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Abstract:  

Microcantilever biosensors allow label-free detection of analytes within small sample 

volumes. They are, however, often limited in sensitivity or specificity due to the lack of 

proper bio-interface layers. This thesis presents the use of the biopolymer chitosan as a 

bio-interface material for microcantilevers with unique advantages. Sensors coated with 

chitosan were designed, fabricated, and functionalized to demonstrate two distinct 

applications: detection of DNA hybridization and detection of the neurotransmitter 

dopamine. 

The first demonstration resulted in signals from DNA hybridization that exceed by 

two orders of magnitude values previously published for sensors coated with SAM (self 

assembled monolayer) interface. The second application is the first reported 

demonstration of using microcantilevers for detection of the neurotransmitter dopamine, 

and it is enabled by chitosan’s response to dopamine electrochemical oxidation. It was 

shown that this method can selectively detect dopamine from ascorbic acid, a chemical 

that interferes with dopamine detection in biological samples.  
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1 Chapter 1: Introduction 

1.1 Overview 

The emerging field of Bio Micro Electro Mechanical Systems (BioMEMS) has the 

potential to revolutionize sensors and actuators for life sciences applications. By 

employing fabrication techniques similar to those in the integrated circuit industry, 

MEMS technology makes it possible to create devices in large numbers, with small size 

and cost but with high sensitivity and performance [1-3]. MEMS components can 

manipulate matter on the size scale of biological cells and macromolecules, enabling 

great spatial and temporal control over biological processes. Their capabilities far exceed 

those of conventional benchtop laboratory techniques; they offer advantages such as high 

sensitivity, parallel processing, and small sample volumes. Among the successful 

demonstrations of BioMEMS devices are various biosensors [4-6], micro reactors [7], 

drug delivery platforms [8], and neural probes [9]. They have the potential to be used for 

fundamental biological studies (genomics, proteomics, immunology, cytology, histology), 

in clinical applications (point of care diagnostics, high throughput screening) and in 

environmental monitoring (food and water quality control, biohazard detection).  

One of the major opportunities for BioMEMS lies in the field of biosensors. 

According to the  IUPAC definition [10], a biosensor is a sensor which has biological 

components (e.g. cells, organelles, or macro molecules) and detects their interaction with 

the analyte by using a dedicated transduction mechanism (e.g. electrochemical, optical, 

thermal). Using MEMS can greatly increase sensor density and sensitivity while reducing 

the size and cost of almost all types of biosensors over their conventional macroscale 

counterparts. Biosensors are broadly classified by the biological components used and by 
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the transduction mechanism. The most common transduction mechanisms are optical, 

electrochemical, magnetic, capacitive, acoustic, and recently micromechanical. The main 

advantages of micromechanical sensors over the others is that they are label free and they 

can be miniaturized and arrayed by using MEMS fabrication. Although the field of 

micromechanical biosensors is rapidly advancing, one of the key challenges remains the 

integration of biological and nonbiological components. This step is critical since the 

biological components may lose their natural functionality when being immobilized on 

the microfabricated surface. 

1.2 Thesis Accomplishments 

This thesis presents the design, fabrication, and testing results of a micromechanical 

biosensor with the polysaccharide chitosan as an interface between biological and 

nonbiological components. The sensor is a microcantilever fabricated by conventional 

MEMS lithographic and etching techniques. The displacement of the cantilever is 

measured by optical interferometry. Chitosan is electrochemically deposited on the 

microcantilever and probe biomolecules are covalently coupled to it. The interaction of 

the analyte with the probe biomolecules is detected by the deflection of the cantilever 

(static mode) or the change in its resonant frequency (dynamic mode). The device is 

shown to successfully detect two different analytes: hybridized nucleic acid and the 

neurotransmitter dopamine. In each case, it is demonstrated that the use of chitosan offers 

unique advantages over other biointerface materials and could potentially enhance the 

performance and functionality of micromechanical biosensors.  
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1.3 Background 

In this section, the context of the thesis research is established. The main biosensors 

transduction mechanisms are briefly reviewed and the advantages of micromechanical 

biosensors are discussed. Next, the different micromechanical sensors are reviewed along 

with the commonly used biointerface layers. Finally, the target analytes of this study 

(DNA and dopamine) are introduced.  

1.3.1 Biosensors Review 

Biosensors take advantage of an immobilized biological element (e.g. cell, nucleic 

acid, or antibody) with an affinity for a given analyte. The binding of the analyte (e. g. 

another nucleic acid or protein) to the immobilized element is typically detected by 

optical, electrochemical, capacitive, acoustic, or mechanical means. Each of these 

transduction mechanisms has its strengths and limitations, and none of them can be 

applied to all biological affinity systems. Some of these mechanisms are very powerful 

on the macroscale but cannot be implemented in microscale devices. Even when 

miniaturization is technically feasible, some transduction mechanisms suffer in sensitivity 

from being scaled down while others benefit from it.  

Optical biosensors typically operate in the fluorescence detection mode. The target 

molecules are tagged with a fluorescent label (fluorophore). The sample is illuminated 

with an excitation signal and the scattered (or transmitted) light is captured and analyzed. 

Since the fluorophore causes a characteristic frequency shift in the collected light, its 

presence can be determined from the light’s spectral components. This technique is based 

on the well-established fields of fluorescent microscopy and DNA spotted arrays, and it 

has been implemented in BioMEMS devices by a number of authors [4, 11, 12]. 

Fluorescent detection has very high sensitivity, and even single molecule detection has 
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been reported [13]. Its major limitation, however, is the need to label the target molecules 

with a fluorophore. This greatly increases sample preparation times. Additionally, labeled 

target species are no longer in their intrinsic state and may behave differently from their 

unlabeled counterparts (especially for smaller molecules).  

Another optical detection technique is surface plasmon resonance (SPR) [14, 15]. A 

plasmon wave along a metal surface is excited by coupling light at a specific angle with a 

prism. The binding of biomolecules to the metal surface is detected by the change in the 

critical coupling angle. The advantage of SPR detection is that it does not require the 

target molecules to be labeled. However, it requires a bulky optical coupling and 

measurement setup that cannot be implemented in a microscale device with existing 

technologies.  

Electrochemical (also called amperometric) biosensors measure electrochemical 

currents to detect biochemical reactions [16, 17]. Their application is typically limited to 

detection of biomolecules that undergo reduction or oxidation reactions and cause a net 

current to flow. The operation can be extended to other biomolecules if they are tagged 

with redox labels [18]. These labels then undergo the necessary electrochemical reactions 

for detection. However, as in the case of fluorescent labeling, redox labeling complicates 

sample preparation and affects the properties of the biomolecules being tagged.  

Capacitive biosensors measure the changes in capacitance of an electrode to which 

target biomolecules bind [5, 19]. The capacitance variations are caused by the dielectric 

properties of the added molecules or by their net charge. This method can be readily 

implemented on the microscale by field effect transistors (FET), which are simple and 

highly sensitive charge detectors. The resulting devices are called CHEMFETs [20]. 
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Another advantage of these biosensors is that they enable label-free detection of the 

target molecule. However, capacitive biosensors require extensive calibration. Since the 

capacitance changes with solution properties (e. g. pH, temperature, and ion 

concentration) great care must be taken to separate these secondary effects from 

biomolecular binding events.  

Acoustic transduction is also utilized by some biosensors for label-free detection. In 

SAW sensors [21, 22], a surface acoustic wave is generated by a patterned piezoelectric 

film, which is covered by a metal layer. The propagation of the acoustic wave is 

influenced by the binding of biomolecules on the metal surface due to the change in 

acoustic impedance. This change is measured electrically and the biomolecules are 

detected. This method, however, requires a large footprint (a few mm) to achieve 

sufficient coupling between electrical and acoustic signal and cannot be readily scaled 

down in size. Another biosensing transduction technique which may be considered 

acoustic is quartz crystal microbalance (QCM) [23, 24]. In these devices, the target 

molecules bind to the surface of a resonant piezoelectric crystal and reduce its resonant 

frequency due to the increased mass. Although QCMs were traditionally fabricated of 

bulk crystals, thin film piezoelectric microbalances have also been reported [25]. Thin 

film processing enables the fabrication of miniaturized QCM devices with MEMS 

techniques.  

One disadvantage of acoustic sensors is that neighboring devices experience 

considerable crosstalk and interfere with each other. This makes them inappropriate for 

applications where multiple devices are required to operate in parallel to detect different 

analytes. Another issue with this type of biosensors is that they have significant acoustic 
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coupling with the solution medium. Any changes in the medium’s acoustic parameters 

will have an effect on the response that has to be separated from biomolecular binding 

events.  

Micromechanical biosensors use a micromachined structure such as a cantilever 

beam or membrane to which the target biomolecules bind. There are two detection 

mechanisms for this type of sensors: static and dynamic. In static mode [26-28], the 

displacement of the microstructure is changed due to the surface stress exerted by the 

biomolecules. In dynamic mode [6, 29, 30], the frequency response of the structure is 

changed due the added mass of the biomolecules, the modified mechanical spring 

constant, or the damping characteristics of the biomolecules. To measure the dynamic 

response, the structure is actuated and its displacement as a function of time or frequency 

is measured. One of the key advantages of micromechanical biosensors is that they allow 

for label-free detection. Although some of the other technologies reviewed earlier are 

also label-free (e. g. SAW, QCM, and SPR), they are not easily fabricated using MEMS 

techniques and their sensitivity does not always scale favorably with reduced sensor size. 

In addition, some of them suffer from large crosstalk, which prevents them from being 

densely arrayed.  

 Micromechanical biosensors can be readily microfabricated by conventional MEMS 

techniques in arrays [31]. Since they do not experience crosstalk, each sensor can be 

biofunctionalized to detect different target molecules, thus screening for multiple analytes 

in parallel. In addition, micromechanical biosensors considerably benefit in sensitivity 

from being scaled down due to the increase in their surface to volume ratio. The 

measurements of displacement in both the static and dynamic mode can be implemented 
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either on-chip with integrated sensors (e.g. capacitive, piezoresistive) or off-chip with a 

simple external setup (e.g. interferometry, optical lever). The continued improvement of 

micromechanical biosensors can lead to compact and disposable devices with the 

capability to detect multiple analytes with minimal sample preparation.  

 One of the disadvantages of micromechanical biosensors are that they currently have 

lower sensitivity than labeling techniques such as fluorescence, which has been reported 

for single molecule detection. However, few applications (mostly fundamental research) 

require such levels of sensitivity. For typical clinical applications and environmental 

monitoring, micromechanical biosensors have sufficient sensitivity. Another drawback is 

that they are susceptible to fluctuations of the environment. For example, pressure or 

humidity changes can cause a shift in their resonant frequency which has to be decoupled 

from biomolecule binding events. However, proper calibration and reference 

measurements can account for these effects [32, 33].  

1.3.2 Micromechanical Biosensors Review 

The idea of using mechanical structures for detecting chemical and biochemical 

events dates back to the 1940’s. Norton proposed a hydrogen chemical detector based on 

a macroscale cantilever transducer in 1943 [34]. However, the inability to fabricate 

miniaturized mechanical structures at the time severely limited the sensitivity of this type 

of sensors. In the 1960’s, Nathanson et al demonstrated the resonant gate transistor [35]. 

This device consisted of a microfabricated metallic beam suspended over a field effect 

transistor, which measured the cantilever displacement capacitively. The resonant 

frequency of the device was high (~30 kHz) and it could potentially be used as a sensitive 

detector. However, the fabrication of the beams was still a major technological challenge 

and this type of devices was not widely accepted at the time for sensing applications. In 
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the 1980’s MEMS micromachining processes were developed based on the batch 

fabrication technologies of the integrated circuit industry [1, 3, 36]. This enabled the 

routine fabrication of micromechanical structures in large numbers and at low cost, 

leading to a boom in micromechanical sensor research. Comprehensive reviews of the 

recent work on micromechanical detection can be found in [33, 37].  

Various types of resonant or deformable microstructures have been used for 

micromechanical sensing. Common examples are cantilevers (singly clamped beams)[38], 

bridges (doubly clamped beams) [39], and membranes (diaphragms) [40]. The cantilever 

is the preferred structure because it is minimally constrained and thus tends to produce 

the largest displacement. In addition, it is typically the easiest structure to microfabricate 

and it has the smallest footprint for a given stiffness. For these reasons, the majority of 

micromechanical sensor research has been based on cantilevers. For the remainder of this 

document, the terms microcantilever and micromechanical will be used interchangeably, 

although one is a subset of the other.  

Detection of various chemical and biological analytes has been demonstrated with 

micromechanical sensors. Strembicke et al measured relative air humidity with resonant 

silicon dioxide cantilevers covered with a thin hygroscopic film [41]. The absorbed water 

mass caused a decrease in the resonant frequency approximately linearly with humidity. 

Thundat et al used silicon nitride cantilevers covered with gold to detect mercury vapor. 

The adsorption of mercury on the gold surface causes a surface stress, which bends the 

cantilever, and a mass increase, which reduces its resonant frequency [42]. Illic et al 

measured the frequency shift of a silicon nitride microcantilever to detect the binding of a 

single E. Coli cell with a mass of less than 600fg [43]. Similarly, Gupta et al used 
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micromachined silicon cantilevers to detect the adsorption of a single virus particle with a 

mass of approximately 9fg [6].  

One of the major goals for the development of micromechanical sensors has been to 

increase their specificity. Sensors are useful only if they produce a signal in response to 

the target analyte but not to others. Since micromechanical structures are not inherently 

specific, they must be coated with materials with selective responsivity to different 

analytes. Biosensors exploit the high natural specificity of biomolecular recognition. 

Pairs of biomolecules such as DNA-DNA and antigen-antibody bind together only if they 

are complementary to each other. By immobilizing one of them on the cantilever surface 

(probe molecule), the sensor becomes selectively responsive to the other (target 

molecule). For example, Fritz et al reported specific detection of Immunoglobulin 

antibodies binding to Protein A immobilized on gold-covered silicon cantilevers [27]. 

Control experiments were performed to show the cantilevers covered with other proteins 

were not responsive to the antibodies. A number of authors have demonstrated 

immobilization of short single strand probe DNA on a cantilever and detection of the 

complementary target DNA [28, 29, 31, 38]. For example, Zhang et al immobilized 12-

base oligonucleotides on gold-coated polymer cantilevers and used them for static mode 

detection of target DNA with nanomolar concentration. Control cantilevers with 

noncomplementary DNA showed no response, confirming that the detection was specific. 

1.3.3 Biointerface Materials 

1.3.3.1 Self Assembled Monolayers and Soft Lithography  

The fabrication of microcantilevers and measurements of their static or dynamic 

characteristics are now well established MEMS processes. However, the integration of 

biological components to achieve biological recognition is still problematic. One simple 
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approach would be to physically trap the probe biomolecules by making the sensor 

surface highly absorbing. This method would hurt the specificity to detection severely 

since the surface would indiscriminately trap other molecules along with the desired 

probes. Controlled chemical coupling between the probe and the sensor surface is needed 

to ensure that only the desired probes are present. At the same time, all physical 

absorption effects should be minimized. Another challenge is that even if the probe 

biomolecules are coupled to the sensor surface, they may not preserve their functionality. 

These molecules naturally work in aqueous solution and when they are immobilized, its 

ability to recognize the target may be adversely affected. Therefore, selection of an 

interface material between the microfabricated surface and the biological component is 

one of the most critical tasks in the biosensor design.  

In the majority of MEMS-based biosensor studies, the biomolecules are immobilized 

on the surface by the formation of self-assembled monolayers (SAM). Each probe 

molecule is often tagged with a thiol functional group (-SH). Thiols are known to bond to 

gold and form highly organized monolayers on gold surfaces. Other examples of this 

phenomenon are silane groups assembling on silica and phosphates on TiO2. There has 

been considerable research on using the thiol chemistry for integrating biomolecules in 

MEMS devices [44]. One limitation is that the self-assembly process provides little 

spatial control due to the assembly of thiol-modified biomolecules on all exposed gold 

surfaces. Methods such as soft lithography have been developed to spatially control the 

assembly [45, 46]. A compliant polymer stamp is molded from a microfabricated master. 

The stamp is “wetted” with the desired biomolecule solution and then printed on the 

device surface. By this printing process, the assembly of the biomolecules is spatially 
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controlled. Complicated biomolecule patterns can be achieved by using a series of stamps, 

each wetted with a different solution. This approach has been very successful and is 

relatively simple to implement. However there are still some significant limitations.  

Soft lithography is an inherently planar technique. Sloped or sidewall structures 

cannot make conformal contact with the stamp and cannot be properly biofunctionalized. 

Also, fragile unsupported structures such as the cantilevers of micromechanical 

biosensors would be broken by attempting to print on them. Although self assembly of 

thiolated molecules works for these structures, patterning by soft lithography does not. 

For example, if each cantilever in an array needs to be functionalized with different 

biomolecules, this is not easily achieved with self assembly techniques. Some authors 

have demonstrated micromanipulator-based approaches, in which a capillary is used to 

deposit the desired solution on the surface of each cantilever [31]. However, this is an 

inherently slow and serial process and is only feasible for small arrays.  

Besides spatial patterning, there are other limitations of the self assembly technique 

for biomolecule immobilization. Atomic-level surface smoothness and cleanliness are 

required for the proper formation of a SAM. The properties of the solution in to which 

the biosensor is exposed have to be carefully controlled to prevent disassembly of the 

SAM (e.g. pH, ionic concentrations, temperature). The synthesis and characterization of 

the SAM requires sophisticated equipment. This may not be problematic for the research 

environment, but would limit the practical applications of biosensors containing SAM. 

1.3.3.2 Chitosan  

Chitosan is an alternative to the self-assembled thiol interface. It is an amino-

polysaccharide derived from chitin, the structural material of the shells of crustaceans and 

insects. In fact, chitin is the second most abundant natural polymer after cellulose. The 
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use of chitosan for the biofunctionalization of MEMS was pioneered by a collaborative 

team at the University of Maryland: Dr. Reza Ghodssi’s group at Electrical Engineering, 

Dr. Gregory Payne’s group at UMBI, Dr. William Bentley’s group at Chemical 

Engineering, and Dr. Gary Rubloff’s group at Materials Science. Chitosan can be 

electrodeposited as a thin film, which provides accurate spatial and temporal control of 

the biofunctionalization. Biomolecules can be coupled to chitosan’s amine groups before 

or after the deposition by standard or enzymatic chemistries. This makes chitosan a 

convenient interface between biological and nonbiological components.  

Chitosan is obtained from chitin by deacetylation. During this process with high 

temperature and high pH, the acetyl groups of chitin are converted into amine groups 

(Figure 1-1). Commercially available chitosan has a degree of deacetylation around 80%. 

The repeating unit of the chitosan polymer is glucosamine, which is an amino sugar. 

Chitosan is purchased as a powder and dissolved in an acidic solution, with 

concentrations typically around 0.5% w/v.  

 

 

 

 

 

 

Figure 1-1. Deacetylation of chitin to convert it into chitosan. The acetyl groups become amine 

groups. Image from [47]. 

