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Preface

This thesis presents a real-time system for detecting and re-identifying multiple

people using a single camera. The main contribution is a method for re-identifying

multiple individuals in real-time on moderate hardware. Example results are avail-

able at https://youtu.be/IOne0U7tEBI.

ii



Table of Contents

1 Introduction 1

2 Person Following With Mobile Robots 4
2.1 Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 LIDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Structured Light Camera . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Single Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Efficient Object Tracking 13
3.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Correlation Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 MOSSE Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Kernelized Correlation Filter . . . . . . . . . . . . . . . . . . . . . . . 17

4 Methods for Detecting People in Images 18
4.1 Histogram of Oriented Gradients . . . . . . . . . . . . . . . . . . . . 18
4.2 Deformable Part Model (DPM) . . . . . . . . . . . . . . . . . . . . . 20
4.3 Fastest Pedestrian Detector in the West (FPDW) . . . . . . . . . . . 23

5 Pose Detection Neural Network 24
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Recent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Pose Detection using Part Affinity Fields . . . . . . . . . . . . . . . . 27

6 Reidentification Neural Network 31
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Recent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Proposed Identification Architecture . . . . . . . . . . . . . . . . . . 36

6.3.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3.1.1 Pose Detection Sub-Network . . . . . . . . . . . . . . 38
6.3.1.2 Low-Level Sub-Network . . . . . . . . . . . . . . . . 39
6.3.1.3 Mixing Sub-Network . . . . . . . . . . . . . . . . . . 41

iii



6.3.2 Identity Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Example Application 54

8 Conclusions and Future Work 57

Bibliography 59

iv



Chapter 1: Introduction

This thesis is concerned with the ability of a mobile robot to follow an indi-

vidual. This is not a novel task and there are many existing techniques that address

this problem. However, most of these techniques make strong assumptions about

available sensors, computing power, environmental conditions, or other infrastruc-

ture. For example, approaches relying on depth images recovered from structured

light sensors like the Microsoft Kinect can work relatively well, but are limited to

indoor use within a specific range. Approaches that incorporate LIDAR sensors are

simply too expensive for many applications. The few approaches that do not have

heavy hardware dependencies often constrain the person in some way, or simply do

not work well. While few techniques for person following are easily implemented,

recent advances in computer vision using deep learning techniques suggest that an

effective person following method could be implemented using only a single camera

and a computer equipped with a modern, low cost, low power GPU. While the use of

a GPU may have been prohibitive in certain applications for reasons such as power

consumption, weight, cost, and programming complexity; new low cost embedded

platforms such as the Nvidia TX1 make their use practical even on small unmanned

aerial vehicles. The primary contribution of this thesis is a person tracking system
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design that operates under the aforementioned constraints.

While modeling and control of the mobile robot is a crucial aspect of the

person following task, it is not the focus of this thesis. This thesis is focused on the

signal processing side of detecting, identifying, and tracking individuals in images.

This is a problem that extends beyond the scope of mobile robotics into fields such

as surveillance and video annotation, but we focus on person following scenario.

In fact, simplicity, functionality, speed, and extensibility as they relate to mobile

robotics inform the design as strongly as raw benchmark performance statistics that

drive most modern image processing algorithms.

This thesis is intended to serve as a reference to those interested in investi-

gating the problem of person following, and to application developers wishing to

integrate the algorithms and methodologies into their work. As such, we include an

overview of historical methods and building blocks that may be useful to those de-

signing their own system, and attempt to cover the specifics of our system in as much

detail as necessary. The remainder of this thesis proceeds as follows. In chapter 2 we

discuss existing systems that directly address the robot person following problem.

For each we note the hardware assumptions and performance. In the remaining

chapters we constrain ourselves to the scenario where only a single camera is used

for the identification and tracking problem. In chapter 3 we overview efficient object

tracking algorithms that could be directly applied to the person following problem,

or integrated into some larger system to address performance issues. These object

tracking methods run at very high frame rates and are suitable for most CPUs.

In chapter 4 we review selected historical methods for detecting people in images
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and make suggestions for how the algorithms could be used in the robot following

problem. In chapter 5 we see that human pose detection is possible using convolu-

tional neural networks trained on large image datasets for the pose recognition task.

We overview many competing methods for the task and select one for use in the

final system. Given the reliability of the methods, and the intuition that knowledge

of the human pose could be useful for action and identity recognition, we proceed

through the remainder of the thesis assuming a specific pose detection algorithm is

used for detecting people. In chapters 5 and 6 we assume that a modern GPU is

available which can efficiently perform convolutional neural network computations.

In chapter 6 we extend the pose detection algorithm to spatially encode the iden-

tity of people in the image. This method is strongly related to the task of human

re-identification, for which many large datasets are available. We review and draw

connections between competitive algorithms for the human re-identification task to

reinforce the viability of our method. While we do not focus on obtaining competi-

tive results for the human re-identification benchmark (since most of the algorithms

are intended for off-line use), we believe that our (online processing) system provides

an efficient, simple, extendable, and sufficiently accurate tool for the robot following

problem that is possibly useful in other domains.
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Chapter 2: Person Following With Mobile Robots

The challenge of following a person with a mobile robot has been addressed

in many papers including [3] [4] [5] [6] [7] [8] [10] [11] [13] [14] [15]. In [1] a survey

is provided which summarizes a few methods that address the problem of person

following. This survey is focused on works that directly address the person following

problem, and not of the human detection problem in general. By no means is the

person following task new and there are a variety of methods for addressing the

problem, but most make very specific hardware assumptions.

D. Calisi [3], Z. Chen [4], H. Koyasu [9], J. Satake [13], and T. Yoshimi [15] all

use stereo vision for the task. Stereo vision has the advantage of simple background

subtraction via depth estimation, the ability to determine the distance to the target,

and the ability to detect obstacles in the field of view. However, stereo imposes an

additional computational burden in computing depth, the range is often limited,

the cameras are often more expensive, and most segmentation methods relying on

depth segmentation are confused by adjacent objects. In addition stereo vision ap-

proaches do not apply to many existing infrastructures such as surveillance camera

systems. Nevertheless, stereo-vision based approaches are appealing when compared

to methods like that of [5] which depends on an expensive thermal imaging sensor
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Figure 2.1: Useful hardware used for person following. From top left to bottom

right; a thermal imaging sensor, stereo camera, inertial sensing mobile device, 2D

LIDAR, standard USB camera, Microsoft Kinect (RGBD sensor), ultrasonic range

finder, standard CPU, low power GPU module, high performance GPU

for detecting people. Thermal vision makes the process of segmenting people in the

image from the background a simple one, but it provides little information as to the

identity of individuals in the image. Methods using structured light sensors like the

Microsoft Kinect provide a method for segmenting people from the background sim-

ilar to that of stereo-vision based approaches, but typically at higher resolution and

without the computational burden of computing disparity. These types of sensors

can even be used to determine the pose of the person at high speeds [16]. Unfortu-

nately, such sensors do not work well in the presence of heavy infared light like that

outdoors. B. Ilias attempts to address the poor operation of the kinect outdoors

by filtering the image, but he provides little concrete evidence as to the method’s

success [7]. Like stereo camera methods, structured light sensors are limited in

sensing range and not applicable to many existing domains. Other approaches like
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that of S. Shaker [14] rely solely on a 2D LIDAR sensor to detect people in the

scene. Such approaches typically rely on heuristics that may be prone to detection

errors. M. Kobilarov [8] presents a method for person following that uses both an

omnidirectional camera and LIDAR. Methods like this are highly dependent on the

robot configuration and difficult to extend. The LIDAR is used in their approach to

address the loss of tracking that occurs when using only an omnidirectional camera

with a feature based tracker.

