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ABSTRACT

Title of dissertation: DESIGN CONSIDERATIONS IN
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Steven A. Borbash, Doctor of Philosophy, 2004

Dissertation directed by: Professor Anthony Ephremides
Department of Electrical & Computer Engineering

We consider three problems in the design of wireless sensor networks: cross-

layer optimization, neighbor discovery, and scheduling as a method of medium access

control (MAC).

Cross-layer optimization will be important for sensor networks, which typically

have only one or two objectives to meet. We consider a sensor network which

performs decentralized detection. We devise a method in which local observations

by sensors are condensed into a single bit message and forwarded to a sink node

which makes a final decision. The method involves unusual interactions between the

application, the routing function, and the physical layer.

Neighbor discovery is useful in sensor networks whose nodes are immobile,

since routing and scheduling algorithms can make good use of neighbor informa-

tion. We propose an asynchronous neighbor discovery algorithm. The algorithm is



probabilistic: each node obtains a list of its neighbors which is possibly incomplete.

Performance is analyzed and optimal parameter settings are obtained.

Scheduling deserves consideration as a MAC in sensor networks, because MACs

based on contention methods waste energy in re-transmissions. We state a natural

centralized scheduling problem, in which link demands are to be satisfied under

signal-to-interference-and-noise-ratio (SINR) constraints, and transmit powers may

be varied. We show that solving this minimum length scheduling problem is at least

as hard as another problem we define, MAX-SINR-MATCHING, in the sense that if

there is no polynomial-time algorithm to solve the latter then there is no polynomial-

time algorithm to solve the former. We give evidence that MAX-SINR-MATCHING

is a difficult problem.

We add several theorems on the SINR model which exploit algebraic structure.

The theorems predict what sets of links could be simultaneously activated in a

wireless network and depend only on the SINR requirements of the nodes and the

worst propagation loss in a network. These theorems apply to all wireless networks

which can be described by SINR requirements, not only to sensor networks.
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Chapter 1

Introduction

This dissertation investigates three topics in the design of wireless sensor networks:

cross-layer optimization, the feasibility of scheduling as a medium access method,

and neighbor discovery.

Sensor networks are large sets of small, inexpensive devices with hardware for

sensing and a radio for communication with the other sensors. Sensor networks are

being enabled by the convergence of several technologies at once. The advent of

cheap, low-power microprocessors, sensor technology, and low-power RF design has

made it possible to conceive of large networks which can together do what might be

impossible (or too costly) to do with fewer, more expensive nodes.

Wireless sensor networks are “ad hoc” networks, which means that the topol-

1



ogy of the network is not planned, but must be decided by the network nodes

themselves. Many fundamental questions about wireless ad hoc networks remain

unanswered. Among the questions considered in this dissertation are: To what

extent is “layered networking” satisfactory for sensor networks? Is scheduling or

contention a better way to control medium access in sensor networks? With what

power should nodes in the network transmit? Will nodes determine their neighbors,

and if so, how?

Ad hoc sensor networks are likely to be designed to fit one application very

well. This is because sensors will in many cases face a short lifetime as a result of

the limitations of battery technology, and energy can be conserved by removing ex-

traneous functions. The result of applying this principle is that sensor architectures

will be optimized for two things: lasting a long time, and doing well the one thing

for which they were designed.

If a given wireless sensor network is to have only one or two objectives, there is

little reason to maintain the generality of the OSI model (“layered networking” [1])

within the network stack of the sensor. We should optimize lifetime or performance

by making connections across layers of the network stack. In a general purpose com-

puter, which must handle a large set of applications and conform to many networking

standards, layering is a reasonable response to the great complexity of software. In

a sensor which has a single application and no requirement to conform to a standard

(at this time), layering serves as an obstacle to performance, lifetime, or both.

For example, some routing algorithms decide which link to forward a packet

onto by choosing the path with smallest end-to-end expected delay. A better fit



for an energy-constrained node might be to choose the path consuming least total

energy. However, energy is a physical layer parameter, which would not be available

in the routing calculation if we maintained a strict boundary between the routing,

link and physical layers.

It is quite unclear how the optimal communication system should work, absent

layering. We largely keep the existing layered model, but allow information to be

shared between the layers where there are clear advantages to doing so.

In Chapter 2, we consider cross-layer optimization in the context of a sensor

network whose task is event detection. Distributed event detection is a prominent

application for sensors. One can imagine for example that sensors might be deployed

in a battlefield solely to report that the enemy has been detected, or in some remote

location to report that a seismic event has occurred there.

The problem is to minimize the probability of error and maximize lifetime.

The solution we provide is a pair of link metrics for the Bellman-Ford algorithm.

The metrics capture the notions of residual energy, energy conservation, and the

connection between the application and the network.

Contention-based medium access control (MAC), such as that which is in

802.11 wireless LANs, is often preferred to scheduled access to the wireless medium.

However, contention-based MACs have well-known disadvantages, including wide

variability in delay of transmissions, poor performance in heavily loaded networks,

and wasted energy when multiple users attempt to transmit simultaneously. For

energy-related metrics typical of sensor networks, scheduling would clearly be supe-

rior for mediating access.



For these reasons scheduling deserves a closer analysis for wireless networks.

In Chapters 3 and 4 we provide new theoretical results on the scheduling problem

in ad hoc wireless networks, and more generally, on “feasible matchings,” sets of

transmissions which can be simultaneously be successfully received. We assume

that transmissions are successfully received if the signal to interference and noise

ratio (SINR) exceeds a certain threshold at the receiver, and we allow transmitters

to vary their transmit power.

In Chapter 3 we consider the problem of scheduling transmissions to satisfy

given link demands, such as might be provided by a routing algorithm. We prove

that Minimum Length Scheduling is at least as hard as another problem, MAX-

SINR-MATCHING. We provide evidence that MAX-SINR-MATCHING is a hard

problem, but also identify a promising heuristic for it. We demonstrate that in

certain sub-cases, the scheduling problem is tractable, and for those cases we provide

efficient algorithms for computing the minimum schedule length.

The results obtained in Chapter 4 apply to all wireless networks, not only

ad hoc or sensor networks. The theorems of this chapter are fundamental results

on the SINR model, which has been a standard model for the cellular telephony

community since the mid-1990s. At that time, it was discovered that questions about

transmission power and the SINR could be cast as matrix eigenvalue problems [2].

Our results exploit the algebraic structure in new ways. We relate the number

of feasible matchings to the SINR requirement of the receivers in a wireless network.

When the SINR requirement is high (θ > 1), we prove that between a set of trans-

mitters and a set of receivers, each of size k and disjoint, there can be at most one



feasible matching out of k! matchings (Theorem 9). When the SINR requirement

is sufficiently low (θ < θsafe) all matchings are feasible. Theorems 13-17 provide

bounds on θsafe. The results involve only transmission powers, noise powers, and

channel gains.

These results of Chapter 4 can aid scheduling in ad hoc wireless networks.

Chapter 3 shows that scheduling problems become easier when all matchings are

known to be feasible. For matchings to be guaranteed feasible, it would be sufficient

to employ radio systems with a small enough SINR requirement.

Another problem which is important for ad hoc networks is neighbor discovery.

There exist many algorithms for scheduling, routing, and topology control which

take as input the set of neighbors of each node. How should this information be

obtained? In Chapter 5, a neighbor discovery algorithm is analyzed. The algorithm

allows every node in a wireless network to learn its neighboring nodes with some

probability over a fixed span of time. This algorithm has the attractive property

that the nodes need not be synchronized, i.e. they need not agree on a common

clock, nor on a starting time for the algorithm. Since global synchronization is

expensive to achieve in a large network, the algorithm fills an important need.

Most of the results in this thesis have been published previously. Chapter 2

was presented at the 2004 NATO Workshop on Cross-layer Design Principles [3].

Chapter 3 was presented at WiOpt 2004 [4]. Chapter 4 was summarized in a one-

page abstract in the 2004 International Symposium on Information Theory [5]. The

neighbor discovery algorithm of Chapter 5 was introduced in a paper published at

MobiHoc 2001 [6].



Chapter 2

Cross-layer optimization in a

wireless sensor network

2.1 Introduction

Recent literature on sensor network architectures emphasizes that, unlike general-

purpose networks, sensor networks have to make efficient use of limited resources in

accomplishing their single goal [7]. Since each network aims at a particular focused

objective, it is expected that sensor networks with different goals will be designed

differently, with features designed specifically for one application.

In this chapter we consider sensor networks whose design goal is event de-

tection. Although event detection is only one of many applications which may be

performed by a sensor network, it is a prominent one.

The problem is, how should energy concerns and the desire to accurately detect

events with a distributed sensor network be addressed simultaneously? If we treated

6



layers separately, energy would reside at the physical layer, detection would reside

at the application layer, and we would fail to capture their relationship. For this

reason layering has been called the “original sin of networking” [8]. In this chapter

we propose a scheme to exploit the dependence among the physical, routing and

application layers.

Expenditure of energy is affected in complicated ways by many layers of a

protocol stack. The power dissipated in the radio’s amplifier is related nonlinearly

to transmission power, which depends on distance to a receiver, which is chosen

by the routing protocol; the capacity of a battery can vary based on whether it is

accessed in bursts or periodically, which is affected by the medium access protocol;

required transmission power depends upon the SINR requirements of the receiver

which depends on the coding scheme, which affects the amount of energy we use

in signal processing; the routing tells us what neighbor to transmit to, and propa-

gation loss depends on which neighbor we choose. Such tradeoffs produce a highly

complicated optimization problem.

The effort in this paper is not to include every possible detail which can com-

plicate the problem, but rather to cut away enough details so that the remaining

problem is simple but still retains the essential flavor of cross-layer optimization.

There exists a sizable literature on the problem of decentralized decision mak-

ing. (References [9, 10, 11] have more than 100 citations.) It is concerned with

strategies that a network of sensors may use to decide between a number of hy-

potheses about the environment, based on their collective observations. One of the

nodes in the network is designated a “fusion center” (or sink) responsible for making



the ultimate decision on behalf of the network. If the sensors can afford to transmit

their entire observation streams to the fusion center, this corresponds to centralized

decision making, and it would have the best performance in terms of probability of

error. Each peripheral sensor must decide between a finite number of messages to

forward, either to a neighbor or directly to the fusion center.

It is assumed in the literature of decentralized decision making that an error-

free communication channel exists, over which sensors communicate. A strategy for

the sensors (consisting of local decisions about what to transmit given what has

been sensed locally and what has been received from neighbors, and a decision rule

for the fusion center) is judged by the accuracy of the sink’s decision. It turns out

to be very difficult in general to construct optimal decision rules. However there

are results that indicate that (a) when observations are conditionally independent,

optimal decision rules are likelihood ratio tests [10], and (b) if all the sensors use

identical decision rules, accuracy may not suffer much [12, 13, 14].

Since it is unclear how optimal decision rules can be computed in a centralized

way, let alone in a distributed environment, we will assume that all sensors use

certain identical likelihood ratio tests as decision rules. We expect our tests to have

suboptimal error performance [15], but they would be easy to actually implement.

By this simplifying assumption, we free ourselves to consider energy performance,

which lies at the heart of the practical problems confronting sensor networks.

Specifically, to sustain the assumption of error-free communications, we require

a certain signal-to-noise ratio (SNR) be achieved at any receiving station. We have a

path loss between each pair of nodes. This leads us to try to organize the nodes into



a tree rooted at the sink, with two goals: to ensure the sink receives messages that

enable accurate decisions, and to use little energy so that the network can operate

for a long time.

Our model accounts for energy spent in the transmission and reception of

bits. However, it would be easy to incorporate other energy costs, such as the

one associated with sensation, and the processing required for routing and medium

access, into our model. Here we focus on the case where communication costs are

dominant.

Our contribution is the combination of distributed detection with energy con-

cerns which come together in routing. Specifically, we propose routing metrics for

use with the Bellman-Ford algorithm which capture the notions of residual energy,

routing diversity, and energy conservation. As we shall show, routing diversity af-

fects the network’s error performance. Residual energy and energy conservation

affect the network’s lifetime.

Distributed detection is examined with energy concerns, but without routing,

in [16]. Much work has combined routing with energy concerns but without concern

for the detection problem. Two examples are [17, 18].

There are many ways to route and aggregate data. We examine only two

which seem natural. The comparisons of this chapter are an exploration of interlayer

dependencies, and we do not pretend that our models are optimal.

The paper is organized as follows. There is a detailed description of the net-

work and the detection problem in Section 2.2. Routing metrics and methods of

aggregating data are proposed to simultaneously address energy and accuracy con-



cerns. In Section 2.3, results of simulation of the models are presented. In Section 2.4

the simulation results are connected with a recent theoretical result in distributed

detection. We conclude in Section 2.5.

2.2 Network model

Let there be a network of N nodes, in which S1, . . . , SN−1 are sensors and S0 is a

sink (or fusion center). The network operates over some span of time, divided into

sensation periods of fixed duration. During each sensation period, each sensor Si

observes a binary valued random variable Yi ∈ {0, 1}. The sink does not make an

observation.

There are two possible states of nature during any sensation period, repre-

sented by a random variable H which takes values 0 or 1. H takes value 1 with

known probability. The variables Yi are conditionally independent given H. The

probabilities Pr(Y | H) are assumed to be known.

After a sequence of transmissions, governed by rules to be described below,

the sink node will receive one message from each sensor which is an immediate

predecessor of it, in a certain tree. The sink will then form a decision U0 ∈ {0, 1}

of the network. If U0 = H the decision is correct, otherwise it is not. There

are costs CM and CF associated with misses (H = 1, U0 = 0) and false alarms

(H = 0, U0 = 1), and the sink node makes a decision which minimizes expected

costs. We assume that CM = CF , allowing us to measure performance as the

observed fraction of time that U0 = H.



Nodes may transmit with power no greater than Pmax. Every receiver is subject

to average noise power ν. For Si to be able to successfully transmit bits to Sj, Si

must be able to reach Sj with SNR ≥ θ at Pmax. This corresponds to a path loss

requirement

α(i, j) ≥ θν/Pmax. (2.1)

In this equation, α(i, j) ∈ (0, 1] represents the fraction of power transmitted by Si

that is received by Sj. We assume that Si is aware of all nodes Sj satisfying the

requirement, perhaps through some neighbor discovery mechanism, such as that

presented in Chapter 5.

Next we present two models of data aggregation and routing metrics to go

with them. Our co-design of the application and the routing mechanism is part of

our cross-layer optimization.

2.2.1 Data aggregation in model M1

In model M1, each sensor Si will have its own observation Yi as well as one bit

from each node which immediately precedes it in the routing tree. Si computes the

majority vote of these input bits, with a fair coin flip in case of ties, to produce its

own output Ui. The sink node has no observation of its own, and unlike the sensor

nodes, makes a minimum-cost decision described above, based on the one-bit votes

which arrive.

With conditionally independent identically distributed observations, as we as-

sume, the optimal decision rules are known to be k-out-of-n rules, of which majority



vote is a special case [9]. However it is unclear what the k’s ought to be, let alone

how to compute these in a distributed setting. Therefore we specify majority vote.

The sink does not know what the routing tree is, or whether any of the nodes

in the network have died. Whatever messages (bits) arrive at the sink, they are

weighted equally by the sink and a minimum expected cost decision U0 is made.

2.2.2 Data aggregation in model M2

In model M2 each sensor will have its own observation Yi as well as k ≥ 0 messages

from its immediate predecessors. In M2 a message from a sensor consists of two

integers, < Z,O >. The first integer is the number of zeroes observed in the entire

subtree of nodes which precede the node; the second integer is the number of ones

in that subtree. What node i forwards is < Zi, Oi > where

Zi =
∑k

j=1 Zj + δYi,0, (2.2)

Oi =
∑k

j=1 Oj + δYi,1. (2.3)

What is being forwarded by Si is a sufficient statistic for all the observations

in the subtree rooted at Si. We do not assume that every node would immediately

become aware that some node in its subtree had died; therefore both integers are

sent. Unlike in M1, in M2 the nodes perform lossless compression. As long as all the

nodes can report their data to a successor, the sink can make a centralized decision.

