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Chapter 1

Introduction

The interaction between curvature and topology plays a major role in Riemannian

geometry and may take different guises. The topology of a smooth manifold usually

imposes restrictions on the existence of Riemannian metrics with given curvature

conditions (e.g., the Gauss-Bonnet theorem). Alternatively, restrictions on the cur-

vature of a Riemannian manifold may have topological consequences (e.g., Synge’s

theorem). Finiteness theorems are a different instance of the influence of curva-

ture on topology. In these theorems one considers a class of Riemannian manifolds

satisfying given bounds on curvature and other metric invariants, such as diameter

or volume. A bound on the number of homotopy, homeomorphism, or diffeomor-

phism types in this class is then a consequence of the choice of bounds on the metric

invariants.

In the framework just described, it is natural to study Riemannian manifolds

whose curvature is bounded above or below. This is the case, for example, of

Riemannian manifolds with nonnegative curvature.

One of the fundamental invariants in Riemannian geometry is sectional curva-

ture, which will be henceforth referred to also as curvature. The study of Rieman-

nian manifolds with nonnegative sectional curvature is an area of active research in

which metric aspects of differential geometry, such as comparison arguments, play
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a central role (cf. [43, 44]). Despite the existence of general structure results (e.g.,

Cheeger-Gromoll [6]) and of obstructions to nonnegative curvature (e.g., Gromov’s

Betti number theorem [12]), examples of nonnegatively curved manifolds and tech-

niques for their construction are scarce. Thus, finding new examples in this class

remains a central problem in the field. In this context, considering manifolds with

a “large” isometry group provides a systematic approach to the study of both posi-

tively and nonnegatively curved manifolds (see, e.g., [13]), revealing the structure of

these manifolds and providing insight into methods for constructing new examples

(cf. [19]). What we mean by “large” is open for interpretation, as the following ex-

amples illustrate. We let M be a compact Riemannian manifold and G its isometry

group, which is a compact Lie group. Observe that G acts on M by isometries; we

will assume that this action is effective.

Example 1.1. Let the symmetry rank of M , denoted by symrank(M), be the rank

of the isometry group of M . Here “large” is interpreted as symrank(M) being big.

Grove and Searle [15] determined the maximal symmetry rank of compact positively

curved manifolds:

Theorem 1.2 (Grove, Searle). If a torus T acts isometrically on M and secM > 0

then dimT ≤ [(dimM + 1)/2], and equality holds if and only if M is a sphere, a

lens space, or a complex projective space.

It is also possible to obtain information when the symmetry rank is not max-

imal, as the following theorem due to Willking [41] for n ≥ 10, and Fang and Rong

[8] for n = 8, 9, shows (see also [36]).
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Theorem 1.3. Let Mn be a simply-connected n-dimensional manifold of positive

sectional curvature, n ≥ 8, and let d ≥ n/4 + 1. Suppose that there is an effective

isometric action of a torus T d on Mn. Then M is homotopically equivalent to CPn/2

or homeomorphic to HPn/4 or Sn.

Example 1.4. Suppose that G acts on M with nonempty fixed-point set MG. We

define the fixed-point cohomogeneity of M as dimM/G − dimMG − 1 ≥ 0. Here

“large” is interpreted as having low fixed-point cohomogeneity, in particular, we

say that the action is fixed-point homogeneous if the fixed-point cohomogeneity is

0, i.e., if MG has codimension 1 in the orbit space M/G. Fixed point homogeneous

connected positively curved manifolds were classified by Grove and Searle [16]. In

the simply-connected case one has the following theorem:

Theorem 1.5 (Grove, Searle). Any simply-connected fixed-point homogeneous man-

ifold with positive curvature is diffeomorphic to a compact rank one symmetric space.

This result has been proven a strong tool in other classification work on

positively curved manifolds with symmetries, e.g, [42] and the classification of

simply-connected positively curved cohomogeneity 1 manifolds [18, 40] (i.e., pos-

itively curved manifolds with an isometric Lie group action whose orbit space is

1-dimensional).

The presence of an isometric Lie group action provides a link between Rieman-

nian geometry, transformation groups and Alexandrov geometry, making the study

of nonnegatively and positively curved manifolds with an isometric Lie group action

a rich area which has recently seen some exciting developments (e.g., [17, 7, 33]).
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In this work we investigate fixed-point homogeneous Riemannian manifolds

with nonnegative curvature. In addition to the intrinsic interest these manifolds have

as an extension of the class of positively curved fixed-point homogeneous manifolds

studied in [16], the classification of these manifolds is likely to provide a useful tool

in further research, as has been the case for positive curvature.

The presence of a fixed-point homogeneous action on a nonnegatively curved

manifold M yields information on the structure of M . More precisely, if F is a

fixed-point set component with maximal dimension, M can be written as the union

of D(F ), a tubular neighborhood of F , and D(B), a neighborhood of a subspace

B ⊂ M determined by the geometry of the action (cf. Section 2 of Chapter 2).

Thus understanding the pieces D(F ) and D(B) is a first step in understanding

the structure of nonnegatively curved manifolds with a fixed-point homogeneous

action. When dimM ≤ 5, F will be a nonnegatively curved closed manifold of

dimension at most 3. These manifolds have been classified and one can then proceed

to understand the decomposition of M in terms of F and B. The next two steps

are to identify M and to construct nonnegatively curved metrics on M realizing

the possible fixed-point homogeneous actions on M . In dimensions greater than 6,

however, this approach is not practical, since in these cases F will have dimension

n ≥ 4 and in these dimensions the classification of nonnegatively curved manifolds

has not been completed. Observe, for example, that the Riemannian product N ×

S2 of a nonnegatively curved manifold N and the round 2-sphere S2 has a fixed-

point homogeneous circle actions, given by letting S1 act by rotations on S2 and

trivially on N . The fixed-point set of this action consists of two copies of N . Thus
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any nonnegatively curved manifold may arise as a fixed-point set component with

maximal dimension of a fixed-point homogeneous circle action.

We have focused our attention on dimensions 3 and 4, in which one is able

to obtain detailed information on the manifolds and the actions by combining ge-

ometry and the classification results of Orlik and Raymond [28, 35] in dimension 3,

and of Fintushel [9], in dimension 4. The classification of fixed-point homogeneous

2-manifolds is a consequence of the classification of fixed-point homogeneous man-

ifolds with cohomogeneity one, which we recall in Chapter 2. The only fixed-point

homogeneous 2-manifolds, regardless of curvature assumptions, are S2 and RP2. In

dimensions 3 and 4 our main results are the following.

Theorem A. Let M3 be a 3-dimensional nonnegatively curved fixed-point homo-

geneous Riemannian G-manifold. Then G can be assumed to be SO(3) or S1 and

codimMG = 3 or 2, respectively.

(1) If G = SO(3), then M3 is equivariantly diffeomorphic to S3 or RP3.

(2) If G = S1, then M3 is equivariantly diffeomorphic to S3, a lens space L3,

S2 × S1, RP2 × S1, RP3#RP3 or the non-trivial bundle S2×̃S1.

Theorem B. Let M4 be a 4-dimensional nonnegatively curved fixed-point homoge-

neous G-manifold. Then G can be assumed to be SO(4), SU(2), SO(3) or S1.
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(1) If G = SO(4), then M4 is equivariantly diffeomorphic to S4 or RP4.

(2) If G = SU(2), then M4 is equivariantly diffeomorphic to S4, RP4, HP1 or CP2.

(3) If G = SO(3), then M4 is diffeomorphic to a quotient of S4 or S3 × S1.

(4) If G = S1, then M4 is diffeomorphic to a quotient of S4, CP2, S2×S2, CP2#±

CP2, S3 × R or S2 × R2.

Theorems A and B are proved in Chapters 3 and 4, respectively. We have

provided examples of isometric actions realizing some of the possible orbit space

configurations that occur in the proofs. Chapter 2 contains preliminary definitions

and results that will be used in subsequent chapters. We remark that all of the

manifolds in Theorems A and B are known to carry metrics of nonnegative curvature.

However, not every 3-manifold with nonnegative curvature appears in our list, e.g.

the Poincaré homology sphere.

In Chapter 5 we further study fixed-point homogeneous circle actions on non-

negatively curved simply-connected 4-manifolds. To put our results in context,

let us recall first that, as a consequence of the work of Kleiner [22] and Searle

and Yang [37], in combination with Fintushel’s classification of circle actions on

simply-connected 4-manifolds [9] and Perelman’s proof of the Poincaré conjecture, a

simply-connected nonnegatively curved 4-manifold with an isometric circle action is

diffeomorphic to S4, CP2, S2×S2 or CP2#±CP2. Let χ(M) be Euler characteristic

6



of a manifold M . By a well-known theorem of Kobayashi, if S1 acts effectively on

M , χ(M) = χ(Fix(M, S1)). Thus, for a simply- connected nonnegatively curved 4-

manifold M with an isometric S1-action, we have 2 ≤ χ(M) ≤ 4 and the fixed-point

set components are 2-spheres and isolated fixed-points. Therefore, the only possible

fixed- point sets coming from a fixed-point homogeneous circle action on S4, CP2,

S2 × S2 or CP2#± CP2 are

Fix(M, S1) =



S2 if M is S4.

S2 ∪ {p} if M is CP2.

S2 ∪ S2 if M is S2 × S2 or CP2 ± CP2.

S2 ∪ {p′, p′′} if M is S2 × S2 or CP2 ± CP2.

Both S4 and CP2 have metrics of positive curvature with an isometric fixed-point

homogeneous circle action, i.e., the fixed-point set of the action is the one in the list

above. On the other hand, when M is S2 × S2 or CP2# ± CP2, it is not known if

M has a nonnegatively curved Riemannian metric with a fixed point homogeneous

circle action realizing each one of the corresponding fixed-point sets listed above.

Motivated by this question, in Chapter 4 we study smooth fixed-point homogeneous

circle actions on S4, CP2, S2× S2 or CP2#±CP2. We have summarized our results

in the following theorem.

Theorem C. Let M be a simply-connected smooth 4-manifold with a smooth S1-

action.

(1) If Fix(M, S1) = S2, then M is equivariantly diffeomorphic to S4 with a linear
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action.

(2) If Fix(M, S1) = S2 ∪{p}, then M is equivariantly diffeomorphic to ±CP2 with

a linear action.

(3) If Fix(M, S1) = S2∪S2, then M is equivariantly diffeomorphic to CP2#−CP2

or S2 × S2 with a linear action.

(4) If Fix(M, S1) = S2 ∪ {p′, p′′} and there are no orbits with finite isotropy, then

M is equivariantly diffeomorphic to CP2#±CP2 with only one linear action.

(5) If Fix(M, S1) = S2∪{p′, p′′} and there is only a weighted arc, then M is equiv-

ariantly diffeomorphic to one of the following:

(a) CP2#CP2 with only one linear action with finite isotropy Z2.

(b) CP2#− CP2 with only one linear action with finite isotropy Zk, k odd.

(c) S2 × S2 with only one linear action with finite isotropy Zk, k even.
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Theorem C is an application of Fintushel’s classification of circle actions on

simply-connected 4-manifolfds [9]. It follows from Fintushel’s work that a closed

simply-connected smooth 4-manifold with a smooth S1-action is diffeomorphic to a

connected sum of copies of S4, ±CP2 and S2×S2. Moreover, the action is determined

up to equivariant diffeomorphism by a set of orbit space data (cf. Section 2 of

Chapter 5). In our case, the orbit space comes from a fixed-point homogeneous

circle action on a nonnegatively curved simply-connected 4-manifold and has a rather

simple structure, which is described in detail in Section 2 of Chapter 4. Parts (1)

and (2) of Theorem C are simple corollaries of Fintushel’s work. To prove parts (3)

and (4) we compute the possible orbit space data and determine the intersection

form of M following a recipe given by Fintushel. We get our results by showing

that the intersection form obtained from each possible orbit space configuration is

equivalent to the intersection form of S4, CP2, S2 × S2 or CP2#± CP2.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we introduce some notation and several basic tools that we will

use throughout. We will always assume our manifolds are connected, unless noted

otherwise.

2.2 Fixed-point homogeneous manifolds

Let G be a compact Lie group acting by isometries on a compact Riemannian man-

ifold M . We will consider the action of G as a left action. Given x ∈M , we denote

its isotropy subgroup by

Gx = { g ∈ G : gx = x }

and the orbit of x under the action of G by

Gx = { gx : g ∈ G } ' G/Gx.

We will often denote the orbit space M/G by M∗. Unless mentioned otherwise, we

will assume that G acts effectively on M , i.e., that the ineffective kernel K = ∩x∈MGx

of the action is trivial. We say that the action of G is free if all the isotropy groups

are trivial. Note that the isotropy group Ggx = gGxg
−1 is conjugate to Gx . We say

that two orbits Gx and Gy are of the same type if Gx and Gy are conjugate subgroups
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in G.

We will denote the fixed-point set of an element g ∈ G by

M g = {x ∈M : gx = x}.

The fixed-point set of a subgroup H ≤ G is MH = ∩g∈HM
g; we will occasionally

denote it also by Fix(M,H). It is well known that each MH is a finite disjoint union

of closed totally geodesic submanifolds of M (cf. [24]). Given MH, we define its

dimension by

dimMH = max{ dimCi : Ci is a connected component of MH }.

We now state the Slice theorem, which is one of the basic results in the theory

of transformation groups.

Slice Theorem 2.1. For any x ∈ M , a sufficiently small tubular neighborhood

D(Gx) of Gx is equivariantly diffeomorphic to G×Gx D
⊥
x .

Here D⊥x is a ball at the origin of the normal space T⊥x to the orbit Gx at x and

G×Gx D
⊥
x is the bundle with fiber D⊥x associated to the principal bundle G→ G/Gx.

Suppose now that G acts on M with non-empty fixed-point set MG. We

say that the action is fixed-point homogeneous if MG has codimension 1 in M∗;

equivalently, if G acts transitively on the normal sphere to some component of MG.

We say that M is fixed-point homogeneous if it supports a fixed-point homogeneous

action for some compact Lie group G.

The fact that G must act transitively on the normal sphere to some component

of MG determines what Lie groups G can act fixed-point homogeneously. The groups
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G that can act transitively on a k-dimensional sphere Sk with isotropy H have been

classified (cf. [2, 3, 25, 34]). By possibly replacing G by a subgroup, it suffices to

consider the pairs (G,H) in the following list. We have labeled each pair (G,H) by

(ak+1), . . . , (f).

