceA gene and one (5’- 

GCTGAGATCTAATCGTGTGTACAGGG-3’) inserted a restriction site 75 bp 

downstream of the tceAB gene.  The 50 µL PCR reaction mixture contained PCR 

Buffer II (Applied Biosystems), 0.8 mM dNTPs, 1.5 mM MgCl2, 10 ng pTCE, 50 

pmol of each primer and 2.5 U AmpliTaq (Applied Biosystems).  The PCR products 

(inserts) were digested first with NheI and then with BglII (New England Biolabs).  

pES1 was digested with NheI/BamHI and the 11,382 bp fragment (vector) was 

excised from an agarose gel and purified using the Wizard PCR Prep Kit (Promega).  

The vector and insert were ligated together as described above and transformed into 



32 
 

E.  coli DH5α-λpir.  Transformants were screened by restriction analysis and the tceA 

and tceAB expression constructs were named pEA129 and pEA130, respectively. 

 

Transformation of expression vector and plasmids into M. acetivorans and 

induction of the cdh promoter 

M. acetivorans was transformed with the pES1 vector and expression 

plasmids as described previously (Metcalf et al. 1997).  Transformants were selected 

and maintained on medium containing puromycin (2 µg mL-1).  Transformants were 

further screened by extracting the plasmid from the recombinant strain grown on 0.1 

M TMA using the Wizard Plus Minipreps DNA Purification System (Promega).  The 

plasmids were then transformed into E.  coli DH5α-λpir by techniques described 

above.  Plasmids were extracted from the transformants and screened by restriction 

analysis and by sequencing.  All transformants selected by growth on puromycin 

were positive for the presence of the expression plasmid.  Medium used in the 

transformation contained 10 mM TMA and 50 mM sodium acetate.  Recombinant 

strains were transferred 3 times to medium containing 0.1 M sodium acetate to ensure 

maximum expression of the recombinant protein from the cdh promoter. 

 

Protein purification 

M. acetivorans KSC19 cells (1L from bioreactor run as pH-auxostat) were 

pelleted at 10,000 x g for 30 min at 4ºC.  The cell pellet was frozen at -80°C and cells 

were lysed by thawing, resuspension in sonication buffer (0.5 M NaCl, 20 mM Tris, 

pH 8.0) containing 10 mM imidazole, and sonication on ice.  Cell debris was pelleted 
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at 10,000 x g for 30 min at 4°C, the supernatant was decanted and centrifuged at 

100,000 x g for 1 h at 4°C.  The supernatant was removed (S100 supernatant) and 

total protein was measured using the Bradford assay (BioRad).  Metal affinity 

purification was performed at 4°C as follows: S100 supernatant (10 to 50 mg of 

protein) was incubated with 4 mL Ni-NTA Agarose 50% resin slurry (Qiagen) with 

shaking.  Protein/resin slurries were loaded into columns with silanized glass wool 

and columns were washed 4 times with 10 mL of sonication buffer containing 20 mM 

imidazole.  Protein was eluted with 10 mL sonication buffer containing 500 mM 

imidazole and 1 mL fractions were collected.  Protein concentration of fractions was 

measured with the Bradford assay.  Proteins were visualized by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 10% gels after 

Coomassie Brilliant Blue staining. 

 

Activity analysis of MjProRS 

Activity analyses of MjProRS were performed in the laboratory of Dr. Ya-

Ming Hou at Thomas Jefferson University in Philadelphia, PA.  M. acetivorans cells 

(4 g) were resuspended in 20 mL buffer A (50 mM Tris pH 7.5, 100 mM NaCl, 2 mM 

β-mercaptoethanol) and 1 tablet of complete inhibitor cocktail (Roche, Inc.).  The 

cells were sonicated until the cell lysate was fluid and had cleared (approximately 3 

times at 50% power for 45 seconds).  The suspension was centrifuged at 28,000 x g 

for 30 minutes and the resulting supernatant was heated at 70°C for 15 minutes, then 

centrifuged as above for 1 hour.  The heated supernatant was incubated with Ni2+ 

affinity resin (His-Link resin, Promega, Inc.) for 30 minutes at room temperature with 
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shaking.  The resin was washed with buffer A 3 times, and the bound MjProRS was 

eluted at 150 mM imidazole and was judged by SDS-PAGE to be 95% pure.  To 

further assure purity, the MjProRS was purified by FPLC using a mono-Q column 

(Amersham Biosciences) with a gradient from buffer B (50 mM Tris pH 7.5, 50 mM 

NaCl, 2 mM β-mercaptoethanol) to 50 % buffer C (buffer B with 1 M NaCl) over 30 

minutes.  The protein eluted at approximately 20% buffer C.  The activity of the 

purified MjProRS was confirmed by active site titration (Fersht et al. 1975).  The 

standard protocol was followed (Hou et al. 1993) to test the ability of the enzyme to 

aminoacylate the transcript of Mj tRNAPro (UGG) with proline, and to obtain the KM

and kcat parameters for tRNAPro.  

 

Activity analysis of DeTCE-RD 

The dehalogenase activity of the recombinant strains expressing the tceA and 

tceAB genes was tested on whole cells pelleted and resuspended anaerobically in 25 

mM bis-tris propane (BTP), pH 7.0 containing 150 mM NaCl, 2 mM cysteine, 2 mM 

ferrous ammonium sulfate and 1 mM Phenylmethylsulphonylfluoride (PMSF).  

Reactions were carried out in sealed and degassed glass cuvettes containing 2 mL 25 

mM BTP, pH 7.0, containing 150 mM NaCl, 2 mM methyl viologen (MV) and 4 µg

protein.  The MV was reduced by the addition of titanium (III) citrate (Zehnder and 

Wuhrmann 1976).  TCE (10µL 5% solution (v/v) in ethanol) was added to begin the 

reaction.  Reductive dehalogenation was assayed spectrophotometrically using 

reduced methyl viologen (MV) as an electron donor (Equation 1; Neumann et al. 

