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In this thesis we study the Deligne-Simpson problem of finding matrices Aj ∈

Cj such that A1A2 . . . Ak = I for k ≥ 3 fixed loxodromic conjugacy classes C1, . . . , Ck

in PU(n, 1). Solutions to this problem are equivalent to representations of the k

punctured sphere into PU(n, 1), where the monodromy around the punctures are in

the Cj. By Simpson’s correspondence [27], irreducible such representations corre-

spond to stable parabolic U(n, 1)-Higgs bundles of parabolic degree 0. A parabolic

U(n, 1)-Higgs bundle can be decomposed into a parabolic U(1, 1)-Higgs bundle and

a U(n − 1) bundle by quotienting out by the rank n − 1 kernel of the Higgs field.

In the case that the U(1, 1)-Higgs bundle is of loxodromic type, this construction

can be reversed, with the added consequence that the stability conditions of the

resulting U(n, 1)-Higgs bundle are determined only by the kernel of Φ, the number

of marked points, and the degree of the U(1, 1)-Higgs bundle. With this result, we

prove our main theorem, which says that when the log eigenvalues of lifts C̃j of the

Cj to U(n, 1) satisfy the inequalities in [4] for the existence of a stable parabolic



bundle, then there is a stable parabolic U(n, 1)-Higgs bundle whose monodromies

around the marked points are in C̃j. This new approach using Higgs bundle tech-

niques generalizes the result of Falbel and Wentworth in [12] for fixed loxodromic

conjugacy classes in PU(2, 1).

This new result gives sufficient, but not necessary, conditions for the existence

of an irreducible solution to the Deligne-Simpson problem for fixed loxodromic con-

jugacy classes in PU(n, 1). The stability assumption cannot be dropped from our

proof since no universal characterization of unstable bundles exists. In the last

chapter, we explore what happens when we change the weights of the stable kernel

in the special case of three fixed loxodromic conjugacy classes in PU(3, 1). Using

the techniques from [11], [12], and [25], we can show that our construction implies

the existence of many other solutions to the problem.
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Chapter 1: Introduction

Recall Horn’s Problem: given two hermitian matrices A and B with known spectra,

what can we say about the spectrum of their sum, A + B (see for example [13],

[21])? Similarly, consider the multiplicative version of this problem: given two

unitary matrices A,B ∈ U(n), with known eigenvalues, what can we say about

the eigenvalues of their product AB? In this thesis, we consider the generalization

of this problem to other subgroups G ⊂ GL(n,C), known as the Deligne-Simpson

Problem: given conjugacy classes C1, . . . Ck in G, what are necessary and sufficient

conditions on the Ci such that there exists matrices Ai ∈ Ci such that A1 . . . Ak = I?

Solutions to this problem are often of geometric interest, such as the moduli

of polygonal linkages [18], [19], [20], [30]. For example, consider the case when

G = SU(2). We can use the three sphere S3 as a model for SU(2), where a matrix

in SU(2) corresponds to a point on the sphere. In this context, the conjugacy

class of matrix is represented by the distance between the point it represents and

the identity in S3. Solutions to the Deligne-Simpson problem then correspond to

different configurations of n-sided polygons on the sphere with given side lengths.

Necessary and sufficient conditions are then given by the triangle inequalities on S3.

More generally, the problem already has a complete solution when G = U(n).
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This was first proved in the case G = U(2) by Biswas in [3], which he later general-

ized to G = U(n). Independent solutions were given by Belkale in [2] and Agnihotri

and Woodward in [1]. A conjugacy class in U(n) is determined by the eigenvalues of

any matrix in the conjugacy class. Necessary and sufficient conditions are given as a

set of affine inequalities involving the logarithms of the eigenvalues. For simplicity,

we state the case when n = 2:

Theorem 1.0.1. [1], [2], [4], [3]

Let S = {1, 2, . . . , k}, and denote the log eigenvalues defining a conjugacy class

Cs in U(2) by 0 ≤ αs1 < αs2 < 1. Assume Σs∈S(αs1 +αs2) is an odd (respectively even)

integer, say 2N (respectively 2N + 1). Then there is a matrix Aj ∈ Cj such that

A1 . . . Ak = I if and only if for every D ⊂ S of size 2j (resp. 2j + 1), where j is a

non-negative integer, the following inequality holds:

−N − j + Σs∈Dα
s
2 + Σs∈S−Dα

s
1 < 0.

In [28], Simpson gives necessary and sufficient conditions for existence to a

solution to the Deligne-Simpson problem in the case G = SL(n,C) (see also the work

of Crawley-Boevey on this problem in [9]). However, whereas the conditions in the

U(n) case depend directly on the eigenvalues of the individual conjugacy classes, the

eigenvalues for the SL(n,C) case don’t matter at all! Instead, conditions are given

in terms of the multiplicity of the eigenvalues and the sizes of the corresponding

Jordan blocks. For fixed conjugacy classes C1, . . . , Ck in SL(n,C), let ri denote the

minimum rank of a matrix Ai − α, where Ai ∈ Ci and α ∈ C. Then:

Theorem. [28]
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Suppose Ck is regular (i.e. semi-simple with distinct eigenvalues). Then there

exists a solution A1 . . . Ak = I with Ai ∈ Ci if and only if Σ dim(Ci) ≥ 2n2 − 2 and

r1 + . . .+ rk−1 ≥ n− 1.

While these results are quite different, both use the following topological rein-

terpretation of the linear algebra problem. Let S = {p1, . . . , pk} be a finite collection

of points on the Riemann Sphere P1. Setting X = P1 − S, the fundamental group

π1(X) has the following presentation:

π1(X) =< γ1, . . . γk|γ1γ2 . . . γk = 1 >

where γi is a loop around the point pi. Then a solution to the Deligne-Simspon

Problem is equivalent to the existence of a representation ρ : π1(X) → G with

ρ(γi) ∈ Ci.

When G = U(n), the Mehta-Seshadri Theorem [22] gives an equivalence of

categories between the category of irreducible representations π1(X) → U(n) and

the category of stable parabolic vector bundles of rank n and parabolic degree 0 on

P1. The problem of constructing a representation ρ with ρ(γi) ∈ Ci then becomes

one of constructing a stable parabolic vector bundle whose weights at a marked

point pi are determined by the eigenvalues defining Ci. The inequalities in theorem

2.4.1 come from the stability condition on the parabolic vector bundle.

When G = SL(n,C), Simpson’s Correspondence [27] gives an equivalence of

categories between the category of stable filtered local systems of degree 0 and the

category of stable parabolic Higgs bundles of rank n and parabolic degree 0 on P1.

With the solution in the U(n) and SL(n,C) cases understood, it is natural to
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ask what happens for other real forms, such as PU(p, q), of GL(n,C). There are

already some results in this case.

In [25], Paupert studies products of elliptic isometries in PU(2, 1). Multiplying

both sides by A−13 , the problem of finding a solution A1A2A3 = I with Ai ∈ Ci

becomes A1A2 = A−13 . For fixed C1, C2, the Deligne-Simpson problem then becomes

one of studying the product map µ : C1 × C2 → PU(2, 1). Let C1, C2 be elliptic

conjugacy classes in PU(2, 1). Then Cj can be represented by a matrix Aj of the

form:

Aj =


1

e2πiθ
1
j

e2πiθ
2
j

 (1.1)

where 0 ≤ θ1j < θ2j < 1. Thus the space of elliptic conjugacy classes can be identified

with T2/S2, the two-torus modulo the action of the symmetric group S2. Then

Paupert proves the following concerning the product map µ̃:

Theorem. Let C1, C2 be two elliptic conjugacy classes in PU(2, 1), represented by

matrices Aj of the form in equation 1.1, and let

µ̃ : (C1 × C2) ∩ {elliptics} → T2/S2.

Then µ̃ is onto if and only if
θ11 − 2θ21 + θ12 − 2θ22 ≥ 1

2θ11 − θ21 + 2θ12 − θ22 ≥ 3

The key point of the proof is that the image of µ̃ is composed of “reducible

walls” and “irreducible chambers.” The reducible walls are found by computing the

4



image under µ̃ of pairs (A,B) generating a reducible subgroup of PU(2, 1). These

walls bound irreducible chambers, which are completely empty or completely full.

The theorem can be interpreted as giving conditions on C1 and C2 so that every

chamber is full.

In [12], Falbel and Wentworth consider products of loxodromic isometries.

They prove that when the Ci are loxodromic conjugacy classes in PU(n, 1), the

configurations of reducible walls are especially simple when n = 1, 2. In particular,

the complement of the reducible walls is nonempty and connected. This gives:

Theorem. Let C1, . . . , Ck, k ≥ 3 be arbitrary conjugacy classes of loxodromic ele-

ments of PU(n, 1), for n = 1, 2. Then there exists Ai ∈ Ci such that A1 . . . Ak = I.

However, the proof does not generalize to larger n. As we shall see later, the

complement of the reducibles is disconnected when n ≥ 3.

In this thesis, we consider the case of k ≥ 3 fixed loxodromic conjugacy classes

in PU(n, 1) for n ≥ 3. As we shall see later, the fact that PU(n, 1) is a rank 1 group

is important (see for example Theorem 2 in [12]). The restriction to loxodromic

conjugacy classes is reasonable for two reasons. First, the elliptic case seems to be

much more difficult. In particular, Simpson’s Correspondence between filtered local

systems and parabolic Higgs bundles cannot completely identify the conjugacy class

of an elliptic monodromy. Second, purely loxodromic representations often corre-

spond to interesting geometric structures. For example, when Σ is a closed surface

of genus g ≥ 2, Teichmueller space is identified with discrete, faithful, and purely

loxodromic representations π1(Σ) → PSL(2,R) = SU(1, 1), up to conjugation.
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Discrete, faithful, purely loxodromic representations π1(Σ) → SU(2, 1) are related

to quasi-Fuchsian representations and complex hyperbolic structures, the space of

which admit a coordinate system which is a direct generalization of Fenchel-Nielsen

coordinates of Teichmueller space [24].

Similar to [28] and [4], we interpret solutions to the Deligne-Simpson problem

as representations π1(P1 − {p1 . . . , pk})→ PU(n, 1). By Simpson’s Correspondence

(Theorem 2.5.3), irreducible such representations correspond to stable parabolic

Higgs bundles.

The use of Higgs bundles and Simpson’s Correspondence is attractive for two

reasons. First, this strategy has already proved successful when G = SL(n,C)

and G = U(n). Additionally, we expect the solution for loxodromic classes in

PU(n, 1) to somehow be a combination of these two cases. In particular, it would

be interesting to see the extent to which the eigenvalues defining a loxodromic

conjugacy class matter. Second, the topology of the PU(p, q) character variety

Hom(π1(X), U(p, q))//U(p, q) has been well-studied in the literature using Higgs

bundle techniques. In particular, the case where X is compact and genus g ≥ 2 is

handled in [33], [34], [6], [32]. The case where X is a punctured Riemann surface of

genus g ≥ 1 was handled in [14]. Our main theorem builds on the latter result by

guaranteeing in some cases that the PU(n, 1) character variety is nonempty for a

punctured Riemann surface X of genus 0. An obvious next question then is to ask

about the topology of these spaces, for which having a Higgs bundle description of

the elements would prove useful.

Constructing irreducible representations π1(P1 − {p1 . . . , pk}) → PU(n, 1) is
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equivalent to constructing stable parabolic Higgs bundles (E,Φ) of the following

form:

E = E1 ⊕ E2

Φ =

 0 b

c 0

 .
Information about the conjugacy class (namely the eigenvalues) of the monodromy

around a marked point pj can be found by studying the parabolic structure and the

residue of Φ at pj. In chapter 3, we study the stability properties of Higgs bundles of

the above form. A stable parabolic Higgs bundle corresponding to a representation

with loxodromic monodromies has in particular b, c 6= 0. As a result, when n ≥ 2,

E can be decomposed into a parabolic U(1, 1)-Higgs bundle (Ẽ, Φ̃) and a rank n− 1

parabolic bundle S. Here S is the kernel of b, and Ẽ is obtained by quotienting E by

S. Finally we show that you can reverse the process by finding an extension of Ẽ

by S such that Φ̃ lifts and has nice additional property. This property allows us to

directly compute the invariant subbundles of Φ, which is important for computing

the stability conditions of (E,Φ).

The above decomposition of a PU(n, 1)-Higgs bundle into a U(1, 1)-Higgs

bundle and a rank n − 1 parabolic bundle suggests the solution for loxodromic

conjugacy classes in PU(n, 1) should be related to the solution for G = U(n − 1).

The main result of this thesis is that assuming some of the data defining the fixed

loxodromic conjugacy classes satisfy the conditions in Theorem 1.0.1, then solutions

to the Deligne-Simpson problem exist.
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To be more precise, let C1, C2, . . . , Ck be k fixed loxodromic conjugacy classes

in PU(n, 1). Lift each Ci to a conjugacy class C̃i in U(n, 1), represented by a

diagonal matrix of the following form:

Aj =



rj

r−1j

exp(2πiα1
j )

. . .

exp(2πiαn−1j )


(1.2)

where r is a positive real number and 0 ≤ αi1 < . . . < αin−1 < 1. In Chapter 4, we

prove the following:

Theorem 1. (Main Theorem)

Assume the αjl ’s defining the conjugacy classes C̃j satisfy Σαjl ∈ Z and the

strict U(n− 1) inequalities in [4]. Then there exists a stable parabolic U(n, 1)-Higgs

bundle (E,Φ) with k ≥ 3 marked points such that:

• the filtration of Epj has a rank 2 jump at 0 and rank 1 jumps at each of

αj1, . . . , α
j
n−1;

• the residue of Φ at pj has eigenvalues ±i log(r)/4π, and 0 with multiplicity

n− 1.

By reinterpreting these stable parabolic U(n, 1)-Higgs bundles as irreducible

representations (technically filtered local systems with necessarily trivial filtration),

we have the following corollary:
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Corollary 2. Let Ci be given loxodromic conjugacy classes in PU(n, 1), lifted to C̃i

to U(n, 1) as in 1.2. If the αij satisfy the U(n − 1) inequalities in 2.4.1, then there

is a matrix Ai ∈ Ci such that A1 . . . Ak = 1.

In particular, our theorem generalizes the result in [12] for PU(2, 1). Further-

more, the Higgs bundle techniques we use give a new approach not used in any

of [12], [25], and [28].

Theorem 1 gives sufficient conditions for the existence of an irreducible solu-

tion. In fact, we can see in the proof in Chapter 4 that the requirement that the

kernel S of the Higgs field be stable is not necessary. However, this stability assump-

tion is required for our proof. While stable bundles vary nicely in families, this is

not the case for unstable bundles, which can fail to be stable in many interesting

ways. As a result, we lack the tools required to approach the problem from the

point of view of finding necessary conditions.

In chapter 5, we explore this issue further in the special case of three fixed

conjugacy classes in PU(3, 1). Following [11], [12], and [25], we consider the product

map µ : C1×C2 → PU(3, 1). We restrict µ to pairs (A,B) with loxodromic product,

and then project onto Clox = T/S2 × (1,∞), the space of loxodromic conjugacy

classes. The image, as in [12] and [25], decomposes into a set of reducible walls and

irreducible chambers. We first compute the set of reducible walls, and then consider

the question of which chambers are full. Starting with a fixed stable parabolic

U(3, 1)-Higgs bundle (E,Φ) coming from Theorem 1, we examine how the stability

changes as we vary the weights. As a result, we can show that many chambers are
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full, and therefore that Theorem 1 guarantees a solution to the Deligne-Simpson

problem in many more cases.