In each model, messages are assumed to be sent in packets whose overhead (for

addressing, error control, data labeling, etc.) is a fixed number of bits, equal for each

model. Communications are assumed error-free. In practice, schemes for acknowl-



edgments and re-transmissions would need to be specified. The method of wireless

medium access must also be specified. Certainly these would affect the energy us-

age of the networks under study. Also, in order to perform the data aggregation

as specified above, each node will have to wait for messages from all immediate

predecessors to arrive before computing and transmitting its output message, which

could mean that the decisions are delayed, i.e. that the messages regarding sensing

period m are still being transmitted during sensing period m + k. These important

factors are not considered here, so that we may focus on the interaction between

the routing, the application, and the energy consumption.

2.2.3 Routing

We assume that all the nodes perform the Bellman-Ford routing algorithm. Routes

produced by this distributed algorithm are free of loops. Because there is one desti-

nation for all packets (S0), the routes provided by Bellman-Ford are trees oriented

toward the sink node. This justifies the term “routing tree” used throughout the

paper.

To perform the Bellman-Ford algorithm, each link in the network must be

assigned a cost. These costs are:

C1(i, j) =
Ij

Bi

(2.4)

for M1 and

C2(i, j) =
Pij

Bi

(2.5)

for M2, where Ii is the number of nodes who can reach node i with SNR ≥ θ



using Pmax, Bi is the battery level of node i, and Pij = θν/α(i, j) is the minimum

transmit power required for Si to achieve θ at Sj when the noise power at Sj is the

(network-wide constant) ν and the path loss from Si to Sj equals α(i, j).

The routing metrics are important, because over time (discrete time as mea-

sured in sensation periods) the battery levels of the nodes will change, which affects

the denominators of C1 and C2. Nodes may die, which affects the numerator of C1.

As these changes occur, the routing tree adapts. In Sections 2.2.4 and 2.2.5 we dis-

cuss the reasoning behind C1 and C2. In Section 2.2.6 we discuss the denominators

of C1 and C2.

2.2.4 The link cost for M1

The numerator, Ij, of the cost metric used in Bellman-Ford routing in M1 will now

be discussed. Essentially, it represents a desire for the routing algorithm to help

the sensor network achieve its goal of accuracy. This is an example of cross-layer

optimization.

Consider the topology of Figure 2.1 which results from a particular routing

choice. This topology will tend to create errors, because under the forwarding rules

of M1, node R in the tandem portion of the network performs a majority vote of one

bit input from its immediate predecessor (which is likely to be correct), and its one

bit observation YR. If the observation YR �= H node R simply performs a coin flip

to decide UR. The same difficulty exists with US. Therefore, the routing algorithm

for M1 should aim to avoid such topologies.



Figure 2.1: Inappropriate routing for the data aggregation method of M1. Curved

arrows represent observations.

Figure 2.2: If each node is to forward a single bit, as in M1, the routing on the left

will produce a better final decision than the the routing on the right.



Consider the example network depicted in Figure 2.2. Assume that Pr(H =

1) = 1/2 and Pr(Yi = H) = 2/3 at every sensor i. The triangles represent large

subtrees of nodes whose observations are aggregated into single bits at nodes A, B,

and C. For simplicity assume that the weight of evidence at these nodes is so great

that UA = UB = UC = H. On the left hand side of Figure 2.2, each of UD, UE and

UF equal H about 5/6 of the time, so the sink’s decision will be wrong 2/27 of the

time. On the right hand side of Figure 2.2, all the evidence is concentrated into UD,

which will always equal H, but UE = YE and UF = YF so the sink’s decision will be

wrong 3/27 of the time. Thus, the more balanced tree, with approximately equal

bushiness at each layer, seems to perform better.

This argument for “route diversity,” by which we mean that data streams do

not coalesce as they approach the sink, can be applied recursively to the triangles

feeding A, B and C.

The factor Ij in C1 encourages route diversity. To achieve diversity each node

should transmit to nodes that other nodes cannot reach. Consider Figure 2.3, in

which the possible predecessors of D, E and F are {A, B, C}, {B, C}, and {C} re-

spectively. If we chose routing with the metric of M2, we would get the undesirable

routes of Figure 2.4. To spread out the traffic, we seek a “system of distinct repre-

sentatives” (SDR) [19] of these three sets, namely A for {A, B, C}, B for {B, C},

and C for {C}. While performing a matching algorithm to find an SDR is unrealistic

in a distributed setting, we can approximate the effect by having each node favor



Figure 2.3: Example. Arrows indicate pos-

sible next hops.

Figure 2.4: Undesirable routing tree for

network of Figure 2.3 if the data aggrega-

tion method of M1 is used.

Figure 2.5: Letting cost of link (i, j) equal

the number of arrows pointing into j.

Figure 2.6: Routing tree for network of

Figure 2.3 using the link costs of Fig-

ure 2.5.

successors which have fewer possible predecessors. For example C has 1 possible

predecessor, B has 2 and A has 3. So we set the costs for these links as in Figure 2.5

and get the desirable routing of Figure 2.6.

2.2.5 The link cost for M2

The numerator of the link cost for M2, Pij, is proportional to the power required

to transmit a bit on link (i, j) such that it arrives at the receiver with sufficient



SNR. Thus, in M2, unlike in M1, there is a clean separation between the purpose of

routing (energy conservation) and the purpose of the data aggregation (to achieve

accurate decisions at the sink).

2.2.6 Taking account of finite energy

As has been discussed elsewhere [8], there is a crucial difference between problems

where energy is renewable, and treated simply as a cost, and where energy is a finite

non-renewable resource. When energy is only a cost it is typical to treat it the same

way over time. But when running out of energy means a node dies, it may be wise

to be more conservative as it dwindles.

For both models M1 and M2, therefore, the cost for link (i, j) was divided by

the battery capacity of Si. Thus when Si had relatively little energy the cost of all

paths going through Si appeared higher.

Because this is an investigation of heuristics, we decided also to investigate

link metrics identical to the ones above but with the denominators replaced by Bj,

so that link cost would be high when a receiver had little energy, as opposed to the

above where link costs are high when the transmitter has little energy. Thus we

define M3 and M4 to aggregate data as do M1 and M2 respectively, and to use link

metrics:

C3(i, j) =
Ij

Bj

(2.6)

for M3 and

C4(i, j) =
Pij

Bj

(2.7)



for M4.

Example Consider the 10 nodes placed as in Figure 2.7. Neighbor relations be-

tween the 10 nodes are indicated by an edge connecting them. The edge label

indicates the power required at the transmitting node to achieve θ at the receiving

node; in this case Pmax = 3000. Node 1 is the sink. Suppose the residual bat-

tery levels at nodes 1, 2, . . . , 10 are 10000, 20000,. . ., 100000 respectively. Then the

Bellman-Ford routing trees computed with the link metrics from Equations (2.4),

(2.5), (2.6), (2.7) are shown in Figure 2.8.

2.3 Simulation results

Each simulation trial consists of the following steps.

1. N nodes are randomly placed in a square area. There is no distinguished

place for the sink node; it may be near a border or near the center. Based

on these random two-dimensional placements, Pmax, ν, and a path loss which

is proportional to distance cubed between nodes, each node’s neighbors are

enumerated, together with the path losses to them. (The squares are sized

and the constants are chosen so that the average number of neighbors per

node is about 4.)

2. A sufficiently large dataset, consisting of values of H and Y1, . . . , YN−1 for each

sensing period are generated.

3. Equal battery capacities are given to each of the N nodes.



Figure 2.7: Ten node graph with minimum transmit powers. Node 1 is the sink.

For ease of display, the directed graph is here represented as undirected.



Figure 2.8: Routing trees computed by Bellman-Ford for the network depicted in

Figure 2.7 with nodes 1, 2, . . . , 10 having battery levels 10000, 20000, . . ., 100000

respectively. Using M1 gives the routing tree in the upper left; M2, upper right; M3,

lower left; M4, lower right.



Figure 2.9: The routing changes over time. Starting from the routing and battery

capacities of Figure 2.8, we show the first changes in routing for M1 (left) and M2

(right). In M1 nine sensation periods pass before node 2 has insufficient energy to

exceed the SNR at any neighbor with a full message, so he drops out. The new

routes are shown. In M2, three sensation periods pass before node 2 drops out. The

new routes are shown.



4. Model M1 is simulated with the losses, data, and battery capacities. The

simulation stops when fewer than 1/2 the nodes are alive. A node is “alive”

when it (a) has enough energy to transmit to its next-hop (as dictated by the

routing algorithm) and (b) all the nodes along some path to the sink, through

the next-hop, have enough energy to transmit to their successors.

5. The battery capacities are reset and other models (M2, M3 and M4) are sim-

ulated on the same losses, data and battery capacities.

An advantage of Bellman-Ford is that it can run independently of the sensing

and transmission of reports, and continually track the ideal routing as link metrics

change and new advertisement messages are received. In practice the distributed

Bellman-Ford algorithm does not immediately converge: changes to link costs must

propagate over the whole network, and until they have, routes may be stale and

packets may be forwarded to nodes with insufficient energy [20]. In order to focus

on the differences between the routing metrics, we assumed that each node had

obtained up-to-date information at the time it determines its next hop.

We also chose not to charge energy for the running of the Bellman-Ford al-

gorithm. Although certainly there is a cost in practice, since all our models use

Bellman-Ford, all would pay the same price, and our comparisons below would re-

main qualitatively valid.

We now present our simulation results in subsections.



Table 2.1: Comparing M1 to M2, assuming Pr(H = 1) = 1/2.

number of nodes (incl. sink)

Pr(Yi = H) N = 10 N = 20 N = 40

0.55
0.58 43.7

0.60 32.7

0.57 22.0

0.61 9.4

0.62 14.3

0.65 4.3

0.6
0.65 41.9

0.69 27.9

0.68 22.8

0.75 10.4

0.69 13.3

0.77 4.3

0.7
0.78 46.7

0.82 34.7

0.83 23.2

0.90 10.4

0.81 13.7

0.90 4.3

0.8
0.87 40.0

0.92 28.9

0.91 23.0

0.94 10.5

0.92 14.4

0.95 4.7

0.9
0.96 47.2

0.97 31.7

0.971 23.0

0.970 11.0

0.956 15.5

0.964 4.9

2.3.1 Comparing M1 to M2

Each cell in Table 2.1 contains an entry of the form

M1’s accuracy M1’s lifetime

M2’s accuracy M2’s lifetime

(2.8)

representing averages from at least 200 independent runs. The lifetime equals the

(average) number of sensation periods before half the nodes die. The accuracy equals

the (average) fraction of times that U0 = H before half the nodes die.

By comparing the columns in the table, we see that an increasing number of

nodes causes a decrease in the life of the network. (Remember that unless otherwise



specified, the number of neighboring nodes is being kept at about 4; this means that

when we go from N = 10 to N = 20 nodes, the 20 nodes occupy a larger area than

do the 10. Changes in density are considered below.)

By comparing the rows in the table, we see that as individual nodes have

better sensors, the network’s accuracy improves.

In comparing M1 to M2, the former always has a longer lifetime and the latter

always has a higher accuracy, except in the N = 20, P r(Yi = H) = 0.9 case.

2.3.2 Effect of unequal priors

To see the effect when Pr(H = 1) �= 1/2 we ran simulations under the same con-

ditions as above, but with Pr(H = 1) = 1/100. Note that the data aggregation

rules of M1 and M2 have not changed; e.g., in M1 each node still takes a majority

vote. However the sink node’s decision U0 does depend on Pr(H = 1). Each cell

in Table 2.2 is based on at least 100 independent runs. Its entries have the form

described in (2.8).

Changing the prior from 1/2 to 1/100 (or away from 1/2 in either direction, we

conjecture) hurts the accuracy of M1, but doesn’t affect M2, as shown in Figure 2.10.

The effect is probably a result of the majority vote rule being most appropriate

when Pr(H = 1) = 1/2 and less appropriate otherwise. Changing the prior has no

consistent effect on lifetime for either M1 or M2.



Table 2.2: Comparison of M1 to M2, assuming Pr(H = 1) = 1/100.

number of nodes (including sink)

Pr(Y = H) N = 10 N = 20 N = 40

0.55
0.48 48.1

0.53 31.6

0.48 23.5

0.57 10.8

0.47 16.6

0.57 4.9

0.6
0.56 43.0

0.65 30.3

0.61 23.7

0.73 11.6

0.58 13.4

0.75 4.0

0.7
0.75 45.1

0.82 34.0

0.78 24.2

0.89 10.7

0.81 15.3

0.89 4.7

0.8
0.86 45.4

0.94 28.2

0.88 22.5

0.94 10.6

0.88 15.0

0.95 4.8

0.9
0.94 49.5

0.97 29.1

0.95 23.8

0.98 10.1

0.96 13.6

0.98 4.4



Figure 2.10: Comparison of network accuracy when Pr(H = 1) = 1/2 and Pr(H =

1) = 1/100 for M1 (top) and for M2 (bottom). Based on simulations with N = 20

nodes.



2.3.3 Comparison of M1, M2, M3 and M4

We can see from Figure 2.11 that M1 and M3 act almost identically, as do M2 and

M4. A closer look at the data shows that M1 and M3 have slightly better energy

performances than M2 and M4 respectively, with accuracies between them being

close in all cases.

2.3.4 Effect of network density

All the above simulations used an area such that the average number of neighboring

nodes would be 4. We decreased the area so that the expected number of neighbors

would be 8. We assume Pr(H = 1) = 1/2. Each point in Figure 2.12 is based on

50 independent runs.

It has been observed elsewhere that increased density improves network life-

time, because it reduces the average transmission range, and increases the number

of available routes [18]. We see that it also improves the accuracy of the sink’s

decisions. We suspect that more nodes can communicate to the sink without inter-

mediaries in a denser network, which reduces the probability of error.

2.3.5 Summary of simulation results

We present a summary of the simulation results.

1. As expected, M1 had a longer lifetime than M2, because it transmits fewer

bits. For the same reason, M1’s accuracy is lower. The accuracy of M2 is

equivalent to a centralized system containing all the currently live nodes.



Figure 2.11: Plots of accuracy and lifetime for models M1, M2, M3 and M4 in

a N = 40 node network with Pr(H = 1) = 1/2. The horizontal axes measure

Pr(Yi = H) for the sensors.



Figure 2.12: Effects of increasing density so that number of neighbors goes from 4

to 8 on average, in a network with N = 20 nodes. Top left, effect on accuracy in M1;

top right, effect on accuracy in M2; bottom left, effect on lifetime in M1; bottom

right, effect on lifetime in M2.

2. A denser network (more neighbors per node) enjoyed a greater lifetime. This

is in part because of the savings in transmission costs. But the increase in

connectivity also plays a role, because more routes are available.

3. A denser network is more accurate with all the models we used.

4. Increasing the number of nodes (while keeping density constant) did not im-

prove accuracy, but it did worsen lifetime. Therefore, if nodes are added, they

can more profitably be added to the same area the others are in, which would



increase density.

5. Unequal priors (Pr(H = 1) �= 1/2) hurt the accuracy of M1 slightly, but have

no effect on M2’s accuracy and do not affect lifetime.

6. M1 and M2 have slightly longer lifetimes than M3 and M4 with accuracies

nearly equal.

2.4 Relation to a theoretical result

In [21], Shi, Sun and Wesel study the level of quantization sensors should perform.

Although they do not consider energy or routing, and restrict attention to one-hop

networks, their results are related to ours. The sensors each observe real numbers

H+νi where H ∈ {−1, +1} and the νi are independent Gaussian noises with mean 0

and variance 1. They send either a single bit or an infinite precision measurement to

the sink. In other words, the sensors do not communicate with each other, but only

to the sink. See Figure 2.4. The authors report that “it takes fewer than twice as

many sensors transmitting a single bit to give the performance of infinite precision

sensors.” In our terms, M1 with 40 sensors should perform as well as M2 with 20

sensors.

The accuracies of M1 with 40 nodes and M2 with 20 nodes, with Pr(H = 1) =

1/2, are shown in Figure 2.4. (Data come from Table 2.1.) We can see that M1

still has worse accuracy than M2 even with twice as many messages. This is in part



because because our network is multihop. The multihop network reduces the ability

of the sink to correctly weight its inputs, and sensor nodes in our multihop network

may be marring the final decision with poor local decisions. Also in [21], all sensors

are assumed to be using an identical threshold which is centrally computed to be

optimal under the condition of Gaussian noise. Our threshold in M1 for all nodes is

simply half the number of input bits (majority vote). It would be interesting to find

a rule to replace the majority vote which would improve the performance of M1.

2.5 Conclusion

We considered a sensor network whose goals were event detection and long lifetime.