1995). 
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Equation 1: 

R-Cl + 2 MV+ + H+ � R-H + Cl- + 2 MV2+ 

The oxidation of MV was measured at 578 nm (ε578 = 9.7 mM-1cm-1), 660 nm (ε660 = 

5.6 mM-1cm-1), and 700 nm(ε578 = 2.4 mM-1cm-1).  The rate of reductive 

dechlorination was calculated as 1 mole chloride removed for each 2 moles of MV 

oxidized and the rates are reported as µmoles chloride released per minute per mg 

protein. 

 

Results

Development of a recombinant system for expression of proteins in M. 

acetivorans 

A system for expression of recombinant proteins in M. acetivorans was 

successfully developed.  This system utilizes a plasmid-based shuttle vector that 

propagates in and possesses selectable markers for both the archaeon M. acetivorans 

and the bacterium Escherichia coli (Figure 2).  The plasmid was designed with the 

promoter for the carbon monoxide dehydrogenase/acetyl coenzyme A synthase (cdh)

operon upstream of a multiple cloning site (Terlesky et al. 1986; Sowers and 

Gunsalus 1993).  The multiple cloning site is flanked by sequence for 6xHis 

translational fusions.  When fused to the gene of interest, the 6xHis fusion enables the  
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Figure 2. Expression vector pES1.  Figure 2A shows the details of the cloning sites 
and Figure 2B shows the entire plasmid.  Vector contains genes for selection by 
ampicillin resistance in E. coli and puromycin resistance in M. acetivorans. The 
origins of replication are OriR6K and Ori pC2A for E. coli and M. acetivorans,
respectively.  Downstream of the carbon monoxide dehydrogenase/acetyl coenzyme 
A (cdh) promoter is a multiple cloning site flanked by sequence for 6xHis tags and 
the T7 tag for optional protein fusions to aid in protein purification.  An N-terminal 
6xHis fusion may be cleaved by digestion with thrombin using the thrombin digestion 
site.  After the cdh promoter are an archaeal ribosomal binding site (aRBS) and a 
bacterial ribosomal binding site (bRBS). 
 
Figure 2A. 

Figure 2B. 
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protein to be purified through a single-step nickel-affinity column purification.  The 

cdh promoter has been shown to be highly regulated in response to growth substrate 

and it was hypothesized that expression with this promoter could be attenuated or 

induced by introducing different substrates.  Expression from the promoter is 30-fold 

higher when the organism is grown on acetate vs. the methylotrophic substrates, 

methanol and trimethylamine (Apolinario et al. 2005). This expression vector can be 

efficiently transformed into M. acetivorans using the protocol developed by (Metcalf 

et al. 1997).  After transforming the expression constructs into the organism and 

growing the organism on acetate as a growth substrate, expression of the gene of 

interest is initiated. 

The expression plasmids remained stable in M. acetivorans through the 

process of transformation.  After transformation, plasmids were extracted from the 

recombinant strains and transformed into E. coli. After restriction analysis and 

sequencing of the cloning site, it was determined that all expression plasmids were 

maintained in the transformed strains.  The expression vector has the same plasmid 

backbone as the pKJ104 and pEA103 plasmids described in Apolinario et al. 2005.  

The plasmid is present at approximately 15 copies per cell when the organism is 

grown on either acetate or methanol.  The plasmid was also found to be stable for at 

least 42 generations in the presence of puromycin and up to 22 generations in the 

absence of puromycin (Apolinario et al. 2005). 

In order to increase the yield of recombinant protein, a system for cultivation 

of acetate-grown M. acetivorans to high densities in a stainless steel (SS) bioreactor 
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was developed.  The organism had previously been grown to high densities in a glass 

bioreactor configured as a pH-auxostat (Sowers et al. 1984).  In this system, the 

organism is grown in unbuffered medium kept at a constant pH by the addition of 

acetic acid.  There is a stoichiometric release of hydroxyl anions as acetate is 

converted to methane.  By lowering the pH with acetic acid, the pH and substrate 

concentration remain constant throughout growth, which enables the culture to be 

grown to high densities (Sowers et al. 1984). 

Cultivation to high densities was not achieved in a SS bioreactor, because the 

growth of culture was either inhibited by a leachate not present in glass bioreactors or 

by sequestering of trace metals by adsorption to the SS vessel.  The cell yield 

previously reported for M. acetivorans grown in a glass bioreactor configured as a 

pH-auxostat was 3.5 g wet weight per L (Sowers et al. 1984), while the cell yield was 

at least 5-fold less in the SS bioreactor (Table 3).  To determine if the SS was the 

factor, experiments were done to test the inhibition of M. acetivorans cultures grown 

in medium autoclaved with a 0.635 (OD) x 0.533 (ID) cm length of SS tubing vs. 

cultures autoclaved prior to adding SS tubing.  It was shown that the growth rate of 

the organism was 10-fold higher in medium that did not contain the SS during 

autoclaving (Figure 3).  Using this observation, medium was prepared in the 

bioreactor without salts (NaCl, MgSO4, KCl, CaCl2 and NH4Cl).  A 4X concentrated 

salts solution was prepared and autoclaved separately from the rest of the medium 

components in a polypropylene carboy and added to the bioreactor after it was 

sterilized and cooled.  Using this method the density of the culture increased by 

approximately 4-fold (Table 3).   
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Figure 3. Effect of stainless steel (SS) heated by autoclaving and then 
incubated with marine medium, SS incubated with marine medium autoclaved 
without SS, and 10-fold increased mineral supplement on the growth (as measured by 
methanogenesis rate) of M. acetivorans. Increased mineral supplement results in a 
final concentration of 25 µM iron, 30 µM cobalt, 10 µM nickel, 8.4 µM
molybdenium and 5.8 µM selenium in the medium. 
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To determine whether trace nutrients become limiting due to adsorption to the 

SS vessel the effect of supplementing minerals on the growth of M. acetivorans in the 

presence of stainless steel was also tested.  The minerals that were supplemented were 

iron, molybdenum, cobalt, selenium and nickel.  These were chosen because each has 

been shown to enhance the growth of methanogens (Schonheit et al. 1979; Diekert et 

al. 1981; Sowers and Ferry 1985; May and Patel 1988; Mukhopadhyay et al. 1999).   