10



Chapter 2: Background

In this chapter, we briefly outline the material which we use in the rest of this

paper. In section 2.1, we define the indefinite unitary groups PU(p, q), and give a

classification of the conjugacy classes in the group PU(n, 1) of isometries of complex

hyperbolic space.

In section 2.2, we give an overview of the Riemann-Hilbert Correspondence

between local systems and flat bundles, and the Nonabelian Hodge Correspondence

between Higgs bundles and flat bundles. We conclude the section with a discussion

about U(p, q)-Higgs bundles.

In section 2.3, we define parabolic bundles and state the Mehta-Seshadri Theo-

rem, which gives an equivalence of categories between the category of representations

of the fundamental group of the punctured surface into U(n) with the category of

stable parabolic vector bundles of parabolic degree 0. As an example, we give a

solution to the Deligne-Simpson problem in the case of three conjugacy classes in

SU(2). The section concludes with a statement of the general result in the case

when G = U(2).

Finally, in section 2.5, we define parabolic Higgs bundles and filtered local

systems, and give a statement of Simpson’s Correspondence between filtered local
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systems and parabolic Higgs bundles, simultaneously generalizing both the Non-

abelian Hodge Correspondence and the Mehta-Seshadri Theorem. Since we are

interested in using this correspondence to construct representations, we conclude

the section with a careful discussion of the correspondence between the residues of

the Higgs field acting on the parabolic structure at a marked point and the residue

of the monodromy around the marked point.

2.1 The group PU(n, 1)

Let V p,q(C) denote the p + q = n-dimensional complex vector space together with

the Hermitian form of type (p, q):

〈z, w〉 = w∗Jz

J =

 Ip 0

0 −Iq

 .
Definition 2.1.1. Define the group

U(p, q) = {g ∈ GL(n,C) | 〈gz, gw〉 = 〈z, w〉}.

For the rest of this section, we’ll restrict our attention to the group U(n, 1).

2.1.1 Conjugacy classes in U(n, 1)

Here we’ll briefly review the different types of conjugacy classes in U(n, 1), as de-

scribed in [7].

For z ∈ V n,1, define Φ(z) = 〈z, z〉.

12



Definition 2.1.2. For z ∈ V n,1, define Φ(z) = 〈z, z〉. Then for a subspace W ⊂

V n,1, we say W is:

• hyperbolic if Φ|W is non-degenerate and indefinite

• elliptic if Φ|W is positive definite

• parabolic if Φ|W is degenerate.

Following [15], we define n-dimensional complex hyperbolic space as the set of

negative lines in Cn,1:

Hn(C) = {z |Φ(z) < 0}/C∗ = U(n, 1)/U(n)× U(1).

We can also define the boundary of Hn(C) as the set of null lines in Cn,1:

∂Hn(C) = {z |Φ(z) = 0}/C∗.

PU(n, 1) acts transitively and effectively by isometries under the Bergman

metric on Hn(C). Elements g ∈ PU(n, 1) extend to conformal transformations of

boundary ∂Hn(C). By the Brouwer fixed-point theorem, any g ∈ PU(n, 1) has at

least one fixed point in Hn(C) ∪ ∂Hn(C). This gives the following classification of

elements in PU(n, 1):

Definition 2.1.3. An isometry g ∈ PU(n, 1) of Hn(C) is:

• elliptic if g has (at least) one fixed point in Hn(C)

• parabolic if g has exactly one fixed point on the boundary of Hn(C)

• loxodromic if g has exactly two fixed points on the boundary.
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The following alternate Hermitian forms are useful for describing elliptic and

loxodromic elements, respectively:

Je =

 In 0

0 −1

 , Jl =


In−1 0 0

0 0 1

0 1 0


Using Je, any elliptic isometry in U(n, 1) is conjugate to a matrix of the fol-

lowing form:  U 0

0 λ


where U ∈ U(n), λ ∈ U(1). The eigenvalue λ is said to be of “negative type”

and the eigenvalues of U are said to be of “positive type.” The conjugacy class of

an elliptic isometry is determined by its groups of positive type and negative type

eigenvalues.

Using Jl, any loxodromic isometry in U(n, 1) is conjugate to a matrix of the

following form: 
U 0 0

0 λr 0

0 0 λr−1


where U ∈ U(n− 1), λ ∈ U(1), and r > 1.

2.2 Flat bundles, representations, and Higgs bundles

In this section, we briefly outline the Riemann Hilbert Correspondence between flat

bundles and representations, and the Nonabelian Hodge Correspondence between
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flat bundles and Higgs bundles, in the case of a compact Riemann surface X of

genus ≥ 2. We conclude this section with a description of U(p, q)-Higgs bundles.

2.2.1 Flat bundles and representations

Definition 2.2.1. A flat bundle on X is a vector bundle E on X together with a

connection ∇ with vanishing curvature: ∇∧∇ = 0.

Definition 2.2.2. A local system L is a vector bundle given by constant transition

functions. Fixing a base point x, a local system is determined by its monodromy

representation π1(X, x)→ Lx.

For a flat bundle (E,∇), parallel translation of ∇ along a path γ only de-

pends on the homotopy class of γ. Thus parallel translation gives the holonomy

representation π1(X)→ GL(n,C).

Given a representation ρ : π1(X)→ GL(n,C), we can construct a flat bundle

(E,∇) on X as follows. Let X̃ be the universal cover of X. Then letting E =

X̃ × Cn/(x, v) ∼ (γ(x), ρ(γ)v), the differential d descends to a connection ∇ on E

which is flat.

These two constructions are inverse to one another, and give the following:

Theorem 2.2.3. (Riemann-Hilbert Correspondence)

The above construction gives an analytic homeomorphism between the charac-

ter variety Hom(π1(X), GL(n,C))/GL(n,C) and the space of isomorphism classes

of flat bundles (E,∇).
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2.2.2 Higgs bundles

Definition 2.2.4. A Higgs bundle on X is a pair (E,Φ) where E→ X is a holomor-

phic vector bundle, Φ is a holomorphic section of Hom(E,E ⊗ KX), and KX → X

is the canonical bundle.

Definition 2.2.5. A subbundle S ⊂ E is Φ-invariant if Φ(S) ⊂ S ⊗KX .

Definition 2.2.6. The slope µ(E) of a holomorphic vector bundle is defined to be

µ(E) = deg(E)/rank(E)

Definition 2.2.7. A Higgs bundle (E,Φ) is (semi-) stable if for every proper Φ-

invariant holomorphic subbundle S ⊂ E, µ(E) < (≤)µ(E).

2.2.3 Hitchin’s equations and the Nonabelian Hodge Correspondence

Let (E,Φ) be a Higgs bundle. If we fix an hermitian metric h on E, then ∇ =

dA + Φ + Φ∗ defines a connection on E. This is our candidate flat connection.

However, its curvature F∇ = FA + [Φ,Φ∗] may not vanish. Thus our Higgs bundle

corresponds to a flat bundle precisely when Hitchin’s equations are satisfied:

FA + [Φ,Φ∗] = 0 (2.1)

∂̄E(Φ) = 0 (2.2)

The obstruction to finding Higgs bundles which solve Hitchin’s equations is

exactly the stability condition for Higgs bundles defined previously, as evidenced by

the following proposition:
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Proposition 2.2.8. If (E,Φ) is a Higgs bundle satisfying 2.1, then (E,Φ) is

polystable.

However, the converse of this also true:

Theorem 2.2.9. [17], [29] If (E,Φ) is polystable, then it admits a metric satisfying

equation 2.1.

Let (E,∇) be a flat bundle. If we again fix an hermitian metric h, then the

flat connection ∇ splits uniquely as ∇ = dA + Ψ, where dA is a metric connection

and Ψ is an hermitian 1-form. In a local frame {si}, Ψ is defined by the equation

〈Ψsi, sj〉 = 〈∇si, sj〉+ 〈si,∇sj〉 − d 〈si, sj〉 .

Ψ is hermitian, so we can write Ψ = Φ + Φ∗ for some endomorphism-valued 1-form

Φ. However, Φ may not be holomorphic. In fact, Φ is holomorphic iff d∗AΨ = 0 (we

also require dAΨ = 0, which we get for free since ∇ = dA + Ψ is assumed to be flat).

In this case, Hitchin’s equations become:

FA +
1

2
[Ψ,Ψ] = 0 (2.3)

dA(Ψ) = 0 (2.4)

d∗A(Ψ) = 0 (2.5)

Intuitively, an hermitian metric is a specification of which holomorphic frames

are unitary. As such, h is a section of the GL(n,C)/U(n) bundle naturally associated

to E. In this way, we can view an hermitian metric h as a π1(X)-equivariant map

h : X̃ → GL(n,C)/U(n).
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More explicitly, let h : X̃ → GL(n,C)/U(n) be such an equivariant map,

where GL(n,C)/U(n) corresponds to the set of positive definite hermitian matrices.

For a section s of E, think of s as a π1(X)-equivariant map s : X̃ → Cn. Then

define ||s||2h : X̃ → C by

||s||2h(x) = 〈s(x), h(x)s(x)〉Cn

||s||2h is easily seen to be equivariant, and hence descends to X, giving an hermitian

metric.

In the other direction, if s1 and s2 are sections of E with corresponding equiv-

ariant maps s̃1, s̃2 : X̃ → Cn, then for x ∈ X and x̃ ∈ X̃ sitting above x, we can

define h : X̃ → GL(n,C)/U(n) by

〈s1(x), s2(x)〉h = 〈s̃1(x̃), h(x̃)s̃2(x̃)〉Cn .

Equivariance of h follows from the equivariance of s̃1, s̃2.

Define the energy density of h to be

E(h) =
1

2

∫
M

|dh|2ω.

The hermitian metric corresponding to h is said to be harmonic if h is a critical

point of E (i.e. if h is a harmonic map). We have the following lemma:

Lemma 2.2.10. E(h) = 2||Ψ||2.

From this it is easy to compute the Euler-Lagrange equations d∗AΨ = 0. We

conclude that Φ defined above is holomorphic if and only if h is a harmonic metric,

and the problem of relating flat bundles to Higgs bundles becomes one of finding

harmonic metrics.
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Theorem 2.2.11. [8], [10] (E,∇) admits a harmonic metric iff ∇ is semisimple.

Let M0
Dol be the moduli space of polystable Higgs bundles of degree 0. De-

fine MB = Hom(π1(X), GL(n,C))//GL(n,C) to be the character variety (or Betti

moduli space). Above we defined maps from each moduli space to the other. By

Theorems 2.2.9 and 2.2.11, these maps are inverse to one another. Thus we have

the following theorem:

Theorem 2.2.12. Nonabelian Hodge Correspondence, [8], [10], [17], [29]

The correspondence above defines a homeomorphism between the Betti moduli

space M0
B(X) and the Dolbeault moduli space M0

D(X).

Example Let K
1
2
X be a fixed square root of the canonical bundle KX . Define

E = K
1
2
X ⊕K

− 1
2

X . Define the Higgs field Φ by

Φ =

 0 q

1 0

 ,
where

1 ∈ H0(X, (K
1
2
X)∗ ⊗K

− 1
2

X ⊗KX) = H0(X,O)

q ∈ H0(X, (K
− 1

2
X )∗ ⊗K

1
2
X ⊗KX) = H0(X,K2

X).

Then the Higgs bundle (E,Φ) is stable of degree 0, and so corresponds to an ir-

reducible representation π1(X) → GL(n,C). Actually, this family of Higgs bun-

dles corresponds to the uniformizing representations π1(X) → SL(2,R), and the

quadratic differential q gives coordinates for Teichmueller space.
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2.2.4 U(p, q)-Higgs bundles

We’ve seen above how stable vector bundles of degree 0 correspond to irreducible

representations of π1(X) into U(n), and stable Higgs bundles of degree 0 corre-

spond to irreducible representations into GL(n,C). We can also consider other

non-compact real forms of GL(n,C), namely the groups U(p, q), where p + q = n

(see for example [6], [14], [31]).

The maximal compact subgroup of U(p, q) is U(p) × U(q). The Lie algebra

u(p, q) has a Cartan decomposition

u(p, q) = u(p)⊕ u(q)⊕m

where m is the set of matrices of the form 0 A

−Āt 0


A metric in this case is a reduction of structure group h : X̃ → U(p, q)/U(p)×

U(q). Any such reduction uniquely splits the flat connection∇ = dA+Ψ, where dA is

a U(p)×U(q) metric connection and Ψ is a one-form with values in m. The splitting

of the dA gives a holomorphic splitting of the holomorphic bundle E. Writing Ψ =

Φ + Φ∗, we have the following:

Definition 2.2.13. A U(p, q)-Higgs bundle is a Higgs bundle (E,Φ) of the form

E = V⊕W

Φ =

 0 b

c 0


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where b ∈ H0(X,Hom(W,V)) and c ∈ H0(X,Hom(V,W)).

2.3 Parabolic vector bundles and the Mehta-Seshadri Theorem

Now we begin to introduce a generalization of the Nonabelian Hodge Correspon-

dence to punctured Riemann Surfaces. For the rest of this chapter, let X be any

compact Riemann surface, and D = p1 + . . . + pk the reduced divisor consisting of

the marked points pj. The main result of this section is a correspondence between

representations π1(X −D) → U(n) on the punctured surface and parabolic vector

bundles on the compact surface.

Let E→ X be a holomorphic vector bundle. Adopting the notation in [5], we

have:

Definition 2.3.1. A parabolic structure on E consists of weighted flags

Ep =E1(p) ⊃ E2(p) ⊃ . . . ⊃ El(p) ⊃ El+1(p) = 0

0 ≤α1(p) < α2(p) < . . . < αl(p) < 1

for each p ∈ D.

A morphism of parabolic vector bundles is a morphism of holomorphic vector

bundles which preserves the parabolic structure at every point p ∈ D. Formally, if

Φ : E1 → E2 is a holomorphic map between vector bundles, then Φ is parabolic if

whenever α1
i (p) ≤ α2

j (p), we have Φ(E1
i (p)) ⊂ E2

j+1(p), again for all p ∈ D. Denote

the set of all parabolic morphisms by H0(ParHom(E1
∗,E

2
∗)).

Additionally, we say Φ is strongly parabolic if it is nilpotent with respect to

the flag at every marked point. Equivalently, Φ is strongly parabolic if whenever
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α1
i (p) < α2

j (p), we have Φ(E1
i (p)) ⊂ E2

j+1(p). We denote the set of all strongly

parabolic morphisms by H0(SParHom(E1
∗,E

2
∗)).

2.3.1 Statement of theorem

The parabolic degree and parabolic slope of a parabolic bundle are defined as follows:

pdeg(E) = deg(E) +
∑
pi

∑
j

αj(pi)rk(Ej(pi)/Ej−1(pi)

pµ(E) =
pdeg(E)

rk(E)

A parabolic bundle is called stable (resp. semistable) if for every proper sub-

bundle S ⊂ E with the induced parabolic structure satisfies pµ(S) < (≤)pµ(E).

