SRCTR88-39

OPTIMAL ARCHITECTURES for
MULTIDIMENSIONAL TRANSFORMS

by
Chaitali Chakrabarti

and
Joseph Ja'Ja'

Optimal Architectures for Multidimensional Transforms !

Chaitali Chakrabarti
Department of Electrical Engincering
Systems Rescarch Center
University of Maryland
College Park, MD. 20742

Joseph JaJa
Department of Electrical Engineering
Institute for Advanced Computer Studies
Systems Research Center
University of Maryland
College Park, MD. 20742

Abstract

Multidimensional transforms have widespread applications in com-
puter vision, pattern analysis and image processing. The only ex-
isting optimal architecture for computing multidimensional DFT on
data of size n = N? requires very large rotator units of area O(n?)
and pipeline-time O(logn). In this paper we propose a family of op-
timal architectures with area-time trade-offs for computing multidi-
mensional transforms. The large rotator unit is replaced by a combi-
nation of a small rotator unit, a transposc unit and a block rotator
unit. The combination has an area of O(N9*2%) and a pipeline time
of O(Ng‘a logn), for 0 < a < d/2. We apply this scheme to design
optimal architectures for two-dimensional DFT, DHT and DCT. The
computation is made efficient by mapping each of the one-dimensional
transforms involved into two dimensions.

1Supported in part by NSA Contract No. NMDA-904-8511-0015, NSF Grant No. DCR-
86-00378 and by the Systems Research Center Contract No. OI1R-85-00108

1 Introduction

Multidimensional transforms are a powerful tool for analyzing multidimensional
signals. The 2-D Discrete Fourier Transform (DI'T) is widely used in spectrum anal-
ysis, speech processing and image processing. The 3-D and 4-D DFTs are used to
represent dynamic patterns in computer vision and pattern analysis. Since the num-
ber of computations involved in such transforms is very large, optimal architectures
with efficient computational schemes are needed.

There exists an architecture [GS] for computing multidimensional DFT on a
single file of n = N? elements whose AT? performance achieves the known lower
bound, where A is the area and T}, is the pipeline time. The design consists of N1
DEFT(N) computation units and a rotator of size O(n?) for data permutation. In this
paper we show that if the input is in the form of a 2-D array of size N4/2+e x Nd/2~e
0 < a < d/2, then we can design a family of optimal architectures for different values
of a. The design of [GS] is a member of this family when a = d/2. There are two
cases depending on whether A) a is an integer or B) a is not an integer but N2 is
an integer. Our design for Case A consists of N4/2+4=1 DFT(N) arrays, a transpose
unit of size O(N%logn) and a rotator of size O(N%*?%). Case B, which is slightly
more complicated, requires an additional block rotator unit of size O(N9+2*), The
maximum pipeline time for both the cases is O(N/?logn). Thus for low values of
a the area would be small, whereas for large values of « the pipeline time would be
small. In addition all these designs satisfy the AT? lower bound.

The rest of the paper is organized as follows. In Section 2 we state the definition
and lower bounds for the computation of multidimensional linear transforms. Non
optimal and optimal architectures that exist in the litcrature are briefly discussed
in Section 3. Section 4 deals with the family of optimal architectures for diflerent
values of . In Section 5 we propose optimal as well as efficient designs for computing

2-D DFT, Discrete Hartley Transform (DHT) and Discrete Cosine Transform (DCT).

Section 6 summarizes the whole paper.
2 Preliminaries

Let n be the total number of data elements that are to be organized in a
d-dimensional data cube. Each element has to be represented by d indexes ny, nq, ..., ng.

Any d-dimensional linear transform can be defined by

X(k1y kg, ..oy kg) = Z . Z Z z(ny,na,...ng)ar(ny, k)ag(ng, ko) ... ag(ng, kq)
o (1)
where a;s are the transform functions, 0 < k;yn; < N;—1for 1 <1 <d and
n = NiN;...Ny. For instance, ai(n;, k;) = ea;p(-—j—zN—’:niki), 1 <1< dfor
d-dimensional DFT. In order to simplify our analysis, we assume
1. Ny=N;=---=Ny=Nandn=N¢
2. N is a power of 2, that is, N = 2™,

We proceed to state along the lines of [GS] the lower bound on AT? for multi-
dimensional DFT, DHT and DCT. The pipecline time T}, is used to describe the time
performance of any circuit. We assume that if n be the problem size, then O(logn)
bits are sufficient to represent the value of a variable. Vuillemin [Vu] has shown that
AT? = Q(I?) for any chip computing a transitive problem of size I. For multidimen-
sional DFT, DHT and DCT, the information content of a problem I is Q(nlogn).