(G,H) =



(ak+1) (SO(k + 1), SO(k)), k ≥ 1;

(bm+1) (SU(m+ 1), SU(m)), k = 2m+ 1 ≥ 3;

(cm+1) (Sp(m+ 1), Sp(m)), k = 4m+ 3 ≥ 7;

(d) (G2, SU(3)), k = 6;

(e) (Spin(7),G2)), k = 7;

(f) (Spin(9), Spin(7)), k = 15.

(2.2.1)

A closed 2-manifold with a fixed-point homogeneous action must have coho-

mogeneity one and must be S2 or RP2 (cf. Corollary 2.15). Closed 3-manifolds with

a fixed-point homogeneous S1-action have been classified by Raymond [35] (cf. The-

orem 3.1 in Chapter 3). This is a particular instance of the general Orlik-Raymond-

Seifert classification of 3-manifolds with a smooth S1-action [28, 35, 38] (cf. [27]).

Fixed-point homogeneous manifolds have also been studied in a Riemannian geo-

metric context. In particular, fixed-point homogeneous Riemannian manifolds with

positive sectional curvature have been completely classified by Grove and Searle [16]:

Classification Theorem 2.2 (Grove, Searle). Let M be a closed, fixed-point ho-

mogeneous Riemannian manifold. Then M supports an effective and isometric G-
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action, where G is one of the groups SO(n), SU(n), Sp(n), G2, Spin(7), or Spin(9)

and codimMG = n, 2n, 4n ,7, or 16, respectively. If, moreover, sec(M) > 0, then

M is G-equivariantly diffeomorphic to one of the following:

(an) Sm, RPM (m ≥ n), or in addition, when n = 2, Sm/Zq (q ≥ 3) or CPm;

(bn) Sm, Sm/Zq (m ≥ 2n) or CPm (m ≥ n), or in addition, when n = 2, SmΓ

((Γ ⊂ SU(2)), (m ≥ 5)), CPm/Z2 (m odd) or HPm;

(cn) Sm, Sm/Γ (Γ ⊂ Sp, m ≥ 4n), CPm (m ≥ 2n), CPm (m ≥ 2n), CPm/Z2

(m > 2n odd) or HPm (m ≥ n);

(d) Sm, or RPm (m ≥ 7);

(e) Sm or RP (m ≥ 8); or

(f) Sm, RPm (m ≥ 16) or CaP2,

where G in case (an) is SO(n), etc., as in (2.2.1).

Fixed-point homogeneous manifolds are a particular instance of manifolds with

a “large” group of isometries. There exist, however, manifolds that do not admit
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smooth actions of compact Lie groups, as the following theorem of Atiyah and

Hirzebruch shows (cf. [1]).

Theorem 2.3 (Atiyah, Hirzebruch). If a circle group acts differentiably on a com-

pact spin manifold M , then the Â-genus of M vanishes.

This theorem implies, for example, that the K3 surface does not support any

smooth S1-action, since it is spin and Â(K3) = 2.

2.3 Geometry of the orbit space

In this section we will outline the geometric structure of the orbit space M∗ of an

isometric Lie group action on a nonnegatively curved compact Riemannian mani-

fold M . Such an orbit space is, in general, an Alexandrov space with nonnegative

curvature. We start by recalling some basic notions from Alexandrov geometry in

the context of an isometric group action (cf. [13]). We will then review some fun-

damental results linking the geometry of the orbit space M∗ with the structure of

M .

Recall that a finite dimensional length space (X, dist) is an Alexandrov space

if it has curvature bounded from below curv ≥ k (cf. [4]). When M is a complete,

connected Riemannian manifold and G is a compact Lie group acting (effectively)

on M by isometries, the orbit space M∗ is equipped with the orbital distance metric

induced from M , i.e., the distance between p∗ and q∗ in M∗ is the distance between

the orbits Gp and Gq as subsets of M . If, in addition, M has sectional curvature

bounded below secM ≥ k, then the orbit space M∗ is an Alexandrov space with
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curvM∗ ≥ k.

The space of directions SxX of a general Alexandrov space X at a point x is,

by denition, the completion of the space of geodesic directions at x. The euclidean

cone CSx = TxX is called the tangent space to X at x. In the case of an orbit space

M∗ = M/G, the space of directions Sp∗M
∗ at a point p∗ ∈ M∗ consists of geodesic

directions and is isometric to

S⊥p /Gp,

where S⊥p is the normal sphere to the orbit Gp at p.

The possible isotropy groups along a minimal geodesic joining two orbits Gp

and Gq in M and, equivalently, along a minimal geodesic joining p∗ and q∗ in the

orbit space M∗, are restricted by Kleiner’s Isotropy Lemma [22]. We will use this

result to obtain restrictions on the isotropy groups of the interior points of a minimal

geodesic joining two singular points via the geometry of the space of directions.

Isotropy Lemma 2.4 (Kleiner). Let c : [0, d]→M be a minimal geodesic between

the orbits Gc(0) and Gc(d). Then, for any t ∈ (0, d), Gc(t) = Gc is a subgroup of

Gc(0) and of Gc(1).

The following analog of the Cheeger-Gromoll Soul Theorem [6] in the case of

orbit spaces will be a fundamental tool in our study of the structure of fixed-point

homogeneous Riemannian manifolds with nonnegative curvature. A more general

result for Alexandrov spaces with curvature bounded below is due to Perelman [30].

Soul Theorem 2.5. If curvM∗ ≥ 0 and ∂M∗ 6= ∅, then there exists a totally convex

compact subset S ⊂M∗ with ∂S = ∅, which is a strong deformation retract of M∗. If
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curvM∗ > 0, then S = [s] is a point, and ∂M∗ is homeomorphic to S[s]M
∗ ' S⊥s /Gs.

Recall that the orbit space M∗ of a compact nonnegatively curved Riemannian

manifold M is a nonnegatively curved Alexandrov space. Moreover, if M is fixed-

point homogeneous, ∂M∗ contains a component F of MG with maximal dimension.

We now carry out the soul construction on M∗ and let C ⊂M∗ be the set at maximal

distance from F ⊂ ∂M∗. Let B = π−1(C) ⊂ M be the preimage of C under the

projection map π : M → M∗ . It follows from the Soul Theorem 2.5 that M can

be exhibited as the union M = D(F ) ∪E D(B) of neighborhoods D(F ) and D(B)

along their common boundary E. Hence, in the presence of an isometric fixed-point

homogeneous G-action, the structure of M is fundamentally linked to F and B and

a thorough understanding of the latter yields information on the structure of M .

This will be our guiding principle. The following theorem illustrates this philosophy:

Double Soul Theorem 2.6. Let M be a nonnegatively curved fixed-point homoge-

neous Riemannian G-manifold. If Fix(M,G) contains at least two components X, Y

with maximal dimension, one of which is compact, then M is diffeomorphic to an

Sk-bundle over X, where Sk = G/H with G as structure group.

The proof of this theorem follows immediately from the proof of Theorem 2

in [37].

The following lemma yields information on the distribution of the isotropy

groups in the orbit space M∗. We refer the reader to [15] for a proof.

Lemma 2.7. Let G ×M → M be an isometric fixed-point homogeneous action on

a compact nonnegatively curved manifold M . Let C be the set at maximal distance
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from ∂M∗. Then all the points in M∗ − {C ∪MG} correspond to principal orbits.

Nonnegatively curved Alexandrov spaces of dimension 2 appear as orbit spaces

of fixed-point homogeneous actions as well as sets at maximal distance from a bound-

ary component of an orbit space. It is well known that a 2-dimensional Alexandrov

space X is a topological 2-manifold, possibly with boundary (cf. [4], Corollary

10.10.3). In addition, when X has nonnegative curvature, we have the following

result (cf. [39]).

Theorem 2.8. Let X be a 2-dimensional Alexandrov space of nonnegative curva-

ture. Then, the following hold: X is homeomorphic to either R2, [0,+∞] × R,

S2, RP2, D2, or isometric to [0, l] × R, [0, l] × S1(r), [0,+∞] × S1(r), R × S1(r),

R× S1(r)/Z2, [0, l]× S1/Z2, a flat torus, or a flat Klein bottle for some l, r > 0.

Corollary 2.9. A compact 2-dimensional Alexandrov space with nonnegative cur-

vature and non-empty boundary is homeomorphic to a closed disc D2 or isometric

to a flat Möbius band M2 or a flat cylinder S1 × I.

2.4 Other tools

In this section we have collected some other results that we will use throughout. The

first one is the following consequence of the Cheeger-Gromoll Splitting Theorem (cf.

[5, 6]).

Splitting Theorem 2.10 (Cheeger, Gromoll). Let M be a compact manifold of

nonnegative Ricci curvature. Then π1(M) contains a finite normal subgroup Ψ such
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that π1(M)/Ψ is a finite group extended by Z1 ⊕ · · · ⊕ Zk and M̃ , the universal

covering of M , splits isometrically as M × Rk, where M is compact.

In the rest of this section we will assume that M is a compact nonnegatively

curved Riemannian manifold with a fixed-point homogeneous isometric S1-action.

We will let F ⊂ ∂M∗ be a component of the fixed-point set and C be the set at

maximal distance from F in M∗. We will study the structure of the orbit space in

the case when dimF = dimC.

Lemma 2.11. The only possible isotropy groups in C are 1, Z2 and S1.

Proof. Let p∗ ∈ C be a point with finite isotropy S1
p = Zk, k ≥ 3. Let T⊥p be

the normal space to the orbit S1p at p and let Fp = (T⊥p )S1
p . We let F⊥p be the

orthogonal complement of Fp in T⊥p . The tangent space Tp∗ to M∗ at p∗ can be

written as Tp∗ ' Fp × (F⊥p )/S1
p and Fp is isomorphic to the tangent space at p∗

of the orbit stratum containing p∗. Observe that the cone (F⊥p )/S1
p contains all

directions perpendicular to this orbit stratum in M∗. Now, let γ be a minimal

geodesic in M∗ joining p∗ with F ⊂ ∂M∗. Observe that γ is perpendicular to C,

which has codimension 1 in M∗. Since the orbit stratum containing p∗ must be

contained in C, the direction of γ must be contained in S(F⊥p )/S1
p, the quotient

of the unit sphere S(F⊥p ) of F⊥p by the isotropy group S1
p. On the other hand,

S(F⊥p )/S1
p = S(F⊥p )/Zk has diameter π/2 so γ cannot be orthogonal to C, which has

codimension 1 in M∗.

We will now consider two cases: C ⊂ ∂M∗ and ∂M∗ = F .
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Lemma 2.12. If C ⊂ ∂M∗, then either C is a fixed-point set component or all the

points in C have isotropy Z2. Moreover, C and F are isometric and M∗ is isometric

to a product F × I.

Proof. A point p∗ in M∗ is a boundary point if its space of directions Sp∗ has

boundary. Consider the tangent space decomposition Tp∗ ' Fp × (F⊥p )/S1
p. For p∗

to be a boundary point, S1
p must act transitively on the unit sphere S(F⊥p ) of F⊥p

so S1
p is either S1 or Z2. Recall that Fp is the tangent space of the orbit stratum of

p∗ so it follows from the tangent space decomposition that the orbit stratum with

S1
p isotropy is a subset of C of the same dimension. Hence all the points in C must

also have isotropy S1
p. The second assertion in the theorem follows from the proof

of Theorem 2 in [37] (cf. Theorem 2.6 above).

Lemma 2.13. Suppose ∂M∗ = F .

(1) If ∂C = ∅, then all the points in C have principal isotropy, F is a double-cover

of C and the covering map is a local isometry.

(2) If ∂C 6= ∅, then all the points in intC are principal.

Proof. We first prove (1). Let p∗ ∈ C and suppose that p has isotropy group S1
p.

Observe that p∗ is an interior point of M∗. The only possible isotropy groups in

C are S1, Z2 and 1. Suppose first that S1
p = Z2 and consider the tangent space

decomposition Tp∗ ' Fp × (F⊥p )/Z2. Observe first that Z2 acts freely on F⊥p . If

dimF⊥p ≥ 2, then diam S(F⊥p )/Z2 = π/2. Let γ be a minimal geodesic joining p∗
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with F ⊂ ∂M∗. Observe that γ is perpendicular to C, so its direction must be

contained in S(F⊥p )/Z2. Moreover, since C has codimension 1 in M∗, the direction

of γ is at a distance π/2 from a codimension 1 subset of S(F⊥p )/Z2 and it follows that

S(F⊥p )/Z2 is a spherical cone, which implies that p∗ is a boundary point, which is a

contradiction. If dimF⊥p = 1, then Z2 acts transitively on F⊥p so p∗ is a boundary

point, which is a contradiction. Finally, if dimF⊥p = 0, then the Z2 orbit stratum

has dimension dimM − 1. This implies that Fix(M,Z2) = M which contradicts

our assumption that the action is effective. If p∗ has isotropy S1, then we have

diam S(F⊥p )/S1 = π/2 so p∗ must be a boundary point, which is a contradiction.

Hence the only possible isotropy group in C must be 1. The other assertions follow

from the observation that M∗ is a manifold with boundary ∂M∗ = F . Then the Soul

Theorem implies that M∗ is a line bundle over C and, since ∂M∗ = F is connected,

it must double-cover C.

To prove part (2), let p∗ be a regular point in C. Let γ be a minimal geodesic

from p∗ to F and v a tangent vector to C at p∗. Parallel translation of v along γ is an

isometry, since curv ≥ 0. In this way we construct a local isometry ϕ : (C−E∗)→ F ,

where E∗ is the set of exceptional orbits. Moreover, this map is an isometry except

on E∗. Hence cl(C −E∗) is isometric to a subset of F and, in particular, since F is

a manifold, there cannot be any singular points in intC.
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2.5 Manifolds of cohomogeneity one

The classification of fixed-point homogeneous manifolds of cohomogeneity one fol-

lows from the work of Grove and Searle in [16]. Before stating this result, we recall

some basic facts about fixed-point homogeneous manifolds of cohomogeneity one.