We proposed two models of network operation, in which we defined (a) how the

nodes would aggregate their observations and (b) deliver data to the sink node.

In M2 we essentially separated these two concerns, allowing data aggregation

to be independent of routing, and used a routing metric which took account of

energy concerns. In M1 we designed the data aggregation method to save energy,

by reducing message sizes to a single bit. We observed that there were many ways to

Figure 2.13: One hop network for result of Shi, Sun and Wesel.



Figure 2.14: Comparing M1 with 40 nodes to M2 with 20 nodes. The accuracy of

M2 is better, but the lifetime of M1 is longer.

route poorly given this data aggregation scheme, and chose a routing metric which

encouraged route diversity, which appears to interact well with the application.

Our two routing metrics thus capture aspects of energy efficiency, routing

diversity, and residual energy. The routing metrics are a convenient place to perform

cross-layer optimization.

The simulation results confirm that M1 has longer lifetime but less accuracy

than M2. We recalled a theoretical result which claimed that the accuracy of a

distributed detection network using single-bit reporting (as our M1 does) ought

roughly to equal the accuracy of a network using infinite-precision reporting (as our

M2 does). We found that our M1 did not quite meet this standard. However, the

theoretical result did not take into account the multi-hop nature of our network,

and this may explain the difference.

In any case, without the cross-layer optimization scheme employed in M1, it

is not clear how to achieve gains near what the theory says are possible.



Chapter 3

Wireless link scheduling with

SINR constraints and power

control

3.1 Introduction

Scheduling is important in wireless networks for at least two reasons. First, a sched-

ule of minimum length provides an upper bound on the network’s throughput. Sec-

ond, scheduling is necessary to avoid collisions. Collisions cost energy, making them

undesirable in wireless networks whose nodes have limited energy.

To produce good schedules we need large activation sets, sets of links which can

be used concurrently. We call these “feasible matchings.” The larger a matching,

the greater the parallelism, and the shorter the schedule. In this work we provide

new theorems about matchings.

34



There is a rich literature in the scheduling of wireless networks [23, 24, 25, 26,

27]. Scheduling includes broadcast scheduling and link scheduling. In this paper we

consider link scheduling.

Most existing work on wireless link scheduling attempts to model the network’s

interference constraints as a graph. A matching in the network is identified with a

matching of edges in the graph. A sampling of the many examples of this work is

[23, 24, 25].

We model interference using the signal to interference and noise ratio (SINR) at

the receiving stations. The SINR model was analyzed in the 1990s by researchers in

cellular telephony [2, 28, 29, 30]. In [2] it was shown that the question of whether the

set of links T1 → R1, . . . , Tk → Rk, with all 2k stations distinct, can simultaneously

be activated is a matrix eigenvalue question. One computes the Perron (largest)

eigenvalue of a certain nonnegative k × k matrix. If the eigenvalue is small enough,

the set of links can simultaneously be activated with all receivers having adequate

SINR, provided we use a power vector that is the associated eigenvector of the

matrix.

The SINR model was also used in [26], where average transmission power was

minimized subject to an average data rate constraint.

Considerable attention has been given to this model in cellular telephony. In

those applications the transmitters are base stations, and the receivers are mobiles.

(Or vice versa.) Physical placement of base stations is of course part of the cellular

design process.

In ad hoc networks, physical placement may not be under design control.



Also, every node may be required to act as transmitter or receiver, for example

to carry transit traffic as part of a routing algorithm. We may desire to produce

a schedule during which arbitrary link demands must be met. In this case it is

possible to directly apply Theorem 1 or 2 to determine which matchings are feasible.

However, we aim to say more about the feasibility of matchings without performing

an eigenvalue computation for each matching. Our ability to do this will rest on the

same theory of nonnegative matrices that was the basis for Grandhi’s result.

In [23], Hajek and Sasaki produce a centralized, strongly polynomial time

algorithm for the problem of finding a minimum length schedule among some wireless

nodes, such that a set of given link traffic requirements were satisfied. The input

included an undirected graph. Two links could simultaneously be active in the

schedule if the corresponding edges of the graph were independent, i.e. had no

vertices in common. The ability to find minimum length schedules depended then

upon finding matchings in a non-bipartite graph, a problem on which there exists

considerable graph-theoretic literature.

Their graph represents a wireless network in which one transmission is inde-

pendent of another. Interference has no effect; the only constraints are that no node

can simultaneously transmit and receive, and no node can transmit to or receive

from more than one node at a time. In many wireless networks, however, interfer-

ence remains an impediment even when CDMA is used; signature sequences may be

correlated. When that happens, the graph over-estimates the actual ability to hold

simultaneous wireless conversations in a network. Specifically, if two edges in the

input graph are independent, this does not ensure that the SINR at the receiving



node will be satisfactory. Examples of the shortcomings of the graph representation

are depicted in Figures 3.1 and 3.2.

Figure 3.1: The matching A → D, B → E, C → F . In the geometric picture at

left, we see that the three links may be an infeasible matching, because D’s SINR

could be inadequate. (At left, solid lines represent intended transmissions, dotted

lines represent interference, and the circle contains the nodes which can exceed D’s

SINR when interference is 0 (D’s SNR).) This possibility is not apparent from the

graph representation at right.

Figure 3.2: The matching B → A, D → E is likely infeasible because A and E

are overwhelmed by interference. Yet this possibility is not evident from the graph

representation at right.

In this chapter, we examine the wireless minimum-length scheduling problem,



with the constraints of [23], together with a constraint that has more often been

associated with contention: an SINR condition. By accounting for interference, we

are generalizing the model of Hajek and Sasaki [23], in which the only requirement

was that no node can communicate with more than one neighbor at a time; there was

no SINR requirement. (This case will appear in our model as the special case θ ≈ 0.)

We assume the ability to control transmit power optimally, and for simplicity we

allow arbitrarily large transmit powers.

Because of the constraint that a node cannot receive from more than one

transmitter at a time, Hajek and Sasaki’s results did not apply to networks whose

receivers employ multiuser detection. Because we retain this constraint, our results

do not apply there either. The effect of multiuser detectors would be to reduce

schedule lengths.

With the SINR conditions, it is important that the link i → j be treated

differently from j → i, as transmissions originating at different nodes have differing

interference effects. This is another important difference from [23], in which the

graphs are undirected.

In the 1990s, much work on transmit power control was done, in the context of

cellular networks. In those papers, concurrency is expressed as an SINR condition [2,

30, 29, 28]. More recently, it has been observed that transmit power control can

lead to energy savings, an important advantage in many wireless systems. Some

optimization along these lines can be found in [26], which uses a model similar to

ours.

In this work we concentrate on the complexity of computing the minimum



schedule length. We do not consider energy efficiency. We show in Section 3.4 that,

in some cases, computing the minimum schedule length is tractable. In general it

appears to be difficult to do so.

3.2 Notation and definitions

We assume a network of N wireless nodes. We are concerned with sets of k links

where 2k ≤ N .

Definition 1. A “matching” on the network is a set of simultaneous transmissions,

T1 → R1, . . . , Tk → Rk, with all 2k nodes distinct.

It will sometimes be useful to think of a matching of k transmitters to k

receivers as a one-to-one function from the set {1, . . . , k} onto itself, or a permutation

π, with Ti → Rπ(i).

Consider some matching. Let there be average noise power νj ≥ 0 at receiver

j, j = 1, . . . , k. Let pi ≥ 0 be the transmission power used by transmitter i,

i = 1, . . . , k. We denote the path loss from transmitter i to receiver j by αij where

0 < αij ≤ 1.

Definition 2. A matching T1 → R1, . . . , Tk → Rk is “feasible” if there exists a

positive vector p = (p1, . . . , pk)
T of transmit powers such that the SINR condition

piαi,i

νi +
∑

m�=i pmαm,i

> θ (3.1)

holds at each receiver Ri, i = 1, . . . , k in the matching, where the SINR threshold θ

is assumed fixed throughout the network.



Recall that any nonzero square matrix with nonnegative elements has a largest

eigenvalue ρ (called the Perron eigenvalue, Perron root or spectral radius) which is

positive, and has a one-dimensional eigenspace containing an eigenvector with all

positive components, called the Perron eigenvector [31, 32].

In the noiseless case, the problem of deciding whether a matching was feasible

was shown in [2] to be an eigenvalue condition on a k × k nonnegative matrix.

Theorem 1 (Grandhi et al [2]). Let L be the k × k matrix whose (i, j) element

is αij. Consider the matching

T1 → Rπ(1), T2 → Rπ(2), . . . , Tk → Rπ(k), (3.2)

(a) the best SIR which can be achieved simultaneously by all k of the receivers in the

matching is the reciprocal of the spectral radius of the k × k matrix

A(L, π) =



0
α2,π(1)

α1,π(1)
· · · αk,π(1)

α1,π(1)

α1,π(2)

α2,π(2)
0 · · · αk,π(2)

α2,π(2)

...
...

...

α1,π(k)

αk,π(k)

α2,π(k)

αk,π(k)
· · · 0


(3.3)

(b) These SIRs are achieved by using the Perron eigenvector as a power vector.

We will refer to this matrix as A(L, π), A(π) or simply as A throughout this

chapter and the next. Note that the (i, j) element of this matrix is

A(L, π)(i, j) =


0 i = j

L(j,πi)
L(i,πi)

i �= j

(3.4)



In the noiseless case, any positive multiple of the Perron eigenvector, even

a vanishingly small multiple, used as a power vector, will achieve SINR equal to

1/ρ(A) at all the receivers.

In this chapter and the next we will assume nonzero noises. When there is

average noise power (ν1, . . . , νk) � (0, . . . , 0) at the receivers, one can no longer

achieve SINR equal to 1/ρ(A) but one can come arbitrarily close to this SINR value

at each receiver by employing a sufficiently large multiple of the Perron eigenvector

p.

Theorem 2 (Noisy version of Theorem 1). Consider the matching in the pre-

vious theorem. Let average noise powers at the receivers be (ν1, . . . , νk) � (0, . . . , 0).

Let A be as in Equation (3.3) and let p be any Perron eigenvector of A. (a) For

any ε > 0 there exists a positive multiple of p such that SINR ≥ 1/ρ(A)− ε at all k

receivers. That is, 1/ρ(A) is the supremum of SINRs achievable at all receivers. (b)

Given θ < 1/ρ(A), a sufficiently large positive multiple of p which achieves SINR≥ θ

at all k receivers is c · p where

c = max
i

{
νi/(αi,π(i)(θ

−1 − ρ(A)))

pi

}
. (3.5)

Proof. (a) By using a sufficiently large positive multiple of p the noise can be made

arbitrarily small in comparison to the interference (but not zero).

(b) Without loss of generality, suppose the matching T1 → R1, . . . , Tk → Rk

is feasible. That is, given that 1/ρ(A) > θ, we can quickly compute a power vector

p = (p1, . . . , pk)
T that achieves SINR ≥ θ at all the receivers. It is any solution to

the matrix inequality ((1/θ)I −A)p > η where ηi = νi/αii. Let p equal any positive



Perron eigenvector of A, and ask what c · p we should use. By the definition of an

eigenvector ((1/θ)I − A)cp = (1/θ − ρ(A))cp ≥ η. Thus for each i = 1, . . . , k, we

need c · pi ≥ ηi

1/θ−ρ(A)
or c ≥ maxi

ηi

pi(1/θ−ρ(A))
, as required.

This theorem is the main reason for assuming unbounded transmit power

values. The effect of limiting transmit power is unclear.

Definition 3. A feasible matching is “maximal” if no link can be added to it without

making it infeasible.

Note that with this definition, there might be maximal matchings of several

different sizes.

Among the N nodes there are E directed links which have positive demand

which we must satisfy with our schedule, where E ≤ N(N −1). Define the “demand

vector” f = (f1, . . . , fE) to have positive components f� equal to the time needed

for the link 	 to be active. This value f� can also be thought of as the amount of

data to be transmitted over link 	 in the schedule, since we assume the data rate is

some constant value which can be supported by SINR = θ.

A hypergraph (or set system) is a set V of vertices and a set S of hyperedges,

where each hyperedge is a nonempty subset of the vertices. Associated with any

hypergraph is an incidence matrix Q = (qij) where qij = 1 if vertex i is in hyperedge

j and 0 otherwise.



3.3 The minimum length scheduling problem

We are given a set of N nodes, all the losses 0 < αij ≤ 1, i, j = 1, . . . , N in the form

of a square matrix L, the common SINR threshold θ > 0 to be exceeded at a receiver

for successful reception, the (possibly differing) non-negative average noise powers

νi, i = 1, . . . , N at the receivers, and nonnegative demands fij, i, j = 1, . . . , N to be

satisfied. It is assumed that fii = 0 for all nodes i.

A schedule is a set of matchings M1, . . . , Ms and corresponding positive du-

rations λ1, . . . , λs such that each of the matchings is feasible, and the demands on

all links are satisfied. If the sum of the durations is minimized, the schedule has

minimum length. Applying the matchings in different orders certainly changes the

schedule, but it will not affect the length of the schedule. Without loss of general-

ity, we assume that every node x is an endpoint of some link of positive demand:

fix > 0 or fxj > 0 for some i or j. If not, node x does not need to be considered in

scheduling and we could eliminate it from the problem.

Once we have found a set of feasible matchings and durations {λi, Mi}s
i=1, we

may then find the power vectors that each station should use by computing for

each matching in the solution an eigenvector of the associated matrix A(Mi), and

choosing a sufficiently large multiple of it, as detailed above in Equation (3.5). We

shall show below that it is always possible to find a solution consisting of s ≤ E

matchings, so the work involved in finding transmit powers is no more than E

eigenvector computations on matrices of size N/2 × N/2. Alternately, the stations

could determine the optimal power vector in a distributed manner as detailed in [28,



29].

We will be interested in the complexity of computing the minimum schedule

length. Stated as a decision problem, an instance of “Minimum Length Scheduling”

or MLS(L, θ, f, τ) is a positive rational number θ, an N × N matrix L of rationals

in the interval (0, 1], a nonnegative vector f of rationals, and a rational positive

number τ . Question: Does there exist a finite set M1, . . . , Ms of feasible matchings

and associated positive durations λ1, . . . , λs such that
∑s

i=1 λiI(Mi) = f where

I(M) is the indicator vector of a matching and
∑s

i=1 λi ≤ τ?

3.3.1 LP formulation and hypergraphs

We construct a hypergraph H as follows. The vertices of the hypergraph are the

links of positive demand, of which there are E. The hyperedges consist of all feasible

matchings. We form the incidence matrix Q from this hypergraph H.

Then the minimum schedule length is the value of

P : min 1T λ (3.6)

subj. to Qλ = f (3.7)

λ ≥ 0 (3.8)

where λ is W × 1, Q is E × W and f is E × 1.

P is clearly a linear program. We can demonstrate that its value is bounded

(so an optimal solution exists) as follows. Activate every link in a round robin

fashion, one at a time, until its demand has been satisfied. This schedule has length



∑
i

∑
j fij. An optimal schedule has length no greater than this value and no less

than zero.

Since there exists an optimal solution, the theory of linear programming tells

us that there must exist a basic optimal solution, i.e. one which is nonzero on no

more than E of the λ’s [33]. The existence of a basic optimal solution eliminates

any fear that the problem might require an exponential amount of time to describe

a solution.

However, the number W of feasible matchings (hyperedges) may be as large

as 2N . We might hope to avoid that problem by defining another hypergraph, Hm,

as follows. The vertices of Hm are the links of positive demand, as before. The

hyperedges consist only of the Wm maximal feasible matchings.

Let Qm be the incidence matrix associated with Hm. Problem Pm defined by

the linear program

Pm : min 1T λ (3.9)

subj. to Qmλ ≥ f (3.10)

λ ≥ 0 (3.11)

has (by the same argument as above) a solution λ having no more than E nonzero

components.

However the positive components of λ produced by Pm may exceed the demand

f in some components (Qmλ > f), which is an undesirable feature in a solution to

the scheduling problem. Therefore we must say something about the ability to go

back and forth between solutions of P and Pm.



The dual linear programs to P and Pm are

D : max fT u (3.12)

subj. to QT u ≤ 1 (3.13)

and

Dm : max fT u (3.14)

subj. to QT
mu ≤ 1 (3.15)

u ≥ 0. (3.16)

where QT
m is a Wm × E matrix whose columns are links of positive demand and

whose rows are matchings.