In the following sections we will cover in more detail some of the methods

summarized above. We show that there is a variety of ways to approach the person

following problem, but most existing approaches work well only under specific con-

straints that are suitable usually only for demonstration and not practical long-term

use. In addition, the specificity of the approaches makes them difficult to extend

in future work or other approaches. Our work is intended to provide both a foun-

dation of knowledge and a low-dependency baseline system that could be extended

and applied on a variety of platforms.

2.1 Stereo Camera

In [13] J. Satake and J. Miura present a stereo base person detection and track-

ing scheme focused on the robot person following problem. Their tracking method

begins by computing a depth image from the stereo pairs. Regions proposed for the

person’s head are then detected by template matching regions of the depth image

against three binary templates using a sum of squared error loss metric. The tem-
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Figure 2.2: Depth templates from [13]

Figure 2.3: Depth template matching results from [13]

plate corresponding to the lowest error is selected as the proposed detection region.

The depth matching procedure is crude and results in many false positives so the

authors train an SVM on the intensity images of the proposal regions to classify and

remove false positives. This results in more robust person detection. The distance

to the proposed person is then estimated using the depth. People are tracked in

consecutive frames using an Extended Kalman Filter (EKF) for each person, along

with a simple data association process to determine which measurements belong to

which track. Each EKF has as a state the 3D position and velocity of the person.

Data association is done by matching tracked states with their closest 3D position
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detection from the template matching phase. The algorithm prefers missed detec-

tions over false positives because missed detections are handled by simply skipping

the update step in the EKF.

This tracking algorithm has the advantage that it is relatively simple, is not

dependent on feature tracking, and is able to track multiple people. However, a

major limitation is that it cannot maintain individuals’ identities during long term

occlusion, people in very close proximity, or people that leave the scene. These

drawbacks make the method unusable in many practical robot following scenarios.

2.2 Thermal Imaging

In the paper [5] the authors present a method for detecting people in thermal

images for person following. The method involves thresholding the magnitude of

a thermal image, computing various shape statistics for regions in the thresholded

image, and then training an SVM classifier on these shape statistics to determine

if the thresholded region is a person or not. An issue with the approach is that it

provides no method for distinguishing multiple people. A specific individual could

not be tracked if there are multiple people in the scene.
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Figure 2.4: Thermal based person detection from [5]

2.3 LIDAR

The paper [14] reports a method for following a person with a mobile robot

using LIDAR. The algorithm for detecting the person is a logical ruleset that includes

thresholding the length of contiguous laser reading segments. It is difficult to assess

the performance of this method with no concrete statistics, but it is possible to

imagine many scenarios where such a ruleset could fail. Moreover, the method

does not seem able to distinguish individuals. In the paper [8] they utilize both an

omni-directional camera and a LIDAR for tracking. The camera is used primarily

to compute color features that can be used to probabilistically match the target.

The lidar in this scenario is used to determine candidate regions for detecting the

target. Methods utilizing LIDAR are useful because they can accurately determine

the distance to the target, which is useful for controlling the robot, but there is

little evidence that such tracking methods work for an extended period of time.
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Such methods are also expensive and highly dependent on the sensor configuration.

Figure 2.5: LIDAR visualization from [14]. Heuristic decisions based on the seg-

mented LIDAR scan are used for detection and tracking.

2.4 Structured Light Camera

Structured light sensors like the Microsoft Kinect are capable of estimating

the depth of pixels in an image. Utilizing algorithms like that of [16] it is possible to

determine the pose of multiple individuals in real-time using only the depth images.

This provides rich information about people in the image that may be used for

robot person following. In the work [7] they use this method for person detection to

enable a robot to follow a nurse indoors. Their approach uses the standard Kinect

skeleton tracking software to perform tracking. A simple control strategy is used

that involves turning left or right if the tracked person crosses a threshold region

and going straight otherwise. This is depicted in Figure 2.6.
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Figure 2.6: Visualization of detection and control strategy used in [7].

A major issue with this approach is that it does not work well outdoors due

to ambient infrared light. The authors place an IR filter on the Kinect to help

address this issue, but provide little information about the performance. In addition,

there is little indication that a method like this is capable of distinguishing between

multiple people, especially in the case of long-term absence or occlusion. Structured

light sensors are also typically limited to a few meters in range. This limits their

applicability for longer range person following.

2.5 Single Camera

In this thesis we are concerned with developing a real-time person tracking

system that uses only a single camera. There are relatively few works directly

addressing the person following problem that use only a single camera. The work [?]
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begins by using a single omnidirectional camera for tracking the target, but they

ultimately add a LIDAR sensor to improve reliability. In the paper [?] they train

a convolutional neural network to detect people in real-time for person aware robot

navigation. This work however does not address the person following problem, but

how to navigate when there are people in the scene. The method does not distinguish

individuals to detect a tracking target. There is however a large body of work related

to detecting and identifying individuals in images, but it is not directly aimed at

the person following problem. In the remaining chapters we will go into detail on

methods that could be used for person following using only a single camera.
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Chapter 3: Efficient Object Tracking

In this chapter we discuss methods for generic object tracking. These methods

are initialized by selecting a bounding box in an initial image frame and then tracking

the ’primary’ object in the bounding box through consecutive frames. Most of these

methods discriminate the object appearance given a single image, and update the

model as the object is tracked from frame to frame. A major drawback is that the

learned model drifts from the true object over time. Thus, the following methods

either need to be manually re-intialized after they lose track, or combined with a

slower, more accurate detection method. These methods may also be useful where

computational resources are limited.

3.1 Method Overview

As mentioned, this section deals with methods for tracking an object across

multiple frames. They do not detect a specific object class, but learn the object

appearance from consecutive frames. I avoided extensive investigation of methods

using point features because the deformability of the human body and clothing

was not well suited to the rigid requirements that such methods work best under.

Instead, I investigated filter based approaches which are arguably better at discrim-
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ination using the entire object appearance rather than localized descriptors.

Initialize Target 
Model

Locate Target In 
Frame

Update Target 
Model

Figure 3.1: Generic object tracking process

3.2 Correlation Filtering

Correlating a template image with a query image is a simple, yet sometimes

effective way of detecting the template image within the target image. Correlation

filtering begins by selecting a target window hk ∈ Rm×n. This is done by selecting

the bounding box of the target object to be tracked. Once the target is defined,

tracking is performed by iteratively selecting the peak coordinates of the correlation

of the target window with the query image fk ∈ RM×N . Noting that correlation

in the spatial domain is element-wise multiplication in the frequency domain, the

correlation filtering process is thus

(xk, yk) = argmaxF−1(Hk � Fk)

where Hk and Fk are the Fourier transforms of hk and fk, and � represents element-

wise multiplication. The computational complexity of the method is Plog(P ) with P

the number of pixels in the query image. For tracking problems, the target window

hk may be updated at the new location (xk, yk). If detection is desired, the target
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window may remain constant.