 

The amine groups of chitosan have a pKa of approximately 6.3. This means that 

below a pH of 6.3, the amines are positively charged and chitosan is soluble. The charge 
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density depends on the exact pH and the degree of deacetylation. At neutral and basic pH, 

the amines become deprotonated, making chitosan insoluble. Due to this pH dependent 

solubility and its positive charges, chitosan can be electrically deposited as shown in 

Figure 1-2. In an electrochemical cell with chitosan solution, a pH gradient is established 

at the cathode due to H
+
 ion consumption. Since the positively charged chitosan chains 

are attracted to the cathode and the pH is raised above the pKa there, chitosan solidifies at 

the cathode surface. The compactness of the deposited film depends on the extent of the 

pH gradient. For large applied potentials, the pH is raised significantly and chitosan is 

solidified before being well compacted. This results in the formation of a thick hydrogel-

like film [48]. For lower applied potentials, the pH increase is confined to a smaller 

region near the electrode and chitosan chains are well compacted before solidifying [49]. 

This results in a smooth and thin film. The electrodeposited films are stable under neutral 

and basic conditions, but they dissolve in acidic solutions (pH < 6.3). 
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Figure 1-2. Schematic of chitosan deposition. A pH increase is created at the cathode by hydrogen ion 

consumption. The chitosan is attracted to the electrode and then solidified by the higher pH.  
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The original work on chitosan electrodeposition was performed by Wu et al using 

macroscopic electrodes [49]. They later showed that process has microscale resolution, 

and chitosan was deposited on micropatterned electrodes [50]. In addition to 

electrodeposition, the other significant property of chitosan is its ability to attach 

biomolecules to its amine groups. This attachment can be performed either before or after 

the deposition. Chen et al demonstrated enzymatic coupling of the protein GFP to 

chitosan (Green Fluorescent Protein) [51]. This protein-polysaccharide conjugate was 

then successfully electrodeposited. The resulting film was fluoresecent, indicating that 

the GFP folded correctly and preserved its properties. Yi et al demonstrated attachment of 

probe DNA to chitosan that is already deposited by using glutaraldehyde as a crosslinker 

between the amines on the chitosan and the amines on the DNA [52]. This immobilized 

probe was successfully hybridized with fluorescently labeled target DNA, indicating that 

its functionality was preserved. It was demonstrated that the DNA-chitosan coupling is 

extremely robust by denaturing the hybridized DNA in high-temperature urea solution 

and re-hybridizing. 

Following the successful demonstration of biomolecule attachment on chitosan, it 

was used to biofunctionalize a photonic sensor by Powers et al [12]. The 

electrodeposition capability was exploited to place biomolecules on the sidewall of a 

microfluidic channel. Such a task would not be easily accomplished by soft lithography, 

which requires a planar surface. Kastantin et al used chitosan to biofunctionalize sites 

within sealed and packaged microfluidic channels [53]. The chitosan solution was flown 

through the channels and voltages were applied to selected electrodes. Again, 
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functionalization in sealed channels would not have been possible by soft lithography 

which requires an accessible surface.  

The goal of this thesis research is to design and fabricate a microcantilever sensor 

taking advantage of the unique properties of chitosan. The major benefit of chitosan 

functionalization is that it has a large effective surface area for immobilization of 

biomolecules compared to SAMs due to its polymeric network. This leads to increased 

sensitivity of the microcantilever sensor. A second advantage of the chitosan interface for 

this application is that it is patterned by electrodeposition and not by printing. As 

previously discussed, soft lithography of SAMs is not feasible for fragile unsupported 

structures. Chitosan biofunctionalization only requires the structure to be electrically 

connected and works equally well for nonplanar or unsupported structures. This process 

could ultimately enable individual biofunctionalization of arrays of cantilevers that are 

electrically addressable. The third advantage of chitosan over SAMs is that it has 

improved chemical stability and does not require atomic-level surface cleanliness for its 

deposition. This property could lead to robust and reusable microcantilever biosensors. 

1.3.4 DNA Detection  

A wide variety of probe biomolecules can be coupled to chitosan by standard or 

enzymatic chemistries. For this study, DNA was chosen as the probe and target molecule 

since it is robust and forgiving to non-optimal experimental conditions. Similar methods 

can be used to immobilize proteins on chitosan and detect protein-antibody interactions. 

However, that would require considerable biological expertise and instrumentation since 

proteins are extremely fragile. In this section, the structure of DNA, role in the organism, 

and detection techniques will be briefly reviewed.  
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DNA (Deoxyribonucleic acid) is the molecule encoding genetic information in all 

known forms of life. Its structure was discovered by Watson and Crick in 1953 [54]. 

DNA is long polymer of 4 repeating nucleotides: Guanine (G), Adenine (A), Thymine 

(T), and Cytosine (C). The structure of the DNA molecule is shown in Figure 1-3. Each 

nucleotide consists of an aromatic ring base, a deoxyribose sugar, and a phosphate group. 

The phosphates and sugars link together to form the phosphate backbone of the DNA 

chain. The sequence of the nucleotides determines the genetic content. Groups of three 

consecutive nucleotides are called codons; each codon corresponds to an amino acid. 

Thus, DNA is a recipe for the synthesis of proteins from amino acids and uniquely 

identifies each living organism. The determination of the DNA sequence is of enormous 

importance in the fields of molecular biology, genetics, and forensics, among others.  

 

 

 

 

 

 

 

 

 

 

Figure 1-3. (Left) Molecular structure of each of the 4 DNA nucleotides and formation of hydrogen 

bonds. (Right) Double helix structure of DNA molecule formed by two complementary strands. 

Images reproduced from [55]. 
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Typically, DNA occurs in the form of a double helix, in which two complementary 

strands are twisted together. DNA sequences are considered complementary if the A’s 

and G’s of one correspond to the T’s and C’s of the other, and vice versa. Since hydrogen 

bonds are formed between A and T nucleotides and between G and C nucleotides, 

complementary strands bind together and form the helix. This process is called 

hybridization. The helix formation facilitates replication of DNA during cell division, 

when the DNA of a cell has to be divided in two. During the division process, the helix is 

“unzipped” by enzymes, and each strand serves as a template for synthesizing a new 

strand, which forms a helix with the template. This results in two helices identical to the 

original, one for each new cell.  

The binding of complementary DNA strands is used in vitro to check what nucleotide 

sequences are present in a sample. A DNA strand with a test sequence, called the 

hybridization probe, is exposed to the sample, also called the target. If the two sequences 

are complementary, the molecules hybridize. The binding of probe and target can be 

detected by any of the transduction methods listed in Section (1.3.1). One of the most 

popular techniques for hybridization detection is the DNA microarray [56], which is 

based on fluorescent labeling. Thousands of short probes (20 to 60 bases) with different 

sequences are immobilized on a chip by lithographic or printing methods. The target 

DNA’s in the sample solution are labeled with a fluorescent marker and are introduced to 

the probe chip. The array is imaged with an optical scanner, and the fluorescence spatial 

distribution is recorded. The DNA sequences present in the sample are then determined 

from the fluorescence pattern.  
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The microarray method enables rapid detection of DNA sequences in parallel. 

However, it requires labeling of the probes with fluorescent markers, which makes 

sample preparation difficult and laboratory-intensive. As discussed previously, 

micromechanical transducers can potentially enable the same task without the labeling 

step. This would greatly simplify sample preparation and allow for DNA sequence 

determination outside the laboratory. Portable DNA detection would be useful for a large 

range of applications such as environmental monitoring, pathogen detection, and 

forensics.  

1.3.5 Dopamine Detection  

 In addition to detecting DNA hybridization, the chitosan microcantilever sensor 

developed in this research is used to detect the neurotransmitter dopamine. In this 

capacity, the device is not truly a biosensor because it has no biomolecules attached to the 

chitosan film. It takes advantage of the crosslinking of the chitosan film by dopamine 

oxidation products. The crosslinking creates mechanical stress in the chitosan, causing 

the cantilever to bend; the presence of the dopamine is inferred from this bending.  

 Dopamine is one of the major neurotransmitters in the central nervous system and is 

being extensively studied by neurobiologists [57]. In situ dopamine detection techniques 

with high temporal resolution and specificity are still needed. The dopamine molecule is 

shown in Figure 1-4. It has been suggested that dopamine is part of the brain’s reward 

mechanism and movement control. Dopamine regulation has also been linked to 

Parkinson’s disease and drug addiction. As a neurotransmitter, dopamine is a signaling 

molecule between neurons. Signals travel along neurons as electrical potentials. However, 

when the end of the neuron is reached, neurotransmitter molecules are released into the 
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synapse (junction) between two neurons. The receiving neuron detects the transmitter and 

initiates its own electrical potential.  

O
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Dopamine                             Dopamine o-quinone
 

Figure 1-4. Dopamine oxidation results in o-quione. The reaction is reversible (adapted from [36]) 

 

 Dopamine in nerve tissues and cultures can be detected by microdialysis. This 

technique consists of extracting a small sample from the tissue through a capillary and 

analyzing it by common laboratory methods such as chromatography. Using this 

approach, one can analyze the content of the sample with great accuracy. However, the 

temporal resolution is very poor (on the order of minutes), while the dopamine release 

processes occur on a time scale of seconds.  

 A faster dopamine detection technique is cyclic voltammetry, which is based on 

electrochemical oxidation and reduction of the analyte [58]. Much of the current 

understanding of dopamine’s role in the brain was acquired using this method. A 

microelectrode is inserted into the sample tissue, a voltage is applied to it, and the current 

is measured. The voltage is swept back and forth repeatedly, while the current is being 

continuously recorded. Since electrically active molecules go through oxidation and 

reduction at characteristic potentials, the shape of the cyclic voltammogram can indicate 

which molecule is present and at what concentration. This technique has temporal 

resolution on the order of milliseconds. However, voltammetry has one major limitation: 

if the redox potentials of two molecules are close, it cannot recognize them from each 

other. For example, ascorbic acid (vitamin C), which is common in nerve tissues, has an 
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oxidation potential very close to that of dopamine. As a consequence, the two substances 

cannot be resolved by voltammetry, and large errors can occur in the determination of 

dopamine concentration.  

 This project demonstrates that micromechanical transduction can increase the 

specificity of dopamine electrochemical detection. Wu et al discovered that chitosan is 

crosslinked by the products of the electrochemical oxidation of some phenols [59, 60], 

including catechol and dopamine. The process is similar to the quionone tanning and 

hardening of insect shells, which is initiated by enzymatic oxidation of catecholic 

compounds. Briefly, electrodeposited chitosan on an electrode is placed in a dopamine 

solution and a positive potential is applied to it. The dopamine diffuses through the 

chitosan film and is oxidized at the electrode surface; the oxidation products react with 

the chitosan and crosslink it (Figure 1-5). First, the chitosan close to the electrode is 

crosslinked. As the oxidation continues, the crosslinking moves outward and eventually 

the whole thickness of the chitosan film is reacted. Wu et al demonstrated that the 

crosslinking changes the color and the mechanical properties of the chitosan film [59, 60]. 

Here, this change in mechanical properties is used to detect the electrochemical oxidation 

selectively. The chitosan film is deposited on the surface of a microcantilever sensor, 

which bends in response to changes in film stress. 
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Figure 1-5.  Electrochemical oxidation of phenols at a chitosan-coated anode generates products that 

crosslink the chitosan film at the anode surface. If the oxidation is continued long enough, the whole 

chitosan film is crosslinked. Adapted from [60]. 

 

 Ascorbic acid is also electrochemically oxidized at the anode. However, the products 

of that reaction do no react with the chitosan film, its mechanical properties remain 

unchanged, and the microcantilever sensor does not bend. This phenomenon can be used 

to discriminate between the oxidation of dopamine and that of non-catecholic compounds. 

The mechanical detection has a temporal resolution on the order of seconds, which is 

sufficient for neurotransmitter release monitoring. Although this approach cannot 

compete with cyclic voltammetry in terms of speed, it has increased specificity. Both the 

voltammetry and mechanical detection methods are based on electrochemical oxidation 

of the analyte; therefore, they can potentially be used in parallel.  

1.4 Thesis Organization  

 This chapter has introduced the operating principles of microcantilever biosensors 

and the major biointerface materials. The next chapter will present the sensor design and 

analysis. Chapter 3 will describe in detail the fabrication of the sensors and the 

experimental procedures for biofunctionalization and testing. Chapter 4 will focus on 
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experimental results. Finally, Chapter 5 will summarize the work and discuss potential 

improvements.  
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2 Chapter 2: Design  

 This chapter presents the design and analysis of the microcantilever biosensor. The 

structural materials, geometries and dimensions are introduced, and first-order analytical 

models of the device in both static and dynamic mode are presented. The method of 

measuring resonant frequency and displacement is briefly described since it influences 

design considerations. 

 

2.1 Design Considerations 

 Micromechanical sensors can operate in static or dynamic mode. In static mode, the 

presence of the analyte is detected by the deformation of the structure, and in dynamic 

mode by a shift in resonant frequency. In this project, the sensor is designed for both 

modes because each has inherent advantages. In static mode, the measurements are 

simpler and can be performed in solution, close to physiological conditions. In dynamic 

mode, the samples must be dried before measurements to avoid the large damping of the 

liquid medium; this limits the applicability of the sensor. However, the dynamic mode is 

more sensitive and the experimental results are easier to interpret.  

 As discussed in the introduction, there are a large variety of possible 

micromechanical structures that can be used for sensing such as cantilevers [38], bridges 

[39], and membranes [40]. For this work, the cantilever was chosen because of its large 

compliance. A cantilever is a beam clamped at one end and free to move at the other. For 

a given device size and thickness, cantilevers tend to have smaller spring constants than 

other structures. This results in large displacements for a given force, which improves the 

relative measurement accuracy in both static and dynamic modes.  
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2.1.1 Cantilever Actuation 

 For the static mode of operation, a single measurement of the cantilever displacement 

is sufficient for detection. However, for the dynamic mode, the cantilever has to be 

actuated at different frequencies to find the resonant frequency. Electrostatic actuation 

was chosen for this purpose due to its simplicity and fast response time. For electrostatic 

actuation, a capacitor is formed between two electrically isolated but conducting 

structures. A voltage is applied between them, which causes opposite charges to 

accumulate on the two structures and attract each other. Since the force varies inversely 

with distance squared, electrostatic actuation produces negligible forces on the 

macroscale but works well for microscale devices. Note that this mechanism only 

produces attractive forces, since it is not possible to charge both plates of the capacitor 

with the same charge polarity [61, 62].  

 A first-order analysis is performed here to estimate the forces produced by 

electrostatic actuation. Assume that the capacitor formed by the cantilever and the 

substrate can be treated as an ideal parallel plate capacitor with air dielectric. This 

analysis assumes a uniform and constant electric field between the capacitor plates and 

ignores fringing fields at the edges. Also, it ignores the change in capacitor gap along the 

cantilever caused by bending.  

 Let each symbol have the following meaning: V-voltage applied between electrodes; 

C- capacitance; Q-charge of capacitor; W-electrostatic potential energy stored in 

capacitor; F – force between plates; y – separation between plates; A- area of plates; ε - 

dielectric permittivity of the capacitor. Equation 2-1 is a well-known expression for the 
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potential energy stored in a capacitor for a given voltage. Equation 2-2 shows the 

attractive force between the capacitor plates, derived from the spatial dependence of the 

potential energy. Equation 2-3 gives the capacitance of the ideal parallel plate capacitor 

as a function of plate separation. Using that expression, Equation 2-4 shows the attractive 

force between the plates for a given voltage and separation. These results are used in a 

later section to verify that sufficient cantilever displacement of approximately 1µm can 

be obtained with available actuation voltages (<100V).  
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2.1.2 Structural Materials 

 Microcantilevers have been fabricated from many of the materials compatible with 

MEMS processing. Choices include various polymers [38], silicon [27, 31], silicon 

dioxide [63], silicon nitride [28, 30], and metals [64], to name a few.  In this work, the 

requirements for electrostatic actuation and chitosan deposition had to be taken into 

consideration for the choice of materials. An electrode is needed on the cantilever and 

another electrode is required parallel to it to implement the electrostatic attraction. An 

electrode is also needed on the cantilever for chitosan deposition. One solution is to make 

the entire cantilever of a conductive material such as silicon; however, for static operation 

the chitosan has to be deposited only on one surface of the cantilever to produce a 

differential stress. If it is present on both sides, the two stresses will presumably cancel 
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each other and there will be no net displacement. Therefore, for static mode the cantilever 

must be conductive on one surface and not on the other.  

 The materials and processes chosen for the cantilever fabrication satisfy both the 

dynamic and static mode requirements. Figure 2-1 shows the cross section of a cantilever 

for dynamic mode detection of DNA hybridization. The device consists of layers of Si3N4, 

Cr, and Au on a Si substrate (with SiO2 for stress matching). The devices for static mode 

detection of DNA and of dopamine are similar with the only difference being the pattern 

of the metal layer near the cantilever tip, as discussed in Section 2.4.   

Target DNA

Cr/Au layer and Si 
substrate serve as 
electrodes for 
electrostatic actuation

Si3 N4 SiCr/AuChitosan SiO2

Cr/Au layer serves 
as cathode during 
chitosan deposition

Displacement measured  
externally by interferometry

Probe DNA
  

Figure 2-1. Cross section of microcantilever used for the detection of DNA hybridization in dynamic 

mode. Dimensions are given in Section 2.4.  

 

2.1.3 Displacement Measurement  

 A number of methods have been developed to measure displacement of 

micromechanical structures. There are two fundamentally different approaches to this 

problem: integrating a dedicated displacement sensor within the device or measuring the 

displacement externally by optical means. Common examples of integrated displacement 

sensors are piezoresistive [65], capacitive [66], and optical waveguide [67, 68] devices. 

External measurement techniques are typically based on optical interferometry [69], laser 

Doppler vibrometry (dynamic only) [6], and position-sensitive optical detectors [43]. The 
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use of integrated sensors to measure cantilever displacement results in a compact and 

self-sufficient device; however it complicates device fabrication and is typically less 

accurate than external measurements. Since the goal of this work is to characterize the 

mechano-transduction with chitosan rather than to develop a standalone sensor, an 

external measurement method based on interferometry was chosen.  

 The measurements of cantilever displacement in this work are carried out using a 

Veeco Wyko NT1100 optical profiler (Tucson, AZ) with DMEMS (dynamic) module. 

This instrument is essentially a microscope with interferometric objectives (Figure 2-2). 

Beams reflected from the sample interfere with beams reflected from a reference mirror, 

creating an image with an interference pattern. The image is captured by a digital camera 

and analyzed in software to extract vertical heights of the sample. Dynamic samples 

cannot be measured real-time because of the slow response of the camera and software. 

Instead, they are imaged with stroboscopic illumination. A harmonically moving 

structure is actuated at a fixed frequency and is illuminated with a strobe light at the same 

frequency. The structure is then imaged as if it were stationary. Multiple measurements 

are taken at different actuation/strobe frequencies and phases to obtain the frequency 

response of the structure. The operation of the Veeco interferometer is described in more 

detail in Chapter 4.   
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Figure 2-2.  (Left) Functional schematic of Veeco Wyko interferometers. Obtained from [70]  

(Right) Photograph of actual Veeco Wyko NT1100 interferometer. Obtained from www.veeco.com. 