Lemma 3. Let the problems P , D, Pm, and Dm be defined by Equations (3.6),

(3.12), (3.9), (3.14). Then

1. Solutions of D are solutions of Dm and vice versa.

2. All four problems have the same value, which is the minimum schedule length.

3. Solutions of Pm can be transformed into solutions for P in O(E2) time.

4. Solutions of P can be transformed into solutions for Pm in O(EN4) time.

Proof. Let u be a solution of Dm. No u′ having negative components could achieve

fT u′ > fT u because f > 0. Therefore the nonnegativity of inequality (3.16) is

unnecessary. The sets (3.13) and (3.15) of inequalities are the same, with the first

set possibly containing redundant inequalities. Therefore the linear programs D and

Dm have identical solution sets.



The second part of the Lemma follows from the strong duality of linear pro-

gramming and the first part.

The proofs of the third and fourth parts are straightforward and are omitted.

It is not clear how to transform solutions of duals into solutions of primals

or vice versa. In ordinary linear programs complementary slackness would be used,

but in this case applying complementary slackness appears to require exponential

time due to the dimensions of the matrices Q and Qm.

Qm has fewer columns than Q, because every column of Qm exists in Q but

not the other way around. However, the example network of Figure 3.3 shows that

even Qm is still too large. Because Q and Qm can be very wide, solving the linear

programs P and Pm must be done in such a way that the matchings are never

explicitly enumerated, for this would take time O(2N).

In general the solutions of the dual Dm need not be 0-1 vectors. For example,

if the dual is to maximize u1+u2+u3 subject to u1+u2 ≤ 1, u1+u3 ≤ 1, u2+u3 ≤ 1,

0 ≤ u1, u2, u3 ≤ 1, the optimal solution is [1/2, 1/2, 1/2].

In the next section we consider a special case of the scheduling problem in

which there is always a 0-1 solution for the dual problem, and for which there is a

fast solution method.



Figure 3.3: A network of N = 2k nodes. Suppose that the losses and the SINR

threshold are such that i → k + i or k + i → i can always be included in any

matching, for i = 1, . . . , k, but inclusion of i → k + j or k + j → i make any

matching infeasible for j �= i. Then every matching in the above graph, where an

up or down arrow connects every i to k + i, is a feasible maximal matching. There

are 2N/2 maximal feasible matchings in this network. No matter how large θ is

(large θ makes matchings less likely to be feasible) there exist losses αij reflecting

this situation.



3.4 An algorithm to compute the min schedule

length for superincreasing f

Definition 4. A superincreasing vector a is one whose components, when sorted so

that a1 ≥ · · · ≥ an, satisfy ai ≥
∑

j>i aj. We say a is strictly superincreasing if

ai >
∑

j>i aj.

Definition 5. A submatching of a matching M is M with zero or more links re-

moved. A supermatching of M is M with zero or more links added.

Several facts, which will be useful in this chapter and the next, are proved in

the following.

Lemma 4.

(a) Submatchings of a feasible matching are feasible.

(b) Supermatchings of an infeasible matching are infeasible.

(c) A single link i → j is a feasible matching if the maximum transmit power

exceeds θνj/αij. (Here we assume all transmit powers are possible, so all

single links are feasible matchings. )

(d) i → j and k → l coexist in some maximal matching ⇐⇒ the matching i →

j, k → l is feasible.

Proof. (a) Let π be a matching and π′ be a submatching of π. Then A(π′) is a

principal submatrix of A(π). The spectral radius of the principal submatrix cannot



exceed the spectral radius of the matrix ([32] Cor. 8.1.20), and the result follows.

Statement (b) is the contrapositive of (a). Statement (c) follows immediately from

the SINR requirement (3.1). To prove (d), part (a) implies the forward direction

(=⇒). The other direction is obvious.

Parts (a) and (b) of the lemma have a clear interpretation from an interference

point of view. If a matching is feasible, then by removing some pairs the others have

less interference to overcome, so the same power vector that worked in the matching

will also work for the submatching. If a matching is infeasible, then the addition

of other transmitter-receiver pairs will only add to the interference at the original

receivers, which can only reduce their SINR for any power vector. Therefore an

infeasible matching cannot be made feasible by adding links.

Theorem 5. Let f be a superincreasing vector. Then there exists an optimal solu-

tion u to the dual problem Dm whose components are 0-1. Further, if f is strictly

superincreasing, this 0-1 solution is the unique optimal solution.

Proof. Order the components of u to correspond with the ordering of the components

of f in the statement of the theorem.

We first show that the first component equals 1 in some optimal solution. Let

u be an optimal solution to Dm and suppose 0 ≤ u1 < 1 and that 0 ≤ uj ≤ 1 for

j > 1. We will now construct a vector u′ whose first component is 1 and whose

other components are adjusted to maintain the feasibility of u′, and show that the

objective function value of u′ is at least as great as that of u, which will imply u′ is

optimal.



The vector u has been assumed to solve Dm. Therefore it is feasible, i.e. it

satisfies (3.15) and (3.16). Thus, for every maximal matching m (which is a column

of Qm) , we have mT u ≤ 1. The vector u′ will be constructed by setting u′
1 = 1

and reducing components 2, 3, . . ., E of u so that mT u′ ≤ 1. Since only the first

component of u′ exceeds that of u, by (1− u1), and m is a 0-1 vector, the difference

between components 2, . . . , E of u and u′ can never be greater than (1 − u1):

uj − u′
j ≤ 1 − u1 (3.17)

for each j > 1.

The change in the objective function is

fT u′ − fT u =

(
f1 +

∑
j>1

u′
jfj

)
−
(

u1f1 +
∑
j>1

ujfj

)
(3.18)

= (1 − u1) f1 −
∑
j>1

fj

(
uj − u′

j

)
(3.19)

≥ (1 − u1)

(
f1 −

∑
j>1

fj

)
(3.20)

≥ 0 (3.21)

where the first inequality follows from Equation (3.17) and the second inequality

from the superincreasing property of f . Since u was assumed optimal, and the new

solution u′ has at least as large an objective function value, u′ is optimal.

Now we proceed by induction. Suppose that we know that there exists an

optimal solution u whose first r− 1 components are 0 or 1. We will show that there

exists another optimal solution u′ whose first r components are 0-1.

If link r coexists in some feasible matching with some link among 1, . . . , r − 1



whose component in u is 1, then feasibility would require ur = 0, and the proof would

be complete. So suppose link r does not coexist in any feasible matching with any

link among 1, . . . , r − 1 whose component in u is 1, and suppose 0 < ur < 1. Let

u′ equal u in the first r − 1 components and u′
r = 1. The difference in values of the

objective functions is

fT u′ − fT u =

(
r−1∑
1

uifi + fr +
∑
j>r

u′
jfj

)
−
(

r−1∑
1

u1f1 + urfr +
∑
j>1

ujfj

)
= (1 − ur)fr −

∑
j>r

fj(uj − u′
j) (3.22)

≥ (1 − ur)

(
fr −

∑
j>r

fj

)
(3.23)

≥ 0 (3.24)

because uj − u′
j ≤ 1 − ur for j = r + 1, . . . , E.

Since u was assumed optimal, u′ must also be optimal, which completes the

induction step, and proves that there exists a vector having 0-1 components which

solves Dm.

If f is strictly superincreasing, then inequalities (3.21) and (3.24) become

strict and the 0-1 solutions are strictly better than any non-0-1 competitors. This

completes the proof of the theorem.

3.4.1 The algorithm for superincreasing f

We provide the following greedy algorithm, which solves problem Dm in O(N4)

operations when f is superincreasing. It constructs a 0-1 dual solution vector u

explicitly.



First, precompute for every pair i → j, k → l of links, with i, j, k, l distinct,

whether this pair can coexist in a feasible matching. This can be done by computing

the spectral radius ρ of the 2 × 2 matrix

A(i → j, k → l) =

 0
αkj

αij

αil

αkl
0

 . (3.25)

If ρ < 1/θ, the pair is feasible, so by part (d) of Lemma 4 the pair can coexist in

some feasible matching.

Start with u = (0, . . . , 0). Go through the links in order of decreasing demand,

and for each one decide whether u� will equal 0 or 1 as follows. If the current link

	 can coexist with any link already assigned a 1 in this process, then u� is assigned

0. Otherwise u� is assigned 1.

Proof. Correctness of the algorithm: Since each component of u is either 0 or 1 at

every step of the algorithm, inequality (3.16) is satisfied. No link 	 is assigned u� = 1

if it is involved in a matching with an already active link. By part (d) of Lemma 4

this satisfies constraint (3.15), so at all times u constitutes a feasible solution to Dm.

Now we show that the 0-1 solution obtained is optimal. The algorithm greed-

ily adds the largest available component of f to its score without regard for later

decisions. This is correct because of the superincreasing property. As we consider

adding fk to the score by setting uk = 1, we stand to gain fk on the score whereas

the net improvement from all subsequent decisions will be less.

By Lemma 3, the optimal solution for the dual is the minimal schedule length.

So this algorithm finds the minimum schedule length.



Running time of the algorithm: Creating the table of link compatibilities re-

quires for each distinct i, j, k, l the computation of an eigenvalue of the 2× 2 matrix

of Equation (3.25) and a comparison to 1/θ, each of which has complexity O(1), so

the precomputation costs O(N4). Sorting the demands requires O(N2 log N). In

greedily deciding whether to set a component of u to 1, we may have to consider

N2 link compatibilities. The list is N2-long, so the greedy part requires O(N4)

operations. Thus the running time of this centralized algorithm is O(N4).

It is interesting that although the algorithm computes the minimum schedule

length, and explicitly computes a solution u to the dual problem, we still have not

constructed any schedule which would achieve this length. This is the practical

result of being unable to turn a dual solution into a primal solution.

Example We consider a 6-node network. The losses αij between all the nodes are

(with rows and columns running from 1 to 6)

L =



1 0.0355 0.0042 0.0027 0.0016 0.0105

0.0303 1 0.004 0.0069 0.0028 0.0212

0.0036 0.0043 1 0.0066 0.0038 0.0011

0.0027 0.004 0.0071 1 0.0678 0.0018

0.0014 0.0031 0.0041 0.0614 1 0.0013

0.0097 0.0186 0.0015 0.0019 0.0014 1


We are given θ = 0.33 and the demand vector f = [1, 500, 17, 8, 37, 4, 2, 90]T corre-

sponding to links 1 → 2, 2 → 3, 3 → 4, 3 → 6, 4 → 5, 5 → 3, 5 → 6, and 6 → 1

respectively.



We begin with u = (0, 0, 0, 0, 0, 0, 0, 0)T . We immediately set u2→3 = 1 because

link 2 → 3 corresponds to the largest component of f .

We consider u6→1. Since the spectral radius of

A(2 → 3, 6 → 1) =

 0 α63

α23

α21

α61
0

 =

 0 0.375

3.12 0

 (3.26)

equals ρ = 1.08, which is less than 1/.33, the two links are feasible together so we

must set u6→1 = 0.

We next consider u4→5. By another 2×2 eigenvalue computation we find that

the matching 4 → 5, 2 → 3 is feasible so u4→5 = 0.

Consider u3→4. The link 3 → 4 is not a matching with 2 → 3 because node 3

cannot simultaneously transmit and receive, so set u3→4 = 1.

Consider u3→6. The link 3 → 6 cannot be part of a feasible matching with

either 2 → 3 or 3 → 4 because all involve node 3, so set u3→6 = 1.

Similarly we set u5→3 = 1.

To decide on u5→6, we note that 5 → 6 could not be part of a feasible matching

with either 3 → 6 or 5 → 3. We compute ρ(A(5 → 6, 2 → 3)) = 4.08 so the matching

5 → 6,2 → 3 is not feasible. Finally ρ(A(5 → 6, 3 → 4)) = 2.81 so the matching

5 → 6,3 → 4 is feasible. Consequently u5→6 = 0.

Finally, we consider the link corresponding to the smallest positive demand,

1 → 2. We compute ρ(A(1 → 2, 3 → 4)) = 0.22, so set u1→2 = 0.

We have computed u = (0, 1, 1, 1, 0, 1, 0, 0)T , which is guaranteed to be an

optimal solution for the dual. This solution has value fT u = 529. Therefore there

must exist a schedule of this length. Through a direct computation, which can be



completed in a reasonable time only because this instance of the problem is small,

we can find the following schedule:

feasible matching duration

2 → 3, 4 → 5, 6 → 1 37

2 → 3, 6 → 1 53

2 → 3 410

3 → 4, 5 → 6 2

1 → 2, 3 → 4 1

3 → 4 14

3 → 6 8

5 → 3 4

529

3.4.2 Other tractable sub-cases

We just showed that MLS(L, θ, f, τ) is solvable in polynomial time when f is super-

increasing. We note a few other tractable sub-cases of MLS.

There exists a positive number θsafe(∗) such that if 0 ≤ θ < θsafe(∗) then all

matchings are feasible, i.e. we can disregard the SINR constraint (3.1), because it

is automatically satisfied. (Chapter 4 examines θsafe.) If our input θ is less than

θsafe(∗) we can form an undirected weighted graph, with an edge (i, j) between

nodes i and j if i → j or j → i has positive demand, and to this edge assign

weight fi→j + fj→i. Then the polynomial time algorithm of Hajek and Sasaki [23]

will determine the shortest schedule. This is a polynomial time algorithm, then, for



MLS when θ is small. For this reason our model can be seen as a generalization of

the model from [23].

The special case of MLS where losses between all nodes are equal and all the

demands are equal is also solvable in polynomial time. One determines the size of the

largest feasible matching. By symmetry, all matchings of this size must be feasible,

and a schedule of minimum length can be made by applying all these matchings for

an equal time. The minimum schedule length can then be computed easily.

If MLS is modified so that we restrict the size of matchings to K or fewer

links, then the LP no longer has exponential size and the problem can be solved in

polynomial time.

3.5 Complexity of the general SINR-constrained

scheduling problem

As indicated in Theorem 3, solving MLS is equivalent to solving the linear program

D. D may have an exponential number of constraints. As a consequence of the

existence of the ellipsoid algorithm for linear programming [34], D has a polynomial-

time solution if and only if the “separation problem” has a polynomial-time solution.

We now consider the separation problem.

The separation problem is, for any candidate vector u, to either (a) conclude

that u is in the feasible region QT u ≤ 1, or (b) find a violated inequality q satisfying

qT u > 1. The matrix Q only has 0-1 entries. Therefore a violated inequality is some



feasible matching containing edges whose corresponding components of u sum to

more than 1.

Let a network of 2k nodes be given, with k even, labeled T1, . . . , Tk, R1, . . . , Rk

and assume that there are only k2 links of positive demand, all of the form Ti → Rj

for i, j = 1, . . . , k. The loss matrix L′ for the network looks like

∗ L

∗ ∗

 where the

asterisks represent k × k submatrices whose values are unimportant. We must be

able to solve the separation problem for all u; in particular we must be able to solve

it for the k2 × 1 vector u = (1/k + ε, . . . , 1/k + ε)T where 0 < ε < 1/(k(k − 1)).

Any k of the components of u sum to a number greater than 1, while any k − 1

components sum to less than 1. So the separation problem becomes, “Does there

exist no feasible matching of k links, and if there is one, exhibit it.”

We now formalize this observation. Define the decision problem MAX-SINR-

MATCHING(L,T ) whose input is a rational k × k matrix L and a real threshold

T as follows. Interpret L(i, j) as the loss from transmitter i to receiver j, in some

network of 2k nodes T1, . . . , Tk, R1, . . . , Rk. The question is, “is there a 1-1 mapping

T1 → Rπ(1), T2 → Rπ(2), . . . , Tk → Rπ(k) of transmitters to receivers, such that for

some positive vector (p1, p2, . . . , pk)
T of transmit powers, the SINRs at all k of the

receivers exceed T?”

We can show that MAX-SINR-MATCHING is in the class NP. For given the

1-1 mapping π, we form the matrix A(π), compute the maximum achievable SINR

and compare it to T . This can be done in polynomial time.

We know that answering “yes” to MAX-SINR-MATCHING is equivalent to



the matrix A(L, π) having its spectral radius less than 1/T , for some permutation

π. If there is a polynomial time algorithm to decide MAX-SINR-MATCHING, this

is not enough to imply that MLS is easy, because we have not solved the separation

problem for all possible candidates u in the dual problem. However, if there is no

polynomial time algorithm for MAX-SINR-MATCHING we can conclude that the

separation problem is not solvable in polynomial time.

