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Abstract

The design of control charts in statistical quality control addresses the optimal selection of the design

parameters such as the sampling frequency and the control limits; and includes sensitivity analysis with

respect to system parameters such as the various process parameters and the economic costs of sampling.

The advent of more complicated control chart schemes has necessitated the use of Monte Carlo simulation

in the design process, particularly in the evaluation of performance measures such as average run length.

In this paper, we apply perturbation analysis to derive gradient estimators that can be used in gradient-

based optimization algorithms and in sensitivity analysis when Monte Carlo simulation is employed. We

illustrate the technique on a simple Shewhart control chart and on a more complicated control chart that

includes the exponentially-weighted moving average control chart as a special case.
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1 Introduction

Two critical issues that must be addressed in the design of control charts in statistical quality control are

the optimal selection of the design parameters such as sample size, sampling frequency, and control limits;

and sensitivity analysis with respect to system parameters such as the economic costs of sampling and the

characteristics of the potential process shifts (cf. Montgomery 1996). Depending on the design approach, the

performance measures of interest fall into two main types: average run lengths or expected economic costs.

The increasing complexity of many of the recently proposed control charts in the research literature has

led to analytically intractable models, so Monte Carlo simulation is routinely used to estimate performance.

Examples include Grimshaw and Alt (1997), where control charts for quantile function values are proposed;

Albin et al. (1997), where a number of di�erent control charts are compared in their average run length to

false alarms and to detection of process mean and standard deviation shifts; Baxley (1995), where variable

sampling interval control charts are applied; Seppala et al. (1995), where subgroup bootstrap and parametric

methods for determining process control limits are compared; and Gan (1995), where the performance of

control charts for joint monitoring of a process mean and variance are evaluated and compared.

The generality of Monte Carlo simulation makes it a popular tool, since it allows the modeller to be quite


exible. Among the clearest advantages are the following:

� Assumptions on process characteristics can be relaxed (e.g., normality, independence, and stationarity

assumptions). For example, in Grimshaw and Alt (1997), a control chart is derived under a (customary

in the literature) large sample approximation invoking the Central Limit Theorem. However, as they

point out, in practice relatively small sample sizes are used. In their small test example, the simulation

estimate of in-control average run length was 147.6, compared to a theoretical value, based on the large

sample approximation, of 200.

� Any control chart can be handled, including Shewhart, Cumulative Sum (CUSUM), Exponentially

Weighted Moving Averages (EWMA), and Bayesian. In comparing various control charts, Albin et

al. (1997) \chose to use simulation. Essentially one program (with less than �fty lines of code) is used

for all combinations of charts and run rules that we consider."

� An economic cost model can be made as general as desired. Barish and Hauser (1963) applied Monte

Carlo simulation to test various combinations of parameters in an economic cost control chart design.

On the other hand, when it comes to sensitivity analysis and optimal design of control charts, the

use of Monte Carlo simulation has been limited to \brute force" application. In other words, sensitivity

analysis is conducted by changing the value of the parameter of interest and re-running the simulation,

and optimization is carried out in a somewhat ad hoc trial-and-error manner, i.e., no formal optimization

techniques are employed. The primary goal of this paper can be stated as follows:

To introduce the use of Monte Carlo simulation gradient estimation techniques to the design and

analysis of control charts.
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The two most commonly used such techniques are perturbation analysis (PA) and the likelihood ratio method.

Monographs for the former are Ho and Cao (1991), Glasserman (1991), Cao (1994), and Fu and Hu (1997),

and for the latter is Rubinstein and Shapiro (1993). These methods have been applied predominantly to

queueing and inventory models. This work represents the �rst application of PA to statistical quality control.

Advantages inherent in applying these techniques when using Monte Carlo simulation include the following:

� the implementation of the estimators requires very little additional overhead in the simulation;

� the estimation is computationally e�cient compared to the multiple runs that would be needed to

construct �nite di�erence estimates for each parameter of interest;

� the estimators have lower variance (generally) than naive �nite di�erence estimates;

� the optimal design problem can be addressed using gradient-based algorithms (cf. Fu 1994).

Speci�cally, in this paper we derive sensitivity estimates for average run lengths with respect to di�erent

types of parameters: the control limits, the sampling frequency, and various process shift parameters. The

rest of the paper is organized as follows. In Section 2, we introduce the problem setting with the requisite

notation and brie
y discuss the gradient estimation technique to be applied. In Section 3, we consider

the standard in-control and out-of-control average run length performance measures and derive sensitivity

estimators with respect to the control limits. Both the simple Shewhart chart and a more general chart

that includes the EWMA control chart are addressed. In Section 4, we incorporate the dynamics of the

process shift and derive sensitivity estimators of average run length. In addition to considering the control

limit parameters, we also derive estimators with respect to the sampling frequency and various process shift

parameters. Section 5 concludes with a summary, extensions to other performance measures such as average

time to signal, and a discussion of avenues for further research, including the economic design problem.

2 Problem Setting

We consider the standard control chart setting involving a single measurable process variable with two distinct

states called \in control" and \out of control." Samples of the process are taken at regularly spaced intervals

and a test statistic generated (possibly based on past samples, as well). The test statistic is compared with

control limits (that may vary as a function of time, as well) to declare the process in control or out of control.