There was not a large difference in the growth rate of the organism when 10-fold 

greater minerals were added to small batch cultures (Figure 3), however it was 

Incubated with 
SS 
 
Autoclaved 
with SS 
 

Minerals 
added
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hypothesized that minerals may be limiting at a later stage in the growth of the 

organism.  Fermentor runs were done with 5- and 10-fold higher mineral 

concentration than normally used in the fermentation medium and the density of the 

culture increased by approximately 2-fold (Table 3).   

 

Table 3. Effect of sterilizing salt solution separately in a polypropylene carboy and 
increasing mineral concentration of medium when growing M. acetivorans in a 
stainless steel bioreactor configured as a pH-auxostat.  Mineral concentration in 
normal medium is 2.5 µM iron, 3.0 µM cobalt, 1.0 µM nickel, 0.8 µM molybdenium 
and 0.6 µM selenium. 
 

Bioreactor 
type 

 Salt 
solution 
heated in 
bioreactor 

Mineral 
supplement 
added (fold 

normal 
medium) 

Maximum 
cell yield  
(OD550)

Final yield  
(g L-1) Reference 

Glass Yes 1 Not 
reported 3.5 (Sowers et 

al. 1984) 
Stainless 

Steel Yes 1 0.3 0.74 This study 
Stainless 

Steel No 1 1.3 1.5 This study 
Stainless 

Steel No 5 2.3 2.0 This study 
Stainless 

Steel No 10 2.4 2.2 This study 

By combining post-addition of salts with trace metal supplement the cell 

density of the culture increased by 10-fold.  This system, combined with the 

expression system for recombinant proteins in M. acetivorans provided the means to 

produce recombinant protein in preparative yields. 
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Optimization of the expression system 

While the overexpression system developed for M. acetivorans enables 

expression of recombinant protein when the organism is grown with acetate as a 

growth substrate, the yield of recombinant protein is lower than yields with 

comparable systems, e.g. bacterial systems.  The yield of MjProRS expressed in the 

M. acetivorans system was approximately 1 mg L-1. This is low for a prokaryotic 

expression system but similar to yields typically obtained with eukaryotic expression 

systems.  In order to enhance expression from the cdh promoter, experiments were 

done to test the whether expression could be induced by the addition of acetate to a 

culture growing on a methylotrophic substrate.  This could enhance expression of the 

recombinant protein due to the higher growth rate of the organism on methylotrophic 

substrates, as well as allowing for the induction of expression of proteins that may be 

toxic to the cell. 

To test the inducibility of the cdh promoter, experiments were done with the 

M. acetivorans strain expressing MjProRS (M. acetivorans KSC19).  M. acetivorans 

KSC19 was grown as a batch culture in a bioreactor with 0.1 M trimethylamine-HCl 

(TMA) as a growth substrate and a small amount (0.1 mM) of acetate to stimulate cdh 

promoter activity.  When the culture reached mid-exponential phase, acetate was 

added to a final concentration of 100 mM.  The cells were lysed and protein was 

purified from samples taken from the bioreactor prior to the addition of acetate and 

from 1 to 30 hours after the addition of acetate.  The amount of MjProRS detected 
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after nickel-affinity purification was below detection in all samples (data not shown), 

indicating that no significant expression from the cdh promoter occurred. 

In order to test the inducibility of the cdh promoter under a wider variety of 

conditions, a M. acetivorans strain expressing the cdh promoter was fused to the lacZ 

gene, which codes for β-galactosidase (Apolinario et al. 2005).  Cultures were grown 

on 10 mM TMA plus 0 to 100 mM acetate (Table 2).  Additional acetate was added to 

a concentration of 100 mM to some of the cultures in mid-exponential phase in an 

attempt to induce expression from the cdh promoter.  In the cultures where acetate 

was added during mid-exponential phase in order to induce expression from the cdh 

promoter, β-galactosidase activity increased approximately 2-fold 1 h after induction.  

After this increase, the β-galactosidase activity did not increase after an additional 

134 h incubation.  In the cultures where no additional acetate was added during mid-

exponential phase, β-galactosidase activity increased by 3.4- to 5.4-fold.  No further 

increase in β-galactosidase activity resulted from additional incubation of up to 136 h.  

This shows that the expression from the cdh promoter did increase during the growth 

of M. acetivorans on mixed substrates.  However, the initial β-galactosidase activity 

was low, so the fold increase did not reflect a high level of expression from the cdh 

promoter. 

A similar experiment was also conducted with 10 mL cultures grown on 10 

mM methanol and 10 to 150 mM sodium acetate (Table 2).  Additional acetate was 

added to a concentration of 100 mM to some of the cultures in mid-exponential 

phase.  The fold increase in the cultures where acetate was added in during mid-

exponential growth and where no additional acetate was added was from 1.2- to 1.6-
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fold.  No additional increase in β-galactosidase activity resulted from additional 

incubation of the cultures for 256 h.  The increase in β-galactosidase activity when 

the cultures where grown with methanol-acetate mixed substrate was less than the 

increase in β-galactosidase activity when the cultures where gown with TMA-acetate 

mixed substrate.  Again, the initial β-galactosidase activity was quite low and the fold 

increase in β-galactosidase activity did not reflect high expression from the cdh 

promoter.  

To further test the effects of changing substrates over time on the expression 

from the cdh promoter when grown with varying amounts of mixed substrates, M. 

acetivorans was grown in a chemostat.  M. acetivorans KSC8, the cdh::lacZ fusion 

strain, was used so that the expression levels from the cdh promoter could be 

monitored by β-galactosidase activity (Apolinario et al. 2005).  The purpose of this 

study was to test cdh expression when the organism was grown with different levels 

of acetate.  Additionally, cdh expression upon gradual addition of a methylotrophic 

substrate was to be tested.   