Let M be an n-manifold with a fixed-point homogeneous action of cohomo-

geneity one, so that M∗ is either a circle or an interval. If M∗ is a circle, then

all the orbits are principal and M is a fiber bundle over M∗. Since a fixed-point

homogeneous action has fixed points, only the second case may arise in our con-

text. Let M∗ ∼= [−1,+1]. The interior points of the interval correspond to principal

orbtis E = G/H and the endpoints of the interval correspond to exceptional orbits

B± = G/K±, where K± is the isotropy group of ±1. It follows that M can be writ-

ten as the union of tubular neighborhoods D(B±) → B± with common boundary

E ' ∂D(B+) ' ∂D(B−). In particular, E can be written in two different ways as a

bundle π± : E = G/H→ G/K± = B± with sphere fibers K±/H = Sl± . Observe that

a cohomogeneity one G-action determines a group diagram

G

K−

j−
>>}}}}}}}}

K+

j+
``AAAAAAAA

H

i−

``AAAAAAAA i+

>>}}}}}}}}

(2.5.1)

where i± and j± are the inclusion maps.

Conversely, any diagram as the one above determines a cohomogeneity one
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G-manifold, which is exhibited as

M = (G×K− D
(1+l−)) ∪G/H (G×K+ D

(1+l+)) (2.5.2)

Different possibilities for M can arise from different glueing maps

∂D(B−) ' ∂D(B+).

These glueing maps must be G-equivariant and are determined by an element in the

normalizer N(H).

The analysis carried out in [16] also applies when M admits a fixed-point ho-

mogeneous cohomogeneity one action, independently of any curvature assumptions.

In particular, the following result is an immediate consequence of the method of

proof of the Classification Theorem 2.2.

Corollary 2.14. Let M be a closed, connected Riemannian manifold with a fixed-

point homgeneous G-action of cohomogeneity one.

(an) If G = SO(n), then M is G-equivariantly diffeomorphic to Sn or RPn.

(bn) If G = SU(n), then M is G-equivariantly diffeomorphic to S2n, RP2n or CPn.

(cn) If G = Sp(n), then M is G-equivariantly diffeomorphic to S4n, S4n/Γ (Γ ⊂

Sp(1)), CP2n or HPn.

22



(d) If G = G2, then M is G-equivariantly diffeomorphic to S7 or RP7.

(e) If G = Spin(7), then M is G-equivariantly diffeomorphic to S8 or RP8.

(f) If G = Spin(9), then M is G-equivariantly diffeomorphic to S16, RP16 or CaP2.

Observe that a 2-dimensional fixed-point homogeneous manifold must have

cohomogeneity one. The classification of these manifolds is then a particular case

of Corollary 2.14:

Corollary 2.15. Let M2 be a 2-dimensional fixed-point homogeneous G-manifold.

Then G = S1 and M2 is equivariantly diffeomorphic to S2 or RP2.

23



Chapter 3

Nonnegatively curved fixed-point homogeneous 3-manifolds

3.1 Introduction

In this chapter we classify up to equivariant diffeomorphism fixed-point homoge-

neous Riemannian 3-manifolds with nonnegative curvature. The orbit space of such

an action is one- or two-dimensional. In the last case, we have a circle action and

we will make use of the Orlik-Rayomond-Seifert classification of cirlcle actions on

3-manifolds. We will outline this classification and the results we will use in the

next section, and prove our main result in Section 3.

3.2 Circle actions on 3-manifolds

In this section we outline the Orlik-Raymond-Seifert classification of smooth circle

actions on 3-manifolds (cf. [28, 35, 38]). We refer the reader to [28, 35] for a detailed

exposition of this classification and related results.

A smooth S1-action on a closed 3-manifold M is completely determined by a

weighted orbit space (cf. [27, 28])

M∗ = {b; (ε, g, h̄, t), (α1, β1), . . . , (αn, βn)}

which we now describe. The orbit space M∗ is a surface of genus g with 0 ≤ h̄ + t

boundary components. Of these boundary components, h̄ correspond to fixed-point
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set components while t correspond to special exceptional orbits. The symbol ε takes

on the value o, when M∗ is orientable, and n̄ when M∗ is non-orientable. There are

n exceptional orbits and each one is assigned a pair of integers (αi, βi) called Seifert

invariants. These are pairs of relatively prime integers with the property that if

ε = o, then 0 < βi < αi and if ε = n̄, then 0 < βi < αi/2. We will decribe the

Seifert invariantes in more detail in the next paragraph. If ε = o and h̄+ t = 0, we

let b be an arbitrary integer. If h̄ + t 6= 0, let b = 0. If ε = n, h̄ + t = 0 and no

αi = 2, let b take on the values 0 or 1, while b = 0 otherwise.

We will now describe the Seifert invariants (αi, βi) (cf. [9, 27]). Following the

notation in the transformation groups literature, given a set A ⊂ M , we will let

A∗ denote the projection of A under the orbit map π : M → M∗, so A∗ = π(A).

Let E be the union of the exceptional orbits and suppose E∗ = {x∗1, . . . , x∗n }. For

each x∗i ∈ E∗, let V ∗i be a closed 2-disk neighborhood such that V ∗i ∩ V ∗j = ∅ if

i 6= j. For xi ∈ π−1(x∗i ) there is a closed 2-disk slice Si at xi such that S∗i = V ∗i .

We orient Si so that its intersection number with the oriented orbit π−1(x∗i ) is +1

in the solid torus Vi. This induces an orientation on mi, the boundary of the slice

Si. Observe that mi is null-homotopic in Vi. Now let hi be an oriented principal

orbit on ∂Vi. Since the action is principal on ∂Vi, it admits a cross-section qi. If the

isotropy group at xi is Zαi
, the cross-section qi of the action on ∂Vi is determined

up to homology by the homology relation mi ∼ αiqi + βihi, where αi and βi are

relatively prime and 0 < βi < αi. The Seifert invariants (αi, βi) determine Vi up to

orientation-preserving equivariant diffeomorphism. If we reverse the orientation of

Vi, the Seifert invariants become (αi, αi − βi). The action of the isotropy group Zαi
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on the slice Si is orientation-preserving equivariantly diffeomorphic to the action of

Zαi
on the 2-disk D2 given by

2π

αi
(r, θ) 7→ (r, θ +

2πνi
αi

).

The pair [αi, νi] are called the orbit invariants of π−1(x∗i ) and satisfy

βiνi ≡ 1 (mod αi).

Observe that a fixed-point homogeneous S1-action on a closed 3-manifold cor-

responds to having h̄ > 0. The classification of these manifolds is due to Raymond

[35].

Theorem 3.1 (Raymond). Let

M = {b; (ε, g, h̄, t), (α1, β1), . . . , (αn, βn)}

and assume that h̄ > 0, i.e., that S1 acts on M with fixed points. Then M is diffeo-

morphic to

(1) S3#(S2 × S1)1# · · ·#(S2 × S1)2g+h̄−1#(RP2 × S1)1# · · ·#(RP2 × #1)t

#L(α1, β1)# · · ·#L(αn, βn) if (ε, g, h̄, t) = (o, g, h̄, t), t ≥ 0;

(2) (S2 × S1)1# · · ·#(S2 × S1)g+h̄−1#(RP2 × S1)1# · · ·#(RP2 × #1)t #L(α1, β1)

# · · ·#L(αn, βn) if (ε, g, h̄, t) = (n̄, g, h̄, t), t > 0;

(3) (S2×̃S1)#(S2 × S1)1# · · ·#(S2 × S1)g+h̄−1 #L(α1, β1)#

· · ·#L(αn, βn) if (ε, g, h̄, t) = (n̄, g, h̄, 0).
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3.3 Main result

Theorem 3.2. Let M3 be a 3-dimensional nonnegatively curved fixed-point homo-

geneous Riemannian G-manifold. Then G can be assumed to be SO(3) or S1 and

codimMG = 3 or 2, respectively.

(1) If G = SO(3), then M3 is equivariantly diffeomorphic to S3 or RP3.

(2) If G = S1, then M3 is equivariantly diffeomorphic to S3, a lens space L3,

S2 × S1, RP2 × S1, RP3#RP3 or the non-trivial bundle S2×̃S1.

Remark. Except for S3 and L3, all the other manifolds in part (3) are quotients of

S2 × R.

Proof. The first assertion follows from the comments made in chapter 2. Indeed,

the cohomogeneity of the action determines the group G acting on M . Recall that,

since M is fixed-point homogeneous, the fixed-point set MG has codimension 1 in

the orbit space M∗. We now list the possible groups G acting on M with principal

isotropy H, using list (2.2.1) in Chapter 2. We denote by Sk the normal sphere to a

component of the fixed-point set with maximal dimension.

(G,H) =


(SO(3), SO(2)) if cohom G = 1 (Sk = S2);

(S1, 1) if cohom G = 2 (Sk = S1).

Now we prove the rest of the theorem.
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Case 1. (G,H) = (SO(3), SO(2)). In this case M is a cohomogeneity 1 manifold

and the conclusion follows from Corollary 2.14 in Chapter 2. There are two singular

orbits, one of which is an isolated fixed point.

Case 2. (G,H) = (S1, 1). This corresponds to the cohomogeneity 2 case. The orbit

space is a nonnegatively curved 2-dimensional Alexandrov space with non-empty

boundary. By Corollary 2.9, the only possible such spaces are the disc D2, the flat

Möbius band M2 and the flat cylinder S1 × I. We will determine all the possible

structure invariants of the circle action and will use Raymond’s classification of

fixed-point homogeneous circle actions on 3-manifolds (cf. Section 3.2) to identify

M up to equivariant diffeomorphism.

Let F 1 ∼= S1 be a component of the fixed-point set with maximal dimension.

Let Ck be the set at maximal distance from F 1 in M∗. By construction, k =

dimCk ≤ dimF 1 = 1. By Theorem 2.7, all points in M∗ − {C ∪MG } correspond

to principal orbits.

Case 2.1. Suppose dimC = 0. Then C0 is the soul and, by the Soul Theorem 2.5,

it must be a point. Thus we have M∗ ' D2. This orbit space configuration has been

analyzed in [16] and it follows that M3 is equivariantly diffeomorphic to S3 or to a

lens space.

Case 2.2. Suppose dimC = 1. We have two possibilities: C1 ' S1 or C1 ' [−1,+1].

28



Case 2.2.1. Suppose C ' [−1,+1]. After another step of the soul construction, we

obtain the soul, which must be a point. Then M∗ ' D2.

We now analyze the orbits corresponding to the points in C1. By the Isotropy

Lemma 2.4 all the points in the interior of the interval have the same isotropy. These

points cannot all be fixed, since that would imply that (−1,+1) ∼= S1, which is a

contradiction.

Let K−, K+ and K0 denote, respectively, the isotropy group of points in the

subsets {−1 }, {+1 } and (−1,+1) of C1 ' [−1,+1]. We will refer to this triple as

an isotropy triple and will denote it by

K− · · ·K0 · · ·K+.

It follows from the Isotropy Lemma 2.4 that K0 ≤ K± ≤ S1. The largest isotropy

group in this triple is either 1, Zq (for some q > 1), or S1.

Case 2.2.1.1. Suppose the largest isotropy group is 1. This case reduces to the case

when C is a point with trivial isotropy (cf. case 2.1) and it follows from Theorem

3.1 that M3 is diffeomorphic to S3. Moreover, it follows from Theorem 1 in [35] that

M3 must be equivariantly diffeomorphic to S3.

Case 2.2.1.2. Suppose the largest isotropy group is Zk, for some k > 1, so that we
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have the isotropy triple

Zq− · · ·Zl · · ·Zq+ .

Since the space of directions at a point in (−1,+1) has diameter π, it follows

that Zl = 1. Now we determine Zq± . Let γ be a minimal geodesic from ∂M∗ = S1

to +1 ∈ [−1,+1] ' C1. Recall that C1 is totally convex and observe that γ is

orthogonal to C1. Then the space of directions at +1 must have diameter at least

π/2, so we must have Zp+ = Z2 or 1. The same argument replacing +1 with −1

shows that Zp− = Z2 or 1. Since we have assumed that at least one isotropy group

is non-trivial, we have the following isotropy triples:

1 · · · 1 · · ·Z2,

Z2 · · · 1 · · ·Z2.

In the first case, observe that the distance function to +1, the point in C1

with isotropy Z2, has no critical points, so we have a gradient-like vector field whose

flow-lines yield a deformation retraction of M∗ onto the point with isotropy Z2, as

in case Case 2.1, in which the field corresponds to the gradient-like vector field of

the distance function from F to C0. Hence this case reduces to the case in which Ck

is a point with isotropy Z2 and it follows that M is diffeomorphic to RP3. Observe

that it follows from [35] that, up to equivariant diffeomorphism, there is only one

action on RP3 with orbit space a 2-disk whose boundary is the fixed-point set and

a point with Z2-isotropy in the interior.

Now we analyze the case corresponding to the isotropy triple

Z2 · · · 1 · · ·Z2. We will first see that, in this case, M is RP3#RP3 and then we
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will discuss the disk-bundle decomposition of M . Observe that the orbit space M∗

is a 2-disk; its boundary circle is the fixed-point set, and in the interior of the 2-disk

there are two points with Z2-isotropy. According to Theorem 3.1, it follows from

this orbit space structure that M3 is diffeomorphic to RP3#RP3. We may also read

this off the orbit space structure in the following way. Recall that M∗ is a 2-disk D2

whose boundary consists of fixed-points. Divide M∗ by a curve γ joining different

points in the boundary circle so that the two points with Z2-isotropy lie in different

halves of M∗. Now observe that γ lifts to S2 in M3 and each half of M∗ corresponds

to cl(RP3 − B3). Thus M consists of two copies of cl(RP3 − B3) identified on the

boundary sphere. This corresponds to RP3#RP3.

Observe now that π−1(C1) ∼= RP2#RP2 ∼= K2 ⊂ M3. We can write M3 as

the union of tubular neighborhoods D(S1) and D(K2) identified by their common

boundary E2. The tubular neighborhood D(S1) is a 2-disc bundle over S1, so E2 is

an S1-bundle over S1. Since M is orientable we must have that E2 is T2. On the

other hand, E2 is also an S0-bundle over K2. We must have then

∂(S1 × D2) = S1 × S1 = ∂(D(RP2#RP2)).

