
APIs, Python, and Vagrant:

Or, how I taught my computer to be my
processing archivist

Lora J. Davis
Digital Archivist
Johns Hopkins University

ljdavis@jhu.edu
@lorajdavis

https://github.com/lorajdavis

What does API stand for?

Application
As in a computer application, like Word or Chrome

Programming
As in computer “programming,” or taking steps to make a computer do
something you want it to do

Interface
As in the the place where two systems meet

What do APIs do?
As the prior slide suggests, APIs make it possible for applications to interact
(or interface) with one another.

APIs are not new, and there are many types of APIs.

When you copy content from a Word document to your clipboard, then paste
that content into an Outlook e-mail, it works because your computer
operating system, which both your versions of Word and Outlook are
programmed to run on, uses an API to allow the interchange of information.

APIs tell software developers the rules of the road that they must follow if
they want their applications to play well with others.

For more: http://readwrite.com/2013/09/19/api-defined/

http://readwrite.com/2013/09/19/api-defined/

That’s not at all what I thought an API was!

Though anything that allows an interchange of information between two
applications is technically a form of an API, what we typically mean today
when we say “API” is a very specific thing.

That thing is a web API.

Ok, so what is a web API?

Complicated: A RESTful API is an application program
interface (API) that uses HTTP requests to GET, PUT,
POST and DELETE data.

For more: http://searchcloudstorage.techtarget.com/definition/RESTful-API

Simple: You access it over the web, using
URL-like directions, and are limited to 3-4
simple commands or activities.

Extra nerdy sidebar:

● Web APIs also come in several flavors, including SOAP and REST.
● We’re going to be exclusively working with RESTful APIs today, as they’re far more prevalent

in archives/libraries technologies.
● REST stands for “representational state transfer” and was defined in 2000 in a doctoral

dissertation by Roy Fielding.
● REST essentially dictates how an application should be able to textually interact with a web

service.

http://searchexchange.techtarget.com/definition/application-program-interface
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchcloudstorage.techtarget.com/definition/RESTful-API

I’m not an application, I’m an archivist!
Why should I care?

As librarians and archivists with collection descriptions and/or collections
themselves on the web, you probably do care about being able to access and
meaningfully manipulate textual data on the web at scale.

In many of the exercises we will work through together today, you are, in fact,
one of the “applications” interfacing with web-based data.

Yes, this is a huge barrier to entry for most users, but it can be mitigated:

● We (defined here as both archivists and developers) are a community that likes sharing!

○ Frankly, if you’re sitting down to write scripts from scratch, you’re doing it wrong

● There is no “one right language” to make this work

○ If you have any prior knowledge of a particular scripting language, start there

○ All the scripts I’m going to demonstrate are Python because: 1) Python (and, to a lesser

degree, Ruby) is my preferred hammer, and 2) unscientifically speaking, it seems that

Python is the preferred language of archivists (which means there’s more to steal borrow)

○ But, if you want, you can use a Ruby or Perl or PHP or JavaScript shaped hammer!

● The Internet is full of helpful advice!

○ Just don’t feed the trolls

Scripting - How?

Example 1 - VIAF

Scenario: At Hopkins, our Technical Services department hoped we could
take the moment of our transition into ArchivesSpace as an opportunity to
migrate our agent headings away from LCNAF to VIAF (this would keep our
archival description in line with the linked-data driven description being
done elsewhere in the library).

Example 1 - VIAF

The basic steps:

1. GET existing agent records out of ArchivesSpace
2. Convert the resulting ArchivesSpace JSON to a CSV
3. Run a Python script (python viafReconciliationCorporate.py) on the

resulting CSV
4. Manually review the results
5. Following quality assurance, POST the CSV back into ArchivesSpace

with python postVIAFOrganizations.py

Scripts:
https://github.com/ehanson8/viaf-dbpedia-reconciliation-python
https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

https://github.com/ehanson8/viaf-dbpedia-reconciliation-python
https://github.com/ehanson8/viaf-dbpedia-reconciliation-python
https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop
https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

Example 1 - VIAF

Show & Tell

Example 2 - ArchivesSpace/Archive-It

Scenario: As my University’s web archivist, I want to make my Archive-It web
crawls accessible to users who access our collections via ArchivesSpace, but I
don’t want to manually create individual digital objects every time I run a
new Archive-It crawl.

Technical Pitstop:
vagrant install and

vagrant up

(this is super awesome)

See Dallas Pillen’s excellent blog post for more on Archivagrant (from which this demo Vagrant was derived):
http://archival-integration.blogspot.com/2016/01/archivesspace-vagrant-archivagrant.html

http://archival-integration.blogspot.com/2016/01/archivesspace-vagrant-archivagrant.html
http://archival-integration.blogspot.com/2016/01/archivesspace-vagrant-archivagrant.html

Example 2 - ArchivesSpace/Archive-It

The basic steps:

1. Confirm an archival object (or many archival objects) exist in
ArchivesSpace with the level “Other Level” and other level type “Web
archive”

2. Modify line 37 of “archiveIt.py” to match the Archive-It collection ID
number for the desired collection (in our case, 3181)

3. Run python archiveIt.py
4. Let’s review the results!

Scripts:
https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop
https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

Example 2 - ArchivesSpace/Archive-It

Show & Tell

● You WILL not succeed on the first try.
● You WILL hit unanticipated snafus, oftentimes due to data models and/or

poorly written documentation (aka, due to no fault of your own!).
● You WILL be fitter, happier, and more productive if you start building a

community now and asking questions.

A common ASpace “gotcha”:

Postscript - There’s ALWAYS “gotchas”

Lock version - a value that incrementally increases every time an AS record is altered. In
practice, this means work cannot and should not continue on the data in question, i.e. your
team has to stop work

APIs, Python, and Vagrant:

Or, how I taught my computer to be my
processing archivist

Lora J. Davis
Digital Archivist
Johns Hopkins University

ljdavis@jhu.edu
@lorajdavis

https://github.com/lorajdavis

And YOU CAN TOO!