While correlation filtering is very fast and simple there are many drawbacks.

First, while correlation typically produces strong peaks at the target location, it

can also produce strong peaks at locations that are not the target center. Second,

as tracking continues it is likely that the target window learned in the first frame

will not accurately represent the target in later frames. The target, especially in

the context of human tracking from a mobile robot, is likely to change scale, pose,

illumination, etc. Methods covered in the next two sections, called Minimum Out-

put Sum of Squared Error (MOSSE) filtering and Kernalized Correlation Filtering

(KCF) address these two major problems while maintaining the speed and relative

simplicity of correlation filtering.

3.3 MOSSE Filter

In 2010 D. Bolme introduced an adaptive correlation filter capable of tracking

a target window at 669 frames per second. The tracking filter, namely Minimum

Output Sum of Squared Error (MOSSE) learns an optimal correlation filter for each

frame using the detected location found via correlation with the previous frame’s

filter. The filter learning process helps ensure that correlation results in peaks only

at the target center and not at other points in the image that may have otherwise

caused peaks using simple correlation filtering.

Like correlation filtering, the MOSSE filtering process begins by selecting a

window around the target. With the initialized target window position set, pre-
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processing is performed on the target window. This involves taking the log of the

target window to improve low-contrast performance. The target window is then

normalized to have a mean value of 0.0 and a norm of 1.0. Next, the window is mul-

tiplied by a cosine window, which puts emphasis on the center of the target. Once

the target window is preprocessed, an optimal filter is learned which minimizes the

mean sum of squared error between the actual output of correlation and the desired

output of correlation. The closed form solution to this problem is simple and can

be found in [?]. An example of the output of the learned MOSSE correlation filter

is shown in Figure 3.2

Figure 3.2: The MOSSE Tracking process. The left thumbnail shows the input

template image, the middle thumbnail shows the learned MOSSE filter, and the

right thumbnail shows the output of correlating the learned filter with the new

image. The solid red box shows the new target location. [42]
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3.4 Kernelized Correlation Filter

In 2014 J. Henriques presented a method for high speed tracking using Kernel-

ized Correlation Filters (KCF). In their work they show that real-time tracking can

be accomplished by applying the kernel ’trick’ over cyclic shifts of an input patch to

learn a Gaussian peak regression target. They show that this can be accomplished

in the same time complexity of the MOSSE filter (nlog(n)). Like the MOSSE filter,

they then detect the target peak and update the model in each consecutive frame.

An advantage that the kernelized correlation filter has over the MOSSE filter is that

it can operate on images with an arbitrary number of channels. Using histogram

of oriented gradients (HOG) feature images they achieved state-of-the-art tracking

results at 292 frames per second. The method could even be extended with other

channels, including color channels, added to the feature image. It is worth noting

that all of the person detection algorithms detailed in the next section also utilize

HOG features, so augmenting one of these person detection methods with a KCF

for tracking could possibly be done at little extra computational cost.
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Chapter 4: Methods for Detecting People in Images

In the previous chapter I discussed methods for generic object tracking that

could be directly applied to the robot following problem. The issue with these al-

gorithms is that they often fail if tracking is lost at any point. A different approach

to following a person would be to detect all people in consecutive images and dis-

tinguish which person is the target. This is the methodology we use in our final

tracking system. In this chapter we overview a few historical methods that could

be used for the detection phase of the system. In our final system we did not use

any of these methods, but they are commonly used algorithms for human detec-

tion. In fact, much of the work related to person reidentification (which we detail

in chapter 6) assumes the use of the person detection algorithms described in this

chapter [32] [33].

4.1 Histogram of Oriented Gradients

The method of Histograms of Oriented Gradients (HOG) for human detection

was presented by N. Dalal and B. Triggs in 2005 [37], and is one of the most popular

methods for human detection in images. Their work essentially describes a well-

tuned feature descriptor that they prove to work well for the task of human detection
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when combined with a linear support vector machine (SVM). The concepts presented

in their work are fundamental to more complicated methods for human detection

like that of P. Felzenszwalb’s Deformable Parts Model (DPM) [38]. In any work

addressing the problem of human detection, it is worth drawing comparisons to

HOG. The pipeline for human detection using HOG is depicted in Figure 4.1.

Convert 
Colorspace

Compute 
Gradient

Histogram of 
Gradient 

Orientation 
for each Cell

Block 
Normalization

Combine 
Histograms 
into Feature 

Vector

Linear SVM

Person

Not Person

or

Figure 4.1: The HOG detection pipeline.

The HOG pipeline begins with colorspace selection. The choice between RGB

or LAB colorspace has a negligible impact on the detector performance, but the

choice between color and grayscale does have a significant impact [37]. After the

colorspace has been selected, the gradient of the image is computed. This is done

by convolving the image with two filters, one for each direction of the gradient. The

authors attempt multiple filters, but the filters [−1, 0, 1] and [−1, 0, 1]T were found

to work best for the task at hand. Once the gradient image is computed the binning

process begins. The entire image is divided into cells , which are 8× 8 pixel regions

1. Within each cell, a histogram of gradient orientations is computed by having each

gradient pixel within the cell vote for orientation bins with a weight dependent on

1Cells are not required to be 8×8 squares, I am referencing the cell size of the primary detector

the authors use.
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the gradient magnitude. The cell histograms are then normalized via comparison to

nearby cell histograms. This normalization reduces the impact of local illumination

variation. After normalization, a final feature vector is constructed by collecting all

of the histogram bin values in a 64× 128 pixel window (8× 16 cells). This feature

vector is the input to a linear SVM which decides whether the 64×128 pixel windows

is a person or not [37].

HOG works well for human detection because it effectively captures the human

shape with local descriptors. The nature of the descriptor makes it robust to illu-

mination variation, slight translation, and slight angular rotation. These qualities

make the HOG feature very useful in practice.

In their paper, Dalal and Triggs are primarily focused on the HOG feature

vector itself rather than the classification process, and this is arguably the more

important contribution of the work. HOG features appear in more sophisticated

person detection methods like that of Felzenszwalb and are crucial to the perfor-

mance of the Kernalized Correlation Filter (KCF) object tracking method discussed

in the previous chapter. Knowledge of HOG, even if unused in the final system, was

a crucial consideration in designing the real-time tracking system.

4.2 Deformable Part Model (DPM)

In 2008, P. Felzenszwalb presented a discriminatively trained deformable part

model that achieved state of the art results in the 2006 and 2007 PASCAL per-

son detection challenges. The model surpasses the performance of the plain HOG
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detector by incorporating separate part detectors that may be shifted relative to

a root detector. The part based model is thus better able to handle the non-rigid

human structure. Unfortunately, deformable part models are more computationally

complex than HOG and are not well suited for real-time detection. Nevertheless,

they are one of the best performing person detectors and are worth reviewing. The

parallel nature of many of the computations could be well suited for a parallel pro-

cessor like a GPU, and so they remain an important option for designing a real-time

system even though most current implementations do not run in real time. An

overview of the system pipeline is depicted in Figure ??.