The tubular neighborhood D(K2) of K2 ∼= RP2#RP2 is a 1-line bundle and has

boundary a torus T2 = S1 × S1. We may construct such a bundle in the following

way. Note first that T2 is an orientable double-cover of K2 and we have a Z2 action

on T2 with quotient T2/Z2 = K2. On the other hand we have a Z2 action on D1 via

31



a flip. Hence we can construct the associated fiber bundle

T2 ×Z2 D1

��

K2

(3.3.1)

and we have that ∂(T2 ×Z2 D1) = T2 ×Z2 S0 ' T2.

Now we show that there is only one possible isometric circle action on

RP3#RP3 with nonnegative curvature realizing this orbit space structure. Accord-

ing to [35], Theorem 4, there are 42 = 16 inequivalent actions on RP3#RP3. We now

show that only one of these can occur on a nonnegatively curved RP3#RP3. Recall

that RP3#RP3 with nonnnegative sectional curvature has S2× S1 as a double cover

(cf. [20]). This in turn has as universal covering space S2 × R with nonnegative

curvature. By the Splitting Theorem 2.10, S2×S1 must have a product metric with

nonnegative curvature. There is only one S1 action on S2 × S1 according to [35]

Theorem 1 (iii). So there is only one S1-action on RP3#RP3 by isometries, induced

by the action on S2 × S1. Now we describe the action.

We observe first that RP3#RP3 can be written as the quotient of Z2-action on

S2×S1 given by −1(x, y) 7→ (−x, ȳ), i.e., the antipodal map on S2 and reflection on

S1, corresponding to complex conjugation when we consider S1 ⊂ C. The S1-action

on S2×S1 is given by λ(x, y) 7→ (λx, y), where S1 acts by rotations on S2. Since the

antipodal map commutes with rotations, the S1-action on S2 × S1 commutes with

the Z2-action, inducing an S1-action on RP3#RP3 giving the desired orbit space.

Observe also that this induces a Z2-action on the orbit space of S2 × S1, which

is a cylinder whose boundary circles are fixed-point components. The quotient of
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this Z2-action yields the orbit space of the S1-action on RP3#RP3, i.e., we have a

commutative diagram
S2 × S1 κ−−−→ RP3#RP3

π

y π

y
S1 × I κ−−−→ D2

where π is the orbit projection map corresponding to the S1-action and κ is the

quotient map of the Z2-action.

Case 2.2.1.3. Suppose the largest isotropy group is S1. A fixed-point set component

is a circle and must be contained in C1 ' [−1,+1]. This is a contradiction so this

case does not occur.

Case 2.2.2. Suppose C1 ' S1. Then C1 is the soul of M∗, is totally convex and,

by the Isotropy Lemma 2.4, all the points in C1 must have the same isotropy.

Case 2.2.2.1. Suppose C1 has trivial isotropy. Then F 1 double-covers C1. The

orbit space corresponds to a Möbius band M2 whose boundary circle is F 1. Now

we use the classification of circle actions on closed 3-manifolds to identify M3. We

have (ε, g, h̄, t) = (n̄, 1, 1, 0) and M is diffeomorphic to S2×̃S1, the non-trivial S2-

bundle over S1. It follows from Theorem 1(iii) in [35] that there is only one circle

action with fixed points on this manifold. We can realize this orbit space structure

on S2 × S1 with nonnegative curvature by letting S1 act fiberwise by cohomogenety

one. We obtain this action by first considering S2× [0, 1] with S1 acting by rotations

on the first factor and then identifying S2 × {0} with S2 × {1} via the antipodal

map, which is an equivariant isometry.
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Case 2.2.2.2. Suppose C1 has finite isotropy Zq. By Lemma 2.13, we must have

Z2 isotropy and C1 must be a boundary component. In this case the set of special

exceptional orbits, is C1. We have (ε, g, h̄, t) = (o, 0, 1, 1), so M3 is equivariantly

diffeomorphic to RP2 × S1, according to Theorem 1 in [35]. By Theorem 1(iii) in

[35], RP2 × S1 supports only one circle action with fixed points, up to equivariant

diffeomorphism. We can realize this orbit space structure on RP2 × S1 with non-

negative curvature by letting S1 act via the standard cohomogeneity 1 action on the

RP2-factor and trivially on the S1-factor. Observe that there is only one RP2-bundle

over S1.

Case 2.2.2.3. Suppose C1 has isotropy S1. In this case the orbit space is a cylinder

whose boundary components correspond to components of the fixed-point set. There

are not any exceptional orbits. We have that (ε, g, h̄, t) = (o, 0, 2, 0) and it follows

from Theorem 1 in [35] that M3 is equivariantly diffeomorphic to S2×S1. Moreover,

by Theorem 1(iii) in [35], S2×S1 supports only one circle action with fixed points, up

to equivariant diffeomorphism. We can realize this orbit structure by taking S2×S1

with the standard nonnegatively curved product metric and letting S1 act on the S2

factor via the standard cohomogeneity 1 action and trivially on the S1-factor.
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Chapter 4

Nonnegatively curved fixed-point homogeneous 4-manifolds

4.1 Main result

Theorem 4.1. Let M4 be a 4-dimensional nonnegatively curved fixed-point homo-

geneous G-manifold. Then G can be assumed to be SO(4), SU(2), SO(3) or S1.

(1) If G = SO(4), then M4 is equivariantly diffeomorphic to S4 or RP4.

(2) If G = SU(2), then M4 is equivariantly diffeomorphic to S4, RP4, HP1 or CP2.

(3) If G = SO(3), then M4 is diffeomorphic to a quotient of S4 or S3 × S1.

(4) If G = S1, then M4 is diffeomorphic to a quotient of S4, CP2, S2×S2, CP2#±

CP2, S3 × R or S2 × R2.

Proof. The first assertion follows from the comments made in chapter 2. Recall that

since M is fixed-point homogeneous, the fixed-point set MG has codimension one in

the orbit space. Hence the cohomogeneity of the action determines G, which must act

transitively on the normal sphere Sk to a component of MG with maximal dimension.
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We now list the possible compact Lie groups G acting fixed-point homogeneously on

M4 with principal isotropy group H.

(G,H) =



(SO(4), SO(3)) or (SU(2), SU(1)) if cohom G = 1 (Sk = S3);

(SO(3), SO(2)) if cohom G = 2 (Sk = S2);

(S1, 1) if cohom G = 3 (Sk = S1).

We will now prove (1)–(4) in the statement of the Theorem.

Cases 1 and 2. (G,H) = (SO(4), SO(3)) or (SU(2), SU(1)). These are cohomogene-

ity one cases and the conclusions follow from Corollary 2.14.

Case 3. (G,H) = (SO(3), SO(2)). The orbit space M∗ is a 2-dimensional Alexan-

drov space with non-empty boundary and nonnegative curvature. It follows from

Corollary 2.9 that M∗ is homeomorphic to a closed disk D2 or isometric to a flat

cylinder S1 × I, where I is a closed interval, or to a flat Möbius band M2. Observe

that the fixed-point set components are 1-dimensional closed submanifolds of M ,

i.e., circles. Let F 1 ⊂ MG be a component of ∂M∗ and let C be the set of points

at maximal distance from F 1 in the orbit space M∗. We have dimC ≤ dimF 1 = 1.

We will now analyze all the possible orbit space structures.

Case 3.1. Suppose dimC = 0. Then C0 is the soul and, by the Soul Theorem 2.5,

it must be a point. This case corresponds to case (a3) in Theorem 2.2 and it follows

from the proof of this theorem (cf. [16]) that M4 is equivariantly diffeomorphic to

S4 or RP4. Observe that the principal isotropy group is SO(2), so the only possi-

ble non-principal isotropy group for C0 is O(2), in which case M4 is equivariantly
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diffeomorphic to RP4. When the isotropy of C0 is SO(2), M4 is equivariantly dif-

feomorphic to S4.

Case 3.2. Suppose dimC = 1. We have C1 ' [−1,+1] or C1 ' S1.

Case 3.2.1. Assume C ' [−1,+1]. After another step of the soul construction, we

get the soul of M∗, which must be a point and it follows that M∗ is homeomorphic

to D2. By Theorem 2.7, all the points in M∗ − {MG ∪ C } correspond to principal

orbits.

We will now analyze the orbits corresponding to the points in the singular set

C1 ' [−1,+1]. Note first that the points in (−1,+1) cannot all be fixed, since this

would imply that (−1,+1) ∼= S1, which is a contradiction.

Let K−, K+ and K0 be the isotropy groups corresponding to {−1}, {+1}

and (−1,+1), respectively. As we have done before, we will denote this triple by

K− · · ·K0 · · ·K+.

It follows from the Isotropy Lemma 2.4 that K0 ≤ K±. The principal isotropy

group is SO(2) = S1, so the possibilities for K± are SO(3), O(2) and S1. By reprsen-

tation theory, the fixed-point set components must be circles, so there are no isolated

points with SO(3) isotropy. Recall that an orbit stratum must be a manifold without

boundary, so the points in C cannot all have the same non-principal isotropy group.

Thus we have the following possibilities for the isotropy triple K− · · ·K0 · · ·K+:
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SO(2) · · · SO(2) · · · SO(2), (4.1.1)

O(2) · · · SO(2) · · · SO(2), (4.1.2)

O(2) · · · SO(2) · · ·O(2). (4.1.3)

In case 4.1.1 all orbits are principal, except for those in MG ∼= S1. This case

is ruled out because by Lemma 2.13 there must be non-pricipal isotropy in ∂C1.

Case 4.1.2 reduces to case 3.1, in which C is a point with isotropy O(2),

following the same argument as in Case 2.2.1.2 in Chapter 3. It follows that M4 is

diffeomorphic to RP4.

We consider now 4.1.3. Let us see that M4 can be exhibited as the connected

sum of two copies of RP4. Recall first that M∗ is a 2-disk. Divide M∗ ' D2 in

half, by a curve joining points in the boundary circle, so that each point with O(2)-

isotropy lies in a different half of M∗. This curve lifts to a 3-sphere and we see that

M4 is RP4#RP4.

The lift of C1 ' [−1,+1] under the projection map π : M → M∗ is

π−1([−1,+1]) ∼= RP3#RP3. The boundary E3 of a tubular neighborhood of this

lift in M4 is an S0-bundle over RP3#RP3, so E3 double-covers RP3#RP3. On the

other hand, E3 is also the boundary of a tubular neighborhood of the fixed-point
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set S1. Hence E3 is also an S2-bundle over S1. We have the following diagram