We begin by de�ning the following notation:

h = sampling interval, i.e., samples are taken every h time units;

n = sample size;

F0 = sampling process c.d.f. (with p.d.f. f0) when in control;

F1 = sampling process c.d.f. (with p.d.f. f1) when out of control;

�0 = in-control process mean;

�1 = out-of-control process mean;

Xi = output from the ith sample, i.i.d. F0 or F1;

Yi = test statistic after ith sample;

LCLi = lower control limit for the ith test statistic;

UCLi = upper control limit for the ith test statistic:
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In words, samples of size n are taken every h units of time to generate fXig, from which the test statistic

sequence fYig is derived. An out-of-control signal is declared if the test statistic Yi falls outside of the interval

de�ned by the lower and upper control limits [LCLi;UCLi]. The underlying process has an in-control c.d.f.

F0 with mean �0 and an out-of-control c.d.f. F1 with mean �1. The sampling distributions F0 and F1 can

be quite general, with standard distributions assumed (invoking the central limit theorem) being the normal

distribution or the chi-squared distribution.

In this paper, we will assume that the test statistic generated by the control chart at the jth sampling

has the following general form:

Yi =  (Xi; Yi�1); (1)

where  is a function independent of other system parameters. Usually, Y1 = X1 is speci�ed as the initial

condition.

Example 1. Shewhart chart:

Yi = Xi for all j � 1:

Example 2. EWMA chart:

Yi = �Xi + (1� �)Yi�1 for all j � 2; 0 < � < 1; Y1 = X1:

As described above, an out-of-control signal is declared when the test statistic falls outside of the speci�ed

control limits. The corresponding sample number is de�ned as the run length, which is the performance

measure of interest:

L = minfi : Yi 62 [LCLi;UCLi]g: (2)

The expectation of this stopping time for fYig is what is commonly known as the average run length (ARL).

We will consider three forms of the ARL performance measure:

� in-control ARL;

� out-of-control ARL;

� ARL under process shift dynamics.

The in-control (out-of-control) ARL assumes that the process is in control (respectively, out of control) the

entire time. Ideally, one wants long in-control run lengths and short out-of-control run lengths. The third

type of ARL assumes that the process starts in control, but goes out of control at some later time. To be

more precise, we introduce the following notation that characterizes the process shift dynamics:

T = (r.v.) time to go from F0 to F1;

F = c.d.f. (with p.d.f. f) for T , parametrized by � (e.g., the mean)

Gi = c.d.f. (with p.d.f. gi) for Xi 2 fF0; F1g:

Starting from a new in-control state, the process will go out of control after T units of time, where T is a

random variable independent of fXig with c.d.f. F , p.d.f. f , and parameter � (e.g., the mean). Clearly, the
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run length depends on T , and the notation L(T ) will be used to denote this explicit dependence. The event

fhL < Tg indicates a false alarm. The underlying dynamics that drive the process out of control may be

quite general, since Monte Carlo simulation is to be employed, e.g., T need not be exponentially distributed,

as is assumed in most analytical models. The sampling distribution sequence fGig forms a discrete-time

stochastic process which takes on the \value" F0 or F1, depending on whether or not the process is in control.

Now we can de�ne the three performance measures of interest:

ARL(T ) = E[L(T )];

ARL0 = E[LjT =1];

ARL1 = E[LjT = 0]:

ARL0 is the in-control (on-target) ARL, and ARL1 is the out-of-control (o�-target) ARL. ARL(T ) is the

ARL for a process that starts in control, but shifts out of control at time T . ARL(T ) is useful for control chart

design based on economic costs; when there is no confusion, the T argument (or subscript) will be dropped.

Furthermore, except where speci�ed otherwise, the initial condition Y1 = X1 is implicit throughout.

Using perturbation analysis, we will derive estimators for sensitivities of the average run length

dARL0
d�

;
dARL1
d�

; and
dARL(T )

d�
;

where � will represent di�erent types of parameters: the sampling frequency, control limit parameters, and

various process parameters.

2.1 Perturbation Analysis

Perturbation analysis (PA) is a technique for gradient estimation that is particulary useful whenever Monte

Carlo simulation is employed (cf. Ho and Cao 1991, Glasserman 1991, and Fu and Hu 1997). The simplest and

generally most e�cient technique is in�nitesimal perturbation analysis (IPA). Intuitively, an IPA estimator

is derived under the assumption that small changes in the parameter cause small changes in the performance

measure. Technically speaking, a su�cient condition for the IPA estimator to be unbiased is that the

sample performance measure be a.s. continuous with respect to the parameter. IPA is not applicable to our

problem, because L is a discrete random variable, taking on integer values. The resulting L as a function

of the parameter will be piecewise constant with jumps, and thus the resulting IPA estimator will be 0.

For example, if the control limits are perturbed, the sample number at which the out-of-control signal is

declared will not change if the perturbation is small enough. As the perturbation is increased, at some point

the sample number at which the out-of-control signal is declared will change.

For the cases where IPA does not apply, there are various PA alternatives/extensions (see Fu and Hu 1997

for illustration of various forms on a simple random variable example). We apply the technique introduced

by Gong and Ho (1987) that employs conditional Monte Carlo, known as smoothed perturbation analysis

(SPA). The particular approach taken here is based on the general framework of Fu and Hu (1992), as

presented in Fu and Hu (1997). The general form of the estimator contains two parts:
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� The �rst part is simply the IPA estimator.

� The second part consists of the sum of conditional contributions representing the product of a proba-

bility jump rate and the resulting jump in the performance measure that is computed as a conditional

expected di�erence on two sample paths (based on the original sample path) that are called the degen-

erated nominal path (DNP) and perturbed path (PP). The original sample path is called the nominal

path (NP).

The �rst part is zero for our problem, as already discussed. The analysis in the next two sections focus

on deriving the second part. As is standard in perturbation analysis, unbiasedness of the estimators is

established by invoking the dominated convergence theorem.

