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ABSTRACT

Tufts and Kumaresan (1982) first proposed using a SVD-based method to solve the
forward-backward linear prediction (FBLP) least-squares problem for resolving closely spaced
frequencies of multiple sinusoids from limited amount of data samples. By imposing an ex-
cessive order in the FBLP model and then truncating small singular values to zero, this
truncated SVD (TSVD) method yields a low SNR threshold and greatly suppresses spuri-
ous frequencies. However, the massive computation required by SVD makes it unsuitable
for real time super-resolution applications. We propose to use truncated QR methods which
are amenable to VLSI implementations, such as systolic arrays, with slightly degraded per-
formances as compared to the TSVD method. Three truncated QR methods for sinusoidal
frequency estimation will be considered: (1) truncated QR without column pivoting (TQR);
(2) truncated QR with re-ordered columns (TQRR); and (3) truncated QR with column piv-
oting (TQRP). It is demonstrated that the benefit of the TSVD method for high frequency
resolution is achievable under the truncated QR methods with much lower computational
cost. Other attractive features of the proposed methods include the ease of updating, which
is difficult for the SVD method, and numerical stability. Thus, the TQR methods offer ef-
ficient ways for identifying sinusoids closedly clustered in frequencies under stationary and
nonstationary conditions. Some results based on the truncated normal equation approach
as well as on sufficient conditions for perfect truncations based on truncated QR and SVD
methods are considered. Based on the FBLP model, computer simulations and compar-
isons are provided for different truncation methods under various SNR’s. Comparisons of
asymptotic performance with large data samples are also given.

*This work is partially supported by the NASA/Ames grant NCC-2374 and the NSF grant NCR-83814407.
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1 Introduction

In recent years, there is much interest in seeking efficient and effective algorithms for re-
solving closely spaced sinusoids in the frequency domain as well as in the spatial domain
(1,2,3,4,5,6, 7, 8,9]. Generally, a “good” algorithm for spectral estimation should com-
prise of several factors, i.e., high frequency resolution capability, computational efficiency,
updating and downdating capability, and implementable parallel processing structure so
that fast real-time applications are possible. Different methods may perform well in some
aspects but suffer in the others. While the SVD-based method is well known for its ro-
bustness in resolving closely clustered sinusoids, it is not attractive from the other desirable
feature points of view. In this paper, we consider several other promising approaches based
on the truncated QR and least-squares techniques.

In the pioneering paper of Tufts and Kumaresan [2], a SVD-based method for solv-
ing the forward-backward linear prediction(FBLP) least-squares(LS) problem was used to
resolve the frequencies of closely spaced sinusoids from limited amount of data samples.
By imposing an excessive order in the FBLP model and then truncating small singular
values to zero, this truncated SVD method yields a low SNR threshold and greatly sup-
presses spurious frequencies. However, the massive computations required by SVD makes
it unsuitable for real time super-resolution applications. We propose to use truncated QR
and LS methods which are more amenable to VLSI implementations, such as on systolic
arrays{10], with insignificantly degraded performances as compared to the TSVD method.
Three different truncated QR methods will be considered, depending on the ordering of the
columus of the data matrix. The first one is the truncated QR method without column

shuffling (TQR). This method does not change the structure of the data matrix. A QR