 

 The interferometric optical measurements generally require a clean reflective surface 

such as the chosen gold film for accurate results. Chitosan on the gold surface introduces 

some measurement errors because of its roughness and its low reflectivity. These errors 

are small in static mode but become significant in dynamic mode, as will be discussed in 

Chapter 4. For this reason, dynamic devices should be designed with a dedicated 

measurement area that is “chitosan-free”. The Veeco interferometer theoretically has sub-

nm measurement resolution. However, ambient vibrations in the laboratory cause a 

random error of several nm, limiting the useful resolution and accuracy. Both static and 

dynamic devices should be designed for a displacement of a few hundred nm to make the 

relative measurement error small.  

2.2 First Order Analysis of Cantilever Beam  

 The analysis of cantilever mechanics was carried out using idealized beam theory [61, 

71]. The basic assumptions of this theory are that the beam length is much greater than its 
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width and thickness, the bending of the beam is kept small compared to its dimensions, 

and that the beam is completely fixed at the clamping point (zero displacement). These 

assumptions facilitate the analysis and provide closed form solutions, but the results are 

only approximate for real structures. Other methods such as finite element modeling 

should be used if a more accurate solution is required. In this work, the exact solution of 

cantilever mechanics is not required and a treatment with idealized beam theory is 

sufficient. Since cantilever displacement and resonant frequency are experimentally 

measured before and after detection events, the theoretical analysis serves only as a 

design guideline. All the symbols and variables used in this section are defined in Table 

2-1. Cantilever diagrams clarifying the notation are shown in Figure 2-3.  
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Table 2-1. Definitions of symbols 

Symbol Definition Symbol Definition 

L cantilever length σt 
surface mass density of 

target on cantilever 

H cantilever thickness σs 
surface stress caused by 

target 

W cantilever width σf film biaxial stress 

I 
moment of inertia about cantilever’s 

neutral axis (I = WH
3
/12) 

∆z 
displacement of cantilever 

tip from equilibrium 

E Young’s modulus F Force 

ρ volume mass density m Mass 

ν Poisson’s ratio T thickness of film 

x distance from cantilever base M 
moment about neutral axis 

of cantilever 

w displacement from neutral axis ω 
resonant frequency in 

rad/s 

z distance from cantilever central axis f resonant frequency in Hz 

P force per unit area Wk kinetic energy 

ε strain We elastic energy 

 

x

z

z = 0

z = +H/2

z = -H/2

x = 0 x = L P

w(x)

 

Figure 2-3. (Left) Cantilever beam without load. The distance from the neutral axis is z, and x is the 

distance along the cantilever. (Right) Cantilever beam under uniformly distributed transverse load. 

The bending of the neutral axis at point x is w(x).  

 

 According to [71] the beam displacement profile under a uniformly distributed force 

obeys Equation 2-5. The boundary conditions for a cantilever beam are w(0)=0 and 
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dw/dx(0)=0. Using these conditions, we obtain the displacement profile of a cantilever 

(Equation 2-6) for a given load P. If the displacement of the tip only is considered, the 

cantilever behaves as a linear spring with a spring constant given by Equation 2-7.  
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 The resonant frequency of a lumped mass-spring system in the absence of damping is 

given by the formula mko /=ω , which can be obtained from its equation of motion. 

However, this formula cannot be directly used for a cantilever because its mass 

experiences different amplitudes of oscillation at each point along the beam. The resonant 

frequency of a distributed mass spring system can be found by setting the maximum 

kinetic energy to the maximum elastic potential energy. This is known as the Rayleigh-

Ritz method and is based on the observation that for an oscillating system the energy 

periodically transferred between kinetic and elastic [71]. The displacement of the 

cantilever from equilibrium at each point x is given by )cos()(),( txwtxw ω=  for 

harmonic oscillations. The kinetic energy is obtained by integration of the point kinetic 

energy over the cantilever volume (Equation 2-8).  
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Similarly, the elastic energy is found by integrating the point elastic energy over the 

cantilever volume (Equation 2-9). Here, ε is the point strain and is given by Equation 

2-10.  

Equation 2-9  dxdydzzxEW
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Setting max,max, ek WW = , we can find the natural resonant frequency oω . This equation was 

solved in MATLAB symbolically, resulting in a resonant frequency given by Equation 

2-11.  
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 One complication to the analysis is that the cantilever in this case is made of multiple 

materials, which have different mass densities and Young’s moduli. This can be taken 

into consideration by using an effective density and effective Young’s modulus [72]. 

Here, Ei is the Young’s modulus of each layer, Ii is its moment of inertia about the 

cantielver’s neutral axis, ρi is its density, Hi is its thickness and N is the number of layers.  
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 In the dynamic mode of operation the exact resonant frequency is not significant; 

rather the frequency shift upon loading is the essential parameter and is used for detection. 

Assume that the mass of target molecules is distributed uniformly on the cantilever 

surface with a density of tσ . If the frequency shift ∆f is small compared to the resonant 
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frequency, the cantilever sensitivity is given by Equation 2-14. Here we use the fact that 

the effect of tσ  is to change ρ . The factor C accounts for partial coverage of the 

cantilever by biomolecules (as in Figure 2-4) and becomes 1 for a completely covered 

cantilever.  
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 In the static mode of detection, bending of the cantilever is caused by biaxial stress in 

the chitosan film on its surface. The surface stress creates a bending moment M about the 

beam’s neutral axis given by Equation 2-15 [73]. Here, the factor of (1-ν) accounts for 

the two components of the stress: parallel to the cantilever and perpendicular to it. The 

perpendicular component opposes the parallel component according to the Poisson effect. 

Equation 2-16 is the beam equation under a bending moment. Solving it with the 

cantilever boundary conditions results in Equation 2-17, which is commonly known as 

the Stoney equation [74]. This expression is in terms of surface stress, i.e. force per unit 

width of film. If the film stress is needed (i.e. force per unit cross sectional area of film), 

the chitosan film thickness T must be taken into account. Assuming that the stress is 

uniform throughout the film thickness, the film stress is given by Equation 2-18. 
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 The preceding surface stress analysis assumes that the stiffness of the cantilever is 

determined by its structural materials, and the stiffness of the chitosan film is ignored. 

This assumption is justified since the Young’s modulus of chitosan is much smaller 

compared to that of Si3N4. A typical value of E for chitosan is 12MPa [60], while for 

Si3N4 it is in excess of 200GPa.  

2.3 Lumped Element Dynamic Model of Cantilever 

 To analyze the frequency response of the cantilever, it is useful to consider a lumped 

element model. It was already discussed that the cantilever behaves like a linear spring-

mass system. If we take the effective spring constant as in Equation 2-7 and the resonant 

frequency to be Equation 2-11, the effective mass can be found by solving 

effeffo mk /=ω . The result for meff  is given by Equation 2-19, where m is the actual 

mass of the cantilever.  

Equation 2-19  mmmeff 64.0
81

52
≈=  

 

 In addition to the mass and spring terms, there is a damping force due to air friction 

and energy dissipation in the cantilever material. The damping effects are difficult to 

determine analytically and are usually estimated empirically. The equation of motion for 

the damped spring mass system is Equation 2-20, where b is the damping coefficient [75]. 

This can be rewritten as Equation 2-21, where Q is the quality factor ( bmkQ effeff /= ). 

Converting Equation 2-21 to the frequency domain, we obtain the transfer function given 

by Equation 2-22.  
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 It can be shown [75] that if Q > 0.707, H(jω) has a peak. The peak frequency, also 

called damped resonant frequency, is given by Equation 2-23 and the peak magnitude by 

Equation 2-24. It is maxω that is measured directly in experiments and not oω . However, in 

practice the two frequencies are very close. Q determines the width and height of the 

H(jω) peak and, therefore, affects the accuracy of maxω  measurement. It is desirable to 

maximize Q.  
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2.4 Choice of Cantilever Dimensions 

2.4.1 Dynamic Mode 

 Equation 2-14 shows that the cantilever sensitivity increases with increasing resonant 

frequency and with reducing both thickness and density of the structural material. 

Therefore, according to this model the cantilever should be made as thin and short as 

possible. However, decreasing the thickness generally leads to a reduction of the quality 

factor because the ratio of elastic and inertial forces to air damping forces is reduced. 

This, in turn, hurts the accuracy of measuring ωmax. An optimal design for a dynamic 
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mode cantilever would require empirical knowledge of the Q factor as a function of 

resonant frequency and thickness. The length of the cantilever also cannot be decreased 

arbitrarily due to fabrication and measurement limitations.  

The final cantilever design is not optimized for sensitivity but rather for ease of 

measurement and experimentation. The total cantilever thickness was chosen to be 

600nm; thinner structures are typically too fragile for handling in aqueous solution and 

suffer from stiction to the substrate. An array of test cantilevers with different lengths and 

widths was fabricated, placed in solution and dried. Cantilevers longer than 150µm 

consistently suffered from stiction, while devices shorter than about 100µm were 

increasingly difficult to measure with the interferometer due to magnification limitations. 

The optimal cantilever length was therefore chosen to be 100µm. Figure 2-4 shows the 

other relevant cantilever dimensions. All tested devices in Chapter 4 have these 

dimensions unless otherwise stated. 

Si
3

N
4 

(500nm)

Si substrate

Au 

(80nm)

Cr 

(20nm)

SiO2 

(500nm)

100µm 

75µm 20µm 

40µm 

20µm 600nm 

 
 
Figure 2-4.  Schematic of microcantilever for dynamic mode detection with relevant dimensions 

indicated. Static mode devices are the same except the metal (Au/Cr) covers the cantilever completely.  
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At the tip of the cantilever an electrically isolated metal rectangle is defined with an 

area approximately 20% of the cantilever surface. This rectangle is used for displacement 

measurements in the dynamic mode since it does not experience deposition of chitosan 

and biomolecules, and it remains highly reflective. Chitosan has a rough surface, 

increasing error in dynamic interferometric measurements if the whole cantilever is 

coated. Note that this “clean spot” has a significant cost in terms of sensitivity to target 

biomolecule loading due to its location in the part of the cantilever with the largest 

displacement. The factor C in Equation 2-14 was found to be 0.31, i.e. the sensitivity to 

mass loading is decreased 3 times by the inclusion of the “clean spot”. To maximize 

sensitivity, the clean spot could be reduced in size or moved to a different location on the 

cantilever.  

Using the material properties commonly reported in literature (Table 2-2), the 

calculated resonant frequency of the cantilever is 60 kHz (from Equation 2-11), and the 

sensitivity is 63 Hz-cm
2
/µg (Equation 2-14). The contribution of chitosan is ignored in 

this first-order analysis since the mechanical properties of chitosan and its surface 

topography vary considerably with deposition conditions. Note also that Young’s 

modulus for chitosan (~12 MPa, [60]) and its density (<1g/cm
3
) are far less than that of 

the structural materials and do not affect the resonant frequency significantly.  

Table 2-2.  Properties of structural materials of cantilever used for calculation of resonant frequency 

and stiffness. Values obtained from reference literature. 

Material E (GPa) ρρρρ (g/cm
3
) 

Si3N4 270 3.2 

Cr 140 7.2 

Au 80 19.3 

 

The maximum voltage for electrostatic actuation of the cantilever is limited by the 

available high-voltage amplifier (100 Vpp max) and the breakdown voltage of the 
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dielectric materials. Since the breakdown field for Si3N4 and SiO2 is on the order of 10 

MV/cm [76] and they have a total thickness of 1µm, the amplifier is the true limitation on 

maximum voltage. The airgap (distance between cantilever and substrate) determines the 

attainable electrostatic actuation force for a given voltage (Equation 2-4). A small airgap 

is desirable since it results in large forces; however it should not be decreased arbitrarily 

because that leads to squeezed film damping and reduction of Q factor [77]. Due to 

cantilever fabrication process (described in a later section), the smallest attainable airgap 

is half the cantilever width – 20µm for this design.  

It was already discussed that cantilever displacement of at least several hundred nm at 

the tip is desirable for measurements with the interferometer in dynamic mode. 

According to Equation 2-4, an AC voltage of 100V (peak-peak) provides a uniformly 

distributed load of approximately 440nN peak-peak. The spring constant of the cantilever 

is 1.2 N/m (Equation 2-7). For low frequencies, this results in a sinusoidal peak-peak 

displacement of 370nm of the cantilever tip. For frequencies close to resonance, this 

displacement is amplified by a factor of Q (Equation 2-24). From measurements on test 

structures with similar dimensions, it was observed that Q factors are typically > 10. 

Therefore, 100Vpp excitation would generate at least 3.7µm displacement of the 

cantilever tip at resonance, which is more than enough for dynamic optical measurement.  

2.4.2 Static Mode 

 Equation 2-17 shows that the bending signal due to surface stress increases with 

length of the cantilever and with reducing thickness. However, as in the case of the 

resonant frequency operation, other factors such as stiction, cantilever fragility, and ease 

of measurement were taken into consideration when determining device dimensions. As a 
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result, the devices used for static operation have the same size as those for dynamic 

operation. They do not, however, have the isolated metal area at the tip and are entirely 

covered by chitosan. Since a narrowband illumination source is used for the 

interferometer in static mode, repeatable measurements can be taken even with chitosan 

on the surface. According to Equation 2-17, the expected displacement of the cantilever 

tip in static mode is 300nm per N/m of surface stress.  

2.4.3 Mask Design 

 The final mask design includes a large number of cantilevers with varying dimensions 

and metallization patterns (in addition to the 100µm-long devices described above) to 

explore the design space. Some doubly clamped beams (bridges) were also included. All 

devices were organized in dies with dimensions 6mm x 25mm for convenient handling. 

Each cantilever has a metal pad with dimensions 400µm x 200µm at its base for making 

electrical contact with a micro probe (for chitosan deposition and actuation). Figure 2-5 

illustrates the layout of two representative chips with different metallization patterns. 

Two optical masks (one for patterning the metal and one for patterning the Si3N4) were 

designed in L-Edit software and ordered from Microtronics (Newtown, PA). 
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Figure 2-5.  Layout of 2 dies with multiple cantilever designs in L-Edit software. The blue and red 

areas correspond to Si3N4 and metal films respectively; the white areas correspond to the Si substrate. 

(Above) Design with all cantilevers electrically isolated for individual testing. (Below) Design with 5 

cantilever connected together for parallel testing.  

2.5 Conclusion 

 This chapter has presented the design of the microcantilever sensor. The structural 

materials, actuation mechanism, and measurement method were described. The device 

was analyzed with a first-order model based on idealized beam theory to approximate 

resonant frequency, spring constant, and sensitivity to both mass loading and surface 

stress. In choosing the cantilever dimensions, care was taken to ensure that the device can 

be adequately actuated with reasonable voltages (<100V), and that it can be measured 

with available equipment (Veeco NT1100).  

100µm-long cantilever design 
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3 Chapter 3: Fabrication and Experimental Procedures 

3.1 Introduction 

 This chapter presents in detail the fabrication of the microcantilever biosensor as well 

as the procedures for chitosan deposition, DNA functionalization and dopamine oxidation. 

Fabrication of microcantilevers is a mature MEMS process and a variety of methods have 

been demonstrated to date [33, 37]. In general, microcantilevers are fabricated from thin 

films on top of a “sacrificial film” deposited on the substrate [66, 78]. After patterning, 

the sacrificial film is etched to release the cantilever. However, sacrificial films are 

typically thin (a few µm) because of residual stress limitations. Thicker films tend to 

crack due to residual stress. As a result, the airgap (distance between released cantilever 

and substrate) formed by sacrificial release is small and causes squeezed air film damping 

[77]. Therefore, it is preferable to etch the substrate itself and form a large cantilever 

airgap.  

 Some authors remove the substrate under the cantilever completely by DRIE (Deep 

Reactive Ion Etching) from the back side of the wafer [79], by wet etching in KOH, or by 

peeling the cantilever layer from the substrate [80]. These methods overcome squeezed 

film damping by eliminating the airgap altogether, but the resulting structure cannot be 

electrostatically actuated. In this work, we remove the silicon substrate only partially by 

wet-etching it with KOH with a lithographic mask aligned along the [100] 

crystallographic direction. This allows us to enlarge the airgap considerably (20µm) to 

reduce squeezed film damping, while still allowing electrostatic actuation with 
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reasonable voltages as discussed in Chapter 2. To the best of our knowledge, this process 

for cantilever fabrication has not been demonstrated before.  

 The fabrication of the devices was performed at the MEMS Sensors and Actuators 

Lab (MSAL), the Institute for Research in Electronics and Applied Physics (IREAP), and 

the Laboratory for Physical Sciences (LPS).  

3.2 Process Flow  

3.2.1 Metal Patterning 

The fabrication process flow of the cantilevers is summarized in Figure 3-2 at the end 

of Section 3.2. It begins with an n-type Si wafer (100 orientation, resistivity 0.01Ω-cm) 

with films of thermal SiO2 (500nm) and LPCVD Si3N4 (500nm) on both sides. These 

custom wafers were purchased from the University of California at Berkeley fabrication 

facility. Next, 20nm of Cr and 80nm of Au films are deposited on the Si3N4 surface by 

sputtering. The Cr is used as and adhesion layer because Au has poor adhesion to Si3N4. 

The sputtering recipe used is shown in Table 3-1. 

Table 3-1.  Recipe for sputtering Cr and Au using AJA-100 Sputtering system at IREAP.  

Parameter Value 

Base pressure ~1E-7 torr 

Operating pressure 5 mTorr 

Argon flow rate 20 sccm 

Substrate distance 110 mm 

Substrate clean 20 W, 1 min 

Plasma DC power 200 W 

Cr deposition rate 12 nm/min 

Au deposition rate 49 nm/min 

 

The sputtered metal is scanned by contact profilometry (Dektak 6M) to verify its 

thickness. Photoresist Shipley 1813 is then patterned to define the metal layer. The 

photoresist recipe is shown in Table 3-2. Note that the features on the mask are aligned 
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along the [100] direction of the Si wafer (at a 45
o
 angle from the wafer flat); the reason 

for this is the KOH etch procedure explained later. The exposed metal (Au and Cr) is 

removed by wet chemical etching as described in Table 3-3. Note that the etch times are 

slightly longer than necessary to ensure that the metal is completely removed. The 

remaining photoresist is stripped with acetone followed by methanol and IPA rinse. 

Table 3-2.  Recipe for Shipley 1813 photoresist (PR) and processing equipment used. The nominal 

thickness of Shipley 1813 is 1.6 µµµµm. 

Step (Instrument model if applicable) Parameters or chemicals used 

Spin coat PR 

(Specialty Coating Systems P-6708D) 
3000 rpm, 30s 

Pre-bake 

(DataPlate 720 Hotplate) 
100

o
C, 60s 

Exposure 

(Quintel Q4000 contact aligner) 
150 mJ/cm

2
 @ 405 nm 

Develop  Microposit 352 developer, 30 sec at 25
o
C 

Strip PR Acetone-Methanol-IPA 

 

Table 3-3.  Wet etching recipes used for microcantilever fabrication. The Au and Cr films were 

etched with specialized etchants from Transene Inc. (Danvers, MA).  