In order to maintain steady-state conditions for the culture, nutrient limitation 

is required to control growth rate.  It is common to use carbon, nitrogen or phosphate 

limitation in chemostat studies.  However, both carbon and nitrogen could not be used 

in this study, since carbon source was a variable and Methanosarcina spp. fix gaseous 

nitrogen (Belay et al. 1984; Murray and Zinder 1984; Postgate 1984), which is 

continuously bubbled into culture in the anaerobic bioreactor.  Because of this, 

phosphate limitation was used.  In batch studies with M. acetivorans cultures 

containing low concentrations of phosphate, 25 µM phosphate was shown to be 
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limiting (Figure 4).  When the phosphate was diluted to this concentration in 

chemostat culture, however, there were no signs of nutrient limitation.  After further 

diluting the culture, washout began to occur, indicating nutrient limitation.  When 

phosphate was added back to the culture, growth was not stimulated, even when 

phosphate was at concentrations greater than what was found to be limiting in batch 

cultures.  Due to the difficulty of growing M. acetivorans in a phosphate-limited 

chemostat culture, the kinetic analysis of the cdh promoter could not be completed.  

The cultures remained dormant for several months and did not recover. 

 

Figure 4. Effect of phosphate concentration on maximum cell yield in a phosphate-
limited batch cultures of M. acetivorans grown on acetate. 
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Due to the relatively low level of recombinant protein expressed and the 

inability to induce rapid protein expression from the cdh promoter, other genes which 

may have promoters that can be induced by the addition of a different growth 

substrate were tested.  The promoters chosen for testing were 1) promoters that may 

be induced upon addition of acetate to methanol-grown cultures and 2) promoters that 

may be induced upon addition of TMA to acetate-grown cultures.  The former group 

was identified by microarray analysis of acetate- vs. methanol-grown M. acetivorans 

to be highly up-regulated in response to growth on acetate (personal communication 

with Robert P. Gunsalus).  The genes selected were MA2252 and MA4634, which 

code for hypothetical proteins.  The genes in the latter group were genes for TMA-

methyltransferases, MA0528 and MA0932, which were expected to be significantly 

up-regulated due to the preferential growth of M. acetivorans on TMA vs. acetate.   

In order to test whether these promoters could be induced by addition of a 

second growth substrate, M. acetivorans was grown on one substrate to mid-

exponential phase, and then a high level of another growth substrate was added 

(Table 4).  RNA was extracted from the cultures prior to the addition of the second 

growth substrate, and then one and twenty-four hours after the addition of the second 

substrate.  RNA was also extracted from a control culture was grown on only the 

second substrate.  Reverse-transcriptase PCR (RT-PCR) was conducted to amplify 

the intergenic region of the genes listed above (Table 4).   
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Table 4. Genes tested for ability to be induced when the organism, grown on a single 
substrate, is exposed to another during growth.  Experiments were conducted by 
growing M. acetivorans on one substrate and adding the second substrate during mid-
exponential phase.  RNA was extracted prior to addition of the second substrate, one 
hour after and twenty-four hours after the addition of the second substrate.  RT-PCR 
was performed to detect the presence of the transcript of the genes tested on all RNA 
extracts.  RT-PCR products that were detectable on ethidium bromide stained agarose 
gels are indicated by (+).  RT-PCR products that were detectable when the RNA was 
diluted to 1.0 ng per reaction are indicated by (++).  RT-PCR products that were not 
detectable are indicated by (-). 
Gene tested Initial 

growth 
substrate 
(50 mM) 

Growth 
substrate 

added 
(150 mM) 

Level of 
expression 
with initial 
substrate 

1 h after 
addition of 

second 
substrate 

24 h after 
addition of 

second 
substrate 

Level of 
expression 
with only 
second 

substrate 
Conserved 
hypothetical 

protein 
(MA2252) 

Methanol Acetate + + + +

Conserved 
hypothetical 

protein 
(MA4634) 

Methanol Acetate + + + +

TMA methyl-
transferase 
(MA0528) 

Acetate TMA + + + ++ 

TMA methyl-
transferase 
(MA 0932) 

Acetate TMA - - - +

For MA2252 and MA4634, the genes were expressed in all experimental 

conditions: before the addition of acetate, 1 h and 24 h after the addition of acetate, 

and on cells grown on acetate alone.  The amount of expression, as determined with 

MPN RT-PCR were not higher on the acetate-grown cells than on the methanol-

grown cells, indicating that these genes were not expressed more highly on methanol 

vs. acetate, which contrasted with the microarray analysis that identified these genes 

as up-regulated. 
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Different results were obtained for MA0528 and MA0932.  MA0528 was 

expressed in all experimental conditions; however the amplicon resulting from RT-

PCR on the TMA-grown culture was more dominant than that resulting from RT-

PCR of the acetate-grown culture before and after the addition of TMA.  MA0932 

was not found to be expressed in the acetate grown cells either before or after the 

addition of TMA.  It was found to be expressed in the TMA-grown cells.  This 

suggests that the expression of this gene may not be rapidly up-regulated in response 

to TMA.  Based on these results, none of the genes tested appeared to have promoters 

that were rapidly induced, and were therefore deemed to be unsuitable for inducible 

expression in a recombinant protein expression system. 

 

Expression of recombinant proteins 

Several recombinant proteins have been expressed in M. acetivorans using the 

expression system described above.  The first protein expressed was the M. jannaschii 

prolyl tRNA synthetase (MjProRS).  This protein comes from a hyperthermophilic 

archaeon and had been actively expressed in E. coli (Lipman et al. 2000).  The 

expression vector for MjProRS was readily constructed by amplifying the gene from 

M. jannaschii genomic DNA with primers designed to clone the gene into pES1 to 

incorporate a 6xHis translational fusion at the 5’ end of the gene.  MjProRS was 

expressed in M. acetivorans and purified by nickel affinity chromatography (Figure 

5).  The activity of the M. acetivorans recombinant protein was comparable to the 

activity of the E. coli recombinant protein, showing that the M. acetivorans 

expression system was equivalent to the E. coli system (Table 5).  The amount of 
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recombinant MjProRS purified from M. acetivorans was approximately 2% of the 

total cellular protein and approximately 1 mg per L culture, based on direct protein 

measurements. 