Thus the lower bound of AT? is Q(N? log?n).
3 Existing architectures

In this section we briefly discuss the various optimal and non-optimal architec-
tures for transforms with dimension d > 2. There exist schemes for computing 1-D
as well as multidimensional DFT in the literature. However, there are no schemes
for computing multidimensional DHT and DCT. Once we know how to optimally

compute 1-D DHT and DCT, optimal computation of multidimensional DHT and

o

DCT would be along the same lines as that of multidimensional DFT.

The schemes for computing 2-D DFT are based on computing 1-D DFT on
columns followed by 1-D DFT computation on rows. These schemes require either
a separate array transpose unit [Ch], [0J] or an internal scheme for transposing the
data [Zh]. Chowdhury et.al.[Ch] have designed a RAM array transposer
(RAMAT) which uses N? RAM cells of size O(log n) bits each. The area of this unit
is O(N?logn) and this dominates the area of the design. By using efficient DF'T(N)
circuits which require O(N log n) time, AT? of the design becomes O(N*log®n). This

is O(logn) away from the optimal. The scheme is illustrated in Iig.1.

Input > Output
A M ‘N 1-D —-—:/\
— DFT(N} arrays ____>

c
x ¢ 2 0O

RAMAT <

Fig.1 Architecture using RAMAT

In another design [0J], the RAM cells are replaced by O(log n) bit shift registers. The
data movement is regulated by control inputs, the generation of which is complicated.
We have improved upon the design of [0J] by simplifying the control considerably.
For all these array transposer designs, the minimum area possible Is O(N%*logn).
Zhang [Zh] has designed a mesh connected systolic array, each cell of whicli is capable
of computing DFT in the vertical as well as in the horizontal direction. AT? for this
design is also O(N*log®n). Bilardi [BS] was the first one to come up with an optimal
DET circuit. The scheme consists of orthogonal tree networks (OT) for the row and

column computations and a transposer of size O(n?). An overall time complexity of

3

O(log n) guarantees the AT? lower bound. DFT(n) can be computed optimally [PV]
for a large range of T', T € [Q(log*n), O(\/nlogn)], if interconuections based on cube
connected cycles are used. However the minimum computation time of 7' = O(log n)
cannot be achieved by this scheme. Bilardi [BS] has proposed optimal schemes for
computing 2-D DFT for any T in the range [Q(logn), O(yv/rlogn)]. This is possible
by organizing the input in the form of a 2-D array with ‘s’ wavefronts and ‘n/s’ input
lines. The pipelined transposer unit with an arca of O(n?/s? + nlogn) and time
complexity of O(slogn) can be approximated to O(n?/s?) for 1 < s < y/n/logn. All
designs in this range of ‘s’ achieve the AT? lower bound.

Not much work has been done in the field of VLSI architectures for multidi-
mensional transforms. Gertner and Shamash [GS] have recently proposed an optimal

architecture for multidimensional Fourier transforms. Tleir design as shown in Fig.2

B
Input > | M U WwN 1D D jOutput
v :> F ? butterfly j Rotator j M
F arrays unit u
X E X1]
S — R e
Fig.2 Architecture using rotator

consists of N7t arrays for computing 1-D DFT(N) and a rotation network array or
rotator for permuting the data. We shall next discuss the theory and layout of the
rotator. The rotator is based on a network which performs rotation over an index
in one step. Thus if the data is represented by z(ny,n,,...,nq), then after passing
through the rotator once it appears as z(ns,...,nqg,n1) and after passing it once
more it appears as z(nz,n4,...,n2). Since O(logn) bits are used to represent the

data, every rotation is equivalent to logn/d cyclic shifts of its binary representation.

