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Object recognition has long been a core problem in computer vision. To improve

object spatial support and speed up object localization for object recognition, generating

high-quality category-independent object proposals as the input for object recognition

system has drawn attention recently. Given an image, we generate a limited number of

high-quality and category-independent object proposals in advance and used as inputs for

many computer vision tasks. Image classification is one of the most fundamental task

in computer vision. We design an efficient dictionary-based model for image classifica-

tion. We further extend the work to a discriminative dictionary learning method for tensor

sparse coding. Activity classification is another challenging task in computer vision sys-

tem. To address this problem, we propose a semi-parametric method to model crowded

scenes for abnormal activity detection.

In the first part, a multi-scale greedy-based object proposal generation approach is

presented. Based on the multi-scale nature of objects in images, our approach is built on

top of a hierarchical segmentation. We first identify the representative and diverse exem-



plar clusters within each scale by using a diversity ranking algorithm. Object proposals

are obtained by selecting a subset from the multi-scale segment pool via maximizing a

submodular objective function, which consists of a weighted coverage term, a single-

scale diversity term and a multi-scale reward term. The weighted coverage term forces

the selected set of object proposals to be representative and compact; the single-scale di-

versity term encourages choosing segments from different exemplar clusters so that they

will cover as many object patterns as possible; the multi-scale reward term encourages the

selected proposals to be discriminative and selected from multiple layers generated by the

hierarchical image segmentation. The experimental results on the Berkeley Segmentation

Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and ef-

ficiency of our object proposal model. Additionally, we validate our object proposals in

simultaneous segmentation and detection and outperform the state-of-art performance.

To classify objects in the image, we design a discriminative, structural low-rank

framework for image classification. We use a supervised learning method to construct a

discriminative and reconstructive dictionary. By introducing an ideal regularization term,

we perform low-rank matrix recovery for contaminated training data from all categories

simultaneously without losing structural information. A discriminative low-rank repre-

sentation for images with respect to the constructed dictionary is obtained. With semantic

structure information and strong identification capability, this representation is good for

classification tasks even using a simple linear multi-classifier.

In the third part, a novel approach to learn a discriminative dictionary over a ten-

sor sparse model is presented. A structural incoherence constraint between dictionary

atoms from different classes is introduced to promote discriminating information into the



dictionary. The incoherence term encourages dictionary atoms to be as independent as

possible. In addition, we incorporate classification error into the objective function of

dictionary learning. The dictionary is learned in a supervised setting to make it useful

for classification. A linear multi-class classifier and the dictionary are learned simulta-

neously during the training phase. Our approach is evaluated on three types of public

databases, including texture, digit, and face databases. Experimental results demonstrate

the effectiveness of our approach.

In the final part, we present a fully unsupervised method for abnormal activity de-

tection in crowded scenes. Neither normal nor abnormal training samples are needed

before the detection. In crowded scenes, normal activities are the behaviours performed

by majority of people and abnormalities are behaviours that occur rarely and are different

from most others. We present a scan statistic method to capture abnormality. A semi-

parametric density ratio method is used to model the observations. We successfully apply

our algorithm to detect abnormal activities in different scenarios. Our approach achieves

performance that is competitive to other state-of-the-art supervised approaches.
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Chapter 1: Introduction

1.1 Overview

Object recognition has long been a core problem in computer vision. Recent devel-

opments in object recognition provide two effective solutions: 1) sliding-window-based

object detection and localization [4–6], 2) segmentation-based approaches [1–3, 7]. The

sliding window approach incurs high computational cost as it analyses windows over a

very large set of locations and scales. Segmentation-based methods lead to fewer regions

to consider and to better spatial support for objects of interest with richer shape and con-

textual information; but the problem of segmenting an image to identify regions with high

object spatial support is a challenge.

To improve object spatial support and speed up object localization for object recog-

nition, generating high-quality category-independent object proposals as the input for

object recognition system has drawn attention recently [2, 3, 7, 8]. Motivated by find-

ings from cognitive psychology and neurobiology [9–12] that the human vision system

has the amazing ability to localize objects before recognizing them, a limited number of

high-quality and category-independent object proposals can be generated in advance and

used as inputs for many computer vision tasks. This approach has played a dominant role

in semantic segmentation [13,14] and leads to competitive performance on detection [15].
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There are two main categories of object proposal generation methods depending on the

shape of proposals: bounding-box-based proposals [7, 8, 16] and segment-based propos-

als [2, 3, 17].

Objects in an image are intrinsically hierarchical and of different scales. Consider

the table in Figure 1.1(a) for example. The objects on the table can be regarded as a part

of the table (Figure 1.1(b)), and at the same time, they constitute a group of objects on

the table (Figure 1.1(c)). More specifically, these objects include plates, forks, the Santa

Claus, and a bottle (Figure 1.1(d)). Therefore, multi-scale segmentation is essential to

localize and segment different objects. There have been a few attempts [1–3] to combine

multiple scale information in the object proposal generation process, but very few papers

have studied the importance of proposal selection given segments from hierarchical image

segmentations. Figure 1.1(e)1.1(f)1.1(g) show the generated proposals from three state-

of-art algorithms [1–3]. However, they do not cover all the objects in the image well.

We present a greedy approach to efficiently extract high-quality object proposals

from an image via maximizing a submodular objective function. We first construct di-

verse exemplar clusters of segments over a range of scales using diversity ranking; then

rank and select high-quality object proposals from the multi-scale segment pool generated

by hierarchical image segmentation. Our objective function is composed of three terms:

a weighted coverage term, a single-scale diversity term and a multi-scale reward term.

The first term encourages the selected set to be compact and well represent all segments

in an image. The second term enforces the selected segments (object proposals) to be

diverse and cover as many different objects as possible. The third term encourages the

selected proposals to correspond to objects with high confidence and selected from differ-

2



(a) Input (b) Coarse layer sample (c) Middle layer samples (d) Fine layer samples

(e) CPMC [1] (f) Categ. Indep. [2] (g) MCG [3] (h) Our method

Figure 1.1: Objects in an image are naturally hierarchical. (a) is an original image from

Pascal VOC2012; (b) - (d) show segments around the table from different scales using

method [1]; (e) shows the best seven object proposals generated from CPMC [1]; (f) are

proposals from Categ. Indep. [2]; (g) are proposals from MCG [3]; (h) are proposals from

our method.
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ent scales. The algorithm takes object scale information into account and avoids selecting

segments from the same layer repeatedly. Compared to existing segment-based methods,

our method (Figure 1.1(h)) can select representative, diverse and discriminative object

proposals from different layers (for example, the bottle from fine layer and the table from

coarse layer).

1.2 Related Work

The goal of object proposal algorithms is to generate a small number of high-quality

category-independent proposals such that each object in an image is well captured by at

least one proposal [2, 18]. Existing object proposal approaches can be roughly divided

into bounding-box and segment based approaches. [16] generated bounding boxes by uti-

lizing edge and contour clues. In [7], a data-driven grouping strategy which combines

segmentation and exhaustive search is presented to produce bounding-box-based propos-

als. [8] proposed the binarized normed gradients (BING) feature to efficiently produce

object boxes. Instead of generating bounding-box-based proposals, our work focuses on

extracting segment-based proposals which aims to cover all the objects in an image and

can provide more accurate shape and location information. Some algorithms have been

reported to generate segment-based object proposals. [1] segmented objects by solving

a series of constrained parametric min-cut (CPMC) problems. [19] reused inference in

graph cuts to solve the parametric min-cut problems much more efficiently. [2] performed

graph cuts and ranked proposals using structured learning. In [3], a hierarchical segmenter

is used to combine multi-scale information, and a grouping strategy is presented to extract

4



object candidates. Different from their work, we design an efficient greedy-based ranking

method to leverage multi-scale information in the process of selecting object proposals

from a large hierarchical segment pool.

Object proposals have been used in many computer vision tasks, such as segmenta-

tion [1,13], object detection [15] and large-scale classification [7]. Semantic segmentation

and object detection have been shown to support each other mutually in a wide variety of

algorithms. [20] showed that better quality segmentation can improve object recognition

performance. [15,21,22] used hierarchical segmentations and combined several top-down

cues for object detection. The more demanding task of simultaneous detection and seg-

mentation (SDS) is investigated in [22] which detects and labels the segments at the same

time. We use this same detection and segmentation framework but with our object pro-

posal generation method to demonstrate the effectiveness of proposals generated by our

approach.

Submodular optimization is a useful optimization tool in machine learning and

computer vision problems [23–28]. [23] demonstrates how submodularity speeds up op-

timization algorithm in large scale problems. In [25], a diffusion-based framework is

proposed to solve cosegmentation problems via submodular optimization. [26] used the

facility location problem to model salient region detection where salient regions are ob-

tained by maximizing a submodular objective function.

5



1.3 Preliminaries

Submodularity: Let V be a finite set, A ⊆ B ⊆ V and a ∈ V \ B. A set function

F : 2v → R is submodular if F (A
⋃
a) − F (A) > F (B

⋃
a) − F (B). This is the

diminishing return property: adding an element to a smaller set helps more than adding it

to a larger set [29].

Theorem 1. Given functions F : 2V → R and f : R → R, the composition

F ′ = f ◦ F : 2V → R is non-decreasing submodular, if f is non-decreasing concave and

F is non-decreasing submodular.

1.4 Submodular Proposal Extraction

We first obtain a large pool of segments from different scales using hierarchical

image segmentation. Diverse exemplar clusters are then generated via diversity ranking

within each layer to discover potential objects in an image. We define a submodular

objective function to rank and select a discriminative and compact subset from a large

set of segments of different scales, then the selected segments are used as the final object

proposals.

1.4.1 Hierarchical Segmentation

We build our object proposal generation framework on top of hierarchical segmen-

tation. Following [1,19], we generate segments for an image at different scales by solving

multiple constrained parametric min-cut problems with different seeds and unary terms.
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1.4.2 Exemplar Cluster Generation

In a coarser layer, an image is segmented into only a few segments. However,

the number of segments increases dramatically as we go to finer layers. To reduce the

redundancy and maintain segment diversity, we introduce an exemplar cluster generation

step to pre-process segments within layers.

Let V denote the set containing segments from all layers of an image (the multi-

scale segment pool), and V l be the set of segments from layer l. Then V =
⋃L
l=1 V

l, L

is the total number of layers, and V ls are disjoint. For each layer l, we obtain a partition

of its segments {P l
1, P

l
2, ..., P

l
t} using a diversity ranking algorithm [25]. P l

t is the set of

segments assigned to cluster t. Each segment belongs to only one cluster, and clusters are

disjoint. For each layer L, we have V l = ∪Tt=1P
l
t , where T is the number of clusters1.

1.4.3 Submodular Multi-scale Proposal Generation

We present a proposal generation method by selecting a subset A which contains

high-quality segments (object proposals) from the set V .

Given an image I , we construct an undirected graph G = (V,E) for the segment

hypotheses in I . Each vertex v ∈ V is an element from the multi-scale segment pool.

Each edge e ∈ E models the pairwise relation between vertices. Two segments are con-

nected if they are overlapping (between layers) or adjoining (within a layer). The weight

wij associated with the edge eij measures the appearance similarity between vertices vi

and vj . We extract a CNN feature descriptor [30] using VGGNet as the pre-trained model

1For coarser layer, T is the number of initial segments obtained from hierarchical segmentation.
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(a) H(A)=7.7 (b) H(A)=8.6

Figure 1.2: The weighted coverage term for the representative proposal selection (best

viewed in color). The node denotes the segment vertex, and the value next to the edge

is the similarity between vertices. The red nodes are selected vertices. To select three

nodes among all, by computing the weighted coverage term, we favours selecting a more

representative set (three center nodes in (b) will lead to higher H(A) than the less rep-

resentative one since the two nodes are from one group in (a)). Hence the selected A is

representative and compact.
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for each segment: X = [x1, x2, ..., x|V |]. wij is defined as the Gaussian similarity between

two vertices’ feature descriptors. As suggested in [31], we set the normalization factor

ε = 1/σiσj and the local scale σi is selected by the local statistic of vertex i’s neighbour-

hood. We adopt the simple choice which sets σi = d(xi, xM) where xM corresponds to

the M ’th closest neighbour of vertex i.

1.4.3.1 Weighted Coverage Term

The selected subsetA should be representative of the whole set V . The similarity of

subset A to the whole set V is maximized with a constraint on the size of A. Accordingly,

we introduce a weighted coverage term for selecting representative proposals.

Let NA denote the number of selected segments. Then the weighed coverage term

is formulated as:

H(A) =
∑
i∈V

max
j∈A

wij (1.1)

s.t. A ⊆ V,NA 6 K

where K is the maximum number of segments to be chosen in set A. The weighted cov-

erage of each segment vi is maxj∈Awij . Equation (2.5) measures the representativeness

of A to V and favours selecting segments which can cover (or represent) the other unse-

lected segments. Maximizing the weighted coverage term encourages the selected set A

to be representative and compact as shown in Figure 1.2.
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(a) D(A)=0.90 (b) D(A)=1.13

Figure 1.3: The single-layer diversity term for the diverse proposal selection. Each node

denotes a segment vertex (best viewed in color). Similarity between vertices are labelled

next to each edge. The red node labels the selected segments. Each figure shows three

exemplar clusters as connected groups. We can see the three exemplar clusters are unbal-

anced. Purely computing the weighted coverage term will pick the third node from the

largest cluster to gain more similarity between the selected set and the whole set as in (a).

While by computing the single-layer diversity term, we observe that (b) is preferred to (a)

as it encourage diversity among the selected nodes.

1.4.3.2 Single-Scale Diversity Term

The weighted coverage term will give rise to a highly representative setA; however,

segments from each layer (corresponding to each image scale) still possess redundancy.

Therefore, we introduce a diversity term to force segments within a layer l to be different.

The single-layer diversity term is formulated as follows:
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D(A) =
L∑
l=1

Dl(A) =
∑
t,l

√√√√ ∑
j∈P lt∩A

1

|V l|
(
∑
i∈V l

wij) (1.2)

where P l
t is the set of segments which belong to cluster t in layer l (defined in sec-

tion 1.4.2). |V l| is the number of segments in layer l. This single-scale diversity term

encourages A to include elements from different clusters and leads to more diverse seg-

ments from each layer. The single-layer diversity term is submodular; a detailed proof is

provided in the Appendix A.