Felzenszwalb’s deformable part model is highly dependent on the HOG feature

of Dalal and Triggs. The deformable part model detection procedure begins by

computing HOG features over an image at multiple scales. A root filter, which is

equivalent to that of Dalal and Triggs, detects the object center. Multiple part filters

detect parts relative to the root filter origin. Each part is scored similar to the root

filter, but operates on higher spatial resolution HOG cells. Associated with each part

filter is also a deformation cost model. This model assigns a spatial placement cost

for each part relative to the root filter. Intuitively this model captures the essence of

human detection better than that of Dalal and Triggs; the human body shape can

change drastically depending on the persons pose, but the individual part’s shape

does not change as much. In addition, we expect certain parts will only exist in

certain placements (ie: it is unlikely that a person’s head would exist below the root

origin). In summary, classification performance is improved over rigid models by

using both part appearance and placement
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As mentioned earlier, the DPM is not immediately suited for real-time oper-

ation. Felzenszwalb reports a detection rate of once every 2 seconds. To enable

real-time feedback control in the context of robot person following, updates are

required several times a second. Using the DPM in this context would require al-

gorithm tuning to meet the requirements of real-time person following. Another

possible solution would be to combine the slow DPM with a higher rate tracking

algorithm such as a Kernalized Correlation Filter (KCF). The DPM could be used

to detect the human bounding box once every two seconds, and the KCF could

track the person in between DPM updates at the frame-rate of the camera. This

combination could alleviate the major issues that the DPM and KCF have when

used alone. The issue with the DPM is clearly speed, and the major issue with

the KCF is tracking drift, which will be covered in the KCF discussion. Such an

implementation may be suitable for a standard CPU.

Though I did not use the DPM in my final solution, the performance improve-

ments of DPMs over rigid HOG methods certainly inspired the decision to investigate

pose based solutions for the purpose of detection and identification. Pose is one of

the largest variables in human appearance, and incorporating pose information into

the identification process could make the system more robust to variation of this

type.
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4.3 Fastest Pedestrian Detector in the West (FPDW)

DPM and HOG are arguably the most popular methods for human detection,

but several other methods and variants have been produced to address the issues of

performance and speed. A notable algorithm which addresses the issue of speed is P.

Dollár’s Fastest Pedestrian Detector in The West (FPWD). The speed increases are

achieved by observing that the primary computational bottleneck in typical pedes-

trian detectors is the construction of the image feature pyramid. Typically, such

as in a standard HOG detector, construction of the image pyramid requires feature

computation at several (more than 10) scales. P. Dollár shows that many global fea-

tures computed at a given scale can be approximated using the features computed

at a different scale. This approximation results in significant computational savings

by removing the need to compute features at each scale. While the approximation

breaks down for large scale differences, P. Dollár shows that computing features only

at each octave results in good detection rates. Detections scales within the octave

are achieved by creating a pyramid classifier similar to Viola and Jones. This results

in detection accuracy similar to traditional image pyramid methods, with speeds ap-

proaching the lower-accuracy method of Viola and Jones. For real-time pedestrian

detection on typical hardware using HOG based approaches, optimizations like that

in FPDW are necessary.
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Chapter 5: Pose Detection Neural Network

In the previous chapter we outlined a few historically popular methods for

detecting people in images. These methods are all dependent on hand-crafted HOG

features, which have been shown to work well for person detection. Recently, large

datasets have emerged that directly address the problem of detecting the pose of

people in images. The pose, in this context, is the location of major joints or

keypoints on the human body. Competing methods that use these datasets show

that human pose can be recovered reliably with high accuracy. One such method

which maintains state-of-the-art performance in the MSCOCO keypoint detection

benchmark is able to determine the pose of all individuals in an image in real-time.

Human pose detection provides information that is useful beyond just detect-

ing a person’s location. The pose information could be used for gesture recognition,

extracting the face region for face detection, or determining a person’s facing di-

rection, which may be useful for robot control. In chapter 6 we utilize the pose

information to aid in re-identifying individuals in different image frames. In the

remainder of this chapter we will overview different datasets related to human pose

detection, discuss a few competing methods that address the problem, and cover in

detail the state-of-the-art algorithm we use in our final system.
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5.1 Datasets

We looked at two popular datasets for human pose detection, the MPII Human

Pose Dataset (MPII) and the Microsoft Common Objects in Context (MSCOCO)

dataset. Both datasets contain a large number of annotated individuals (28,821

for MPII, over 100,000 for MSCOCO), but vary slightly in the image sources and

annotation style.

The MPII dataset contains pose annotations of 28,821 people. The images

for the dataset were extracted from YouTube videos of people performing different

activities. These activities provide large variation in pose and environmental con-

text. The pose information provided includes the positions of body joints, full 3D

torso and head orientation, occlusion labels for joints and body parts, and activity

labels [18].

The MSCOCO dataset includes pose annotations for more than 100,000 peo-

ple, but also includes many other annotations. In the dataset they include the

segmentation masks of 91 object types, including people in the images. The images

cover a wide variety of scenarios, and are intended to be natural images showing

objects in their typical context. The pose annotations in the dataset do not include

the 3D annotations that the MPII dataset includes, but do include the location of

visible eyes, ears, and nose associated with each individual. The state-of-the-art

pose detector we used was trained on this dataset, and we prefer it for its widely

varied context and rich annotation beyond just human pose. []
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5.2 Recent Work

In 2014 A. Toshev introduced a system, DeepPose, to detect human pose that

transitioned the methodology from classical detection approaches to deep neural

networks [21] [20]. In their work they trained a multi-stage neural network to directly

learn the (x, y) coordinates of part locations in the image. They trained their method

on the smaller Frames Labeled In Cinema (FLIC) and Leeds Sports Dataset. Their

method achieved state-of-the-art performance at the time. Since the introduction

of DeepPose several methods using convolutional neural networks have emerged. A

popular methodology for using convolutional neural networks to detect human pose

is to learn a network that generates ’heatmap’ images corresponding to the body

part locations. These heatmap images are then parsed to determine the (x, y) body

part locations. A typical heatmap includes a single feature map channel per body

part detected.

One algorithm that used heatmap regression achieved state-of-the-art results

in 2016 on the MPII benchmark. This algorithm by A. Newell [20] used a stacked

hourglass network structure to perform heatmap regression. The hourglass design

is intended to capture information at multiple scales. Below is an example of the

learned heatmap regression.
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Figure 5.1: Heatmap regression performed by [20]. A heatmap image is learned for

each body part.

The more recent work by X. Chu [?] which achieved state-of-the-art results

in the 2017 MPII human pose benchmark also uses stacked hourglass networks for

similar regression. A major issue with the above approaches arises when attempting

to determine the pose of multiple individuals in the same image. With multiple

people in the image it is not clear which body parts in the heatmap are associated

with eachother. The work by Z. Cao [17] solves this issue in a way that is intu-

itive, simple, and directly integrates into the heatmap regression network. In their

approach they learn not only heatmaps corresponding to the body part locations,

but also vector fields that point between associated body parts. These vector fields,

called part affinity fields are easily parsed to determine the likelihood that two body

parts are associated with eachother. This is the multi-person pose detection method

that we use in this thesis.