 

Figure 5. SDS-PAGE showing purification of MjProRS from M. acetivorans by 
nickel affinity chromatography. 

 
Table 5. Kinetic parameters of the recombinant MjProRS expressed in M. 
acetivorans compared to the recombinant MjProRS expressed in E. coli. The activity 
assays were conducted in the laboratory of our collaborator, Ya-Ming Hou at Thomas 
Jefferson University in Philadelphia, PA. 

Recombinant Protein 
KM

(µµµµM) 
Kcat 

(sec-1)
Kcat/KM

(µµµµM-1 sec-1)
ProRS from M. 

acetivorans 0.52 ± 0.15 0.32 ± 0.12 0.60 ± 0.11 
ProRS from E. coli 0.30 ± 0.09 0.27 ± 0.00 0.99 ± 0.30 
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The prolyl tRNA synthetase from M. acetivorans (MaProRS) was also 

expressed using the M. acetivorans protein expression system.  This enzyme was 

cloned into the pES1 expression vector with a tandem affinity purification (TAP) 

translational fusion (Rigaut 1999).  By expressing a protein with the TAP fusion, 

native proteins that complex with the recombinant protein may be purified and 

characterized.  Protein complexes are purified by affinity of the TAP fusion protein to 

an IgG-matrix.  The protein complex is then removed from the matrix by TEV 

protease cleavage.  In an additional purification step, the eluted protein is incubated 

with calmodulin-coated beads in the presence of calcium and eluted the addition of 

EGTA.  The protein complexes can then be analyzed by SDS-PAGE and identified by 

several available methods (Rigaut 1999).  By expressing MaProRS with the TAP 

fusion, the recombinant protein expression system can be used to the study the 

proteins involved in the prolyl tRNA synthetase complex that forms in vivo in M. 

acetivorans. This research is ongoing and the protein expression experiments are 

currently being conducted at the laboratory of a collaborator, Dr. Ya-Ming Hou, at 

Thomas Jefferson University in Philadelphia, PA.  

The M. thermophila carbonic anhydrase (MtCam) is being expressed with no 

protein fusion using the M. acetivorans expression system.  This enzyme has been 

actively expressed in E. coli and has been shown to be a zinc-containing 

metalloenzyme (Kisker et al. 1996).  However, Tripp, et al. (2004) have shown that 

enzyme activity is increased when enzyme is reconstituted anaerobically with iron 

(Tripp et al. 2004). The enzyme was expressed in M. acetivorans to determine which 

metal is associated with the enzyme when the protein is expressed in a methanogen.  
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The metal content analysis of this enzyme is ongoing in the laboratory of a 

collaborator, Dr. James Ferry, at Pennsylvania State University in University Park, 

PA. 

The D. ethenogenes TCE reductive dehalogenase (DeTCE-RD) was also 

expressed using the M. acetivorans expression system.  There have been no reported 

cases of a recombinant dehalogenase that has been actively expressed.  The gene for 

the enzyme, tceA, is upstream of a membrane anchor protein, tceB (Magnuson et al. 

2000).  Expression plasmids for the tceA gene and the tceA and tceB genes were made 

by cloning into the pES1 expression vector with an N-terminal 6xHis fusion on the 

tceA gene in both plasmids.  For each of these strains, enzyme activity analyses were 

conducted to test for dehalogenase activity on cell suspensions of the recombinant 

strains.  Both strains expressing the DeTCE-RD were shown to dechlorinate TCE at a 

rate significantly higher than strains not expressing DeTCE-RD, and the strain 

expressing tceAB dechlorinates at a rate slightly higher than the strain expressing tceA 

alone (Table 6).  This research is ongoing and it is not yet known whether purification 

of the enzyme using the 6xHis fusion will yield active dehalogenase. 

 

Table 6. Dehalogenase activity of whole cell suspensions of M. acetivorans strains 
expressing no recombinant gene, and the D. ethenogenes genes, tceA and tceAB.

M. acetivorans strain Recombinant gene 
expressed 

Specific activity (µµµµmole min-1 
mg protein-1)

KSC20 none 0.19 ± 0.03 
KSC41 tceA 0.56 ± 0.07 
KSC42 tceAB 0.70 ± 0.06 
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Discussion and Conclusions

The protein expression system in M. acetivorans is the first system that I am 

aware of for expression of heterologous recombinant protein for subsequent 

purification in an archaeon.  Other systems have been developed to express 

homologous proteins in the haloarchaea Haloferax volcanii and Halobacterium 

salinarum (Jolley et al. 1996; Long and Salin 2000), but these systems have high 

intracellular solute concentrations, which is inhibitory to most proteins from non-

halophilic organisms.  The system uses an E. coli-M. acetivorans shuttle plasmid 

which has been shown to be stable after transformation into the methanogen, present 

at a stable copy number and maintained after dozens of transfers in the presence of 

puromycin (Apolinario et al. 2005).  The utility of the system is improved by the 

ability to express proteins with a 6xHis fusion to aid in protein purification.  This 

system provides a new tool for the investigation of proteins that are difficult to 

express in an active form in other systems.  Because M. acetivorans possesses genes 

for all four of the known chaperoning systems, the proportion of properly folded 

proteins expressed using this system may be higher than with other systems (Macario 

et al. 2004).  M. acetivorans possesses the ability to introduce archaeal 

posttranslational modifications in proteins which may not be processed properly if the 

protein is expressed in eubacterial or eukaryal systems (Eichler and Adams 2005).  M. 

acetivorans also possesses the ability to synthesize complex metalloenzymes and 

cofactors used by anaerobic bacteria, such as corroniod cofactors (Stupperich et al. 