decomposition (QRD) of the data matrix is followed by the truncation of the lower right
rank-weakly submatrix of the upper-triangular matrix. The second one is the truncated QR
method with reordered columns (TQRR). The reordering of the columns is determined in
an a priori manner [6]. Here truncation is performed on the QRD of the column-reordered
data matrix. The computational cost of this TQRR method is the same as that of the
first method, except for the column reshuffling. The last one is called truncated QR with
column pivoting (TQRP) [11]. This method entails a series of dynamic swapping of columns
while performing QRD. An additional computational cost is required to monitor the norms
of the remaining colgmns in the dimension-shrinking submatrix such that the first column
is replaced by the one with the largest norm in the remaining submatrix. The processing
overhead of successive column swapping may be nontrivial and prohibitive in implementing
a VLSI structure. All these three truncated QR methods only involve a finite number of
computations, while for the TSVD method, the number of iterations required cannot be
specified in an exact manner. Based upon MATLAB computations, SVD requires about 5
to 6 times the number of flops as compared to QRD for a dense 50 x 50 matrix. Furthermore,
we should note that QRD only requires a small number of flops for updating when new data
are successively appended, while updating SVD is generally much more intractable [12]. A
truncated normal equation approach will be shown to be equivalent to the TQR method
except for the increased roundoff errors under finite precision computations.

A FBLP model for estimating sinusoidal frequencies is formulated first, followed by an
introduction of different truncation methods and the minimum-norm solutions. Finally,
comparisons of these three QR and the LS methods to the TSVD method are given based

on computer simulations.



2 FBLP Model

Consider a complex-valued data sequence of length n,

p . .
5:‘-=ZCkej27rfk‘+w; = zitw, t=1,2,--,n, (1)
k=1

where p is the number of sinusoids , complex-valued ¢ comprises the amplitudes and phases
of each sinusoid, and w; is an additive white Gaussian noise. We define the signal-to-noise
ratio (SNR) as

SNR (dB) = 20log({|z[[z / [[w(]2)- (2)

It can be shown [2] that under noise-free conditions, the frequency locations can be obtained
by finding the roots of
¢
S(z)=1- Y e~ =0, (3)
k=1
on the unit circle, where the complex-valued coefficients g3, £ = 1,2,.--,¢, satisfy the

following system of FBLP equations
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with £ > p representing the order of the prediction model, and * the complex conjugate.

We will assume that 2(n — {) > £. For simplicity, denote (4) as
Ag =5, (5)

where the data matrix A and the right-hand-side vector b are constructed from the data
sequence {z; | ¢ = 1,...,n} in a FBLP manner. Symbolically, this will be denoted by
(A:8)={z;|{i=1,...,n} epee. It is noted that the top half of A represents the forward
prediction and is of Toeplitz form while the bottom half represents the backward prediction
and is known as a Hankel form. The rank of A is p if min{2(n —¢),£} > p. When the noise is
present, we use an ~on A and b,i.e., A= A+Eand b= b+ e, to denote the noise-corrupted
FBLP model with the additive noise given by [E :e] = {w; [t = 1,...,n} cpup. (5) now
becomes the FBLP LS problem of
Ag=>b, | (6)
where A usually has full rank due to the perturbation of the noise. One standard ap-
proach [2] is to use the TSVD method on (6) to obtain a rank-p approximation of the
FBLP matrix A, denoted by A"S”&D, followed by solving for a minimum norm LS solution
of g given by
AZpg 5. (7)
Then the frequencies can be computed by finding the phases of the roots of (3) close to the
unit circle or searching for the peaks on the pseudo-spectrum 1/|S(ezp(j2r f)|?, —0.5 <
f < 0.5. Notice that the proper choice of the prediction order £ depends on p, the number of

sinusoids, which may or may not be known in advance. Fig. 1 depicts a flowchart diagram

summarizing the estimation of harmonics frequencies based on the FBLP model.



3 Truncation Methods

In this section, we consider the rank-p approximation of the FBLP matrix A and subse-
quently solve for the minimum-norm solution §(?). For many LS problems, ill-conditioning
can be troublesome, and truncation methods are known to be useful in stablizing the so-
lutions at the cost of slightly increased residual errors. The rationale is that the condition
number{l1] of a matrix, defined as the ratio of the largest to the smallest singular values,
can be used to characterize a worst case bound on the LS solution when the underlying
matrix is subject to some unknown perturbation or round-off errors. When the smaller
singular values are discarded, their ill effects on the LS solution are reduced(i.e., stabilized),
or we may say that the new condition number of the truncated system is decreased(i.e.,
stabilized). However, this truncated LS solution, although stablized, will be different from
the one that gives the minimum residual; instead, its associated residual with respect to the
original untruncated linear system will be larger. Therefore, the tradeoff for the truncated

linear system lies between an increased stability versus a decreased residual.