In many images, the background composes a large part of the image. For a sin-

gle layer, the segments corresponding to objects are only a small percentage of all seg-

ments. The segment distributions corresponding to different objects and the background

are generally unbalanced. The weighted coverage term favours selecting segments that

well represent all segments, resulting in redundancy and occasionally missing small ob-

jects. Together with the single-layer diversity term, diversity among the selected segments

are enforced as shown in Figure 1.3.

1.4.3.3 Multi-Scale Reward Term

Considering the multi-scale nature of objects in an image, we propose the follow-

ing discriminative multi-scale reward term to encourage selected segments to have high

likelihood of high object coverage. The multi-scale reward term is defined as:

R(A) =
L∑
l=1

√ ∑
j∈V l

⋂
A

rj (1.3)

V l is the set of segments from layer l. The value rj estimates the likelihood of a segment

to be an object. It determines the priority of a segment being chosen in its layer. We use

11



Figure 1.4: The multi-scale reward term for selecting proposals from different scales

(best viewed in color). The nodes represent segments. The reward value ri of segment vi

is reflected by color. The higher ri, the more likely it is an object. The red circle denotes

the selected nodes. Suppose v1 has already been selected. We observe that R{v1, v2} −

R{v1} < R{v1, v6} − R{v1}. In another word, although v2 and v6 have similar reward

value, v6 from layer 2 will brings higher marginal gain; thus v6 is favoured over v2 and

(b) is preferred to (a).

CNN features to train a SVM model over object segments and non-object segments in

training images and then assign a confidence score for each segment during testing. The

confidence score is used as rj for a segment vj .

The multi-scale reward term encourages A to select a set of discriminative seg-

ments from multi-scale segments generated from a hierarchical segmentation. As soon as

an element is selected from a layer, other elements from the same layer start to have di-

12



minishing gain because of the submodular property of R(A). A simple example is shown

in Figure 1.4. Similar to D(A), R(A) is submodular and the proof is presented in the

Appendix A.

1.5 Optimization

We combine the weighted coverage term, the single-scale diversity term and the

multi-scale reward term to find high-quality object proposals. The final objective function

of object proposal generation is formulated as below:

max
A

F (A) = max
A

H(A) + αD(A) + βR(A) (1.4)

= max
A

∑
i∈V

max
j∈A

wij + β
L∑
l=1

√ ∑
j∈V l

⋂
A

rj

+α
∑
n,l

√√√√ ∑
j∈P lt∩A

1

|V l|
(
∑
i∈V l

wij)

s.t. A ⊆ V,NA ≤ K,α ≥ 0, β ≥ 0

The submodularity is preserved by taking non-negative linear combinations of the

three submodular terms H(A), D(A), and R(A). Direct maximization of equation (A.4)

is an NP-hard problem. We can approximately solve the problem via a greedy algo-

rithm [29,32] based on its submodularity property. A lower bound of (e− 1)/e times the

optimal value is guaranteed as proved in [29] (e is the base of the natural logarithm).

The algorithm starts from an empty set A = ∅. It adds the element a∗ which

provides the largest marginal gain among the unselected elements to A iteratively. The

iterations stop when |A| reaches the desired capacity number K. The optimization steps

can be further accelerated using a lazy greedy approach from [23]. Instead of recomputing
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gain for every unselected element after each iteration, an ordered list of marginal benefits

will be maintained in descending order. Only the top unselected segment is re-evaluated

at each iteration. Other unselected segments will be re-evaluated only if the top segment

does not remain at the top after re-evaluation. The pseudo code is presented in Algorithm

1.

Algorithm 1 Submodular object proposal generation
Input: I , G = (V,E), K, α, β

Output: A

Initialization: A← ∅, U ← V

loop

a = arga ∈ UmaxF (A ∪ {a})− F (A)

if |A| ≥ K then

break

A← A ∪ {a∗}

U ← U − {a∗}

AUC Recall BSS

C,T+layout [2] 77.5 83.4 67.2

all feature [2] 80.2 79.7 66.2

Ours 81.1 83.6 71.8

Table 1.1: Comparison of object proposals’ quality on the BSDS dataset, measured with

AUC, recall and BSS.
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Ours 1100 82.348.884.676.771.480.667.793.169.786.078.589.783.277.372.970.477.885.885.087.576.5

[3] 1100 80.047.883.976.471.178.568.989.368.585.979.885.880.475.473.569.384.982.681.785.876.0

[2] 1100 75.149.180.768.862.876.463.389.464.683.080.383.778.478.066.966.269.582.084.381.871.6

[13] 1100 74.446.680.569.464.673.561.289.065.180.578.485.277.270.667.968.873.581.675.882.071.4

[35] 1100 73.840.675.866.752.779.750.691.259.280.280.787.479.074.762.154.665.084.682.479.567.4

[36] 1100 68.339.670.664.858.068.251.877.658.272.670.474.066.259.959.855.467.771.368.678.763.1

ours 100 75.240.878.470.355.572.851.183.456.877.366.784.475.265.959.354.968.177.976.176.864.3

[3] 100 70.238.873.667.755.368.550.682.454.478.167.777.769.366.359.951.470.274.172.678.163.7

[2] 100 70.640.874.859.949.665.450.481.554.574.968.177.369.366.856.254.364.172.071.669.961.7

[1] 100 72.736.273.663.345.467.439.584.147.773.264.081.172.264.352.842.962.272.974.369.559.0

Table 1.2: VOC2012 val set. Jaccard index at the instance level and class level.

1.6 Experiments

We evaluate our approach on two public datasets: BSDS [33] and PASCAL VOC2012 [34]

segmentation dataset. The results for PASCAL VOC2012 are on the validation set of the

segmentation task. We evaluate the object proposal quality by assessing the best pro-

posal for each object using the Jaccard index score (see details in section 1.6.1). We also

compare our ranking method with several baselines [2] and analyses the efficiency of our

object proposals on the object recognition task.
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Figure 1.5: Object proposal quality on PASCAL VOC2012 validation set, measured with

the Jaccard index at instance level Ji.
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Figure 1.6: Sample object proposals from the PASCAL VOC2012. The left column shows

the best four proposals for objects in our model. The remaining columns show the highest

ranked proposals with at least 50 percent overlap with an object. The second column is

from our method, the third column is from Categ. Indep. [2], the fourth column is from

CPMC [1], and the last column is from MCG [3].

17



1.6.1 Proposal evaluation

To measure the quality of a set of object proposals, we followed [3] and compute

the Jaccard index score, or the best segmentation overlap score (BSS) for each object.

The overall quality of a object proposal set is measured at the class level and the instance

level. The Jaccard index at instance level, denoted as Ji, is defined as the mean of BSS

over all objects. The Jaccard index at class level, Jc is defined as the mean of BSS over

objects from each category.

1.6.1.1 BSDS dataset

We compare our object proposals with [2]. For fair comparison, we also compute

the area under the ROC curve (AUC) and recall defined with an overlap threshold at 50

per cent. The results are summarized in Table 1.1. Our object proposal achieves the best

performance.

1.6.1.2 PASCAL VOC2012

We evaluate our object proposal approach on the PASCAL VOC2012 validation

dataset. The SVM classifier for reward value (details in section 2.2.2.3) is trained on the

training dataset. Our object proposals are compared with [1–3, 13, 35, 36]. As shown in

Table 1.2, our method outperform all other methods with the same number of object pro-

posals for Jaccard index at the instance level. Meanwhile, we achieve the highest scores

on most of the classes (14 out of 20). In Figure 1.5, we show how Ji changes as the

number of object proposals increases. Since our approach prefers to select representa-
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O2P [22] 56.519.023.012.211.048.826.043.34.7 15.67.8 24.227.532.323.54.6 32.320.738.832.325.2

SDS-A [22] 61.843.446.627.228.961.746.958.417.838.818.652.644.350.248.223.854.226.053.255.342.9

SDS-B [22] 65.749.647.230.031.766.950.969.219.642.722.856.251.952.652.625.754.232.259.258.747.0

SDS-C [22] 67.449.649.129.932.065.951.470.620.242.722.958.754.453.554.424.954.131.462.259.347.7

Ours 68.214.064.751.339.362.145.665.89.9 49.130.861.954.965.954.531.848.429.573.965.648.9

Table 1.3: Results on APr on the PASCAL VOC2012 val. All numbers are %.
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O2P [22] 46.821.222.113.010.141.924.039.26.7 14.69.9 24.024.428.625.67.0 29.018.834.625.923.4

SDS-A [22] 48.339.839.225.126.049.539.550.717.632.518.546.837.741.143.223.443.026.245.147.737.0

SDS-B [22] 51.142.140.827.526.853.442.656.318.536.020.648.941.943.245.824.844.229.748.948.839.6

SDS-C [22] 53.242.142.127.127.653.342.757.319.336.321.449.043.643.547.024.444.029.949.949.440.2

SDS-C+ref [22] 52.342.642.228.628.658.045.458.919.737.122.849.542.945.948.525.544.530.252.651.441.4

Ours 54.719.454.340.934.452.041.359.313.342.925.851.944.851.547.031.442.628.559.253.842.4

Table 1.4: Results on APrvol on the PASCAL VOC2012 val. All numbers are %.

tive, diverse and multi-scale object proposals, our proposal quality outperform MCG [3],

Categ. Indep. [2], CPMC [1], and SCG [3] with only a small number of proposals. In

Figure 1.6, we show some qualitative results of our object proposals. We observe that

our proposals can capture diverse objects of different sizes. In addition, we compare our

proposal generation time with MCG [3] which also uses multi-scale information. Our

method takes about 7 seconds per image compared to 10 seconds reported in [3]. The

parameters are set α = 3.9, β = 2.0 in our experiments.
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Figure 1.8: Top detections on: aeroplane, person, dining table, bicycle.Our detection

results work well on objects of different scales.

1.6.2 Ranking performance

To explore our method’s ranking ability, we compare our ranking method with four

baselines on the PASCAL VOC2012 dataset. 1) Random1 randomly selects object pro-

posals from the multi-scale segment pool. 2) Random2 randomly selects object proposals

from each layer evenly, and combine them together. 3) Clustering selects the object pro-

posals which are closest to the cluster center based on euclidean distance. The cluster

centres are obtained via k-means clustering and k is set to be the number of object pro-

posals to be selected. 4) Categ. Indep. is the method from [2] to rank segments. In

order to show the importance of each term in our model, we evaluate each term: the

weighted coverage term(WC), the single-layer diversity term (SD), and the multi-scale

reward term (MR). Results of different term combinations (WC+SD, WC+MR, SD+MR)
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and the full model (WC+SD+MR) are also presented.Figure 1.7 shows the quality of the

selected object proposals using different ranking methods from the same segment pool.

1.6.3 Semantic Segmentation and Object Detection

To analyse the utility of the object proposals generated by our approach in real

object recognition tasks, we perform semantic segmentation and object detection on the

PASCAL VOC2012 validation set. We follow the settings in [22], where 2000 object

proposals are generated for each image using our algorithm. Then we extract CNN fea-

tures for both the regions and their bounding boxes using the deep convolutional neural

network model pre-trained on ImageNet and fine-tuned on the PASCAL VOC2012 train-

ing set, the same as in [22]. These features are concatenated, then passed through linear

classifiers trained for region and box classification tasks. After non-maxima suppression,

we select the top 20,000 detections for each category.

The results are evaluated with the traditional bounding box APb and the extended

metric APr as in [22] (the superscripts b and r correspond to region and bounding box).

The APr score is the average precision of whether a hypothesis overlaps with the ground-

truth instance by over 50%, and the APrvol is the volume under the precision recall (PR)

curve, which are suitable for the simultaneous segmentation and detection task. The

evaluation of the detection task uses AP b and AP b
vol, which are conventional evaluation

metric for object detection.

Table 1.3 and Table 1.4 shows the APr and APrvol results for each class. We can

see that the results using our object proposals, both our mean APr and mean APrvol have
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RCNN RCNN-MCG SDS-A Ours

mean APb 51.0 51.7 51.9 52.4

mean APbvol 41.9 42.4 43.2 44.3

Table 1.5: Results on APb and APbvol on the PASCAL VOC2012 val. All numbers are %.

achieved state of the art using a seven-layer network, and we outperform previous meth-

ods in 14 out of 20 classes. In contrast to SDS [22], we neither fine tune different networks

for regions and boxes nor refine the regions after classification. But our results still not

only outperform the corresponding SDS-A but also the complicated SDS-B and SDS-C

methods which finetuned two networks separately and as a whole. Moreover, on the more

meaningful measurement of APrvol shown in Table 1.4, results based on our object pro-

posals even outperform that of SDS-C+ref, where the segments are refined within their

10× 10 grid using a pretrained model with class priors. It shows the importance of good

quality regions even before carefully designed feature extraction and region refinement

after classification.

Table 1.5 shows the mean APb and mean APbvol results for object detection. We

achieved better results than RCNN [30], RCNN-MCG [22] and SDS-A [22], which shows

that better region proposals not only improve segmentation but also give better localiza-

tion of objects. Figure 1.8 shows some examples of our detection results.
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1.7 Conclusion

We presented an efficient approach to extract multi-scale object proposals. Built on

the top of hierarchical image segmentation, exemplar clusters are first generated within

each scale to discover different object patterns. By introducing a weighted coverage term,

a single-scale diversity term and a multi-scale reward term, we define a submodular ob-

jective function to select object proposals from multiple scales. The problem is solved

using a highly efficient greedy algorithm with guaranteed performance. The experimen-

tal results on the BSDS dataset and the PASCAL VOC2012 dataset demonstrate that

our method achieves state-of-art performance and is computationally efficient. We fur-

ther evaluate our object proposals on a simultaneous detection and segmentation task to

demonstrate the effectiveness of our approach and outperform the object proposals gen-

erated by other methods.
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Chapter 2: Generating Object Proposals by Learning a Mixture of Sub-

modular Functions

2.1 Overview

In this chapter, we extend the previous work using a supervised structured learning

method to learn the importance of each term in the proposal ranking process. Structured

learning has been used to solve multi-objective problems in several work. [37] introduced

an algorithm to learn a mixture of submodular shells for document summarization and

provided a risk bound guarantee. [38] focused on learning a mixture of sbumodular func-

tions for video summarization. Each function in [38] measures interestingness, represen-

tativeness and uniformity of the video summary. We present novel submodular functions

to measure representativeness, discriminativeness and multi-scale nature of object pro-

posals. To our best knowledge, we are the first to use structure learning with submodular

functions for object proposal generation.