Material Thickness Etchant 
Duration of 

etch 
Temperature 

Average etch 

rate 

Au 80 nm 
TFA 

(Transene Inc.) 
40 sec 25

o
C 

170 nm/min 

(reported [81]) 

Cr 20 nm 
TFD 

(Transene Inc.) 
20 sec 25

o
C 

300 nm/min 

(reported [81]) 

Si 20 µm 
KOH 

(45% wt) 
29 min 80

o
C 

700 nm/min 

(measured) 

SiO2 500 nm 

HF 

(concentrated 

49% wt) 

40 sec 25
o
C 

1 µm/min 

(reported [82, 

83]) 

 

3.2.2 Nitride Patterning  

 The Si3N4 and SiO2 are patterned by Reactive Ion Etching (RIE). A second 

lithography step with Shipley 1813 (Table 3-2) is performed to define the RIE etch mask. 

This mask is aligned to the metal features already on the wafer with the help of alignment 
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markers. It is important to make sure that no metal is exposed to the RIE chamber at this 

step because it leads contamination of the tool. The metal is covered by PR almost 

everywhere on the wafer due to the overlap of metal and nitride mask patterns. However, 

the alignment markers at the metal and nitride levels do not overlap and some metal is 

exposed there. For this reason, the wafer with patterned PR is dipped in the Au and Cr 

etchants (Table 3-3) to remove the exposed metal. Next, the Si3N4 and SiO2 films are 

etched using a CHF3/O2 RIE chemistry. The recipe for that process is given in Table 3-4. 

Following the RIE, the photoresist is stripped in acetone and rinsed with methanol and 

IPA. The wafer is then soaked in a Piranha solution for 5 min since RIE crosslinks parts 

of the photoresist and makes it insoluble in acetone. Piranha is a 5:1 mixture of H2SO4 

and H2O2 which removes any organic residues by oxidizing them.  

Table 3-4.  Recipe for etching dielectric layers during cantilever fabrication using PlasmaTherm 790 

Reactive Ion Etch system at LPS.  

Parameter Value 

Operating pressure 40mTorr 

Power  175W 

CHF3 flow rate 18 sccm 

O2 flow rate 2 sccm 

Si3N4 etch rate  50 nm/min 

SiO2 etch rate 38 nm/min 

Total etch time 28 min 

 

3.2.3 Cantilever Release (KOH Etch) 

 Potassium hydroxide (KOH) etches single-crystal Si anisotropically. The etch rate of 

the (100) and (110) crystallographic planes is approximately 100 times faster than the 

etch rate of the (111) planes [61, 62]. This phenomenon is often exploited for the 

formation of V-grooves and vertical sidewalls by choosing a proper wafer orientation and 

mask alignment. KOH etching was chosen for the cantilever release here since it results 

in smooth planar surfaces and a uniform airgap. Isotropic Si etchants could also be used 
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to release the cantilever; however, their etch rate does not depend on the crystallographic 

orientation, the etched surfaces are not planar and the resulting airgap would not be 

uniform [62]. Note also that KOH does not attack Si3N4 and Au [82, 83]; therefore these 

materials do not need to be masked during the Si etch.  

 As mentioned earlier, the alignment of the lithographic mask is critical for KOH 

etching as it determines what Si crystallographic planes are exposed to the etchant. If 

formation of V-grooves with minimal mask undercutting is desired, the features on the 

mask should be aligned along the [110] direction (parallel to the wafer flat). Chuang et al 

[84] demonstrated release of cantilevers with similar size to the ones in this work by 

KOH etching with [110] aligned mask. As a result, deep V-grooves (~120µm) were 

formed under the cantilever after complete release; such large airgaps do not allow 

electrostatic actuation with practical voltages. In our work, however, the mask was 

aligned along the [100] direction (at a 45
o
 angle from the wafer flat) to maximize mask 

undercutting and speed up the cantilever release. Since the horizontal etch rate is 

approximately equal to the vertical etch rate, the minimal released cantilever airgap is 

approximately half the cantilever width. Airgaps of ~20 µm were realized using this 

technique.  

A KOH bath was prepared by placing a 45% wt KOH solution on a hotplate with a 

magnetic stirrer and maintaining the solution temperature at 80
o
C ± 5

o
C. The wafer was 

immersed in the solution and periodically taken out to measure the etch depth by contact 

profilometry (Dektak 6M). The average measured etch rate of the Si (100) planes was 0.7 

µm, and the final etch depth was 20µm ± 1µm. The complete release of the cantilevers 
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was confirmed by breaking several cantilevers with a micropositioning probe and 

scanning the silicon surface under them by contact profilometry.  

Note that the release process described here results in cantilever dimensions different 

from what is defined on the mask. The reason is that the (111) planes in the corners near 

the cantilever base are etched slowly and remain exposed (Figure 3-1). This forms a 

triangular boundary, making the effective cantilever length approximately 20µm less than 

the structure on the nitride mask. This shortening was taken into account during mask 

design. Also, note that the nitride layer away from the cantilever is undercut by 

approximately 20µm due to the lateral etching of Si (Figure 3-1). As a result, the 

clamping condition for the fabricated cantilever is more complicated than the simple 

beam model of Chapter 2. However, for this work an exact prediction of cantilever 

mechanics is not necessary; the simple model still provides an adequate first-order 

estimate of the cantilever’s properties, as will be shown in Chapter 4.  

 

      
 
Figure 3-1.  (A) SEM of fabricated microcantilever (side view). (B) Optical micrograph of cantilever 

(top view) with gold layer removed for clarity. Due to triangular boundary at the cantilever base 

after release, the effective length is decreased by ~20µµµµm. 

3.2.4 Oxide Removal 

 After KOH etching, the released cantilever consists of layers of SiO2, Si3N4, and 

Cr/Au. The SiO2 on the bottom has compressive residual stress, causing the cantilever to 
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bend out of plane considerably. This effect is undesirable as it complicates optical 

displacement measurements and makes the cantilever more likely to break during 

processing. The SiO2 is etched with concentrated HF using the recipe in Table 3-3. After 

removing the SiO2, the residual stress of the metal layer still causes some cantilever 

bending. However, that results in only 1µm upward displacement of the cantilever tip and 

does not impact optical measurements appreciably. The metal layer residual stress 

calculated from this bending is 30MPa tensile (using Equations 2-17 and 2-18). 

3.2.5 Dicing 

Finally, the wafer is diced in 6mm by 25mm chips to facilitate handling during the 

multiple biochemical reaction steps. A wafer saw (model Disco DAD321) at LPS is used 

for dicing. Prior to dicing, the wafer is covered in blanket photoresist (applied by 

squeegee) to protect the released cantilevers. After dicing, the protective photoresist is 

removed with acetone and the majority of cantilevers are observed to be intact. The chips 

are rinsed with methanol and IPA and blow-dried with nitrogen to minimize cantilever 

stiction to the substrate. The nitrogen flow rate is kept low to prevent cantilevers from 

breaking.  
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Figure 3-2.  Fabrication process flow of cantilever. It consists of two lithography steps, one wet metal 

etch, one RIE dielectric etch, and one KOH silicon wet etch. The lithographic masks shown are for 

the dynamic mode cantilevers; the static mode devices do not have an isolated metal rectangle at the 

tip.  
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3.3 Fabrication Challenges and Solutions 

3.3.1 Delamination of Gold 

 Initially, Ti was used as an adhesion layer for the gold instead of Cr. However, this 

resulted in delamination of the metal layer during the KOH etch (Figure 3-3A). Although 

the Cr is covered by Au and is not directly exposed to KOH, it may be etched at a 

sufficiently high rate from the sides. Note that according to [82], Ti becomes soft in KOH 

and fails. For further fabrication, Cr was used as and adhesion layer, and it survived all 

processing steps.  

                
 
Figure 3-3.  (A) Delaminated metal on partly released cantilever during KOH etch due to the use of 

Ti as adhesion layer. This problem was solved with use of Cr as adhesion layer. (B) Cracking of Si3N4 

layer due to thermal stress during processing. This problem was solved by using wafers with low-

stress Si3N4 from a different vendor.  

 

3.3.2 Nitride Cracking 

 The initial supply of Si wafers with SiO2 and Si3N4 did not yield satisfactory results. 

The films apparently had large residual stress and cracked during the RIE step (Figure 

3-3B). Since the wafer temperature increases in the RIE chamber, the thermal mismatch 

stress of the already-stressed films causes them to fracture. Although the cantilevers 

themselves were rarely affected by the cracking, the cracks propagated along the gold 

contact pads and created continuity problems. Wafers with lower-stress films from a 

A B 

crack 
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different supplier (UC Berkeley) were used for further fabrication and no cracking was 

observed.  

3.3.3 Breaking of Cantilevers During KOH Etch  

 Breaking of the cantilevers during the KOH etch was a considerable problem. 

Initially, the samples were diced prior to cantilever release, which is a common practice 

for MEMS devices. It was believed that the vibrations during the dicing would break 

cantilevers if they are already released. However, KOH etching of individual chips turned 

out to be problematic. The chips floated in the solution due to their small size, and the 

majority of cantilevers were broken by turbulence. KOH etching of an undiced wafer 

worked much better since it could be held in place, and the cantilevers were preserved. 

For dicing, the released cantilevers were protected with photoresist as described 

previously. 

3.4 Chitosan Deposition  

3.4.1 Deposition Setup 

 After fabrication, the cantilevers were coated with chitosan by electrodeposition. A 

brief description of chitosan was already given in Chapter 1, but here the deposition 

conditions are presented in more detail. Chitosan electrodeposition on the microscale was 

first demonstrated at the University of Maryland in 2002 [49] and is now a mature 

process. Prior chitosan electrodeposition work was successfully performed on fixed 

electrodes down to 20µm in size [48-50]. However, some adjustments had to be made to 

the deposition procedures in this project for two reasons.  

 First, the electrodes in this project are on top of cantilevers and are not firmly fixed 

on a substrate. Since residual stress in the chitosan film bends the cantilevers out of plane, 
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the chitosan thickness is limited to a few hundred nm (compared to several µm in 

“traditional” chitosan deposition). Large cantilever bending would prevent optical 

displacement measurements due to depth of focus limitations and also make the 

cantilever more likely to break (since it is already stressed). 

 Second, the electrode contact pads here are small (200µm) and are electrically 

connected to the power supply with micropositioning probes.  In previous work, the 

contact pads were large (a few mm) and were connected with alligator clips. The small 

pads in this work were chosen to reduce the capacitance between the electrode and 

substrate (which would degrade electrostatic actuation) and to increase the number of 

devices per chip.  

 Figure 3-4A shows a functional schematic of chitosan deposition and Figure 3-4B is a 

photograph of the actual setup with a micropositioning probe (Cascade Microtech, 

Beaverton, OR). The chip is immersed in chitosan solution, and negative potential is 

applied to the desired cantilever-electrode. The potential, duration of deposition, and 

resulting thickness vary between experiments as discussed in the following sections. The 

chitosan solution was prepared by Dr. Hyunmin Yi at the Department of Materials 

Science and Engineering at UMD as described in [49]. Briefly, medium MW (molecular 

weight) chitosan flakes with 85% deacetylation from Sigma-Aldrich (St. Louis, MO) are 

dissolved in HCl overnight and the undissolved material is filtered. The solution is 

diluted to obtain 0.5% wt concentration of chitosan and the pH is adjusted to 5 by adding 

NaOH.  
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Figure 3-4.  (A) Schematic of electrochemical cell for chitosan deposition. The chitosan is deposited 

on the cathode (device electrode).  (B) Photograph of miniaturized chitosan deposition setup with 

micropositioning probe. A penny is shown for comparison.  

 

3.4.2 Chitosan Thickness Measurements 

 As discussed above, chitosan thickness on the cantilevers must be controlled to 

prevent excessive cantilever bending. However, measurement of film thickness on the 

cantilever is a major challenge. Contact profilometry cannot be used directly on the 

cantilever, which is bent by the stylus force and the measurement becomes inaccurate. 

Optical (non-contact) profilometry also does not work due to the transparency of the 

chitosan film and the insufficient amount of light reflected from its surface. One possible 

solution is to coat the chitosan with a thin reflective film (e.g. sputtered gold) to enable 

optical profilometry. However, this method is destructive and prevents subsequent 

functionalization of the sample with biomolecules. Ellipsometry can measure the 

thickness of transparent films in a non-contact, non-destructive manner; however, 

knowledge of the refractive index is required. Chitosan’s refractive index is not well 

known and varies with the deposition conditions.  

 Since chitosan thickness on the cantilever is difficult to measure, we measure the 

thickness on the pad at the cantilever base (Figure 3-5) by contact profilometry (Dektak 

6M). This value is different from the thickness directly on the cantilever, but it is used as 
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an approximation. Knowledge of the exact film thickness on the cantilever is not needed 

as long as it is small enough to prevent excessive cantilever bending. 

3.4.3 Chitosan Uniformity  

Electrodeposited chitosan films are not uniform in thickness along the electrode. The 

electric field during deposition is higher near the electrode edges, causing higher current 

densities and faster deposition rates there. As a result, the chitosan film is thicker near the 

edges and thinner in the middle of the electrode. Figure 3-5B is a typical chitosan 

thickness profile and illustrates this effect. A similar geometry-dependent nonuniformity 

of deposited films has been observed in the process of metal electroplating [85, 86]. 

Some authors have proposed methods to combat this effect by shielding the electric field 

and improving the current uniformity at the electrode surfaces during electroplating [86]. 

Such methods should also be applicable to chitosan electrodeposition but were not 

explored in this work.  

 

 

 

 

 

 

Figure 3-5.  (A) Optical micrograph of cantilever after chitosan electrodeposition. The chitosan is 

deposited everywhere on the Au except at the electrically isolated tip.  (B) Contact profiler scan of 

chitosan film along dashed line in A. Higher electric field near the edges increases the deposition rate 

and the resulting chitosan thickness there. Electrode thickness (100nm) is subtracted to obtain 

chitosan thickness only. 
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 The chitosan film in this project serves as biological interface layer and is not 

required to be perfectly uniform. The two main requirements for the film are to have 

complete coverage on the cantilever (except the measurement spot at the tip) and to be 

thin enough to prevent excessive cantilever bending (due to residual stress). The chitosan 

nonuniformity, however, complicates these requirements. Due to the nonuniform rates of 

deposition across the electrode, the film is already tens of nm thick on some parts of the 

cantilever before it has even started forming on other parts. This effect limits the minimal 

film thickness that completely covers the cantilever.  

 The problem of partial coverage is illustrated in Figure 3-6. The micrographs in the 

figure are taken with Nomarski optics, also known as Differential Interference Contrast 

or DIC (Nomarski optics enhance the contrast of the transparent chitosan film by 

converting the optical path gradient into an intensity). The figure shows that as chitosan 

thickness is decreased, the spatial coverage of the electrode is reduced. The minimal film 

thickness that gives complete cantilever coverage (as in Figure 3-6B) is approximately 

100nm (measured at the cantilever base). This thickness is acceptable as it results in 

cantilever upward bending of only 3µm at the tip after chitosan crosslinking. The 

cantilever bending should be less than 10µm for accurate displacement measurements 

with the optical interferometer introduced in Chapter 2.   
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Figure 3-6.  Photomicrographs (Nomarski optics) of microcantilevers with chitosan with different 

degrees of coverage and thickness (measured by contact profilometry).  (A) Complete chitosan 

coverage on cantilever and contact pad, thickness ~250nm.  (B) Complete chitosan coverage on 

cantilever and partial coverage on contact pad, thickness ~120nm.  (C) Incomplete chitosan coverage 

on both the cantilever and the contact pad, thickness ~80nm.  

 

3.4.4 Deposition Control and Variability 

  In previous chitosan deposition work, a constant current source was used to apply the 

potential [48, 50, 51] . This method was preferable to the use of a constant voltage source 

because the current density between experiments could be kept constant regardless of the 

potential drop across the solution. A constant current source was also used initially for 

this project, and the deposition current was varied to minimize the chitosan thickness on 

the cantilever. Table 3-5 shows chitosan thickness and roughness (measured at the 

cantilever base) for different experimental conditions. However, because of the small 

electrode sizes in this project, current control did not give consistent results. The probe 

tips immersed in the solution to make contact to the chip have a large area compared to 

the on-chip electrodes. This area varies depending on the level of the solution in the 

container (i.e. how deep the probes are immersed). Therefore, it is difficult to reproduce 

the effective electrode area between experiments; as a result the current density and 

chitosan deposition rate vary considerably even though the current is fixed.  

 C  B  A 
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Table 3-5.  Chitosan thickness for different deposition conditions using constant current control. The 

thickness and roughness are measured at the cantilever base by contact profilometry.  

 

 The use of a constant voltage source in this project gave more consistent deposition 

results than the constant current source. In this approach, the same potential is applied 

between anode and cathode in each experiment regardless of the level of chitosan 

solution in the container. One complication is that the voltage drop across the solution 

(which depends on the electrode spacing) can change between experiments and influence 

the deposition rate. This is why voltage control was avoided in “traditional” chitosan 

deposition experiments, where the distance between the electrodes is large (a few cm) 

and hard to reproduce. However, in the miniaturized deposition setup (Figure 3-4B), this 

voltage drop is negligible due to the low currents and small distance between cathode and 

anode. As a result, the chitosan deposition rate is reasonably consistent between 

experiments. Table 3-6 shows the thickness and roughness of multiple chitosan films 

deposited on cantilever chips using the same electrode potential.  

Current 

(µµµµA) 

Duration 

(min) 

Ave. 

thickness 

(nm) 

RMS 

roughness 

(nm) 

Coverage on 

contact pad 

Coverage on 

cantilever 

10 2 3100 130 complete complete 

10 1 2200 59 complete complete 

5 2 1300 70 complete complete 

5 1 710 41 complete complete 

2 2 400 47 complete complete 

2 1 220 32 patchy complete 

1 2 150 39 patchy complete 

1 1 90 28 patchy patchy 
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Table 3-6.  Thickness and roughness of deposited chitosan films on cantilever chips using the same 

solution and the same deposition conditions (0.7V for 2min). Measured by contact profilometry at 

cantilever base. The standard deviation in thickness is 14 nm and in roughness 18 nm.  

Depositon # Average thickness (nm) RMS roughness (nm) 

1 150 39 

2 172 32 

3 155 78 

4 143 54 

5 147 27 

6 181 58 

7 154 73 

8 136 34 

9 170 45 

10 145 33 

 

 The rate of chitosan deposition is determined not only by the applied potential but 

also by the solution properties (e.g salt concentration, pH, chitosan concentration, and 

chitosan molecular weight). The properties of the chitosan flakes used to make the 

solution differ from batch to batch, and they cannot be precisely controlled by the 

manufacturer (especially MW and degree of deacetylation). As a result, the solution 

properties and the chitosan deposition rates can vary considerably. For this reason, it is 

necessary to adjust the chitosan deposition parameters every time a new batch of solution 

is obtained. Multiple depositions are performed with varying potentials and times to 

“tune” the parameters. Although this procedure is tedious, it is needed only once for each 

batch of chitosan solution. When using the same solution, the deposition is reasonably 

consistent as shown above (Table 3-6).  