5.3 Pose Detection using Part Affinity Fields

In 2016 Z. Cao introduced a method for human pose detection capable of

running in real-time [17]. The method trains a neural network to learn body part

confidence maps and part affinity fields that can be parsed to determine the body
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part locations and associations for multiple people in an image.

Figure 5.2: Pose detection via Part Affinity Fields from [17]. The input to the neural

network is a color image, the output includes body part confidence maps (b) and

part affinity fields (d). The confidence maps and part affinity fields are parsed to

determine the pose of multiple peopl in the image.

The neural network structure is quite simple and employs a multi-stage archi-

tecture similar to that of [20].
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Figure 5.3: The network architecture from [17]. F is a feature map computed from

the first 10 layers of VGG-19. S, L are the part confidence maps and part affinity

fields at predicted at each stage. The loss function is applied to all stage predictions.

The first stage in their network calculates a feature map F using the first 10

layers from the VGG-19 network [?]. This feature map is used as the input to a

multi-stage confidence map and part affinity field regression network. In each stage

t the feature map F , the predicted confidence map St−1 and the predicted part

affinity field map Lt−1 are concatenated from the previous stage and used as inputs

to the current stage. Each stage is attempting to learn the confidence maps and

part affinity fields. Each successive stage improves the accuracy. The loss function

is the sum of the L2 distance between the ground truth confidence maps and part

affinity fields and those predicted at each stage. To trade runtime for performance

it is possible to run fewer stages. We use the second stage in this work. Each feature

map has a spatial resolution 1/8 the size of the original image. There are a total

of 18 parts detected and 19 part connections. Each part connection is represented

by two channels in the part affinity field; one for the x direction and one for the y
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direction. This results in 18 channels for the part confidence map and 38 channels

for the part affinity field.

The method for parsing people in the image is simple. First, we detect the peak

locations of body parts in the image. Then, for each part association we construct

a graph containing the pairwise likelihood that two body parts are associated with

eachother (and thus the same person). This likelihood is determined by taking the

dot product of the vector pointing from one body part to the other and the vector

predicted in the part affinity field (sampled at n positions between the two parts).

In our implementation of the parsing, we begin with the neck body part and select

the most likely shoulder, then elbow, then wrist, etc. for each person. We do not

detect the individual if the neck is not visible. We can then determine the bounding

box by selecting the extrema coordinates over all body parts corresponding to an

individual.

While parsing is necessary to detect multiple people in the image, we show

in the next chapter that we can spatially embed the identity of individuals before

parsing. By directly using the predicted part confidence maps and part affinity fields

as features to a mixing network, we can learn to associate low level features with

body parts. This spatial feature map provides a simple, fast, and reliable method

for detecting the identity of all individuals in an image.
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Chapter 6: Reidentification Neural Network

The focus of this chapter is on re-identifying individuals in consecutive frames.

The methods for person following described in chapter 2 address this problem in dif-

ferent ways. Methods like that of J. Satake address the problem by iteratively associ-

ating measurements that best agree with a predicted tracking state. These methods

rely on the dynamics of the individual to perform tracking. The issue with this type

of approach is that it cannot recover from failure. If tracking is lost at any point,

it is unlikely to be recovered correctly without any additional person association

metric. Other approaches use some form of color feature for matching people be-

tween frames, but often employ many heuristics that are not statistically reinforced.

We instead hope to leverage the recent availability of several large datasets avail-

able for the task of re-identifying individuals in different camera frames. Provided

the datasets extend a variety of environmental conditions and person orientations,

a method trained on the dataset would provide a more statistically sound way of

identifying people in consecutive images.

There are many competing methods that address the problem of person re-

identification, but the methods are primarily focused on obtaining good re-identification

rates on the benchmarks. Considerations like speed, simplicity, and extendability are
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of less importance. For us however, these considerations are of great performance.

Our re-identification rates should be as good as possible but we must maintain ad-

equate speed for real-time person following. Because the person following problem

often involves distinguishing only a handful of individuals, the re-identification rate

requirements are less stringent than that of the benchmark scenario where match-

ing is made against large datasets of individuals. Nevertheless, we will cover several

competing methods that address the benchmark datasets to draw insight into what

is important in obtaining good re-identification rates. However, we apply these in-

sights in a way that we would work with the pose detector selected in the previous

chapter. The final result is something that we believe provides useful and reliable

information for the person following task.

6.1 Datasets

There exist several datasets that directly address the problem of person re-

identification. The datasets vary primarily in the environment conditions, number

of individuals, number of images, and number of cameras used. The paper [31]

provides a comprehensive list of datasets addressing the task, from which we select

datasets that would be most useful for our goal.

The Market1501 dataset includes bounding box images of 1501 different peo-

ple. The images are taken from six different cameras; five high-resolution cameras

and one low-resolution camera. The bounding boxes are acquired by both hand-

labeling and use of a DPM detector. Each bounding box has 64× 128 pixels and is
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associated with a single peron’s identity. This dataset is commonly used to assess

competing methods for the human-reidentification, and comprehensive benchmark

results are provided. Unfortunately, the full images are not available so we are de-

pendent on the labeled bounding box instead of the bounding box determined by

the pose detector. Thus, the dataset does not allow us to evaluate the system from

end-to-end. Nevertheless, the dataset is simple and an excellent option for validating

the identification architecture.

The Person Re-identification in the Wild (PRW) dataset utilizes the images

from Market1501 but includes the full images and bounding boxes for 932 different

people. The advantage of this dataset over the Market1501 dataset is that it allows

us to evaluate the performance of our system when there are multiple people in the

same image. This is crucial for our implementation because we never explicitly crop-

out people in the image before determining their identity. Instead, we embed the

identity of individuals spatially in a feature map and then parse out the identities

after detection. If we were to use the Market1501 dataset where there is only one

individual per image, we could not guarantee that the identity was being embedded

around the location of the individual. This would cause issues if we then used the

system with multiple people in the scene.

Like the PRW dataset the Large Scale Person Search (LSPS) dataset includes

the full image frames and bounding box annotations. The LSPS dataset contains

18,184 images, 8,432 people, and 99,809 annotated bounding boxes. The advantage

of the LSPS dataset over the others is that images are acquired from a wide variety

of cameras in a larger variety of scenes. This variability is desirable since it increases
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the likelihood that the trained method would extend to different cameras and envi-

ronments. Utilizing the LSPS dataset is the subject of future work; the dataset is

only available at request of the authors.

We used the PRW dataset in this thesis since it was readily available and

contained multiple individuals per image.

6.2 Recent Work

Recently, L. Zheng released a comprehensive report of state-of-the-art meth-

ods competing in the Market1501 benchmark [32]. The top competing algorithms,

including [28] [29] [23] [22] [30], address the problem using convolutional neural

networks operating on each bounding box image. While these methods are not suit-

able for real-time operation they provide valuable insight into what is important in

re-identifying individuals in images.