3 In-Control and Out-of-Control ARLs

For the in-control and out-of-control ARLs, we consider derivative estimates with respect to the control

limits. Throughout this section, we treat the two cases simultaneously by de�ning the two constants

�0 =1; �1 = 0;

to correspond to the in-control and out-of-control cases, respectively. We can then use

T = �j ; j = 0; 1;

to refer to the two cases concurrently, where fXig would have corresponding p.d.f. fj and c.d.f. Fj . For

example, using this notation, we have ARLj = E[LjT = �j ].

We consider the constant control limits case �rst:

l = LCLi; u = UCLi:

If � is a parameter in both LCL and UCL, as is typically the case, then the chain rule can be applied to

obtain the sensitivities
dE[L]

d�
=
dE[L]

du

du

d�
+
dE[L]

dl

dl

d�
:

As discussed in the previous section, the critical point to note is that if a change in the control does cause

a change in the sample number in which the out-of-control signal is declared, this change is �nite (here,

integer-valued) and not in�nitesimal; hence, the IPA estimator is biased. By conditioning, we now obtain an

unbiased estimator that consists of terms that are a product of a probability rate of the change in the sample

number multiplied by the expected di�erence in the performance measure due to the change. As usual, we

will refer to the original path as the nominal path, and to the path under the change as the perturbed path.

Under the framework of Fu and Hu (1997), we have the following:

dE[L]

d�
= lim

��!0

�
E

�
L(� +��)� L(�)

��

����Bc(��)
�
P (Bc(��))

+E

�
L(� +��)� L(�)

��

����B(��)
�
P (B(��))

�
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=
dE[L � 1(Bc)]

d�
+E

�
lim
��!0

E [L(� +��)� L(�)j z;B(��)] lim
��!0

P (B(��)jz)

��

�

= E

�
dL

d�

�
+E

��
Ez [L

PP ]�Ez [L
DNP ]

� dPz
d�

�
;

where

Ez[L
PP ] = lim

��!0
E[L(� +��)jz;B(��)];

Ez [L
DNP ] = lim

��!0
E[L(�)jz;B(��)];

dPz
d�

= lim
��!0

P (B(��)jz)

��
;

B(��) = f! : L(� +��) 6= L(�)g;

i.e., B(��) gives the set of sample paths on which a perturbation �� causes the run length to change, dPz=d�

is the probability \rate" at which this change takes place, and Ez [L
PP ] is the corresponding expected run

length on those sample paths, in the limiting case as the perturbation becomes in�nitesimal. The subscript

z indicates a conditional expectation or probability on set z, called the characterization, to be selected.

For our problem, we have two simpli�cations:

1. As discussed earlier, the IPA term (�rst term) is zero.

2. LDNP = L, i.e., the performance measure on DNP is equal to that found on the original sample path

NP.

What remains to be carried out are the following:

1. Choosing the characterization z.

2. Calculating the probability rate term
dPz
d�

.

3. Estimating Ez[L
PP ] (or Ez[L

PP � L]).

We derive the explicit estimator for the case where � is u, as the case where � is l is completely analogous.

We consider both the left-hand and right-hand derivatives. For �u > 0, it is obvious that L(u+�u) 6= L(u)

if and only if u < YL(u) � u+�u, i.e.,

E[L(u+�u)� L(u)] = E[(L(u+�u)� L(u))1(u < YL � u+�u)]

In this case, the perturbation �u causes the test statistic to no longer signal out of control, and hence the

run length is extended as a result (see Figure 1). In particular, we can think of the process as starting over

with a new initial condition ~Y1 =  (X1; YL), i.e., the additional length is equal to

E[LjT = �j ; ~Y1 =  (X1; YL)];

where the tilde notation is used to distinguish it from the original process.
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Figure 1: Extension of run length caused by positive perturbation in upper control limit.

On the other hand, letting z = (L;X1; : : : ; XL�1), we have

E[(L(u+�u)� L(u))1(u < YL � u+�u)]

= E[E[(L(u+�u)� L(u))1(u < YL � u+�u)jz]]

= E [E[(L(u+�u)� L(u))jz; u < YL � u+�u]1(YL > u)P (u < YL � u+�ujz; YL > u)] :

Note that in the last equation, we introduce the condition YL > u so that our estimator will be simpler;

otherwise, the implicit condition YL =2 [l; u] would have to be used in calculating P (u < YL � u + �ujz),

resulting in a more complicated estimator.

Therefore, we have Pz(B(�u)) = P (u < YL � u +�ujz; YL > u), so the probability rate term for the

change is calculated via

dPz
d�

= lim
�u!0+

P (u < YL � u+�ujz; YL > u)

�u
=

fj( 
�1(u; YL�1))

1� Fj( �1(u; YL�1))

d �1(u; YL�1)

du
:

where  �1(�; �) denotes the inverse with respect to the �rst argument, so that

Xi =  �1(Yi; Yi�1):

For example, we have for the EWMA control chart:

 (x; y) = �x + (1� �)y =)  �1(w; y) = (w � (1� �)y)=�;
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Xi =
Yi � (1� �)Yi�1

�
:

Also,

lim
�u!0+

E[(L(u+�u)� L(u))jz; u < YL � u+�u]

= lim
�u!0+

E[LjT = �j ; ~Y1 =  (X1; YL); u < YL � u+�u]

= E[LjT = �j ; ~Y1 =  (X1; u)]:

Thus, our �nal right-hand estimator for dARLj=du; j = 0; 1, is the following:

fj( 
�1(u; YL�1))