2.2 Submodular Proposal Ranking

We start with a large pool of segments (or bounding boxes) from different image

scales generated via hierarchical image segmentation. The task of object proposal ranking
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is formulated as a subset selection problem. Given the large pool V , a limited number of

segments are chosen as the object proposals. The problem is formulated as:

A = argmaxA⊂V F (A), |A| ≤ K (2.1)

where A is the selected subset of segments, K is the maximum number of segments

to be chosen, and F (A) is a linear combination of submodular terms with non-negative

coefficients, defined as:

F (A) = w × f(A), w > 0 (2.2)

where f(A) = [f 1(A), f 2(A), ..., fn(A)]T . Each f i designs a submodular score function

to measure one aspect of the selected subset.

2.2.1 Structured Learning

We want to minimize the chance of choosing inappropriate segments by minimizing

a score function of submodular terms. We follow the maximum margin algorithm [37] to

learn the weight vector w of Equation (A.4) so that the score of a good quality subset Ag

has a higher score than all other subset A ⊂ V . The learning problem is formulated as

follow:

min
w>0

1

T

N∑
i=1

Li(w) +
λ

2
||w||2 (2.3)

where the subscript i denotes the features and subsets of segments in image i. The gener-

alized hinge loss Li is defined as:

Li(w) , max
A⊂V

(wT fi(A) + lt(A))−wT fi(Ag) (2.4)
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We adopt a recall loss lt(A) similar to the one in [38], lt(A) = (|A| − |A
⋂
Ag|)/K.

Since each image only contains a few number of ground truth objects, we compute the

intersection area of the segment from multi-scale segment pool with the ground truth and

rank them accordingly. The top K segments are used to compose the good quality set Ag

in the training process. In this task, we define fi(A) = [fwci (A), f sdi (A), fmri (A)]T (see

detail in 2.2.2). As proved in [37], using approximate inference on learning submodular

mixture have guaranteed performance using the existing subgradient descent algorithm.

2.2.2 Submodular Terms

The submodular terms are the weighted coverage term, single-scale diversity term,

and multi-scale reward term defined the same as in Chapter 1.

2.2.2.1 Weighted Coverage Term

The weighted coverage term measures the representativeness of the selected subset

A to the whole set V . Compared to generating object proposals from the raw superpix-

els, ranking pre-extracted segments from different scales is to select from a high-quality

group. The selected subset A should be representative of the whole set V . Accordingly,

we introduce the weighted coverage term that favours representative segments.

The weighed coverage term is formulated as:

fwc(A) =
∑
i∈V

max
j∈A

wij (2.5)

s.t. A ⊆ V, |A| 6 K

whereK is the maximum number of segments in the subsetA. maxj∈Awij is the weighted
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coverage of each segment vi. Equation (2.5) measures the representativeness of A to V

and favours segments that can cover (or represent) the other unselected segments well.

2.2.2.2 Single-Scale Diversity Term

The single-scale diversity term models the diversity among segments within each

scale. The weighted coverage term will give rise to a highly representative set A; how-

ever, segments from each layer (corresponding to each image scale) possess redundancy.

Therefore, we introduce a diversity term to encourage discriminativeness among segment

within a layer. The single-layer diversity term is formulated as follows:

f sd(A) =
L∑
l=1

Dl(A) =
∑
t,l

√√√√ ∑
j∈P lt∩A

1

|V l|
(
∑
i∈V l

wij) (2.6)

where P l
t is the set of segments which belong to cluster t in layer l and V l is the set of

segments from layer l. The clusters within each layer is generated using kmeans algorithm

with segment center location information. |V l| is the number of segments in layer l. This

single-scale diversity shell encourage the diversity in the subset A by diminishing the

benefit of choosing segments from the same cluster.

2.2.2.3 Multi-Scale Reward Term

The multi-scale reward term measures the likelihood of segments to be objects. As

segments are from different scales, it is not appropriate to rank the rewards of all segments

together. We propose the following discriminative multi-scale reward term to encourage
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selected segments to have high likelihood to objects:

fmr(A) =
L∑
l=1

√ ∑
j∈V l

⋂
A

rj (2.7)

The value rj estimates the likelihood of a segment to be an object. It determines the

priority of a segment being chosen in its layer. We use segment features to train a SVM

model over object segments and non-object segments in training images and then assign

a confidence score for each segment during testing. The confidence score is used as rj for

a segment vj .

2.2.3 Optimization

With the learnt weights from 2.2.1, we now generate object proposals using the ob-

jective function (A.4). The submodularity of F (A) is preserved as it is a non-negative

linear combination of three submodular terms fwc(A), f sd(A), and fmr(A). Direct max-

imization of equation (A.4) is an NP-hard problem. We can approximately solve the

problem via a greedy algorithm [29, 32] based on its submodularity property. A lower

bound of (e− 1)/e times the optimal value is guaranteed as proved in [29] (e is the base

of the natural logarithm).

The algorithm starts from an empty set A = ∅. It adds the element a∗ which

provides the largest marginal gain among the unselected elements to A iteratively. The

iterations stop when |A| reaches the desired capacity number K. The optimization steps

can be further accelerated using a lazy greedy approach from [23]. Instead of recomputing

gain for every unselected element after each iteration, an ordered list of marginal benefits

will be maintained in descending order. Only the top unselected segment is re-evaluated
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at each iteration. Other unselected segments will be re-evaluated only if the top segment

does not remain at the top after re-evaluation. The pseudo code is presented in Algorithm

2.

Algorithm 2 Submodular object proposal generation
Input: I , G = (V,E), K, w

Output: A

Initialization: A← ∅, U ← V

loop

a∗ = argmax
a∈U

F (A ∪ {a})− F (A)

if |A| ≥ K then

break

A← A ∪ {a∗}

U ← U − {a∗}

2.2.3.1 Structure Weights Learning

We demonstrate weight learning process in Figure 2.1. The weight is tuned on the

training set of PASCAL2012 for selecting 2000 object proposals. The figure is shown

on the first 1000 images. We can see it the importance of the individual submodular

term converges quickly. The multi-scale reward term plays an import role in the object

ranking process. This is reasonable for this dataset, where each image only contains a

small amount of ground truth objects. Aiming at covering all objects, the diversity and

representativeness of proposals which are captured by weighted coverage and single-scale

diversity term should be relatively easy to satisfy with thousands of proposals.
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Figure 2.1: Weight learning. The importance of the weighted coverage (wc) term, the

single-scale diversity (sd) term, and multi-scale reward (mr) term.
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Chapter 3: Learning Structured Low-rank Representations for Image Clas-

sification

3.1 Overview

Image classification is one of the most fundamental task in computer vision. After

obtaining an image, we would like the computer vision system to automatically decide

what object is in the image. In this chapter, we propose better representations for image

classification problem.

Recent research has demonstrated that sparse coding (or sparse representation) is a

powerful image representation model. The idea is to represent an input signal as a linear

combination of a few items from an over-complete dictionary D. It achieves impres-

sive performance on image classification [39–41]. Dictionary quality is a critical factor

for sparse representations. The sparse representation-based coding (SRC) algorithm [40]

takes the entire training set as dictionary. However, sparse coding with a large dictio-

nary is computationally expensive. Hence some approaches [40,42–44] focus on learning

compact and discriminative dictionaries. The performance of algorithms like image clas-

sification is improved dramatically with a well-constructed dictionary and the encoding

step is efficient with a compact dictionary. The performance of these methods deterio-
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rates when the training data is contaminated (i.e., occlusion, disguise, lighting variations,

pixel corruption). Additionally, when the data to be analyzed is a set of images which

are from the same class and sharing common (correlated) features (e.g. texture), sparse

coding would still be performed for each input signal independently. This does not take

advantage of any structural information in the set.

Low-rank matrix recovery, which determines a low-rank data matrix from corrupted

input data, has been successfully applied to applications including salient object detec-

tion [45], segmentation and grouping [46–48], background subtraction [49], tracking [50],

and 3D visual recovery [47, 51]. However, there is limited work [52, 53] using this tech-

nique for multi-class classification. [52] uses low-rank matrix recovery to remove noise

from the training data class by class. This process becomes tedious as the class num-

ber grows, as in face recognition. Traditional PCA and SRC are then employed for face

recognition. They simply use the whole training set as the dictionary, which is ineffi-

cient and not necessary for good recognition performance [54, 55]. [53] presents a dis-

criminative low-rank dictionary learning for sparse representation (DLRD SR) to learn

a low-rank dictionary for sparse representation-based face recognition. A sub-dictionary

Di is learned for each class independently; these dictionaries are then combined to form

a dictionary D = [D1, D2, ...DN ] where N is the number of classes. Optimizing sub-

dictionaries to be low-rank, however, might reduce diversity across items within each

sub-dictionary. It results in a decrease of the dictionary’s representation power.

We present a discriminative, structured low-rank framework for image classifica-

tion. Label information from training data is incorporated into the dictionary learning

process by adding an ideal-code regularization term to the objective function of dictio-
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nary learning. Unlike [53], the dictionary learned by our approach has good reconstruc-

tion and discrimination capabilities. With this high-quality dictionary, we are able to

learn a sparse and structural representation by adding a sparseness criteria into the low-

rank objective function. Images within a class have a low-rank structure, and sparsity

helps to identify an image’s class label. Good recognition performance is achieved with

only one simple multi-class classifier, rather than learning multiple classifiers for each

pair of classes [43,56,57]. In contrast to the prior work [52,53] on classification that per-

forms low-rank recovery class by class during training, our method processes all training

data simultaneously. Compared to other dictionary learning methods [40, 54, 55, 58] that

are very sensitive to noise in training images, our dictionary learning algorithm is robust.

Contaminated images can be recovered during our dictionary learning process.

3.1.1 Related Work

Sparse representation has been widely used for image classification. [59] has shown

that sparse representation achieves impressive results on face recognition. The entire

training set is taken as the dictionary. [39,60] formulate a sparsity-constrained framework

to model the sparse coding problem. They use a modified model to handle corruptions

like occlusion in face recognition. These algorithms, however, don’t learn a dictionary.

The selection of the dictionary, as shown in [61], can strongly influence classification ac-

curacy. One of the most commonly used dictionary learning method is K-SVD [42]. This

algorithm focuses on the representation power of dictionaries. Several algorithms have

been developed to make the dictionary more discriminative for sparse coding. In [44], a

34



dictionary is updated iteratively based on the results of a linear predictive classier to in-

clude structure information. [54] presents a Label Consistent K-SVD (LC-KSVD) algo-

rithm to learn a compact and discriminative dictionary for sparse coding. These methods

show that performance is improved dramatically with a structured dictionary. However,

if the training data is corrupted by noise, their performance is diminished.

Using low-rank matrix recovery for denoising has attracted much attention recently.

Wright introduced the Iterative Thresholding Approach [59] to solve a relaxed convex

form of the problem. The Accelerated Proximal Gradient Approach is described in

[59, 62]. The Dual Approach in [62] tackles the problem via its dual. Applying aug-

mented Lagrange multipliers (ALM), Lin [63] proposed RPCA via the Exact and Inexact

ALM Method. Promising results have been shown in many applications [45–48, 50].

Limited work, however, has applied the low-rank framework to solve image classification

problems. [52] uses a low-rank technique to remove noise from training data. Denoising

is implemented class by class, which gives rise to tremendous computational cost as class

number increases. [53] enhances a sparse coding dictionary’s discriminability by learning

a low-rank sub-dictionary for each class. This process is time-consuming and might in-

crease the redundancy in each sub-dictionary, thus not guaranteeing consistency of sparse

codes for signals from the same class. [51] presents an image classification framework by

using non-negative sparse coding, low-rank and sparse matrix decomposition. A linear

SVM classifier is used for the final classification.

Compared to previous work, our approach effectively constructs a reconstructive

and discriminative dictionary from corrupted training data. Based on this dictionary,

structured low-rank and sparse representations are learned for classification.
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3.2 Low-rank Matrix Recovery

Suppose a matrix X can be decomposed into two matrices, i.e., X = A+E, where

A is a low-rank matrix andE is a sparse matrix. Low-rank matrix recovery aims at finding

A from X . It can be viewed as an optimization problem: decomposing the input X into

A+ E, minimizing the rank of A and reducing ||E||0.

min
A,E

rank(A) + λ||E||0 s.t X = A+ E (3.1)

where λ is a parameter that controls the weight of the noise matrix E. However, direct

optimization of (3.1) is NP-hard. [64] shows that if the rank of A is not too large and E is

sparse, the optimization problem is equivalent to:

min
A,E
||A||∗ + λ||E||1 s.t X = A+ E (3.2)

where ||A||∗ is the nuclear norm (i.e., the sum of the singular values) ofA. It approximates

the rank of A. ||E||0 could be replaced with the l1-norm ||E||1. As proved in [64],

low-rank and sparse components are identifiable. Under fairly general conditions, A can

be exactly recovered from X as long as E is sufficiently sparse (relative to the rank of

A) [59]. This model assumes that all vectors inX are coming from a single subspace. [52]

uses this technique to remove noise from training samples class by class; this process is

computationally expensive for large numbers of classes. Moreover, structure information

is not well preserved. [52] solves this problem by promoting the incoherence between

different classes. A regularization term η
∑

j 6=i ||ATj Ai||2F is added to function (3.2). It

needs to be updated wheneverAj is changed. This is complicated and might not be helpful

for classification.
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Consider the problem of face recognition. Here, the dataset is a union of many

subjects; samples of one subject tend to be drawn from the same subspace, while sam-

ples of different subjects are drawn from different subspaces. [65] proves that there is a

lowest-rank representation that reveals the membership of samples. A more general rank

minimization problem [65] is formulated as:

min
Z,E
||Z||∗ + λ||E||2,1 (3.3)

s.t X = DZ + E

where D is a dictionary that linearly spans the data space. The quality of D will influence

the discriminativeness of the representation Z. [65] employs the whole training set as

the dictionary, but this might not be efficient for finding a discriminative representation

in classification problems. [53] tries to learn a structured dictionary by minimizing the

rank of each sub-dictionary. However, it reduces diversity in each sub-dictionary, thus

weakening the dictionary’s representation power.