Let
e mmem o 1 0 VH
A=UIVH = [0, U)) (8)
0 £ Vi
and
- — o~ - Ru Ry
I=QR=[Q1 1] (9)
0 Ra

be the SVD and QRD of the 2(n ~ ) x £ complex-valued matrix A respectively, where
denotes the Hermitian of a complex-valued matrix or vector and II is a column-permutation
matrix and will be explained later. 3, = diag(51,...,5,) and 5, = diag(Tp41s.-.,0¢) TED-

resent nonincreasing singular values. By € CP X7, R4 € CP X =P) and R,y € C-P * (=P)



while R is an upper-triangular matrix.

(7:{(71 (72] = [121,.. .,ﬂp, 12,,_,_1,. - ,ﬂg] < CQ(H—”XZ, (]0)

V=[Vi Vo] = [B1,.-, By, Bps1,..., 7 € C*E, (11)
and

@ = [él Q?] = [(‘1-17-~'7[I.p7 q;;-}-ly--' 7@3] € C2(n~l)X£ (12)

all have orthonormal columns, i.e., & @; = 9" 9; = §;" §; = &;;.

In the absence of noise, &3 = Rgy = 0. Here the permutation matrix I = [r1,...,m]
is used to represent different methods of performing QRD with column interchanges. Now
we want to preserve as much of the energy as possible (with respect to the Frobenius norm
defined below) in the trapezoidal matrix [R;; Rig] of (9). Equivalently, we want to leave
as little as possible the energy residing in the lower right submatrix Rzz, which will be
truncated. This approach amounts to selecting the columns of A in an order such that
the column with the largest linear independency will be selected first. This procedure is
repeated for the shrinking submatrix.

There are at least 3 possible methods for determining the permutation matrix II while

performing QRD, which are:
1. For QRD with no pivoting, II is simply an identity matrix.

2. QRD with pre-ordered columns [6] determines I according to a column index maximum-
difference bisection rule. Here we select the first and the £** columns, followed by the
column [—1—}41 halfway between 1 and . Then we pick the columns that lie in the mid-

way of those ones which are already selected, i.e., [(1+[1£])/2] , [([4££)/21+¢)/2],



and so on. This selection rule does not depend on the real-time data in A. The under-
lying reason for this ad hoc fixed-ordering scheme is to provide the selected columns
with a possibly maximum differences or minimum linear dependency among these
columns. This scheme was motivated due to the nature of the matrix A arranged in
the form of (4) consisting of perturbed sums of harmonic sinusoids. As an example,
suppose there are 5 columns, then the pre-ordering strategy leads to [1,5,3,2,4]. Thus
we have Il = [e, €5, €3, €2, €4], where e; is a dimension £ column vector with all zero

components except for an one at the i** position.

. As for QRD with column pivoting [11, p. 233], II is determined during the QRD
process, where m; = eq, and d; € [1,] is the index such that @y, has the largest norm.
Continuing with this column-pivoting process on the lower right submatrix yet to be
triangularized, we can determine the permutation matrix I which yields an optimum
QRD column ordering strategy in the sense of preserving most energy in the upper
trapezoidal submatrix. However, this I is data-dependent and the extra cost for this

pivoting may make it less desirable for some applications.