1� Fj( �1(u; YL�1))

d �1(u; YL�1)

du
E[LjT = �j ; ~Y1 =  (X1; u)]1fYL > ug: (3)

For unbiasedness, we need

lim
�u!0

1

�u
E[L(u+�u)� L(u)]

= E

�
lim
�u!0

E[(L(u+�u)� L(u))jz; u < YL � u+�u]1(YL > u)
1

�u
P (u < YL � u+�ujz; YL > u)

�
:

As usual, we use the dominated convergence theorem to establish this. Basically, to apply the dominated

convergence theorem the key condition required is the bound

E

�
sup

0��u��

E[LjT = �j ; ~Y1 =  (X1; u+�u)]1(YL > u)
1

�u
P (u < YL � u+�ujz; YL > u)

�
<1; (4)

for any � > 0. The following conditions su�ce to establish (4):

(A1)  (�; �) is continuously di�erentiable and strictly increasing with respect to its �rst argument.

(A2)  �1(�; �) is a decreasing function with respect to its second argument,

����d 
�1(x; �)

dx

���� < K for all x, where

K > 0 is a constant, and Fj( 
�1(u; l)) < 1, for j = 0; 1.

(A3) jfj(x)j < K for all x; j = 0; 1.

(A4) E[LjT = �j ; ~Y1 =  (X1; u+�u)] < K, for 0 � �u � �; j = 0; 1.

The conditions on  in (A1) and (A2) are mild. For example, it can easily be shown that the EWMA contol

chart satis�es them. Condition (A3) is easily veri�able and holds for most of the well-known distributions.

On the other hand, (A4) is a technical condition not as straightforward to verify as the other conditions, but

viewed as a bound on average run length, it is reasonable to assume it holds for systems of practical interest.

Theorem 1. Under (A1){(A4), (3) is an unbiased estimator for dARLj=du; j = 0; 1.

Proof. In the estimator (3), the existence of  �1(�; �) and its di�erentiability are guaranteed by (A1). To

establish (4), we note that due to (A4), we only need to establish a bound on

���� 1

�u
P (u < YL � u+�ujz; YL > u)

���� :
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Figure 2: Shortening of run length caused by negative perturbation in upper control limit.

Since  �1(�; �) is decreasing with respect to its second argument due to (A2) and l � YL�1 � u, we have���� 1

�u
P (u < YL � u+�ujz; YL > u)

����
=

���� 1

�u

Fj( 
�1(u+�u; YL�1))� Fj( 

�1(u; YL�1))

1� Fj( �1(u; YL�1))

����
�

1

�u

Kj �1(u+�u; YL�1)�  �1(u; YL�1)j

1� Fj( �1(u; l))
via (A2) and (A3)

�
K2

1� Fj( �1(u; l))
via (A2):

This completes the proof. 2

For the left-hand derivative �u < 0, we know L(u+�u) 6= L(u) if u+�u < Yi � u for some i < L. In

this case, we have a larger set of possible changes, in that any in-control signal prior to the �rst out-of-control

may be altered to out of control, thus shortening the run length to that point (see Figure 2). If such a change

occurs for sample i, the run length is reduced to i, and we have

lim
�u!0�

E[(L(u+�u)� L(u))jz; u+�u < Yi � u] = i� L:

For each term i, we de�ne the characterization as the set of all sample information except Xi itself:

zi = fL;X1; :::; XLgnfXig;
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so that the probability rate term for the change is calculated via

dPzi
d�

= lim
�u!0�

P (Yi > u+�ujl � Yi � u)

�u
= �

fj( 
�1(u; Yi�1))

Fj( �1(u; Yi�1))� Fj( �1(l; Yi�1))

d �1(u; Yi�1)

du
;

and the �nal left-hand estimator for dARLj=du; j = 0; 1, is the following:

X
i<L

fj( 
�1(u; Yi�1))

Fj( �1(u; Yi�1))� Fj( �1(l; Yi�1))

d �1(u; Yi�1)

du
(L� i): (5)

To establish unbiasedness, conditions (A2) and (A4) must be altered to the following:

(A20)

����d 
�1(x; �)

dx

���� < K for all x, where K > 0 is a constant, and inf l�y�u Fj( 
�1(u; y))�Fj( 

�1(l; y)) > 0,

for j = 0; 1.

(A40) E[L2jT = �j ; ~Y1 =  (X1; u+�u)] < K, for 0 � �u � �.

The squared term in (A40) arises from the fact that the estimator (5) has a summation containing on the

order of L terms.

Theorem 2. Under (A1), (A20), (A3) and (A40), (5) is an unbiased estimator for dARLj=du; j = 0; 1.

Since the proof proceeds essentially along the same lines as in Theorem 1, it is omitted here.

For our two examples, we have the following unbiased estimators for dARLj=du; j = 0; 1:

Example 1. Shewhart chart:

fj(u)

1� Fj(u)
1fXL > ug � L;

X
i<L

fj(u)

Fj(u)� Fj(l)
(L� i) =

fj(u)

Fj(u)� Fj(l)

L(L� 1)

2
:

Example 2. EWMA chart:

fj((u� (1� �)YL�1)=�)

1� Fj((u� (1� �)YL�1)=�)

1

�
E[LjT = �j ; ~Y1 =  (X1; u)]1fYL > ug;

X
i<L

fj((u� (1� �)Yi�1)=�)

Fj((u� (1� �)Yi�1)=�)� Fj((l � (1� �)Yi�1)=�)

1

�
(L� i):

Next we consider the general case where the control limits are also indexed by the sample number, i.e., we

have a sequence f[li; ui]g. This can be used to represent the most general of control charts such as CUSUM

charts, where the control limits increase (usually linearly). We can use the chain rule to �nd sensitivities as

follows:
@E[L]

@�
=
X
i

@E[L]

@ui

@ui
@�

+
X
i

@E[L]

@li

@li
@�
;

so for example this includes the constant control limit chart as a special case.