Theorem 2.3.2. (Mehta-Seshadri Theorem) [22]

There is an equivalence of categories between the category of irreducible rep-

resentations γ : π1(X − D) → U(n) and stable parabolic bundles E of rank n and

parabolic degree 0 on X.

Moreover, fixing the conjugacy class Cj of the monodromy around pi fixes the

parabolic structure on E. More explicitly, let Cj be represented by the following

diagonal matrix:

A =



exp(2πiαj1) 0 · · · 0

0 exp(2πiαj2)
...

...
. . .

0 · · · exp(2πiαjn)


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where 0 ≤ αj1 ≤ αj2 ≤ . . . ≤ αjn < 1. The jumps in the parabolic structure of E

occur at the αjs, and they are of rank equal to the multiplicity of the corresponding

eigenvalue.

The correspondence between the eigenvalues defining the conjugacy class of

the monodromy at pi and the parabolic structure of E at pi is very important. For us,

this means the problem of constructing irreducible solutions to the Deligne-Simpson

problem when G = U(n) is equivalent to constructing stable parabolic bundles with

a certain parabolic structure.

Example We’ll use the Mehta-Seshadri Theorem to give necessary and sufficient

conditions for the existence of a solution to the Deligne-Simpson problem for 3 fixed

conjugacy classes in SU(2). As mentioned in the introduction, these conditions can

also be interpreted as the triangle inequalities on the three sphere S3.

Let C1, C2, and C3 be three fixed conjugacy classes in SU(2). Then Cj can

be represented by a matrix of the form e2πiαj 0

0 e2πi(1−αj)


where 0 < αj < 1− αj < 1. From the discussion in the introduction, the existence

of Aj ∈ Cj such that A1A2A3 = I is equivalent to a representation ρ : π1(P1 −

{p1, p2, p3}) → SU(2) with ρ(γj) ∈ Cj. By the Mehta-Seshadri Theorem, this

is equivalent to the existence of a parabolic vector bundle of parabolic degree 0,

whose weights at the marked point pj are αj < 1 − αj. We’ll also require that the

representation be irreducible, which implies that the parabolic bundle be stable.
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Notice that Σj(αj + 1 − αj) = 3. Therefore, since we want to construct a

bundle with parabolic degree 0, the degree of the underlying holomorphic bundle

must be −3.

To determine the underlying holomorphic bundle E, we note the following two

facts. First, every holomorphic line bundle on P1 is determined up to isomorphism

by its degree. If L is a line bundle on P1 of degree d, we can unambiguously write

L = O(d). Second, Grothendieck’s Lemma (see [16]) says that every vector bundle

on P1 decomposes as a direct sum of line bundles, which is unique up to permutation

of the factors. These two facts plus the requirement that E has degree −3 means

we can write E = O(d) ⊕ O(−d − 3). The stability condition can be interpreted as

all subbundles of E having strictly negative parabolic degree.

First, we must have d = −1 (or equivalently d = −2). Suppose for a contra-

diction that d ≥ 0. Then the line subbundle L = O(d) has nonnegative parabolic

degree:

pdeg(L) ≥ deg(L) = d ≥ 0.

Since the parabolic degree of E is 0, E is necessarily unstable. The argument for

d ≤ −3 is similar, where L = O(−d − 3) has strictly positive degree. We conclude

that d = −1 is the only possibility, and therefore E = O(−1)⊕ O(−2).

Now we need to determine the parabolic structure on E. First, we’ll consider

subbundles of E. The only two we need to worry about are O(−1) and O(−2). Any

other subbundle has strictly negative parabolic degree, and can be eliminated from
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consideration. More explicitly, let L = O(d), with d ≤ −3. Then:

pdeg(L) = d+ Σ(1− αj) < d+ 3 < 0.

There is a unique inclusion O(−1) ↪→ O(−1) ⊕ O(−2). Since

H0(Hom(O(−2),O(−1))) = C2, and H0(Hom(O(−2),O(−2))) = C, an embedding

O(−2) ↪→ O(−1) ⊕ O(−2) is determined by three constants, up to scaling. These

constants are fixed by specifying the image of the inclusion at two points (assuming

the image is not entirely contained in the fiber of O(−1)).

Now we are ready to consider the parabolic structure on E. This is a choice of

a flag E1(pj) ⊂ Epj for each j = 1, 2, 3. The first observation to make is that E1(pj)

should not be contained in the fiber of O(−1) at pj for any j.

Suppose for a contradiction that E1(p1) = O(−1)p1 . Without loss of generality,

assume E1(pj) 6= O(−1)pj for j = 2, 3. Then pdeg(O(−1)) = −1+(1−α1)+α2 +α3.

Additionally, any choice of E1(p2) and E1(p3) determines an embedding O(−2) ↪→

O(−1)⊕O(−2) whose image at pj is E1(pj) for j = 2, 3. This subbundle has parabolic

degree pdeg(O(−2)) = −2 + α1 + (1− α2) + (1− α3). The stability condition on E

for this parabolic structure requires:

pµ(E)− pµ(O(−1) = α1 − α2 − α3 > 0

pµ(E)− pµ(O(−2)) = −α1 + α2 + α3 > 0

which is clearly impossible. The general case follows similarly, so we must have

E1(pj) 6= O(−1)pj for all j.

By a similar argument, the choice of flags E1(pj) must be generic, in the sense

that for any embedding O(−2) ↪→ O(−1) ⊕ O(−2), the image at pj is E1(pj) for
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at most two of j = 1, 2, 3. This requirement on the parabolic structure gives the

following necessary and sufficient conditions for stability:

1− α1 − α2 − α3 > 0

α1 + α2 − α3 > 0

α1 − α2 + α3 > 0

−α1 + α2 + α3 > 0

where each of the above inequalities come from the requirement that the parabolic

degree of any subbundle of E must have strictly negative parabolic degree. The first

inequality comes from the uniquely embedded O(−1). The last three inequalities

come form 3 separate embeddings of O(−2) , the fibers of which correspond to the

flag E1(pj) at exactly two of the marked points pj.

2.4 Existence of solutions to Deligne-Simpson for G = U(n)

The case of k ≥ 3 conjugacy classes in U(2) was handled by Biswas in [3]. This

result was later generalized to U(n) by Biswas in [4], with alternative proofs given

by Agnihotri and Woodward in [1], and Belkale in [2]. For simplicity, we state

the result from [3] on the existence of irreducible solutions to the Deligne-Simpson

problem when G = U(2). Later, we will not directly reference the inequalities when

n > 2. Therefore, the reader need only be aware that they exist.

Let C1, . . . , Ck be fixed regular conjugacy classes in U(2). Then Cs can be
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represented by a matrix of the form e2πiα
s
1 0

0 e2πiα
s
2


where 0 ≤ αsi < αs2 < 1. Then we have the following

Theorem 2.4.1. [4], [3], [1], [2]

Let S = {1, 2, . . . , k}, and assume Σs∈S(αs1 + αs2) is an odd (respectively even)

integer, say 2N (respectively 2N +1). Then there is a stable rank 2 parabolic bundle

with parabolic weights {αs1, αs2} at the marked point ps ∈ P1 if and only if for every

D ⊂ S of size 2j (resp. 2j + 1), where j is a nonnegative integer, the following

inequality holds:

−N − j + Σs∈Dα
s
2 + Σs∈S−Dα

s
1 < 0.

By the Mehta-Seshadri Theorem, such a stable parabolic bundle corresponds to

an irreducible representation π1(P1−{p1, . . . , pk})→ U(n). The parabolic structure

at pj determines the eigenvalues (and hence the conjugacy class) of the monodromy

around the marked point pj. As such, we have the following Corollary from the

Introduction:

Corollary 2.4.2. Let S = {1, 2, . . . , k}, and denote the log eigenvalues defining a

conjugacy class Cs in U(2) by 0 ≤ αs1 < αs2 < 1. Assume Σs∈S(αs1 + αs2) is an odd

(respectively even) integer, say 2N (respectively 2N + 1). Then there is a matrix

Aj ∈ Cj such that A1 . . . Ak = I if and only if for every D ⊂ S of size 2j (resp.

2j + 1), where j is a non-negative integer, the following inequality holds:

−N − j + Σs∈Dα
s
2 + Σs∈S−Dα

s
1 < 0.
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2.5 Simpson’s Correspondence

2.5.1 Filtered local systems

Definition 2.5.1. A filtered local system is a local system L on X − D together

with a filtration Lpi,β of Lx. It is assumed that the filtration Lpi,β is preserved by the

monodromy around pi.

The degree of a filtered local system is defined by:

deg(L) =
∑
pi

∑
β

βrk(Lpi,β/Lpi,β+ε).

A filtered local system L is said to be stable if for any subsystem M ⊂ L with

the induced filtrations, we have

deg(M)

rk(M)
<
degL)

rk(L)

An important thing to keep in mind is the relationship between the stability

of the filtered local system and the irreducibility of the associated representation.

When the local system has the trivial filtration at every point, stability is equivalent

to the irreducibility of the corresponding representation (since any subsystem in this

case has filtered degree 0, stability asserts no subsystems exist).

2.5.2 Parabolic Higgs bundles

Definition 2.5.2. A parabolic Higgs bundle is a parabolic vector bundle (E,Epi,αi
)

together with a meromorphic map Φ : E → E ⊗K with poles of order at most 1 at
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the marked points pi. Φ is regular everywhere else. The residue of Φ at a marked

point pi is assumed to preserve the given filtration Epi,αi
.

Fix local coordinates z vanishing at pi and a local frame ei. Then near pi, Φ

can be written

Φ(ei) = Φijej
dz

z
+ (regular stuff)

The statement that the residue of Φ preserves the filtration means that the matrix

(Φij) preserves the filtration.

Equivalently, a parabolic Higgs bundle is a parabolic vector bundle (E,Epi,αi
)

and a parabolic morphism Φ ∈ ParHom(E,E ⊗ K(D)). With this interpretation,

the residue of the Higgs field Φ is simply its value at a point pi.

The parabolic degree and parabolic slope of a parabolic Higgs bundle are

defined as follows:

pdeg(E) = deg(E) +
∑
pi

∑
αj(pi)rk(Ej(pi)/Ej−1(pi)

pµ(E) =
pdeg(E)

rk(E)

A parabolic Higgs bundle is called stable (resp. semistable) if for every Φ-

invariant subbundle S ⊂ E with the induced parabolic structure satisfies pµ(S) <

(≤)pµ(E).

2.5.3 Statement of theorem

Theorem 2.5.3. (Simpson, [27]) There is a bijective correspondence between stable

filtered local systems of degree 0 and stable parabolic Higgs bundles of degree 0.
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Additionally, there is a correspondence between the residues of the filtered

local system and parabolic Higgs bundles at each pi, as described in [27], [28]. To

make this more explicit, let L be a filtered local system and (E,Φ) a parabolic Higgs

bundle (both stable, of degree 0). Then we define

respi(L) =
⊕
β

respi(L)β

respi(E) =
⊕
α

respi(E)α,

where respi(L)β and respi(E)α are the blocks in the associated graded of each fil-

tration at the point pi:

respi(L)β = Grβ(Lpi) = (Lpi,β/Lpi,β+ε)

respi(E)α = Grα(Epi) = (Epi,α/Epi.α+ε).

Since the monodromy Ai around pi is assumed to preserve the filtration of Lpi ,

it acts by an endomorphism, which we denote by res(Ai), on the associated graded

respi(L). Similarly, since the ”residue” of Φ is assumed to preserve the filtration of

Epi , it acts by an endomorphism respi(Φ) on the associated graded respi(E). The

residue of L at pi is defined to be the pair (respi(L), res(Ai)). Similarly, the residue

of (E,Φ) at pi is the pair (respi(E), respi(Φ)).

Moreover, res(Ai) acts on the blocks respi(L)β, and res(Φ) acts on the blocks

respi(E)α. Therefore, we can decompose the blocks respi(L)β and respi(E)α into
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the generalized eigenspaces of res(Ai) and res(Φ). We have

respi(L)β =
⊕
λ

respi(L)β,λ (2.6)

respi(E)α =
⊕
τ

respi(E)α,τ (2.7)

where λ is a generalized eigenvalue of res(Ai) with generalized eigenspace

respi(L)β,λ ⊂ respi(L)β, and τ is a generalized eigenvalue of res(Φ) with gener-

alized eigenspace respi(E)α,τ ⊂ respi(E)α.

Finally, res(Ai) acts on respi(L)β,λ by a matrix res(Ai)β,λ. Putting res(Ai)β,λ

into Jordan normal form induces a partition P β,λ
pi

of its generalized eigenspace

respi(L)β,λ. The collection P β,λ
pi

forms the ”residue diagram” of (respi(L), res(Ai)).

The residue diagram P β,λ
pi

uniquely determines the residue (res(Ai), respi(L)), up to

isomorphism.

The same process applied to res(Φ) acting on respi(E)α,τ associates to

(res(Φ), respi(E)) its partition diagram Pα,τ
pi

. Again this uniquely determines

(res(Φ), respi(E)) up to isomorphism.

In the correspondence in Theorem 2.5.3, the residue diagrams P β,λ
pi

and Pα,τ
pi

of

(res(Ai), respi)L)) and (res(Φ), respi(E)) are the same, up to the following change

of labels:

(α, τ = b+ ci) 7→ (β = −2b, λ = exp(2πiα− 4πc) (2.8)

(β, λ) 7→
(
α =

1

2π
log(λ), τ = −β

2
− i log|λ|

4π

)
(2.9)

To describe the correspondence more simply, the weights and rank of each

jump in the corresponding filtrations at pi are the same, up to the change of labels
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in 2.8. The eigenvalues of Ai and the residue of Φ at pi are the same and have the

same multiplicities, up to the change described in 2.8. The sizes of the nilpotent

parts of res(Ai) and res(Φ) acting on the associated graded objects respi(L) and

respi(E) are also the same.

Theorem 2.5.3 allows us to reinterpret our problem of constructing represen-

tations into one of constructing parabolic Higgs bundles. The requirement on the

local monodromy around a given puncture becomes a requirement on the parabolic

structure and the residue of Φ at pi. Going in the other direction, if we know every-

thing about our parabolic Higgs bundle (i.e. the parabolic structure, Jordan form

of res(Φ)), then we can use this to gain knowledge about the monodromy around

pi. In particular, we know everything about the eigenvalues of the local monodromy

Ai. However, we may not know everything. If the filtration on the local system is

nontrivial (i.e. if the eigenvalues of the residue of Φ have nonzero real part) then we

only have partial information about the nilpotent part of Ai. This could also mean

the underlying representation is reducible. Since we are only interested in semisim-

ple conjugacy classes, we do not need to worry about the nilpotent pieces. However,

we must keep in mind that a stable filtered local system may not correspond to an

irreducible representation.
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Chapter 3: Parabolic PU(n, 1)-Higgs Bundles

In this chapter, we discuss the structure of the Higgs field that guarantee the mon-

odromies of the corresponding representation are in U(n, 1). In particular, since we

are interested in constructing representations with loxodromic monodromies, Simp-

son’s Correspondence says the residue of Φ at the marked points must have two

nonzero (in particular with nonzero imaginary part) eigenvalues. This requirement

adds further restrictions to the structure of the Higgs field.