3.5 DNA Functionalization 

 The first goal of this project is to detect the hybridization of target DNA to probe 

DNA immobilized on the chitosan-coated cantilever. The conjugation of probe DNA to 

chitosan was originally demonstrated by Yi et al [52] at the University of Maryland. The 

procedures used in this project are essentially the same as in the original demonstration; 
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the only differences are the DNA sequences and the method of detecting hybridization 

with target DNA (micromechanical detection in addition to fluorescent detection).   

3.5.1 Oligonucleotide Samples 

 Figure 3-7 illustrates the DNA functionalization schematically, and Table 3-7 lists the 

DNA samples used. The surface probe DNA is attached to the chitosan (the chitosan and 

the surface probe both have amine groups, and they are covalently bonded with 

glutaraldehyde crosslinker). Two different sequences of surface probe DNA are used: 

dnaK and 6xHis. The first encodes the dnaK gene in E. Coli, and the second encodes a 

hexahistide tag common for recombinant proteins. The target DNA has a region 

complementary to the dnaK surface probe and has little homology with the 6xHis surface 

probe. Therefore, the target DNA is expected to hybridize with the dnaK probe but not 

with the 6xHis probe. The sandwich probes are fluorescently tagged and are 

complementary to two regions of the target DNA. The sandwich probes hybridize with 

the target DNA and form a fluorescent target complex with an effective length of 110 

bases and effective concentration 1.5µM. The purpose of the sandwich probes is to verify 

the hybridization of target to surface probe by fluorescence microscopy (in addition to 

quantifying the hybridization by the cantilever mechanical response). This technique is 

called “sandwich assay”.  
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Figure 3-7.  Schematic of DNA sandwich assay with fluorescent sandwich probes. The surface probe 

is amine-labeled and is conjugated to the chitosan via glutaraldehyde chemistry. The target DNA 

does not have any modifications. The sandwich probes are labeled with Fluorescein and serve to 

confirm the hybridization visually (in addition to the micromechanical detection). 

 

   
Table 3-7.  Oligonucleotides used in hybridization experiments. Sequences underlined with same 

style lines (dashed or solid) are complementary to each other. All sequences obtained from Gene 

Probe Technologies (Rockville, MD). The probe DNA is dissolved in SSC buffer and the target DNA 

in PerfectHyb buffer (see Table 3-8). 

Oligonucleotide Sequence and end modifications 
Total 

bases 

Concentration 

in solution 

Surface probe 

(dnaK) 
NH2-5’-CTTTCGCGTTGTTTGCAGAA 20 20µg/mL 

Surface probe 

(6xHis) 
NH2-5’- ATGATGATGATGATGATG 18 20µg/mL 

Target (dnaK) 

 

5’-GTAAGTTTGAAGAGCTGGTAGAA 

ATGTAAGTTTGAAGAGCTGGTAC 

AGACTTCTGCAAACAACGCGAAAG 

 

70 1.5µM 

Sandwich probe 

 

FITC-5’-TACCAGCTCTTCAAACTTAC 

 

20 6µM 

 

 

3.5.2 Conjugation and Hybridization Procedures 

 The reagents used for DNA functionalization and hybridization in this project are 

listed in Table 3-8. The procedures followed for the surface probe conjugation to chitosan 

are described in Table 3-9 and those for hybridization of target to probe DNA in Table 

3-10. Measurements of cantilever bending and/or resonant frequency are taken with the 
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optical interferometer introduced in Chapter 2. Hybridization is known to be a reversible 

process, and it can be undone by heating the sample in Urea solution. After hybridization, 

the target-probe duplex is denatured by placing the sample in a high-temperature, high 

ionic concentration solution (Table 3-13) and measurements are taken again. 

Measurement results will be presented in Chapter 4.  

Table 3-8.  Reagents used for the DNA functionalization and hybridization procedures. 

Reagent Properties Source 

Chitosan medium MW (200kDa) 

85% deacetylation 

0.5%wt solution, pH 5 

Sigma (St Louis, MO) 

SSC Buffer 1x concentration 

1M MgCl2 added 

Sigma (St Louis, MO) 

PerfectHyb Plus Buffer 
- 

Sigma (St Louis, MO) 

Glutaraldehyde 0.05% (v/v) concentration Sigma (St Louis, MO) 

Urea 4M concentration  Sigma (St Louis, MO) 

NaOH (sodium hydroxide) 1M concentration  Fisher (Fair Lawn, NJ) 

NaBH4 (sodium borohidride) 400 µg/mL concentration Fisher (Fair Lawn, NJ) 

IPA (Isopropyl Alcohol) 99.8% concentration  Pharmco (Brookfield, CT) 

DI (deionized water) 18 MΩ cm resistivity E-Pure system, MSAL, 

University of Maryland 

 

 
Table 3-9.  Procedures for conjugation of probe DNA to electrodeposited chitosan. All steps are 

performed at room temperature unless otherwise noted.  

Step Procedure Duration  

1 Deposit chitosan on cantilever with micro probe 

(0.7V to 0.9V applied) 

adjust for ~100nm thickness 

2 Rinse with DI to remove excess chitosan 

solution 

~10 sec, squirt bottle 

3 Place in NaOH solution to neutralize chitosan 

film 

5 min  

4 Place in SSC buffer to stabilize pH 5 min  

5 Place in glutaraldehyde solution to activate 

amine groups 

30 min 
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6 Rinse with DI and place in SSC buffer to 

remove unreacted glutaraldehyde 

10 min, rocking platform 

7 Place in probe DNA solution. Schiff bases 

formed between DNA and chitosan. 

12 hrs, 4
o
C refrigerator 

8 Rinse with DI  ~10 sec, squirt bottle 

9 Place in NaBH4 solution to convert Schiff bases 

into secondary amine bonds (more stable). 

5 min 

10 Rinse with DI and place in SSC buffer to 

remove unbound DNA 

10 min, rocking platform 

11 Rinse and place in DI to remove SSC buffer 10 min, rocking platform 

12 (Optional) Rinse with IPA to minimize 

cantilever stiction upon drying  

~10 sec, squirt bottle 

13 (Optional) Blow-dry with nitrogen ~10 sec 

14 Measure cantilever bending (in air or DI) or 

resonant frequency (in air) 
- 

 
Table 3-10.  Procedures for hybridization of target DNA to probe DNA. All steps performed at room 

temperature.  

Step Procedure Duration 

1 Place in solution containing target DNA 

complex (target DNA and sandwich probe) 

30 min  

2 Rinse with DI and place in SSC buffer to remove 

non-hybridized target DNA 

10 min, rocking platform 

3 Rinse and place in DI to remove SSC buffer  10 min, rocking platform 

4 (Optional) Rinse with IPA to minimize 

cantilever stiction upon drying  

~10 sec, squirt bottle 

5 (Optional) Blow-dry with nitrogen ~10 sec 

6 Measure cantilever bending (in air or DI) or 

resonant frequency (in air) 
- 

 

 
Table 3-11.  Procedures for denaturing hybridized target DNA. All steps performed at room 

temperature unless otherwise noted.  

Step Procedure Duration 

1 Place in Urea solution  30 min, 80
o
C water bath 

2 Rinse with DI and place in SSC buffer to remove 

non-hybridized target DNA 

10 min, rocking platform 

3 Rinse and place in DI to remove SSC buffer  10 min, rocking platform 

4 (Optional) Rinse with IPA to minimize 

cantilever stiction upon drying  

~10 sec, squirt bottle 

5 (Optional) Blow-dry with nitrogen ~10 sec 

6 Measure cantilever bending (in air or DI) or 

resonant frequency (in air) 
- 
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3.6 Electrochemical Oxidation of Phenols 

 As discussed in Chapter 1, the second goal of this project is to mechanically detect 

the neurotransmitter dopamine upon oxidation by its crosslinking of chitosan on 

microcantilever sensors. The reaction of chitosan with electrochemically oxidized 

phenols was originally demonstrated by Wu et al [60]. The same procedures are used 

here with minor modifications for reacting chitosan on microcantilevers. In particular, the 

oxidation times and voltages were reduced due to the small chitosan thickness on the 

cantilevers compared to that in the work of Wu et al. 

The oxidation was performed in the same miniaturized electrochemical cell as the 

chitosan deposition (Figure 3-4) with a constant voltage source. However, for oxidation 

the cantilever electrode is biased as an anode (for chitosan deposition it is biased as 

cathode) and the container is filled with a phenol solution (instead of chitosan solution). 

Measurements of cantilever bending before and after oxidation were performed with the 

optical interferometer introduced in Chapter 2 either in air (after drying the sample) or in 

solution (pure DI water). The measurement results will be presented in Chapter 4. 

 Two different phenols were electrochemically reacted with chitosan on cantilevers in 

this project: catechol and dopamine. Catechol was used initially as a model analyte since 

its reaction with chitosan was better studied by Wu et al than that of dopamine. Next, the 

experimental conditions were adjusted to mechanically transduce dopamine oxidation 

with the chitosan-coated microcantilevers. Finally, ascorbic acid was electrochemically 

oxidized to show that it does not react with chitosan and does not cause a response of the 

chitosan-coated microcantilevers. Ascorbic acid was chosen due to its presence in 

common biological samples and its interference with dopamine electrochemical detection 
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[87]. The different reagents used for electrochemical oxidations are summarized in Table 

3-12, and the experimental procedures are listed in Table 3-13.  

Table 3-12.  Reagents used for electrochemical oxidation and reaction with chitosan.  

Reagent Properties 

Catechol solution (phenol) 0.2M catechol concentration dissolved in 

phosphate buffer (20mM, pH = 6.5) 

Dopamine solution (phenol) 0.1M dopamine concentration dissolved in 

phosphate buffer (20mM, pH = 7.5) 

Ascorbic acid solution  0.1M ascorbic acid concentration dissolved 

in phosphate buffer (20mM, pH = 7.5) 

 

Table 3-13.  Procedures for measuring the response of chitosan coated microcantilevers to 

electrochemical oxidation of various reagents.  

Step Procedure Duration  

1 Deposit chitosan on cantilever with micro probe 

(-0.7V to -0.9V applied) 

varied, depending on chitosan 

thickness 

2 Rinse with DI to remove excess chitosan 

solution 

~10 sec, squirt bottle 

3 Place in NaOH solution to neutralize chitosan 

film 

5 min  

4 Place in SSC buffer to stabilize pH 5 min  

5 Rinse and place in DI to remove SSC buffer 10 min, rocking platform 

6 (Optional) Rinse with IPA to minimize 

cantilever stiction upon drying  

~10 sec, squirt bottle 

7 (Optional) Blow-dry with nitrogen ~10 sec 

8 Measure cantilever bending in air after drying or 

immersed in DI   
- 

9 Place in phenol or ascorbic acid solution and 

oxidize 

(1.8V applied for catechol solutions 

0.9V for dopamine and ascorbic acid solutions) 

30 sec for most experiments 

10 Rinse and place in DI to remove excess solution  10 min, rocking platform 

11 (Optional) Rinse with IPA to minimize 

cantilever stiction upon drying  

~10 sec, squirt bottle 

12 (Optional) Blow-dry with nitrogen ~10 sec 

13 Measure cantilever bending in air after drying or 

immersed in DI   
- 

 

 The voltages used for electrochemical oxidation and the solution pH were adjusted to 

prevent dissolving of chitosan during the reaction. Note that at the anode, the pH 

becomes lower than in the bulk solution; chitosan that is not crosslinked dissolves at pH 
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below 6.3. The conditions used for catechol oxidation (potential 1.8V, solution pH 6.5) 

did not dissolve the chitosan film appreciably. However, when the same conditions were 

applied to dopamine and ascorbic acid, the chitosan dissolved rapidly. This suggests that 

the crosslinking during catechol oxidation occurs fast and prevents the film from 

dissolving. The conditions for dopamine and ascorbic acid oxidation were adjusted to 

increase the pH at the anode. Experiments showed that oxidizing dopamine and ascorbic 

acid with 0.9V potential and solution pH 7.5 did not dissolve the chitosan measurably. 

The typical oxidation time used for all three reagents was 30s. Measurements of the 

cantilever response showed that further oxidation did not cause further cantilever bending, 

suggesting that the chitosan crosslinking was completed after that time.  

3.7 Conclusion 

This chapter presented the microcantilever sensor fabrication and testing procedures. 

The fabrication process is based on two lithographic steps (metal patterning and nitride 

patterning) followed by KOH etching of the substrate to release the device. By aligning 

the features along the [100] direction of the silicon substrate, a cantilever airgap of 

approximately 20µm is achieved. Chitosan is electrodeposited on the cantilever using a 

micropositioning probe due to the small size of the electrical contact pads. After chitosan 

deposition, the sensor is used for the detection of DNA hybridization or dopamine 

electrochemical oxidation. The procedures for these experiments were described in this 

chapter, and the results will be presented in Chapter 4.  
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4 Chapter 4: Testing and Characterization 

4.1 Introduction  

 The microcantilever sensors were first tested without the chitosan layer. The 

cantilevers’ static bending, resonant frequencies, and Q factors were measured and the 

associated measurement errors were estimated. The same tests were also performed after 

chitosan deposition. Next, the sensors were used for the detection of DNA hybridization, 

as described in Chapter 3, in both static and dynamic modes. In static mode, 

measurements were performed in both air and in solution. In dynamic mode, 

measurements were taken only in air after drying the sample (due to the excessive 

damping of the liquid medium). Finally, the microcantilever sensors were used for the 

detection of phenol oxidation in the static mode as described in Chapter 3; measurements 

were performed both in air and in solution. In all studies reported in this chapter, the 

cantilevers are 100µm long unless otherwise noted. 

 The chapter begins with an in-depth description of the primary measurement 

instrument used in this work − the optical interferometer previously introduced in 

Chapter 2. Next, measurements of the cantilevers with and without chitosan are discussed. 

Testing results are presented for DNA hybridization detection in both static and dynamic 

modes. Finally, results from phenol detection with cantilevers in static mode are shown.  

4.2 Detailed Description of Measurement System 

4.2.1 Basic Principles of Interferometry  

 The optical interferometer (Veeco NT1100) used for measuring cantilever bending 

and resonant frequency was introduced in Chapter 2, but its operation is presented here in 
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more detail since it is relevant to the experimental results. Optical interferometry is a 

method to measure distances to a sample by using the phase shift of light reflected from 

its surface. Figure 4-1 shows a conceptual schematic of an optical interferometer. Light 

from the illumination source is split into two beams; one beam reflects from the sample 

(sample arm) and the other beam reflects from a reference mirror (reference arm). The 

two reflected beams are then added together; the optical power of the resultant beam is 

used to calculate the phase difference and optical path difference between the two beams 

as follows.  

 Equation 4-1 and Equation 4-2 are simplified expressions for the electric fields of the 

two interfering beams (here P is optical power, ω is optical frequency, θ is phase, and Z0 

is the characteristic impedance of free space). Equation 4-3 shows the power of the 

resultant beam, calculated from the total electric field. This power is a function of the 

phase difference between the interfering beams. Therefore, by measuring P, P1 and P2, 

the quantity 21 θθ −  can be calculated. The optical path difference (OPD) between the 

reference arm and sample arm is found from the phase difference 21 θθ −  by using 

Equation 4-4 (λ is the wavelength of light). From knowledge of the OPD and the length 

of the reference arm, the distance from the interferometer to the sample can be easily 

calculated.  
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Figure 4-1.  Conceptual schematic of optical interferometer. 
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 In the Veeco NT1100, the interferometer is combined with imaging optics, a digital 

camera, and processing software. The simplified diagram of the instrument is shown in 

Figure 4-2. A continuous interference pattern is formed and projected onto the camera. 

The OPD is calculated for each pixel from the measured optical power as discussed 

above, resulting in a height map of the sample’s surface.  
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Figure 4-2.  Diagram of Veeco Wyko optical interferometers. Obtained from [70].  

 

4.2.2 PSI and VSI 

 The interferometric technique described above is known as Phase Shifting 

Interferometry (PSI). It is inherently limited in range since the measured optical power is 

a periodic function of phase shift (Equation 4-3). If the height difference between points 

on the sample corresponding to adjacent pixels exceeds λ/4, the calculated height 

difference could be off by any integer number of quarter wavelengths. Therefore, the 

maximum unambiguous step height that can be measured by PSI is λ/4 (approximately 

150nm for the Veeco NT1100).  

  Another interferometric technique used by the Veeco NT1100 to overcome the 

limitations of PSI is Vertical Scanning Interferometry (VSI), also known as white light 

interferometry. While PSI is based on a narrowband light source to obtain a high-contrast 

interference pattern, VSI uses a broadband light source to intentionally degrade the 

interference pattern. To illustrate the effect of the broadband source, Figure 4-3 shows the 

combined optical intensity of two interfering beams for 4 different wavelengths of light. 
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This plot was made in MATLAB using Equation 4-3 and Equation 4-4. There is an 

interference maximum for all 4 wavelengths when the beams are in phase (0 OPD). 

However, away from 0 OPD, the interference maxima are in different positions for each 

wavelength. The total intensity of the four wavelengths should have a peak at 0 OPD, but 

it should decrease as OPD is increased due to non-overlapping peaks. This situation is 

illustrated in Figure 4-4, which was generated in MATLAB using the same equations as 

Figure 4-3 but for a broadband source (100nm range of closely spaced wavelengths). The 

plot shows the combined optical intensity of the two interfering broadband beams as a 

function of their OPD; as expected, the intensity has a maximum at 0 OPD. 

 In VSI mode, the Veeco NT1100 translates the interferometer vertically with respect 

to the sample. The translator position for 0 OPD at each pixel of the camera is found 

when the optical power at the pixel reaches maximum. This translator position 

information is used to create a height map of the sample. The advantage of VSI over PSI 

is that it has a large vertical measurement range, limited only by the translator (1mm for 

the Veeco NT 1100). However, VSI is inherently slower and less accurate than PSI due 

to the mechanical motion of the instrument involved.  
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Figure 4-3.  Interference intensity as a function of optical path difference for 4 different wavelengths. 

At 0 OPD, the maximum condition is satisfied for all wavelengths and their intensities add up. At 

increasing OPD, the interference patterns become different.  
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Figure 4-4.  Interference intensity as a function of optical path difference for a broadband light 

source (100nm linewidth). The intensity is largest at 0 OPD and decreases elsewhere.  

 

4.2.3 Custom Modification to Measure in Solution  

 As discussed in the introduction of this chapter, some of the static mode 

measurements are taken with the sample immersed in solution. Operation of the sensor in 

solution is preferable since the conditions are close to physiological and would preserve 

sensitive biological components that may be damaged by drying. In this project, the 
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cantilever was functionalized only with DNA, which is robust and can be readily dried. 