For �ui > 0, we can only have a change if L = i, so similar to the previous analysis, our estimator for

dARLj=dui; j = 0; 1, is given by

fj( 
�1(ui; YL�1))

1� Fj( �1(ui; YL�1))

d �1(ui; YL�1)

du
E[LjT = �j ; ~Y1 =  (X1; u)]1fYL > ug1fL = ig:

Similarly, for �ui < 0, we have the estimator

fj( 
�1(ui; Yi�1))

Fj( �1(ui; Yi�1))� Fj( �1(li; Yi�1))

d �1(ui; Yi�1)

du
(L� i)+:
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Figure 3: Relationship between �, T , and h.

4 Process Shift ARL

Now we consider the case where the process begins in control and goes out of control after a random time

T . Thus, the distribution of each Xi depends on T , so that L also depends on T implicitly. The dependence

of fXig on T is not on the actual value of T , but just on which sampling interval it occurs. Therefore, we

de�ne the index random variable for the last in-control sample taken (refer to Figure 3)

� = maxfj : hj < Tg;

i.e.,

Xi �

�
F0 for i � �;
F1 for i > �:

In particular, if an i.i.d. sequence of random numbers fUig is used to generate fXig by inversion, we have

Xi =

�
F�10 (Ui) for i � �;
F�11 (Ui) for i > �:

There are two possibilities when an out-of-control signal is declared at epoch L:

1. the true state is out of control: T � hL() � < L;

2. the true state is actually in control (false alarm): T > hL() � � L.

4.1 Control Limits

This analysis proceeds very similarly to the in-control and out-of-control cases, with the following exceptions:

� the initial condition on the additional run length involves the residual time of T at the time of the

out-of-control signal;

� the probability rate term is replaced with a random distribution Gi, equal to either F1 or F0 depending

on whether the out-of-control signal is a true or false alarm, respectively.

We again consider both the left- and right-hand derivatives. For �u > 0, we only need to consider the

case u < YL � u+�u, as before. Proceeding in the same manner, we obtain the estimator

gL( 
�1(u; YL�1))

1�GL( �1(u; YL�1))

d �1(u; YL�1)

du
E[LjT = �res; ~Y1 =  (X1; u)]1fYL > ug:

where �res = (T � hL)+ is the residual time until the system actually goes out of control from the epoch at

which an out-of-control signal is declared. Thus, if T � hL, the system is already out of control, and hence

the residual time is zero.

11



For �u < 0, considering u+�u < Yi � u for each i < L as before, we obtain

X
i<L

gi( 
�1(u; Yi�1))

Gi( �1(u; Yi�1))�Gi( �1(l; Yi�1))

d �1(u; Yi�1)

du
(L� i):

Example 1. Shewhart chart:

gL(u)

1�GL(u)
E[LjT = �res]1fXL > ug;

X
i<L

gi(u)

Gi(u)�Gi(l)
(L� i):

Example 2. EWMA chart:

gL((u� (1� �)YL�1)=�)

1�GL((u� (1� �)YL�1)=�)

1

�
E[LjT = �res; ~Y1 =  (X1; u)]1fYL > ug;

X
i<L

gi((u� (1� �)Yi�1)=�)

Gi((u� (1� �)Yi�1)=�)�Gi((l � (1� �)Yi�1)=�)

1

�
(L� i):

Again, we can consider the general case where the control limits are also indexed by the sample number,

f[li; ui]g. Doing so, we obtain the following right-hand and left-hand estimators for dARLj=dui j = 0; 1:

gi( 
�1(ui; YL�1))

1�Gi( �1(ui; YL�1))

d �1(ui; YL�1)

du
E[LjT = �res; ~Y1 =  (X1; u)]1fYL > ug1fL = ig;

gi( 
�1(ui; Yi�1))

Gi( �1(ui; Yi�1))�Gi( �1(li; Yi�1))

d �1(u; Yi�1)

du
(L� i)+:

One thing we note is that in this case there is a di�erence between simulation and on-line estimation. In

particular, the random variable T would not be observable in the real system, implying that gi and Gi would

be unobservable; thus, the estimators can only be implemented in a simulation.

Finally, we point out that Theorems 1 and 2 still apply if the boundedness conditions (A4) and (A40)

hold for all T = �res 2 (0;1).

4.2 Sampling Frequency

We now consider � = h, the sampling interval. As before, the critical point to note is that if a change in the

sampling interval does cause a change in the sample number in which the out-of-control signal is declared this

change is �nite and not in�nitesimal. We �rst consider the right-hand estimator �h > 0. Writing �(h) to

denote the dependence of � on the sampling interval, we observe increasing the sampling interval may cause

the interval in which the process actually goes out of control to decrease, speci�cally �(h+�h) = �(h)� 1,

which would imply that for h+�h, we would have

Xi �

�
F0 for i � � � 1;
F1 for i > � � 1;

so that the distribution of X� would change. This is the critical event order change. Then by conditioning

on z = f�g [ fXig
1
i=1, we will derive our estimator.

12
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Figure 4: Potential change caused by perturbation �h > 0.