A parabolic U(n, 1)-Higgs bundle will always have invariant subbundles when

n ≥ 2). The restrictions on the structure of the Higgs field put restrictions on the

structure of the invariant subbundles. In particular, the subbundles of interest are

the rank n − 1 kernel of Φ, and a rank 2 subbundle corresponding to the nonzero

eigenspaces of Φ.

Quotienting out by the kernel, we can break a parabolic U(n, 1)-Higgs bundle

into a parabolic U(1, 1)-Higgs bundle and a rank n − 1 parabolic vector bundle.

The main result of this chapter is that we can put these pieces back together into

a parabolic PU(n, 1)-bundle in a way that allows us to easily compute the two

invariant subbundles.
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3.1 Parabolic PU(n, 1)-Higgs bundles

Let D = p1 + . . .+ pk be a fixed reduced divisor on X = P1. Following section 2.2.4,

we have the following:

Definition 3.1.1. A parabolic PU(n, 1)-Higgs bundle is a parabolic Higgs bundle

(E,Φ) such that:

• E = E1 ⊕ E2 where rank(E1) = 1 and rank(E2) = n

• With respect to the above splitting of E,

Φ =

 0 b

c 0

 .
where b : E2 → E1 ⊗K(D) and c : E1 → E2 ⊗K(D).

These Higgs bundles are exactly the ones corresponding to representations

π1(X −D)→ PU(n, 1) [33], [34], [6], [14].

We are interested in constructing (irreducible) representations of π1(P1 −

{p1, . . . , pk}) with loxodromic monodromies. From the above, we can determine if a

given (stable) Higgs bundle has loxodromic monodromies by looking at its residues

at the marked points.

Definition 3.1.2. Let (E,Φ) be a parabolic PU(n, 1)-Higgs bundle. We say Φ is of

loxodromic type if its residue at each marked point pj has exactly two eigenvalues

with nonzero imaginary parts.
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For the rest of the paper, we will only consider parabolic PU(n, 1)-Higgs bun-

dles of loxodromic type. This assumption has important implications regarding

which types of invariant subbundles can occur.

3.2 Invariant subbundles

Let (E,Φ) be a parabolic PU(n, 1)-Higgs bundle of loxodromic type, where E and Φ

the decomposition as in Definition 3.1.1. In this section, we determine all invariant

subbundles of Φ. These correspond to the eigenspaces of Φ. The first corresponds

to the 0 eigenvectors, i.e. the kernel of Φ:

3.2.1 Kernel of the Higgs Field

Lemma 3.2.1. The kernel of Φ corresponds exactly to the kernel of b : E2 →

E1 ⊗K(D).

Proof. Since Φ is of loxodromic type, c : E1 → E2 ⊗ K(D) is necessarily nonzero.

Since E1 is a line bundle, c is generically injective. This implies ker(Φ) = ker(b).

Note that since rank(E2) = n and E1 = 1, rank(ker(Φ)) = n − 1. As such,

when n > 2, any subbundle of ker(Φ) is also necessarily invariant. This will not

be an issue, since for our main construction we will assume ker(Φ) is stable, when

guaranteed by [4]. In chapter 5, we will explore the case where ker(Φ) is actually

unstable.
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3.2.2 Invariant rank-2 subbundles

There is one other important subbundle, corresponding to the nonzero eigenspace

of the Higgs field. If we write the Higgs bundle (E,Φ) as

E = E1 ⊕ E2

Φ =

 0 b

c 0

 .
then F = E1⊕L, where L is the saturation of Im(c). In order to check the stability

of E, we need to compute the degree of F. Since E1 is given, we only need to compute

the degree of L. This depends on the vanishing of the map c:

Lemma 3.2.2. Im(c) = E1((c))⊗K(D)∗, where (c) is the vanishing divisor of the

section c. In particular, when c is non-vanishing, Im(c) = E1 ⊗K(D)∗

Proof. E1 and c fit in the following exact sequence of coherent sheaves:

0 E1 E2 ⊗K(D) Q 0
c

If c vanishes, then the quotient sheaf Q is not locally free. On a Riemann

surface, the stalk of the structure sheaf is a PID. As a consequence, any coherent

sheaf splits as a direct sum of a locally free sheaf and a torsion sheaf. Therefore we

can write Q = V⊕ T, where V is locally free and T is a torsion sheaf supported on

the vanishing divisor (c) of c.

We want to compute the saturation L of the image of E1 in E2 ⊗K(D) of E1.

The projection of V⊕ T → V onto V induces a map E2 ⊗K(D). L is the kernel of
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this map, and sits inside the following commutative diagram:

0 E1

L

E2 ⊗K(D) V⊕ T

V

0

0

0

c

Computing determinants, we see that

det(E2 ⊗K(D)) = det(E)⊗ det(V)⊗ det(T)

= det(L)⊗ det(V)

It follows that L = E1 ⊗ O((c)). Tensoring with K(D)′, we conclude that Im(c) =

L⊗K(D)∗ = E1 ⊗ O((c))⊗K(D)∗.

3.3 Elementary reductions

We can reduce the problem of constructing U(n, 1)-Higgs bundles into constructing

a parabolic U(1, 1)-Higgs bundle and a parabolic U(n−1) bundle. The U(1, 1) piece

determines the nonzero eigenvalues of the Higgs field and the U(n− 1) piece deter-

mines the kernel. The U(n, 1)-Higgs bundle is constructed by taking an appropriate

extension.
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Let (E,Φ) be a U(n, 1)-Higgs bundle of loxodromic type:

E = E1 ⊕ E2

Φ =

 0 b

c 0


b, c 6= 0

Then the invariant subbundle corresponding to the kernel of Φ is the kernel of b:

S = ker(b) ⊂ E2. This fits in an exact sequence:

0 S E2 Q 0

We can construct a U(1, 1)-Higgs bundle (Ẽ = E1 ⊕ Q, Φ̃), where Φ̃ has the

following form:

Φ̃ =

 0 b̃

c̃ 0

 . (3.1)

The b̃ and c̃ determining Φ̃ are obtained in the following way. First c̃ is determined

by the following diagram:

0 S E2 Q 0

E1 ⊗K(D)∗

c c̃

Put slightly differently, c̃ ∈ H0(E∗1 ⊗ Q ⊗ K(D) is the image of c ∈ H0(E∗1 ⊗

E2 ⊗K(D) in the following exact sequence in cohomology:

0 H0(E∗1 ⊗ S⊗K(D)) H0(E∗1 ⊗ E2 ⊗K(D)) H0(E∗1 ⊗ Q⊗K(D))
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b̃ is slightly harder to obtain. For this, we have the following exact sequence

in cohomology:

0 H0(Q∗ ⊗ E1 ⊗K(D)) H0(E∗2 ⊗ E1 ⊗K(D)) H0(S∗ ⊗ E1 ⊗K(D))

Recall that b ∈ H0(E∗2 ⊗ E1 ⊗ K(D)). b̃ should be the preimage of b in the group

H0(Q∗ ⊗ E1 ⊗ K(D)). This might not always be possible. Consider the image of

b in H0(S∗ ⊗ E1 ⊗ K(D)). This is the morphism L → E1 ⊗ K(D) obtained by

restricting b to the subbundle S. However, recall that S was defined to be the

kernel of b. Therefore b restricts to the zero map on S, and hence its image in

H0(S∗ ⊗ E1 ⊗K(D)) is 0. Thus b is the image of an element, which we name b̃, in

H0(Q∗ ⊗ E1 ⊗K(D)). This proves the following lemma:

Lemma 3.3.1. Let (E = E1⊕E2,Φ =

 0 b

c 0

) be a parabolic U(n, 1)-Higgs bundle

of loxodromic type. Then quotienting E2 by the kernel S of b decomposes (E,Φ) into

a parabolic U(1, 1)-Higgs bundle of loxodromic type and a parabolic U(n−1) bundle.

Now we wish to invert the above process. Given a parabolic U(n− 1) bundle

S and a parabolic U(1, 1)-Higgs bundle (E,Φ), how can we construct a parabolic

U(n, 1)-Higgs bundle (Ẽ, φ̃)? First, assume (E,Φ) decompose as follows:

E = E1 ⊕ Q

Φ =

 0 b

c 0


b, c 6= 0

39



Together with S, we will show how to construct a parabolic U(n, 1)-Higgs bundle

(Ẽ, φ̃) of the following form:

Ẽ = E1 ⊕ E2

Φ̃ =

 0 b̃

c̃ 0


b̃, c̃ 6= 0

E2 is given by taking some extension of S by Q:

0 S E2 Q 0

For now, we do not fix the extension class β ∈ H1(Q∗⊗L). The existence and

uniqueness of the extension b̃ of b follows immediately from the following lemma:

Lemma 3.3.2. Given an extension E of a bundle Q by a bundle S and a map of

bundles b : Q→ F, there exists a unqiue extension b̃ : E→ F of b.

Proof. In the long exact sequence of cohomology, we have in particular

0 H0(Q∗ ⊗ F) H0(E∗ ⊗ F)
α

The (necessarily unique) extension b̃ of b is the image of b under the injective map

α.

On the other hand, c is slightly more difficult to obtain. Consider the following

long exact sequence:
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H0(E∗1 ⊗ E2 ⊗K(D)) H0(E∗1 ⊗ Q⊗K(D)) H1(E∗1 ⊗ S⊗K(D))

The section c ∈ H0(E∗1 ⊗ Q⊗K(D)), and we want to pull it back to a section

c̃ ∈ H0(E∗1⊗E2⊗K(D)). This is only possible if the image of c in H1(E∗1⊗L⊗K(D))

is 0 (see Lemma 3.4.1).

To further complicate matters, just finding an extension for which c lifts is

not enough. By Lemma 3.2.2, the vanishing of the lift c̃ has a direct effect on the

stability of Ẽ. As such, we must find an extension for which c lifts to a nonvanishing

element c̃ ∈ H0(E∗1 ⊗ E2 ⊗K(D)). We’ll tackle this issue in the next section.

3.4 Useful lemmas about extensions

To construct a U(n, 1)-Higgs bundle out of a U(n − 1) bundle and a U(1, 1)-Higgs

bundle, we need to identify for which extensions H1(Q∗⊗S) the map c̃ can be lifted.

The following lemma due to Narasimhan and Ramanan in [23] does just that.

Lemma 3.4.1. (Narasimhan-Ramanan) Let 0→ S→ E→ Q→ 0 be a short exact

sequence of holomorphic vectors bundles, and c : F → Q a map. Then the space of

extensions of S by Q for which c lifts to a map F → E corresponds to the kernel of

the map H1(Q ∗ ⊗S)→ H1(F∗ ⊗ S) induced by c.

Proof. Precomposition by c induces the following diagram:

0 Q∗ ⊗ S Q∗ ⊗ E Q∗ ⊗ Q 0

0 F∗ ⊗ S F∗ ⊗ E F∗ ⊗ Q 0

Taking cohomology, we get the following:
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. . . H0(Q∗ ⊗ Q) H1(Q∗ ⊗ S) H1(Q∗ ⊗ E) . . .

. . . H0(F∗ ⊗ Q) H1(F∗ ⊗ S) H1(F∗ ⊗ E) . . .δ
c∗

A necessary and sufficient condition for a lift of c to exist is that δc be 0. But

c is the image of the identity under c∗. By commutativity of the diagram, δ(c) is

the image of the extension class β ∈ H1(Q∗ ⊗ S). Thus c can be lifted if and only if

β is in the kernel of c∗ : H1(Q∗ ⊗ S)→ H1(F∗ ⊗ Q).

Lemma 3.4.2. If F and Q above are line bundles and c : F → Q is a nonzero

morphism, then the map H1(Q∗ ⊗ S)→ H1(F∗ ⊗ S) is surjective.

Proof. F and Q fit into the following short exact sequence, where T is a torsion

sheaf:

0 F Q T 0
c

Dualizing and tensoring with S, we have

0 Q∗ ⊗ S F∗ ⊗ S T
′ ⊗ S 0

c∗

where T′, and hence T
′ ⊗ S, is torsion. In the long exact sequence, this induces

H1(Q∗ ⊗ S) H1(F∗ ⊗ S) H1(T
′ ⊗ S) 0

c∗

T
′⊗S is torsion, and thusH1(T

′⊗S) = 0. Therefore, the map c∗ : H1(Q∗⊗S)→

H1(F∗ ⊗ S) induced by c is surjective.

Lemma 3.4.3. Let p ∈ P1 be a point at which c ∈ H0(F∗ ⊗ Q) vanishes. Then
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• The extensions E of Q by S for which c lifts to a c̃ ∈ H0(F∗⊗E) which vanishes

at p are in the kernel of the map H1(Q ∗ ⊗S)→ H1(F(p)∗ ⊗ S) induced by c.

• There is a natural inclusion of ker(H1(Q ∗ ⊗S) → H1(F(p)∗ ⊗ S)) into

ker(H1(Q ∗ ⊗S)→ H1(F∗ ⊗ S)).

Proof. Suppose c lifts to a map c̃ which vanishes at p. Then c and c̃ factor through

the inclusion F → F(p), giving the following commutative diagram:

0 S E Q 0

F

F(p)

c̃
c

c
′c̃

′

Thus a lift c̃ of c which vanishes at p is equivalent to a lift c̃
′

of c
′
. By Lemma

3.4.1, these extensions are contained in ker(H1(Q ∗ ⊗S)→ H1(F(p)∗ ⊗ S)).

Next we show that ker(H1(Q ∗⊗S)→ H1(F(p)∗⊗ S)) is naturally included in

ker(H1(Q ∗ ⊗S)→ H1(F∗ ⊗ S)). Consider the following short exact sequence:

0 F F(p) O|p 0
i

where F is included in F(p) as the subsheaf of sections vanishing at p. Dualizing

and tensoring with S, we have

0 F(p)∗ ⊗ S F∗ ⊗ S S|p 0
i∗

Taking cohomology, we have by Lemma 3.4.2 the following commutative diagram:
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H1(F(p)∗ ⊗ S) H1(F∗ ⊗ S) 0

H1(Q∗ ⊗ S) H1(Q∗ ⊗ S)

i∗

=

The containment of ker(H1(Q ∗ ⊗S) → H1(F(p)∗ ⊗ S)) into ker(H1(Q ∗ ⊗S) →

H1(F∗ ⊗ S)) follows from a simple diagram chase, proving the lemma.

When ker(H1(Q∗⊗S)→ H1(F(p)∗⊗(S))) is strictly contained in ker(H1(Q∗⊗

S) → H1(F∗ ⊗ S)), then we can find extensions E of Q by S such that the map

c : F → Q has a lift c̃ : F → E which is nonvanishing at p. If the containment is not

strict, the existence of a nonvanishing lift is measured by H0(F∗ ⊗ S). By adding

an element in the image of H0(F∗⊗ S) to the lift c̃, we can find new lift which does

not vanish.

Proposition 3.4.4. Given a vector bundle S, line bundles Q and F, and a nonzero

morphism c : F → Q, there exists an extension of Q by S such that c has a lift c̃ that

is nonvanishing.