However, the ability to operate the sensor in solution allows functionalization with more 

sensitive biomolecules such as proteins.  

 The Veeco NT1100 cannot measure samples inside solution in its original 

configuration. The reason is that light passing through the solution experiences an 

increased phase shift (due to the refractive index of the solution) and therefore an 

increased OPD results. The imaging optics of the Veeco are set up for measurements in 

air; the focal distance of the objective coincides with the distance of 0 OPD of the 

interferometer when the sample is in air. When the sample is in solution, the 0 OPD 

distance shifts away from the focal distance. To form an image of the sample on the 

camera, the sample must be at the focal point; however, in that case the OPD is far from 0 

and the interference pattern disappears, precluding any interferometric measurements.  

  In VSI, the interference pattern occurs only close to 0 OPD due to the use of a 

broadband light source (Figure 4-4). In PSI, the light source is filtered (3 nm linewidth), 

and the interference pattern persists up to approximately 240µm OPD (known as 

correlation length). However, the OPD needed for measurements through solution are 

much larger. For example, if the sample is immersed under only 1mm of water (refractive 

index 1.33), the OPD at the focal point becomes approximately 660µm and the 

interference pattern disappears. Note that covering the sample with only 1mm of water is 

difficult experimentally due to evaporation; several mm must be used in practice. 

Therefore, neither VSI nor PSI measurement can be taken through solutions with the 

original instrument configuration.  
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 For this project, an illumination source with a narrower linewidth was added to the 

Veeco NT1100 to enable measurements in PSI mode through solutions (and other 

transparent materials). A single-mode laser diode was purchased from Mitsubishi 

(130mW optical power, 660nm wavelength) and its output was guided into the 

interferometer. The linewidth of the laser was not specified by the manufacturer and was 

not measured experimentally. However, it is narrow enough to produce a high-contrast 

interference pattern when measuring the sample through more than 5mm of water. The 

measured sample heights need to be adjusted to account for the refractive index of water 

(1.33µm) and for the different wavelength (660nm of the laser vs. 600nm of the built-in 

source). Note that the laser illumination does not allow VSI measurements through 

solution because broadband light is needed in that mode.  

 A major complication when using the laser illumination is caused by its spatial and 

temporal coherence. The laser light scatters off surface roughness on the sample and 

forms a “speckle pattern”. This is essentially a standing interference pattern, which 

causes large local variations of the illumination intensity and precludes accurate PSI 

measurements. Figure 4-5A shows an image of a sample with the speckle pattern formed 

by coherent illumination. To eliminate this pattern, the laser light must be decohered.  

 A device commonly known as “spinning diffuser” was custom-made to decohere the 

laser. This device is based on a scratched plastic disk rotating at approximately 3000rpm, 

through which the laser light passes. Since the thickness of the disk varies at the scratches, 

the phase of the incident light is “scrambled” as the disk spins. This causes the speckle 

pattern to move around rapidly. The illumination intensity is thereby averaged over time, 

and it appears uniform to the camera of the interferometer. Figure 4-5B shows an image 
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of the same sample as Figure 4-5A but with the laser light decohered by the spinning 

diffuser. The speckle pattern is no longer present, and the PSI interference fringes used 

for height measurement are clearly visible. The spinning diffuser was assembled in a 

housing that contains the laser, electric motor, plastic disk, and fiber bundle. The bundle 

captures the light passing through the spinning disk and guides it into the illumination 

port of the NT1100. Figure 4-6 shows the assembly.  

 

        
Figure 4-5.  (A) Image from interferometer camera with coherent laser illumination (B) Image 

from interferometer camera with laser illumination decohered through spinning diffuser 

 

 

 
Figure 4-6.  Photograph of custom-made assembly with laser diode and spinning diffuser to decohere 

the laser.  
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4.3 Measurement Procedures 

4.3.1 Static Measurements of Cantilevers  

 All static mode cantilever measurements were taken by PSI. As explained in the 

previous section, PSI is more accurate than VSI but can be used only if the sample does 

not have a step height of more than 150nm. Note that if the feature has a gradual slope (as 

opposed to a step height) this limitation does not apply, and heights of a few µm can be 

measured. In addition, PSI is able to measure in solution with the laser illumination 

source.  

 For static mode operation, the vertical displacement of the cantilever tip is measured. 

The measurements were first performed for bare cantilevers in air (no chitosan). The 

random error was estimated by taking multiple scans of a single device. The standard 

deviation of the results was approximately 5nm. In theory, the Veeco NT1100 has sub-

nanometer measurement precision, but environmental vibrations in the laboratory 

increase the random error to a few nm. The systematic error was not evaluated due to the 

use of differential measurements; systematic error is therefore subtracted and does not 

impact the results significantly.  

 The deposition of chitosan on the cantilever degrades the measurement precision 

considerably due to three different factors: humidity absorption, large cantilever bending, 

and optical phase shift at the surface. Chitosan absorbs moisture from the air, which 

changes the film stress and results in differential cantilever bending. The environmental 

humidity varies between experiments, causing uncertainty in the cantilever static mode 

measurement results (the effect on dynamic mode is discussed later). Cantilever bending 

variations of up to 100nm between measurements on different days were observed. This 

effect has the largest contribution to static mode error.  
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 Another cause of error is the large out-of-plane bending of the cantilever after 

chitosan deposition. As discussed in Chapter 3, this effect is due to tensile residual stress 

in the chitosan film. The bending increases even more after DNA conjugation to the 

chitosan because the film is crosslinked by the glutaraldehyde. If the bending is very 

large (>10µm displacement at the tip), the cantilever position cannot be measured by the 

optical interferometer at all due to depth-of-focus limitations. For smaller amounts of 

bending, measurements are feasible but the error is significantly larger than for a 

perfectly straight cantilever. The reason for this is misalignments of the sample; a slightly 

different part of the cantilever is measured each time because the sample cannot be 

placed in exactly the same position within the interferometer’s field of view. Due to the 

cantilever bending, lateral misalignment translates into a height measurement error. The 

greater the bending, the more sensitive the measurement is to lateral misalignment. In a 

typical experiment, a 100µm long cantilever with chitosan bends up by approximately 

3µm at the tip. The lateral alignment tolerance of the interferometer stage is about 1µm, 

resulting in a height measurement error of approximately 30nm. This effect has the 

second largest contribution to measurement error after the humidity discussed above.  

 The third cause of measurement error is the optical effect of the chitosan film 

deposited on the cantilever. Note that for static mode, displacement measurements were 

taken directly on the chitosan-covered surface (dynamic measurements were taken on a 

chitosan-free rectangle at the cantilever tip described in Chapter 2). Chitosan is 

transparent and therefore increases the phase shift of light reflected from the cantilever. 

An increased OPD is measured by the interferometer, and it is interpreted as an increased 

sample height. This results in an offset error in the cantilever displacement measurements 
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which depends on the chitosan thickness. This error would not affect the sensor operation 

if the chitosan thickness were constant between experiments because differential 

measurements of cantilever bending are taken. The offset error would be the same before 

and after the detection event, and it would be cancelled. In practice, the chitosan 

thickness varies spatially, and slightly different parts of the cantilever are measured each 

time due to sample misalignment within the field of view. Therefore, in effect, the 

chitosan thickness varies between experiments and some random measurement error is 

introduced. This error, however, was observed to be small compared to the error caused 

by cantilever out-of-plane bending which was described above.  

 After testing in air with and without chitosan, the cantilever measurements in solution 

were evaluated. The cantilever chip was placed in a small container such that it fits under 

the Veeco NT1100 objectives (Figure 4-7), and it was immersed under several mm of DI 

(deionized water). Cantilever bending measurements through the DI were taken with the 

custom laser illumination source previously described.  

 Measurement of cantilevers with chitosan in solution is typically more repeatable 

than measurement in air. It is inherently immune from environmental humidity variations, 

and the only major source of error is lateral misalignment of the sample within the field 

of view. This error leads to approximately 30nm standard deviation of measurements. 

One complication for in-solution experiments is that they are more sensitive to 

environmental vibrations. Small waves are occasionally formed in the container and take 

several seconds to settle. These perturbations cause measurements to have excessive error 

(>100nm) or even fail completely (due to insufficient interference pattern contrast). For 

this reason, multiple measurements are taken in solution, and the “outliers” are eliminated.  
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Figure 4-7.  Cantilever chip immersed in container for in-solution bending measurements in static 

mode.  

 

4.3.2 Dynamic Measurements of Cantilevers  

 All dynamic mode cantilever measurements were performed in air after drying the 

sample. Viscous damping in liquid would dramatically reduce the Q factor and therefore 

the resonant frequency measurement accuracy. The Veeco NT1100 has a dynamic 

measurement module called “DMEMS”, which is based on the principle of stroboscopic 

photography. Since the cantilever oscillates fast (60kHz), its displacement cannot be 

measured real time (the built-in camera captures only 30 frames/sec). For this reason, the 

sample is illuminated with a strobe light instead of a continuous source. The strobe has a 

narrow duty cycle (typically 2%), and it has the same frequency as the actuation signal. 

When the strobe is on, the sample is always within the same position in a cycle, i.e. it 

appears stationary to the camera. An interferometric measurement (either PSI or VSI) is 

taken as if the sample were static. 

  Figure 4-8 illustrates the timing of the DMEMS strobe and actuation signals and the 

displacement of an idealized cantilever. Note that the actuation voltage applied is always 

positive. The reason for this is that electrostatic actuation is attractive regardless of 
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polarity (as discussed in Chapter 2); if the actuation signal is allowed to go negative, a 

frequency doubling of the cantilever displacement would be observed. In this schematic, 

the displacement of the sample is shown to be in phase with the actuation signal for 

simplicity. However, there is actually a phase shift between the two that depends on the 

frequency, as will be shown later in Figure 4-11.  
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Figure 4-8.  Timing diagram for excitation signal, strobe, and cantilever displacement for dynamic 

mode measurements (idealized system). The displacement signal is shown to be in phase with the 

actuation signal. This occurs if the actuation frequency is much smaller than the resonant frequency.  

 

 Although the Veeco DMEMS can work with both PSI and VSI interferometric modes, 

the VSI was selected for this project. The reason for this choice is the broadband 

emission of the illumination strobe. This strobe is implemented by a light-emitting diode 

(LED) and cannot be filtered with the 3nm PSI filter because of insufficient intensity. 

The broadband nature of the LED significantly degrades the quality of PSI measurements, 

especially with chitosan films on the cantilever surface that reduce the interference 
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contrast. The laser illumination source used for in-solution PSI is narrow, but it could not 

serve as a strobe because of its insufficient intensity (note that more than 90% of laser 

power is lost in the spinning diffuser). The VSI measurements with the LED strobe were 

more precise than the PSI and were therefore chosen for this project. One complication is 

that VSI cannot be performed with chitosan on the surface. Recall that VSI finds the 

translator position for 0 OPD by the peak in reflected light intensity (Figure 4-4). When 

chitosan film is present on the surface, this peak is both degraded and shifted, resulting in 

large measurement errors. For this reason, the dynamic mode cantilevers were designed 

with a chitosan-free rectangle at the tip (Chapter 2) for VSI measurements.  

 Figure 4-8 shows how the cantilever displacement is measured at a single actuation 

frequency and strobe phase. To obtain the position of the sample at different times within 

the actuation cycle, the phase of the strobe is changed (phase sweep) while keeping the 

frequency constant. An example phase sweep for a cantilever is shown in Figure 4-9. To 

find the position of the sample at different frequencies, the actuation frequency is 

changed (frequency sweep), while keeping the strobe phase constant. Figure 4-10 shows 

an example frequency sweep strobed at phase 0
o
 relative to the actuation signal.   
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Figure 4-9.  Measured displacement of cantilever at different strobe phases relative to the actuation 

signal.   
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Figure 4-10.  Measured cantilever displacement for different actuation frequencies. The strobe 

occurs at phase 0 relative to the actuation signal.  

 

 To find the resonant frequency of a cantilever, it is necessary to measure the 

amplitude of the cantilever over a range of frequencies. However, to measure the 

amplitude, the displacement at different phases has to be measured to find the maximum 

displacement. This requires a nested phase sweep within a frequency sweep, which is 
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very time-consuming and impractical. For example, to scan 20 frequencies at 20 phases 

each, 400 displacement measurements are needed. Each measurement takes the 

instrument about 5s, resulting in roughly 30min for measuring the resonant frequency of 

a single cantilever. In addition, multiple resonant frequency measurements need to be 

taken to evaluate the repeatability, making this approach impractical.   

 The cantilever resonant frequency can also be estimated by measuring only the 

displacement at 0
o
 phase for each frequency. As discussed previously in Chapter 2, the 

cantilever is essentially a mass-spring-dashpot system; consider the idealized frequency 

response of such a system shown in Figure 4-11.  The phase of the cantilever 

displacement decreases with frequency. At low frequencies, the phase shift is 0
o
, at 

resonance it is -90
o
, and at high frequencies it becomes -180

o
. The solid curve in the top 

plot shows the cantilever amplitude response, and the dashed curve is the cantilever 

displacement at 0
o
 phase relative to the actuation signal. The peaks of the two curves 

occur at approximately the same frequency. Therefore, frequency sweeps at 0
o
 phase can 

be used to find the resonant frequency instead of the time-consuming nested frequency 

and phase sweeps. As an added benefit, the peak of the dashed curve is actually sharper, 

and its frequency can be measured more accurately than that of the sold curve. 

 Strictly speaking, the resonant frequency measured using this method (peak in 0
o
 

phase displacement) is slightly larger than the actual resonant frequency (peak in 

amplitude). The difference depends on the system’s resonant frequency, Q factor, and 

any parasitic capacitances in the actuation circuit that increase the phase shift. However, 

for this project the exact resonant frequency is not needed; the change of cantilever 

resonant frequency after biological detection events is the quantity of interest. This 



 82 

 

quantity is essentially the same whether we measure the resonant frequency as a peak in 

0
o 

phase displacement or as a peak in amplitude.  
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Figure 4-11.  Amplitude and phase frequency response of an idealized mass-spring-dashpot system.  

 

 The measured displacement frequency response is curve-fitted using a Lorentzian 

function in Sigma Plot software to extract the resonant frequency (Figure 4-10). The 

coefficient of determination is typically very high (R
2 

> 0.999), confirming that the 

cantilever behaves approximately as a linear mass-spring-dashpot system. The measured 

resonant frequency of cantilevers without chitosan is approximately 58 kHz, which is 

within 4% the calculated value of 60 kHz in Chapter 2. This close agreement suggests 

that the material properties, cantilever dimensions and assumptions used in the 

calculation are approximately valid. The measured resonant frequency of cantilevers with 

chitosan is typically several kHz above that of the uncoated cantilevers, depending on the 

chitosan thickness and coverage.  To estimate the cantilever Q factor, the measured 
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displacement amplitude at resonance is divided by the displacement at DC (Equation 2-

24). The typical measured Q factor is 20, and the addition of chitosan has no measurable 

effect on the cantilever Q factor.  

4.3.3 Dynamic Measurement Error 

 The experimental error in cantilever resonant frequency is estimated by taking 

multiple measurements and finding the standard deviation of the results. For uncoated 

cantilevers (no chitosan), the standard deviation is approximately 5Hz. This error is 

mainly caused by ambient vibrations in the laboratory, which introduce displacement 

measurement error and corrupt the shape of the frequency response peak. For coated 

cantilevers, the measurement uncertainty is greatly increased due to humidity absorption 

of the chitosan film. The air humidity determines the moisture content of the film, which 

in turn influences the total cantilever mass, spring constant, and resonant frequency. 

Humidity varies between experiments, increasing the random error in resonant frequency 

measurements of coated cantilevers. The standard deviation of multiple measurements 

over different days is more than of 100Hz. Figure 4-12 illustrates the considerable 

resonant frequency fluctuations of a cantilever with chitosan; for comparison, Figure 4-13 

shows the resonant frequency variability of a cantilever without chitosan. 
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Resonant frequency measurements on cantilever 

WITH chitosan over a 5 hour period
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Figure 4-12.  Resonant frequency variability of cantilever with chitosan due to humidity.  

 

 

Resonant frequency measurements on cantilever 
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Figure 4-13.  Resonant frequency variability of cantilever without chitosan. The error is caused 

mainly by ambient vibrations and the effect of humidity is immeasurable. 

 

 In this project, the resonant frequency shifts caused by DNA hybridization are large 

(over 1kHz) and the humidity-induced measurement error is acceptable. However, to 

improve the detection limit, this error should be minimized. Two different methods were 

explored to combat humidity variations: dehydration of the sample with nitrogen and the 

use of a reference cantilever. Neither of these methods was sufficiently developed to fully 

eliminate humidity variation, but they are shown here as a proof of concept.  
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 The idea behind the dehydration method is to flow high-purity nitrogen gas over the 

cantilever die until the chitosan film is dehydrated before each resonant frequency 

measurement. The resulting humidity content of the film should be negligible, and the 

measurements should be repeatable. The setup for this experiment is shown in Figure 

4-14. In practice, however, the chitosan quickly absorbs humidity when the nitrogen is 

stopped. By the time a resonant frequency measurement is performed (it takes at least 

1min), the film becomes partially hydrated and the measured value changes. One way to 

overcome this effect is to perform the measurement while the nitrogen is flowing instead 

of after.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 4-14.  Setup for nitrogen dehydration. Sample is covered with a lid, and high-purity nitrogen 

from a cylinder is flown continuously under the lid. The lid has holes for optical displacement 

measurement and electrical connections.  

 

 Figure 4-15 shows that the resonant frequency of a cantilever measured while it is 

being dehydrated. The value follows an “exponential rise to max” behavior; it increases 

rapidly at first and then asymptotically approaches equilibrium. This equilibrium 

frequency in practice depends on the nitrogen flow rate because it is affected by air 

pressure and cantilever damping. In our setup, the nitrogen flow rate could not be 
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precisely controlled and the equilibrium frequency varied considerably between 

experiments. However, with an improved nitrogen flow setup, the equilibrium frequency 

should be as repeatable as measurements of uncoated cantilevers. 

Resonant frequency of cantilever with chitosan vs 

time of dehydration in nitrogen
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Figure 4-15. Measured resonant frequency of cantilever with chitosan being dehydrated in nitrogen. 

The resonant frequency asymptotically approaches an equilibrium value.  

 

 The second method explored for reducing the humidity error in resonant frequency 

measurements is based on a reference cantilever. The idea behind this approach is to use 

one cantilever for detecting DNA hybridization plus air humidity and another for 

detecting the air humidity only (reference). The resonant frequency of the reference can 

be subtracted from the resonant frequency of the DNA cantilever, canceling the effect of 

humidity variations on the frequency shift. This compensation approach requires that 

both cantilevers have the same dependence of the resonant frequency on humidity, and 

that both are exposed to the same humidity during measurement.   