One of the major challenges in the Market1501 competition is addressing the

limited size of the dataset. The dataset contains only 1501 identites from a limited

number of cameras which is relatively small compared to the popular Labeled Faces

in the Wild (LFW) dataset used for face recognition which contains 5,749 identities

[23]. Most of the methods are less focused on the specifics of the network architecture

than they are on methods for making the results generalize well. The work by M.

Geng [23] uses a standard GoogleNet base network, but focuses on ways to make

knowledge from larger datasets like ImageNet transfer to the human re-identification

problem. They achieve a state-of-the-art rank 1 detection accuracy of 83.7% across
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751 identites in the Market1501 benchmark. In the work by Z. Zheng [30] they

address the small dataset size by learning a generative adversarial network (GAN) to

generate additional unlabeled samples. With this method they achieve a competitive

rank-1 accuracy of 78.06%.

The work by L. Zheng [29] directly addresses the problem that misaligned

detection and pose variation have on re-identification. In their paper they apply a

state-of-the-art CNN pose detector to the bounding box image to detect key joints

of the person in the image. Using the joint locations they construct a PoseBox

feature, which is a compound image containing the person’s torso, arms, and legs

aligned in a specific position and orientation.

Figure 6.1: The PoseBox feature. The body parts are detected by a CNN pose

detector; affine transformations are used to create the PoseBox features on the

right. [29]
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This feature image, shown in Figure 6.2, is used as the input to a network

that learns a discriminative identity embedding. A clear issue with the PoseBox

feature is that misdetections of the joint locations could dramatically effect the

matching performance. To alleviate this, they input the original bounding box

image and a vector containing the confidence of each joint detection as features to

their embedding network. Using this method they achieved a competitive rank-1

accuracy of 79.33%.

6.3 Proposed Identification Architecture

The work by L. Zheng in [29] presents a pose invariant feature that achieves

competitive results in the person re-identification task. The feature even performs

well without the use of deep learning. This suggests that pose plays an important

role in the identification of individuals. Because the person detection algorithm we

selected uses the individual’s pose, we may include the pose information at little

extra cost. Unfortunately, the method of [29] requires us to parse the pose for each

person to generate a feature vector. Use of this method would cause the computa-

tional complexity to increase depending on the number of people in the image. The

performance would also be highly dependent on the pose parsing performance. In

addition, we could not utilize features used in pose detection that may provide im-

portant information for the identification task. We instead suggest augmenting the

pose detection network with an identification network that can spatially embed the

identity of individuals. This fixes the computational complexity, which is important
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for real-time operation, and allows the network to utilize the pose confidence maps

and part affinity field maps that were already calculated in the pose detection phase.

By doing this we are able to incorporate knowledge of pose into the identification

procedure without the need for parsing.

6.3.1 Network Structure

The proposed network architecture is an extension of the convolutional neural

network by Z.Cao [17]. As covered in the previous chapter on pose detection, the

network by Z. Cao takes as input a color image, and outputs confidence maps for

the part locations as well as a set of part affinity fields which are used to associate

the parts in the image. We use a pre-trained version of this pose detection sub-

network, and fix the parameters when learning the spatial identity embedding. Our

proposed extension includes a low-level network that runs parallel with the pose

detection network and a mixing network that spatially embeds the identity using

the low-level and pose features. The intuition behind the design is that the low-level

network detects features like textures and colors and the mixing network associates

these low-level features with body parts to create a feature vector representing the

individual’s identity.
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Figure 6.2: The proposed spatial identity embedding network.

6.3.1.1 Pose Detection Sub-Network

The pose detection sub-network, fpose is identical to the network by Z. Cao [17].

The pose detection network is made of multiple stages, each of which improves the

detection accuracy. In the pre-trained version we used there were six total stages.

Instead of utilizing all stages for part detection, we only utilize the second stage.

This results in quicker detection rates, albeit at lower accuracy. However, we found

the accuracy sufficient for our task. The network takes the preprocessed color image

of size M,N as input and provides the part confidence maps and the part affinity

fields of spatial size m,n = M/8, N/8 as outputs. In the original work these maps

are used for associating parts with each other to determine the pose of multiple peo-

ple in the same image. In our work we also utilize the part maps and part affinity

fields in the mixing network to provide context to lower level features. Details on
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this sub-network are covered in the previous chapter on pose detection.

fpose : RM×N×3 → (Rm×n×18,Rm×n×38)

Icmap, Ipaf = fpose(I)

6.3.1.2 Low-Level Sub-Network

The low-level sub-network, flow−level, runs independent of the pose detection

sub-network. The network contains residual units similar to those introduced in [35],

but excludes batch normalization because we did not perform training in batches

due to computational constraints. The network structure is depicted in figure 6.3.
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Figure 6.3: The low-level convolutional neural network

The network takes as input the image I ∈ RM×N×3 and performs two sequen-

tial convolutional layers with a filter size of 3 × 3 and 16 channels. Max pooling

of stride 2× 2 is performed after these convolutional layers, halving the spatial di-

mension of the feature maps. Another two 3 × 3 convolutional layers are added

but with double the channels. The output of these convolutional layers is summed

with a skip connection from the output of the first two convolutional layers. This

skip connection involves subsampling and identity activation 1 × 1 convolution to

make the dimensions match. This process is repeated until an output dimension of
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m × n × 128 is reached. Note that all activations in this network are rectified lin-

ear units (ReLU), aside from the skip connection convolutions which have identity

activations. In summary,

flow−level : RM×N×3 → Rm×n×128

Ilow−level = flow−level(I)

6.3.1.3 Mixing Sub-Network

The mixing network is responsible for generating the spatial identity embed-

dings. In the first stage of the mixing network we approximate the binary mask

of individuals in the image using the part confidence maps and part affinity fields.

This binary mask is multiplied by the low-level feature network output to reduce

the impact of the surrounding environment on the identity embedding. We found

this improved generalization and training convergence. To compute the mask we

first compute the masks for the confidence maps and part affinity fields by taking

the max of the thresholded magnitude along each channel.

Icmap−mask[i, j] = max(Icmap[i, j]) > threshold

Ipaf−mask[i, j] = max(||Ipaf [i, j]||) > threshold

where the norm, ||Ipaf [i, j]|| is applied for each part affinity field channel correspond-

ing to the same part association. The max operation is applied channel-wise, thus
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preserving the spatial dimensions. The combined mask is then

Imask = Icmap−mask ∨ Ipaf−mask

where ∨ represents the logical OR operation. We then multiply each channel of the

low-level network output by this mask.

Ilow−level−masked = Imask � Ilow−level

where � represents element-wise multiplication which is applied to each channel.

After masking the low-level features we combine them with the pose features via

concatenation along the channel dimension.