Thus we have shown

Theorem 6. If P �= NP , and there is no polynomial time algorithm for MAX-

SINR-MATCHING(L,θ) then there is no polynomial time algorithm for MLS(L, θ,

f ,τ).

There are reasons to believe that MAX-SINR-MATCHING may be a hard

problem. First, the obvious algorithm for solving it would be to compute k! matrices

A(π) and for each one compute the Perron eigenvalue. The reciprocal of the smallest

Perron eigenvalue would be the maximum achievable SINR.

Our intuition about what matchings would work best is as follows. Consider

the 2k nodes in a plane. Since all 2k nodes must be active, what we want is for

each transmitter to transmit to a nearby receiver. Then its transmit power can be

low and it will interfere little with other receivers, as in Figure 3.3. In terms of the

k × k loss matrix, we can choose exactly one loss from each row and each column,

which will define a permutation of transmitters to receivers. If we are looking for

the permutation yielding the best SINR, our intuition says that these k chosen

entries should be relatively large, because harmful interference flows to the intended



receivers on the losses we do not choose.

In the k = 2 case the max achievable SINR is
√

α1,π(1)α2,π(2)/α1,π(2)α2,π(1),

which may lead us to believe, for k > 2, that the permutation π corresponding to a

large product α1,π(1)α2,π(2) · · ·αk,π(k) of losses, one from each row and each column,

would be a good choice. However the following counterexample shows that the

permutation having largest product of losses is not always the permutation having

the best SINR. The matrix

L1 =


.148 .03 .23

.44 .33 .68

.412 .64 .09

 (3.27)

has its smallest spectral radius from the matching T1 → R1, T2 → R3, T3 → R2. On

the other hand the largest product of three elements of L, one from each row and

column, is (.23)(.44)(.64) which suggests the matching T1 → R3, T2 → R1, T3 → R2.

Similarly one can supply examples to show that the permutation corresponding

to the largest sum of losses need not have the best SINR.

One might expect that if there is some loss L(i, j) such that L(i, j) > L(i′, j)

for all i′ �= i and L(i, j) > L(i, j′) for all j′ �= j then transmitter i ought to be

paired with receiver j. However the following counterexample shows that this is not

necessarily the case.

L2 =


.407 .187 .404

.339 .315 .346

.064 .542 .394

 (3.28)



The (1, 1) entry is both a row max and a column max, suggesting T1 →

R1 should be part of the optimal matching, but the pairing of maximum SINR is

actually T1 → R3, T2 → R1, T3 → R2.

This preliminary evidence suggests MAX-SINR-MATCHING may be a diffi-

cult problem. If it is, the Minimum Length Scheduling problem is also difficult, by

Theorem 6.

3.6 A theorem on MAX-SINR-MATCHING

In this section we prove a theorem which expands the understanding of the MAX-

SINR-MATCHING(L,T ) problem. The theorem allows us to impose structure on

the L matrix, such as assuming that L is doubly stochastic, without losing generality.

Define

G (L, π) = I + A(L, π), (3.29)

where A is the k × k matrix defined in (3.3) and (3.4). The addition of the identity

matrix shifts the spectrum by 1, so

ρ(G (L, π)) = 1 + ρ(A(L, π)). (3.30)

It follows that π minimizes the spectral radius of A if and only if it minimizes the

spectral radius of G . In this section we prefer to examine G because its (i, j) element

can compactly be described as

G (L, π)(i, j) =
L(j, πi)

L(i, πi)
, (3.31)

an improvement over Equation (3.4).



Definition 6. A “generalized permutation matrix” is a square matrix whose zero

pattern is that of a permutation matrix, i.e. if all its nonzero entries were changed

to 1 it would be a permutation matrix.

Any nonnegative generalized permutation matrix of size k × k has exactly k

positive entries. It can be written as the product of a diagonal matrix with positive

entries on the diagonal and a permutation matrix.

To avoid a more cumbersome notation, we write πi in place of π(i). Also, the

notation π1 ◦ π2 means the composition of permutations as functions, so (π1 ◦ π2)i

represents π1(π2(i)).

Theorem 7. Let G (L, π) be the matrix defined in Equation (3.31). Let L be a k×k

loss matrix, and π, q, p be permutations of the set {1, . . . , k}. Let D, D1 and D2

be diagonal real matrices whose diagonal elements are positive. Let Q and P be

the permutation matrices corresponding to q and p, respectively, in the sense that if

v = [1, 2, . . . , k]T then Pv = [ p(1), p(2), . . . , p(k)]T . Then

1. G (LD, π) = G (L, π).

2. G (DL, π) = D−1G (L, π)D.

3. G (D1LD2, π) = D−1
1 G (L, π)D1.

4. G (PL, π) = PG (L, π ◦ p−1)P−1.

5. G (LQ, π) = G (L, q−1 ◦ π).

6. G (PLQ, π) = PG (L, q−1 ◦ π ◦ p−1)P−1.



7. G (PLP−1, π) = PG (L, p ◦ π ◦ p−1)P−1.

8. If V is a lower triangular matrix then the two matrices G (LV, π) and G (L, π)

are equal on row π−1(k).

9. Let G1 = PD1, G2 = D2Q be nonnegative generalized permutation matrices.

Then G (G1LG2, π) = PD−1
1 G (L, q−1 ◦ π ◦ p−1)D1P

−1.

Proof. (1) The (i, j) element of LD is LD(i, j) = L(i, j)D(j, j). Using Equa-

tion (3.31), the (i, j) element of G (LD, π) is

LD(j, πi)

LD(i, πi)
=

L(j, πi)D(πi, πi)

L(i, πi)D(πi, πi)
(3.32)

which is the (i, j) element of G (L, π).

(2) The (i, j) element of DL is LD(i, j) = D(i, i)L(i, j). Using Equation (3.31)

the (i, j) element of G (DL, π) is

DL(j, πi)

DL(i, πi)
=

D(j, j)

D(i, i)

L(j, πi)

L(i, πi)
(3.33)

which the the (i, j) element of D−1G (L, π)D.

Part (3) follows from parts (1) and (2).

(4) The (i, j) element of PL is PL(i, j) = L(pi, j). Using Equation (3.31), the

(i, j) element of G (PL, π) is

PL(j, πi)

PL(i, πi)
=

L(pj, πi)

L(pi, πi)
(3.34)

which equals the (pi, pj) element of G (L, π ◦ p−1). This equals, by straightforward

manipulation, the (i, j) element of PG (L, π ◦ p−1)P−1.



(5) The (i, j) element of LQ is LQ(i, j) = L(i, q−1j). Using Equation (3.31),

the (i, j) element of G (LQ, π) is

LQ(j, πi)

LQ(i, πi)
=

L(j, (q−1 ◦ π)i)

L(i, (q−1 ◦ π)i)
(3.35)

which equals the (i, j) element of G (L, q−1 ◦ π).

Part (6) follows from parts (4) and (5).

To prove (7), let Q = P−1 in part (6).

(8) The (π−1k, j) element of G (LV, π) is

∑
m L(j, m)V (m, k)∑

m L(π−1k,m)V (m, k)
=

L(j, k)

L(π−1k, k)
(3.36)

because V (m, k) is nonzero only when m = k. Using Equation (3.31) we can verify

that the (π−1k, j) element of G (L, π) equals the same quotient.

Part (9) follows from parts (3) and (6). This completes the proof of Theorem 7.

The collection of relations in Theorem 7 allows us to restate the MAX-SINR-

MATCHING problem in equivalent forms.

Corollary 8. 1. Without loss of generality we may assume all loss matrices L

are column stochastic.

2. Without loss of generality we may assume all loss matrices L are doubly

stochastic.

3. Re-numbering the nodes does not affect the maximum achievable SINR in the

network, 1/ρ(A), but permutes the power vector which achieves the best SINR.



Proof. Part 1 follows from Part 1 of Theorem 7 by letting the diagonal elements of

D be the inverses of the column sums of L.

By a theorem of Sinkhorn [35], every strictly positive matrix X can be trans-

formed into a unique strictly positive doubly stochastic matrix S by S = D1XD2

where D1 and D2 are diagonal with positive entries on the diagonal. Since simi-

larity transforms such as D−1G D leave the spectrum unchanged, and L is strictly

positive, part 3 of the theorem shows we lose no generality in assuming L is doubly

stochastic, which proves part 2 of the Corollary.

Part 7 of the theorem shows the effect of re-numbering the nodes. When nodes

are renumbered by some permutation q the loss matrix becomes QLQ−1 and the

A-matrix changes in such a way that the spectrum is unaffected, so the max SINR

is not affected. The power vector required to achieve the max SINR is permuted

accordingly.

3.7 Finding maximal matchings

In performing scheduling, it is of interest to be able to produce matchings in which

many links are simultaneously active. It is also of interest to ask for matchings

which contain as many links as possible in addition to some specified set. These

matchings offer parallelism and will tend to produce short schedules.

It is desirable to be able to say, without exhaustive enumeration, what size

feasible matchings are likely to exist. Given a loss matrix L for a network, and an

SINR threshold θ, can we



1. predict the size of the maximal matching(s) without partitioning the nodes into

sets of k transmitters and receivers, and for every k-matching, performing an

eigenvalue computation?

2. find any single feasible matching of largest absolute size in a network?

3. find the matching involving all the transmitters from a set T and all the

receivers from a set R whose A-matrix has smallest spectral radius?

All these problems appear hard. The set of all maximal matchings is not a

matroid. The third problem is MAX-SINR-MATCHING, for which we have already

given some preliminary evidence of difficulty. In the next section we present a sub-

optimal heuristic for solving MAX-SINR-MATCHING.

3.7.1 A heuristic for MAX-SINR-MATCHING

A heuristic which runs in polynomial time is described here. Given L, we first make

it doubly stochastic, to make all the losses comparable, using the iterative method

of Sinkhorn [35]. Briefly, this method first makes its input column stochastic, then

row stochastic, then column stochastic, and so forth. Performing these iterations

takes the input from L to D1LD2 where the column normalizations determine D2

and the row normalizations determine D1. As we saw in Corollary 8 this does not

affect the resulting ρ(A(L, π)) for any π.

We then choose k entries of D1LD2, one from each row and each column. The

choice is made to maximize the product of these entries. Intuitively, this chooses

generally large channel gains for intended transmissions, and generally smaller ones



for interfering pairs. The optimal choice can be made in O(k3) operations by using

the assignment algorithm. The assignment algorithm [36] finds an assignment (k

entries of the matrix, exactly one in each row and column of L) whose sum is

maximized. We adapt the assignment algorithm by feeding it the matrix whose

entries are logarithms of the entries of L so that it will return the assignment of

maximum product.

The total time to run the algorithm is the time to run the iterative method of

Sinkhorn, which takes O(k2) per iteration, plus the O(k3) time for the assignment

algorithm. In practice, making D1LD2 close to doubly stochastic is good enough,

because we are doing this to make all the losses in D1LD2 comparable. So if we

allow ak Sinkhorn iterations for some fixed a, the whole algorithm will require O(k3)

operations.

As we saw in (3.27), the maximum-product heuristic is not perfect. The

heuristic works well for smaller matrices. The following experiment was performed

to evaluate the effectiveness of the maximum product heuristic.

A network of 2k nodes was placed randomly in a square area with the property

that the worst case propagation loss between nodes was approximately 30 dB. Of

the 2k nodes, half were chosen randomly as transmitters and half as receivers, to

yield a k × k matrix L of losses. The MAX-SINR-MATCHING π was found using

exhaustion, and the choice of the maximum product heuristic, πh, was also found.

We measured the average ratio ρ(A(πh))/ρ(A(π)) and the fraction of time that

π = πh. The following success rates were observed. For each value of k, 1000 or

more trials were run.



Table 3.1: Experimental results for the “maximum product” heuristic.

size of L submatrix observed Pr(π = πh) mean ratio ρ(A(πh))
ρ(A(π))

3 × 3 99.7% 1.00003

4 × 4 98.3% 1.00019

5 × 5 96.1% 1.00051

6 × 6 92.9% 1.00128

7 × 7 91.8% 1.00136

8 × 8 88.8% 1.00223

3.8 Conclusion

We have considered the problem of scheduling to satisfy given demands in a wireless

network which is constrained by SINR requirements. We showed that this problem

can be seen as a generalization of the scheduling problem considered by Hajek and

Sasaki in [23] for which a polynomial time algorithm was available.

In the special case where the demand vector has a superincreasing property we

provide a greedy algorithm which efficiently computes the smallest schedule length.

Although we can determine the length of the shortest schedule, we were unable to

construct a schedule which realizes it.

In the general case, we showed that the minimum length scheduling problem

with SINR constraints is at least as hard as the MAX-SINR-MATCHING problem,

which appears difficult.

We presented a heuristic for the MAX-SINR-MATCHING problem. The



heuristic chooses the matching whose product of channel gains is largest. This

heuristic can be made to run in time O(k3), where the input matrix of losses has

dimensions k × k. The heuristic performs well in experiments.



Chapter 4

The feasibility of matchings in a

wireless network

4.1 Introduction

In this chapter we continue to exploit the connection of the SINR model of wireless

networks to the rich theory of eigenvalues of nonnegative matrices [31, 40]. We prove

theorems that show how to infer whether certain sets of links are feasible or not,

without actually computing eigenvalues. Some of the theorems in this chapter allow

us to make conclusions based only on the weakest link in the network.

Except where otherwise stated, the network model and notation are the same

as in the previous chapter.

4.2 Results on feasibility of matchings

Our main result is the following:
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Theorem 9. Let the SINR threshold θ > 1. Suppose some matching of k trans-

mitters to k receivers is feasible. Then no permutation of the receivers among the

transmitters, except the identity, yields a feasible matching.

Proof. Proof is by induction on k. First we will prove the result for k = 2. Let

T1 → R1, T2 → R2 be a feasible matching. Its matrix

A =

 0 α21

α11

α12

α22
0

 (4.1)

has (by straightforward calculation) eigenvalues ±
√

α12α21

α11α22
. Now consider the match-

ing T1 → R2, T2 → R1 which is the first matching with the receivers permuted. Its

matrix

B =

 0 α22

α12

α11

α21
0

 (4.2)

happens to be the inverse of A so its eigenvalues are the reciprocals of those of

A, ±
√

α11α22

α12α21
. By inspection we can see that the largest eigenvalues of these two

matrices are reciprocals, so both cannot be smaller than 1/θ where θ > 1. Therefore

by Theorem 2, no more than one of the two systems can be feasible. Thus the result

is true for k = 2.

Suppose the result is true for all numbers of pairs less than k, and consider a

network of k transmitter-receiver pairs for which we have a feasible matching, say

T1 → R1, T2 → R2, . . ., Tk → Rk. Suppose we permute the receivers with respect

to the transmitters by some non-identity permutation π which is the product of two

or more disjoint cycles, i.e. π = σ1σ2 · · ·σr, r ≥ 2. Since π is not the identity,

the length of one of these cycles is 2 ≤ 	 ≤ k − 1. Without loss of generality let



σ1 be the cycle (1, 2, . . . , 	). By part (a) of Lemma 4, the submatching T1 → R1,

T2 → R2, . . ., T� → R� is feasible. After the application of σ1, T1 → R2, T2 → R3,

. . ., T�−1 → R�, T� → R1 is infeasible, by the induction hypothesis. By part (b) of

the Lemma, the supermatching π of σ1 is also infeasible. Therefore the Theorem is

true when π is the product of two or more disjoint cycles.

Suppose that π is a single cycle. To obtain a contradiction suppose that among

the k transmitters and k receivers, both of the matchings

T1 → R1, T2 → R2, . . . , Tk → Rk

T1 → Rπ(1), T2 → Rπ(2), . . . , Tk → Rπ(k)

are feasible, i.e. that some k-dimensional power vector (not necessarily the same

one for each matching) exceeds the SINR requirements of the receivers.

By Theorem 2, the following matrices A and B, which correspond to the first

and second matchings respectively, must each have their Perron eigenvalue less than

1/θ.

A =



0 α21

α11
· · · αk1

α11

α12

α22
0 · · · αk2

α22

...

α1k

αkk

α2k

αkk
· · · 0


(4.3)



B =



0
α2,π(1)

α1,π(1)
· · · αk,π(1)

α1,π(1)

α1,π(2)

α2,π(2)
0 · · · αk,π(2)

α2,π(2)

...