We condition on �(h) = i. By de�ntion of �(h), we have hi < T < h(i+1). Based on the possible values

of �(h+�h), we consider four cases:

�(h+�h) > i 1fT > (h+�h)(i+ 1)g = 0 since �h > 0;

�(h+�h) < i� 1 1fT � (h+�h)(i� 1)g = 0 for �h < h=(i� 1);

�(h+�h) = i L(h+�h) = L(h) if (h+�h)i < T � (h+�h)(i+ 1);

�(h+�h) = i� 1 =) (h+�h)(i� 1) � T < (h+�h)i:

Thus, we need only consider further the case (h + �h)(i � 1) � T < (h + �h)i, depicted in Figure 4. In

particular, we have shown

Lemma 1. For 0 < �h < h=(� � 1),

E[(L(h+�h)� L(h))jz]

= E[(L(h+�h)� L(h)1f(h+�h)(� � 1) � T < (h+�h)�gjz]

= E[(L(h+�h)� L(h)jz;1f(h+�h)(� � 1) � T < (h+�h)�g]

�E[1f(� � 1)(h+�h) � T < �(h+�h)gjz]:

The probability rate term in this case is calculated in the usual way by

P (�(h+�h) = i� 1j�(h) = i)

= P ((i� 1)(h+�h) < T � i(h+�h)jih < T � (i+ 1)h)

= P (ih < T � i(h+�h)jih < T � (i+ 1)h) for 0 < �h < h=i

=
P (ih < T � i(h+�h)

P (ih < T � (i+ 1)h)

=
F (i(h+�h)) � F (ih)

F ((i+ 1)h)� F (ih)
:

Thus, we have

lim
�h!0

P (�(h+�h) = i� 1j�(h) = i)

�h
=

i � f(ih)

F ((i+ 1)h)� F (ih)
;

and the �nal estimator is given by

� � f(�h)

F ((� + 1)h)� F (�h)
Ez

�
LPP � L

�
; (6)
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where the three paths are de�ned as follows:

� NP , the original sample path: �h < T � (� + 1)h;

� DNP : T = (�h)+ =) �DNP = �;

� PP : T = (�h)� =) �PP = � � 1.

Since the run-length performance measure does not depend on the actual value of T but just on �, we again

have LDNP = L.

To establish the unbiasedness of our estimators, we impose the following assumptions:

(A5) f(t)=(F (t1)� F (t)) � K, 8t1 � t s.t. F (t1) > F (t).

(A6) E[suph2(hmin;hmax) L(h)�] <1; where 0 < hmin < hmax <1:

First, we have

Lemma 2. Under (A5),
F (t+�t)� F (t)

F (t1)� F (t)
� K�t;

where �t � t1 � t.

Proof. Based on (A5), we have
d

dt
(eKtF (t)) � KeKtF (t1):

Taking integration on the both sides of the above equation from t to t+�t, we obtain

eK�tF (t+�t)� F (t) � F (t1)(e
K�t � 1);

which leads to
F (t+�t)� F (t)

F (t1)� F (t)
� 1� e�K�t � K�t:

2

Now we are ready to prove

Theorem 3. Under (A5){(A6), (6) is an unbiased estimator for dE[L]=dh.

Proof. As usual, the proof is based on the dominated convergence theorem. Note that����E[(L(h+�h)� L(h))jz;1f(i� 1)(h+�h) � T < i(h+�h)g]

���� � 2 sup
h2(hmin;hmax)

L(h);

and

1

�h
E[1f(h+�h)(� � 1) � T < (h+�h)�gjz]

=
1

�h
P ((h+�h)(h+�h) � T < (h+�h)�jh� < T � h(� + 1))

=
1

�h
P (�h < T � (h+�h)j�h < T � (� + 1)h)1f�h < h=�g

+
1

�h
P (�h < T � (h+�h)j�h < T � (� + 1)h)1f�h � h=�g
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Figure 5: Potential change caused by perturbation �h < 0.

�
1

�h

F (�(h+�h))� F (�h)

F ((� + 1)h)� F (�h)
+

1

�h
1f�h � h=�g

� K + �=h

� (K + 1=h)�:

Applying Lemma 1 and using (A6), we have

E

�
sup
�h

1

�h
E[(L(h+�h)� L(h))jz]

�
<1:

Then, applying the dominated convergence theorem,

lim
�h!0

E[L(h+�h)]�E[L(h)]

�h
= E

�
lim

�h!0

1

�h
E[(L(h+�h)� L(h))jz]

�
:

2

We now turn to the left-hand derivative �h < 0, where we consider P (�(h+�h) = i+ 1j�(h) = i), i.e.,

as depicted in Figure 5, we have

P (�(h+�h) = i+ 1j�(h) = i)

= P ((i+ 1)(h+�h) < T � (i+ 2)(h+�h)jih < T � (i+ 1)h)

= P ((i+ 1)(h+�h) < T � (i+ 1)hjih < T � (i+ 1)h)

for � h(i+ 2) < �h < 0

=
P ((i+ 1)(h+�h) < T � (i+ 1)h

P (ih < T � (i+ 1)h)

=
F ((i+ 1)h)� F ((i+ 1)(h+�h))

F ((i+ 1)h)� F (ih)
:

Thus, we have

lim
�h!0

P (�(h+�h) = i+ 1j�(h) = i)

�h
= �

(i+ 1) � f((i+ 1)h)

F ((i+ 1)h)� F (ih)
;

and the �nal estimator is given by

(� + 1) � f((� + 1)h)

F ((� + 1)h)� F (�h)
Ez

�
L� LPP

�
; (7)

where the three paths are de�ned as follows:

15



� NP , the original sample path, on which �h < T � (� + 1)h;

� DNP : T = ((� + 1)h)� =) �DNP = �;

� PP : T = ((� + 1)h)+ =) �PP = � + 1.