The data enter the rotator in n rows. It is then rotated with the help of load-shift
cells placed at the connection of a row input and its column necklace. A necklace
is defined as a collection of nodes which are formed on rotation of the indexes. For
example, for d = 3 and logn = 6, the necklace generated by 000011 15 000011 - 001100

- 110000. Fig.3 illustrates a rotator for n = 16 and d = 2. The number of columns

=
b
DFT(4) F
unit)
3
4
DFT(4) S
unit %
1’
i
DFT(4) 9
unit 7S
i il I
[
DFT(4) I:,]’3
unit _r,{,
5
L.

Fig.3 Layout of 4x 4 2-D DFT

required to layout the rotator is O(n). The area complexity is O(n?) and the pipeline
time complexity is O(logn). Thus this scheme achieves the AT’;Z lower bound.

The large size of the rotator unit and the large number of 1-D DFT(N)

5

arrays makes the design of [GS] unattractive. For moderately large n, the size of
the interconnection would be huge. This would also mean complicated inter-chip
and intra-chip connections. We can reduce the arca of the design drastically at the
expense of a larger pipeline time and still achieve the AT? lower bound. In the next
section we will show that there exists a family of optimal architectures, of which the

design of [GS] is a member.
4 Family of optimal architectures

In the design by Gertner and Shamash [GS], a single file of n = N?¢ elements
are processed by N?"!DFT(N) circuits. The data is then rotated and fed back to the

DI'T computation block (see Fig.2). This process is repeated d times. In our design

fe— N —

NQHL-I : } N

Fig.4 2-D data organization of n = N¢ elements

the data is organized in a 2-D array with N9/2*¢ rows and N4/?7¢ columus as shown
in Fig.4. The bounds of @ are 0 < a < d/2. Without loss of generality we assume
that d is divisible by 2. When a = d/2, the 2-D array collapses into a single column
of N¢ elements. This is the case investigated by [GS]. When d is not divisible by 2,
the data can be organized into a 2-D array with NTd/21+e rows and N14/21=¢ columns.
The advantage of having a 2-D data block is that the same DFT computation block

can be used to compute DFT of multiple columns. We shall investigate two cases

6

here :

A. Wlen a is an integer
B. When «a is not an integer but N® is an integer.
Case A :

In this case DFT(N) is computed d/2+ « times along the columns followed by d/2 —«
times along the rows. The number of DFT(N) circuits required is N4/2+2=1 compared
to N9=1 of [GS]. The data is passed through a rotator unit ROT1. The theory and
layout of this unit are very similar to that of the rotator of [GS] discussed in Sec.3.
Since the number of input lines to the rotator is N¢/?%¢ the size of the rotator is
O(N?*+?%), The data is circulated d/2 + a times through ROT1, transposed and then
circulated d/2 —a times through ROT2. ROT2 is a rotator unit very similar to ROT1
but with N4/2-¢ input lines. Note that ROT2 can be eliminated if the transpose unit

is constructed such that ROT2 has the same number of input lines as ROT1.

- N - N

KX [EE—
Before O |nte After -
t
ranspose . J e transpose . .
2 5 , =
1]
Ngua. 3 ! Ng‘a 2 2
2 e : 3
20
N - , N 2&‘ |
| 3 24
Fig.5 Data organization before and after transpose

The procedure is as follows. We can think of the data block to consist of N?* sub-
blocks, each of size N¥/2=% x N¥2=¢ Thus if we transpose the subblocks parallely,
the size of the data block remains the same. In that case there is no need for a
second rotator unit. The transpose unit consists of N?* subunits. Each transpose
subunit operates on a data subblock. Since the transpose subunits operate in par-

allel, T, for the transpose unit is O(N?/?=2logn). The total area of the transpose

7

unit is O(N?logn). Fig.5 shows the data blocks before and after the transpose. We
claim that we have not lost any information by transposing the data in subblocks.
The reason is as follows. DFT(N) has to be computed d/2 — a times over cachi row
(see Fig.4). By transposing a subblock of size N¥/?7% x N¥/2=% each row of length
N@/2=¢ js converted into a column of length N9/2=¢ Thus the consccutiveness of the
elements in a row get converted into the consecutiveness of the elements in a column.
Thus computation of DFT(N) d/2 — a times over each column of the transposed data
block gives the correct result. The block diagram for our design for Case A is shown

in Fig.6.