S2 // E3

~~~~
~~

~~
~~

%%J
JJJJJJJJJ S0oo

S1 RP3#RP3

. (4.1.4)

We will see now that this orbit space can be realized by an SO(3)-action on

RP4#RP4, induced from an isometric SO(3)-action on S3 × S1 .

We will describe a general construction for SO(n − 1)-actions on RPn#RPn.

The SO(3)-action we want on RP4#RP4 will then be a particular case of this con-

struction. Observe first that RPn#RPn is the quotient of Sn−1×S1 by the Z2-action

given by −1(x, z) 7→ (Ax, z̄) where A : Sn−1 → Sn−1 is the antipodal map and z 7→ z̄

is complex conjugation when we consider S1 ⊂ C. Now, consider the SO(n− 1) ac-

tion on Sn−1 × S1 given by letting SO(n − 1) act with cohomogeneity one on Sn−1

and trivially on S1. Since rotations commute with the antipodal map, this action

induces an SO(n−1)-action on the quotient RPn#RPn. Observe that the orbit space

of Sn−1 × S1 is a cylinder whose boundary circles are fixed-point components. This

orbit space double-covers the orbit space of RPn#RPn. We have a commutative

diagram
Sn−1 × S1 κ−−−→ RPn#RPn

π

y π

y
S1 × I κ−−−→ D2

,

where π is the orbit projection map of the SO(n − 1)-action and κ is the quotient

map under the Z2 covering action.

Case 3.2.2. Suppose C1 ' S1. In this case M∗ is isometric to a flat cylinder S1× I

39



or to a flat Möbius band whose boundary is the fixed-point set F 1.

Suppose first that M∗ is a cylinder S1 × I. One of the boundary components

corresponds to the fixed-point set component F 1. The other boundary component,

corresponding to C1, is either another component of the fixed-point set or it has

isotropy O(2). When the boundary is a fixed-point set component, the manifold

is an S3-bundle over S1. Observe that we can realize this orbit space structure on

S3 × S1 with nonnegative curvature by letting SO(3) act by cohomogeneity one on

the S3-factor and trivially on the S1-factor. When the boundary has O(2)-isotropy,

then the orbit type of points in the boundary with isotropy O(2) is RP2 and the lift

of a geodesic joining two points in the boundary of S1 × I is RP3. Hence M4 is an

RP3-bundle over the fixed-point set component S1. It follows from the long exact

sequence of this bundle that π1(M4) = Z2×Z and, by the Splitting Theorem, M4 is

covered by S3×R. In fact, we can realize this orbit space structure on RP3×S1 with

nonnegative curvature by letting SO(3) act by cohomogeneity one on the RP3-factor

and trivially on the S1-factor.

Suppose now that M∗ is a Möbius band. Observe that the set at maximal

distance C1 = S1 cannot have any isotropy, since its space of directions must have

diameter π. In this case, M4 is an S3-bundle over C = S1. We can realize this

orbit space structure on the non-trivial bundle S3×̃S1 with nonnegative curvature

by letting SO(3) act by cohomogeneity one on the S3-fibers.
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Case 4. (G,H) = (S1, 1). We will determine the possible orbit spaces of a fixed-pont

homogeneous circle action on a nonnegatively curved 4-manifold M4. We will also

give examples realizing these orbit spaces via isometric actions on 4-manifolds with

nonnegative curvature. In the next chapter we will further discuss circle actions

realizing these orbit spaces when M4 is simply connected.

Let F 2 ⊂ ∂M∗ be a component of the fixed-point set with maximal dimension

and let C be the set at maximal distance from F 2 in the orbit space M∗. We have

0 ≤ dimC ≤ dimF 2 = 2.

Case 4.1. Suppose dimC = 0. Then C0 is the soul of M∗. This orbit space

structure corresponds to case (a2) in Theorem 2.2. It follows from the proof of

this theorem (cf. [16]) that M4 is equivariantly diffeomorphic to CP2 when C0 is a

fixed point, to S4 when C0 has trivial isotropy, or to RP4 when C0 has Z2-isotropy.

Observe that C0 cannot have isotropy group Zq, with q ≥ 3, since the set of points

with finite isotropy group Zq, q ≥ 3, must have even codimension in M4.

Case 4.2. Suppose dimC = 1. Then C1 ' S1 or C1 ' [−1,+1].

Case 4.2.1. Suppose C1 ' S1. Then C1 is the soul of M∗ and the largest isotropy

group in C1 ∼= S1 is either S1, Zq (q ≥ 2), or 1. Observe that by the Isotropy

Lemma 2.4 all the points in C1 must have the same isotropy group.

Case 4.2.1.1. Suppose the largest isotropy group is S1. Then C1 ∼= S1 is a com-

ponent of the fixed-point set. This is a contradiction, since the components of the
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fixed-point set of an S1- action must have even codimension in M4. Hence this case

is ruled out.

Case 4.2.1.2. Suppose the largest isotropy group is Zq, for some q ≥ 2. Then all

the points in C1 ' S1 have isotropy Zq. Observe that there are no critical points

for the distance function to F in M∗−{F ∪C1} and we have a gradient-like vector

field from F to the soul circle C1 which is radial near F and near C1 (cf. [15]).

Given a point p∗ in C1, the set of flow-lines from p∗ to F is a 2-disk whose lift is a

lens space L(q, q′). Hence M4 is a lens space-bundle over S1 and it follows from the

long exact homotopy sequence of a bundle that π1(M4) ∼= Zq × Z. Hence, by the

Splitting Theorem 2.10, M4 is covered by S3 × R.

The fixed-point set F 2 is diffeomorphic to the boundary of a tubular neigh-

borhood of C1, so it is an S1-bundle over C1 ' S1 and hence either a torus T2 or a

Klein bottle K2.

When F 2 = T2 we can realize this orbit space configuration on L(q, q′) × S1.

Observe first that the fixed-point homogeneous S1-action on S3 commutes with the

Zq action whose quotient is the lens space L(q, q′). Hence the covering map κ : S3 →

L(q, q′) induces a fixed-point homogeneous S1-action on L(q, q′) whose orbit space

is a 2-disk whose boundary circle is the fixed-point set of the action and whose set

at maximal distance is a point with finite isotropy Zq. Consider now the S1-action

on L(q, q′) × S1 given by letting S1 act fixed-point homogeneously on L(q, q′) and

trivially on S1. The orbit space is a solid torus D2 × S1 with F 2 = T2 and C1 ' S1

with Zq isotropy.
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When F 2 = K2, we can realize this orbit space configuration on L(q, q′)×̃S1 ∼=

(L(q, q′) × [0, 1)]/(x, 0) ∼ (Ax, 1) where A is the map induced on L(q, q′) by the

antipodal map on S3 via the covering map κ : S3 → L(q, q′). Since A : L(q, q′) →

L(q, q′) commutes with the fixed-point homogeneous S1-action on L(q, q′), we have

a fixed-point homogeneous action on L(q, q′)×̃S1 by letting S1 act-fixed point homo-

geneously on the L(q, q′)-fibers. The orbit space is a non-trivial D2-bundle D2×̃S1

whose boundary F 2 = K2 is the fixed-point set and C1 is a circle with Zq isotropy.

Case 4.2.1.3. Suppose the largest isotropy group is the principal isotropy group 1,

so that all points in C1 ' S1 have trivial isotropy group. As in Case 4.2.1.2 , we see

that M4 is an S3-bundle over S1. It follows from the long exact homotopy sequence

of a bundle that π1(M4) ∼= Z. By the Splitting Theorem 2.10, M4 must be covered

by S3 × R equipped with a product metric of nonnegative curvature.

We know that the lift π−1(C1) of C1 = S1 in M4 is an S1-bundle over S1. Thus

the total space must be T2 or K2 and a tubular neighborhood of this lift in M4 is a

D2-bundle over π−1(C1).

We now determine F 2, the fixed-point set component with maximal dimen-

sion. Consider a tubular neighborhood D(C1) in the orbit space M∗. Its boundary

is an S1-bundle over S1, so it must be T2 or K2. Moreover, ∂D(C1) is diffeomorphic

to ∂M∗ = F 2, the fixed-point set component with maximal dimension. Assume first

that M4 is orientable. Then we must have F 2 = T2, since a fixed-point set compo-

nent of a smooth S1-action on an orientable manifold is an orientable submanifold.

A tubular neighborhood of the 2-dimensional fixed-point set F 2 = T2 in M4
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is a D2-bundle over T2 and its boundary is an S1-bundle over T2.

Thus we have the following two possible diagrams:

S1 // E3

~~||
||

||
||

  B
BB

BB
BB

B S1oo

T2 T2

, (4.1.5)

S1 // E3

~~||
||

||
||

!!B
BB

BB
BB

B S1oo

T2 K2

. (4.1.6)

From the long exact homotopy sequence of the fiber bundle S1 −→ E3 −→ T2

and the fact that πi(T2) = 0 for i ≥ 2 we obtain the short exact sequence

0 −→ π1(S1) −→ π1(E3) −→ π1(T2)→ 0,

which we rewrite as

0 −→ Z −→ π(E3) −→ Z⊕ Z→ 0.

Recall that free modules are projective. Hence, since Z⊕ Z is a free Z-module, the

short exact sequence splits and we have that

π1(E3) = Z3.

On the other hand, from the long exact homotopy sequence of the fiber bundle

S1 −→ E3 −→ K2 in diagram 4.1.6 we obtain the short exact sequence

0 −→ π1(S1) −→ π1(E3) −→ π1(K2)→ 0,

which we rewrite as

0 −→ Z −→ Z3 −→ π1(K2)→ 0.
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By exactness and the first isomorphism theorem we cannot have such a sequence,

since π1(K2) is not abelian. This rules out diagram 4.1.6.

The orbit space structure in diagram 4.1.5 can be realized by an isometric

S1-action on S3 × S1 equipped with the product metric, taking the fixed-point ho-

mogeneous S1 action on the S3 factor and letting S1 act trivially on the S1 factor.

The orbit space is a solid torus D2× S1 whose boundary T2 is the fixed-point set of

the action, and the set at maximal distance is a circle with trivial isotropy. Observe

that, by the splitting theorem, any isometric action on S3 × S1 must split, acting

by isometries on each factor. There is only one isometric fixed-point homogeneous

action on S3 up to equivariant diffeomorphism (cf. Chapter 3) so there is only one

isometric action on S3 × S1 with nonnegative curvature yielding the desired orbit

space.

Assume now that M4 is non-orientable. Then we also have K2 as a possible

2-dimensional fixed-point set component F 2. Proceeding as above, we see that we

must have a diagram

S1 // E3

}}||
||

||
||

!!B
BB

BB
BB

B S1oo

K2 K2

.

This orbit space structure can be realized on the non-trivial bundle S3×̃S1, by

taking the fixed-point homogeneous action on each fiber. The orbit space will be the

non-trivial D2-bundle over S1, whose boundary K2 corresponds to the fixed-point set

F 2, with set at maximal distance C1 ' S1 with trivial isotropy. Let us denote this
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pair by [F,C]∗ and its lift by [F,B], so that in this case we have [F,C]∗ = [K2,S1]

and [F,B] = [K2,K2]. Observe that this action on S3×̃S1 is induced by the action

of S1 on S3 × S1 via the double-covering map κ : S3 × S1 → S3×̃S1 and we have a

commutative diagram
S3 × S1 κ−−−→ S3×̃S1

π

y π

y
D2 × S1 κ−−−→ D2×̃S1

,

where π is the orbit projection map of the S1-action and κ is the quotient map under

the Z2 covering action. In particular, we have

[T2,T2]
κ−−−→ [K2,K2]

π

y π

y
[T2,S1]∗

κ−−−→ [K2, S1]∗

,

where the left-hand side corresponds to the S1-action on S3×S1 and the right-hand

side corresponds to the S1-action on S3×̃S1.

Case 4.2.2. Suppose C1 ' [−1,+1]. We first analyze the orbits corresponding to

the points in C1. Let K−, K+ and K0 be the isotropy group corresponding to {−1},

{+1} and (−1,+1) respectively, and denote this triple by K− · · ·K0 · · ·K+. The

largest isotropy group in this triple is either 1, Zq (q ≥ 2), or S1 and it follows from

the Isotropy Lemma 2.4 that K0 ≤ K±. Observe that we cannot have K− = K0 = K+

unless every isotropy group is principal.

Case 4.2.2.1. Suppose the largest isotropy group is 1. This case reduces to the

case when C is a point with trivial isotropy (cf. Case 4.1) and it follows that M4 is

diffeomorphic to S4.

Case 4.2.2.2. Suppose the largest isotropy group is Zq, for some q ≥ 2, so that we
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have the isotropy triple

Zq− · · ·Zl · · ·Zq+ .

We now show that we must have q± ≤ 2. Let p be a point in an orbit with finite

isotropy Zk, k ≥ 3. Then the unit normal sphere to the orbit at p is S2 and Zk

acts on it fixing one direction. Hence the space of directions has diameter π and

an endpoint of C1 ' [−1,+1] cannot have isotropy Zk with k ≥ 3. Hence we have

q± ≤ 2. Observe that we cannot have all points in C1 ' [−1,+1] have Z2-isotropy,

since an orbit stratum must be a manifold without boundary. Hence we only have

the isotropy triples

1 · · · 1 · · ·Z2 and Z2 · · · 1 · · ·Z2.

The same argument as in case 2.2.1.2 in Chapter 3 implies that the case of

1 · · · 1 · · ·Z2 reduces to the case when the set at maximal distance C is a point

with Z2-isotropy (cf. Case 4.1). The manifold in this case is diffeomorphic to RP4.

In the second case corresponding to the isotropy triple Z2 · · · 1 · · ·Z2, the lift

of C1 under the orbit map π : M →M∗ is π−1([−1,+1]) ' RP2#RP2. Observe now

that the space of directions at ±1 ∈ C1 is RP2. Hence the boundary of a tubular

neighborhood of ±1 in M∗ is RP2 and the boundary of a tubular neighborhood of

C1 in M∗ of C1 is RP2#RP2. Hence F 2 ∼= RP2#RP2 ∼= K2 and it follows that

M4 is non-orientable. Observe that M4 can be written as the union of tubular

neighborhoods of RP2#RP2 and RP2#RP2 along their common boundary E3. We

consider now the orientable double cover M̃ ofM . The fixed-point set F̃ 2 of the lifted
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isometric circle action must double-cover F 2 ∼= K2 and be orientable, so F̃ 2 ∼= T2

and the lift of the set at maximal distance is a circle S1 with no isotropy. This orbit

space configuration has been analyzed already (cf. Case 4.2.1.3) and it follows that

M is covered by S3 × R.

We will now describe an isometric S1-action on RP4#RP4 with this orbit space