Proof. The lift c̃ of c can only vanish along the divisor of c. First, we’ll pick an

extension. We have the following commutative diagram, with exact top row:

H0(F∗ ⊗ S) S|p H1(F(p)∗ ⊗ S) H1(F∗ ⊗ S) 0

H1(Q∗ ⊗ S) H1(Q∗ ⊗ S)

γ δ i∗

c′∗ c∗

id

Note that the maps γ and δ only depend on F and S, and not the extension class

β ∈ H1(Q∗ ⊗ S). Let p be a point in the divisor of c. Then there are two cases:
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Case 1: The map γ is not surjective

If γ is not surjective, then there is an element α ∈ Sp whose image δ(α) ∈ H1(F(p)∗⊗

S) is not zero. By exactness, i∗(δ(α)) = 0. On the other hand, c′∗ is surjective, and

therefore there is a β ∈ H1(Q∗ ⊗ S) such that c′∗(β) = δ(α). By commutativity,

c∗(β) = i∗(δ(α)) = 0. By Lemma 3.4.1, β is an extension for which c lifts to a an

element c̃. On the other hand, c′∗(β) is nonzero, so by Lemma 3.4.3 the lift c̃ is

nonvanishing at p.

As such, ker(c′∗) is strictly contained inside ker(c∗). In particular, there is a

nonempty open subset Up ⊂ ker(c∗) of extensions for which c lifts to a c̃, which does

not vanish at p.

Case 2: γ is surjective

If γ is surjective, then δ is identically 0, and i∗ is an isomorphism. In this case, ker(c′∗)

and ker(c∗) are exactly equal. Thus we expect any lift c̃ to vanish at p, regardless of

which extension we choose. However, H0(F∗ ⊗ S) is necessarily nonzero, and hence

a lift c̃ is unique only up to addition with an element in H0(F∗ ⊗ S). Since γ is

surjective, Vp = γ−1(S|p − {0}) is a nonempty open subset of H0(F∗ ⊗ S). The sum

of c̃ plus any element in Vp is necessarily nonvanishing at p.

Finishing the proof of Proposition 3.4.4

Now, let {p1, . . . , pn} be the set of points where c vanishes. Further, assume (up

to relabelling) that {p1, . . . , pk} are the points for which a in the above diagram is
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not surjective. Then U = ∩k1Upi is nonempty (since it is the complement of a finite

union of positive codimension closed subsets of ker(c∗)), and consists of extensions

for which c lifts to an element c̃ is nonvanishing at pi, for 1 ≤ i ≤ k. Additionally,

V = ∩nk+1Vpi is nonempty an consists of sections in H0(F∗ ⊗ S) which are non

vanishing at pi, for k + 1 ≤ i ≤ n. Picking an element γ ∈ V , γ + c̃ is a lift of c

which does not vanish at any pi, completing the proof.

Putting everything together, we have the following corollary :

Corollary 3.4.5. Let (E = E1 ⊕ Q,Φ =

 0 b

c 0

) be a parabolic U(1, 1)-Higgs

bundle of loxodromic type and let S be a rank n − 1 parabolic vector bundle. Then

there is an extension E2 of Q by S such that c lifts to a c̃ ∈ H0(E∗1 ⊗ E2 ⊗ K(D))

which is non-vanishing.
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Chapter 4: Deligne-Simpson for PU(n, 1)

In Chapter 3, we described the structure of a parabolic Higgs bundle corresponding

to a representation into PU(p, q). In the case of PU(n, 1), we described the addi-

tional structure of the Higgs field required to guarantee the monodromies around

the punctures are loxodromic. For such a Higgs field, there are two important in-

variant subbundles, the rank n− 1 kernel and a rank 2 subbundle corresponding to

the non-zero eigenspace. In particular, the degree of the rank 2 subbundle depends

on the vanishing of the map c : E1 → E2.

Finally, we showed that a parabolic PU(n, 1)-Higgs bundle can be decomposed

into a parabolic U(1, 1)-Higgs bundle of loxodromic type and a parabolic U(n− 1)

bundle, corresponding to the kernel of Φ. The main result of chapter 3, Proposition

3.4.4, says that we can put pieces back together with c nonvanishing, thus minimizing

the degree of the rank 2 subbundle.

In this chapter, we prove our Main Theorem with the aid of the above. The

construction of the kernel of Φ comes from 2.4.1, so we are left to construct the

U(1, 1) piece. First, we show that for k ≥ 3 fixed loxodromic conjugacy classes

in U(1, 1), there is a corresponding stable parabolic U(1, 1)-Higgs bundles. As a

corollary, solutions to the Deligne-Simpson problem for loxodromic conjugacy classes
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in U(1, 1) always exist. Second, we combine these two pieces to prove our Main

Theorem regarding the existence of stable parabolic U(n, 1)-Higgs bundles.

4.1 Constructing stable parabolic U(1, 1)-Higgs bundles

Let C1, C2, C3 be fixed loxodromic conjugacy classes in U(1, 1). The conjugacy class

Cj can be represented by matrix of the form

Aj =

 exp(2πiβj)rj 0

0 exp(2πiβj)r
−1
j

 . (4.1)

By Simpson’s Correspondence and the discussion in section 2.5.3, constructing

a solution to the Deligne-Simpson problem for C1, C2, C3 is equivalent to construct-

ing a stable parabolic U(1, 1)-Higgs bundles (not necessarily of degree 0) satisfying:

• the filtration of Epj has one rank 2 jump at βj;

• the residue of Φ acts on Grβj(Epj) with eigenvalues ±i log(rj)/4π.

We should say something about why the eigenvalues of the residue should be

±i log(rj)/4π. By Simpson’s Correspondence, the imaginary parts of eigenvalues

of the residue of Φ at the marked points determine the norms of the eigenvalues

of the monodromy around the marked points. In particular, if the eigenvalue of

res(Φ) = b + ci, then the corresponding eigenvalue of the monodromy has norm

exp(−4πc). Since we are interested in constructing representations with loxodromic

monodromies, then it follows from equation 4.1 that the eigenvalues of the mon-

odromy have norms r, r−1. As such, the (imaginary parts of) the eigenvalues of

res(Φ) should be ±i log(rj)/4π.
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Since we are interested in representations into PU(n, 1), we don’t require that

the Higgs bundle have parabolic degree 0. If (E,Φ) has nonzero degree, then after

tensoring with an appropriate line bundle (with trivial parabolic structure), we can

assume −2 < pdeg(E) ≤ 0. The trick (following [28]) is to then add an additional

marked point p, distinct from {p1, p2, p3}. The filtration at this point is given by a

single rank 2 jump of weight α = −pdeg(E)
2

at p. This gives a new parabolic bundle,

which is stable iff E is, of parabolic degree 0. This new bundle gives a representation

of π1(P1 − {p1, p2, p3, p}) i.e. matrices Aj ∈ Cj such that A1A2A3M = 1, where M

is the monodromy around the new point p. It is not hard to see that M must be

the scalar matrix M = exp(−2
3
πipdeg(E))I, and so we end up with a representation

π1(P1 − {p1, p2, p3})→ PU(1, 1).

In this section, we prove the following:

Proposition 4.1.1. Let C1, C2, and C3 be loxodromic conjugacy classes in U(1, 1),

represented by the matrix Aj of the form given in equation (4.1) . Then there exists

a stable parabolic U(1, 1)-Higgs bundle with three marked points D = p1 + p2 + p3

with the following properties:

• The parabolic structure at pj consists of a single rank-2 jump with weight βj

• The residue of Φ at pj has eigenvalues ±i log(rj)/4π.

On the representation side, we have the following easy corollary:

Corollary 4.1.2. Given loxodromic conjugacy classes C1, C2, and C3 in PU(1, 1),

there is a matrix Aj ∈ Cj such that A1A2A3 = I.
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Let (E = E1 ⊕ E2,Φ) be a stable U(1, 1)-Higgs bundle. Possibly tensoring

with a line bundle (with trivial parabolic structure), we may assume E1 = O and

E2 = O(d). With respect to this splitting of E , we have

Φ =

 0 b

c 0


where b ∈ H0(O(d)∗⊗O⊗K(D))) ' H0(O(1−d)) and c ∈ H0(O∗⊗O(d)⊗K(D))) '

H0(O(1 + d)). Since we require Φ to be of loxodromic type, each of b and c must

be nonzero at each pj, and therefore −1 ≤ d ≤ 1.

4.1.1 Constructing the Higgs field

Here we show how to construct a U(1, 1)-Higgs field with appropriate residues. From

the above, we have 3 separate cases to consider: given E = O ⊕O(d), we have the

cases d = −1, 0, 1.

We will build the components b and c of the Higgs field out of global sections

of H0(E∗2 ⊗ E1 ⊗K(D)) and H0(E∗1 ⊗ E2 ⊗K(D)). In order to verify our new Higgs

field has residues with appropriate eigenvalues, we will need to fix a choice of a local

frame and a choice of coordinates at every marked point pj. The following lemma

says the eigenvalues of res(Φ)pj do not depend on these choices:

Lemma 4.1.3. The eigenvalues of the residue of the Higgs field does not depend on

the choice of local frames and local coordinates.

Proof. Changing frames or coordinates corresponds to conjugating the Higgs field

by an invertible matrix, which preserves the eigenvalues.
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By Simpson’s Correspondence and the discussion above, we want the residue

of Φ to have eigenvalues with imaginary parts ±i log(rj)/4π. For a PU(n, 1)-Higgs

field, the residues have the form:  0 b

c 0


The characteristic polynomial of such a matrix is p(λ) = λ2 − bc, and therefore

the eigenvalues are ±
√
bc. As such we’ll construct a Φ whose residue at pj has

determinant − (log(rj)/4π)2.

Case 1: d = ±1

We’ll focus on the case when d=1. The other case will follow a similar argument.

We have

b ∈ H0(O(1)∗ ⊗K(D)) = H0(O)

c ∈ H0(O∗ ⊗O(1)⊗K(D)) = H0(O(2)).

Let {s1, s2, s3} be a basis of H0(O(2)) such that sj is nonzero at pj and zero

at the remaining marked points. Let b ∈ H0(O) be any fixed nonzero constant and

c = xs1 +ys2 +zs3 ∈ H0(O(2). Fixing local frames and local coordinates at each pj,

denote the residue of sj by rj. Then we want to solve the following linear equations

in x, y, z:

br1x = −γ21

br2y = −γ22

br3z = −γ23
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where γj = log(rj)/4π. This is, of course, trivial. Using these to define Φ gives

us a Higgs field with the required residues.

Note that if we write E2 = O(−1), we can also produce a suitable Φ by

mimicking the above construction with a and c switched.

Case 2: d = 0

Now we have

b ∈ H0(O∗ ⊗K(D)) = H0(O(1))

c ∈ H0(O∗ ⊗K(D)) = H0(O(1)).

Let {s1, s2} be a basis for H0(O(1)), where s1 vanishes at p1 and s2 vanishes

at p2. Then setting b = ws1 + xs2 and c = ys1 + zs2. . Fixing local frames and

local coordinates at each pj, label the residues of s1 at p2, p3 by r12 and r13 and the

residues of s2 at p1, p3 by r21 and r23. All the residues are necessarily nonzero. Then

we want to solve the following quadratic equations in w, x, y, and z:

yzr221 = −γ21

wxr212 = γ22

wxr213 + (wz + xy)r13r23 + yzr223 = γ23 .

Note that, since the γi’s and the rij’s are nonzero, w, x, y, and z, must also

be nonzero. For simplicity, write a =
−γ21
r221

and b =
−γ22
r212

. Then w = b
x

and y = a
z
.

Substituting this into the third equation, we want to solve:

br213 + (b
z

x
+ a

x

z
)r13r23 + ar223 = −γ23
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Finally, substituting u = z
x

and multiplying by u, we need to solve the following

quadratic equation in u:

br13r23u
2 + (γ23 + br213 + ar223)u+ ar13r23 = 0.

Of course, by the quadratic formula, this equation has at least one solution.

Since qr13r23 is nonzero, the solution u is nonzero. Writing z = ux and fixing a

nonzero x, we can find w and y solving the given equations.

4.1.2 Stability

To show the Higgs bundles we constructed above are stable, we must compute the

invariant subbundles and show the slope condition is satisfied. Since a and c are

both nonzero, an invariant line subbundle L must be a subsheaf of both summands

of E . For d 6= 0, this gives

pµ(L) = min(0, d) +
∑

βj

pµ(E) =
d

2
+
∑

βj

As such , we have

pµ(E)− pµ(L) =
d

2
−min(0, d) =

1

2
> 0

The d = 0 case is slightly trickier. The issue is that O could be invariant, in

which case the bundle is semistable. This happens when the only zero of b and c

agree, and so the Higgs bundles we’ve constructed are generically stable.
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4.1.3 Existence of stable U(1, 1)-Higgs bundles

The above construction for d = 1 generalizes to an arbitrary number of marked

points/conjugacy classes. The general version of Proposition 4.1.1 is the following:

Theorem 4.1.4. Let C1, . . . , Ck (k ≥ 3) be fixed loxodromic conjugacy classes in

U(1, 1), represented by a matrix Aj of the form given in equation 4.1. Then there

exists a stable parabolic U(1, 1)-Higgs bundle with three marked points D = p1 +

. . .+ pk with the following properties:

• The parabolic structure at pj consists of a single rank-2 jump with weight βj

• The residue of Φ at pj has eigenvalues ±i log(rj)/4π.

Proof. Let d = k − 2. Then (E = O ⊕ O(d),Φ) with Φ constructed similar to

the d = 1 case above is a stable parabolic U(1, 1)-Higgs bundle with the required

properties.

Again, we have the following easy corollary:

Corollary 4.1.5. Let C1, . . . , Ck (k ≥ 3) be fixed loxodromic conjugacy classes in

U(1, 1). Then there is a matrix Aj ∈ Cj such that A1 . . . Ak = I. This solution is

irreducible, in the sense that the Aj do not all preserve a nonzero subspace V ⊂ Cn

Proof. By Simpson’s Correspondence, the stable parabolic U(1, 1)-Higgs bundle in

Theorem 4.1.4 corresponds to a stable filtered local system. Since by construction

the real parts of the eigenvalues of res(Φ)j are zero, the filtration on the local

system is trivial. As such, the stable filtered local system is really an irreducible
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representation π1(P1 − {p1, . . . , pk}) → PU(1, 1), whose monodromy around pj is

Aj.

The construction in the case d = 0 does not, to my knowledge, generalize

easily. For the purposes of proving the main theorem, the result in theorem 4.1.4

will suffice.

4.2 Main Theorem for PU(n, 1)

Let C1, C2, . . . , Ck be k fixed loxodromic conjugacy classes in PU(n, 1). Lift each Cj

to a conjugacy class C̃j in U(n, 1), represented by a diagonal matrix of the following

form:

Aj =



rj

r−j 1

e2πiα
1
j

. . .

e2πiα
n−1
j


(4.2)

where r is a positive real number and 0 ≤ αj1 ≤ . . . ≤ αjn−1 < 1.