N $4a-1

Input j DFT(N) j ROT1 j Output
arrays unit

x © =2

[xc=9]
Ii\Ull

Ul

Transpose

unit \

Fig.6 Architecture for Case A

The area complexity of the input MUX and the output DMUX are O(N4/2+e),
If we use the scheme of [0J] in the computation of DFT(N), the area of the DFT(N)
computation block would be N#/2+a=1 5 O(N?) = O(N#/?+2+1). The area of ROT1
is O(N%+22) and that of the transpose unit is O(N“logn). The maximum pipeline
time for this design is the time taken to transpose the data. 13,,,, = O(N¥?=2logn).
In order that the design by optimal, A,... has to be O(N4*2*). Thus our design is

optimal for those values of a for which Nélogn < N4+2¢. This means that there is

8

an additional constraint of @ > 3 logy logn. For all practical cases, :logy(logn) < 1.
Thus for all values of a in the range 1 < a < d/2, we can design d-dimensional DFTs
optimally.

Case B :

This case is slightly more complicated than Case A. This is because when « is not
an integer, d/2 + a and d/2 — a are non-integers. Our scheme for Case A has to be

modified appropriately.

-

7rT~—1T

o |~

o +0

7a 7b

Fig.7 Data block organization for Case B

Let « =1+ f, where 7 is an integer and f is a simple fraction. We can think
of the data to be organized in a 2-D array of size N2 x N2 The array can be
partitioned vertically into N* blocks each of size N2 5 N4/?2-¢ a5 shown in Fig.7a.
If the blocks are placed one after the other, the data organization is transformed
into the form illustrated in Fig.7b. It is to be noted that every row of the data of
Fig.7a has been split into N® parts and occur in N* different blocks of Fig.7b. Since

the consecutiveness of the elements in a column are not lost in Fig.7h, computation

of DFT(N) of the columns is straightforward. Each of the N blocks is circulated
d/2 times through a DFT(N) computation block and a ROT1 unit. The number of
DFT(N) circuits in each block is N4/?=*, The rotator unit consists of N®* ROT] units

g"“ N{-m

N 4N
| h.L 7 n
o | né* [o | ni
T a1 T
U N‘g —_ i q N
- N N .
o N .
L . .
T Net%s EUO IV IR l .
- T N1 NP%N
N Vo SO N B .
nt .
S ETE BN Nl B NI
l N2 g oo N1 N
NN N*- 1
NSNS N
NQA,_' NQ“‘_I
Y
8a 8b 8c

Fig.8a Partitioning data of size n = N¢ into N?* subblocks

8b Subblock organization

8c Reordering of subblocks after passing through BROT
each of size O(N?). Thus the total area occupied by the rotator unit is N* x O(N)
= O(N%**). The data is then passed through a transpose unit and a block rotator
unit. The latter is necessary in order that the consccutiveness of the elements in
the rows of I'ig.7a are transformed into the consecutiveness of the elements in the
columns of Fig.7Tb. We shall illustrate the procedure now. The data block of Fig.8a
is partitioned into N?* subblocks each of size N¥/27¢ x N%/2-¢ These subblocks are

arranged as shown in Fig.8b. The transpose unit consists of N2 subunits. Each

10

c

Fig.9 Layout of BROT with 4 subblocks and 4 elements/subblock

transpose subunit operates on a data subblock. The area of the transpose unit is
N?O(N¥2¢logn) = O(N?logn). Since the subunits operate parallely, the pipeline
time complexity is O(N%2=%logn). After transpose, though the rows and columns
of a subblock are interchanged, the subblock ordering remains the same. The data is
then passed through a block rotator unit BROT. Fig.8c illustrates the ordering of the
subblocks after passing through BROT. The function of BROT is to rotate a data
subblock such that the relative position between the elements in the subblock do not

change. The layout of BROT is similar but not identical to ROT1. Since BROT

11

rotates the subblocks only once, every necklace in the layout of BROT would have
at most 2 elements. In fact, all the elements of N** — N* subblocks form necklaces
with one other element and all the rest form necklaces with themselves. The total
number of columns required to rotate the subblocks is O(N¢/2*¢). The arca of BROT
is thus O(N9+22). TFig.9 illustrates the layout of BROT with 4 subblocks and 4

elements/subblock. The block diagram for the design for Case B is shown in Fig.10.

input Output

DFT(N) Rotator
unit unit

BEEEXE

I‘UII

[xc =]

U

BROT Transpose L
unit unit

Fig.10 Architecture for Case B

The area of this design is dominated by the block rotator unit with area O(N*+2%)
for %logN(log n) < a < d/2. The maximum pipeline time is the time taken to trans-
pose the data. T,,... = O(N¥*~¢logn). Thus AT? = O(N**log’n) = O(n? log? n)
for all a such that 7 logy(logn) < a < d/2 and N*® is an integer.