Unbiasedness would again be established by applying the dominated convergence theorem. Since the proof

proceeds essentially along the same lines as in Theorem 3, it is omitted here.

Theorem 4. Under (A5){(A6), (7) is an unbiased estimator for dE[L]=dh.

4.3 Process \Drift" Parameters

Next, we consider sensitivities to parameters that enter the dynamics of the process going from in control to

out of control. In particular, we consider the derivative with respect to �, a parameter in the distribution

of T . A little thought reveals that the resulting estimator is similar to the previous one, since the change

occurs only in the timing of the samplings. The only di�erences are the following:

� �T < 0 corresponds to �h > 0 and �T > 0 corresponds to �h < 0;

� the probability rate term is slightly di�erent, as computed below.

For �T < 0, we have

P (�(T +�T ) = i� 1 j �(T ) = i)

= P ((i� 1)h < T +�T � ih j ih < T � (i+ 1)h)

= P (ih < T � ih��T j ih < T � (i+ 1)h)

=
F (ih��T )� F (ih)

F ((i+ 1)h)� F (ih)
:

Thus, the left-hand derivative is given by

�f(�h)

F ((� + 1)h)� F (�h)

dT

d�

�
LPP � L

�
; (8)

where PP is the sample path on which T = (�h)� =) �PP = � � 1.

For �T > 0, we have

P (�(T +�T ) = i+ 1j�(T ) = i)

= P ((i+ 1)h < T +�T � (i+ 2)hjih < T � (i+ 1)h)

= P (ih��T < T � (i+ 1)hjih < T � (i+ 1)h)

=
F ((i+ 1)h)� F ((i+ 1)h��T )

F ((i+ 1)h)� F (ih)
;

Thus, the right-hand derivative is given by

�f((� + 1)h)

F ((� + 1)h)� F (�h)

dT

d�

�
LPP � L

�
; (9)

where PP is the sample path on which T = ((� + 1)h)+ =) �PP = � + 1.
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Similar to Theorems 3 and 4, we have the following unbiasedness result. Its proof would again be similar

to that of Theorem 3, and hence is omitted here. The only additional fact we need to use is T � (� + 1)h,

along with the following technical conditions:

(A7) jdT=d�j � K1T +K2, where K1;K2 > 0 are two constants.

(A8) E[suph2(hmin;hmax) L
2�] <1; where 0 < hmin < hmax <1:

Theorem 5. Under (A5), (A7), and (A8), (8) and (9) are unbiased estimators for dE[L]=d�.

4.4 In-Control and Out-of-Control Process Parameters

We now consider the case where the parameter is one of the process (in-control or out-of-control) means, so

that fXig changes. In particular, we have

dXi

d�0
= 0 for i � T=h; (10)

and
dXi

d�1
= 0 for i < T=h: (11)

Note that the random variable T is independent of �0 and �1.

The e�ect is similar to shifting the control limits. For the Shewhart chart, the estimator for dE[L]=d�j

(j = 0; 1) is given by the following:

�
dXL

d�j

��
1fXL > ug

gL(u)

1�GL(u)
E[LjT = �res]

+
X
i<L

gi(l)

Gi(u)�Gi(l)

�
dXi

d�j

��
(L� i)

+

�
dXL

d�j

�+
1fXL < lg

gL(l)

GL(l)
E[LjT = �res]

+
X
i<L

gi(u)

Gi(u)�Gi(l)

�
dXi

d�j

�+
(L� i): (12)

When the control chart has dependence on previous data such as in the more general case, we use the

relationship between Yi and Xi and previous statistics to \propagate" perturbations. Di�erentiating, we

have
dYi
d�

=
d 

dXi

dXi

d�
+

d 

dYi�1

dYi�1
d�

: (13)

In particular, for the EWMA control chart, we have

dYi
d�j

= �
dXi

d�j
+ (1� �)

dYi�1
d�j

: (14)

Then, the �nal estimator is similar to the Shewhart case, with Xi replaced by Yi:

�
dYL
d�j

��
1fYL > ug

gL( 
�1(u; YL�1))

1�GL( �1(u; YL�1))

d �1(u; YL�1)

du
E[LjT = �res; ~Y1 =  (X1; u)]
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+
X
i<L

gi( 
�1(l; Yi�1))

Gi( �1(u; Yi�1))�Gi( �1(l; Yi�1))

d �1(u; Yi�1)

du

�
dYi
d�j

��
(L� i)

+

�
dYL
d�j

�+
1fYL < lg

gL( 
�1(l; YL�1))

GL( �1(l; YL�1))

d �1(u; YL�1)

du
E[LjT = �res; ~Y1 =  (X1; u)]

+
X
i<L

gi( 
�1(u; Yi�1))

Gi( �1(u; Yi�1))�Gi( �1(l; Yi�1))

d �1(u; Yi�1)

du

�
dYi
d�j

�+
(L� i): (15)

Next, we note that we can also consider derivatives with respect to parameters in the relationship  itself,

as well. For example, in the case of the EWMA control chart, one might be interested in sensitivities with

respect to the smoothing constant �. Again, we simply di�erentiate the relationship to obtain a propagation

rule:
dYi
d�

= Xi � Yi�1; (16)

which is used in the estimator (15) above.

The unbiasedness of the estimators (12) and (15) can also be established as we did before. The bounded-

ness condition required depends on the parameter considered, involving either dYi=d�j , dXi=d�j or dYi=d�

in a manner analogous to previous theorems, as one would expect.