After forcing those rank-weakly quantities to be zero and preserving the most significant

p-rank, we can obtain a rank-p approximate of A. These rank-weakly quantities are those

entries in the factorized matrix that contribute least significantly to the matrix, or possess

the smallest portion of the energy (square of Frobenius norm) of the associated matrix. For

TSVD, ¥, is discarded and

g&%VD = ﬁli]_f}l}?. (13)



Similarly, for TQR, the lower-right submatrix R, is discarded and
/Ig;%ﬁ II= @1[1’211 R]Q]. (14)

To account for the effect due to truncation, we define the fractional truncated F-norm

as
FO =1 - |AP|p /| A||F, (15)
where || - ||F is the Frobenius norm given by
IAllF = /}:Z{a,,j(? =/ trace (AH A). (16)
v
Thus we have
'FT('I.’S)'VD = \/2§=p+l&]2'/ 25:1&_’72 (17)
and
= 2 ~ 2 1/2
]:(P) =1 — ”RU-”F' + HR12”F
TQR — 51|12 D112 D112 ’ (18)
IlRullE + | Ri2ll: + [|Ra2ll%
While

0 < Ffdvp < Figre < 1 (19)

is valid analytically(11], from extensive computations we also observed the relationships

among truncated QR methods to satisfy

F. C%RP < F a(‘pq);RR < F %R < L (20)

Therefore from the point of view of preserving the Frobenius norm(square root of energy)
of a matrix, SVD provides the optimum truncation, with TQRP being next, while TQR

and TQRR truncate even more.



4 Perturbation of Matrix Decomposition and Perfect Trun-

cation

In this section, we examine the effects of the noise matrix £ on the decompositions of

A = A + E, and associated sufficient conditions for perfect truncations based on truncated

QR and SVD methods. For simplicity, we only consider the QRD method without pivoting.

Since the noise-free data matrix A4 has rank p, we have

A =

(@1

) Ry Ry
D Q2
0 0

[QiR11 : QiRi17).

The noise-perturbed data matrix A can be written as

A = A+ F
-
) Ri1 Ry .
= [Q1 : Q7] + Q1 : Q2]
0 0
-
. Ry + E}, Rz + Ej
= [Q1 : Q2]
i E3 E3,
) Q11 @i Rii Ry
= [Q1 : Q2]
Q3 Q3 0 Ry
- . o~ Ru Ry,
= (@1 : Q2] ,
0 By
where
G = QiQh + Q203
Q2 = QiQl+ Q2Q%,

-
Efy

=
E21

-
£y

»
E22

(23)

(24)

(25)

(26)

(27)

(28)

(29)



and

Qh Qi || Bu Ri Riy+EY Ruz+ Bl
= QRD , (30)

Qi Q|| 0 EBx iz z2
with QRD{-} denoting the QR decomposition operator on the matrix in {.}.

After truncation, we have

~(p) ~ . o~ Rll Rl'Z
Agr = (@1 © Q] (31)
0 0
= [Q1R1: ¢ Q1Ry,). (32)

Let us define a perfect truncaiion as the case when
AL =4. (33)

That is, the original noise-free data matrix A can be fully recovered after truncating the
rank-weakly part of the factorization of the noise-corrupted matrix A. A sufficient condition
for (33) (i.e., (32) to be equal to (22) ), is for the noise matrix E to satisfy E}; = Ef, =

E3, =0, where

E, E:
E = [@iq)| & " (34)
L E;l E‘Z.Z
, 0 0
= [Q1 1 Q2] (35)
0 E

(36) reveals that the first p columns of A are noise-free and the rest of the columns all reside

in the orthogonal-complement column space of the data matrix A.

10



Similarly for SVD, we have

A = A+E (37)
: £00 || VT : & En || W
= [0y : U4 +[Ur : Ue] (38)
0 0|V &y & || VW
: Si+En & || W
= [Ul . U2] (39)

= [Uh : U (40)

— . —~ il 0 VlH
= [U1 : U2] 3 (41)
L
where
.. X Uy Un |
[ 2 Ua] = [Uh 2 Ud] , (42)
| Un Ui
~ ~ Vi V2
WiV = WV , (43)
_V;l Va2
and
Ed * {z‘ *H *H £ *
Uy Ul L 0 Vi Va Ti+&n &
= SVD , (44)
E * S *H *H * L]
U21 U22 0 X VIZ sz 521 522

with SVD{-} denoting the SVD operator on the matrix in {-}.