An interesting issue is the size of this family of optimal architectures. This
happens to be a function of the number of values a can take. For N = 2™, the values
that f can take are [=, Z,... ™=1] and the values that z can take are : <1<d)2,

where ¢ = [logn(logn)]. Let f be the value of f which is greater than and closest

to 2logy(logn). The number of possible values of a is then m(% —i—f4+1)+1

12

This is also the number of members of the family of optimal architectures.
5 Applications to specific transforms

In this section, we apply the method developed in Sec.4 to design architectures
for some specific transforms like 2-D DFT, DHT and DCT. If the input data is in a
2-D array of size N x N, then a straight{orward way is to compute 1-D transform on
the columns followed by 1-D transform on the rows. It is well known that the efficient
way of computing a 1-D transform of N points is to map it into a 2-D transform of
N; x N, = N points and then compute the 1-D transforms over N; and N, points.
So a 2-D transform over N x N points would be mapped into a 4-D transform over
Ny x Ny x N3 x Ny, where NyNy = NaNy = N and Ny = N3; N, = Ny It is to be
noted that the size of the family of optimal architectures does not change because
of the 2-D to 4-D conversion. The bounds for T, are still [O(log 71),0(\/1—1—/@)]
though the efficiency of the 1-D computation increases. Another point of interest
1s the sequence of the dimensions over which the transforms can be evaluated. In
the case of 4-D DFT, the sequence is not at all important. DFT can be evaluated
over the 3rd and 1st dimension followed by the 4th and 2nd dimension. In the case
of 4-D DHT or DCT, evaluation over the 1st(3rd) dimension has to be followed by
evaluation over the 2nd(4th) dimension. This is because whereas evaluation of DFT
over one dimension is independent of the evaluation over the others, it 1s not so in
DHT and DCT [CJ].

The 2-D N x N input array (as shown in Fig.11a) is decomposed into subblocks
of size N1=% x N1=% and rearranged into an array of size N'*¢ x N7 as shown in
Fig.11b. Instead of referring to DFT, DHT and DCT separately, we refer to this
group of transforms as DXT. Fig.12 illustrates our scheme for computing DXT. The
data is first passed through N't¢/N; = N,N¢ DXT(N;) computation units. The

rotator unit consists of N® ROT1 units, each of area O(N?). The rotated data is

13

passed through N'*®/N? = N;N® DXT(N,) computation units. In case of DHT or
DCT, the second computation unit takes care of any adjustments that have to be
made. The data is then passed through the transpose and the block rotator units.
Since N3 = N; and Ny = N, the data is circulated through the same DXT(N;),

rotator and DXT(N;) computation units.

t-o
- N l*i
O Nl-ﬂu
T
le—— N =N,N, —— i
| N"%le N .
L .
T NN - | N*] o [N®
. T %
NENS oo NS N-
N=N,N, . .
: 1+ Q.
. . . N
l N e [aN®] N
NN
NN
N
11a 11b
Fig.1la Partitioning data of size n = N? into N** subblocks

11b Subblock organization
In our scheme, there exist a family of optimal architectures with area Q(N2+%9)
and pipeline time O(N'~%logn), 3logy(logn) < « < 1. If we modify our design of
the rotator unit such that it consists of one ROT1 unit with N!'*¢ input lines and
O(N?*2%) area, and if a is chosen to be logy N2, then we can do away with the BROT
unit. For most cases a = logy N, is greater than the lower bound of a. For this value
of a, N'=% = N} = N3 and DXT(N3) can be computed directly after passing through

the transpose unit. This is a considerable gain in terms of absolute area. We would

refer to this design as the most practical of all optimal designs for 2-D DXT.