We will show that an efficient representation can be obtained with respect to a well-

structured dictionary. Associating label information in the training process, a discrimi-

native dictionary can be learned from all training samples simultaneously. The learned

dictionary encourages images from the same class to have similar representations (i.e.,

lie in a low-dimensional subspace); while images from other classes have very different

representations. This leads to high recognition performance of our approach, as shown in

the experiment section.
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3.3 Learning Structured Sparse and Low-rank Representation

To better classify images even when training and testing images have been cor-

rupted, we propose a robust supervised algorithm to learn a structured sparse and low-rank

representation for images. We construct a discriminative dictionary via explicit utilization

of label information from the training data. Based on the dictionary, we learn low-rank

and sparse representations for images. Classification is carried out directly on these dis-

criminative representations.

3.3.1 Problem Statement

We are given a data matrix X = [X1, X2, ..., XN ] with N classes where Xi corre-

sponds to class i. X may be contaminated by noise (occlusion, corruption, illumination

differences, etc). After eliminating noise, samples within each class i will demonstrate

similar basic structure [65, 66]. As discussed before, low-rank matrix recovery helps to

decompose a corrupted matrixX into a low-rank componentDZ and a sparse noise com-

ponent E, i.e., X = DZ + E. With respect to a semantic dictionary D, the optimal

representation matrix Z for X should be block-diagonal [65]:

Z∗ ,



Z∗1 0 0 0

0 Z∗2 0 0

0 0 ... 0

0 0 0 Z∗N


Based on the above discussion, it is possible to learn low-rank and sparse represen-

tations for images. Low rankness reveals structure information. Sparsity identifies which
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class an image belongs to. Given a dictionary D, the objective function is formulated as:

min
Z,E
||Z||∗ + λ||E||1 + β||Z||1 (3.4)

s.t X = DZ + E

where λ, β controls the sparsities of the noise matrix E and the representation matrix Z,

respectively.||.||∗ and ||.||1 denotes the nuclear norm and the l1-norm of a matrix.

The dictionary D = [D1, D2, ...DN ] contains N sub-dictionaries where Di corre-

sponds to class i. Let Zi = [Zi,1, Zi,2, ...Zi,N ] be the representation for Xi with respect to

D. Then Zi,j denotes coefficients for Dj . To obtain a low-rank and sparse data represen-

tation, D should have discriminative and reconstructive power. Firstly, Di should ideally

be exclusive to each subject i. Thus, representations for images from different classes

would be different. Secondly, every class i is well represented by its sub-dictionary such

that Xi = DiZi,i + Ei. Zi,j , the coefficients for Dj (i 6= j), are nearly all zero.

We say Q is an ideal representation if Q = [q1, q2, ..., qT ] ∈ RK×T where qi, the

code for sample xi, is of the form of [0...1, 1, 1, ...]t ∈ RK (K is the dictionary’s size, and

T is the total number of samples). Suppose xi belongs to class L, then the coefficients

in qi for DL are all 1s, while the others are all 0s. An example optimal decomposition

for image classification is illustrated in Figure 3.1. Here, data X = [X1, X2, X3] contains

images from 3 classes, where X1 contains 3 samples x1, x2, x3, X2 contains 4 samples

x4, x5, x6, x7, and X3 contains 3 samples x8, x9, x10. D has 3 sub-dictionaries, and each

has 2 items. Although this decomposition might not result in minimal reconstruction

error, low-rank and sparse Q is an optimal representation for classification.

With the above definition, we propose to learn a semantic structured dictionary by
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Figure 3.1: Optimal decomposition for classification.

supervised learning. Based on label information, we construct Q in block-diagonal form

for training data. We add a regularization term ||Z−Q||2F to include structure information

into the dictionary learning process. A dictionary that encourages Z to be close to Q is

preferred. The objective function for dictionary learning is defined as follows:

min
Z,E,D

||Z||∗ + λ||E||1 + β||Z||1 + α||Z −Q||2F (3.5)

s.t X = DZ + E

where α controls the relative contribution of the regularization term.

3.3.2 Optimization

To solve optimization problem (3.5), we first introduce an auxiliary variable W to

make the objective function separable. Problem (3.5) can be rewritten as:

min
Z,E,D

||Z||∗ + λ||E||1 + β||W ||1 + α||W −Q||2F (3.6)

s.t X = DZ + E,W = Z
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The augmented Lagrangian function L of (3.6) is:

L(Z,W,E,D, Y1, Y2, µ) (3.7)

= ||Z||∗ + λ||E||1 + β||W ||1 + α||W −Q||2F

+ < Y1, X −DZ − E > + < Y2, Z −W >

+
µ

2
(||X −DZ − E||2F + ||Z −W ||2F )

where < A,B >= trace(AtB).

The optimization for problem (3.6) can be divided into two subproblems. The first

subproblem is to compute the optimal Z,E for a given dictionary D. If we set α = 0,

this is exactly the optimization problem from (3.4). The second subproblem is to solve

dictionary D for the given Z,E calculated from the first subproblem.

3.3.2.1 Computing Representation Z Given D

With the current D, we use the linearized alternating direction method with adap-

tive penalty (LADMAP) [67, 68] to solve for Z and E. The augmented Lagrangian func-

tion (3.7) can be rewritten as:

L(Z,W,E,D, Y1, Y2, µ) (3.8)

= ||Z||∗ + λ||E||1 + β||W ||1 + α||W −Q||2F

+h(Z,W,E,D, Y1, Y2, µ)− 1

2µ
(||Y1||2F + ||Y2||2F )

where h(Z,W,E,D, Y1, Y2, µ)

= µ
2
(||X −DZ − E + Y1

µ
||2
F

+ ||Z −W + Y2
µ
||2
F

)

The quadratic term h is replaced with its first order approximation at the previous iteration

step adding a proximal term [67]. The function is minimized by updating each of the
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variables Z,W,E one at a time. The scheme is as follows:

Zj+1 = arg min
Z
||Z||∗+ < Y j

1 , X −DZj − Ej >

+ < Y j
2 , Z

j −W j > +
µ

2
(||X −DjZj

−Ej||2F + ||Zj −W j||2F )

= arg min
Z
||Z||∗ +

ηµ

2
||Z − Zj||2F

+ < ∇Zh(Zj,W j, Ej, Y j
1 , Y

j
2 , µ), Z − Zj >

= arg min
Z

1

ηµ
||Z||∗ +

1

2
||Z − Zj +

[
−DT (X −

DZj − Ej +
Y j
1

µ
) + (Z −W j +

Y j
2

µ
)
]
/η||2F (3.9)

W j+1 = arg min
W

β||W ||1 + α||W −Q||2F

+ < Y j
2 , Z −W > +

µ

2
||Zj+1 −W ||2F

= arg min
W

β

2α + µ
||W ||1 +

1

2
||W − (

2α

2α + µ
Q

+
1

2α + µ
Y j
2 +

µ

2α + µ
Zj+1)||2F (3.10)

Ej+1 = arg min
E
λ||E||1+ < Y j

1 , X −DZj+1 − E >

+
µ

2
||X −DZj+1 − E||2F

= arg min
E

λ

µ
||E||1 +

1

2
||E − (

1

µ
Y j
1 +X

−DZj+1)||2F (3.11)

where ∇Zh is the partial differential of h with respect to Z. η = ||D||22. The calculations

are described in Algorithm 3.
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Algorithm 3 Low-Rank Sparse Representation via Inexact ALM
Input: Data X , Dictionary D, and Parameters λ, β, α

Output: Z,W,E

Initialize: Z0 = W 0 = E0 = Y 0
1 = Y 0

2 = 0, ρ = 1.1, ε = 10−7, µmax = 1030

while not converged, j ≤ maxIterZ do

fix W,E and update variable Z according to (3.9)

fix Z,E and update variable W according to (3.10)

fix Z,W and update variable E according to (3.11)

update the multipliers:

Y j+1
1 = Y j

1 + µ(X −DZj − Ej)

Y j+1
2 = Y j

2 + µ(Zj −W j)

update µ:

µ = min(µmax, ρµ)

check the convergence conditions:

||X −DZj − Ej||∞ < ε, ||Zj −W j||∞ < ε
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3.3.2.2 Updating Dictionary D with Fixed Z,W,E

With fixed Z, W and E, D is the only variable in this subproblem. So (3.7) can be

rewritten as:

L(Z,W,E,D, Y1, Y2, µ) (3.12)

= < Y1, X −DZ − E > +
µ

2
(||X −DZ − E||2F

+||Z −W ||2F ) + C(Z,E,W,Q)

where C(Z,E,W,Q) is fixed. This equation (3.12) is a quadratic form in variable D, so

we can derive an optimal dictionary Dupdate immediately. The updating scheme is:

Di+1 = γDi + (1− γ)Dupdate (3.13)

γ is a parameter that controls the updating step. The dictionary construction process is

summarized in Algorithm 4.

Algorithm 4 Dictionary Learning via Inexact ALM
Input: Data X , and Parameters λ, β, α, γ

Output: D,Z

Initialize: Initial Dictionary D0, εd = 10−5

while not converged, i ≤ maxIterD do

find Z,W,E with respect to Di using Algorithm 3

fix Z,W,E and update D by:

Dupdate = 1
µ
(Y1 + µ(X − E))ZT (ZZT )−1

Di+1 = γDi + (1− γ)Dupdate

check the convergence conditions:

||Di+1 −Di||∞ < εd
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3.3.2.3 Dictionary Initialization

To initialize the dictionary, we use the K-SVD method. The initial sub-dictionary

Di for class i is obtained by several iterations within each training class. The input dic-

tionary D0 is initialized by combining all the individual class dictionaries, i.e., D0 =

[D1, D2, ...DN ].

3.3.3 Classification

We use a linear classifier for classification. After the dictionary is learned, the low-

rank sparse representations Z of training data X and Ztest of test data Xtest are calculated

by solving (3.4) separately using Algorithm 3 with α = 0. The representation zi for

test sample i is the ith column vector in Ztest. We use the multivariate ridge regression

model [69, 70] to obtain a linear classifier Ŵ :

Ŵ = arg min
W
||H −WZ||22 + λ||W ||22 (3.14)

where H is the class label matrix of X . This yields Ŵ = HZT (ZZT +λI)−1. Then label

for sample i is given by:

k = argmax
k

(s = Ŵzi) (3.15)

where s is the class label vector.

3.4 Experiments

We evaluate our algorithm on three datasets. Two face databases: Extended YaleB [71],

AR [72], and one object category database: Caltech101 [73]. Our approach is compared
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with several other algorithms including the locality-constrained linear coding method

(LLC) [58], SRC [40], LR [52], LR with structural incoherence from [52], DLRD SR [53]

and our method without the regularization term ||Z − Q|| (our method without Q). Our

method without Q involves simply setting α = 0 in the dictionary learning process. Un-

like most other image classification methods [39,42,44], training and testing data can both

be corrupted. Our algorithm achieves state of the art performance on various experiments.

3.4.1 Extended YaleB Database

The Extended YaleB database contains 2,414 frontal-face images of 38 people.

Taken under various controlled lighting conditions, these cropped images have size 192×

168 pixels. There are between 59 and 64 images for each person. Shadows due to dif-

ferent illumination conditions cause variations in this dataset. We test our algorithm on

the original images as well as down-sampled images (2, 4, 8). This results in data sets

of feature dimension 32256, 8064, 2016 and 504. We randomly select 8 training images

for each person, repeat this 5 times and report average recognition accuracy. Our trained

dictionary has 5 items for each class. Then we repeat our experiments starting with 32

randomly selected training images and 20 dictionary items per class.

We compare our approach with LLC [58], SRC [40], LR [52], and LR with struc-

tural incoherence [52]. We evaluate the performance of the SRC algorithm using a full-

size dictionary (all training samples). For fair comparison, we also evaluate the results of

SRC and LLC using dictionaries whose sizes are the same with ours. The result for our

method without Q is also calculated. The comparative results are shown in Figure 4.3.
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n is the number of training samples for each person. Our method, by taking advantage

of structure information, achieves better performance than LLC, LR, LR with structural

incoherence and our method without Q. It outperforms SRC when using the same-size

dictionary.

Figure 3.3 illustrates the representations for the first ten subjects. The dictionary

contains 50 items (5 for each category). The first line shows the testing images’ rep-

resentation based on LR and LR with structural incoherence [52]. Figures 3.3(a) and

3.3(c) are representations with the full size dictionary (all training sample). For com-

parison, we randomly select 5 out of 8 training samples from each class, and generate

a 50-element dictionary. The corresponding representations are shown in Figures 3.3(b)

and 3.3(d). Figures 3.3(e), 3.3(f) and 3.3(g) are the representations based on SRC, LLC

with the same dictionary size and our method without Q. In our learned representation,

Figure 3.3(h), images from the same class show strong similarities. This representation is

much more discriminative than the others.

We present some examples of decomposition results in Figure 3.4. The first three

images are original faces. The middle and the last three images are the low-rank compo-

nent (DZ) and the noise component (E), respectively. We see that different illumination

conditions mainly influence the noise component.

We also evaluate the computation time of our approach and LR with structural in-

coherence [52] that trains a model class by class (Figure 3.5(a)) and uses SRC for clas-

sification. The training time is computed as the average over the entire training set. The

testing time, which includes both encoding and classification, is averaged over all test

samples. Clearly, training over all classes simultaneously is faster than class by class if
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Table 3.1: Recognition rates on the AR

Dimension2200 sunglass scarf mixed

Our Method 87.3 83.4 82.4

Our Method without Q 85.1 81.3 81.0

LR w. Struct. Incoh. [52] 84.9 76.4 80.3

LR [52] 83.2 75.8 78.9

SRC(all train. samp.) [40] 86.8 83.2 79.2

SRC*(5 per person) [40] 82.1 72.6 65.5

LLC [58] 65.3 59.2 59.9

discriminativeness is preserved for different classes. Our training time is twice as fast and

testing is three times faster than LR with structural incoherence.