We also notice that to achieve perfect truncation for the SVD method, we need
f’ig")/D = 6'151‘7{{ = A . (45)

A sufficient condition for (45) is &J; = €3 = &3, =0 (ie., E = U.E25, V) and the largest

singular value of E is less than the smallest singular value of £y, or equivalently, the row and

11



column spaces of £ must be orthogonal to those of 4, and there exists a gap between the
singular values of 4 and E such that even the weakest signal subspace will not be corrupted

by any erroneous noise space.

5 Minimum-norm Solutions

After truncation, the FBLP LS problem becomes rank-deficient, hence the minimum-norm
LS solution is desired in order to suppress those spurious harmonics in the pseudo-spectrum.

The following lemma gives the minimum-norm solution for a rank-deficient LS problem.

Lemma: (Minimum-norm solution) For an underdetermined LS problem,
By=c¢, (BeCP* ceCP,p<y), (46)
with rank(B)=p. The minimum-norm solution ¥ is in the row space of B.

Proof: Suppose B has full row rank and y belongs to the row space of B,ie.,y = BHgz,
then there exists a unique solution ¥ = Bz since z = (BBH)‘Ic is unique. Suppose there
are other solutions of the form y = § + y*, where y* lies in the space perpendicular to the

row space of B, i.e., Byt = 0. Then it is obvious that

Iyll? =gl + Iy 112 > 17112 (47)
So

¥ =arg min{|ly|| | By = ¢}.00

For simplicity, let II be an identity in the QRD case. To avoid the cumbersome
normal-equation-like computation of the minimum norm solution, B#(BB*)lc, with

B = [Ru Ry) and ¢ = JHb, we can firstly perform a backward QR decomposition on

12



the conjugate transpose of [éu Ru] to obtain the same solution as given in the above
lemma without fill-in’s(the newly introduced nonzero entities while performing QRD). Ill-
conditioning will not occur because the diagonal elements are sufficiently large in the trape-
zoidal truncated matrix. By doing backward modified Gram-Schmidt orthogonalization{L1]

procedure, we can have
B = =TL, (T eC™P;LecCr), (48)

with L being lower triangular. Here the columns of T = [ty,...,t,] (satisfying THT = I)
are computed in a backward manner, i.e, from t, to t;, and the diagonal elements of L are
computed from the lower right toward the upper left. We note that the minimum solution

for the truncated QR method is given by

grqr = BF(BBT)lc

TLLATHTL) e (49)

= T(L He),

where it is also noted that a backward substitution is required in the computation of L=e.

Therefore the minimum-norm LS solution can be obtained via the following procedure:
1. Do QRD on the augmented matrix [A: 5] (with possibly column pivoting);

2. Take the transpose of the trapezoidal upper triangular matrix. Do backward QRD

(save the orthogonal matrix T) ;

3. Apply backward substitution on the transpose of lower-triangular matrix obtained in

step (2) and the updated right-hand-side in step (1), followed by (49).

13



According to this lemma, a minimum-norm solution vector ¢() must lie in the row space

of the rank-reduced matrix ﬁ(p), namely, the row space of X71H or [féu Ru]. For TSVD it

is given by
o¥hyp = BET'OF, (50)
or
g%vn = }P: %}E'ﬁj . (51)
i=1

To obtain g%%R, we can perform QRD on the right of the trapezoidal upper-triangular
matrix in (14) to zero out R1, and also obtain the orthonormal row space, TH  of [fiu ﬁ’n]
That is