1990; Weiss and Thauer 1993).  M. acetivorans also expresses pyrrolysine-containing 

proteins, therefore it can accurately express proteins containing this nonstandard 
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amino acid (Soares et al. 2005).  These combined benefits of the system may allow 

for the recombinant expression of a wide array of enzymes from different organisms 

in M. acetivorans.

While the expression level of the recombinant enzyme is low (approximately 

1 mg L-1 for MjProRS) compared to E. coli expression systems, which can express 

recombinant enzyme as up to 1000 mg L-1, the recombinant enzyme expressed in this 

system is still present at levels which enable its purification and characterization.  

Higher yields of recombinant protein do not directly correlate with correct folding 

and posttranslational modifications and often systems which result in lower yields, 

e.g. eukaryotic systems, enable the expression of recombinant enzymes with higher 

activities. 

The ability to mass culture acetate-utilizing methanogens in stainless steel 

(SS) bioreactors using the pH-auxostat has been significantly improved.  Previously, 

a technique for cultivation of M. acetivorans to high densities in a bioreactor 

configured as a pH-auxostat was developed (Sowers et al. 1984).  This technique was 

developed in a glass bioreactor and the high cell densities could not be reproduced in 

a SS bioreactor.  The inhibition of growth by marine medium autoclaved in SS 

vessels is shown (Figure 2).  One difference between the use of glass and SS 

bioreactors is that grade SA240-316L SS alloy is composed of iron with 17% Cr, 

12% Ni, 2.5% Mo, 2% Mn, and traces of Si, C, P and S.  It has been shown that under 

high temperature and high salt conditions, which exist when the SS bioreactor is 

sterilized containing marine medium, metals may leach from SS (Muraleedharan 

2002).  It was hypothesized that leaching from SS bioreactor was somehow inhibiting 
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M. acetivorans growth.  By autoclaving the marine salts separately in a polycarbonate 

container and adding after sterilization of the bioreactor, the yield of acetate-grown 

M. acetivorans was improved substantially (Table 3).  As the culture grows to high 

densities and substrate does not limit growth in the pH-auxostat, other nutrients 

essential for growth may become limiting.  It was also shown that adding 

supplemental minerals increased the cell yield in the pH-auxostat (Table 3).  This 

suggests that mineral availability may become limiting at a later stage in the pH-

auxostat.  Further research could be done to identify the specific limiting nutrients 

and growth yield could be enhanced further by supplementing specific minerals.  This 

improved technique for mass cultivation may expand to other acetate-utilizing and 

formate-utilizing methanogens, which can also be mass-cultured using the pH-

auxostat technique (Sowers and Schreier 1995). 

While attempts to induce the promoter used for this system were unsuccessful, 

some interesting observations regarding the nature of the cdh promoter and the 

growth of M. acetivorans can be made.  Expression from the cdh promoter does 

indeed increase when acetate is added to a culture grown on TMA or methanol.  This 

shows that expression from the cdh promoter is not completely inhibited by the 

presence, or recent presence, of other growth substrates. The cultures were grown 

with 10-fold lower amounts of the methylotrophic substrates than is usually used for 

optimal growth.  Therefore, methylotrophic substrates may have been depleted, 

allowing for growth on acetate and reducing repression of the cdh promoter.  

Interestingly, the increase in the expression of the cdh promoter was higher in the 

cultures where no additional acetate was added to the culture in mid-exponential 
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phase.  This may be due to low levels of oxygen added along with the acetate or due 

to some sort of osmotic effect on the growth of the culture resulting from excess salts.   

The increase in expression from the cdh promoter was greater when acetate 

was added to TMA-grown cells than when added to methanol-grown cells.  This 

could be due to increased repression of the cdh promoter by methanol metabolism.  

The growth rate of M. acetivorans is higher on methanol than on TMA, yet the 

response to acetate in fold increase in β-galactosidase activity was more rapid when 

the cells were initially grown with TMA.  These observations suggest that there are 

differences in the mechanisms by which the cdh promoter is repressed on TMA and 

methanol metabolism.   

While increased expression from the cdh promoter was found when the cells 

were grown on mixed substrates, the increased expression is not sufficient to result in 

substantial increase in expression from cdh promoter because, compared to cdh 

expression on acetate, it is very low.  Expression from the cdh promoter is 30-fold 

higher in acetate-grown cells than TMA- or methanol-grown cells (Apolinario et al. 

2005).  Initial expression levels in the experiments described above were comparable 

with expression levels of the cdh promoter grown on only methanol or TMA 

(Apolinario et al. 2005).  Therefore, even the largest fold increase observed would 

account for six-fold lower expression, which would not be sufficient for use in an 

inducible protein expression system. 

Although expression using the cdh promoter was not rapidly induced, the 

expression from the promoter is inducible depending on the growth substrate of the 

organism.  Using the cdh::lacZ reporter strain of M. acetivorans, it has been shown 
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that the highest levels of expression from the cdh promoter are not achieved until 3 to 

4 weeks after the culture is transferred to medium containing acetate as a sole carbon 

source (data not shown).  This demonstrates that expression from the cdh promoter is 

inhibited for an extended period after growth on acetate is initiated.  Using the 

expression system described, expression from the cdh promoter does result in 

recombinant protein yields that are suitable for purification and characterization of 

the protein of interest.  Therefore, rapid induction is not required for the recovery of 

active recombinant proteins in preparative yields.  

In the analysis of other genes that may have promoters that could be 

integrated into an overexpression system, no useful promoters were identified.  These 

results, however, yielded some interesting discussion points.  For the genes that were 

identified as up-regulated on acetate vs. methanol by microarray analysis, the RT-

PCR results failed to confirm any significant up-regulation.  This demonstrates the 

need for confirmation of microarray results by RT-PCR or another system, for 

example promoter fusions to reporter genes or proteomic analysis.  RT-PCR is semi-

quantitative, i.e. the amount of amplicons produced is relative to the abundance of the 

mRNA target, especially when fewer PCR amplification cycles are used, or when low 

amounts of RNA are added to the reaction mixture.  In order to make the RT-PCR 

more quantitative, serial dilutions of RNA were used to investigate the level at which 

the RNA target was diluted below the concentration required for amplification.  The 

result of this was that the target mRNA was not more abundant in the acetate-grown 

cells than in the TMA-grown cells.  One caveat of this approach was that total RNA 

was used in the RT-PCR reactions as opposed to mRNA.  However, it is difficult to 
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purify mRNA from total RNA and to determine the proportion of the target mRNA to 

total RNA or mRNA in the sample, so the abundance of the mRNA target measured 

using this technique is only an estimate. 