Theorem 4.2.1. Main Theorem: Assume the αjs defining the conjugacy classes C̃j

satisfy Σj,kα
j
k ∈ Z and the strict U(n − 1) inequalities in Theorem [4]. Then there

exists a stable parabolic U(n, 1)-Higgs bundle (E,Φ) with n ≥ 3 marked points such

that:

• the filtration of Epj has a rank 2 jump at 0 and rank 1 jumps at each of

αi1, . . . , α
i
n−1
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• the residue of Φ at pj has eigenvalues ±i log(r)4π, and 0 with multiplicity

n− 1.

Note that these conditions are sufficient, but not necessary. It is possible

that there are still solutions to the Deligne-Simpson problem when the U(n − 1)

inequalities are not satisfied.

4.3 Proof of Main Theorem

4.3.1 Construction

Following the procedure outlined in sections 3.3 and 3.4, we can build a parabolic

U(n, 1)-Higgs bundle out of a rank n− 1 parabolic bundle and a parabolic U(1, 1)-

Higgs bundle. The construction is as follows.

First, we construct the kernel of our Higgs field. Since the αij satisfy the

U(n − 1) inequalities, there exists by Theorem 2.4.1 a stable rank n − 1 parabolic

bundle S, with weights at pj given by the αjk.

Second, we need to ensure that the residues of our Higgs field have the appro-

priate eigenvalues. By theorem 4.1.4, there exists a (necessarily stable) parabolic

U(1, 1)-Higgs bundle (E ,Φ) of parabolic degree k − 2, such the eigenvalues of the

residue of Φ at pj are ±i log(r)/4π. Writing E = E1 ⊕Q, Φ has the following form:

Φ =

 0 b

c 0


We will build our new Higgs bundle (Ẽ = E1 ⊕ E2, Φ̃). With respect to the
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splitting of Ẽ , Φ̃ has the following form:

Φ̃ =

 0 b̃

c̃ 0


E2 is constructed by picking a special extension of Q by S. No matter which ex-

tension we pick, b : Q → E1 ⊗ K(D) extends to a morphism b̃ : E2 → E1 ⊗ K(D)

by Lemma 3.3.2. However, we still need to pick an extension for which c : E1 →

Q⊗K(D) lifts to c̃ : E1 → E2⊗K(D). For stability reasons, we must also minimize

the vanishing of the lift c̃. By Proposition 3.4.4, there is an extension such that c

lifts and is non-vanishing.

4.3.2 The parabolic structure

We haven’t mentioned the parabolic structure on Ẽ . However, both the U(1, 1)

bundle E and the U(n − 1) bundle S come equipped with a parabolic structure,

and hence induce a parabolic structure on the extension E2. However, this induced

structure is not in general unique. All parabolic extensions of Q by S are classified

by elements of H1(ParHom(Q,S)).

Lemma 4.3.1. Let S and Q be two parabolic vector bundles. If Q has the trivial

parabolic structure, then ParHom(Q,S) = Hom(Q,S).

Proof. Since the parabolic structure on Q is trivial, every morphism Q → S is

parabolic, and hence ParHom(Q,S) = Hom(Q,S).

In our case, we have only fixed the extension E2. However, since by con-

struction Q has trivial parabolic structure, the parabolic structure on S uniquely
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determines the parabolic structure on E2, and thus on E .

4.3.3 Stability

Finally we must determine if the Higgs bundle (Ẽ , Φ̃) is stable. From the discussion

above, there are two invariant subbundles. The first is the kernel of b, which by

construction is S. The second invariant subbundle is the rank-2 subbundle. By

Lemma 3.2.2, this is V = E1⊕ (E1((c̃))⊗K(D)∗). Since in our construction c̃ doesn’t

vanish, we have V = E1 ⊕ (E1 ⊗K(D)∗).

When n > 2, rank(S) > 1, and since S is the kernel of Φ̃, any subbundle of

S is contained in the kernel, and hence invariant. However, S is a stable parabolic

bundle, as constructed by theorem 2.4.1. As such, if F is any subbundle of S, then

pµ(F) < pµ(S). Thus we need only verify that pµ(S) < pµ(E).

By construction, pdeg(E1) = 0, and pdeg(Q) = k − 2. By the above, 3.2.2,

pdeg(V) = 2− k. We compute the parabolic degree of Ẽ below:

pdeg(Ẽ) = pdeg(E1) + pdeg(E2)

= pdeg(E1) + pdeg(Q) + pdeg(S)

= k − 2 + pdeg(S)

= k − 2

Finally, we compare the degrees of these subbundles to the degree of Ẽ :

pµ(Ẽ)− pµ(S) =
k − 2

n+ 1
− 0 =

k − 2

n+ 1
> 0

pµ(Ẽ)− pµ(V) =
k − 2

n+ 1
− 2− k

2
> 0
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We conclude that the parabolic U(n, 1) bundle Ẽ is stable.

Remark Note that in equation 4.2, we pick a specific lift of a loxodromic conjugacy

class in PU(n, 1) to a conjugacy class in U(n, 1). There are many other choices, for

example:

Aj =



rje
2πiβj

r−1j e2πiβj

e2πiα
1
j

. . .

e2πiα
n−1
j


where βj is nonzero. For the purposes of stating the theorem, which lift we choose

is not important. In fact, the stability of the kernel does not depend on which lift

we choose (but the condition that the weights sum to an integer does). However,

recall that the Higgs field we construct must be parabolic with respect to the flags

chosen at the marked points. The weights on the U(1, 1) bundle are the βj’s. If

these are larger than the αkj ’s, then the morphism c constructed above, and hence

Φ, is not parabolic.

4.4 Deligne-Simpson and Representations

Reinterpreting the existence of a stable Higgs bundle in terms of the corresponding

filtered local system, we have the following the corollary:

Corollary 4.4.1. Let Cj be given loxodromic conjugacy classes in PU(n, 1), lifted

to C̃j to U(n, 1) as in equation 4.2. If the αjk satisfy the U(n− 1) inequalities, then
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there is a matrix Aj ∈ Cj such that A1 . . . Ak = 1.

Proof. By Simpson’s Correspondence, the stable parabolic U(n, 1)-Higgs bundle in

Theorem 4.2.1 corresponds to a stable filtered local system L.

The filtration on L is determined by the real parts of the eigenvalues of res(Φ)j.

The nonzero eigenvalues of res(Φ)j come the U(1, 1) bundle E , as determined by

4.1.4. By construction the real parts of the eigenvalues of res(Φ)j are zero, and

hence the filtration on L is trivial. As such, the stable filtered local system L is really

an irreducible representation π1(P1 − {p1, . . . , pk})→ PU(n, 1), whose monodromy

around pj is Aj.

4.5 Return to PU(2, 1)

The final remark is that our result generalizes the result of Falbel and Wentworth

in [12] PU(2, 1) case. We provide a separate proof, similar to that of theorem 4.2.1,

but with one key exception. In this case, we can remove the requirement that the

weights sum to an integer.

Theorem 4.5.1. Let C, . . . Ck with k ≥ 3 be fixed loxodromic conjugacy classes in

PU(2, 1), represented by a matrix of the following form:
rj

r−j 1

e2πiαj


Then there exists a stable parabolic U(n, 1)-Higgs bundle with n ≥ 3 marked points
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and parabolic structure at pj consisting of weights 0, 0, αj, where the residues of the

Higgs field at pj have eigenvalues ±i log(r)/4π, and 0 with multiplicity 1.

Proof. The only difference from the proof of theorem 4.2.1 is how we choose the

kernel, which in this case is a line bundle we label L = O(n). Once we pick n, the

parabolic structure on L is obvious, and the parabolic line bundle L is automatically

stable. Choose n such that

−1 < Σjαj + n ≤ 0.

Finally, we check that the stability conditions on E are satisfied.

pdeg(E)− 3pdeg(L) = (k − 2 + Σjαj + n)− 3Σjαj − 3n

= k − 2− 2Σjαj − 2n

> k − 2 > 0

By Lemma 3.2.2, the invariant rank 2 bundle is V = O⊕K(D)∗ = O⊕O(2−k).

pdeg(E)− 3

2
pdeg(V) = (k − 2 + Σjαj + n)− 3

2
(k − 2)

=
5

2
k − 3 + Σjαj + n

>
5

2
k − 4

> 0.

We conclude that E is stable.

As before, we can reinterpret the stable Higgs bundles we’ve constructed

as filtered local systems with trivial filtration, i.e. a representation π1(P1 −

{p1, . . . , pk})→ PU(2, 1):
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Corollary 4.5.2. Let C, . . . Ck with k ≥ 3 be fixed loxodromic conjugacy classes in

PU(2, 1). Then there exists matrices Aj ∈ Cj such that A1 . . . Ak = I.
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s

Chapter 5: Solutions to the Deligne-Simpson Problem for PU(3, 1)

Our main theorem says that when some of the data defining a collection of loxo-

dromic conjugacy classes in U(n, 1) satisfies the U(n− 1) inequalities in 2.4.1, then

there is an irreducible solution to Deligne-Simpson problem. But we’ve actually

proven that solutions exist in many other cases as well. In this chapter, we study

the PU(3, 1) case with three fixed loxodromic conjugacy classes more closely.

In section 5.1, we review some material regarding the product map µ : C1 ×

C2 → PU(3, 1). First, we restrict µ to pairs (A,B) with loxodromic product. Then

we construct a new map, µ̃, which is the projection of the set of loxodromics in

PU(3, 1) onto Clox, the space of loxodromic conjugacy classes. The main result

is that the image of µ̃ consists as a collection of reducible walls and irreducible

chambers. Computing the differential dµ̃, we can show that µ̃ is a submersion at a

pair (A,B) generating an irreducible subgroup. As a consequence, any chamber is

either completely empty or completely full. This technique was used in [11] and [26]

to study the U(n) case, and used in [25] and [12] to study the elliptic and loxodromic

case for PU(2, 1), respectively.

In section 5.2 we consider the different types of reducible subgroups a pair

(A,B) can generate. With this information in mind, we compute the reducible
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walls in Clox = T2/S2 × (1,∞).

Finally, in section 5.3, we use the Higgs bundles constructed in chapter 4 to

show that many of the chambers are full. The idea is that although there is no

universal description of an unstable parabolic bundle, we can start with a stable

parabolic bundle with known parabolic structure, and study how stability changes

as we vary the weights. In particular, we have the Harder-Narasimhan filtration of

an unstable bundle, which in rank 2 says that any destabilizing line subbundle of a

rank 2 unstable parabolic bundle is unique. In terms of the inequalities determining

stability given in Theorem 2.4.1, exactly one of them becomes invalid. By keeping

track of which inequality is invalid as we vary the weights, we can show that certain

walls are in the image of a pair (A,B) generating an irreducible. As a result, we

conclude that many chambers are full.

5.1 The product map µ

Fix two loxodromic conjugacy classes C1 and C2 in PU(3, 1). Then the group-valued

moment map µ is defined as follows:

µ : C1 × C2 → PU(3, 1)

(A,B) 7→ AB

Since in our case we are interested in (A,B) ∈ C1 × C2 with loxodromic product,

we restrict µ to (A,B) ∈ C1 × C2 whose product is loxodromic. This map is

equivariant with respect to conjugation by elements of PU(3, 1) in each factor. Thus

our restricted map descends to map onto Clox, the space of loxodromic conjugacy
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classes:

µ̃ : (C1 × C2)
⋂

µ−1(loxodromics)→ Clox

For PU(3, 1), a loxodromic conjugacy class can be identified (up to scaling)

by two angles, α1 < α2, and a real number r > 1. Thus Clox ' T2/S2 × (1,∞). As

an example, consider a conjugacy class C in PU(3, 1). Then C is represented by a

matrix of the following form:

A =



r 0 0 0

0 r−1 0 0

0 0 e2πiα1 0

0 0 0 e2πiα2


, α1 ≤ α2, r > 1

Then the conjugacy class C is identified by the point (α1, α2, r) ∈ T2/S2 × (1,∞).

The (1,∞)-factor is not important in these circumstances, and we will usually

suppress it, and study the T2/S2 portion instead.

The next result concerns the image of pairs (A,B) generating an irreducible

subgroup. Since it involves computing the differential of the map µ̃, we must be

careuful to ensure the source and target of µ̃ are smooth manifolds. To this end, we

further restrict the map µ̃ to (A,B) with regular loxodromic product. Smoothness

is guaranteed by the following proposition. Following the proof in [15] of the well

known fact that the regular elliptic elements in PU(n, 1) form an open set, we have

the following:

Proposition 5.1.1. The regular loxodromic elements in PU(n, 1) form an open

subset.
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Proof. Let g ∈ PU(n, 1) be a regular loxodromic element. Then by definition, we

can represent g by an element g̃ ∈ U(n, 1) with distinct eigenvalues. The elements

in GL(n,C) with distinct eigenvalues forms an open set, which when intersected

with U(n, 1) gives an open neighborhood of g̃. The projection onto PU(n, 1) gives

an open neighborhood of g.

We have the following proposition, adapted from [11] and [25] to our situation:

Proposition 5.1.2. Let C1, C2 be two fixed loxodromic conjugacy classes, and

(A,B) ∈ C1 × C2 such that AB is loxodromic and the subgroup generated by A,B

irreducible. Then the differential of µ̃ is surjective at (A,B), and hence µ̃ is locally

surjective at (A,B).

This follows immediately from the following lemma, since PU(n, 1) has trivial

center. (see for example [25], [11]):

Lemma 5.1.3. Im(d(A,B)µ) = ζ(A,B)⊥AB

The application is that the image of µ̃ is divided into pieces by the image of

reducible points (called walls). The interiors of these walls (called chambers) are,

by the proposition, either completely full or completely empty. The main theorem

actually constructs irreducible solutions on one of the walls in our picture, and thus

implies a large number of chambers are full.
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5.2 Description of reducible walls for PU(3, 1)

Let (A,B) ∈ C1 × C2 generate a reducible subgroup of PU(3, 1). In this case,

reducible can be interpreted as A and B both preserving a fixed subspace of C4.

Depending on the type of subspace preserved, (A,B) (after lifting to U(n, 1)) gen-

erates a subgroup of one of the groups in the following diamond:

U(3, 1)

U(1, 1)× U(1)× U(1)

U(1, 1)× U(2)U(2, 1)× U(1)

Remark While there are other possibilities, such as when A and B are simultane-

ously diagonalizable, we may assume without loss of generality that A, B generate

one of the above subgroups. The missing cases result in reducible walls which give a

relationship between the translation lengths (the r’s) of A, B, and C. In the proof

and statement of Theorem 4.2.1, the translation length r plays no role in the sta-

bility of the resulting bundle, and hence plays no role in the existence of irreducible

solutions to AB = C.

More explicitly, if AB = C is irreducible, then by Theorem 2.5.3 there is a

stable parabolic PU(3, 1)-Higgs bundle (E,Φ) with three marked points, where the

monodromy around each marked point {pa, pB, pC} are in the conjugacy class of A,

B, and C−1, respectively. Then the results of section 3.3 allow us to break (E,Φ)

into a parabolic U(1, 1)-Higgs bundle (Ẽ, Φ̃) and a parabolic rank 2 bundle S. In

fact, E is, up to tensoring by a line bundle, one of the 3 possibilities in section 4.1.
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Thus we can replace the Higgs field Φ̃ with a new Higgs field Φ̃′, whose residue at

pC has different eigenvalues. Putting (Ẽ, Φ̃′) and S back together via the results

in section 3.4, we a new, necessarily stable, parabolic PU(3, 1)-Higgs bundle such

that the conjugacy class of the monodromy around the point pC is the same as C−1

except with a different translation length.