α1,π(k)

αk,π(k)

α2,π(k)

αk,π(k)
· · · 0


(4.4)

Now consider the k × k matrix B̃ obtained by reducing to zero most of the

entries of B, defined by

B̃ij =


0 if π(i) �= j

αjj/αij if π(i) = j

(4.5)

Because π is one-to-one, B̃ will have no more than one nonzero element in each

row and column. Because π has no fixed points, B̃ will have exactly one nonzero

element in each row and column. Similarly define Ã by setting most of A’s entries

to zero:

Ãij =


0 if i �= π(j)

αji/αii if i = π(j)

(4.6)

Note that 0 ≤ Ã ≤ A and 0 ≤ B̃ ≤ B entrywise.

Consider the product matrix ÃB̃. Its (i, j) entry is

k∑
m=1

ÃimB̃mj =

(
δi,π(m)

αmi

αii

)(
δπ(m),j

αjj

αmj

)
= δij (4.7)

Evidently Ã and B̃ are inverses. From the fact that Ã is a generalized permu-

tation matrix, its k distinct eigenvalues are β times the k roots of unity where β is

the positive constant
(∏k

m=1

απ−1(m),m

αm,m

)1/k

. Therefore Ã has only one real positive



eigenvalue, β. Since B̃ is Ã’s inverse its k distinct eigenvalues must lie on the circle

of radius 1/β centered at the origin, and B̃ also has only one positive eigenvalue,

1/β.

We have determined that the Perron eigenvalues of Ã and B̃ are β and 1/β.

Only one of these could be smaller than 1/θ. Since A ≥ Ã ≥ 0 and B ≥ B̃ ≥ 0, the

Perron eigenvalues of A and B are at least as large as those of Ã and B̃. Therefore

it is impossible that both ρ(A) and ρ(B) are both less than 1/θ, which contradicts

the assumption that both matchings are feasible.

Thus the claim is true for k and the proof by induction is complete.

When considering k transmitters and k receivers, there are k! ways to assign

the receivers to the transmitters. The theorem says that no more than one of those

matchings can be feasible, if the SINR threshold θ > 1.

4.3 Where all matchings are feasible

Theorem 9 shows that there is not much flexibility in network design when θ > 1.

However θ may be less than 1. For example CDMA may be thought of as effectively

reducing θ by a factor equal to the spreading gain. Therefore it is desirable to say

something about what permutations of the receiver set are feasible when θ < 1.

Suppose we want to design a network in which all matchings are feasible, so

that we can freely reassign receivers and transmitters while remaining sure that

feasible power vectors will exist. (Given existence of the power vector, a distributed

algorithm for converging to it exists and was derived in [28].)



As we saw in Section 3.4.2, minimum length scheduling becomes tractable

when we can ignore the SINR constraints.

Definition 7. Let two disjoint sets T = {T1, . . . , Tk} and R = {R1, . . . Rk} of

transmitters and receivers be given. We define a critical value θsafe(T ,R) to be the

supremum of the SINR thresholds under which all k! matchings of the receivers in

R to the transmitters in T are feasible.

Definition 8. Let θsafe(k) be the largest value of θ such that every matching of k

links in the network is feasible.

Definition 9. Let θsafe(∗) be the largest value of θ such that every matching in the

network is feasible.

Clearly, for each of the above definitions, θsafe ≥ 0 since any matching will be

feasible if the SINR requirement is zero. Theorem 9 showed that θsafe ≤ 1, since no

more than one matching could be feasible when θ > 1.

We have the following relationship:

θsafe(∗) ≤ θsafe(k) ≤ θsafe(T ,R) (4.8)

if |T | = |R| ≤ k ≤ N/2.

Theorem 10. If the k × k matrix L has (i, j)th element the loss from transmitter

i ∈ T to receiver j ∈ R then

θsafe(T ,R) = [max
π

ρ(A(L, π))]−1 (4.9)



Proof. This follows from Theorems 1 and 2. Since θsafe is defined as a supremum,

it doesn’t matter whether we have noise or not.

The following theorems give lower and upper bounds on θsafe(T ,R).

Proposition 11 (upper bound on θsafe(T ,R)). If the k×k matrix L has (i, j)th

element the loss from transmitter i ∈ T to receiver j ∈ R then

θsafe(T ,R) ≤ 1

k − 1
(4.10)

Proof. (Partial proof.) For now, we show only that θsafe as a function of the losses

αij, i �= j, has a local maximum wherever all the losses are equal, and θsafe at such a

point equals 1/(k − 1). (It remains to be proved that these local maxima are global

maxima.)

When all losses αij, i �= j, are equal, the corresponding A-matrix equals Jk−Ik

for every matching, where Jk is the k×k matrix whose entries are all 1. Jk−Ik has an

eigenvector (1, 1, . . . , 1)T with associated eigenvalue k−1. But any eigenvector with

all positive entries must be associated with the Perron eigenvalue ([31], chapter

I, pf. of thm. 4.1), so for every matching ρ(A) = k − 1 and by Theorem 10,

θsafe = 1/(k − 1).

By changing any one of the losses αrs, in the A-matrix associated with a

matching in which node r interferes with node s, an off-diagonal entry increases

above 1 while other entries remain 1, increasing the Perron eigenvalue for that

matching. Since θsafe depends on the Perron eigenvalue of the worst matching,

θsafe(T ,R) decreases below 1/(k − 1).



The threshold 1/(k − 1) was achieved when all losses were equal. Indeed, fea-

sibility was shown in Theorem 1 to depend on keeping ρ(A) small, and the Perron

eigenvalue of a matrix is an increasing function of its entries. It follows that feasibil-

ity of various matchings will be limited by maximal elements of the corresponding

A matrix.

Many bounds in this chapter derive from the following.

Theorem 12 (Frobenius (chapter II, theorem 1.1 of [31])). Let X be a square

matrix whose entries are nonnegative. Let r(X) = mini

∑
j X(i, j) and R(X) =

maxi

∑
j X(i, j) be the smallest and largest rowsums of X. The Perron eigenvalue

of X lies in the range

r(X) ≤ ρ(X) ≤ R(X) (4.11)

The following theorem provides a lower bound on θsafe to go with the upper

bound of Theorem 11. Unlike in Theorem 11, these bounds depend on the α’s.

Theorem 13 (lower bound on θsafe(T ,R)). If the k × k matrix L has (i, j)th

element the loss from transmitter i ∈ T to receiver j ∈ R then

θsafe(T ,R) ≥ 1

maxr,s

∑
i�=r

αis

αrs

(4.12)

Proof. Let Sk denote the set of all permutations on k letters. {A(π) | π ∈ Sk} is the

set of k! A-matrices associated with all matchings of receivers in R to transmitters

in T . Among the rows of these matrices, all k2 row sums of the form
∑

i�=r
αis

αrs

appear. By Theorem 12 the Perron eigenvalue of A is upper bounded by its largest



row sum R. So

max
π

{ρ(A(π))} ≤ max
π

max
i=1,...,k

Ri(A(π))

= max
r,s=1,...,k

∑
i�=r

αis

αrs

(4.13)

Now the result follows from applying Theorem 10.

Theorem 14. For any set of losses, the spectral radius of A(L, π) lies in the range

1

maxi C(i, πi)
− 1 ≤ ρ(A(L, π)) ≤ 1

mini C(i, πi)
− 1. (4.14)

where C is the unique column stochastic matrix obtained from L by C = LD where

D is the diagonal matrix whose elements are the reciprocals of column sums of L.

Proof. The ith rowsum of G (C, π) is

k∑
j=1

G (C, π)(i, j) =
k∑

j=1

C(j, πi)

C(i, πi)
(4.15)

=
1

C(i, πi)

k∑
j=1

C(j, πi) (4.16)

=
1

C(i, πi)
(4.17)

By Theorem 12, ρ(G (C, π)) lies between the smallest and largest of the rowsums of

G :

min
i

1

C(i, πi)
≤ ρ(G (C, π)) ≤ max

i

1

C(i, πi)
(4.18)

or

1

maxi C(i, πi)
≤ ρ(G (C, π)) ≤ 1

mini C(i, πi)
(4.19)

From Theorem 7, part 1, and Equation (3.30),

ρ(G (C, π)) = ρ(G (L, π)) = 1 + ρ(A(L, π)), (4.20)



which proves the theorem.

Theorem 14 holds for all π ∈ Sk. We can extend it to

max
π∈Sk

{
1

maxi C(i, πi)
− 1

}
≤ max

π∈Sk

ρ(A(L, π)) ≤ max
π∈Sk

{
1

mini C(i, πi)
− 1

}
. (4.21)

Taking reciprocals and employing Theorem 10 we get

1

maxπ∈Sk

{
1

mini C(i,πi)
− 1

} ≤ θsafe(T ,R) ≤ 1

maxπ∈Sk

{
1

maxi C(i,πi)
− 1

} . (4.22)

or

1{
1

minπ∈Sk
mini C(i,πi)

− 1
} ≤ θsafe(T ,R) ≤ 1{

1
minπ∈Sk

maxi C(i,πi)
− 1

} . (4.23)

Note that minπ∈Sk
mini C(i, πi) = αmin(C), the smallest element in the matrix C,

so we have

Corollary 15.

1
1

αmin(C)
− 1

≤ θsafe(T ,R) ≤ 1{
1

minπ∈Sk
maxi C(i,πi)

− 1
} . (4.24)

It might seem that the upper bound is expensive to compute. However, there is

an algorithm which requires time polynomial in the size of the matching to compute

it.

It turns out that the lower bound in Corollary 15 is identical to the lower

bound of Theorem 13. No doubt this is because both were derived by applying the

Theorem of Frobenius to the A matrix. We include both expressions because they

differ in form.



Example Consider the matrices

L1 =


0.039 0.013 0.020

0.014 0.009 0.012

0.144 0.012 0.011

 (4.25)

L2 =



0.14 0.015 0.015 0.022 0.015 0.008

0.016 0.055 0.1 0.07 0.054 0.2

0.3 0.02 0.032 0.047 0.02 0.012

0.011 0.065 0.04 0.05 0.065 0.8

0.053 0.122 0.072 0.204 0.144 0.06

0.04 0.01 0.048 0.05 0.01 0.009



(4.26)

The bounds from various theorems in this chapter on θsafe(T ,R), as applied

to L1 and L2, are listed in Table 4.1.

Table 4.1: Bounds on θsafe(T ,R) for the example.

matrix L1 L2

actual θsafe(T ,R) .233 .0224

Prop. 11 θsafe ≤ .5 θsafe ≤ .2

Thm. 13 .0765 ≤ θsafe .0074 ≤ θsafe

Cor. 15 .0765 ≤ θsafe ≤ .36 .0074 ≤ θsafe ≤ .1272

The theorems above bound θsafe when specific sets of transmitters and re-

ceivers are given. We may be more interested in determining a safe value of θ for



a network in which we are unsure which nodes will be receivers and which will be

transmitters.

Theorem 16 (lower bound on θsafe(k)). If all the losses in the network satisfy

αmin ≤ αij ≤ αmax then

θsafe(k) ≥
(

1

k − 1

)
αmin

αmax

(4.27)

Proof. The largest possible row or column in the A-matrix corresponding to any

matching between k transmitters and receivers has a single 0 and k − 1 entries

αmax/αmin. By Theorem 12 the Perron eigenvalue of A cannot exceed the sum of

these entries. The result follows from Theorem 10.

The following corollary to Theorem 16 follows from the fact that the largest

matching in a network of N nodes has k = �N/2 pairs.

Corollary 17 (lower bound on θsafe(∗)). If all the losses in the network satisfy

αmin ≤ αij ≤ αmax then

θsafe(∗) ≥
(

1

�N/2 − 1

)
αmin

αmax

(4.28)

The bound is tight.

The lower bound of Corollary 17 is tight, in the sense that it is achieved by the

following network of N nodes. Let the loss αi, i+�N/2� = αmin for i = 1, . . . , �N/2

while all other losses in the network are αij = αmax where j �= i + �N/2. Now the

matching

1 → 1 + �N/2, 2 → 2 + �N/2, . . . , �N/2 → 2�N/2 (4.29)



has an A-matrix

A =



0 αmax

αmin
· · · αmax

αmin

αmax

αmin
0 · · · αmax

αmin

...

αmax

αmin

αmax

αmin
· · · 0


(4.30)

whose every rowsum equals the reciprocal of the right-hand side of inequality (4.28).

In applying these theorems to scheduling problems, we may find that one

outlying node that is far from the others causes θsafe(∗) to be effectively zero. To

avoid this, it may be useful to “exclude” nodes i whose maxj{αij, αji} lie below

some threshold.

From the point of view of ad hoc network design, if the nodes are mobile, one

may wish to move them in order to affect the losses αij so that different matchings

become feasible.

If the nodes will be static, the communications system may be designed to

ensure θ < θsafe under the expected propagation environment.

4.4 Appendix: Miscellaneous observations on the

matrix A(L, π)

The following are interesting but were not directly useful in the flow of Chapters 3

and 4.

• The matrix A which corresponds to a matching is likely to be invertible be-

cause the matrix is composed of numbers representing a real-world propagation



environment.

• For k = 2 the k × k matrix A is irreducible with index of imprimitivity h = 2.

For k ≥ 3 it can be seen by direct computation that A2 has all entries positive.

Therefore it is primitive (h = 1).

• (1/θ)I −A is an M -matrix. Therefore all its real eigenvalues are non-negative

and its complex eigenvalues must have nonnegative real part. Every principal

minor of it is nonnegative. Its inverse is nonnegative.

• In fact whenever the system is feasible Q−1 has the convergent series repre-

sentation (
1

θ
I − A

)−1

= θ

∞∑
0

(θA)k (4.31)

• The relation of A(L, π) to the loss matrix L can be expressed as

A(π) = D(π, L)−1P (π)LT − I (4.32)

where π is some permutation on k receivers, so that the matching

T1 → Rπ(1), T2 → Rπ(2), . . . , Tk → Rπ(k) (4.33)

will be feasible if and only if the the spectral radius of A(π) is less

than 1/θ; P (π) is the permutation matrix which carries (1, 2, . . . , k)T to

(π(1), π(2), . . . , π(k))T and D(π, L) is the diagonal matrix whose entries are

D(i, i) = L(i, π(i)).



Example If L =



α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44


and π = (134)(2) then

A(π) =



α−1
13 0 0 0

0 α−1
22 0 0

0 0 α−1
34 0

0 0 0 α−1
41





0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0


LT − I4 (4.34)

=



0 α23

α13

α33

α13

α43

α13

α12

α22
0 α32

α22

α42

α22

α14

α34

α24

α34
0 α44

α34

α11

α41

α21

α41

α31

α41
0


(4.35)

The matrix equation relating A and L is interesting but not as useful as the el-

ementwise descriptions of A and G in Equations (3.4) and (3.31). Perhaps this

is because the matrix description hides some nonlinearities, such as computing

the elements of D.



Figure 4.1: When θ > 1, Theorem 9 says there can be no more than one feasible

matching. When θ < θsafe all matchings are feasible.



Chapter 5

An asynchronous neighbor

discovery algorithm for wireless

sensor networks

5.1 Introduction

Neighbor discovery is the determination of all stations with which a station may

communicate directly. It is an important and non-trivial task in wireless networks,

particularly for sensors. In the case where sensors are immobile, it may make sense

to pay a one time price to learn of the existence of all one’s neighbors in order to

optimize medium access and to enable routing.

There are several ways to discover neighbors. In one class of methods, there is

a central controller. All stations report to the controller, which determines the po-

sitions of the stations, computes their neighbors, and informs each station. Central
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control of neighbor discovery is expected to cost a lot of energy, particularly when

the number of nodes is large. Distributed algorithms have no central controller.

In the distributed algorithm of Baker and Ephremides [41], all nodes partic-

ipate in a two-round round-robin schedule. In each round each station is assigned

a single slot to announce its identity and the identities of neighbors discovered so

far. Stations listen in the other slots, and can determine all their neighbors, and

all their neighbors’ neighbors, within two rounds, under the assumption that nodes

receive messages from neighboring nodes without errors.

Although the algorithm of [41] is distributed, it requires global synchronization

of the network. In particular, it assumes:

(G1) schedules may be formed among sets of ≥ 3 nodes, and

(G2) the nodes know ahead of time the time when the algorithm is supposed to

begin.

The algorithm described in this chapter is also distributed, but has the additional

advantage that it does not require global synchronization. When the algorithm

concludes, each node has a (possibly incomplete) list of its neighbors.