Ifeatures−mixed = [Ilow−level−masked|Icmap|Ipaf ] ∈ Rm×n×184

we then perform two 3× 3× 64 convolutions with ReLU activations on this mixed

feature channel followed by one 1×1×64 convolution with identity activation, which

results in the final spatial identity embedding, Iidmap ∈ Rm×n×64. In summary,

fmixing : (Rm×n×128,Rm×n×18,Rm×n×38)→ Rm×n×64

Iidmap = fmixing(Ilow−level, Icmap, Ipaf )
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where fmixing includes the operations described in this section. The functionality of

the combined network can then be summarized,

Icmap, Ipaf = fpose(I)

Iidmap = fmixing(flow−level(I), Icmap, Ipaf )

6.3.2 Identity Parsing

In the previous section we presented the network structure for constructing

the spatial identity embedding, but this spatial embedding has little meaning until

parsed into the final identity embedding vectors for all the people detected in the

image. The parsing stage is simple and requires only taking the maximum along the

spatial dimensions within the bounding box associated with the person in question.

During the training phase we used the annotated bounding boxes provided by the

dataset, but during real-time operation we used the bounding boxes calculated from

the boundary parts parsed by the pose detector. The identity parsing scheme is

outlined in figure 6.4.
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Association

Bounding Box Selection
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Figure 6.4: Parsing scheme for the proposed identity embedding network.

First, we perform part detection and association as described in the previous

chapter on pose detection. This yields the list of part locations and visibilities for

all N people detected in the image.

{{pij}j=1:18}i=1:N
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where pij = (vij, xij, yij) contains the visibility v and coordinates (x, y) for part j

belonging to person i. To determine the bounding boxes we select the minimum

and maximum spatial coordinates over each visible part for each person i.

x−i = min({xij}j|vj=1)

y−i = min({yij}j|vj=1)

x+i = max({xij}j|vj=1)

y+i = max({yij}j|vj=1)

boxi = (x−i , y
−
i , x

+
i , y

+
i )

the identity embedding vector zi ∈ R64 for person i is then calculated,

zi[k] = max(Iidmap[x
−
i : x+i , y

−
i : y+i , k])

zi = [zi[1], zi[2], · · · , zi[64]]

this identity embedding vector is trained so that the Euclidean distance to identity

embedding vectors belonging to the same person is relatively small compared to the

distance to embeddings of other individuals. This type of training is accomplished

by minimizing a triplet loss which we overview in the following section on training.

Details of how to use the embedding in a tracking scenario are covered in the next

chapter.

6.4 Implementation

The above network was implemented and tested using the Tensorflow machine

learning library. We converted the pose detector network, which was originally de-
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veloped using the Caffe deep learning framework, into a fixed tensorflow graph which

we augmented with our low-level and mixing networks. For the entirety of training

and testing the weights of the pose detection network were fixed. Preprocessing

and parsing were accomplished using Python and the OpenCV libraries. Z. Cao

released an entire open-sourced version of his pose detection network and parsing

software, but we found it easier and more portable to implement our own version

of pose parsing in Python. We did however use the pre-trained weights from his

open-sourced software. Training and testing were both done on a Dell Inspiron

7559 laptop equipped with a solid state drive, Intel i5 processor, and Nvidia 960m

GPU. The Nvidia 960m GPU is capable of 1.8 TFLOPS, which is comparable to the

embedded Nvidia Jetson TX2, which could be used in a portable implementation.

6.5 Training

The network was trained using only the PRW dataset, with some slight modi-

fications. First, we removed any of the annotated bounding boxes that were smaller

than a certain area. These boxes were essentially indistinguishable at the resolution

we were using. Second, we limited the number of training samples per individual

to 10. Some of the individuals were overrepresented in the dataset so this helped

prevent bias towards any individual. Third, we used a larger portion of training

identities than the benchmark. We used 749 identities during training and 134 dur-

ing evaluation. All of the images were resized to a width of 270 pixels and a height

of 480 pixels. For most of the images this maintained the aspect ratio, but resulted

46



in a slight skew for the others. We found this skew acceptable and even desirable

as it added variety to the data. To add additional variety we randomly rotated and

scaled the images. The rotations were done uniformly within 15 degrees and the

scaling within 30% of the original image size. The scaling maintained the aspect

ratio. We found that these random operations aided in generalization.

An important step in training the network was selecting a loss function that

could be used for the identification task. Following the method of FaceNet, which

achieved state-of-the-art recognition accuracy on the Labeled Faces in the Wild

(LFW) dataset, we selected a triplet loss to train our network [25]. To compute the

triplet loss, we first select an anchor sample, positive sample, and negative sample.

The anchor sample is a specific image of the identity in question, the positive sample

is a different image of the same identity, and the negative sample is of a different

identity. The triplet loss is the relative pairwise distance between the anchor and

the negative and positive samples up to a margin α;

dpositive = ||zanchor − zpositive||22

dnegative = ||zanchor − znegative||22

Ltriplet(zanchor, zpositive, znegative) = max([0, α + dpositive − dnegative])

In an ideal scenario we would expect that after training there will be a margin of

α between dpositive and dnegative. It is important to note that this loss function does

not constrain the samples corresponding to one identity to lie within an L2 sphere.
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Instead, the loss function acts on the relative distance between positive and negative

samples so that when comparing any two images to a query image we could select

which image is more similar to the image in question. The advantage of this is that

it allows samples belonging to the same identity to lie freely on a manifold while

maintaining discriminability from samples of negative identity [25]. Unfortunately,

the triplet loss has a disadvantage in the tracking scenario; we cannot absolutely

decide whether an individual is of the same identity or not. That is, using the

distance metric we can only determine who is closest in identity to the target we are

tracking. Thus, for tracking we require additional logic for absolute reidentification,

which could involve maintaining a database of identity embeddings. Nevertheless,

maintaining a database of identity vectors is suitable for many applications including

the example in the next chapter. In the future, exploring identity embedding loss

functions that do constrain embeddings of the same identity to lie within an L2

sphere might improve the generality of the system.

When training the embedding it was important to select triplets that most

violated the margin constraint above. This process is called hard-negative mining

and is critical during training [25]. If we were to select training samples randomly

without hard negative mining we would likely select many triplets that do not vi-

olate the constraint and have zero loss. These samples do not contribute at all to

training. Unfortunately, the process of determining hard negative triplets is not

trivial. To determine the hardest negative triplet we must first compute the iden-

tity embeddings of all samples in the training set and then compute the pairwise

distance between all of the samples. At first we found this process prohibitively
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slow for experimentation given our hardware constraints, but after some computa-

tion optimizations we reduced the negative mining process to 2 minutes per epoch

on our hardware. For comparison, training through an entire epoch took about 12

minutes. The primary optimization that improved training time was pre-computing

the pose features and storing them on disk. This was acceptable because the pose

sub-network weights were fixed. Note that rather than using the hardest negative

we randomly selected from the worst 3 negative samples. This helped prevent the

network from focusing only on highly occluded or incorrectly labeled samples that

may be present in the dataset.

Before training we initialized the network weights by random sampling from a

normal distribution with a mean of 0.0 and standard deviation of 0.05. The biases

in the network were all intialized as 0. We used the Adam optimization method

introduced in [36] with parameters α, β1 = 0.9, β2 = 0.999, and ε = 10e−8 applied

to the triplet loss and optimizing over the low-level and mixing network weights and

biases. Training was performed for each triplet individually (we did not use batches

due to memory constraints). We repeated the training process for over 20 epochs.