3.4.2 AR Database

The AR face database includes over 4,000 color face images of 126 individuals,

26 images for each person in two sessions. In each session, each person has 13 images.

Among them, 3 are obscured by scarves, 6 by sunglasses, and the remaining faces are

of different facial expressions or illumination variations which we refer to as unobscured

images. Each image is 165 × 120 pixels. We convert the color images into gray scale

and down-sample 3× 3. Following the protocol in [52], experiments are run under three

different scenarios:

Sunglasses: In this scenario, we consider unobscured images and those with sun-

glasses. We use seven unobscured images from session 1 and one image with sunglass as
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training samples for each person, the rest as testing. Sunglasses cover about 20% of the

face.

Scarf: In this scenario, we consider unobscured images and those with scarves.

We use seven unobscured images from session 1 and one image with a scarf as train-

ing samples for each person, the remainder as testing. Scarves give rise to around 40%

occlusion.

Mixed (Sunglass + Scarf): In the last scenario, we consider all images together

(sunglass, scarf and the unobscured). We use seven unobscured images from session 1,

one image with sunglasses, and one with a scarf as training samples for each person.

We repeat our experiments three times for each scenario and average the results.

Table 4.1 summarizes the results. We use α = 560, λ = 16, β = 15, γ = 0.1 in

our experiments. Our methods are compared with LLC [58], SRC [40], LR [52], and

LR with structural incoherence [52]. For SRC, we measure the performance with two

different dictionary sizes. Our approach achieves the best results and outperforms other

approaches with the same dictionary size by more than 3% for the sunglass scenario, 7%

for the scarf scenario, and 2% for the mixed scenario.

We visualize the representation Z for the first ten classes under the sunglasses sce-

nario. There are 8× 10 = 80 training images and 12× 10 = 120 testing images. We use

50 as our dictionary size, i.e., 5 dictionary items per class. Figures 3.6(a) and 3.6(c) show

the representations of LR and LR method without structural incoherence with a full-size

dictionary. In Figures 3.6(b) and 3.6(d), we randomly pick 5 dictionary items for each

class, and use this reduced dictionary to learn sparse codes. For comparison purposes, we

also choose 50 as the dictionary size in LLC and SRC* to learn the representations shown
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in Figures 3.6(e) and 3.6(f). The testing images automatically generate a block diagonal

structure in our method, which is absent in other methods.

Figure 3.7 shows image decomposition examples on the AR database. The first row

shows the original gray images. The second is the low-rank component (DZ) and the

third the noise component (E). Our approach separates occlusions such as sunglasses and

scarves from the original images into the noise component.

Table 3.2: Recognition rates on the AR

Dimension2200 sunglass scarf

Our Method 90.9 88.5

LC-KSVD [54] 78.4 63.7

In addition, we compare our results with LC-KSVD [54] using the same training

samples under the sun and scarf scenarios, using unobscured images for test. The results

is summarized in Table 4.2. Although associating label information with the training

process, the performance of LC-KSVD is not as good as ours since the training set is

smaller and corrupted. Our approach, in contrast, is robust to noise like occlusion.

We also evaluate our algorithm on the corrupted AR face database following the

protocol in [53]. In the experiment, seven images with illumination and expression varia-

tions from session 1 are used for training images, and the other seven images from session

2 are used as testing images. A percentage of randomly chosen pixels from each train-

ing and testing image are replaced with iid samples from a uniform distribution over

[0, Vmax] as [59] did, where Vmax is the largest possible pixel value in the image. The

recognition rates under different levels of noises are shown in Figure 3.5(b). The results
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Table 3.3: Recognition rates on the Caltech101

number of training sample 15 30

Our Method 66.1 73.6

Our Method without Q 65.5 73.3

LR w. Struct. Incoh. [52] 58.3 65.7

LR [52] 50.3 60.1

SRC (all train. samp.) [40] 64.9 70.7

LLC [58] 65.4 73.4

of DLRD SR [53], FDDL [60], Robust PCA [59], SR [40], and SVM [59] are copied

from [53]. Our method outperforms the other approaches. Figure 3.8 shows some exam-

ples of image decomposition on the AR database with 20% uniform noise.

3.4.3 Caltech101 Database

The Caltech101 database contains over 9000 images from 102 classes. 101 classes

are of animals, flowers, trees, etc. and there is a background class. The number of images

in each class is between 31 and 800. We evaluate our methods using spatial pyramid

features and run experiments with 15 and 30 randomly chosen training images.

Figure 3.9 shows the representations of 15 testing samples which are randomly

selected from classes 4 ∼ 8. Our representation clearly reveals structure information

through representation similarity. Although the training images are visually very diverse,

we are able to learn discriminative representations with the constructed dictionary.

We evaluate our approach and compare it with others [40,52,58]. Table 3.3 presents
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classification accuracy. Our algorithm achieves the best performance. Figure 3.10 gives

some examples from the classes which achieve high classification accuracy when the

number of training images is 30 per category.

3.5 Conclusions

We proposed a new image classification model to learn a structured low-rank rep-

resentation. Incorporating label information into the training process, we construct a se-

mantic structured and constructive dictionary. Discriminative representations are learned

via low-rank recovery even for corrupted datasets. The learned representations reveal

structural information automatically and can be used for classification directly. Exper-

iments show our approach is robust, achieving state-of-art performance in the presence

of various sources of data contamination, including illumination changes, occlusion and

pixel corruption.
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Figure 3.2: Performance comparisons on the Extended YaleB. n is the number of training

images per person.

53



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Comparison of representations for testing samples from the first ten classes

on the Extended YaleB. 5 example samples for each class. (a) LR with full-size dictio-

nary; (b) LR with dictionary size 50; (c) LR with structural incoherence with full-size

dictionary; (d) LR with structural incoherence with dictionary size 50; (e) SRC; (f) LLC;

(g) Our method without Q; (h) Our method.
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(a) (b)

(c)

Figure 3.4: Examples of image decomposition for testing samples on the Extended YaleB.

(a) original faces; (b) the low-rank component DZ; (c) the sparse noise component E.
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Figure 3.5: Experiment results. (a) Average computation time for training and testing on

the Extended YaleB; (b) Recognition rates on the AR database with pixel corruption.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Comparison of representations for testing samples from the first ten classes

on the AR for the sunglass scenario. 5 samples for each class. (a) LR with full-size

dictionary; (b) LR with dictionary size 50; (c) LR with structural incoherence with full-

size dictionary; (d) LR with structural incoherence with dictionary size 50; (e) SRC; (f)

LLC; (g) Our method without Q; (h) Our method.
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(a) original gray images

(b) the low-rank component DZ

(c) the sparse noise component E

Figure 3.7: Examples of image decomposition for testing samples from class 4 and 10 on

the AR.

(a) (b) (c)

Figure 3.8: Examples of image decomposition for testing samples from class 95 on the

AR with 20% uniform noise. (a) corrupted faces; (b) the low-rank component DZ; (c)

the sparse noise component E.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.9: Comparison of representations for testing samples from class 4 to 8 on the

Caltech101. 15 example samples for each class. (a) LR with full-size dictionary; (b) LR

with dictionary size 55; (c) LR with structural incoherence with full-size dictionary; (d)

LR with structural incoherence with dictionary size 55; (e) LLC; (f) Our method without

Q; (g) Our method.
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(a) yin yang, acc:100%

(b) soccer ball, acc:100%

(c) sunflower, acc:100%

(d) Motorbikes, acc:97.7%

(e) accordion, acc:96.0%

(f) watch, acc:95.7%

Figure 3.10: Example images from classes with high classification accuracy of the Cal-

tech101.
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Chapter 4: Discriminative Tensor Sparse Coding for Image Classifica-

tion

4.1 Overview

To extend the dictionary learning to multi-dimensional feature, we present a dis-

criminative tensor sparse coding model for image classification problem. Sparse models

have been successfully applied to many problems in image processing, computer vision,

and machine learning. Many algorithms [54, 74] have been proposed to learn an over-

complete and compact dictionary based on such models. In general, the input feature rep-

resentations to these approaches are based on traditional vector descriptors. As pointed

out in recent work [75, 76], vectorizing the original data structure, however, may destroy

some inherent ordering information in the data. One example are the n × n symmetric

positive semi-definite matrices. The kernel matrix in many popular kernelized machine

learning algorithms [77] is of this type. Another example is the diffusion tensor (a 3 × 3

positive definite matrix) which is used to represent voxels in medical imaging. In com-

puter vision, the region covariance feature, introduced in [78], is an image descriptor that

captures natural correlations amongst multiple features. Hence, there has been growing

interest in the development of sparse coding for positive definite descriptors. In [79], the
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problem of sparse coding within the space of symmetric positive definite matrices is tack-

led by embedding Riemannian manifolds into kernel Hilbert spaces. [76] proposed tensor

sparse coding on positive definite matrices, which keeps descriptors in their original space

and uses a set of randomly selected training samples as the dictionary. It successfully ex-

tended sparse coding techniques to the space of positive definite matrices. However, little

research has been done to learn a discriminative and compact dictionary over such spaces.

We present a discriminative dictionary learning method for tensor sparse coding.

Rather than simply using a subset of region covariance descriptors for training images as

the dictionary [76], we learn a discriminative dictionary from the training set. A struc-

tural incoherence term is introduced into the dictionary learning process to regularize the

incoherence between different sub-dictionaries, which increases the discriminativeness of

the learned dictionary. We further incorporate classification error into the objective func-

tion to make the learned dictionary effective for classification tasks. Instead of learning

multiple classifiers for each pair of classes [39, 43, 57], a linear multi-class classifier can

be easily obtained during the training process. Unlike [80], which focuses on the recon-

structive capability of a dictionary, the dictionary learned by our approach has both good

reconstruction and discrimination capabilities. Based on this learned high-quality dictio-

nary, we are able to obtain discriminative tensor sparse representations. Classification can

be efficiently performed on these representations using the learned multi-classifier as it

only involves matrix multiplication.
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4.1.1 Related Work

The region covariance descriptor was first proposed in [78] to encode an image

region. The descriptor is the covariance matrix of the d-dimensional feature vectors at

each pixel within a region. Given an image I , let Φ define a function that extracts a d-

dimensional feature vector zi from each pixel i ∈ I , i.e. Φ(I, xi, yi) = zi, where zi ∈ Rd,

and (xi, yi) is the location of the ith pixel. Φ can be any mapping such as intensity,

gradient, filter responses, etc. F is the W ×H× d dimensional features extracted from I ,

i.e. F (x, y) = Φ(I, x, y). For a given rectangular region R ⊂ F , {zk}k=1,2,...,N is the set

of d-dimensional features of all N points inside the region R. Then the region covariance

descriptor CR ∈ Rd×dis computed by:

CR =
1

N − 1

N∑
k=1

(zk − µ)(zk − µ)T (4.1)

where µ is the mean of all points. The region covariance descriptor fuses multiple fea-

tures which might be naturally correlated to describe a region or cuboid in images or

videos. The average filter during covariance computation also helps to filter out noise

that corrupts individual samples. It has become a popular descriptor for human detec-

tion [79], tracking [79], object detection [80, 81], action recognition [82], and pedestrian

detection [83].

The tensor sparse model introduced in [76] learns a sparse representation over pos-

itive definite matrices. In [81], the Stein kernel is introduced to embed the space of sym-

metric positive definite matrices into a kernel Hilbert space. These algorithms, however,

take the entire training set as the dictionary. Tensor sparse coding with a large dictio-

nary is computationally expensive when the number of training samples is large. Hence
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learning compact dictionaries for tensor sparse coding is desirable. In [80], a dictionary

learning method is developed based on the K-SVD algorithm [42]. However, the dictio-

nary atoms are updated independently, and the updating aims to reduce reconstruction

errors. So the learned dictionary may not perform well for classification tasks.

Compared to previous work, our approach learns a discriminative and reconstruc-

tive dictionary effectively. With respect to this dictionary, discriminative sparse repre-

sentations can be obtained by solving a determinant maximization (MAXDET) problem.

We simultaneously train a linear classifier along with dictionary learning, resulting in a

learned dictionary good for classification.

4.1.2 Notation

S+
d denotes the space of d×d symmetric positive semi-definite matrices, while S++

d

refers to the space of strictly positive definite matrices. A � 0 (A � 0) means A is

positive (semi)definite. A � B (A � B) indicate that (A− B) is positive (semi)definite.

Let S = {Sl}Nl=1 denote the data set, Sl ∈ S++
d . K is the number of categories. Then the

dictionary is A = [A1, A2, ..., AK ]. Ai = [ai1, a
i
2, ..., a

i
Ki

] denotes the sub-dictionary for

class i. Ki is the number of atoms within that sub-dictionary, and each dictionary atom

ait ∈ S++
d . X = [x1,x2, ...,xN ] ∈ RK×N represents the sparse representation for S, with

xl for Sl. Then the reconstructed data Ŝ is:

Ŝ = X ⊗ A (4.2)

xl ⊗ A =
K∑
i=1

xil ⊗ Ai =
K∑
i=1

Ki∑
t=1

xitla
i
t (4.3)
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with xil denoting the representation coefficients for Sl corresponding to sub-dictionaryAi,

and xitl is the coefficient corresponding to dictionary atom ait.

The LogDet divergence Dld : S+
d × S++

d → R+ is defined as:

Dld(X, Y ) = tr(XY −1)− log det(XY −1)− n (4.4)

This measures the distance between two positive definite matrices [76, 84].

4.2 Tensor Sparse Coding and Dictionary Learning

In this section, we give a brief review of tensor sparse coding and algorithms for

learning an over-complete dictionary. Given a dictionary A and a data set S, the tensor

sparse coding problem in [76] is formulated as:

minx≥0 Dld(X ⊗A, S) + λ||x||1 (4.5)

s.t. 0 � X ⊗A � S,

whereDld is the LogDet divergence defined in (4.4), and λ is the regularization parameter

inducing sparsity on X . The problem can be reduced to a MAXDET problem [76] and

solved by utilizing CVX [85].