Ahp = Gulfin Rual = QI T (52)
where T = [f1,...,t,] € C**P has orthonormal columns and L¥ € CP*P is an upper-
triangular matrix. This is sometimes called a complete orthogonal factorization [11, p. 236],
and we can consider it as a two-sided direct unitary transformations on a rank-deficient
matrix to compress all the energy of a matrix into a square upper-triangular matrix. This
resembles the SVD method where two-sided iterative unitary transformations are applied

to reduce a matrix into a diagonal matrix. Then from (49) and (52) the minimum-norm

solution follows by

11 ~ ~ ~pp~
gf(l%R = Iy (R B + R1oR)1Qb (53)
Rf,
= OTL-73Fs. (54)

It is noted that if no truncation is performed at all and A has full column rank £, then

the LS solution from the FBLP model is either obtained from SVD as



or from QRD as
[' -1

(56)

Because %, and ﬁgg are both nearly zero under a high SNR condition, slight variations on
them will cause significant perturbations in the solution vector § and hence leads to many
spurious frequencies in the pseudo-spectrum. Now it becomes clear why one truncates
these rank-weakly quantities to remedy these ill-conditions from the view point of numer-
ical stability and also prefilters some stray noise in an attempt to guard against possible
contaminations in the pseudo-spectrum.

For many problems, the conservative approach of over-modeling (i.e., £ >> p) is pre-
ferred [2, 5] to taking £ R p, since we can later truncate some noises that reside in the null
space which is orthogonal to the signal space. The advantage of over-modeling is to provide
some extra dimensions to frap the stray noises and then remove them by truncation. This
is an effective way of enhancing the SNR. However, there is always the danger that some
signal has been mistakably truncated in low SNR cases where ambiguous changes in the

truncated F-norm is possible. On the other hand, spurious frequencies are still very likely

15



to occur when there is insufficient truncation of the rank of the data matrix.

6 Truncated Normal Equation Approach

Up to now, the matrix decompositions are performed with the direct data, hence the con-
dition number of the problem is not increased. It is interesting to see that there also exists
a truncated normal equation (TNE) solution which computes the minimum norm solution
for the covariance data. We show that essentially this TNE method is mathematically
equivalent to the TQR method except for increased roundoff errors under finite precision
computations.
An untruncated least-squares solution for (6) using the normal equation approach is to
solve
A7 4g = AH5. (57)
If we rewrite A as [A; : Ay] = [A; | AL F + N|, where F ¢ ¢Px(¢-) represents the projection
of A3 onto A; and N € C2(n=8x(¢-p) represents the remaining residual. Therefore, columns
of A; € C?n=8x? and N € CH~8%(=p) are orthogonal to each other. Under high SNR
cases, V is close to a zero matrix, and in the extreme case when the noise is absent, IV is

equal to zero. Then (57) can be rewritten as

AP A, AHZ, AHp ,
g= (58)
AFA, AFA, Alp
or
A A, Al 4, Af'b
o o 9= : (59)
FHAR A, + NHAH FHAHZ, 4 NHAH AHp

We can see that as N goes to zero, the bottom (£ — p) equations in (59) become redundant,

because they are merely equal to F¥ times the top p equations. Therefore, a truncated

16



normal equation (TNE) can be defined by discarding the almost-redundant bottom (£ — p)
equations in (59).
Similarly, a minimum norm solution (from the above Lemma) follows by

AfAy | .
e = [AFZ AP A, + AT AT A (AT, (60)
Al 4,
It remains to show that TQR and TNE methods in eqns. (53) and (60) are mathematically
equivalent. To this end, we can replace Ay by §1 Ry, and A, by (51 Riz + Q2 R22, hence we

have .I{DL = éﬁﬁu and fﬁ{gl = R{IZRH. After some manipulations, (60) can be written

as
{p) E{Il pHirp pH 5 pHND 1 AH7
gIFNE = Rn[(RllRu + R12R12)R11]— '(Ql b) ’ (61)
RE,

which is equal to g%%R in (53) where II is an identity.