 In practice, each cantilever has a slightly different chitosan coverage and thickness,  

and the electrodeposition is not perfectly reproducible (as discussed in Chapter 3). As a 

consequence, the two cantilevers have a different dependence of resonant frequency on 

humidity. However, if the humidity dependences of the cantilevers can be experimentally 
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correlated to each other, the compensation could still be performed. Figure 4-16 shows 

the measured resonant frequency for a pair of cantilevers with chitosan; each datapoint is 

obtained at different air humidity (at a different time of day). The linear regression 

indicates that the humidity dependences of the two cantilevers correlate well, and that 

Cantilever 1 is approximately 0.6 times as sensitive to humidity as Cantilever 2. With this 

“calibration curve” in mind, one of the cantilevers could be used to detected biological 

events and the other as a reference to track humidity. This method was not used for the 

actual detection of DNA here because of the excessive time required to generate an 

adequate calibration curve for each pair of cantilevers (several days). Nevertheless, 

Figure 4-16 demonstrates that the concept is feasible.  
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Figure 4-16. Measured resonant frequencies of two different cantilevers with chitosan. Each data 

point is obtained at different air humidity. The solid line is a linear regression.  

 

 With the Veeco NT1100, each resonant frequency measurement takes several minutes 

to set up and at least one minute to execute. Meanwhile, the humidity drifts and the two 

cantilevers are not subjected to exactly the same conditions during measurement. This 

discrepancy may be the reason why the points in Figure 4-16 do not lie exactly on the 

regression line. A more real-time measurement setup is required for the reference 
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cantilever technique to be accurate; this would also speed up the generation of the 

calibration curve and facilitate the experiments. Such a setup was demonstrated by 

Gfeller et al [32] but was not pursued in this project.  

 In summary, the measurements of chitosan-coated cantilevers in dynamic mode suffer 

from considerable variations caused by air humidity. The DNA hybridization 

experiments in this project result in relatively large resonant frequency shifts and the 

humidity variations can be tolerated. However, to improve the detection limit, these 

variations must be addressed. Two different methods were explored here as a proof of 

concept but were not employed in the actual DNA hybridization experiments due to the 

large signals obtained.   

 

4.4 DNA Hybridization Measurements  

 DNA hybridization detection with chitosan coated-cantilevers was performed in 

dynamic mode in air, static mode in solution, and static mode in air. The reagents, 

oligonucleotides, and procedures for the DNA experiments were previously described in 

detail in Chapter 3. The following sections summarize the experimental results. The 

hybridization in each cantilever detection experiment was also verified visually by 

fluorescence microscopy (recall that the DNA sandwich probe is labeled with 

Fluorescein). However, satisfactory fluorescent micrographs could not be obtained in 

most cases and are not presented here. The camera in use required long exposure times at 

high magnification, which caused the samples to bleach before an adequate fluorescent 

image could be obtained.  
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4.4.1 Dynamic Mode in Air 

For dynamic analysis, DNA hybridization is detected as a change in the cantilever’s 

resonant frequency when measurements are made in air (viscous damping dramatically 

reduces resonance Q factor in liquid). Typically, the resonant frequency shift is attributed 

to the change in the cantilever mass upon hybridization. For these experiments, a 100nm 

thick film of chitosan is electrodeposited on a cantilever and functionalized with either 

the dnaK probe (complementary) or the 6xHis probe (noncomplementary). The sample is 

immersed in the dnaK target (Table 3-7) for hybridization and later is denatured in Urea 

solution. Cantilever resonant frequency measurements are taken at each step after drying 

the sample with nitrogen as described in Tables 3-9, 3-10, and 3-11. 

Figure 4-17A shows the frequency response of a cantilever functionalized with the 

complementary probe-target pair. Before hybridization, the resonant frequency is 

approximately 61.8 kHz. After hybridization, the resonant frequency is reduced to 

approximately 59.4 kHz. Finally, after denaturation, the cantilever resonant frequency 

returns to the pre-hybridized value although this return is incomplete (61.1 kHz). 

Presumably the observed difference in resonant frequency between the pre-hybridization 

and post-denaturation measurements is due either to incomplete denaturation or air 

humidity variations.  

Figure 4-17B shows the frequency response of a control cantilever with the 

noncomplementary probe-target pair. The initial resonant frequency is 61.6 kHz. Upon 

hybridization, the resonant frequency becomes 61.0 kHz and upon denaturation 60.7 kHz. 

The differential changes in resonant frequency are small compared to the matching DNA 

case and are caused mainly by air humidity variations. This explanation is consistent with 

Figure 4-17A, in which the difference between pre-hybridization and post-denaturation 
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measurements is 0.7 kHz (ideally, it should be 0). In Figure 4-17B, the corresponding 

difference is very similar (0.9 kHz); note that the complementary and noncomplementary 

measurements are taken within a 10 min period of each other are subject to similar 

environmental humidity. These results suggest that using a reference cantilever in parallel 

with the measurements to track instantaneous humidity variations could considerably 

improve the detection limit [32]. 
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Figure 4-17.  (A) Frequency response of cantilever with chitosan and complementary probe DNA 

after hybridization and denaturation (measured in air). Points are raw data and curves are fitted 

Lorentzian functions. Hybridization reduces the resonant frequency by 2.5kHz, and denaturation 

reverses the shift. (B) Frequency response of cantilever with chitosan and noncomplementary probe 

DNA after hybridization and denaturation (measured in air). Frequency shifts are <500Hz and are 

caused by humidity variation between measurements.  

 

 

Figure 4-18 shows dynamic mode measurement results of multiple cantilevers with 

either complementary or noncomplementary probe-target DNA pairs. Here, only the 

resonant frequencies are given instead of the frequency response curves (shown in Figure 

4-17). In each case, the hybridization causes a considerable resonant frequency decrease 

for the complementary DNA; the frequency after denaturation returns close to its initial 

value (Figure 4-18A). The resonant frequency shifts for the noncomplementary DNA 

(Figure 4-18B) are smaller by comparison and are only downward. These shifts are 

 A   B 
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caused mainly by air humidity variations, as previously discussed, and they can be 

potentially eliminated with the use of reference cantilever measurements. Note that each 

cantilever in Figure 4-18 has a different initial resonant frequency. The reason for this 

discrepancy is the slightly different thickness of chitosan on each cantilever.  
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Figure 4-18.  Resonant frequency of multiple cantilevers in response to hybridization and 

denaturation for (A) complementary DNA (B) noncomplementary DNA. All measurements are 

performed in air after drying the sample. 

 

The DNA hybridization can affect the cantilever resonant frequency by three different 

mechanisms: change in the spring constant, increase in the mass, or change in the 

damping. Additional characterization is needed to determine the contributions of each 

effect to the observed resonant frequency shifts. In studies with DNA immobilized on 

resonators with SAMs (Self Assembled Monolayers), it is typically assumed that the 

frequency shift is caused by mass changes [37]. If we assume that the mass increase 

effect dominates and the DNA is distributed uniformly on the cantilever, the calculated 

target DNA mass is approximately 16 µg/cm
2
 based on a conservative frequency shift of 

1 kHz. This is equivalent to 2.8x10
14

 target molecules/cm
2
, two orders of magnitude over 

what has been reported in studies using self assembled monolayers [24, 28]. This 

estimate is not rigorous; it has not been verified that the resonant frequency shift is 
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caused by mass change alone and that the target DNA is uniformly distributed on the 

cantilever. The important observation, however, is that the frequency shift caused by 

hybridization of chitosan-bound DNA far exceeds that caused by self-assembled DNA. 

The nature of the mechanism that causes the shift is not significant for this application.  

 

4.4.2 Static Mode in Solution  

 In the static mode of operation, DNA hybridization is detected as differential 

cantilever bending caused by increased surface stress. While in dynamic mode the 

measurements have to be performed in air after drying the sample, in static mode they 

can be performed in solution. The main advantage of in-solution measurements is that 

they are compatible with physiological conditions; therefore, they can be extended to 

sensitive probe/target biomolecules that would be damaged by drying. The liquid used for 

measurements here is pure deionized water (DI) and serves merely as a proof of concept. 

However, the liquid could be any solution with low optical loss and known refractive 

index. 

A 200nm thick film of chitosan is electrodeposited on the cantilevers and 

functionalized with either the dnaK probe (complementary) or the 6xHis probe 

(noncomplementary). Note that the chitosan thickness here is larger than for dynamic 

measurements in air (~100nm). When measurements are performed in solution, the 

chitosan film is hydrated and has less residual stress (and causes less initial cantilever 

bending). This allows thicker chitosan films to be used in solution. The functionalized 

sample is exposed to the dnaK target solution (Table 3-7) for hybridization and later is 

denatured in Urea solution. Cantilever bending measurements are taken at each step with 

the sample immersed in DI as described in Tables 3-9, 3-10, and 3-11. The modified 
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Veeco NT1100 with laser illumination source is used to enable measurements through the 

DI.  

Figure 4-19A shows the bending response of a cantilever functionalized with the 

complementary probe-target DNA pair. The cantilever undergoes some initial bending 

before DNA hybridization because of the residual stress in the chitosan film. After 

hybridization, the upward bending of the cantilever increases by approximately 500nm at 

the tip. This differential bending can be estimated from Equation 2-17 to be caused by an 

increase in surface stress of 1.6 N/m (tensile). After denaturation, the cantilever bending 

returns close to its original level. The small difference between the pre-hybridization and 

post-denaturation values is caused by a combination of measurement error and 

incomplete denaturation. Together, the results in Figure 4-19A indicate that the observed 

500nm differential bending is due to specific interactions forming the hybridized DNA 

duplex. 

Figure 4-19B shows the bending response of a control cantilever functionalized with 

the noncomplementary probe-target DNA pair. As in Figure 4-19A, the cantilever has 

some initial bending due to residual stress of the chitosan film. However, here the 

hybridization and denaturation cause little change in cantilever bending (<30nm). This 

differential bending should ideally be 0 due to the mismatching DNA sequences; the 

small variations observed in Figure 4-19B are caused by measurement error and possibly 

to some nonspecific target DNA binding. The specificity of hybridization could be 

improved by optimizing the rinsing and buffering conditions. Together, the results in 

Figure 4-19A and Figure 4-19B indicate that biological recondition between probe and 

target DNA occurs and is successfully transduced by the chitosan-coated cantilever.  
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Figure 4-19.  (A) Vertical profile of cantilever with chitosan and complementary probe DNA in 

response to hybridization and denaturation (measured in solution). The hybridization causes upward 

differential bending of ~500nm at the tip. The bending is reversed by denaturation. (B) Response of 

cantilever with chitosan and noncomplementary probe DNA to hybridization and denaturation 

(measured in solution). The differential bending is <30nm.  

 

Figure 4-20 summarizes the static mode measurement results of multiple cantilevers 

with either complementary or noncomplementary probe-target DNA pairs. This figure 

shows only the displacement of the cantilever tip instead of a profile of the whole 

cantilever. The differential bending in response to hybridization and denaturation in each 

case is very similar to that in Figure 4-19, confirming the repeatability of the experiments.  

Note that the initial tip displacement (“before hybridization”) of each cantilever in Figure 

4-20 is different. The reason for this discrepancy is that the chitosan thickness in each 

case varies slightly, causing a different initial bending of each cantilever. However, the 
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differential displacement of the cantilevers upon hybridization and denaturation is 

repeatable.  
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Figure 4-20.  (A) Bending of multiple cantilevers with chitosan and complementary DNA in response 

to hybridization and denaturation (measured in solution) (B) Bending of multiple cantilevers with 

chitosan and noncomplementary DNA in response to hybridization and denaturation (measured in 

solution). 

 

The mechanism of surface stress generation by DNA hybridization is generally not 

well understood. It has been explained by electrostatic and steric interactions between the 

DNA molecules as well as maximization of their configurational entropy [26, 27], but 

comprehensive models are lacking. The generated surface stress in this study 

significantly exceeds values reported in literature for DNA with similar concentration 

immobilized by self- assembled monolayer (SAM) techniques instead of on chitosan. We 

measured stresses of approximately 1.6 N/m, while others report 0.02 N/m for SAMs 

immobilized DNA [28]. The reason for this significant increase is presumably the large 

effective surface area of chitosan due to its 3D hydrogel structure and its high density of 

amine groups. Thus, we believe that micromechanical sensors can significantly benefit in 

sensitivity by the use of chitosan to immobilize the probe molecules.  
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4.4.3 Static Mode in Air 

 Static-mode detection of DNA hybridization was also performed with cantilever 

bending measurements in air (after drying the sample). This method cannot be applied to 

sensitive probe/target biomolecules that would be damaged by drying, and it is also 

influenced by air humidity variations. Nevertheless, it was explored initially in this 

project due to its simplicity compared to the in-solution measurement approach. It does 

not require the laser modification to the Veeco NT1100 that is needed to measure through 

liquid.  

 A 100nm chitosan film is deposited on a cantilever and is functionalized with 

either the dnaK probe (complementary) or the 6xHis probe (noncomplementary). The 

sample is exposed to the dnaK target solution (Table 3-7) for hybridization and later is 

denatured in Urea solution. Cantilever bending measurements are taken at each step after 

drying the sample as described in Tables 3-9, 3-10, and 3-11. For these measurements, 

the Veeco NT1100 is used in PSI mode with its original illumination source. The results 

are heavily influenced by air humidity variations, which modulate the stress in the 

chitosan film and the cantilever bending. The humidity-induced error is estimated to be 

on the order of 100nm displacement at the cantilever tip (based on the standard deviation 

of multiple measurements).  

Figure 4-21A shows the bending response of a cantilever functionalized with the 

complementary probe-target DNA pair. The hybridization generates a tensile stress, 

bending the cantilever up by approximately 1µm. The estimated surface stress from this 

bending using Equation 2-17 is 4 N/m. After denaturation, the cantilever returns almost 

to its initial state. The reason for the discrepancy between the pre-hybridization and post-

denaturation profiles is measurement error (due to humidity variation) and incomplete 
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denaturation. Figure 4-21B shows the response of a cantilever with the 

noncomplementary probe-target DNA pair. The differential bending after “hybridization” 

in this case is approximately 200nm, while ideally it should be 0. This variation is caused 

by humidity-induced measurement error and possibly by some nonspecific binding of 

target DNA.  

-0.2

0.8

1.8

2.8

3.8

4.8

0 20 40 60 80 100

Position along cantilever (µm)

H
ei

g
h
t 

( µ
m

)
Before hybridization
After hybridization
After denaturation

Height of tip (µµµµm)

2.2

2.5

2.8

3.1

3.4

BH AH AD

 
 

-0.2

0.8

1.8

2.8

3.8

4.8

0 20 40 60 80 100

Position along cantilever (µm)

H
ei

g
h
t 

( µ
m

)

Before hybridization 
After hybridization
After denaturation

Height of tip (µµµµm)

2.2

2.5

2.8

3.1

3.4

BH AH AD

 
Figure 4-21.  (A) Bending profile of cantilever with chitosan and complementary probe DNA in 

response to hybridization and denaturation (measured in air). The hybridization causes upward 

differential bending of ~1µµµµm at the tip. The bending is almost reversed by denaturation. (B) 

Response of cantilever with chitosan and noncomplementary probe DNA to hybridization and 

denaturation (measured in air). The differential bending is ~200nm. 

 

 In summary, the static experiments in air result in more hybridization-induced surface 

stress than similar measurements in solution (4 N/m compared to 1.6 N/m). The reason 

for this may be that the electrostatic screening of water reduces the interactions between 
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probe and target biomolecules. However, measurements in air suffer from larger 

experimental error. As a result, the static mode operation of chitosan-coated cantilevers in 

solution is preferable to that in air. 

 

4.5 Phenol Oxidation Measurements 

 Mechano-detection of phenol electrochemical oxidation with chitosan-coated 

cantilevers was performed in static mode in both air and solution. As discussed in the 

introduction, two different phenols were explored: catechol and dopamine. Dopamine 

was the analyte of interest because of its biological significance as a neurotransmitter in 

the central nervous system. Catechol was used as a starting point for the detection 

experiments since its reaction with chitosan has been better studied by Wu et al than that 

of dopamine [59, 60]. The procedures and reagents for the detection of phenol 

electrochemical oxidation were described in detail in Chapter 3. The following sections 

summarize the experimental results.  

4.5.1 Catechol Detection 

 The initial catechol oxidation experiments were based on measurement in air. For this, 

a 100nm thick chitosan film is electrodeposited on a cantilever and the initial bending is 

measured with the Veeco NT1100 in PSI mode with its original illumination source. Next, 

the cantilever is used as the anode for electrochemical oxidation of catechol solution as 

described in Section 3.6. The cantilever is rinsed with DI water, dried, and its final 

bending is measured. Figure 4-22A shows the measurement results for multiple 

cantilevers before and after the oxidation; note that only bending at the tip is shown 

rather than a profile of the whole beam. The error bars in the figure are based on an 

estimated measurement error of 100nm due to humidity variations. On average, 800nm of 
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upward bending is caused by the catechol oxidation and chitosan crosslinking. Using 

Equations 2-17 and 2-18, the change in film stress estimated from this bending is 27MPa 

tensile. 

 The cantilever response to catechol oxidation was also measured in solution. A 

300nm thick chitosan film is electrodeposited on a 130µm long cantilever, and the 

sample is immersed in DI water (note that in most other experiments 100µm long devices 

are used). The initial bending is measured with the Veeco NT1100, using the custom 

laser illumination source to enable measurements through the DI. Next, electrochemical 

oxidation of catechol solution is performed as described in Section 3.6 with the cantilever 

serving as anode. Finally, the cantilever is rinsed and immersed in fresh DI, and its 

bending is measured again. Figure 4-22B shows the measurement results for multiple 

cantilevers before and after the oxidation. The error bars are based on estimated error of 

30nm, mainly caused by misalignment of the sample in the interferometer filed of view 

(as discussed in Section 4.3.1). On average, 500nm of upward bending is generated by 

the catechol oxidation and chitosan crosslinking. The associated change in chitosan film 

stress is estimated to be 3MPa tensile using Equations 2-17 and 2-18. Note that this stress 

is considerably less that the 27MPa estimated from Figure 4-22B for measurements air. 

The reason for the difference may be the electrostatic screening effect of water, which 

increases the length of crosslinks, swells the chitosan, and relieves the tensile film stress.  
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Figure 4-22.  (A) Bending of cantilevers in response to electrochemical oxidation of catechol. The 

measurements are performed in air after drying the sample. (B) Bending of cantilevers in response to 

catechol oxidation, but with measurements performed in solution (DI water). 

 

4.5.2 Dopamine Detection   

 After the successful mechano-transduction of catechol oxidation with chitosan-coated 

cantilevers, the response to dopamine oxidation in air and in solution was studied. The 

procedures followed in this case are essentially the same as those described previously 

for catechol, but the electrochemical oxidation step is performed in a dopamine solution. 

Figure 4-23A shows the results for bending measurements in air. The chitosan thickness 

in this case is 400nm, and the average cantilever bending upon dopamine oxidation is 

1.7µm. Based on these values, the estimated chitosan film stress generated by the 

crosslinking is 14MPa. 