In [76], the dictionary A was constructed by simply selecting a subset of the train-

ing set for the classification setting. In [80], a dictionary from the training data is learned

via minimizing a reconstruction error. Each dictionary atom is updated based on a gradi-

ent descent or an alternating formulation method. Minimizing the reconstruction error in

problem (4.5), however, may not be optimal for classification tasks. We will show that by

introducing structural incoherence into the objective function of dictionary learning, the

discriminability of the learned dictionary can be greatly improved. Meanwhile, by incor-
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porating classification error into the dictionary learning process, we can obtain a linear

multi-class classifier jointly, which will improve efficiency of classification performance

and reduce computation time.

4.3 Discriminative Tensor Sparse Coding

To enhance the discriminativeness of tensor sparse codes, we want to learn a recon-

structive and discriminative dictionary. Each sub-dictionary corresponds to one class. The

dictionary will be more discriminative if each sub-dictionary is much more representative

and specific to a particular class of images. Hence we explicitly encourage independence

between dictionary atoms from different sub-dictionaries. We subsequently leverage the

supervised label information of input signals into the optimization problem.

4.3.1 Structural Dictionary Learning 1 (SDL1)

The quality of the dictionary influences the discriminativeness of the tensor sparse

representations. Updating each dictionary atoms separately does not result in sufficient

discriminating information in the sub-dictionaries. Following [52,86], we introduce struc-

tural incoherence into sub-dictionary atoms. Incoherence will promote dictionary atoms

from different classes to be independent from each other; thus it leads to sparse and dis-

criminating representations for images.

Based on the above analysis, we add a structural incoherence regularization term

into the objective function. Given a training data set S = {Sl}Nl=1, we will learn a dictio-

nary A = {Ai}Ki=1, with sub-dictionary Ai = [ai1, a
i
2, ..., a

i
Ki

] for class i. The problem is
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formulated as:

minA,X ΣN
l=1Dld(xl ⊗ A, Sl) + λ||x||1 + ηΣi 6=j,s,t||(ajs)Tait||2F . (4.6)

s.t. xl ≥ 0 ∀l

ait, a
j
s � 0 ∀i, t, j, s

0 � xl ⊗ A � Sl ∀l

The first two terms are the reconstruction error and the sparsity regularization. The last

term sums up the Frobenius norms between every two dictionary atoms ajs, a
i
t which be-

long to different sub-dictionaries Aj and Ai. λ, η are penalty parameters balancing recon-

struction error, sparsity, and dictionary structural incoherence.

4.3.2 Structural Dictionary Learning 2 (SDL2)

As pointed out in [54], the learned dictionary can be more adaptive to classifica-

tion tasks when minimizing the classification error in the objective function of dictionary

learning. A linear multi-classifier f(x;W ) = Wx is used for classification. W denotes

the linear classifier’s parameters. Hence, the classification error can be explicitly included

in the objective function during the dictionary learning. The classifier will be learned

through the training process, as well. The objective function is formulated as below:

minA,X,W ΣN
l=1Dld(xl ⊗ A, Sl) + λ||x||1 + ηΣi 6=j,s,t||(ajs)Tait||2F + γ||H −WX||22(4.7)

s.t. xl ≥ 0 ∀l

ait, a
j
s � 0 ∀i, t, j, s

0 � xl ⊗ A � Sl ∀l

67



where the term ||H −WX||22 represents the classification error. H = [h1, h2, ..., hN ] ∈

RK×N denotes the label matrix. The column vector hi = [0, 0, ...1...0, 0]T ∈ RK is a label

vector for sample i. The position of 1 indicates its class index. γ controls the contribution

of the classification error regularization term in the optimization process.

4.3.3 Optimization

In this section, we only describe the optimization procedures for SDL2 here. To

solve SDL1, we utilize a similar procedure excluding the calculation of classifier W . The

classifier will be calculated directly through Equation (4.16) using the final result X for

SDL1.

The dictionary learning problem is convex in any one of the elements in the triple

(A,X,W ) when the others are fixed. Hence, the optimization can be divided into three

subproblems: (1) updating dictionary atoms with fixed X and W ; (2) solving the max

determinant problem with fixed A and W ; (3) computing a linear classifier with fixed X

and A. If we set γ = 0 in subproblem (2), this is exactly the optimization procedure for

problem (4.6). The complete optimization is summarized in Algorithm 5.

4.3.3.1 Dictionary Update with fixed W and X

Following [80], we use a steepest descent approach to update each dictionary atom

ait. With fixed W and X , the objective function (4.7) can be rewritten as a function of ait

68



as below:

f(ait) = ΣlDld(xl ⊗ A, Sl) + λ||x||1 + ηΣj 6=iΣs||(ajs)Tait||2F + γ||H −WX||22(4.8)

= Σltr(x
i
tla

i
tS
−1
l )− log detŜj + ηΣj 6=iΣstr((a

i
t)
Tajs(a

j
s)
T )ait + C, (4.9)

where C includes all those terms independent of ait. When updating one dictionary atom,

other atoms remain fixed. The gradient descent direction −∇f(ait) is:

−∇f(ait) = Σlx
i
tl(Ŝl

−1
− S−1l )− 2ηΣj 6=iΣs(a

j
s)
Tajsa

i
t (4.10)

Since Ai ∈ S++
d , we need to ensure that dait � 0. Meanwhile, from Ŝj � Sj , we know

that Ŝj
−1
� S−1j , yielding the first term in Equation (4.10) positive semidefinite. Thus

the gradient direction dait is given by:

dait =


Σlx

i
tl(Ŝl

−1
− S−1l )− 2ηΣj 6=iΣs(a

j
s)
Tajsa

i
t , ∇f(ait) ≤ 0

Σlx
i
tl(Ŝl

−1
− S−1l ) , otherwise

(4.11)

Combining all dictionary atoms together, the dictionary is updated as below. The

updating step size α ≥ 0 is determined by a line search technique.

dA = [dA1, dA2, ..., dAK ] = [dai1, da
i
2, ..., da

i
Ki

] (4.12)

A ← A+ α dA (4.13)

4.3.3.2 Solving X with fixed A and W

With fixed A and W , the subproblem to solve X can be formulated as:

minX ΣN
l=1Dld(xl ⊗ A, Sl) + λ||x||1 + γ||H −WX||22 (4.14)

s.t. xl ≥ 0 ∀l, ait � 0 ∀i, t, 0 � xl ⊗ A � Sl ∀l

This is a problem of sparse decomposition over positive definite matrices. As shown

in [76], this problem is convex and well-behaved. It falls into the general class of opti-
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mization problems known as MAXDET problems. CVX [85] is used to solve this prob-

lem.

4.3.3.3 Calculating W with fixed A and X

We use the multivariate ridge regression model [50,69] to obtain the linear classifier

W :

Ŵ = arg min
W
||H −WX||22 + λw||W ||22 (4.15)

where H is the class label matrix of X . Fixing X and A, the multi-class classifier can be

easily derived as:

W = HXT (XXT + λwI)−1 (4.16)

Algorithm 5 Structural Dictionary Learning
Input: Data S, and Parameters α, λ, η, γ

Output: A,W

Initialize: Initial Dictionary A, Classifier W , εA = 10−3

while not converged, i ≤ maxIterA do

fix A and W , solve X for MAXDET problem (4.14)

fix A and X , calculate W according to (4.16)

fix W and X , calculate dA according to (4.11)

update A with (4.12) and (4.13)

check the convergence condition:

||S −X ⊗ A||∞ < εA
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4.3.3.4 Initialization

To initialize the dictionary A, we randomly sample A from the training data. The

initialization of subdictionaryAi is a subset of training data belongs to class i. To initialize

W , we first solve problem (4.14) with γ = 0 using the initialized dictionary. Then W is

calculated according to Equation (4.16).

4.3.4 Classification

After obtaining the dictionary, a tensor sparse representation Xtest for test data Stest

is calculated by solving Equation (4.14) with γ = 0. The representation xl for test sample

l is the l-th column in Xtest. Using the classifier W , the label for test sample l is given

by k = argmaxk(s = Wyl) which corresponds to the index of the largest element in the

class label vector s.

4.4 Experiments

We evaluate our approach on three datasets: Brodatz texture dataset [87], USPS

digital dataset [88], and AR face dataset [72]. Our approach is compared with several

state-of-the-art algorithms including tensor sparse coding (TSC) [76], tensor sparse cod-

ing with dictionary learing (TSCwD) [80], logE-SR [82] and Riemannian sparse repre-

sentation (RSR) [81].
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Figure 4.1: Texture classification results on the Brodatz dataset. Each group (five bars)

indicates the recognition accuracy for one test scenario. Each bar in a group corresponds

to one method.

4.4.1 Texture Dataset

We follow the protocol in [81] and create mosaics under nine test scenarios with var-

ious number of classes, including 5-textures (’5c’, ’5m’, ’5v’, ’5v2’, ’5v3’), 10-textures

(’10’, ’10v’), and 16-textures (’16c’, ’16v’). Spatial derivatives have been shown to be

useful for texture characterization in [76,78]. The feature vector F (x, y) for any pixel with

gray scale intensity I(x, y) is [I(x, y), | ∂I
∂x
|, |∂I

∂y
|, | ∂2I

∂x2
|, |∂2I

∂y2
|]. Each image is 256× 256,

and 32 × 32 blocks are cut out, yielding 64 data samples per image; a 5 × 5 region co-

variance descriptor is computed for each sample. For each scenario, we randomly select

5 data samples as training and the rest for testing. The random selection is repeated 10

times.

Figure 4.1 illustrates the classification results under different testing scenarios. We
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Figure 4.2: An example of tensor sparse codes using different approaches. X axis indi-

cates the dimension of sparse codes, Y axis indicates the average tensor sparse codes for

testing samples (first 10 blocks) from the 2nd class in ’5v2’.

compare SDL1 and SDL2 against logE-SR [82], TSC [76,80], and RSR [81]. The average

accuracy of SDL2 achieves the highest score on all test scenarios except for ’5v3’ and

’5c’. We use α = 0.0001, λ = 0.001, η = 0.0001 in our experiments. However, our

maximum classification results over 10 runs are comparable to the best scores. Figure 4.2

shows an example of tensor sparse codes on ’5v2’. The indices 6∼10 on the X-axis

corresponds to the sub-dictionary for the 2nd class. The coefficients highly peak within

the 2nd class in our method. We can see that SDL2 provides the most discriminative

sparse codes among all methods.

4.4.2 Digit Dataset

The USPS Dataset is a handwritten digit database containing 9298 16 × 16 hand-

written digit images. We follow the protocol in [68], using the images of digits 1,2,3,4

and randomly selecting 200 images for each category. The percentage of training samples

ranges from 10% to 60%. For tensor sparse coding methods, a 9×9 covariance descriptor
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is used to describe a digit image, using the feature below:

F (x, y) = [I(x, y), |G0,0(x, y)|, ..., |G0,3(x, y)|, |G1,0(x, y)|, ..., |G1,3(x, y)|] (4.17)

where I(x, y) is the intensity value at position (x, y) and Gu,v(x, y) is the response of a

2D Gabor wavelet [89] centered at (x, y) with orientation u and scale v:

Gu,v =
k2v
4π2

∑
t,s

e−
k2v
8π2

((x−s)2+(y−t)2)(eikv((x−t)cos(θu)+(y−s)sin(θu)) − e−2π2

) (4.18)

with kv = 1√
2v−1

and θu = πu
4

.

Table 4.1 summarizes classification performances using different approaches. The

results of kNN0, kNN1, NNLRS-graph [68] are copied from [68]. It can be seen that our

discriminative tensor sparse coding method is comparable to other methods and outper-

forms the previously proposed dictionary learning method for tensor sparse coding [80].

In Figure 4.3(b), we illustrate how classification errors decrease with the number

of iterations among dictionary learning methods. As expected, the error rate of SDL2

decreases the most rapidly compared to the parallel-sum method introduced in [80] and

SDL1.

4.4.3 Face Dataset

The AR face database includes over 4,000 color face images of 126 individuals, 26

images for each person in two sessions. The images are cropped to 27×20 and converted

into gray scale. The images from 10 subjects are used in our experiment. The images

are convolved with Gabor filters using Equation (4.18) with 8 orientations θu = πu
8

,

u = 0, 1, ..., 7, and up to 5 scales v = 0, 1, 2, 3, 4. We use the same features as [81]

for face recognition. Each face image is described with a 43 × 43 covariance descriptor
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using the following features:

F (x, y) = [I(x, y), x, y, |G0,0(x, y)|, ..., |G0,7(x, y)|, |G1,0(x, y)|, ..., |G4,7(x, y)|](4.19)

where I(x, y) is the intensity at (x, y) and Gu,v is the response of a 2D Gabor wavelet.

We compare our methods with other covariance descriptor based methods including

TSC [76], TSC with dictionary update [80], and RSR [81]. The learned dictionary has

7 dictionary atoms per person. For each person, we randomly select 15, 18, 21 images

for training and the remainder for testing. Table 4.2 summarizes the experimental results.

SDL2 obtains the best performance in this experiment.

4.5 Conclusion

We introduced a discriminative dictionary learning approach for tensor sparse cod-

ing. The introduction of structural incoherence between dictionary atoms from different

sub-dictionaries encourages disparity among sub-dictionaries, thus enhancing discrimi-

nating ability of the sparse representation. We further incorporate label information into

the optimization problem so that the learned dictionary is more useful for classification.