5.2.1 U(1, 1)× U(1)× U(1) walls

There are two ”vertices” (really, it’s two lines, but we’re ignoring the (1,∞) factor)

corresponding to groups< A,B > where A,B both preserve two linearly independent

1-dim elliptic subspaces.

Proposition 5.2.1. Let A,B be two loxodromic elements in PU(3, 1), which pre-

serve two 1 dimensional independent elliptic subspaces of C4. Then {γ1, γ2} are

given by one of the following:

•


γ1 = α1 + β1(mod1)

γ2 = α2 + β2(mod1)

•


γ1 = α1 + β2(mod1)

γ2 = α2 + β1(mod1)

Proof. We use the following decomposition of AB = C:
A′ 0 0

0 e2πiα1 0

0 0 e2πiα2




B′ 0 0

0 e2πiβ1 0

0 0 e2πiβ2

 =


C ′ 0 0

0 e2πiψ1 0

0 0 e2πiψ2


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where A′, B′, C ′ ∈ U(1, 1) are loxodromic. By either Theorem 4.1.4, Theorem 4.2.1,

or [12], C ′ ranges over all possible loxodromic conjugacy classes. Diagonalizing C ′,

we have:

C ′ =

 rCe
2πiψ 0

0 r−1C e2πiψ


Finally, we compute γ1, γ2:

γ1 = ψ1 − ψ = α1 + β1

γ2 = ψ2 − ψ = α2 + β2

This gives the first case of the result. The second case follows from the above,

interchanging the roles of β1 and β2.

Note that in the above proof, rC is allowed to range over all possible values.

Thus the image of < A,B > consists of the whole line (γ1, γ2)× (1,∞).

5.2.2 U(1, 1)× U(2) walls

When A,B preserve a common 2-dimensional elliptic subspace, we have the follow-

ing:

Proposition 5.2.2. Let A, B be two loxodromic elements PU(3, 1) with angles

{α1, α2} and {β1, β2} respectively. If the group generated by A,B preserves a 2-

dimensional elliptic subspace, then the angle pair {γ1, γ2} of C = AB lie on one of

the following segments:
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• I(ρ) = 2: γ1 + γ2 = α1 + α2 + β1 + β2
γ2 > max(α1 + β2, α2 + β1)

γ2 < min(α1 + β1 + 1, α2 + β2)

• I(ρ) = 3: γ1 + γ2 = α1 + α2 + β1 + β2 − 1
γ2 > max(α1 + β1, α2 + β2 − 1)

γ2 < min(α1 + β2, α2 + β1)

• I(ρ) = 4: γ1 + γ2 = α1 + α2 + β1 + β2 − 2
γ2 > max(α1 + β2, α1 + β2)− 1

γ2 < min(α1 + β1, α2 + β2 − 1)

In this situation, AB = C reduces to: A′ 0

0 A′′


 B′ 0

0 B′′

 =

 C ′ 0

0 C ′′

 (5.1)

where A′, B′, C ′ ∈ U(1, 1) are loxodromic, and A′′, B′′, C ′′ ∈ U(2). Me may assume

the subgroup < A′′, B′′ > of U(2) is irreducible. The case that it is reducible was

handled in the previous section. In order to prove this proposition, we will need

two results. The first is Theorem 2.4.1, regarding the existence of stable parabolic

bundles of rank 2. Fix k conjugacy classes C1, C2, . . ., Ck in U(2), each represented

by a matrix of the form:

As =

 e2πiα
j
1 0

0 e2πiα
s
2

 αs1 ≤ αs2

For convenience, we include the Theorem again here:
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Theorem 5.2.3. (Biswas) [3]

Let S = {1, 2, . . . , k}, and assume Σs∈S(αs1 + αs2) is an odd (respectively even)

integer, say 2N (respectively 2N +1). Then there is a stable rank 2 parabolic bundle

with parabolic weights {αs1, αs2} at the marked point ps ∈ P1 if and only if for every

D ⊂ S of size 2j (resp. 2j + 1), where j is a nonnegative integer, the following

inequality holds:

−N − j + Σs∈Dα
s
2 + Σs∈S−Dα

s
1 < 0.

The second result, from [11], concerns the index of a representation. For a

representation ρ : π1(P1 − {p1, . . . , pk}) → U(2), the index I(ρ) is the sum of the

angles defining the conjugacy class of the monodromy around each marked point

pj. From the perspective of parabolic bundles, the representation is the sum of the

parabolic weights. In either case, we have I(ρ) = Σs∈S(αs1 + αs2).

Proposition 5.2.4. (Falbel, Wentworth) [11]

For any representation ρ : π1(P1 − {p1, . . . , pk})→ U(n), we have

2−N0(ρ) ≤ I(ρ) ≤ 2(k − 1) +N0(ρ)−N1(ρ)

where N0(ρ) is the number of trivial representations appearing in the decomposition

of ρ into irreducibles, and N1(ρ) is the total multiplicity of 0 among the αsj.

We can now return to the proof of Proposition 5.2.2.

Proof. Given the reduction in equation 5.1, we need to study the U(2) piece, i.e.

the equation A′′B′′ = C ′′. Note that this setup is slightly different than in Theorem

5.2.3 and Proposition 5.2.4. To apply these theorems to our case, simply consider
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the representation ρ corresponding to the equation A′′B′′(C ′′)−1 = I. Represent the

conjugacy class of A′′, B′′, and C ′′ by {α1, α2}, {β1, β2}, and {γ1, γ2} respectively,

with α1 ≤ α2, etc., as usual. Then using (C ′′)−1 amounts to using 1 − γ2 ≤ 1 − γ1

in the inequalities in Theorem 5.2.3 and Proposition 5.2.4.

Since we only need to worry about irreducible solutions, Proposition 5.2.4 says

the possible values of I(ρ) are 2, 3, or 4. We’ll handle the case when I(ρ) = 3. The

other two cases follow similarly.

I(ρ) = 3 gives the following:

γ1 + γ2 = α1 + α2 + β1 + β2 − 1 (5.2)

This equation is only valid, of course, when an irreducible representation ρ actu-

ally exists. Necessary and sufficient conditions for the existence of ρ are given by

Theorem 5.2.3. The inequalities take the following form:

α1 + β1 < γ2

α2 + β2 < 1 + γ2

α2 + β1 < 1 + γ1

α1 + β2 < 1 + γ1

Equation 5.2 gives a linear relationship between γ1 and γ2, depending on the

αj’s and the βj’s. In the future, we will think of these walls as giving γ1 as a function

of γ2. For this particular case, we have γ1 = α1 +α2 +β1 +β2− γ2− 1. In this case,

the above inequalities, together with 0 ≤ γ2 < 1, give the domain of this function.
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Substituting γ1 into the above inequalities, we have:

γ2 > α1 + β1

γ2 > α2 + β2 − 1

γ2 < α1 + β2

γ2 < α2 + β1

This completes the proof for the case I(ρ) = 3. The other two cases follow

similarly.

For fixed loxodromic conjugacy classes C1 and C2, at least one and at most

two of the equations in Proposition 5.2.2 have no solutions. To best understand the

geometry of these walls, we temporarily relax the restriction 0 ≤ γ2 ≤ γ1 < 1 to

0 ≤ γ1−γ2 ≤ 1. Then the wall is the shortest line segment of slope−1 line connecting

the two vertices given in 5.2.1. When two equations in 5.2.2 have solutions, the image

of this line segment in the affine chart for T2/S2 is disconnected, as seen in figure

5.1. When only one equation has solutions, the segment in T2/S2 is connected, as

in 5.2

Figure 5.1: An example of a disconnected P (U(1, 1)× U(2)) wall
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Figure 5.2: An example of a connected P (U(1, 1)× U(2)) wall

5.2.3 U(2, 1)× U(1) walls

In this section we consider the case were A,B preserve a common 1-dimensional

elliptic subspace.

Proposition 5.2.5. Let A, B be two loxodromic elements in PU(3, 1) with angles

{α1, α2} and {β1, β2} respectively. If the group generated by A, B preserves a 1-

dimensional elliptic subspace, then the angles {γ1, γ2} of AB = C are given by one

of the following lines:

• γ1 = 3γ2 + α1 + β1 − 3α2 − 3β2(mod1)

• γ1 = 3γ2 + α1 + β2 − 3α2 − 3β1(mod1)

• γ1 = 3γ2 + α2 + β1 − 3α1 − 3β2(mod1)

• γ1 = 3γ2 + α2 + β2 − 3α1 − 3β1(mod1)

where 0 ≤ γ2 ≤ γ1 < 1.

Proof. We’ll show how to derive the first equation. The argument for the other
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three is similar, and simply involves permuting the angles of A and B among the

four possibilities.

Since A, B preserve a common elliptic subspace, AB = C can be written in

the following form: A′ 0

0 e2πiα2


 B′ 0

0 e2πiβ2

 =

 C ′ 0

0 e2πiψ3


where A′, B′, C ′ ∈ U(2, 1) are loxodromic. By Theorem 4.2.1, C ′ ranges over all

possible conjugacy classes of loxodromic elements. If we write

C ′ =


re2πiψ1 0 0

0 r−1e2πiψ1 0

0 0 e2πiψ2

 ,
then diagonalizing A and B, we have the following three equalities involving γ1 and

γ2:

γ1 = ψ2 − ψ1

γ2 = ψ3 − ψ1 = α2 + β2 − ψ1

α1 + β1 = 2ψ1 + ψ2

where each equation is taken mod 1. The third equation comes from the requirement

that det(A′B′) = det(C ′). The derivation of the equation for the wall is as follows:

α1 + β1 = 2ψ1 + ψ2

α1 + β1 = 3ψ1 + γ1

γ1 = −3ψ1 + α1 + β1

γ1 = 3γ2 + α1 + β1 − 3α2 − 3β2.
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The remaining three equations can be derived similarly, by interchanging the

roles of α1 and α2, β1 and β2 in each of the four possible ways.

Though the above proof follows similarly to the corresponding result in [25]

for elliptic classes in PU(2, 1), there is one key difference. For two elliptic conjugacy

classes C1, C2 in PU(1, 1), there are restrictions on the third elliptic conjugacy class

C3, for there to be a solution AB = C. The result is that the U(1, 1)× U(1) walls

start at one of the totally reducible vertices and emanate either to the right or left.

Thus there are many different possible configurations for the U(1, 1) × U(1) walls.

For fixed loxodromic conjugacy classes, there are no such restrictions. As a result,

the walls given in 5.2.5 are in the image of µ̃ for all 0 ≤ γ1 ≤ γ2 < 1.

We should say something about the geometry of these walls. As an example,

consider the first and fourth equations. Plugging γ2 = α2 + β2 into the first wall,

we get the point (α2 + β2, α1 + β1) on the wall (compare this to our vertices in

Proposition 5.2.1. Plugging γ2 = α1 + β1 into the fourth equation, we get the point

(α2 + β2, α1 + β1) on the wall. But these are the same point with our normalization

γ1 ≤ γ2. Accounting for this, the first and fourth wall give line segments in T2/S2,

one of slope 3 and the other of slope 1/3, intersecting at exactly one point, namely

one of the two vertices.

With this understood and combining with Propositions 5.2.1 and 5.2.2, exam-

ples for possible configurations of walls are given in figures 5.3 and 5.4:
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Figure 5.3: A configuration of reducible walls with connected U(1, 1)× U(2) wall

Figure 5.4: A configuration of reducible walls with disconnected U(1, 1)×U(2) wall

5.3 Determining which chambers are full

In the proof of Theorem 4.2.1, we construct stable parabolic U(n, 1)-Higgs bundles

with stable kernel. Though the condition that the kernel be stable is not necessary,

a general rank-(n-1) parabolic bundle can be unstable in many interesting ways.

However, if we have a stable rank 2 bundle with known parabolic structure, we can

use the Harder-Narasimhan filtration to observe how stability changes as we vary

the weights of the bundle.

As a direct consequence to Theorem 4.2.1, we have:

Proposition 5.3.1. The U(1, 1)×U(2) walls in Proposition 5.2.2 are in the image
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of µ̃.

Proof. This is a direct application of our main theorem, Theorem 4.2.1.

As an application of this proposition, since the image is of µ̃ is open at irre-

ducibles, any chambers intersecting with the U(1, 1) × U(2) wall is full. See figure

5.5:

Figure 5.5: The U(1, 1)× U(2) wall is in the image of irreducibles under µ̃. Hence

the shaded chambers are full.

5.3.1 Stability conditions for the parabolic U(3, 1)-Higgs bundles

with three marked points

In this section, we explore the stability conditions for the parabolic U(3, 1)-Higgs

bundles with three marked points constructed in Theorem 4.2.1. In particular, we

lift the requirements that the weights sum to an integer and the kernel be stable, and

give new set of inequalities determining stability. However, it will still be difficult to

determine for which weights the inequalities satisfied. As such, we will instead start

with a bundle from Theorem 4.2.1, which gives a solution to AB = C whose image
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lies on the U(1, 1)×U(2) wall. Leaving the underlying parabolic bundle fixed, we’ll

then study what happens to stability as we move the weights along the wall towards

the U(1, 1) × U(1) × U(1) vertices. From here we’ll study how stability changes

along the U(2, 1)× U(1) walls.

As we move along the first wall and onto a vertex, the kernel S of Φ changes

from stable to semi-stable. Furthermore, as we move from the vertices onto the

U(2, 1) × U(1) walls, S becomes unstable. The Harder-Narasimhan filtration for

parabolic bundles tells us that a destabilizing line subbundle of a rank 2 bundle is

unique. In terms of the inequalities determining the stability of S, exactly one is

violated when S is unstable. By keeping track of which inequality is violated as we

change walls, we can easily find more walls which are in the image of µ̃.

Before going further, we should mention again that the computation and char-

acterization of the reducible walls were performed with respect to the problem

AB = C, whereas the construction of the U(n, 1)-Higgs bundles was performed

with respect to the problem ABC = 1. Thus γ1 ≤ γ2 in the AB = C problem

becomes (1 − γ2) ≤ (1 − γ1). Despite possible confusion, we also label the new

weights (1− γ2) ≤ (1− γ1) by γ1 and γ2, respectively.

Let (E = E1 ⊕ E2,Φ) be a stable parabolic U(3, 1)-Higgs bundle with stable

kernel, as constructed in Theorem 4.2.1.

Proposition 5.3.2. The U(1, 1)×U(1)×U(1) vertices in Proposition 5.2.1 are in

the image of an irreducible solutions to AB = C by µ̃.

Proof. Allow the weights of the parabolic structure on E to move along the U(1, 1)×
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U(2) wall towards the vertices. When we reach the vertices, the kernel S of Φ

becomes semi-stable. Note however, that we have changed neither the degree of S,

nor the filtration at each marked point. As such, S with the new weights is semi-

stable but remains non-split. It follows that E with the new weights is stable, and

the vertices are in the image of an irreducible under µ̃.