The RT-PCR results obtained in the experiments which measured the 

abundance of methyltransferase transcripts in cultures grown on acetate with the 

addition of TMA are also interesting.  For the MA0528 transcript, the gene was 

present in the acetate grown cells both before and after the addition of TMA.  This 

implies that this methyltransferase may be constitutively expressed.  The MA0932 

transcript, however, was not detected in the acetate-grown cells either before or after 

the addition of TMA, but it was detected in the cells that had been grown on TMA 

with no addition of acetate.  This implies that this methyltransferase may not be 

expressed in the presence of acetate, or may be induced by addition of TMA after a 

period longer than 24 h. 

No conditions were found to rapidly induce expression from any of the 

promoters investigated.  Other conditions could be tested in order to test whether the 

promoters could be rapidly induced.  Also, other promoters could be used for 

recombinant protein expression.  Rapid induction is not required if the promoter is 

highly regulated, as demonstrated with the cdh promoter.  Another promoter which is 

highly regulated in the methanogens is the nifH promoter.  The nifH gene encodes 

nitrogenase reductase, which is a requisite for nitrogen fixation.  In Cohen-Kupiec et 

al. (1997), the Methanococcus maripaludis nifH promoter was fused to the lacZ gene 

and transformed into M. maripaludis. The expression from the nifH promoter was 

found to be approximately 45-fold higher when the organism was grown on nitrogen 
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gas vs. ammonia as a nitrogen source (Cohen-Kupiec et al. 1997).  The use of the 

nifH promoter many enhance expression of recombinant proteins in M. acetivorans 

and allow for expression when the organism is grown on substrates other than acetate.  

Other promoters that could potentially be used to direct recombinant gene expression 

were demonstrated in Zhang et al. (2000).  The mariner transposon was put under the 

control of three different constitutively expressed promoters: the mcrB, serC and orf1 

promoters.  The expression levels of these promoters had previously been reported to 

be high, medium and low, respectively.  In the study, the expression of the transposon 

gene in M. acetivorans was required to achieve recombinant colonies.  The 

transposon which was regulated under the mcrB promoter resulted 4-fold more 

colonies than those which were regulated under the other promoters.  By using 

promoters which are constitutively expressed at known levels, the authors were able 

to control the yield of recombinant colonies (Zhang et al. 2000).  These promoters 

may therefore be used to control the yield of recombinant protein in M. acetivorans 

regardless of the growth conditions of the organism. 

The chemostat experiments provide some interesting evidence on the nature of 

phosphate limitation in M. acetivorans. It has been shown in other organisms that 

response to phosphate limitation and phosphate addition in cultures may not occur 

rapidly due to the storage of phosphate intercellularly as polymers.  Phosphate 

limitation in cultures when other nutrients are in excess has also been shown to cause 

the enlargement of cells because their biomass can increase, but they cannot divide 

due to the insufficient phosphorous for DNA replication.  Some increase in the size of 

the M. acetivorans cells was indeed observed in the phosphate-limited chemostat 
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cultures.  The bioavailability of phosphorous may have also been affected by the 

increase in minerals in the medium and by the interactions between the phosphorous 

and the SS bioreactor.  Differences between batch phosphate limitation experiments 

and phosphate limitation experiments in continuous culture may have also been 

confounded by intrinsic differences in the definitions of nutrient limitation.  In the 

batch experiments, phosphate limitation was defined as the amount of phosphorous 

that caused a decrease in cell yield, whereas phosphate limitation in continuous 

culture was defined as the concentration of phosphate in the medium that resulted in a 

decrease in growth rate. 

Because of the inability to achieve regulation of the growth rate of M. 

acetivorans in continuous cultures limited by phosphate concentration, the use of a 

different limiting nutrient should be investigated.  Nitrogen limitation is another 

nutrient that is often used to control growth rate in chemostat cultures.  This nutrient 

was not used in the study described above because M. acetivorans fixes gaseous 

nitrogen, which is continuously bubbled into the culture to maintain positive pressure 

and anaerobic conditions in the bioreactor.  Also, carbon source was a variable in the 

chemostat experiment.  Methylamines were to be used as the methylotrophic carbon 

source; however these compounds are also a source of nitrogen.  In order to use 

nitrogen limitation to control growth rate, M. acetivorans would need to be grown in 

a bioreactor in the absence of nitrogen gas or methylamines.  Argon or helium could 

substitute for nitrogen gas as the gas phase in the bioreactor.  Also, methanol could be 

used in the place of methylamines for the methylotrophic substrate.  Special care 

would need to be used to ensure that the concentrations of methanol in the culture 
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remained constant, since this carbon source is particularly volatile.  The use of 

nitrogen as an alternate limiting nutrient may enable chemostat cultivation of M. 

acetivorans to be achieved and kinetic analysis of the cdh promoter may be 

preformed. 

The utility of the M. acetivorans protein expression system has been shown by 

the diversity of proteins that have been expressed.  The heterologous proteins that 

have been expressed include one from a thermophilic methanogen, M. jannaschii, two 

from mesophilic methanogens, one from M. thermophila and one from M. 

acetivorans itself, and one from a gram-positive anaerobic bacterium, D. 

ethenogenes.