We must note that although TQR and TNE methods are mathematically equivalent, the
former is much favorable under finite precision computation. The rationale is that the TQR
method always deals with the direct data, while the TNE method works on the covariance
data where the dynamic range of data is inevitably squared. Therefore the TNE method is

more susceptible to roundoff errors.

7 Simulation Results

Finally, we present various computer simulations based on the following model. Let Z; =
cos(2x f11) + cos(27 fai) + wi,t = 1,2,---,48, with f; = .125, f, = .135,£ = 36 and {w;} is a
white Gaussian random sequence. The frequencies are determined by the phases (from 0 to

7) of complex roots closest to the unit circle. For TQRR, we pre-permute the columns of the

17



FBLP matrix in the order of: {136 18 9275 ... } as suggested by [6]. We will consider three
quantities on the evaluation of the performances. The first one is the frequency bias, which
is defined as the difference of the true and estimated frequencies. The standard deviation
of the estimated frequency is our second performance measure. The last one is the distance
of the third principal root to the unit circle. Here we represent the principal root as those
roots that are close to the unit circle. Ideally we should have only 2 principal roots (due to
the two sinusoids if we only consider those roots with phases within [0, z]), falling exactly
on the unit circle, while all the others are inside the unit circle. Under moderate SNR
conditions, a third principal root may be mistaken as a third candidate harmonic, if its
distance to the unit circle is approximately equal to the first 2 principal roots. An even
worse condition may occur when the true harmonic falls behind (i.e., further away from
the unit circle) an spurious harmonic due to the random noise. This is similar to the case
that a noise subspace enters the signal subspace. Therefore, a good separation of the 3rd
harmonic from the unit circle not only decreases the chance of mistaking false harmonics
but also increases our confidence on estimating the true number of harmonics.

Two classes of comparisons will be considered in the following curves. The first one is
to compare these truncation methods under various SNR from 0 to 50 dB. The second is to
observe the asymptotic performance by fixing the order £ = 36, and increasing the number
of observed data samples. 100 independent simulations are used to obtain the statistical
means and standard deviations.

Fig. 2 gives the average fractional truncated Frobenius norms of (16) versus SNR when
we preserve only the four most significant ranks of the FBLP matrix for the five different

methods. This confirms their relationships in {19) and (20) and also shows that the trun-
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cated energy decreases monotonically as SNR increases. Fig. 3 and 4 show the averages of
the frequency biases for the two harmonic frequencies. We define the average frequency bias
as E(fk) — fx, k=1,2, where E(fk) is the ensemble average of fi, which is the estimated
frequency for fx. Fig. 5 and 6 show the standard deviations of f; and f,. We can see that
TQRP competes quite well with TSVD, while TQRR performs slightly worse than TQRP
but better than TQR without pivoting. Fig. 7 and 8 show the distances to the unit circle
of the first 2 dominant roots that are closest to the unit circle. Fig. 9 gives the distance to
the unit circle of the third closest root. Since this third root is a false one, it should be far
away from the unit circle to allow for easy determination of number of harmonics.

If we fix the SNR= 10 dB and the order of the FBLP model to be £ = 36, as more data
are collected, the ill effect due to noise should be asymptotically smoothed out. Fig. 10
shows the combined average frequency bias (defined as the sum of the absolute values of
the biases for fi and f2) verses the number of data samples. Fig. 11 shows the curves of
various combined standard deviations of the estimated frequencies which is defined as the
square root of the sum of squares of the standard deviations of each frequency estimate.
Fig. 12 depicts the mean distances to the unit circle of the false harmonics. From Fig. 10
to 12, it is clear that under moderate SNR conditions, the performances of TQRP closely

follow that of TSVD.