 Figure 4-23B shows results for cantilever bending measurements in solution (pure DI 

water). The chitosan thickness for this experiment is greatly increased (1.5µm) to 

generate measurable displacement upon dopamine oxidation. The differential cantilever 

bending caused by chitosan crosslinking is approximately 500nm; the change in film 

stress estimated from this value using Equations 2.17 and 2.18 is 1.2MPa tensile. This 

stress is considerably smaller than the 14MPa estimated from Figure 4-23A for 

measurements in air. Recall that a similar observation was made for catechol oxidation 
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experiments and was explained with the chitosan swelling in water. The same 

explanation should be applicable here. Note also that the measured chitosan stress due to 

catechol oxidation is greater than that due to dopamine oxidation for both in-air and in-

solution experiments. This suggests that the chitosan crosslinking density for catechol 

oxidation exceeds that for dopamine oxidation.  

 Although the detection of dopamine oxidation in air produces larger bending signals 

than in solution, this approach is not applicable to living biological tissues. Drying the 

cantilever for measurements takes minutes, while dopamine release and uptake in nerve 

tissue occur on a time scale of seconds. Mechano-detection in solution has the potential 

to achieve the necessary temporal resolution. The experiments presented here involve 

electrochemical oxidation for at least 30s, thereby limiting the detection temporal 

response. However, the oxidation time was not optimized and was made excessively long 

to ensure that the chitosan is completely crosslinked. The detection response time can be 

greatly improved by decreasing the chitosan thickness and cantilever dimensions, and by 

minimizing the oxidation time.  
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Figure 4-23.  (A) Bending of cantilevers in response to electrochemical oxidation of dopamine. 

Measurements performed in air after drying sample (B) Bending of cantilevers in response to 

dopamine oxidation with measurements performed in solution (DI water). 
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4.5.3 Selective Detection of Dopamine vs. Ascorbic Acid 

 As discussed in Chapter 1, one of the common chemicals interfering with the 

detection of dopamine by traditional electrochemical techniques (cyclic voltammetry) is 

ascorbic acid. Here, it is demonstrated that the mechanical detection method with 

chitosan–coated cantilevers can successfully discriminate between ascorbic acid and 

dopamine.  First, chemical evidence is provided that products generated from the 

electrochemical oxidation of dopamine can react with chitosan but not with ascorbic acid. 

These supporting experiments were carried out by Dr. Li-Qun Wu at the University of 

Maryland Biotechnology Institute (UMBI), and the results are reproduced here with 

permission. Next, the response of chitosan-coated cantilevers to the oxidation of 

dopamine and ascorbic acid is presented.  

4.5.3.1 Supporting Experiments 

 Dr. Wu deposited chitosan on large (millimeter scale) electrodes and used them for 

oxidizing dopamine and ascorbic acid solutions. Control experiments with uncoated 

electrodes (no chitosan) were also performed. In each case, after the electrochemical 

oxidation the solution absorption spectrum was measured with a UV-Visible 

spectrophotometer (Genesys 2). The absorption results for dopamine are shown in Figure 

4-24A, and those for ascorbic acid in Figure 4-24B. In (A), the solution’s absorption is 

increased substantially at short wavelengths when dopamine is oxidized in the absence of 

chitosan. However, when dopamine is oxidized with the chitosan-coated electrode, the 

change in solution absorption is smaller by comparison. These results suggest that the 

dopamine oxidation products (which cause the increased absorption) react with chitosan 

if it is present and are consumed from the solution.  In Figure 4-24B, the UV-Vis 

absorption of the ascorbic acid solution is increased by approximately the same amount 
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upon oxidation with and without chitosan. This suggests that the ascorbic acid oxidation 

products do not react with chitosan and remain in the solution.  
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Figure 4-24.  (A) UV-Visible absorption spectrum of dopamine (DA) solutions before electrochemical 

oxidation, after oxidation with a blank electrode (chip-only), and after oxidation with a chitosan-

coated electrode (film-on-chip). (B) Absorption spectrum of ascorbic acid solutions before oxidation, 

after oxidation with blank electrode, and after oxidation with chitosan-coated electrode.  

 

 After measuring the absorption of the solution, the chitosan films (∼30µm thick), 

were peeled from the electrodes, and their absorption was also measured. The chitosan 

film that had been incubated with dopamine was observed to be brown in color, and 

Figure 4-25 shows it has a broad UV-Vis spectrum. This suggests that the film was 

crosslinked. In contrast, the chitosan film incubated with ascorbic acid remained 

transparent, and the spectrum in Figure 4-25 shows little UV-Vis absorption of this film. 

Finally, the chitosan films were placed in an acidic solution of pH 3.5 (chitosan that is not 

crosslinked dissolves below pH of 6.5). The film incubated with dopamine was insoluble, 

suggesting that it was crosslinked; the film incubated with ascorbic acid dissolved. 

Together, these results provide chemical evidence that oxidation products of dopamine, 

but not ascorbic acid, react with the chitosan film. 

B  A 



 104 

 

0

1

2

3

4

200 300 400 500 600 700
Wavelength (nm)

A
b

so
rp

ti
o
n

Chitosan film after dopamine oxidation 

Chitosan film after ascorbic acid oxidation

 
Figure 4-25.  UV-Visible absorption spectra of chitosan films (30µµµµm thick) after ascorbic acid 

oxidation and after dopamine oxidation. Chitosan exposed to ascorbic acid remains transparent, 

while chitosan exposed to dopamine has significantly increased absorption.  

 

4.5.3.2 Cantilever Detection 

 This section presents bending results for chitosan-coated cantilevers in response to 

ascorbic acid oxidation and dopamine oxidation. A 1.5µm thick chitosan film is 

electrodeposited on a cantilever, and it is used as the anode for oxidation of ascorbic acid 

as described in Section 3.6. The sample is rinsed, immersed in DI water, and the 

cantilever bending is measured with the modified Veeco NT1100 through the DI. Next, 

the electrochemical oxidation is repeated with the same cantilever in dopamine solution, 

and the bending is measured again in the DI water.  The measurement results are 

summarized in Figure 4-26. Note that the cantilever exhibits some initial bending due to 

residual stress in the chitosan film. Upon ascorbic acid oxidation (Figure 4-26A), the 

bending does not change much; the small shift observed is caused mainly by 

measurement error. Upon dopamine oxidation, the cantilever bends up by approximately 

800nm due to the crosslinking of chitosan by the dopamine oxidation products. These 

results show that the device successfully discriminates between the oxidation of ascorbic 

acid and dopamine. As discussed in Chapter 1, purely electrochemical detection 
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techniques (e.g. cyclic voltammetry) cannot discriminate between the two analytes 

because of their similar oxidation potential.  
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Figure 4-26.  (A) Response of cantilever with chitosan to ascorbic acid electrochemical oxidation 

(measured in solution). The small bending at the tip is due to measurement error and nonspecific 

interactions. (B) Response of cantilever with chitosan to dopamine electrochemical oxidation 

(measured in solution). The cantilever bends up considerably (~800nm at the tip). 

 

 Figure 4-27 shows the results of multiple experiments with ascorbic acid oxidation 

followed by dopamine oxidation. Note that only displacement of the cantilever tip is 

given here instead of a complete cantilever profile. In each case, the dopamine oxidation 

produces significant bending, while the ascorbic acid oxidation produces bending within 

the measurement error bounds.  

A  

B 
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Figure 4-27.  Response of chitosan-coated cantilevers to ascorbic acid oxidation and dopamine 

oxidation (measured in solution). 

 

4.5.4 Limitations of Microcantilever Dopamine Detection  

Note that real biological samples often contain both dopamine and ascorbic acid 

simultaneously with the concentration of ascorbic acid being higher [57, 87]. Currently, 

our method is not capable of detecting dopamine mixed with appreciable amounts of 

ascorbic acid; the dopamine oxidation products are reduced by the ascorbic acid and are 

not allowed to react with the chitosan. In experiments where the concentration of ascorbic 

acid was 10 times lower than that of dopamine, the chitosan crosslinking still occurred. 

However, when the two concentrations were comparable, no chitosan crosslinking was 

observed. Well-established electrochemical methods for dopamine detection such as fast-

scan cyclic voltammetry are also impacted by the interference of ascorbic acid when it is 

present in dopamine samples [57].  

4.6 Conclusion 

This chapter presented the experimental results from testing of the microcantilever 

sensors with DNA and phenols (catechol and dopamine). First, the principle of operation 

of the optical interferometer used for measurements was described and the major sources 

of experimental error were discussed. Next, results of DNA hybridization detection in 
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both dynamic and static mode were presented. In dynamic mode, the measurements were 

performed in air after drying the devices; in static mode the measurements were 

performed in air or in liquid (using custom modifications of the optical interferometer).  

Finally, phenol detection results with the microcantielver sensors in static mode were 

presented. The phenols catechol and dopamine were detected upon their electrochemical 

oxidation. The measurements were performed either in air after drying the device or in 

liquid. It was also shown that the microcantilever sensor can successfully discriminate 

between ascorbic acid and dopamine.  
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5 Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

This thesis research has demonstrated the use of the polysaccharide chitosan as a bio-

interface material for microcantilever sensors. The microcantilever sensors detect binding 

of biomolecules as a shift in resonant frequency (dynamic mode) or as differential 

bending (static mode). In comparison with other types of biosensors, such as optical, 

electrochemical, capacitive, or acoustic devices, microcantilever sensors have the 

combined advantages of label-free detection and small footprint. These characteristics 

make them attractive for portable, low-cost biodetection that requires minimal sample 

preparation (since no labeling of the analyte is required).  

In this study, microcantilever sensors with chitosan for both static and dynamic mode 

of operation were designed, fabricated, and tested. Two demonstrations of detecting 

biochemical events were given. The first one is DNA hybridization; this is a conventional 

application for microcantilever sensors, and it has been previously demonstrated by a 

number of authors [28, 29, 31, 38]. The novelty here is the use of chitosan to attach probe 

DNA on the cantilever surface, while in previous studies it was attached by self-

assembled monolayers (SAMs). The second demonstration is a new one, and it has not 

been investigated by others: mechano-detection of the neurotransmitter dopamine. 

Dopamine is typically detected by electrochemical techniques such as cyclic voltammetry 

[58]; here, it was shown that electrochemical oxidation of dopamine can be transduced by 

a chitosan-coated cantilever.  
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5.1.1 DNA Hybridization 

The previously developed procedures for chitosan electrodeposition by Wu et al [49, 

50] were adjusted here to allow for thin chitosan films (100nm) and small electrode sizes 

(40µm width) on the cantilevers. A miniaturized deposition setup using a 

micropositioning probe was developed for this purpose. The cantilevers were 

functionalized with probe DNA using procedures previously developed by Yi et al [52, 

88], and hybridization with target DNA was detected from the cantilever response. This 

is the first demonstration of micromechanical detection of DNA hybridization with 

probes attached to chitosan.  

Both dynamic and static cantilever sensor modes were explored for detecting the 

hybridization. Dynamic mode measurements were performed in air after drying the 

sample, while static mode measurements were taken both in air and in solution (DI water).  

The measurements in air were severely affected by humidity variations and, as a result, 

had large experimental error. Since the cantilever response in this project was large, the 

hybridization could still be detected despite the measurement error. However, to improve 

the detection limit, the humidity variation must be addressed. Two different approaches 

to this problem were explored here, and their feasibility was demonstrated (particularly 

for dynamic mode). One approach is based on nitrogen drying of the sample during 

measurements, and the other on using a reference cantilever to subtract the effect of 

humidity variations. Static mode measurements in solution exhibited much less 

experimental error than those in air as they are immune from humidity effects. To enable 

these in-solution experiments, custom modifications were made to the Veeco NT1100 

interferometer used for measuring cantilever displacement.  
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The results from both static and dynamic mode testing showed the potential 

advantages of chitosan as a biointerface layer for microcantilever sensors. The estimated 

surface mass density of target DNA molecules bound to the chitosan was two orders of 

magnitude higher than that reported for studies using self-assembled monolayers (SAMs) 

as the interface. The estimated surface stress upon hybridization from the static mode 

measurements was also two orders of magnitude higher than that reported for DNA 

attached to SAMs. These results suggest that chitosan has a large effective surface area 

due to its polymeric network, which allows more biomolecules to be attached to the 

sensor surface than the SAMs interface. This property of chitosan has the potential to 

greatly increase the sensitivity of microcantilever biosensors, contributing to low-cost 

portable devices.  

5.1.2 Dopamine Oxidation 

The dopamine mechano-detection was motivated by previous studies by Wu et al [59, 

60] showing that the electrochemical oxidation of some phenols crosslinks chitosan. For 

this work, chitosan was electrodeposited on cantilevers and their static mode bending was 

measured in response to dopamine oxidation (dopamine is a phenol). The crosslinking of 

chitosan caused a residual stress and cantilever displacement, thereby providing a 

detection mechanism for the dopamine electrochemical oxidation. The measurement 

results showed that the dopamine-induced crosslinking of chitosan produces film stress of 

approximately 2MPa when measured in solution and 14MPa when measured in air. It was 

demonstrated that ascorbic acid, which typically interferes with the detection of 

dopamine by cyclic voltammetry, does not react with the chitosan upon oxidation and 

does not generate measurable cantilever bending. Thus, the mechano-detection of 
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dopamine has improved selectivity in comparison to conventional electrochemical 

detection techniques. 

5.2 Potential Improvements and Future Work 

5.2.1 Arrayed Hybridization Sensors 

When screening a sample for a large number of DNA sequences, it is necessary to use 

an array of hybridization sensors with different DNA probes. This idea has been 

implemented with printed microarrays based on fluorescence as described in Section 

1.3.4. Multiple DNA probes are immobilized at different locations on a surface by 

printing of a self-assembled monolayer (SAM) interface. Complementary target DNA 

binds to the probe, causing a fluorescent signal at that location. Although this kind of 

arrays work well, they require the sample to be fluorescently labeled. A similar array can 

be potentially implemented with cantilever sensors instead, allowing for label-free 

detection. The problem, however, is that cantilever sensors are not compatible with 

printing of the SAM interface because they would easily break. Localizing the SAM on 

individual cantilevers therefore requires highly precise micromanipulators and is a 

prohibitively slow, expensive process.  

The chitosan biointerface can be used to easily functionalize cantilever arrays because 

of its ability to be electrodeposited at specific locations. Chen et al [51] have 

demonstrated that chitosan can be conjugated with biomolecules before deposition 

instead of after the deposition. Multiple solutions of chitosan conjugated with different 

DNA probes can be prepared. An electrically addressable array of cantilevers can be 

exposed to the different chitosan solutions sequentially, biasing one cantilever for each 

solution. As a result, each cantilever would be functionalized with a different DNA probe. 
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The cantilevers can be integrated with microfluidic channels to deliver the solutions 

rapidly and minimize the required volume. Figure 5-1 shows a schematic for this concept. 

Each color of probe DNA on the cantilevers corresponds to a different sequence. This 

functionalization approach may still be slow due to the flushing of many different 

chitosan solutions. However, it does not require any high-precision micromanipulation, 

and it can be automated easily and cheaply.   

   

 
Figure 5-1.  Conceptual microcantilever array device. A microfluidic channels delivers chitosan 

conjugated with probe molecules to the cantilevers. The chitosan is deposited only where a voltage is 

applied. This enables functionalization of each cantilever in the array with different probe 

biomolecules.  

 

5.2.2 Integrated Displacement Sensors 

The Veeco NT1100 interferometer used to measure cantilever bending in this project 

can only operate on one device at a time, and it takes almost 5 min to reposition the 

sample to measure another device. Clearly, large arrays of cantilevers as envisioned in 

the previous section would require a parallel measurement approach. One way to meet 

this requirement would be to integrate piezoresistive displacement sensors within the 

cantilevers. Figure 5-2 shows a design concept for such a “smart” cantilever. The device 

can be fabricated from an SOI wafer (Silicon On Insulator). Piezoresistors are implanted 

Channel walls  

Microcantilever 

sensor array 

Electrical connections  

to microcantilevers 
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near the base of the Si cantilever, where the largest stress is expected upon cantilever 

bending. The change in displacement is read out as a change in resistance of the 

piezoresistors. Metal is deposited on the cantilever to serve as the electrode for chitosan 

deposition and also to contact the piezoresistors. Note that the metal is isolated from the 

Si by SiO2 to prevent chitosan from depositing on the bottom surface of the cantilever. 

Recall that static mode operation requires biomolecules to be present only one side of the 

cantilever to maximize surface stress. For measurements in solution, the metal contacts to 

the piezoresistors would have to be insulated to prevent leakage currents. 

 

Top view (silicon layer)

n-type Si 

SiO2

p-type Si 

Metal

Top view – (metal layer) 

Cross section (along red dashed line)

Legend 

 
 

Figure 5-2.  Top view and cross section schematics of proposed cantilever sensors with built-in 

piezoresistors. 

 

Similar “smart cantilever” designs have been implemented by a number of authors 

[65, 89, 90]. Piezoresistive displacement sensors are not as accurate as optical 

measurement techniques (e.g. interferometry). However, considering the large 

displacements and resonant frequency shifts measured in this project due to the chitosan 

biointerface, these sensors are expected to have sufficient accuracy. In addition, the 

piezoresistive readout has some advantages over optical measurement, particularly for 
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experiments in solution. Piezoresistive sensors are not affected by the optical properties 

of the solution such as refractive index and attenuation. Also, they do not require accurate 

alignment with optical beams; recall that sample misalignment was one of the major 

sources of error in optical measurements for this project. Finally, the response of 

piezoresistive displacement sensors is expected to be real-time, allowing for accurate 

compensation of humidity variations as discussed in Section 4.3.3.  

  

5.2.3 Dopamine Concentration Analysis 

For DNA hybridization detection, the researcher typically needs to know whether a 

certain gene is expressed in the sample or not. Evaluating its concentration is not of 

critical importance. However, for dopamine detection, knowing the concentration of 

dopamine in the nerve tissue is essential to understanding its role. The cyclic 

voltammetry detection technique can give quantitative dopamine concentration data, 

provided there are no interfering chemicals (e.g. ascorbic acid). The micromechanical 

detection method demonstrated here determines the presence of dopamine but not its 

concentration; this is clearly a major limitation.  

The mechano-detection of dopamine can be extended to determine concentration if 

temporally resolved cantilever displacement data are available. During electrochemical 

oxidation, dopamine reaches the anode by diffusion through the chitosan, and diffusion 

rate depends on concentration. Therefore, the rate of chitosan crossliking should depend 

on the concentration of dopamine in the solution. Consequently, the bending of the 

microcantilever sensor as a function of time should depend on dopamine concentration.  

The exact dependence can be calibrated empirically by performing experiments in 

dopamine solutions with different concentrations. 
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This approach was not pursued here because of the poor temporal resolution of 

displacement measurements. The electrochemical reaction changes the color of the 

solution near the cantilever; this causes severe optical measurement error. Therefore, the 

sample had to be rinsed and immersed in fresh DI water for each measurement, making it 

impossible to measure the displacement as a function of reaction time. However, the 

integrated piezoresistive sensor described in the previous section is insensitive to optical 

properties of the solution, and the cantilever displacement can be measured real-time. 

This could enable quantitative determination of the dopamine concentration with 

chitosan-coated microcantilevers.  
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