The ability to work without global synchronization is useful for two reasons.

First, neighbor discovery may be the very first algorithm run in a network. Subse-

quent network behavior may presume that some prior mechanism enforces synchro-

nization, but for the first algorithm there is no basis for that presumption. Second,

the burden of maintaining global synchronization through algorithmic means, or the

expense of maintaining it through hardware such as GPS, would increase with the



size of the network. A large wireless network implies a large expense to maintain

global synchronization.

The usefulness of an asynchronous algorithm for wireless networks goes be-

yond the ability to compile a list of neighbors. The algorithm is a protocol for

passing arbitrary messages between neighboring nodes. Some messages that could

be passed are the exchange of messages in support of a transmission scheduling

algorithm; the exchange of information about one’s neighbors, eventually allowing

several-hop-away neighbor information to be obtained, which may be used to sup-

port routing algorithms; the exchange of physical layer parameters such as received

signal strength; and so on. It is even possible for this algorithm to carry messages

which will allow for the subsequent synchronization of the network, thereby allowing

algorithms which require synchronization to follow it.

5.2 Problem statement

Definition 10. Node x is a neighbor of node y if x can exceed y’s signal-to-noise-

ratio requirement.

We assume that:

1. each node can broadcast its transmission, or receive up to one broadcast at any

time, but cannot simultaneously transmit and receive. Broadcasts from neigh-

bors are received free of errors, provided only one neighbor is transmitting.



2. each node has and knows its own unique identifier.

3. all nodes have an estimate N̂ of the number of neighbors each is expected to

find.

The requirement that each station have a unique identifier can be achieved in

various ways. Each station might have a Network Interface Card ID, or a CPU ID,

which it can access and whose uniqueness is assured by device manufacturers. Or,

if the nodes are truly indistinguishable from a hardware point of view, a sufficiently

large pool of numbers may be chosen from, such that it is highly unlikely two nodes

near each other will collide in their choices. More elaborate schemes along this line

are considered in [42].

The requirement for an estimate of the number of neighbors will often be

satisfied in sensor networks. A known number of sensors may be deployed within

a known area, and an estimate follows from experience of the radio range of the

devices within the expected propagation environment.

Any neighbor discovery scheme requires there be a message m identifying

the sender. We assume that m can be successfully transmitted in time Tm to a

receiver. The receiver successfully receives m if no other station within distance d

of the receiver is transmitting simultaneously. That is, transmissions colliding at a

receiver are destroyed.

To counter the lack of global synchronization we include a preamble in the

message m. It is therefore important that the receiver of m receive m from the

beginning; no cut-ins are allowed.



Definition 11. Node x discovers y if x and y are neighbors and x receives m from

y at least once.

Note that x may discover y without y discovering x.

Problem: Given a set of K immobile wireless nodes whose locations are

unknown a priori, we seek a distributed algorithm, that does not require global syn-

chronization of the network, and that maximizes the performance metric described

below.

Our performance metric is the following. Let A be a neighbor discovery algo-

rithm. Given a finite set of nodes, each node has a finite set of neighbors. There is

a finite set of neighbor relations for the network, including both (x, y) and (y, x) if

x and y are neighbors. Let

F(t) = E

{
number of neighbor relations discovered by A in a period of length t

actual number of neighbor relations

}
,

(5.1)

where the right hand side is statistical expectation over possible locations of the

nodes and offsets between nodes’ clocks.

For the distributed neighbor discovery algorithm of [41], F(t) = 1 if t is long

enough to complete the first round of the schedule.

5.3 Algorithm description

We will describe a neighbor discovery algorithm A.

We assume each station has its own timeslotting, with equal slot lengths, but

at a random offsets to others. In each slot each node chooses among the states {T,



R} corresponding to transmit and receive, with probabilities pT and pR satisfying

pT + pR = 1. The nodes act independently of each other and choose their states

independently in each slot.

We determine the slot lengths as follows. During a slot when a node has

decided to transmit, it transmits W copies of message m, where W is a positive

integer fixed throughout the network. In the case of slotted operation W > 1 is

unnecessary, but for unslotted operation the optimal value of W remains to be

determined.

Depending on the radio technology in use, there will be a maximum trans-

mission rate and some time required to transit between states, which we assume

is negligible. We assume that a period Tm is required to transmit m once, and

that WTm is required to transmit W copies of the message. Thus a single slot has

duration T = WTm.

During a receive slot, a node turns on its receiver and decodes its input. The

node processes the input to determine whether an error-free message was received.

If one was, then the identity of the transmitter is determined from the message

contents, and if the transmitter was heretofore unknown to the receiver, he is added

to a local list of neighbors. Any additional information in the message is stored or

updated at the receiver.

To overcome the lack of an agreed start time for A, we propose an additional

algorithm B, which is compatible with A. B is described in Appendix 5.9. The

effect of B is that nodes will begin to run A not all at once but at various times,

such that neighbors’ runs of A overlap.



5.4 Slotted analysis of A

We begin by considering A in slotted time in this Section, then without slotting

in Section 5.5. The purpose of this is to gain intuition, and produce some simple

results that will be useful in the more complicated analysis of the next section.

Because synchronization is assumed, there is no benefit to repeating messages,

so we let W = 1.

We assume that a period t has been fixed for the discovery of neighbors. This

period includes S = �t/Tm slots.

Let h be the number of successful receptions of m made by one node in one

slot. Assume the parameters pT , W and N are fixed. Then h is a random variable

because the N − 1 neighbors of the node in question are in unknown states during

the slot. We are interested in computing E(h).

Let a node X have N−1 neighbors. Since the N nodes act independently, and

each timeslot is independent of the others, the slotted algorithm can be thought of

as an N ×S table, in which each cell contains an independent identically distributed

Bernoulli random variable. See Figure 5.1. Looking down any column of the table

(one timeslot), we have receivers and transmitters. In any column, let R and T be

the numbers of receivers and transmitters, respectively, among X’s neighbors. Let

h be the number of nodes heard by X in any slot. Clearly h cannot exceed 1, for

if more than one neighbor of X transmits in a slot, X could only hear a collision.

So h is a zero-one variable indicating whether exactly one of the neighbors of X is

transmitting. The quantity E(h) can be interpreted as the probability that X hears



a neighbor Y in one timeslot. The expected number of hearings X makes is

E(h) = Pr(X in state R )Pr(T = 1) (5.2)

= pR ·
(

N − 1

1

)
pT (1 − pT )N−2 (5.3)

= (N − 1)pT (1 − pT )N−1 (5.4)

Since all nodes act identically, we expect symmetry: of all the times node X

hears another node who transmits alone, these are uniformly distributed among the

his N−1 neighbors. Therefore the expected number of times that X hears Y , where

Y is a particular neighbor of X, is E(h)/(N − 1).

The performance of the algorithm is the fraction of neighbors discovered in

the whole network. The neighbor discovery performances of the various nodes are

not independent. However if S is large the error in assuming independence will not

be large.

The performance of a single node X can be determined by considering X’s

experience horizontally in Figure 5.1. Each timeslot is a trial in which a neighbor

may be heard. When E(h)/(N − 1) is small and S large, we can think of the

S slots as being a large number of trials with a small probability of success, and

approximate the number of times X hears any neighbor by a Poisson variable with

mean E(h)/(N − 1). In this case the probability that any node discovers any other

is the probability that the Poisson variable is nonzero, or

F = Pr(X discovers Y ) = 1 − e−
SE(h)
N−1 (5.5)

This equation is a key to the analysis. The designer controls S through W ,

and affects E(h) through pT . The right hand side of (5.5) is an increasing function



timeslot 1 2 3 4 5 6 7 8 · · · S

node X R T R R R R R R · · · R

neighbor 1 R R T R R T R R · · · R

neighbor 2 R R R R R R R T · · · R

neighbor 3 R R T R R R R R · · · R

...
...

neighbor N − 1 R R R R T R R R · · · T

Figure 5.1: An example. This chart depicts the slotted analysis of the neighbor

discovery algorithm. Each of N rows describes the state sequence of one node. There

are S columns, corresponding to the duration of the algorithm. Every symbol in

the table represents the outcome of an independent identical experiment, because

all nodes use the same pT and pR = 1 − pT . Each column describes the state of the

system in one timeslot. The contents of any column follow a binomial distribution.

Node X successfully receives m from one of his N − 1 neighbors if X is in state R

and exactly one of the neighbors is in state T. This occurs in columns 5, 6, 8 and S

(as long as none of nodes 5, . . . , N − 1 are in state T to cause a collision.) Note that

in column S, X hears neighbor N − 1, but this already happened earlier, so there

is no benefit to it.



of E(h). Consequently we want to choose pT to maximize E(h). Fixing N = N̂ and

treating Equation (5.4) as a function of the single variable pT (with pR = 1 − pT )

we find the optimal value of pT to be

p∗T = 1/N̂. (5.6)

This can be interpreted as a probabilistic analog of N̂ nodes taking turns transmit-

ting.

A sensor network is in general a multihop environment. We must consider

that each node is at the center of its own “disk,” which contains a random number

of nodes, not necessarily equal to N̂ . When all nodes use pT = 1/N̂ , performance

may be sub-optimal, because some nodes will experience N < N̂ and transmit

with greater probability than 1/N (causing too many collisions), and others will

experience N > N̂ and transmit with smaller probability than 1/N (leaving too

many slots silent), where N is the actual number of nodes in a disk and N̂ is the

network-wide average. However, neighbors will still be discovered. We examine this

robustness issue further in Section 5.5.3.

5.5 Asynchronous analysis of A

The primary goal of the asynchronous analysis of A is to determine the optimal

values of W and pT . The larger W is, the longer the slots are. Large W gives a

better chance for the message m to be successfully received during a slot, but for a

given period t over which A is to be run, large W reduces the number S of slots.



In this section we present all the ideas needed to analyze the asynchronous

case. We relegate all the actual calculations to Appendix 5.8.

5.5.1 Model

Whereas in the slotted analysis h was a random variable because the states of the

N −1 neighbors were random, in the asynchronous case the offsets of the neighbors’

slottings are an additional source of randomness.

We again consider a station X who is listening during one slot (0, T ) where

T = WTm. Suppose X has N − 1 neighbors. These neighbors have timeslots also of

length T , but are offset randomly to X’s. See Figure 5.2. Let x be an (N−1)-vector

of offsets, distributed uniformly in the interval (0, T ), with xi representing the offset

of neighbor i with respect to X. We must consider two states for neighbor i, the

“left” state of the neighbor in (xi − T, xi) and the “right” state in (xi, xi + T ).

We break up the number of successful receptions per node per slot, h, as

h = hreg + hrtc + hmult (5.7)

where hreg are regular hearings, hrtc are round-the-corner hearings and hmult are

multiple hearings. To define these, let X be the node which will successfully receive

a message m.

Definition 12. A “regular hearing” occurs when X, in state R, receives m success-

fully during a single slot.

Definition 13. A “round-the-corner hearing” occurs when X, in state R for two



Figure 5.2: The reference timeslot (top line) of a wireless node X who is in state

R, and the timelines of his N − 1 neighbors. Each neighbor has two timeslots

overlapping the slot of interest. The neighbors fall into four categories: double

transmitters like neighbor 3 who transmit in both of their slots; left transmitters

such as node 2; right transmitters such as node 1; and nodes who transmit in neither

of the two overlapping slots, such as node N − 1.



consecutive slots, begins receiving m in the first slot and finishes receiving it in the

second slot.

Definition 14. A “multiple hearing” occurs when X receives a second message in

a single slot, whether from the same transmitter or a different one.

Because all slots have length T , it is not possible for three or more messages

to be received in a single slot. An example where two hearings can occur is the fol-

lowing. Let W = 4 and let X be in state R in the interval (0, T ). Node Y transmits

in (−2T/3, T/3) and X receives Y ’s final minislot. Z transmits in (T/2, 3T/2) and

X receives Z’s first minislot. All other neighbors of X are in state RR in (0, T ).

Unless W = 1, most hearings are regular. A smaller number are round-

the-corner. In this analysis we neglect multiple hearings. Multiple hearings have

occurred only rarely in our experiments, and they are difficult to count. Our analysis

therefore mildly under-estimates the performance of A.

The detailed analysis of regular and round-the-corner hearings involves the

careful analysis of sub-cases. These sub-cases will now be introduced. Evaluation

of the expected numbers of hearings in these cases can be found in Appendix 5.8.

We start by observing that all of X’s neighbors are in some pair of states,

TT, TR, RT or RR, with respect to the slot in which X listens. We call these neigh-

bors double transmitters, left transmitters, right transmitters and non-transmitters,

respectively, and denote their numbers by D, L, R and (N − 1) − (D + R + L).

X will hear nothing if D ≥ 2. If D = 0, X could successfully receive m from

a left transmitter or a right transmitter (but not both; that would be a multiple



Figure 5.3: Regular hearing with D = 0, a < b. X can hear the left transmitter if

a − a′ > T/W and can hear the right transmitter if b′ − b > T/W .

hearing). There are two sub-cases in D = 0. One of the left transmitters has the

largest offset in (0, T ), which we denote a. Another of the left transmitters has the

second-greatest offset, a′. If a − a′ is greater than the length of a minislot, and

no right transmitter interferes, then the left transmitter with offset a succeeds in

getting his message to X. This situation, and its analogy for right transmitters is

depicted in Figure 5.3.

Even if the left transmitter and the right transmitter overlap, as in Figure 5.4,

one of them can succeed. If the period from a′ to b contained an entire message

from a left transmitter, X would receive it. If the width of the gap b − a′ is one

minislot or less, m is not received. If b − a′ is the length of two minislots or more,

success is guaranteed. If b− a′ is the length of one and a half minislots or more, we



Figure 5.4: Regular hearing with D = 0, a > b. X can hear the left transmitter,

on average, if b − a′ > (3/2)T/W and can hear the right transmitter, on average, if

b′ − a > (3/2)T/W .

assume for simplicity that the transmission succeeds.

When D = 1, as in Figure 5.5, X could only hear the double-transmitter. X

does so if the left and right transmitters leave a sufficiently large gap for him, i.e.

if b − a is large enough. Again, a one minislot gap is not enough because of X’s

need to hear the preamble; a two minislot gap would guarantee success. On average,

because the double transmitter’s offset is distributed uniformly on (0, T ) we count

a gap of one and a half minislots in length or greater as a success, and shorter as a

failure.

The round-the-corner situation is depicted in Figure 5.6. Let Y be a node

which has a transmit slot overlapping two receive slots of X. Some transmit minislot



Figure 5.5: Regular hearing with D = 1, a < b. X can hear the double transmitter,

on average, if b − a > (3/2)T/W .

of Y straddles X’s slots. If during that minislot no other neighbor of X transmits,

X makes a round-the-corner hearing. Each other neighbor of X has two minislots

which overlap Y ’s. The probability of success is then the probability that all these

2(N − 2) minislots are silent.

5.5.2 Performance of A

Recall (5.5):

F = 1 − e−
SE(h)
N−1

This remains true for the asynchronous case, provided that E(h) is computed in a

way appropriate to an unslotted system, S is large and SE(h)/(N − 1) is small.

When t � WTm, we have S = �t/(WTm) ≈ t/(WTm). The performance



Figure 5.6: Round-the-corner hearings. X receives for two consecutive slots. Y

transmits in the minislot overlapping the two. The other neighbors of X have two

quiet minislots overlapping Y ’s transmit minislot.

metric can be expressed as

F ≈ 1 − e−
t

Tm

E(h)
W

1
N−1 (5.8)

Performance increases monotonically with the exponent. The first factor t/Tm

is given. The third factor can be estimated. Therefore performance really depends

on the ratio E(h)/W . We will use E(h)/W as a figure of merit for W and pT .

In Appendix 5.8 estimates of E(h)/W for various values of N , W and pT are

derived. They are plotted in Figure 5.7. In this figure the light colored blocks

have better E(h)/W . Unless N = 2 (which is not likely to be planned, since a

network in which the average number of neighbors is 1 is very sparse and likely to

be disconnected) it appears that W = 2 is the best choice for the asynchronous

operation of A.



Figure 5.7: A density plot of E(h)/W . Lighter blocks have greater E(h)/W . The

values for E(h) are taken from Table 5.2.



5.5.3 Robustness of A

In the previous sections we worked out the optimal W and pt given N . In place of N

we suggested that the network-wide average number N̂ be used. However for most

nodes in the network, the actual number of neighbors will not equal the average

number of neighbors. In this section we examine how this affects performance, and

consider whether we should use pT different from the one expected to maximize

performance in the average case.