The SDL1, SDL2 problems can be formulated as MAXDET problems and the dictionary

atoms can be updated through gradient descent. Experimental results demonstrate that

our approach is robust and effective.
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Table 4.1: Classification error rates (%) using different approaches with different sam-

pling percentages

Database kNN0 kNN1 NNLRS [68] TSCwD [80] SDL1 SDL2

USPS (10%) 3.13 3.21 2.80 3.03 2.92 2.80

USPS (20%) 2.22 2.10 1.62 1.98 2.02 1.65

USPS (30%) 1.55 1.53 1.13 1.20 1.56 1.02

USPS (40%) 1.20 1.18 0.88 1.01 0.94 0.82

USPS (50%) 0.82 0.86 0.59 2.80 0.58 0.49

Table 4.2: Recognition rates on the AR face database

number of train samp. TSC [76] TSCwD [80] RSR [81] SDL1 SDL2

15 per person 70.2 78.6 81.4 80.0 82.3

18 per person 73.5 79.9 84.1 82.0 85.2

21 per person 75.8 80.8 85.7 83.2 86.1
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Figure 4.3: (a) The first row shows sample images from the Brodatz texture dataset; the

second row shows sample images from the USPS dataset; the third row shows sample

images from the AR dataset. (b) Classification error for different dictionary learning

algorithms. For this experiment, we use 20 training images per class.
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Chapter 5: Unsupervised Abnormal Crowd Activity Detection Using Semi-

parametric Scan Statistic

5.1 Overview

Activity recognition is another challenging task in computer vision system. In the

chapter, we address the problem of abnormal activity detection. Identifying abnormal

activities in densely crowded scenes has been attracting increasing attention in the com-

puter vision community. This problem plays an important role in many applications such

as crowd surveillance, public place monitoring, security control, etc. The main paradigm

in this field is to assume the availability of a set of normal examples before detection,

which define what normal activity look like. Abnormality of a new observation is then

measured either by its similarity with the given examples or by its compatibility with the

model derived from the examples.

The requirement of the normal activity begin defined beforehand may complicate

the deployment of the approaches in real applications. For example, an important char-

acteristics of normal and abnormal activities in practice is their relativity. Abnormal ac-

tivities in one situation may become normal in others. Fig 5.1 shows a scene in a subway

station. The gate is used as an exit gate and people entering it is regarded as abnormal.
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Figure 5.1: Examples of abnormal activities in crowded scenes. (a) Temporal anomalous

activity of crowd panic. (b) Spatial-temporal anomalous activity where a man enters

through the exit gate in a subway station.

However, at other times the same gate may be changed to an entrance gate and people

entering it becomes normal while people exiting through it becomes abnormal. To apply

detection approaches based on the above paradigm, one must know in advance whether

the gate is served as entrance or exit gate at a specific time, so that the correct normal

activity model can be used.

To reduce the requirement for external examples of normal activity, some recent

work assumes that a certain duration in the beginning of a video contains only normal

behaviours, which are used to train the normal activity model [90–92]. However, these

methods cannot be applied when the normal behaviours keep changing over time so that

the behaviors in the beginning of a video cannot be used to infer thsoe in the remaining of

the video. They are not applicable when the abnormal behaviours appear right after the

video begins.

To address the above limitations of previous approaches, we propose a fully un-
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supervised approach, which requires neither normal nor abnormal examples being pro-

vided beforehand, for anomaly detection in crowded scenes. In this scenario, normal

activities are the behaviours performed by majority of people and abnormal activities are

behaviours that occur rarely and are different from most others in the scene. Based on

this characteristic of the anomaly in crowded scenes, we propose to use a scan statistic

method to solve the problem. The main idea is to scan the video using a large number

of windows with variable sizes. For each window, two hypotheses about whether or not

the characteristics of the observations inside the window is different from those outside it

are compared. A likelihood ratio test statistic, which is based on a semi-parametric den-

sity ratio model, is computed for the comparison and used as a measure of the window’s

abnormality.

Besides the waiver of the requirement for normal activity examples, the novelty

and advantages of the scan statistic method also lie in the following aspects. First, as a

quite general detection framework, it can be used to detect different kinds of abnormal

events, including temporal abnormalities (also called global abnormal event), where the

whole crowd are involved in the abnormal event in which their behaviours are different

from those at most other times in the video (5.1(a)); and spatial-temporal abnormalities,

where the local behaviours are different from most others in the entire video (5.1(b)).

Second, in previous scanning window based approaches [90, 92], the size of the local

windows are usually fixed and the abnormalities are measured independent of another.

In this scan statistic method, variable sized windows are used so that an abnormal event

can be involved in a single window instead of being divided up, which allows its statistic

characteristics being measured more accurately. Third, a semi-parametric density ratio
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method [93] is used to model the observations inside and outside a scanning window.

This reduces the requirement for assuming a specific parametric probability model and

makes it directly applicable to different types of observations. Fourth, to reduce the com-

putational complexity of exhaustive search, we present a fast scanning algorithm for the

semi-parametric scan statistic method. Its validity is theoretically proved and also verified

through experiment.

Scan statistics are a powerful method for cluster detection. They have applica-

tions in many fields, such as epidemiology, criminology, genetics, mining, astronomy,

etc. However, their use for solving computer vision problems has not been exploited

before. In this paper, we illustrate its utility for abnormal activity detection in crowded

scenes. Experiments on both benchmark datasets and videos ”in the wild” validate the

effectiveness of the method.

5.2 Related Work

Various approaches have been proposed for anomaly detection. They can be broadly

categorized based on whether or not examples of normal and abnormal activities are

needed before detection. The first type of work treats the task as a binary classifica-

tion problem. To train the classifier, not only normal but also abnormal activities are

needed. In [94, 95], both abnormal and normal activities were used to train the support

vector machine (SVM) for abnormal activity recognition.

Considering the rich patterns of irregular behaviours, the second type of work finds

abnormalities without knowing what kind of abnormalities will happen beforehand. Al-
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though abnormal training samples are not needed, training data are still needed to define

what normal activities look like. Note that since abnormal examples are not used during

training, some approaches [92,96,97] have claimed to be unsupervised. According to how

normal examples are used, the methods can be further divided into two sub-categories.

The first one contains data-driven methods. They directly compare new observations with

a set of normal examples. The observations whose similarity scores are low [97] or which

cannot be composed well by the know examples [98] are regarded as abnormal. In the

second sub-category, normal examples are used to build explicit models for normal ac-

tivities. Anomaly is declared when the new observation cannot be explained well by the

model. Kim and Grauman used Mixture of Probabilistic PCA to model normal local activ-

ity patterns. In [99], Latent Dirichlet Allocation(LDA) was used to discover latent topics

in normal activities. With the recent popularity of sparse coding, normal basis sets are

also learned from normal activities over which sparse reconstruction costs are computed

for new observations [90, 92].

Our work belongs to the third type where neither normal nor abnormal examples

are required before detection. Several such approaches have been presented, mainly for

non-crowded scenes [98, 100]. the main idea of both [100] and [98] is to use the input

video itself to build the reference database and compare each event with all other events

observed. However, for crowded scenes, performing such pairwise comparison is time-

consuming. considering the homogeneous characteristic of the activities of the crow, our

method collectively model the whole crowd’s behaviours, which is more appropriate and

efficient for crowded scenes.

Among recent work that focuses on crowded scenes, much effort has been de-
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voted to design descriptive features to characterize crowded scenes, such as social force

model [99], chaotic invariants of particle trajectories [101] and mixture of dynamic tex-

tures [102]. Instead of designing new video representation, we propose a new detection

framework which can be combined with different representations. We show that competi-

tive performance can be achieve even only using traditional optical flow as the descriptors.

5.3 Anomaly Detection with Scan Statistic

5.3.1 The Scan Statistic Method

To discover spatial-temporal regions in a video in which the activities are abnormal,

a sliding window with variable size is applied to the video to examine each possible

region. This is similar to the sliding window based object detection framework, although

the window in that case moves within an image and only the spatial size of the window is

varied.

For abnormal event detection, the window is three-dimensional and therefore more

flexible. For temporal anomaly, where the whole crowd are involved in the abnormal

event in which their behaviors are distince from those at most other times, we fix the

spatial size of the window to cover the whole image but allow its temporal length to be

variable. The window moves along the time axis to examining sets of continuous frames.

For spatial anomaly, where the behaviours of a small group of people are different from

those of all the others observed at the same time. We let the temporal length of the window

cover a whole video clip. The spatial size of the window will be variable so the window

moves around in the spatial space to detect local abnormalities. This scanning method is
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applicable when the activities of the whole crowd are highly dynamic and change over-

time. We first divide the video into small clips and detect spatial anomaly for each clip

independently. For spatial-temporal anomaly, where the crowd’s normal activities are rel-

atively consistent and the abnormalities are local behaviours that are different from most

others in the entire video, both spatial and temporal size of the window can change when

it moves around in the three-dimensional spatial-temporal space.

For each window S, we measure whether the observation in it is anomalous. We

take the whole video as the study region to find the abnormalities. Two hypotheses about

the observations in the study region are defined. The null hypothesis H0 assumes no

anomaly exists in all the observations, ı.e., the underlying characteristics of observations

throughout the whole video is the same. The alternative hypothesis H1(S) assumes that

the characteristic of observations inside window S are different from that outside S. The

likelihood ratio test statistic λ(S) defined as below is used to decide an anomaly.

λ(S) =
Pr(Data|H1(S))

Pr(Data|H0)
(5.1)

where Pr(Data|H1(S)) is the likelihood function computed based on the chosen probil-

ity model and the observed data under the hypothesis Hi.

The likelihood ratio test is a measure of the strength of H1. The larger this number

is, the more likely H1 is true and the observation inside S is abnormal. Therefore, we can

use λ(S) as a measure of the abnormality of a window.
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5.3.2 Semi-parametric Density Ratio Model

To compute the likelihood ratio test statistic in 5.1 for each scanning window, we

use a semi-parametric density ratio model [93] to describe the probabilistic model of the

observation data. A certain window S separates the whole study region into two parts.

This results in one sample set x1 associated with region within S and one sample set x2

associated with the region outside S.

x1 = [x11, x12, ..., x1n1 ]
T g̃1(x) (5.2)

x2 = [x21, x22, ..., x2n2 ]
T g̃2(x)

where x1 contains the samples inside window S with sample size n1, and x2 contains the

samples outside window S with sample size n2. gi(x) is the probability density function

of xi,j , i = 1, 2; j = 1, ..., ni. Taking the sample outside the scanning window as the

reference density, the density ratio model assumes the ratio between the density inside S

and the reference has an exponential form:

g1(x)

g2(x)
= exp(α + βTh(x)) (5.3)

Here h(x) is predefined function of x which can take forms such as x, x2, log(x), or

[x, x2]T . α is a scalar, β can be a scalar or vector based on h.

Obviously β = 0 implies α = 0 and thus we have g1(x) = g2(x), which means the

samples inside and outside the window S come from the same distribution. Therefore,

the null hypothesis of the no anomaly can be represented as H0: β = 0.

Note we do not have to know the exact form of the probability density function

g1(x) and g2(x). The density ratio model (Eqn 5.3) applies to different distribution by
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varying h. For example, for Bernoulli and Poisson distributions, we have h(x) = x. Such

model greatly reduce the need to know prior distribution information and applies to more

generalized conditions.

5.3.2.1 Parameter Estimation

We estimate the parameters α and β using the data in the study region. Following

the profiling procedure [103], we have the log-likelihood up to a constant as a function of

α and β.

l(α,β) = −
n∑
i=1

log[1 + ρexp(α + βTh(si))] +

n1∑
j=1

[α + βTh(x1j)] (5.4)

where ρ = n1

n2
. α and β are estimated by maximizing this log-likelihood (Eqn5.4). The

maximum estimate are denoted as α̂ and β̂.

5.3.2.2 Computing the Likelihood Ratio Test Statistic

To compute the abnormality of each window S, we use the likelihood ratio test

(LR-test) λ(S). It can be formulated as below:

λ(S) = −2[l(0, 0)− l(α̂, β̂)] (5.5)

= −2
n∑
i=1

log[1 + ρexp(α̂ + β̂
T

h(si))] + 2

n1∑
j=1

[α̂ + β̂
T

h(x1j)] + 2nlog(1 + ρ)

We use a tunable threshold for λ(S) to determine when an abnormal event is de-

tected. Similar to the object detection, the performance is evaluated at multiple thresholds

which trade off accuracy and false alarm rate.

The semi-parametric density ratio method has two major advantages. First, the

parameters α, β and the distributions are estimated from the combined data, not just from

86



samples either inside or outside the scanning window. This avoids the possible difficulty

of estimating the parameters only from samples inside the window when the window size

is small. Second, the method does not require assumptions about the specific parametric

probability model of the data. Therefore, the same method can be directly applied to

problems with quite different data distributions.

5.4 A Fast Scanning Algorithm

5.4.1 Fast Scan with Windows of Fixed Size

One major challenge of the scan statistic method is the large number of regions that

need to be scanned. It is generally computationally infeasible to search all of them. It is

common to use domain knowledge to restrict the search space.

For abnormal activity detection in video, this problem is even more severe. Due

to the dynamic nature of human motion, the abnormal activity usually occupies irregular

regions in the three-dimensional space. This requires more flexible shapes for the scan-

ning window. Moreover, there are usually multiple anomalies in the video. This makes

methods that only search for the most anomalous region inapplicable. In this section, we

propose an efficient algorithm for the density ratio model based scan statistic method. We

observed that for windows where the numbers of samples in them are equal, the following

theorem holds.

Theorem 1 For windows with the same inside window sample size n1, those that only

contain anomalous samples have larger λ(S) than the others.

Intuitively, consider two windows where the first one only contains abnormal data
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and the the second only contains normal data. When comparing the data distributions

inside and outside the windows, for both case the outside is a mixture of a large number

of normal samples together with a small number of abnormal samples. It is obvious that

the discrepancy between inside and outside window distributions are larger for the first

window than for the second one.

Since any abnormal region can be regarded as a combination of a set of equal sized

subregions, instead of searching for the region with windows of variable size, we can first

scan the whole study region with a single-sized window. Then we rank the windows in

descending order of their likelihood ratio test λ(S). According to Theorem 1, windows

that are located in abnormal rgions will always rank high in the list. We take the top

ranked windows, and merge those that overlap or nearby with each other. This generates

several bigger regions with different shape and size.

In order for Theorem 1 to hold, we have assumed that the probability distributions

inside and outside abnormal regions are homogeneous respectively. However, real videos

are complex. There are fluctuations both spatially and temporally in them. Therefore,

the likelihood ratio test scores for some sub-areas inside the abnormal region be smaller

than some areas located in the normal region. In this case, the regions detected by the

fast scanning algorithm may not be exactly the same as the exhaustive search scheme.