8 Conclusions

While a myriad of researches have been focused on SVD and eigen-decomposition analysis
of narrowly spaced harmonic frequency estimations [2, 5, 7], very few have been directed

towards the QRD approaches. Owing to the iterative massive computations and the diffi-
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culty encountered in updating the decompositions {12] when new data are acquired under
time-varying conditions, these SVD and eigen-based approaches are ill suited for real time
applications. It is well known [11] that QRD is numerically as stable as SVD, requires
much less computational cost, easy to update(and/or downdate), and amenable to VLSI
implementations. The slightly degraded performance for these truncated QR methods is
greatly compensated by all the benefits mentioned above. As well known, the performance
of the LS method is usually much worse than those of the QR and SVD methods.

Table 1 summarizes the comparisons among different truncation methods. We conclude
that TQR is the simplest and can be performed easily in a real time updating, but may
suffer significant degradation. TQRP provides almost the same performance as SVD, but
is not easy to implement in real time processing in that the difficult column reshuffling is
required while performing QRD with pivoting. TQRR provides a good compromise between
the above two and can also be implemented for systolic array processing. The LS method

is simple to implement and update but has a poor frequency estimation capability.
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Figure 1: Block diagram for sinusoidal frequency estimation based on the FBLP model.

Table 1: Comparisons of truncated least-squares methods.

|

| Freq. est. | Comput. cost [ VLSI [ updating ||

TSVD | excellent very high complex | difficult
TQRP | very good medium medium | medium
TQRR good fair fair easy
TQR fair fair fair easy
LS poor low low easy
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Figure 2: Average fractional truncated Frobenius norms.
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Figure 6: Standard deviations for estimating fy = .135 using a 24 x 36 FBLP matrix.

using a 24 x 36 FBLP matrix.



x103

50

2
E 1s: B
3 I
3 ur:
tqrp: 1
”vd: .............
_2 3 " A . ;e o A e
0 10 15 20 25 30 35 40 45
SNR(dB)
Figure 7: Mean distances to unit circle of the roots of the 1st harmonic freq. estimator vs.
SNR.
x10-3
1 —
[4] SSe— -~ o

distance to unit circle

Figure 8: Mean distances to unit circle of the roots of the 2nd harmonic freq. estimator vs.

SNR.

SNR(dB)

20 25 30

35

40

26

45

50



0 e
1k 1s: I ]
tqr:
2k tqer: |
tqrp:
o 3k tavd: 1
-g 4+ -
8
8 K18 J
g
3 e ]
", -.A.:_._\.\‘/.--._-_‘_ Ty
Tk L - .
s o
“f
X P 4
J) SRCLELPPRPEL s .
0 5 10 15 20 25 30 35 40 45 50

SNR(dB)
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Figure 10: Mean freq bias vs. no. of data samples for f = {.125, .135}, SNR=10dB, and
order=36.
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Table Captions:

Table 1. Comparisons of truncated least-squares methods.

Figure Captions:

Fig. 1 Block diagram for sinusoidal frequency estimation based on the FBLP model.
Fig. 2 Average fractional truncated Frobenius norms.

Fig. 3 Mean frequency estimates for f; = .125 using a 24 x 36 FBLP matrix.

Fig. 4 Mean frequency estimates for f; = .135 using a 24 x 36 FBLP matrix.

Fig. 5 Standard deviations for estimating f; = .125 using a 24 x 36 FBLP matrix.
Fig. 6 Standard deviations for estimating f; = .135 using a 24 x 36 FBLP matrix.

Fig. 7 Mean distances to unit circle of the roots of the 1st harmonic freq. estimator

vs. SNR.

Fig. 8 Mean distances to unit circle of the roots of the 2nd harmonic freq. estimator

vs. SNR.

Fig. 9 Mean distances to unit circle of the roots of the 3rd (false) harmonic freq.

estimator vs. SNR

Fig.10 Mean freq bias vs. no. of data samples for f = {.125, .135}, SNR=10dB, and

order=36.

Fig.11 Standard deviations of estimates vs. no. of data samples for f = {.125, .135},

SNR=10dB, and order=36.

Fig.12 Mean distances to unit circle of the roots of the 3rd (false) harmonic freq.

estimator vs. no. of data samples.
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