structure. Observe first that S3×S1 is a double-cover of RP4#RP4. We get RP4#RP4

as a quotient of S3 × S1 ⊂ C2 × C by the action of Z2 given by

−1((z1, z2), z3) 7→ ((−z1,−z2), z̄3),

i.e., Z2 acts by the antipodal map on S3 ⊂ C2 and by conjugation on S1 ⊂ C. On

S3 ⊂ C2 we have the standard fixed-point cohomogeneity S1-one action given by

λ(z1, z2) 7→ (λz1, z2), λ ∈ S1, (z1, z2) ∈ S3

which has fixed-point set a circle. We extend this action to a fixed-point homoge-

neous action on S3×S1 by letting S1 act fixed-point homogeneously on the S3-factor

and trivially on the S1-factor. Since the S1=action on S3 × S1 commutes with the

Z2-action, we have an induced S1-action on RP4#RP4. Moreover, the orbit space

(S3 × S1)∗ ' D2 × S1 double-covers the orbit space (RP4 × S4)∗ ' D2 and we have

a commutative diagram
S3 × S1 κ−−−→ RP4#RP4

π

y π

y
D2 × S1 κ−−−→ D2

,

where π is the orbit projection map of the S1-action and κ is the quotient map under

the Z2 covering action.
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Observe that the S1-action on S3×S1 has F 2 ∼= T2 and set at maximal distance

C1 ' S1. Let us denote this pair by [F,C]∗ and denote its lift by [F,B], so that in

this case we have [F,C]∗ = [T2,S1] and [F,B] = [T2,T2]. Hence we have

[T2,T2]
κ−−−→ [K2,K2]

π

y π

y
[T2, S1]∗

κ−−−→ [K2, I]∗
,

where the left-hand side corresponds to the S1-action on S3×S1 and the right-hand

side corresponds to the S1-action on RP4#RP4.

Case 4.2.2.3. Suppose the largest isotropy group is S1. We have the following

possible isotropy configurations:

S1 · · · 1 · · · 1; (4.1.7)

S1 · · · 1 · · · S1. (4.1.8)

S1 · · · 1 · · ·Z2, for some q ≥ 2; (4.1.9)

S1 · · ·Zl · · · S1, for some l ≥ 2; (4.1.10)

Case 4.1.7 reduces to case 4.1, where C is a point with S1-isotropy. In this

case M4 is diffeomorphic to CP2.

In case 4.1.8, the boundary of a neighborhood of C1 ' [−1,+1] in M∗ is

S2. Hence the 2-dimensional fixed-point set component F 2 is diffeomorphic to S2.

Moreover, the lift π−1(C1) is also S2, so we can write M4 as the union of two 2-

disk bundles over S2. It follows from Van Kampen’s theorem that M4 is simply
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connected. By Kobayashi’s theorem, χ(M4) = χ(Fix(M4, S1))=4. It follows from

Theorem 5.2 in Chapter 5 that M4 is diffeomorphic to S2× S2 or CP2#±CP2. We

will see in Chapter 5 that CP2#CP2 and CP2#−CP2 are the only simply-connected

4-manifolds that support smooth circle actions with this orbit space structure.

Now we analyze case 4.1.9. Observe that the boundary of a neighborhood of

C1 is RP2 and the lift of C1 in M4 is also RP2. Hence F 2 ∼= RP2, so M is non-

orientable and can be written as the union of two 2-disk bundles over RP2 glued

along their common boundary E3. Let M̃ be the orientable double-cover of M with

the lifted isometric circle action. Then the fixed-point set Fix(M̃, S1) of the lifted

action double-covers the fixed-point set of the S1-action on M and we must have

that Fix(M̃, S1) consists of a 2-sphere and two isolated fixed-points. Hence M4 must

be double-covered by CP2#CP2 or CP2#− CP2 (cf. Case 4.1.8).

In case 4.1.10, the boundary of a neighborhood of the interval C1 is S2. Hence

the fixed-point set F 2 is diffeomorphic to S2. Moreover, the lift of C1 is a manifold,

since it is a component of the fixed-point set of Zl, and corresponds to S2. As in

case 4.1.8, M4 is diffeomorphic to either S2 × S2 or CP2# ± CP2. Smooth actions

with this orbit space structure can be realized on S2 × S2 and CP2# ± CP2 (cf.

Chapter 5).

Case 4.3. Suppose dimC = 2. Observe that C2 is a 2-dimensional nonnegatively

curved Alexandrov space. We consider two cases: C ⊂ ∂M∗ and ∂M∗ = F .
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Case 4.3.1. Suppose C2 is a boundary component of M∗. Then, by Lemma 2.12,

C2 is a fixed-point component or all the points in C2 have isotropy Z2. In both

cases C2 is a closed smooth 2-manifold with nonnegative curvature, F 2 and C2 are

isometric and M∗ is isometric to F 2 × I. Since F 2 is a closed nonnegatively curved

2-manifold, it must be diffeomorphic to S2, RP2, T2 or K2.

Suppose that C2 is a component of the fixed-point set. Then M4 is an S2-

bundle over C2 = F 2, by the Double Soul Theorem 2.6. It follows from the long

exact homotopy sequence of a fiber bundle that π1(M4) ∼= π1(F 2). Hence M4 is

simply connected if and only if F 2 is S2.

When F 2 = S2, M4 is an S2-bundle over S2 and it follows that M4 is dif-

feomorphic to S2 × S2 or S2×̃S2 ∼= CP2# − CP2. In fact, both manifolds support

isometric S1-actions with fixed-point set S2 ∪ S2. On S2 × S2 let S1 act by cohomo-

geneity one on the first S2 factor and trivially on the second S2 factor. To obtain an

isometric S1-action on CP2#−CP2 with nonnegative curvature and fixed-point set

S2 ∪ S2 start by letting S1 act fixed-point homogeneously on CP2. This action has

fixed-point set S2 ∪ {p}. We remove an invariant neighborhood of the isolated fixed

point and do the same construction on −CP2 equipped with a fixed-point homoge-

neous S1-action. We now take an equivariant connected sum to obtain CP2#−CP2

with nonnegative curvature and a fixed-point homogeneous isometric S1-action with

fixed-point set S2 ∪ S2.

When F 2 is not S2, M4 is not simply-connected. Let M̃4 be the universal
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covering space of M4. Then we have

M̃4 =


CP2#− CP2 or S2 × S2 if F 2 = RP2;

S2 × R2 if F 2 = T2 or K2.

We can construct examples realizing the orbit space structure M∗ = F 2×I with the

two boundary components corresponding to fixed-point set components by letting

S1 act on the product F 2 × S2 by cohomogeneity one on S2 and trivially on F 2.

Suppose now that all the points in C2 have isotropy Z2. Observe that a

geodesic from F 2 to C2 lifts to RP2, so M4 is an RP2-bundle over F 2. Suppose that

F 2 is S2. It follows from the long exact homotopy sequence of a bundle that π1(M4)

is 0 or Z2 and hence M4 is covered by CP2# ± CP2 or S2 × S2. When F 2 is T2, it

follows from the long exact homotopy sequence of a bundle that π1(M4) ∼= Z2 × Z2

and, by the Splitting Theorem, M4 is covered by S2 × R2. When F 2 is RP2 or K2,

we see that M2 is covered by S2 × R2, S2 × S2 or CP2# ± CP2 by considering the

orientable double-cover of M4.

We can construct examples of actions on nonnegatively curved 4-manifolds

with this orbit space structure by considering the product F 2 ×RP2 with S1 acting

by cohomogeneity one on RP2 and trivially on F 2.

Case 4.3.2. Suppose now that ∂M∗ = F 2, so C2 is not a boundary component of

M∗. We consider two cases, depending on whether or not C2 has boundary.

Case 4.3.2.1. Suppose ∂C2 = ∅. Then by Lemma 2.13 all the points in C2 have

principal isotropy and F 2 double-covers C2. Moreover, we have that M4 is an S2-

bundle over C2. The only possibilities for F 2 are S2, T2 or K2.
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When F 2 ∼= C2 ∼= T2, we construct an example realizing this orbit space

structure by considering (S2×̃S1)× S1 with S1 acting fixed-point homogeneously on

S2×̃S1 and trivially on S1. The orbit space is the product of a Möbius band and S1.

This has boundary T2, which corresponds to the fixed-point set, and set at maximal

distance T2.

Case 4.3.2.2. Suppose ∂C 6= ∅. Observe that C is a 2-dimensional Alexandrov

space with nonnegative curvature, hence it must be homeomorphic to D2 or isomet-

ric to a flat Möbius band M2 or a flat cylinder S1 × I. By Lemma 2.13 there is no

isotropy in the interior of C2. Observe that there cannot be an isolated fixed-point

in ∂C2 since in this case the space of directions p is S2(1
2
). We have a direction

that is normal to C2, corresponding to a geodesic from F 2 to p. On the other hand,

this geodesic is normal to C2, so its direction must make an angle of π/2 with a

1-dimensional subset of SpX = S2(1
2
), which is a contradiction. Thus, the only

non-trivial isotropy is Z2.

Assume C2 = D2. Suppose first that every point in the boundary circle has

isotropy Z2. It follows from the Orlik-Raymond classification of 3-manifolds with

a smooth S1-action that the lift of C2 is S2×̃S1, the non-trivial S2-bundle over S1.

Then we can write M4 as the union of disk bundles over S2 and S2×̃S1 glued along

their common boundary E3. We have the following diagram:
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S1 // E3

~~}}
}}

}}
}}

##G
GGGGGGG S0oo

S2 S2×̃S1

. (4.1.11)

Assuming M4 is orientable, we must have E3 ' S2 × S1 and it follows from

the Van-Kampen theorem that π1(M4) ∼= Z2, so M4 is double-covered by S4, CP2,

S2 × S2 or CP2# ± CP2. Now, observe that χ(M4) = χ(Fix(M4, S1)) = 2, so M4

can only be covered by S2 × S2 or CP2# ± CP2, all of which have Euler charac-

teristic 4. The fixed-point set of the lifted circle action on the universal cover M̃4

double-covers S2. Hence Fix(M̃4, S1) contains two fixed-point 2-spheres. By the

Double Soul Theorem, M̃ is an S2-bundle over S2. Hence M̃4 is diffeomorphic to

either S2× S2 or CP2#−CP2. If M4 is non-orientable, by passing to the orientable

double-cover we see that M4 is covered by S2 × S2 or CP2#− CP2.

Suppose now that there are isolated points in ∂C2 with finite isotropy Z2. By

compactness there are finitely many of these points in the boundary circle. In fact,

there can be at most four points p̄1, . . . , p̄4 with isotropy Z2 on the boundary ∂C2.

We will now show that there can be at most two isolated points with Z2-isotropy in

∂C2. Let q̄ be a point in the interior of C2 and let γ1, . . . , γ4 be minimal geodesics

joining q̄ with p̄1, . . . , p̄k, respectively, for some k ≥ 1. Since C2 is totally geodesic,

these geodesics are contained in C2. Now, observe that C2 deformation retracts

onto U = ∪ki=1γ1. Hence a tubular neighborhood D(C2) is homotopy equivalent to

a tubular neighborhood D(U). The boundary of D(U) is the connected sum of k
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projective spaces and ∂D(C2) ∼= F 2 is homotopy equivalent to ∂D(U). Hence F 2,

which is a closed 2-manifold with nonnegative curvature, is homotopy equivalent to

a connected sum of k projective spaces. Hence π1(F 2) ∼= π1(#k
i=1RP2). Hence we

must have k = 1 or 2. When we have only one isolated point with Z2-isotropy, this

case reduces to the case in which C is a point with Z2 isotropy and hence M4 is

diffeomorphic to RP4. When there are two points with Z2-isotropy, this case reduces

to the case when C is an interval with enpoints with Z2-isotropy. In this case the

manifold is diffeomorphic to RP4#RP4.

Suppose C2 = S1× I. The possible isotropy groups are Z2 or the trivial group

1.

Suppose the largest isotropy group is 1. Then M∗ is a manifold with totally

geodesic boundary and soul S1. This case reduces to the case in which C = S1 with

trivial isotropy and the manifold is then diffeomorphic to S3 × S1 or S3×̃S1.

Suppose now the largest isotropy group is Z2. Since S1 × I has the product

metric, the boundary components are closed geodesics. It follows from the Isotropy

Lemma that, if a point in a boundary circle of S1 × I has isotropy Z2, then every

point in this circle has isotropy Z2. Assume first that there are two boundary

components with Z2-isotropy. Observe that F 2 ∼= T2 and the lift of C2 ∼= S1 × I is

RP2#RP2 × S1 ∼= K2 × S1. Then M4 is the union of tubular neighborhoods D(T2)
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and D(K2 × S1) glued along their common boundary E3. We have the diagram

S1 // E3

~~||
||

||
||

$$I
IIIIIIII S0oo

T2 K2 × S1

. (4.1.12)

It follows from Van-Kampen’s Theorem that π1(M4) ∼= π1(RP3#RP3)×Z. It follows

from the Spitting Theorem that M4 is covered by S2×R2. This orbit space structure

can be realized on RP3#RP3 × S1 with S1 acting fixed-point homogeneously on the

first factor and trivially on the second factor.

Suppose we only have one boundary component with finite isotropy. As in case

2.2.1.2 in Chapter 3, the distance function to the boundary component of C2 = S1×I

with Z2 isotropy has no critical points and this case reduces to the case in which C

is a circle with Z2-isotropy. It follows that M4 is diffeomorphic to an RP3-bundle

over S1.

Suppose C2 = M2. Suppose the largest isotropy group is 1. Then the soul is

S1 and this case reduces to the case in which C = S1 with trivial isotropy. It follows

that M4 is diffeomorphic to S3 × S1 or S3×̃S1.

Suppose now that the largest isotropy group is Z2. We have isotropy Z2 on all

the points in the boundary of C2 and the lift of C2 is K2×̃S1, a non-trivial K2-bundle

over S1 . Then M4 is the union of tubular neighborhoods D(K2) and D(K2×̃S1)
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glued along their common boundary E3. We have the diagram

S1 // E3

~~||
||

||
||

##G
GG

GG
GG

GG
S0oo

K2 K2×̃S1

. (4.1.13)

Now, since F = K2, M4 must be non-orientable. Passing to the orientable double-

cover M̃4, we must have F̃ = T2, and it follows from the previous case that M4 is

covered by S2 × T2.
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Chapter 5

Fixed-point homogeneous circle actions on nonnegatively curved

simply connected 4-manifolds

5.1 Introduction

Effective, locally smooth circle actions on 4-manifolds were classified up to equivari-

ant homeomorphism by Fintushel in [9, 10]. This classification holds in the smooth

category, as a result of carrying out the constructions therein in this setting [11].

In particular, as an immediate consequence of Fintushel’s results, work of Pao [29],