We found through experiment that the difference is not significant. Therefore considering

efficiency, we prefer this fast scanning algorithm when analysing large scale video data.
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Figure 5.2: Normal activities of the three crowded scenes of UMN dataset.

5.5 Experimental Results

In this section, we show the performance of the proposed abnormal activity detec-

tion algorithm on tow benchmark datasets and several videos ”in the wild” that are down-

loaded from the web. The three datasets show examples of the three kinds of abnormal

events, ı.e. temporal, spatial and spatial-temporal anomalies, respectively.

5.5.1 UMN Dataset

We use the UMN dataset to evaluate the performance for temporal anomaly (global

abnormal event) detection. The dataset includes 11 video sequences of three different

scenes of crowded escape events. Each video begins with normal behaviour where people

work around, followed by a sudden abnormal panic. Fig 5.2 shows the normal behaviours

of the three scenes.

Since the whole crowd are involved in the abnormal activities, we can fix the spatial

size of the scanning window to cover the whole image and only need to detect in which

frames the activites are anomalous. The number of candidate windows is O(t2), where

t is the number of frames in a video. In this situation, scanning all windows is feasible.
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We therefore are able to compare the results of exhaustive search and the fast scanning

algorithm in Section 5.4. For exhaustive search, the window with the highest λ(S) is

chosen. For fast scanning, the window length is set to 20 frames in the first round of

search. After merging the top windows and recomputing λ(S) for the big windows, the

window with the highest λ(S) is reported. The step size for moving the windows is set to

5 for both methods.

To quantitatively compare the performance of our algorithm with other state-of-

the-art methods, we draw ROC curve for frame-level measurement. Table 5.1 compares

the corresponding average AUC with other methods. Our scan statistic method achieved

very competitive performance. Note that all other methods require examples of normal

activities being provided, which are used either to train their models or as references for

comparison. Our method does not have this requirement. No training or initialization are

involved. The result demonstrates the effectiveness of the scan statistic method for global

abnormal events detection in videos.

5.5.2 Subway Surveillance Data

We use the subway surveillance videos in [104] to evaluate the performance for

spatial-temporal anomaly detection. There are two videos in the dataset. One video

monitors the entrance gate, which is 1 hour 36 minutes long with 144,249 frames in total.

The other watches the exit gate and is 43 minutes long with 64,900 frames. We follow the

same definition of abnormal activities used in [91]. Specifically, the following abnormal

activities are defined: (a) Wrong direction (WD): people exit through entrance gate or
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Method Area under ROC

Chaotic invariant [101] 0.99

Social force [99] 0.96

Optical flow [99] 0.84

Nearest neighbor [90] 0.93

Sparse Reconstruction [90](Scene1/Scene2/Scene3) 0.995/0.975/0.964

Our method(Scene1/Scene2/Scene3) 0.991/0.951/0.99

Table 5.1: The comparison of our semi-parametric scan statistic method with other meth-

ods on the UMN dataset.

Figure 5.3: Example of abnormal activities detected in subway entrance video, including

wrong direction (WD), loitering (LT), irregular interactions (II), misc. and false alarm

(FA). We show the merged windows which consist of multiple overlapping sub-windows

of fixed size. False alarms are marked with green windows.
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Figure 5.4: Example of abnormal activities detected in subway exit video, including

wrong direction (WD), loitering (LT), misc. and false alarm (FA). We show the merged

windows which consist of multiple overlapping sub-windows of fixed size. False alarms

are marked with green windows.

enter through the exit gate; (b) No payment (NP): people enter the entrance gate without

payment; (c) Loitering (LT): people loiter at the station; (d) Irregular interactions between

persons (II); (e) Misc: e.g. a person suddenly stops walking, or runs fast. The entrance

gate video only includes the wrong direction, loitering and misc. events.

In this experiment, we use histogram of optical flow (HoF) to represent the local

optical flow patch. The HoF features [105] are then quantized to flow words. The spatial

size of the window is fixed to 40× 90 pixels and the length is set to 40 frames during the

first round of scan. We then compare the detected merged regions with the ground truth.

The quantitative comparison of the result with other methods is shown in Table 5.5.2. We

can see that our algorithm achieved similar performance as other state-of-the-art methods.

Unlike our method, both of the other two methods use video clips containing normal

activites in the first few minutes of the video to train their models. Our method start
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Method WD NP LT II Misc. Total FA

Ground truth 26/9 13/- 14/3 4/- 9/7 66/19 0/0

ST-MRF [90] 24/9 8/- 13/3 4/- 8/7 57/19 6/3

Sparse Coding [92] 25/9 9/- 14/3 4/- 8/7 60/19 5/2

Our method 26/9 6/- 14/3 4/- 8/7 58/19 6/2

Table 5.2: Comparison of abnormal activity detection result on subway surveillance data.

Abnormal activities include wrong direction (WD), no payment (NP), loitering (LT), ir-

regular interaction (II) and misc. FA stands for false alarm. The number before the slash(/)

denotes the entrance gate result, and the number after it is for the exit gate result.

detection without training so that not knowing whether the gate is for entrance or exit

beforehand. This is mined directly from the testing videos.

Our method missed half of the no payment event. This may due to the fact that

the gate is located far from camera and people turn their back towards the camera during

paying. Additionally, some no payment actions are too subtle to be recognized. We show

some examples of the detected abnormal activities in Fig 5.3 and Fig 5.4. The detected

regions are composed of several overlapping sub-windows of fixed size. The composed

windows show good coverage of the abnormal events.
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Appendix A: Previous Proof

Proof of generating discriminative object proposals via submodular ranking.

A.1 Proof of Submodularity of the Weighted Coverage Term H(A)

Recall our definition of the weighted coverage term H(A).

H(A) =
∑
i∈V

max
j∈A

wij −
∑
j∈A

φj (A.1)

where V is the set of all segments. Each vertex i ∈ V is an element, and the weight

wij measures the appearance similarity between vertices i and j. φj is the cost of adding

element j to A.

Proof. From equation A.1, we have the marginal gain for element a given a selected set

A.

H(A ∪ {a})−H(A)

=
∑
i∈V

max
j∈A∪{a}

wij −
∑

j∈A ∪{a}

φj −
∑
i∈V

max
j∈A

wij +
∑
j∈A

φj

=
∑
i∈V

max(max
j∈A

wij, wia)−
∑
i∈V

max
j∈A

wij − φa

=
∑
i∈V

max(wia −max
j∈A

wij, 0)− φa
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For ∀ A1 ⊆ A2 ⊆ V and any element a ∈ V \ A2, we can compute:

(H(A1 ∪ {a})−H(A1))− (H(A2 ∪ {a})−H(A2))

=
∑
i∈V

max(wia −max
j∈A1

wij, 0)− φa −
∑
i∈V

max(wia −max
j∈A2

wij, 0) + φa

=
∑
i∈V

max(wia −max
j∈A1

wij, 0)−
∑
i∈V

max(wia −max
j∈A2

wij, 0)

AsA1 ⊆ A2, then we have maxj∈A1 wij ≤ maxj∈A2 wij , thus max(wia−maxj∈A1 wij, 0) ≥

max(wia −maxj∈A2 wij, 0) for ∀i ∈ V . Therefore, (H(A1 ∪ {a})−H(A1))− (H(A2 ∪

{a})−H(A2)) ≥ 0, which completes the proof of submodularity of the weighted cover-

age term.

A.2 Proof of Submodularity of the Single-layer Diversity Term D(A)

Recall our definition of the single-layer diversity term D(A).

D(A) =
L∑
l=1

Dl(A) (A.2)

=
∑
t,l

√√√√ ∑
j∈P lt∩A

1

|V l|
(
∑
i∈V l

wij)

where P l
t is the set of segments which belong to cluster t in layer l. V l is the set of

segments from layer l, and |V l| is the number of segments in layer l. wij measures the

appearance similarity between vertices i and j. {P l
t} forms a partition of V l, i.e. P l

t s are

disjoint and ∪tP l
t = V l.

Proof. From equation A.2, we have the marginal gain for element a given a selected set
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A.

D(A ∪ {a})−D(A)

=
∑
t,l

√√√√ ∑
j∈P lt∩(A∪{a})

1

|V l|
(
∑
i∈V l

wij)−
∑
t,l

√√√√ ∑
j∈P lt∩A

1

|V l|
(
∑
i∈V l

wij)

=

√√√√ ∑
j∈Pks ∩A

1

|V k|
(
∑
i∈V k

wij) +
1

|V k|
(
∑
i∈V k

wia)−

√√√√ ∑
j∈Pks ∩A

1

|V k|
(
∑
i∈V k

wij)

For ∀ A1 ⊆ A2 ⊆ V and any element a ∈ V \ A2 (without loss of generosity, we

can assume a ∈ P k
s ), we can compute:

(D(A1 ∪ {a})−D(A1))− (D(A2 ∪ {a})−D(A2))

=

(√√√√ ∑
j∈Pks ∩A1

1

|V k|
(
∑
i∈V k

wij) +
1

|V k|
(
∑
i∈V k

wia)−

√√√√ ∑
j∈Pks ∩A1

1

|V k|
(
∑
i∈V k

wij)

)

−

(√√√√ ∑
j∈Pks ∩A2

1

|V k|
(
∑
i∈V k

wij) +
1

|V k|
(
∑
i∈V k

wia)−

√√√√ ∑
j∈Pks ∩A2

1

|V k|
(
∑
i∈V k

wij)

)

=
(
∑

i∈V k wia)/
√
|V k|√∑

j∈Pks ∩(A1∪{a})(
∑

i∈V k wij) +
√∑

j∈Pks ∩A1
(
∑

i∈V k wij)

−
(
∑

i∈V k wia)/
√
|V k|√∑

j∈Pks ∩(A2∪{a})(
∑

i∈V k wij) +
√∑

j∈Pks ∩A2
(
∑

i∈V k wij)

BecauseA1 ⊆ A2, we have
√∑

j∈Pks ∩(A1∪{a})(
∑

i∈V k wij) ≤
√∑

j∈Pks ∩(A2∪{a})(
∑

i∈V k wij)

and
√∑

j∈Pks ∩A1
(
∑

i∈V k wij) ≤
√∑

j∈Pks ∩A2
(
∑

i∈V k wij). Therefore, we have D(A1 ∪

{a})−D(A1))− (D(A2 ∪ {a})−D(A2)) ≥ 0, which completes the proof of submodu-

larity of the single-layer diversity term.

A.3 Proof of Submodularity of the Multi-scale Reward Term R(A)

Recall our definition of the multi-scale reward term R(A).

R(A) =
L∑
l=1

√ ∑
j∈V l

⋂
A

rj (A.3)
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where V l is the set of segments from layer l. The value rj estimates the likelihood of a

segment to be an object.

Proof. From equation A.3, we have the marginal gain for element a given a selected set

A.

R(A ∪ {a})−R(A)

=
L∑
l=1

√ ∑
j∈V l

⋂
(A∪{a})

rj −
L∑
l=1

√ ∑
j∈V l

⋂
A

rj

=

√ ∑
j∈V k

⋂
A

rj + ra −
√ ∑

j∈V k
⋂
A

rj

For ∀ A1 ⊆ A2 ⊆ V and any element a ∈ V \ A2 (without loss of generosity, we

can assume a ∈ V k), we can compute:

(R(A1 ∪ {a})−R(A1))− (R(A2 ∪ {a})−R(A2))

=

(√ ∑
j∈V k

⋂
A1

rj + ra −
√ ∑

j∈V k
⋂
A1

rj

)
−
(√ ∑

j∈V k
⋂
A2

rj + ra −
√ ∑

j∈V k
⋂
A2

rj

)

=

∑
j∈V k

⋂
A1
rj + ra −

∑
j∈V k

⋂
A1
rj√∑

j∈V k
⋂
A1
rj + ra +

√∑
j∈V k

⋂
A1
rj
−

∑
j∈V k

⋂
A2
rj + ra −

∑
j∈V k

⋂
A2
rj√∑

j∈V k
⋂
A2
rj + ra +

√∑
j∈V k

⋂
A2
rj

=
ra√∑

j∈V k
⋂
A1
rj + ra +

√∑
j∈V k

⋂
A1
rj
− ra√∑

j∈V k
⋂
A2
rj + ra +

√∑
j∈V k

⋂
A2
rj

BecauseA1 ⊆ A2, we have
√∑

j∈V k
⋂
A1
rj ≤

√∑
j∈V k

⋂
A2
rj . Therefore, (R(A1∪

{a})−R(A1))−(R(A2∪{a})−R(A2)) ≥ 0, which completes the proof of submodularity

of the multi-scale reward term.
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A.4 Proof of Submodularity of the objective function

Recall our objective function.

F (A) = H(A) + αD(A) + βR(A) (A.4)

=
∑
i∈V

max
j∈A

wij −
∑
j∈A

φj + α
∑
n,l

√√√√ ∑
j∈P lt∩A

1

|V l|
(
∑
i∈V l

wij)

+β
L∑
l=1

√ ∑
j∈V l

⋂
A

rj

Proof. Based on the definition above, we can rewrite (F (A1 ∪{a})−F (A1))− (F (A2 ∪

{a})− F (A2)) as follows:

(F (A1 ∪ {a})− F (A1))− (F (A2 ∪ {a})− F (A2))

=
(
H(A1 ∪ {a})−H(A1))− (H(A2 ∪ {a})−H(A2)

)
+α
(
D(A1 ∪ {a})−D(A1))− (D(A2 ∪ {a})−D(A2)

)
+β
(
R(A1 ∪ {a})−R(A1))− (R(A2 ∪ {a})−R(A2)

)
Since α, β are non-negative, we have proved (H(A1 ∪ {a})−H(A1))− (H(A2 ∪

{a}) − H(A2)) ≥ 0, D(A1 ∪ {a}) − D(A1)) − (D(A2 ∪ {a}) − D(A2)) ≥ 0, and

(R(A1∪{a})−R(A1))−(R(A2∪{a})−R(A2)) ≥ 0 in the previous sections. Therefore,

we can have F (A1 ∪ {a}) − F (A1) ≥ F (A2 ∪ {a}) − F (A2), ∀ A1 ⊆ A2 ⊆ V and

a ∈ V \A2, which completes the proof of submodularity property of the objective function

F (A).
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