At first, this does not seem to give enough information to fill in chambers

incident with the vertex, since the image of µ̃ is only guaranteed to be open at

irreducibles with regular loxodromic product (where µ̃ is smooth). When the vertex

lies on the line γ1 = γ2, the regularity assumption is violated. On the other hand,

stability is an open condition, and hence we can further perturb the weights on E

slightly to find irreducibles near the vertex with regular product, thus guaranteeing

the chambers are full.

As we move away from the U(1, 1) × U(2) wall, we’ll lose the assumption

that the weights add to an integer. In order to determine the Harder-Narasimhan

filtration of S as we move away from this wall and along the U(2, 1)×U(1) wall, we

need stability conditions for this more general case. These are given in the following

proposition whose proof is almost exactly the same as in [3]. The integer d in the

proposition is determined by the index of the wall we begin on. The index can take

values 2, 3, and 4 for which S has the structure O(−1) ⊕ O(−1), O(−1) ⊕ O(−2),

and O(−2)⊕ O(−2) respectively. However the result is true for all d ≤ 0:

Proposition 5.3.3. Let S = O(d)⊕O(d−1) be a rank 2 parabolic bundle with three

marked points and weights 0 ≤ α1 ≤ α2 < 1, 0 ≤ β1 ≤ β2 < 1 and 0 ≤ γ1 ≤ γ2 < 1.
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Then S is stable if and only if the following inequalities hold:

• −1− α1 − β1 − γ1 + α2 + β2 + γ2 > 0

• 1 + α1 + β1 − γ1 − α2 − β2 + γ2 > 0

• 1 + α1 − β1 + γ1 − α2 + β2 − γ2 > 0

• 1− α1 + β1 + γ1 + α2 − β2 − γ2 > 0

Let S = O(d)⊕O(d) be a rank-2 parabolic bundle with three marked points and

weights as above. Then S is stable if and only if the following inequalities hold:

• α1 − β1 − γ1 − α2 + β2 + γ2 > 0

• −α1 + β1 − γ1 + α2 − β2 + γ2 > 0

• −α1 − β1 + γ1 + α2 + β2 − γ2 > 0

• 2 + α1 + β1 + γ1 − α2 − β2 − γ2 > 0

Proof. See [3] for more information. For our purposes, the decomposition of S into

line bundles is fixed, and one of the above cases. Additionally the parabolic structure

is fixed, and generic. We’ll illustrate the final steps for the case S = O(d)⊕ O(d).

Since there are three marked points, the only possible destabilizing subbundles

are L = O(d) and L = O(d− 1).

An embedding O(d) ↪→ S is determined (up to scale) by two parameters. Since

the flags are generic, any embedding O(d) ↪→ S coincides with the flag at at most

one marked point. The requirement that pµ(S)− pµ(O(d)) > 0 gives the first three

inequalities.
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An embedding O(d− 1) ↪→ S on the other hand is determined (up to scale) by

four parameters. As such, there is a unique embedding O(d−1) ↪→ S which coincides

with the flag at every marked point. The requirement pµ(S) − pµ(O(d − 1)) > 0

gives the third inequality.

Let (Ẽ = O⊕O(1), Φ̃) be a (necessarily stable) parabolic U(1, 1)-Higgs bundle

of loxodromic type. Let S, of either the form O(d)⊕ O(d) or O(d)⊕ O(d− 1), be a

non-split rank 2 parabolic vector bundle, with weights as in propositon 5.3.3. Then

our main construction builds a new parabolic U(3, 1)-Higgs bundle (E = O⊕ E2,Φ)

from (Ẽ, Φ̃) and E. The following proposition combines the analysis in the proof

of Theorem 4.2.1 with the generalized inequality in Proposition 5.3.3 to give the

stability conditions for (E,Φ).

Proposition 5.3.4. Let S be of the form O(d) ⊕ O(d) with the usual weights, and

V = O⊕ O(−1) the other invariant rank 2 subbundle. Then E is stable if and only

if the following six inequalities are satisifed:

• 1 > pdeg(S)

• pdeg(S) > −3

• 1− 2d+ α1 + β2 + γ2 − 3α2 − 3β1 − 3γ1 > 0

• 1− 2d+ α2 + β1 + γ2 − 3α1 − 3β2 − 3γ1 > 0

• 1− 2d+ α2 + β2 + γ1 − 3α1 − 3β1 − 3γ2 > 0

• 5− 2d+ α1 + β1 + γ1 − 3α2 − 3β2 − 3γ2 > 0
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Let S be of the form O(d)⊕O(d− 1) with the usual weights. Then E is stable if and

only if the following six inequalities are satisifed:

• 1 > pdeg(S)

• pdeg(S) > −3

• −2d+ α2 + β2 + γ2 − 3α1 − 3β1 − 3γ1 > 0

• 4− 2d+ α1 + β1 + γ2 − 3α2 − 3β2 − 3γ1 > 0

• 4− 2d+ α1 + β2 + γ1 − 3α2 − 3β1 − 3γ2 > 0

• 4− 2d+ α2 + β1 + γ1 − 3α1 − 3β2 − 3γ2 > 0

Proof. The proof follows similarly to that of Proposition 5.3.3, except in the context

of the PU(3, 1)-Higgs bundle (E,Φ) constructed from S and a U(1, 1)-Higgs bundle

(O⊕ O(1), Φ̃). There are two additional inequalities, coming from the requirement

that pµ(E)− pµ(S) > 0, and similarly for the other invariant rank-2 bundle V. The

other four inequalities come from the stability requirement applied to line subbundles

of the kernel S, as in 5.3.3.

Notice that unlike in the U(2) case, the parameter d plays a role in stabil-

ity. Also, the last four inequalities in each case resemble the equations giving the

U(2, 1)× U(1) walls in Proposition 5.2.5.

5.3.2 Moving along U(2, 1)× U(1) walls

Now we’re ready to study the stability of our PU(3, 1)-Higgs bundle (E,Φ) as we

move away from the vertices and onto the U(2, 1) × U(1) walls. At this point, the
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combinatorics become a bit difficult to manage.

First, we begin on a U(1, 1)× U(2) wall, where our main theorem guarantees

the existence of a stable PU(3, 1)-Higgs bundle with stable kernel. The kernel S of

Φ is determined the index, for which there are three possibilities. Then, varying the

weights of the bundle but nothing else, we move toward a vertex, for which there

are two choices. Next, the vertices given in Proposition 5.2.1 do not account for

the normalization γ2 > γ1, resulting in two possibilities. Finally, it could be the

case that the U(1, 1) × U(2) wall is of disconnected type. We’ll show the details

completely one case. The others follow similarly.

I(ρ) = 3 case:

Let’s study the case where the index of the U(1, 1) × U(2) wall is 3. In this case,

S = O(−1)⊕O(−2). By Proposition 5.2.2, the wall is given by the equation γ1+γ2 =

α1+α2+β1+β2−1, where γ2 > max(α1+β1, α2+β2−1) and γ2 < min(α1+β2, α2+β1.

First, we’ll vary the weight γ2 in the negative direction. The kernel S becomes

semi-stable when γ2 = max(α1 +β1, α2 +β2− 1). In particular, we’ll study the case

where max(α1 + β1, α2 + β2 − 1) = α2 + β2 − 1. Combining with Proposition 5.2.1,

the vertex is given by: 
γ1 = α1 + β1

γ2 = α2 + β2 − 1

If we look at the conditions for stability in Proposition 5.3.3, the inequality

1 + α1 + β1 − γ1 − α2 − β2 + γ2 > 0 becomes equality. Continuing to move γ2 in

the negative direction, this inequality becomes invalid. Recall that this inequality
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comes from a particular embedding O(−2) ↪→ S. Therefore, this is the (unique!)

destabilizing line subbundle of S that we need to worry about. The corresponding

inequality in Proposition 5.3.4 is, given that d = −1, 6+α1+β1+γ2−3α2−3β2−3γ1 >

0. Verifying the stability of (E,Φ) is then one of verifying only this inequality and

pdeg(S) > −3, coming from pµ(E)− pµ(V) > 0. The second inequality is, of course,

trivially valid.

The first U(2, 1)×U(1) wall intersecting this vertex is γ1 = 3γ2+α1+β1−3α2−

3β2. Note that this equation is taken mod(1). Thus we can think of it as the weights

satisfying some integer relation, in particular α1+β1−γ1+−3α2−3β2+3γ2 ∈ Z. In

particular, since this wall intersects the index 3 wall at the vertex, we can determine

this integer by plugging in the values of γ1, γ2 at the vertex, we can determine this

integer:

α1 + β1 − γ1 +−3α2 − 3β2 + 3γ2

=α1 + β1 − (α1 + β1)− 3α2 − 3β2 + 3(α2 + β2 − 1)

=− 3

Finally, we convert from the AB = C problem to the ABC = I problem by

replacing γ1 with 1− γ2 and γ2 with 1− γ1. This gives:

α1 + β1 + γ2 − 3α2 − 3β2 − 3γ1 = −5

We can easily confirm then that 6 + α1 + β1 + γ2 − 3α2 − 3β2 − 3γ1 > 0.

Finally, as we move along γ1 = 3γ2 + α1 + β1 − 3α2 − 3β2, 1 + α1 + β1 − γ1 −

α2 − β2 + γ2 > 0 is only invalid on half the wall. In particular, plugging in γ1, the
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values of γ2 for which the inequality is invalid are given by the inequality:

γ2 > α2 + β2 − 1

Now we consider the other wall passing through the vertex given in equation

5.3.2, which has formula γ1 = 3γ2 + α2 + β2 − 3α1 − 3β1. Actually, viewed as a

function γ1 of γ2, this passes through (γ2, γ1) = (α1 + β1, α2 + β2 − 1), which does

not satisfyγ1 < γ2, so we swap γ1 and γ2. Then in T2/S2, the wall has equation

γ2 = 3γ1+α2+β2−3α1−3β1. This can again be interpreted as the weights satisfying

an integer relationship. In this case, we have:

3γ1 + α2 + β2 − 3α1 − 3β1 − γ2 = −1

Applying the transformation from AB = C to ABC = I, we end up with the

following relation:

γ1 = −3 + 3α1 + 3β1 +−α2 − β2 + 3γ2

Unlike the previous case, this does not reduce the inequality 6+α1 +β1 +γ2−3α2−

3β2 − 3γ1 > 0 in a nice way. However, plugging in γ1 to the inequality:

6 + α1 + β1 + γ2 − 3α2 − 3β2 − 3γ1 = 12− 8α1 − 8β1 − 8γ2 + 6α2 + 6β2

Now, α2 > α1 and β2 > β1, and αj, βj, γj < 1, so finally

12− 8α1 − 8β1 − 8γ2 + 6α2 + 6β2 > 12− 2α1 − 2β1 − 8γ2

> 0

This is valid, complimentary to the last wall, for γ2 < α2+β2−1 (this is the direction

where O(d− 1) ↪→ S from above is still the unique destabilizing subbundle).
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The last important thing to mention is that this analysis is valid as long as

γ1 < γ2. When we hit the outer wall γ1 = γ2, the parabolic structure of the kernel

S changes. Assuming γ1, γ2 are the weights at the marked point p, the parabolic

structure changes from having two rank 1 jumps, at γ1 and γ2, to having a single

rank 2 jump at γ1 = γ2. Unfortunately, the analysis past the γ1 = γ2 wall since we

don’t know what the filtration should look like on the other side.

The computations for other choices of index/vertex are similar. Geometrically,

the picture is as follows. Passing through each vertex are two U(2, 1)× U(1) walls.

The above computations show that the portion of the walls moving away from the

vertex are in the image of an irreducible under µ̃. Examples are shown in figures

5.6 and 5.7.

Figure 5.6: An example showing walls (highlighted in red) which are in the image

of an irreducible under µ̃

Finally, in the case that the U(1, 1)×U(2) wall is connected, we can say a little

bit more. From figure 5.6 for example a pair of U(2, 1) × U(1) walls intersecting

different vertices with reciprocal slopes could intersect each other. It would be

interesting to consider the image of µ̃ at this intersection point.
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Figure 5.7: An example showing walls (highlighted in red) which are in the image

of an irreducible under µ̃

As we change the weights away from a vertex and along a U(2, 1)×U(1) with

angle less than π
2

off the U(1, 1) × U(2) wall, it is difficult to determine which, if

any subbundles of S are destabilizing. In fact, none of them are! If we analyze the

inequalities in Proposition 5.3.3 in a way similar to how we determined the bounds

in the proof of Proposition 5.2.2, we can see that S remains stable if γ1, γ2 remain

in between the two lines with slope 1, passing through the vertices. See figure 5.8

for an example.

Figure 5.8: The kernel S remains stable for γ1, γ2 in between the dotted lines

Since S remains stable within this region, the inequalities determining the
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stability of E (from Proposition 5.3.4) are:

pdeg(S) > −3

pdeg(S) < 1

The first inequality is trivially valid. The second is not as obvious. We are interested

in verifying that pdeg(S) < 1 at the intersection of the two U(2, 1) × U(1) walls of

slope 1
3

from the top vertex and slope 3 from the bottom vertex. Suppose for a

contradiction that prior reaching this intersection point that pdeg(S) ≥ 1. Then

in particular there is a choice of γ1, γ2 where pdeg(S) = 1 (an integer!) and S is

stable. This implies in particular that there is another nonempty U(1, 1) × U(2)

wall, contradicting our assumption that there is one connected U(1, 1)× U(2) wall.

Therefore, when the U(1, 1)×U(2) wall is connected, the intersections (when

they exist) of U(2, 1) × U(1) walls of reciprocal slope from opposite vertices are in

the image of an irreducible under µ̃.

This argument does not work when the U(1, 1) × U(2) wall is disconnected.

Of course the contradiction above does not apply, but more importantly each piece

of the wall only has one vertex. The U(2, 1) × U(1) walls emanating from the two

vertices still intersect, but are unrelated from the perspective of our higgs bundle

construction. Therefore we would need a new strategy to show these intersections

are in the image of an irreducible.
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5.4 Conclusion

Finally we combine the descriptions of reducible walls in Propositions 5.2.1, 5.2.2,

and 5.2.5; the results regarding image of µ̃ in Propositions 5.3.1 and 5.3.2, and the

analysis along U(2, 1)×U(1) walls in section 5.3.2. Some examples of what we know

are summarized in figures 5.9, 5.10, and 5.11.

Figure 5.9: Since the red walls are in the image of an irreducible with regular

product, the chambers they bound are full.

Figure 5.10: Since the red walls are in the image of an irreducible with regular

product, the chambers they bound are full.

At this point, we have exhausted all of our tools for studying these diagrams.

For diagrams of connected type, it is difficult to determine what happens when we
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Figure 5.11: Since the red walls are in the image of an irreducible with regular

product, the chambers they bound are full.

pass through the outer γ1 = γ2 wall, since we do not know what the parabolic

structure of our Higgs bundle looks like on the other side of the wall. For diagrams

of disconnected type, there is also the issue of what happens when U(2, 1) × U(1)

walls intersect. Our Higgs bundle techniques do not apply in this case, since each

wall corresponds to Higgs bundles of different starting index. The Higgs bundles

sitting above these intersections are therefore unrelated.

While there are still chambers which we cannot at this point guarantee are full,

we have also failed to construct any examples of fixed loxodromic conjugacy classes

in PU(3, 1) for which there is no solution. New insights are therefore required to

proceed further.
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