The recombinant protein yield for MjProRS obtained using this system 

(approximately 2%) is lower than in most E. coli expression systems, where 

expressed proteins often represent 20% or more of the cellular protein (Balbas and 

Lorence 2004).  The yield has not been determined for the other proteins expressed 

using the M. acetivorans system.  This yield, however, is comparable to some 

eukaryotic expression systems, which serve as an alternative for expression of 

difficult-to-express archaeal proteins that require post-translational modifications 

(Balbas and Lorence 2004).  Therefore, the expression of recombinant proteins in M. 

acetivorans is a useful tool for proteins which are not expressed in an active form 

using more simple systems.   

These proteins have been expressed with and without 6xHis fusions.  The 

6xHis fusion enables one-step purification of the recombinant protein.  This allows 

for proteins to be expressed and purified easily with little or no information regarding 
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their function.  This contributes and excellent tool to use to aid in the analysis of 

genomic information in Methanosarcina spp. and other similar organisms.  In 

addition to 6xHis fusions for use in the purification of recombinant proteins, the 

MaProRS protein shows the ability to use the TAP protein fusion to purify protein 

complexes to study in vivo protein complex formation in M. acetivorans. If 

successful, TAP proteins fusions could be an excellent tool for the study of protein 

complexes in M. acetivorans and other Archaea.  The M. acetivorans system is ideal 

for the TAP fusion system because the system requires relatively low levels of 

expression of the recombinant protein so that the yield of protein complexes that can 

be purified is increased (Rigaut 1999).  The use of the TAP system for MaProRS 

expression is ideal because the ProRS enzyme has been shown to be associated with 

other peptides in the Archaea (Lipman et al. 2003).  This demonstrates yet another 

unique molecular mechanism in the Archaea.  While there are no known peptides to 

be associated with eubacterial aminoacyl tRNA synthetases, many are associated with 

ProRS in the higher eukaryotes.  The peptide that has been shown to be associated 

with the achaeal ProRS is different than that found in the higher eukaryotes (Lipman 

et al. 2003).  Further investigation into the activity of this peptide and its interaction 

with the aminoacyl tRNA synthetase will contribute to the investigation of achaeal 

aminoacyl tRNA synthetase complexes. 

The MtCam expression demonstrates the ability to use this system to aid in 

characterization of archaeal enzymes with metal-containing active sites, which may 

not be accurately expressed in eubacterial systems.  Methanosarcina spp. are 

obligately anaerobic and are adapted to much lower redox potentials than E. coli.
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This may result in differences in metalloenzyme biosynthesis even when E. coli is 

grown anaerobically. By expressing this M. thermophila enzyme in M. acetivorans,

which is closely related and more efficiently transformed genetically than M. 

thermophila, it can be determined with more certainty whether zinc or iron is the 

metal in the active site of the native enzyme.  It was shown that the activity of the 

enzyme greatly increased when the metal in the active site was replaced with iron 

(Tripp et al. 2004). The activity may, however, have been reduced by the process of 

altering the enzyme active site.  By purifying the enzyme with its metal-containing 

active site intact, the activity of the native enzyme can more accurately be estimated. 

The DeTCE-RD expression demonstrates the expression of a group of 

eubacterial enzymes that has not been expressed in an active form using the available 

eubacterial systems (Neumann et al. 1998). While M. acetivorans is evolutionarily 

divergent from D. ethenogenes, it still has much of the same physiology.  Both D. 

ethenogenes and M. acetivorans are able to synthesize corronoid cofactors, an ability 

that is not present in E. coli. D. ethenogenes and M. acetivorans also are both 

obligate anaerobes which exist in sediments.  The biology of D. ethenogenes is a very 

interesting subject of study due to its ability to dechlorinate PCE completely to the 

non-toxic compound, ethene (Maymo-Gatell et al. 1997).  Methanosarcina spp. also 

have been shown to decholorinate chlorinated ethenes co-metabolically due to their 

possession of complex metal cofactors, however it occurs at a slower rate (Fathepure 

et al. 1987).  The strains expressing the DeTCE-RD were shown to dechorinate TCE 

at a rate significantly higher than the strain not expressing the dehalogenase (Table 6). 

The dechlorination activity demonstrated by the strain expressing both the tceA and 
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tceB genes is slightly higher than the activity of the strain exprssing only the tceA 

gene (Table 6).  This may be indicative of the ability of M. acetivorans to recognize 

the twin arginine translocation signal (Hutcheon and Bolhuis 2003), effectively 

localizing the enzyme to the membrane where it may be anchored by the tceB gene 

product.  The dehalogenase may not have been anchored and may have been localized 

elsewhere in the tceA expression strain and dehalogenase activity may have been 

reduced due to lower solubility of the enzyme. 

A system for recombinant protein expression in the methanogenic archaeon 

M. acetivorans has been developed.  This tool can be used to produce active 

recombinant proteins from the Archaea and other anaerobes.  It is not, however, 

without its disadvantages.  Recombinant protein expression is much lower than 

expression systems which use strong eubacterial promoters.  Also, construction of M. 

acetivorans expression plasmids must be performed in E. coli prior to transformation 

into M. acetivorans. M. acetivorans is also an obligate anaerobe and genetic 

transformation must be done in an anaerobic glove box.  Optimal expression of 

recombinant protein under the control of the cdh promoter requires that the 

expression strains be adapted to growth on sodium acetate, a process which requires 

several weeks.  Additionally, high yield of recombinant protein requires the use of a 

fermentation facility with bioreactors that can be configured as a pH-auxostat.  Many 

of these disadvantages are easily overcome in a well-equipped anaerobic 

microbiology laboratory.  The main disadvantage to the difficulty of using the M. 

acetivorans expression system may well be the amount of time required to complete 

the process from construction of the expression vector to purification of recombinant 
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protein.  However, this amount of time could easily be spent optimizing expression of 

a protein using eubacterial and eukaryal systems if the protein was not expressed 

actively on the first attempt.   

Therefore, the M. acetivorans expression system may be used to yield 

archaeal and other proteins in an active and native form which are difficult to express 

using other systems.  This system contributes to the genetic toolbox already available 

for M. acetivorans and enhances its ability to serve as a model organism for the study 

of the methanogenic Archaea. 
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