and the validity of the Poincaré conjecture due to Perelman [31, 32, 23, 26] one has

the following theorem (cf. Theorem 13.2 in [10]).

Theorem 5.1. Let M be a closed simply connected smooth 4-manifold with a smooth

S1-action. Then M is diffeomorphic to a connected sum of copies of S4, ±CP2 and

S2 × S2. Moreover, the action is determined up to equivariant diffeomorphism by

so-called legally weighted orbit space data.

Suppose now that M is a simply connected Riemannian 4-manifold with an

isometric S1-action. If M has positive curvature, it follows from the work of Kleiner

and Hsiang [21] that the Euler characterstic of M , denoted by χ(M), is 2 or 3.

More generally, if M has nonnegative curvature, it follows from the work of Kleiner

[22] or of Searle and Yang [37] that 2 ≤ χ(M) ≤ 4. Combining these facts with
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Theorem 5.1 yields the following result.

Theorem 5.2. Let M be a compact, simply connected Riemannian 4-manifold with

an isometric S1-action.

(1) If M has positive curvature, then M is diffeomorphic to S4 or CP2.

(2) If M has nonnegative curvature, then M is diffeomorphic to S4, S2 × S2, CP2

or CP2#± CP2.

In section 5.3 we apply Fintushel’s work [9] to obtain further information on

the orbit space of a smooth fixed-point homogeneous S1-action on a nonnegatively

curved simply connected Riemannian manifold M . We will use the orbit space data

to identify M using the recipe given in [9] for computing its intersection form. We

have collected in Section 5.2 the definitions and results from [9] that we use in

section 5.3 to obtain our results.

The classification of positively curved fixed-point homogeneous manifolds due

to Grove and Searle [16], which does not require the Poincaré conjecture, implies that

a compact, simply connected Riemannian 4-manifold with positive curvature and an

isometric fixed-point homogeneous S1-action must be equivariantly diffeomorphic to

S4 or CP2 with a linear action. More generally, a conjecture of Grove states that

this should be the case for any isometric S1-action on a positively curved simply

connected Riemannian manifold (cf. [14]). It is an interesting question whether

or not the conjecture also holds for nonnegatively curved manifolds. In this more

general case, we will say that an S1-action is linear if it extends to a T2-action.
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Question 5.3. Is an isometric S1-action on a simply connected nonnegatively curved

4-manifold equivariantly diffeomorphic to a linear action on S4, CP2, S2 × S2 or

CP2#± CP2?

We will see at the end of section 5.2 that the answer to this question is yes, pro-

vided the S1-action is fixed-point homogeneous. This will be a simple consequence

of [9] and our work in Chapter 4.

5.2 Fintushel’s construction

Let M be a simply connected 4-manifold with a smooth S1-action with orbit space

M∗. In this section we review the definitions and results from [9] that we will use

in the next section.

5.2.1 The weighted orbit space

Let us recall first some basic facts and terminology from [9] pertaining to the orbit

space M∗. We will denote the fixed-point set by F , the set of exceptional orbits

by E and the set of principal orbits by P . Given a subset X ⊂ M , we will denote

its projection under the orbit map π : M → M∗ by X∗. Given a subset X∗ ⊂

M∗, we will let X = π−1(X∗) be its preimage under π. The orbit space M∗ is a

simply connected 3-manifold with ∂M∗ ⊂ F ∗, the set F ∗ − ∂M∗ of isolated fixed

points is finite and F ∗ is nonempty. The components of ∂M∗ are 2-spheres and the

closure of E∗ is a collection of polyhedral arcs and simple closed curves in M∗. The

components of E∗ are open arcs on which orbit types are constant, and these arcs
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have closures with distinct endpoints in F ∗−∂M∗. We will reserve the term regular

neighborhood of X∗ ⊂ E∗∪F ∗ for those regular neighborhoods N∗ of X∗ that satisfy

N∗ ∩ (E∗ ∪ F ∗) = X∗.

We remark that, if we do not require that M be simply connected, we may have

loops Q∗ ⊂ E∗. Consider, for example, the S1-action on RP3×S1 given by the fixed-

point homogeneous action of S1 on RP3, induced by the fixed-point homoeneous

S1-action on S3 via the covering map, and the trivial action on the S1-factor. In this

case M∗ is a solid torus with Q∗ = E∗ a loop with Z2 isotropy.

The orbit space M∗ is assigned a set of data, called weights, which we now

describe.

(a) Let F ∗i be a boundary component of M∗, choose a regular neighborhood

F ∗i × [0, 1] and orient F ∗i × 1 by the normal out of F ∗i × [0, 1]. The restriction of

the orbit map gives a principal S1-bundle over F ∗i × 1 and F ∗i is assigned the Euler

number of this bundle. This is independent of the choice of the collar. We will call

F ∗i a weighted sphere.

(b) If x∗ is an isolated fixed point, i.e., if x∗ ∈ F ∗ − (∂M∗ ∪ clE∗), let B∗ be

a polyhedral 3-disk neighborhood of x∗ with B∗ − x∗ ∪ P ∗. We obtain a principal

S1-bundle over ∂B∗ with total space S3 by restricting the orbit map. Orient ∂B∗ by

the normal out of B∗ and assign to x∗ the Euler number, ±1, of the bundle.

(c) Let L∗ be a simple closed curve in E∗∪F ∗. To each component J∗ of E∗ in

L∗ we assign Seifert invariants (cf. Chapter 3, Section 3.2) in the following way. Fix

an orientation on L∗. This induces an orientation each component J∗ of E∗ in L∗.
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Let y∗ be an endpoint of clJ∗ and let B∗ be a polyhedral 3-disk neighborhood of y∗

such that B∗ ∩ (E∗ ∪ F ∗) = B∗ ∩ L∗ is an arc and B∗ ∩ F ∗ = y∗. If ∂B∗ is oriented

by the normal with direction J∗ then ∂B is an oriented 3-sphere. Assign to J∗ the

Seifert invariants (α, β) of the orbit in ∂B with image in J∗. The covering homotopy

theorem of Palais implies that this definition is independent of the choices made.

The weights assigned to L∗ consist of the orientation and the Seifert invariants.

We abbreviate this system of weights by { (α1, β1), . . . , (αn, βn) }, where the order

of the (αi, βi) is determined up to a cyclic permutation, and we call L∗ a weighted

circle. If the orientation of L∗ is reversed, each (αi, βi) becomes (αi, αi− βi) and we

regard the resulting weighted circle as equivalent to the first.

(d) Let A∗ be an arc which is a component of E∗ ∪ F ∗. Orient A∗ and assign

Seifert invariants as in (c). Let y∗ be the initial point or final point of A∗ and

B∗ a small 3-disk neighborhood of y∗. Proceeding as in (c), ∂B has the S1-action

{b; (o, 0, 0, 0); (α, β)} (cf. Chapter 3, Section 3.2). Assign this integer b to y∗. We

call A∗ a weighted arc and write the weight system as [b′; (α1, β1), . . . , (αn, βn); b′′].

Reversing the orientation on A∗ changes the weight system to [−1 − b′′; (αn, αn −

βn), . . . , (α1, α1 − β1);−1− b′′] which we regard as equivalent to the original weight

system of A∗. We also recall the following Lemma (cf. Lemma 3.5 in [9]).

Lemma 5.4. (a) If (αi, βi) and (αi+1,βi+1
) are the Seifert invariants assigned to

adjacent arcs in some weighted arc or circle, then∣∣∣∣∣∣∣∣
αi βi

αi+ 1 βi+1

∣∣∣∣∣∣∣∣ = ±1.

(b) If [b′; (α1, β1), . . . , (αn, βn); b′′] is a weighted arc then b′α1 + β + 1 = ±1 and
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b′′αn + βn = ±1. (So for i = 1 or n, βi = 1 or αi − 1, and b′ and b′′ can only take

on the values 0 or −1.)

The oriented orbit space M∗ together with the above collection of weights is

called a weighted orbit space. More generally, recall that a legally weighted simply

connected 3-manifold is an oriented simply connected compact 3-manifold X∗ along

with the following data:

(A) an integer ai assigned to each boundary component of X∗,

(B) a finite collection of points in intX∗ with each assigned an integer bi = ±1, and

(C) a collection of weighted arcs and circles in intX∗ as above and satisfying the

criteria of Lemma 5.4. To each weighted arc A∗i = [b′; (α1, β1), . . . , (αn, βn); b′′]

the integer ci = b′′ − b′ is assigned.

At least one of the above collections must be nonempty and we require Σai + Σbi +

Σci = 0. It is shown in [9] that the weighted orbit space of an S1-action on a simply

connected 4-manifold is legally weighted.

It follows from Theorem [9] (7.1) and the validity of the Poincaré conjecture

that, if M∗ contains no weighted circles, then any S1-action on a simply connected

4-manifold M extends to an action of T2 = S1 × S1. As part of the proof of

Theorem 4.1, we determined all the possible orbit spaces of an isometric fixed-point

homogeneous S1-action on a nonnegatively curved Riemanian 4-manifold M . When
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M is simply connected, the orbit space contains no weighted circles and hence the

S1-action must extend to a T2-action, answering affirmatively Question 5.3 in the

case of a fixed-point homogeneous S1-action. We summarize this in the following

corollary.

Corollary 5.5. A fixed-point homogeneous isometric S1-action on a simply con-

nected nonnegatively curved 4-manifold must be equivariantly diffeomorphic to a

linear action on S4, CP2, S2 × S2 or CP2#± CP2.

5.2.2 Equivariant plumbing

The equivariant plumbing of 2-disk bundles over 2-spheres is used in [9] to construct

4-manifolds with S1-actions out of orbit space data. We will review this construction

in this subsection. The basic building blocks will be 2-disk bundles over S2 equipped

with a given S1-action. First we show how to construct a 2-disk bundle over S2

with Euler number ω equipped with certain S1-action and then we see how these

disk bundles can be equivariantly plumbed together to obtain a given orbit space

configuration (cf. [9] 4., 5.).

Write S2 = B1 ∪ B2 as the union of its upper and lower hemispheres and

consider polar coordinates on Bi ×D2
i , i = 1, 2. Given relatively prime integers ui

and vi, define an S1-action on Bi × Di by φ(r, γ, s, δ) 7→ (r, γ + uiφ, s, δ + viφ). If

u2 = −u1 and v2 = −ωu1+v1 we obtain Yω = B1×D1∪GB2×D2 via the equivariant

pasting G : ∂B1 ×D1 → ∂B2 ×D2 given by (1, γ, s, δ) 7→ (1,−γ, s,−ωγ + δ). The

4-manifold with boundary Yω is the D2-bundle over S2 with Euler number ω, i.e., ω

64



is the self-intersection number of the zero section of Yω.

Given Yω1 and Yω2 with u2,1 = v1,2 and v2,1 = u1,2 (or u2,1 = −v1,2 and

v2,1 = −u1,2) we may equivariantly plumb Yω1 and Yω2 with sign +1 (sign −1) by

identifying B2,1×D2,1 with B1,2×D1,2 by means of the equivariant diffeomorphism

(r, γ, s, δ) 7→ (s, δ, r, γ) ((r, γ, s, δ) 7→ (s,−δ, r,−γ)). The resulting manifold, which

we denote by Yω1�Yω2 , has an induced S1-action.

We may carry out these constructions also with T2-actions on Yω using integers

ui, vi, wi and ti with ∣∣∣∣∣∣∣∣
ui wi

vi ti

∣∣∣∣∣∣∣∣ = ±1.

The T2-action onBi×Di is given by (φ, θ)(r, γ, s, δ) 7→ (r, γ+uiφ+wiθ, s, δ+viφ+tiθ).

The glueing map G defined in the preceding paragraph will be equivariant provided

w2 = −w1 and t2 = −ωw1 + t1. We may construct Yω1�Yω2 with sign +1 and

T2-equivariantly if w2,1 = t1,2.

Some examples. We will now describe some of the disk bundles catalogued in [9]

that we will use in our constructions. As described above, actions of S1 and T2 on

Yω are determined by a matrix u1 u2 w1 w2

v1 v2 t1 t2


whose entries satisfy certain conditions. We will use the following disk bundles and

actions (cf. [9]). We will assume that ε = ±1, n is an arbitrary integer, and pairs

(α, β) consist of relatively prime integers 0 < β < α.
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(c) If b′α + β = ±1, b′′α + β = ±1, ε′ =

∣∣∣∣∣∣∣∣
1 |b′|

α β

∣∣∣∣∣∣∣∣, ε
′′ =

∣∣∣∣∣∣∣∣
α β

1 |b′′|

∣∣∣∣∣∣∣∣ and ω =

ε′ε′′

∣∣∣∣∣∣∣∣
1 |b′|

1 |b′′|

∣∣∣∣∣∣∣∣, then

εα −εα ε(β + nα) −ε(β + nα)

εε′ −εε′′ −εε′(|b′|+ n) −εε′′(|b′′|+ n)


defines actions on Yω with Y ∗ω

∼= D3 and a weighted arc • −→ • with weights

[b′; (α, β); b′′].

(d)Let ε′, ε′′ = ±1 and ω = −ε′ − ε′′. Then ε −ε εn −εn

−εε′ εε′′ −εε′(n+ ε′) εε′′(n− ε′′)


describes actions on Yω with Y ∗ω

∼= D3 with two isolated fixed-points with weights

ε′ and ε′′.

(g) Suppose b′α′ + β′ = ±1, ε′ =

∣∣∣∣∣∣∣∣
α′ β′

1 |b′|

∣∣∣∣∣∣∣∣ and ω = ε′α′. Then

 ε −ε ε(|b′|+ n) −ε(|b′|+ n)

−εε′α′ 0 εε′(β′ + nα′) −ε


defines actions on Yω and Y ∗ω with a fixed D2 and half a weighted arc −→ • with

weights (α′, β′) and b′.
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(h) Let ε′ = ±1 and ω = −ε′. Then ε −ε ε εn

−εε′ 0 −εε′(n+ ε′) −ε


describes actions on Yω with Y ∗ω

∼= D3 with an isolated fixed point with weight ε′

and a fixed D2.

(i) Let δ = ±1. Then ε −ε n −n

0 0 δ δ


describes actions on Y0 with Y ∗0

∼= D3 with two fixed 2-discs.

(j) For ω arbitrary and δ = ±1 actions on Yω are defined by0 0 δ −δ

ε ε n −ωδ + n


and Y ∗ω

∼= S2 × I with E∗ ∪ F ∗ = F ∗ = S2 × 0 with weight ω.

5.2.3 Computation of the intersection form

In [9] there is a catalog of different disk-bundles with S1- and T2-actions realizing

different basic orbit space configurations. If M∗ contains no weighted circles, these

disk bundles may be plumbed together to construct a 4-manifold R whose orbit

space R∗ is a particular subset of M∗. We will outline the construction of R and

then recall the recipe given in [9] for computing the intersection form of M out of

the intersection form of R (cf. [9], 5.,8.).
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Let S∗1 , . . . , S
∗
t be the collection of weighted sets in M∗ other than the weighted

circles, with the weighted boundary components of M∗, if any, listed at the end. For

each i = 1, . . . , t−1 let γ∗i be an arc in M∗ joining S∗i to S∗i+1 such that the interior of