14

Rotator

DXT(N) unit DXT(N)
block A = O(N?e) block
| —
nput N-L' = 3—2 S — Output
> M M L D »
U :> . j> :> . ;"> M
’j X : 3 U —
| NgN*- | NNt | __)i]
BROT Transpose
A= O(N*™) unit
i \

Fig.12 Architecture for 2-D DXT

6 Conclusion

In this paper we have proposed a family of optimal architectures for comput-
ing multidimensional transforms such as those of DFT, DHT and DCT. We have
discussed the computation of multidimensional DI'T in detail. The architectures for
multidimensional DHT and DCT are very similar, the only difference being in the
computation block of the 1-D transform. Since we know how to optimally compute
1-D DHT and DCT [CJ], optimal computation of multidimensional DHT and DCT
is no different from that of DFT.

Gertner and Shamash [GS] have proposed an optimal architecture for computing
multidimensional DFT on a single file of n = N¢ elements. The design consists of
Ne-1 DFT(N) computation arrays and a rotator for permuting the data. The rotator
with an arca of O(n?) dominates the arca of the design. The pipeline time complexity

is O(logn). Thus this design achieves the AT? lower bound. We have shown that

15

if the input is in the form of a 2-D array of size N¥/2t¢ x N¥/2=¢ (< ¢ < d/2, we
can design a family of optimal architectures for different values of a. The design of
[GS] is a member of this family with « = d/2. We have studied two cases, A when
a is an integer and B when a is not an integer but N® is an integer. The design for
Case A consists of N4/2*a=1 DFT(N) computation arrays, a transpose unit of size

(N¢logn) and a rotator of size O(N+?%). T,

bmas TOU this design is O(N¥?21ogn).
Case B is slightly more complicated and consists of an additional block rotator unit
BROT with area O(N?*+?2), For all these designs the lower bound of AT? is achieved.

The size of this family of optimal architectures is a function of the number of
values a can take. For N = 16 and d = 4, the number of members of this family
i1s 7. We choose a particular member depending on whether minimization of area or
minimization of pipeline time is more important. A design with low values of ¢ would
have less arca, whercas a design with large values of ¢ would require less time.

We know that the efficient way of computing 1-D linear transform over N points
1s to map it into a 2-D transform of N = N; N, points and then compute 1-D transform
over each dimension. Similarly an efficient way of computing 2-D transform of N x N
points would be to map it into a 4-D transform and then compute 1-D transform
over each dimension. We have designed optimal architectures for computing such
transforms. The most practical design in this family of optimal architectures occurs
wlen a is chosen to be logy N;. In this case even though « 1s not an integer, we do

not need the block rotator unit. This is a considerable saving in terms of absolute

area.

16

References

(BS] Bilardi,G.,Sarrafzadeh,M.,“Optimal VLSI circuits for the Discrete
Fourier Transform”, Advances in Computing Research, vol.4, pp.87-101.

[Ch] Chowdary, N.U.,et.al.,“A high speed two dimensional FFT processor”, in
Proc.Int.Conf.Acous.,Speech,Signal Processing, San Diego,CA,1984,
pp-4.11.1-4.11.4.

[CJ] Chakrabarti,C.,J4J4,J.,“Optimal Systolic Designs for the Computation
of the Discrete Hartley and the Discrete Cosine Transforms”,
UMIACS-TR-88-14, Feb’88.

[GS] Gertner,l.,Shamash,M.,“VLSI Architectures for Multidimensional
Fourier Transform Processing”, IEEE Trans. on Computers, vol.C-36,
no.11, Nov’87, pp.1265-1274.

[PV] Preparata,F.P.,Vuillemin,J.E.,“Arca-time optimal VLSI networks
for computing integer multiplication and discrete Fourier transform”,
Proc.ICALP, Haifa,lIsrael, July’81, pp.29-40.

[Vu] Vuillemin,J.“A combinatorial limit to the computing power of VLSI”,
IEEE Trans. on Computer, vol.C-32, Mar’83, pp.294-300.

[Z1] Zhang,C.11.,“Multi-dimensional systolic networks for discrete Fourier
transform”, Proc. 11th Annu.Int.Symp.Computer Architecture, Ann Arbor,

MI, 1984, pp.21-27.

17