6.6 Accuracy

At the end of training we evaluated the rank-1 and rank-5 lookup accuracy

against the training and test sets. The rank-1 accuracy corresponds to the percent-

age of images correctly matched with an image of the same identity. The rank-5

accuracy is the percentage of images that contain a correct match in the top-5 closest
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queries. We used the first 500 samples from each set ordered by identity. This cor-

responded to 75 different training identities and 74 different identities from the test

set. There were about 7 images per identity on average. The results are summarized

in figure 6.6.

Rank Training Accuracy Test Accuracy

1 71.2% 65.8%

5 87.4% 82.4%

10 92.4% 88.8%

Figure 6.5: Train and test accuracy using 500 images of 75 identities (train set) or

74 identities (test set).

The above figure is used primarily as a comparison between the train accuracy

and test accuracy, as it contains the same number images and similar number of

identities. Below are the accuracies on the full training and test sets. Note that the

training accuracies are lower because the training set is much larger.

Rank Training Accuracy

1 46.3%

5 70.5%

10 79.4%

Figure 6.6: Training accuracy over entire training set of 5204 samples and 749

identities.
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Rank Test Accuracy

1 60.83%

5 80.7%

10 86.6%

Figure 6.7: Test accuracy over entire test set of 909 samples and 134 identities.

It is difficult to draw a direct comparison between our results and previous work

for several reasons. Previous methods that directly address the real-time robot per-

son following problem often do not provide concrete statistics on the performance.

Thus any comparison to these previous results would have to be speculative and

qualitative. The Market1501 dataset has arguably the most competing algorithms,

but these algorithms operate only on the bounding box images and are not config-

ured for real-time use, especially when there are multiple people in the same image.

The benchmark results for the PRW dataset utilize data similar to ours, but are

dependent on using a DPM for human detection and evaluating the identity of each

bounding box separately. This too is not suited for real-time use. In addition, they

utilize the full resolution of the training images. It is important to note that the

recall accuracy of method reported in PRW includes the detection phase. In our

method we utilize the labeled bounding boxes. Nevertheless, we hope to show that

our results are comparable to competing methods for human re-identification while

running in real-time (including the pose detection).
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Method Realtime? Dataset No. Ids R1 R5 R10 R20

Z. Zheng (2016) No Market1501 751 79.51% 90.91% 94.09% 96.23%

L. Zheng (2017) No Market1501 751 79.33% 90.76% 94.41% 96.52%

J. Liu (2016) No Market1501 751 45.1% 70.1% 78.4% -

Best of [33] (2016) No PRW 450 48.3% - - 78.8%

H. Bouma (2013) Yes Own 77 20% 40% 53% 73%

Ours (2017) Yes PRW* 74 65.8% 82.4% 88.8% -

Ours (2017) Yes PRW* 134 60.83% 80.7% 86.6% -

One of the closest functional comparisons to our system that operates in real-

time is that of H. Bouma. They evaluated their system on a similar sized dataset to

our 74 identity dataset, though our system achieves much higher recognition rates.

A few state-of-the-art methods competing in the Market1501 benchmark achieve

very high recognition rates (79.51% rank 1 over 751 identities) but operate on fixed

resolution bounding boxes cropped from higher resolution images. Distinguishing

multiple people in the image with these methods would require accurately detecting

the bounding boxes, which using a DPM could take several seconds on our hard-

ware. These methods also require that we run the network once for every person

in the image. Our live system takes approximately 100-110ms per 240x320 frame,

which includes image retrieval, preprocessing, detection, parsing, and identification

for all individuals in the image. We will detail this full real-time detection system

in the next chapter.
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Figure 6.8: Some example top 10 query results against the test database of 74

identities and 500 images. The query images were selected arbitrarily as indices

100, 200 and 300 to avoid bias. The images highlighted in blue are the query

images. The remaining images are highlighted in green if they are from the same

identity or red if they are not. They are sorted from left to right based on their

embedding distance to the query image; the leftmost image being the closest.
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Chapter 7: Example Application

In the previous chapter we detailed our network architecture for computing

the identity embedding vectors of individuals in the images. In this chapter, we

describe a real-time application that utilizes these embeddings to track multiple

people from a live camera feed. The application was developed entirely in Python

using OpenCV for the graphical user interface and TensorFlow to run our detection

and identification network. The user interface depicted below is simply a live image

feed of the detected bounding boxes and parsed joint locations for each person in

the image. To identify individuals we ask them to stand in front of the camera and

we press a number between 1 and N corresponding to their identity. The number of

individuals could be arbitrarily large but we limited ourselves to 5 for this example

application so that each individual had a distinguishable color in the display. When

the number corresponding to an individual was pressed, we recorded their identity

embedding at that instant and stored it in a database. When the user hit the

character ’t’ we trained an SVM using the identities in the database. Note that

using this method we could collect multiple identity embeddings per person, which

we typically found improved the performance. After the SVM was trained, the

system would make live predictions of the individuals identities and display them
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by color coding the bounding boxes.

Figure 7.1: The live identification and pose detection system operating on 3 individ-

uals. On the left are example images from the identity learning phase. On the right

are the detection results. 7 identity embeddings were recorded per individual in this

example. We apologize for the difficult visibility caused by the annotations. Note

in this example we used the inexpensive fisheye lens camera we intend to use for

person following which had largely different lighting and distortion characteristics

than the training images. The system was still able to work reliably.
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The example application presented in chapter is for demonstration. A more

user-friendly and practical application would be to create the identity embedding

database in response to a user ’clicking’ himself on a video feed that we stream to

their phone, or some other intuitive method. The pose provided by the system offers

the possibility to train the system in response to gestures as well. For instance,

we could record the identity embedding by detecting the individual in the image

raising their right hand and giving the voice command ’follow me’. We consider

the flexibility provided by the pose and identity embeddings as an advantage of the

system.
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Chapter 8: Conclusions and Future Work

In this work we presented a method capable of detecting multiple people, their

pose and identities in real-time. The system is capable of running at approximately

10Hz on moderate hardware (Nvidia 960m GPU, Intel i5 CPU). We believe this

system provides a useful set of information to enable reliable person following. Our

system uses only a single camera and we found that it generalizes well to cameras of

varying field of view and distortion. This makes our approach less hardware specific

than most prior approaches for tracking people in the context of person following.

The generality of our system and the rich set of information that it provides

makes it a useful tool for other tasks related to human machine interaction. The

system could be easily extended to respond to body gesture commands given by

specific individuals. Moreover, the pose detection system we use also detections

the locations of the eyes, ears and nose for people in the image. We expect that

in the future this could be used to learn facial identity features that persist even

when the user changes clothes. This would be useful for initializing the tracking

system without the need for human input. One of the main issues that we found

in our real-time approach is that the identity embedding fails if people are partially

overlapping in the image. In the future we would like to re-train the spatial identity
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embedding method so that the embedding is stored in the joint locations rather than

in the general bounding box location. We would also like to learn some measure of

how likely two individuals are a match. This would allow us to identify individuals

even when they are partially overlapping in the image.

We hope that this work provides information related to the person following

problem and believe that our system could be easily extended into an infrastructure

for long-term human robot interaction.
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