the arc lies in the regular orbit stratum P ∗ and such that if S∗i is a weighted arc, γ∗i

begins at the endpoint of S∗i , and if S∗i+1 is a weighted arc, then γ∗i ends at the initial

point of S∗i+1. Let R∗ be a regular neighborhood of
⋃
S∗i ∪

⋃
γ∗i . By equivariantly

plumbing disk bundles Yωi
listed in [9] (with each plumbing of sign +1) one can

construct a 4-manifold R with S1-action and weighted orbit space isomorphic to R∗.

Moreover, this action extends to a T2-action (cf. Lemma 4.7 in [9]). In the next

section we will explicitly list the bundles we will use in our constructions, along with

the actions on them.

Let M be a simply connected 4-manifold with a smooth S1-action such that

M∗ contains no weighted circles. We now recall how to recover the intersection form

QM of M out of the set R∗. Let R be the 4-manifold with S1-action and weighted

orbit space isomorphic to R∗. Then R is the result of an equivariant linear plumbing

•
ω1

•
ω2

. . . •
ωt

If ∂M∗ has m components and (F ∗ − ∂M∗) ∩ R∗ contains l points then t =

2m+ l− 1. The intersection matrix B0 of the plumbing R is the t× t matrix given

by

[B0]ij =



ωi, i = j,

1, i = j ± 1,

0, otherwise,
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since each plumbing has sign +1.

Given a square matrix B, we will denote by B− the matrix obtained after

removing the last row and column from B. It is shown in [9] that the intersection

form QM of M is B−0 .

5.3 Main results

In this section we will determine the possible legally weighted orbit spaces of a

simply connected nonnegatively curved Riemannian 4-manifold M with an isometric

fixed-point homogeneous S1-action. We will also identify M out of the orbit space

data following the constructions described in Section 5.2. By Theorem 5.2 (2),

M is diffeomorphic to S4, CP2, S2 × S2 or CP2# ± CP2. It is well known that

χ(M) = χ(Fix(M, S1)) (cf. [24]) and, since the action is fixed-point homogeneous,

Fix(M, S1) must contain a 2-sphere. Hence we have the following possible fixed-point

sets:

Fix(M, S1) =



S2 if M is S4.

S2 ∪ {p} if M is CP2.

S2 ∪ S2 if M is S2 × S2 or CP2 ± CP2.

S2 ∪ {p′, p′′} if M is S2 × S2 or CP2 ± CP2.

(5.3.1)

By our analysis in Chapter 4, the orbit space of an isometric fixed-point ho-

mogeneous circle action on a simply connected nonnegatively curved manifold M

does not contain any weighted circles. Hence we restrict our analysis to these or-

bit spaces. Observe that there cannot be any exceptional orbits unless Fix(M, S1)
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contains two isolated fixed points. Hence, when Fix(M, S1) contains at most one

isolated fixed point, corresponding to Fix(M, S1) = S2 or S2 ∪{p}, we may dispense

with the geometric assumptions, since the orbit space structure itself prevents the

existence of any weighted circles. It follows then that any fixed-point homogeneous

circle action on S4 or CP4 is equivariantly diffeomorphic to a linear action. However,

when F contains two isolated fixed points we will explicitly assume that the orbit

space contains no weighted circles.

We summarize our results in the following theorem.

Theorem 5.6. Let M be a simply connected smooth 4-manifold with a smooth S1-

action.

(1) If Fix(M, S1) = S2, then M is equivariantly diffeomorphic to S4 with a linear

action.

(2) If Fix(M, S1) = S2 ∪{p}, then M is equivariantly diffeomorphic to ±CP2 with

a linear action.

(3) If Fix(M, S1) = S2∪S2, then M is equivariantly diffeomorphic to CP2#−CP2

or S2 × S2 with a linear action.

(4) If Fix(M, S1) = S2 ∪ {p′, p′′} and there are no orbits with finite isotropy, then

M is equivariantly diffeomorphic to CP2#±CP2 with only one linear action.
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(5) If Fix(M, S1) = S2∪{p′, p′′} and there is only a weighted arc, then M is equiv-

ariantly diffeomorphic to one of the following:

(a) CP2#CP2 with only one linear action with finite isotropy Z2.

(b) CP2#− CP2 with only one linear action with finite isotropy Zk, k odd.

(c) S2 × S2 with only one linear action with finite isotropy Zk, k even.

Remark. We remark that it is not known whether the smooth actions in (4) and (5)

can be realized as isometric circle actions on CP2 ± CP2 and S2 × S2 with metrics

of nonnegative curvature.

Proof of Theorem 5.6 We will prove three propositions, corresponding to (3)–

(5) in Theorem 5.6. Parts (1) and (2) follow from the comments preceding the

statement of the theorem. We will proceed as follows. Given a fixed-point set F we

will construct R as in Section 5.2 using the pieces we have described therein. We

will then identify M by computing its intersection form QM following the recipe in

Section 5.2.

Case 1. Fix(M, S1) = S2 ∪ S2.
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Proposition 5.7. Let M be a simply connected smooth 4-manifold with a smooth S1-

action. If Fix(M, S1) = S2∪S2, then M is equivariantly diffeomorphic to CP2#−CP2

or S2 × S2 with a linear action.

Proof. We construct R using bundles Yω1 , Yω2 and Yω3 with actions (j), (i) and (j),

respectively. Observe that ω2 = 0, so the plumbing Yω12Yω22Yω3 has intersection

form

B0 =


ω1 1 0

1 ω2 1

0 1 ω3

 =


ω1 1 0

1 0 1

0 1 ω3

 .

The intersection form of M is then B−0 , i.e.,

QM =

 ω1 1

1 0

 .
Now we show that QM is equivalent to the intersection form of CP2#− CP1, if ω1

is odd, and to the intersection form of S2 × S2, if ω1 is even.

Recall that the operation of adding an integral constant k times row i to row

j and then that constant times column i to column j preserves the congruence class

over Z of an integral matrix. We call this an elementary operation and will keep

track of it by denoting it by (i, j; k). We haveω1 1

1 0

 (2,1;±1)−−−−→

 ω1 ± 2 1

1 0



Thus, after repeated application of the elementary operation (2, 1;±1) to

ω1 1

1 0


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we have

QM
∼=

ω1 (mod 2) 1

1 0


When ω1 is even, we have

QM
∼=

0 1

1 0

 ,
which is the intersection form of S2 × S2.

When ω1 is odd, we have1 1

1 0

 (1,2;−1)−−−−→

1 0

0 −1

 ,
which is the intersection form of CP2#− CP2.

Remark. Proposition 5.7 and its proof show that the fact that CP2#CP2 does not

admit any smooth circle action with fixed-point set the union of two 2-spheres is

a purely topological phenomenon. Under the additional condition of nonnegative

curvature, this follows from the Double Soul Theorem, which implies that M4 is an

S2-bundle over S2 and hence M4 must be S2 × S2 or CP2#− CP2 ∼= S2×̃S2.

Case 2. Fix(M, S1) = S2∪{p′, p′′}. We split this case into two subcases, depending

on whether or not there are any orbits with finite isotropy.

No finite isotropy. Suppose first there are no orbits with finite isotropy.
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Proposition 5.8. Let M4 be a simply connected smooth 4-manifold with a smooth

S1-action without finite isotropy. If Fix(M, S1) = S2 ∪ {p′, p′′}, then M is equivari-

antly diffeomorphic to CP2#± CP2 with a linear action.

Proof. We will compute the intersection form QM of M . To compute the intersection

form of M we first construct R using the bundles Yω1 with action (d), Yω2 with action

(h) and Yω3 with action (j). The intersection form of the plumbing Yω12Yω22Yω3 is

B0 =


ω1 1 0

1 ω2 1

0 1 ω3

 .

Then the intersection form of M is given by B−0 , i.e.

QM =

ω1 1

1 ω2

 .
We now determine ω1 and ω2. Let ε′1, ε

′′
1 = ±1. Then ω1 = −ε′1 − ε′′1, coming from

action (d). On the other hand, for Yω2 we have ω2 = −ε′2, where ε′2 = ±1. In order

to plumb these two bundles together, we need ε′′1 = ε′2. Hence ω2 = −ε′2 = −ε′′1. We

now compute the possible intersection forms QM in terms of the weights ε′1, ε′′1.

When ε′1 = ε′′1 = 1, we have ω1 = −ε′1 − ε′′1 = −2, ω2 = −ε′′1 = −1. Hence

QM =

−2 1

1 −1

 (2,1;1)−−−→

−1 0

0 −1

 ,
which is the intersection form of −CP2#− CP2.

When ε′1 = 1 and ε′′1 = −1, we have ω1 = −ε′1 − ε′′1 = 0, ω2 = −ε′′1 = 1. Hence

QM =

0 1

1 1

 (2,1;−1)−−−−→

−1 0

0 1

 ,
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which is the intersection form of −CP2#CP2.

When ε′1 = −1 and ε′′1 = 1, we have ω1 = −ε′1 − ε′′1 = 0, ω2 = −ε′′1 = −1.

Hence

QM =

0 1

1 −1

 (2,1;−1)−−−−→

1 0

0 −1

 ,
which is the intersection form of CP2#− CP2.

When ε′1 = −1 and ε′′1 = −1, we have ω1 = −ε′1 − ε′′1 = 2, ω2 = −ε′′1 = 1.

Hence

QM =

2 1

1 1

 (2,1;−1)−−−−→

1 0

0 1

 ,
which is the intersection form of CP2#CP2.

We have accounted for all the combinations of ε′1 and ε′′1, which proves the

theorem.

Finite isotropy. Suppose there are points with finite isotropy.

Proposition 5.9. Let M4 be a simply connected smooth 4-manifold with a smooth

S1-action with Fix(M, S1) = S2 ∪{p′, p′′} and a weighted arc with finite isotropy Zk.

Then M is equivariantly diffeomorphic to one of the following:

(1) CP2#CP2 with a linear action with finite isotropy Z2.

(2) CP2#− CP2 with a linear action with finite isotropy Zk, k odd.
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(3) S2 × S2 with a linear action with finite isotropy Zk, k even.

Proof. Let [b′; (α1, β1); b′′] be the weighted arc. In this case β1 = 1 or α1 − 1 and b′

and b′′ can only take on the values 0 or −1 (cf. Lemma 3.5 in [9]). We will use actions

(c), (g) and (j). Recall that, to each weighted arc [b′; (α1, β1), . . . , (αn, βn); b′′], the

integer c = b′′ − b′ is assigned (cf. [9](5.2)(c)). For the orbit space to be legally

weighted, we must have a+ c = 0, where a is the weight of the boundary 2-sphere,

so a = −c. The following table lists the possible combinations of weights.

b′ b′′ c = b′′ − b′ a

0 0 0 0

0 −1 −1 1

−1 0 1 −1

−1 −1 0 0

1. The first piece we need is a bundle Yω1 with action (c) as in Section 5.2.

We have

±1 = ε′1 =

∣∣∣∣∣∣∣∣
1 |b′|

α β

∣∣∣∣∣∣∣∣ = β − α|b′1| =


β, if b′1 = 0;

β − α, if b′1 = −1.

±1 = ε′′1 =

∣∣∣∣∣∣∣∣
α β

1 |β′′|

∣∣∣∣∣∣∣∣ = α|b′′1| − β =


−β, if |b′′1| = 0;

α− β, if b′′1 = −1.
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We also have

ω1 = ε′1ε
′′
1

∣∣∣∣∣∣∣∣
1 |b′1|

1 |b′′1|

∣∣∣∣∣∣∣∣ = ε′1ε
′′
1(|b′′1| = |b′1|)

We have the following possible combinations:

b′1 b′′1 ε′1 ε′′1 ω1

0 0 β −β 0

0 −1 β α− β β(α− β)

−1 0 −(α− β) −β −β(α− β)

−1 −1 −(α− β) α− β 0

Case: (b′1, b
′′
1) = (0, 0). We have β = ε′1 = ±1. Recall that β = 1 or α − 1.

Hence 1 = β = ε′1 and ε′′1 = −1.

Case: (b′1, b
′′
1) = (0,−1). We have ε′1 = ±1 = β > 0 so ε′1 = β = 1. Hence

±1 = ε′′1 = α− β = α− 1.

We have α ≥ 2 so α− 1 ≥ 1 > 0. Hence ε′′1 = +1. Hence α− 1 = 1 so α = 2.

Case: (b′1, b
′′
1) = (−1, 0). Recall that β takes on the values 1 or α − 1. We

have

±1 = ε′1 = −(α− β) =


−(α− 1), if β = 1;

−1, if β = α− 1.
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±1 = ε′′1 = −β =


−1, if β = 1;

−(α− 1), if β = α− 1.

It follows from these equations that ε′1 = ε′′1 = −1 and α = 2, β = 1.

Case: (b′, b′′) = (−1,−1). We have

±1 = ε′1 = −(α− β) = −ε′′1.

Recall that β = 1 or α − 1. In both cases the equation above implies that

ε′1 = −1 and ε′′1 = +1. Observe that any α ≥ 2 is possible.

We update the table of weights in the previous page and obtain the following

list of weights.

b′1 b′′1 ε′1 ε′′1 ω1 α β

0 0 1 −1 0 k ≥ 2 k − 1

0 −1 1 1 1 2 1

−1 0 −1 −1 −1 2 1

−1 −1 −1 1 0 k ≥ 2 k − 1

2. Now we deal with piece 2, coming from bundle Yω2 with action (g). We

have weightsb′2, α′2 and β′2. In order to plumb Yω1 and Yω2 we need α1 = α′2, β1 = β′2

and b′2 = b′′1. The subscript i denotes the bundle Yωi
to which each weight belongs.
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We also have

ε′2 =

∣∣∣∣∣∣∣∣
α′2 β′2

1 |b′2|

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
α1 β1

1 |b′′1|

∣∣∣∣∣∣∣∣ = ε′′1.

Since ω2 = ε′2α
′
2, we have

ω2 = ε′′1α1.

Hence we have the following combinations:

b′1 b′′1 ε′1 ε′′1 ω1 α β ω2 = ε′′1α

0 0 1 −1 0 k ≥ 2 k − 1 −k

0 −1 1 1 1 2 1 2

−1 0 −1 −1 −1 2 1 −2

−1 −1 −1 1 0 k ≥ 2 k − 1 k

The last piece we need is a bundle Yω3 with action (j). The intersection form

of the plumbing Yω12Yω22Yω3 is

B0 =


ω1 1 0

1 ω2 1

0 1 ω3

 .

Hence the intersection form QM of M is B−0 , i.e.,

QM =

ω1 1

1 ω2

 .
When b′1 = 0 and b′′1 = −1, we have

QM =

1 1

1 2

 (1,2;−1)−−−−→

1 0

0 1

 ,
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which is the intersection form of CP2#CP2.

When b′1 = −1 and b′′1 = 0, we have

QM =

−1 1

1 −2

 (1,2;1)−−−→

−1 0

0 −1

 ,
which is the intersection form of −CP2# − CP2. Observe that in these two cases

(which are the same up to orientation) we can only have isotropy Z2.

When b′1 = b′′1 = 0, we have

QM =

0 1

1 −k


for k ≥ 2. Observe now that

QM =

0 1

1 −k

 (1,2;1)−−−→

0 1

1 −k + 2

 .
After repeated applications of the elementary operation (1, 2; 1) we have

QM
∼=

0 1

1 −k mod 2

 .
When k is even, we have

QM
∼=

0 1

1 0


which is the intersection form of S2 × S2. When k is odd, we have

QM
∼=

0 1

1 1

 (2,1;−1)−−−−→

−1 0

0 1

 .
which is the intersection form of −CP2#CP2.
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When b′1 = b′′1 = −1, we have

QM =

0 1

1 k


for k ≥ 2. Observe now that

QM =

0 1

1 k

 (1,2;−1)−−−−→

0 1

1 k − 2

 .
Again, after repeated applications of the elementary operation (1, 2; 1) we have

QM
∼=

0 1

1 k mod 2

 .
Hence, when k is even, we have

QM
∼=

0 1

1 0


which is the intersection form of S2 × S2. When k is odd, we have

QM =

0 1

1 1

 (2,1;−1)−−−−→

−1 0

0 1

 .
which is the intersection form of −CP2#CP2.
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