Example Consider a network with N̂ = 6, W = 2, and S = 100 slots. In Ap-

pendix 5.8 we determine that the optimal pT in this case equals .12.

Figure 5.8 compares the performance of pt ∈ {.10, .11, .12, .13, .14} in the cases

N = 2, 3, . . . , 11.

When N < 6, the optimal transmission probability is greater than .12. When

N > 6 the optimal transmission probability is smaller than .12.

It does not appear that choices of pT �= .12 offer significant advantages, unless

more is known about the distribution of neighbors.

If one knew the complete distribution of numbers of neighbors (e.g. two-

dimensional Poisson with a given mean), instead of just the mean, then it would be

straightforward to choose a transmission probability which maximized performance

over all the possible numbers of neighbors.



Figure 5.8: The expected fraction of undiscovered neighbors log10(1−F) as a func-

tion of the actual number of neighbors, for five values of pT .



5.6 Discussion

We have assumed that if two neighbors simultaneously transmit their messages, X

hears garbage during the period of their overlap; X must hear exactly one of his

neighbors transmitting a complete message. If multi-user detection were possible,

then more transmissions would be successfully received and the performance of this

algorithm would be improved.

The algorithm produces diminishing returns as it runs. At first, every reception

of the message m from a neighbor is new; as the algorithm runs and more messages

are received, more of them duplicate messages already received; finally, a node may

continue to run A well after it has (unknowingly) discovered all its neighbors. If

A runs long enough, a majority of the energy used by A is wasted, since only the

first time one transmits successfully to a neighbor is one getting useful information

across. Later successful transmissions to that neighbor are redundant.

In this chapter it was assumed that the running time t is fixed. If instead

we were to choose a stopping point, we could use Equation (5.5) as a basis for

determining performance as a function of time.

The nodes might adapt local parameter settings based on observations. Dur-

ing A, they listen during every slot they do not transmit. If a nodes hears few

transmissions, from the fact that pT is common across the network, it could con-

clude that it has few neighbors. If this were the case, a higher pT might be called

for. Performance might be improved by simple adaptive behavior such as this.



5.7 Conclusion

Neighbor discovery is an important task in sensor networks. This chapter has pre-

sented the first asynchronous, distributed neighbor discovery algorithm.

The algorithm A (and an associated algorithm B described in Appendix 5.9)

impose a state machine structure on the participating nodes and promise simple

operation. Furthermore, the probabilistic nature of A makes it robust in the event

that the actual number of neighbors is different (even quite different) from what was

expected.

The algorithm’s performance was analyzed in slotted and unslotted time. Op-

timal values of the settable parameters, pT and W were derived, and expressions

of performance, namely the number of successful receptions of the message m per

node per timeslot, were provided as functions of N , pT and W .

It remains to compare the performance of A with other neighbor discovery

algorithms such as that of [41]. A major difference between the algorithms is that

A is probabilistic, so not all neighbor relations are necessarily discovered. However,

simulations indicate that A can discover nearly all neighbors with proper parameter

settings.

5.8 Appendix: Asynchronous analysis of E(h)

In this appendix we represent E(h) as a function of W , to enable us to choose an

optimal value of W . As explained in Section 5.5, we consider a station X which is

in state R and determine the probability that he successfully receives from one of



his N − 1 neighbors.

The length of a slot is T . It will be convenient to divide every slot into W

minislots of length T/W . By analogy to T and R we will denote a node’s state in a

minislot by t and r for transmit and receive, respectively.

5.8.1 Regular hearings

In this section we derive the number of “regular hearings” X can expect to make

per slot in which he is in state R, as a function of N , W and pT .

We divide the neighbors into four categories. The neighbors whose state pairs

are TT are double transmitters. The neighbors whose state pairs are TR are left

transmitters. The neighbors whose state pairs are RT are right transmitters. The

neighbors whose state pairs are RR are non-transmitters. We denote their numbers

by D, L, R, and N − 1− (D + R + L) respectively. This categorization is sufficient

state information for our purposes. Because all states are independent, the state

probabilities are tetranomial with

Pr(D, R, L | N) =

(
N − 1

D, R, L

)
(p2

T )D (pRpT )R (pT pR)L (p2
R

)N−1−(D+R+L)

=

(
N − 1

D, R, L

)
p2D+R+L

T (1 − pT )2(N−1)−(2D+R+L) (5.9)

We will combine the effect of the left transmitters as follows. Let a and a′ be

the greatest and second-greatest elements of the set

xL = {xi : i is a left transmitter} (5.10)

with a′ = 0 if the set is a singleton and a = a′ = 0 if empty. Similarly let b and b′



be the smallest and second-smallest elements of the set

xR = {xi : i is a right transmitter} (5.11)

with b′ = T if the set is a singleton and b = b′ = T if empty. Since x is a random

variable, a, a′, b and b′ are order statistics. Assuming the xi are uniformly distributed

on (0, T ), and that there are L ≥ 1 left transmitters and R ≥ 1 right transmitters,

the probability density functions of a and b, and the cumulative density functions

of a′ | a and b′ | b are

fa(a) = (L/T )(a/T )L−1 0 ≤ a ≤ T (5.12)

fb(b) = (R/T )(1 − b/T )R−1 0 ≤ b ≤ T (5.13)

Fa′|a(a′) =


0 a′ < 0

(a′/a)L−1 0 ≤ a′ ≤ a

1 a′ > a

(5.14)

Fb′|b(b′) =


0 b′ < b

1 −
(

T−b′
T−b

)R−1
b ≤ b′ ≤ T

1 b′ > T

(5.15)

As stated in Section 5.2, X must receive the entire message m from some

transmitter while no other node in his neighborhood is transmitting. It is not

enough for X to receive from some neighbor for a period of Tm = T/W or longer;

X must receive for T/W beginning with the preamble.

We’ll now derive necessary and sufficient conditions for a regular hearing.

Figures 5.3, 5.4 and 5.5 illustrate the three sub-cases of regular hearings.



X will be unable to hear any neighbor if there are two or more double trans-

mitters. Thus we need only consider D = 0 and D = 1.

In the case D = 0, X may only hear the left transmitter whose offset is maximal

(a), or the right transmitter whose offset is minimal (b), since the other transmitters

are always interfered with by these two in (0, T ). If a < b then if a − a′ > T/W a

left transmitter is heard, since his final transmission minislot reaches X without a

collision. If b′ − b > T/W a right transmitter is heard, since his first transmission

minislot reaches X without a collision.

E(hreg | a, b, a < b) = 1 − Pr

(
a − a′ <

T

W

)
Pr

(
b′ − b <

T

W

)
= 1 − Pr

(
a′ > a − T

W

)
Pr

(
b′ < b +

T

W

)
= 1 −

(
1 − Fa′|a

(
a − T

W

))
Fb′|b

(
b +

T

W

)
(5.16)

in which the first equality follows from the independence of the offsets.

If a > b, it is still possible for X to hear the left transmitter if b − a′ > T/W

or the right transmitter if b′ − a > T/W . The probability of successful reception

equals the probability that an entire minislot of the transmitter fits in the opening.

This probability is zero if the opening has the width of one minislot (T/W ) and one

if the opening has the width of two minislots (2T/W ). We count a success when the

width of the opening is (3/2)T/W , where the probability that the opening contains



an entire minislot is 1/2.

E(hreg | a, b, a > b) = 1 − Pr

(
b − a′ <

3

2

T

W

)
Pr

(
b′ − a <

3

2

T

W

)
= 1 − Pr

(
a′ > b − 3

2

T

W

)
Pr

(
b′ < a +

3

2

T

W

)
= 1 −

(
1 − Fa′|a

(
b − 3

2

T

W

))
Fb′|b

(
a +

3

2

T

W

)
(5.17)

Using these facts we may express

E(hreg | D = 0, R, L) =

∫ T

a:0

∫ T

b:0

E(hreg | a, b)fa(a)fb(b)dbda

=

∫∫
a<b

E(hreg | a, b, a < b)fa(a)fb(b)dbda

+

∫∫
a>b

E(hreg | a, b, a > b)fa(a)fb(b)dbda

= 1 −
∫∫

a>b

Fb′|b

(
a +

3

2

T

W

)
fa(a)fb(b)dadb (5.18)

+

∫∫
a>b

Fa′|a

(
b − 3

2

T

W

)
Fb′|b

(
a +

3

2

T

W

)
fa(a)fb(b)dadb

−
∫∫

a<b

Fb′|b

(
b +

T

W

)
fa(a)fb(b)dadb

+

∫∫
a<b

Fa′|a

(
a − T

W

)
Fb′|b

(
b +

T

W

)
fa(a)fb(b)dadb

This expression turns out not to depend on T .

We now consider the case D = 1. See Figure 5.5. X can only hope to hear

the double transmitter. The double transmitter has a uniformly distributed offset.

By an argument similar to the one made above, we count a success when the gap

b − a between the right and left transmitters exceeds (3/2)T/W . Given L and R,



the expected number of hearings X makes is

E(hreg | D = 1, L,R) = Pr

(
b − a >

T

W

)
=

∫∫
b−a> 3

2
T
W

fa(a)fb(b)dbda

=


1 L = 0, R = 0

L!R!
(L+R)!

(
1 − 3

2
1
W

)R+L
L + R ≥ 1

(5.19)

a result which can be produced by repeated integration by parts.

We can average over the numbers of left, right and double transmitters to

produce, for W ≥ 2,

E(hreg) =
∑

D=0,1

∑
L,R

0≤L+R≤N−1−D

Pr(D, L, R)E(hreg | D, L, R) (5.20)

whose summand can be expanded by the substitution of (5.18), (5.19) and (5.9).

Examination of (5.18) and (5.19) reveals that E(hreg) = 0 when W = 1.

5.8.2 Round-the-corner hearings

In this section we determine the expected number of round-the-corner hearings we

expect to make. Specifically, let X again be a listening station but now listening for

two consecutive slots. Let some neighbor Y transmit in a slot which overlaps the

two listening slots.

In order to avoid double-counting regular hearings, we only want to consider

the particular minislot in which Y transmits and which is heard at the end of X’s

first slot and completes in X’s second slot.

The other N−2 neighbors of X must all be in state R for both of their minislots

which overlap Y ’s minislot. Refer to Figure 5.6.



Let B be the event that a boundary between minislots is also a boundary

between slots. Then the probability that a node is in state rr during a pair of

minislots is

Pr(rr) = Pr(rr|B)Pr(B) + Pr(rr|BC)(1 − Pr(B)) (5.21)

= Pr(RR)

(
1

W

)
+ Pr(R)

(
1 − 1

W

)
(5.22)

= p2
R

(
1

W

)
+ pR

(
1 − 1

W

)
(5.23)

Therefore, given that X is in state RR, the probability that X successfully

receives a round-the-corner hearing is

E(hrtc) =

(
N − 1

1

)
pT

(
p2

R

1

W
+ pR

(
1 − 1

W

))N−2

(5.24)

5.8.3 Optimal settings

We may combine the results of the previous two subsections to see for various values

of N , W , and pT how many hearings we expect. Because regular hearings can only

be made by a node which is listening, and round-the-corner hearings can only be

made by a node listening in two consecutive slots, over a period of S slots we would

expect to see

SpRE(hreg) + (S − 1) p2
RE(hrtc) (5.25)

successful receptions per node. Per slot, each node would receive

E(h) = pRE(hreg) +
S − 1

S p2
RE(hrtc) (5.26)

≈ pRE(hreg) + p2
RE(hrtc) (5.27)

for large S.



Table 5.1: Optimal transmit probability as function of N and W , to nearest .01.

N W = 1 W = 2 W = 3 W = 4 W = 5

2 .50 .42 .41 .40 .40

3 .22 .26 .28 .28 .29

4 .15 .19 .21 .21 .22

5 .12 .15 .16 .17 .18

6 .09 .12 .14 .14 .15

7 .08 .10 .12 .12 .13

8 .07 .09 .10 .11 .11

9 .06 .08 .09 .10 .10

10 .05 .07 .08 .09 .09

11 .05 .06 .07 .08 .08

For selected values of N and W we have computed the p̂T which maximizes

E(h). These values, in Table 5.1, were computed by exhausting over pT in the set

{.01, .02, . . . , .99} using Equation (5.27). Recall that in the slotted case, p̂T = 1/N .

With asynchrony this is evidently no longer true.

Table 5.2 shows the expected number of hearings that could be achieved on

average, per node which has N − 1 neighbors. The figures are produced from Equa-

tion (5.27) using the transmit probabilities of Table 5.1.

Figure 5.7 is derived from these data, and shows that W = 2 is the best choice

except for the sparsest networks.



Table 5.2: Values of E(h) which result from using the transmit probabilities of

Table 5.1.

N W = 1 W = 2 W = 3 W = 4 W = 5

2 0.250 0.385 0.432 0.456 0.470

3 0.196 0.434 0.535 0.587 0.617

4 0.190 0.454 0.578 0.645 0.685

5 0.187 0.464 0.601 0.677 0.724

6 0.186 0.471 0.615 0.698 0.749

7 0.186 0.475 0.625 0.712 0.767

8 0.186 0.478 0.633 0.723 0.779

9 0.185 0.481 0.639 0.730 0.789

10 0.185 0.483 0.643 0.737 0.797

11 0.185 0.483 0.646 0.743 0.803



5.9 Appendix: A distributed algorithm to com-

mence neighbor discovery

In this appendix we describe a distributed algorithm B which relieves the network

of having to arrange for all the nodes to know and agree upon a common start time

for A, the neighbor discovery algorithm.

Whereas in the description of A all nodes could be in two states, T or R, for

algorithm B we add a third state, S (for Sleep). Nodes enter these states indepen-

dently as in A with probabilities pT , pR and pS where pT + pS + pR = 1.

In B, most nodes are deployed in the following initial state, called “listen-only”

mode

(pT = 0, pR = ε, pS = 1 − ε) (5.28)

where ε � 1. The rest are deployed in “discovery” mode, defined by

(pT , pR = 1 − pT , pS = 0) (5.29)

with pT > 0 being whatever value has been selected for algorithm A. To be in

discovery mode means nothing more than to run algorithm A. A node transits from

listen-only mode to discovery mode only when it is in state R and receives a message

on the shared channel (or has the incoming energy threshold exceeded, suggesting

a collision) from another station. Once in discovery mode, a node remains in it for

a fixed duration of S timeslots. After the period in discovery mode, the node has a

possibly incomplete list of its neighbors. After running A, the node could carry out

the next task (e.g. scheduling, routing, data transfer) it has been programmed to



do.

As an alternative to deploying some nodes in discovery mode, and others

in listen-only mode, all nodes could be programmed with a countdown timer which

forces a transition from listen-only to discovery mode if the transition has not already

been made.

All nodes can be programmed the same way. The nodes differ only in their

initial states and in their identities. The nodes do not need to agree on when A is

“supposed to begin,” because their transition from listen-only to discovery mode is

event-triggered. Entry into A could be begun by any node, or by multiple nodes,

with the same network behavior resulting. There will be a wave of nodes commencing

A centered at the first node(s) who entered it.

5.9.1 Setting parameters for listen-only mode

It should be clear from the description of B that there is a nonzero probability that

a node may remain in listen-only mode forever, never hearing any of his neighbors

transmit during their discovery modes. As this could cause an entire subgraph

behind the unlucky node to go undiscovered, it is important to set ε (probability of

listening in listen-only mode) such that the probability of this happening be small.

If the period preceding the beginning of discovery mode were expected to be short

then we should consider making ε large; on the other hand if the deployment period

is long, saving energy in it becomes worthwhile so we are reluctant to make it large.

Example Suppose we set as our goal that the probability that a station remains



in listen-only mode for more than S/10 slots while any one neighbor is in discovery

mode be no more than δ. This probability is geometric with probability of the

undesired event being (1 − εpT )S/10 ≤ δ. Therefore we should set ε ≥ (1− δ10/S)/pT

to guarantee the condition.

With ε set as above the probability that a node will completely miss a neigh-

bor’s entire discovery mode is δ10. The expected delay between the time a node

commences discovery mode and the time a neighbor detects this, also depends on ε.

It is 1/(εpT ) = 1/(1 − δ10/S). Both these situations improve when a node has more

than one neighbor.

Of course, when a node has no neighbors, no neighbor discovery algorithm

could succeed, and the node has no value to the sensor network.
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