4.5 Implementation of the Estimators

For the sampling frequency and process drift parameters, implementation of the estimators involves �nding a

method to estimate the expectation of the di�erence term LPP �L. In this section, we describe two methods

for constructing the perturbed path (PP) from the nominal path for the Shewhart chart for the right-hand

derivative. In the Shewhart chart, the control limits are �xed and not a function of j, and all decisions are

based only on the just sampled value of Xi (i.e., Yi = Xi), where Xi is the sample mean for the jth sample

and the fXig are independent.

We recall that

XPP
i

d
= Xi; i 6= �; XPP

� � F1; X� � F0;

where
d
= denotes equality in distribution, i.e., the two paths have the same distribution everywhere except

at i = �. We propose the following two coupling constructions of XPP , giving the corresponding values of

LPP to be derived.

Coupling 1 (one-to-one):

XPP
i = Xi for i 6= �;

XPP
� = F�11 (F0(X�));

LPP =

8<
:

� if hL � T and XPP
� 62 [LCL;UCL];

L+ARL1 if hL 2 [T � h; T ) and XPP
� 2 [LCL;UCL];

L otherwise:

Coupling 2 (cut-and-paste):

XPP
i =

�
Xi for i � � � 1;
Xi+1 for i � �;
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LPP =

8<
:

L� 1 if hL � T;
L+ARL1 if hL 2 [T � h; T ) and XPP

� 2 [LCL;UCL];
L otherwise:

Coupling 1 uses a one-to-one correspondence between the two paths. In simulation terms, it can be thought

of as the \common random numbers" construction, with the same value used for every sample except i = �.

In the case of i = �, a transformation, using the fact that if Xi � F0, then F
�1
1 (F0(Xi)) � F1. Coupling

2 \cuts" out the \extra" F0-distributed random variable, and \pastes" the remaining set to construct the

perturbed path.

We divide our analysis into three di�erent cases, based on the value of L in the following regions:

(I) hL < T � h (� > L);

(II) hL 2 [T � h; T ) (� = L);

(III) hL � T (� < L).

In both constructions, we note that if L < T �h (Region I), then LPP = L, since both paths are identical

up to the stopping time L in this case, i.e.,

XPP
i = Xi; i < �

=) inffj : XPP
i 62 [LCL;UCL]g = inffj : Xi 62 [LCL;UCL]g = L < �:

We consider Region II next. For the nominal path, since � = L, by de�nition, X� stops the process, i.e.,

X� 62 [LCL;UCL]. However, in the perturbed path, XPP
� 6= X�. If X

PP
� 62 [LCL;UCL], then we again have

LPP = L; otherwise, the process will continue until an out-of-control signal is given. Since the process is

actually in an out-of-control state for i > �, the expectation for the additional run length is simply ARL1.

Hence, we take LPP = L + ARL1 � 1fX
PP
� 2 [LCL;UCL]g. In this case, the two constructions again yield

the same LPP , di�ering only in how XPP
� is generated.

Lastly, we consider Region III (L � T; � < L), for which the two constructions yield distinctly di�erent

contributions. In Coupling 1, the perturbed path stops earlier at LPP = � < L if XPP
� 62 [LCL;UCL];

otherwise, the rest of the path is the same, so LPP = L. For Coupling 2, in Region III, the perturbed path

is simply the nominal path shifted by one, so LPP = L� 1. Combining all this, we have our two estimators

for dE[L]=dh:

� � f(�h)

F ((� + 1)h)� F (�h)

h
(� � L)1f� < L; F�11 (F0(X�)) 62 [LCL;UCL]g

+ ARL1 � 1f� = L; F�11 (F0(X�)) 2 [LCL;UCL]g
i
;

� � f(�h)

F ((� + 1)h)� F (�h)

h
(�1)1f� < Lg

+ ARL1 � 1f� = L;X�+1 2 [LCL;UCL]g
i
:

For the left-hand derivative (�h < 0), we have

XPP
i

d
= Xi; i 6= � + 1; XPP

�+1 � F0; X�+1 � F1;
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i.e., the two paths have the same distribution everywhere except at i = �+1. Similar to before, we propose

the following two coupling constructions of XPP , giving the corresponding values of LPP to be derived.

Coupling 1 (one-to-one):

XPP
i =

�
Xi if i 6= � + 1;
F�10 (F1(X�+1)) if i = � + 1;

LPP =

8<
:

� + 1 if hL � T + h and XPP
�+1 62 [LCL;UCL];

L+ARL1 if hL 2 [T; T + h) and XPP
�+1 2 [LCL;UCL];

L otherwise.

Coupling 2 (insert-and-paste):

XPP
i =

8<
:

Xi if i � �;
~X � F0 (inserted) if i = � + 1;
Xi�1 if i � � + 2;

LPP =

8>>><
>>>:

� + 1 if hL � T + h and XPP
�+1 62 [LCL;UCL];

L+ 1 if hL � T + h and XPP
�+1 2 [LCL;UCL];

L+ARL1 if hL 2 [T; T + h) and XPP
�+1 2 [LCL;UCL];

L otherwise.

Coupling 1 uses a one-to-one correspondence between the two paths as before, whereas Coupling 2 \inserts"

an \extra" F0-distributed random variable ~X for XPP
�+1, and \pastes" the remaining set to construct the

perturbed path.

We again divide our analysis into three di�erent cases, based on the value of L:

(I) hL < T (� > L� 1);

(II) hL 2 [T; T + h) (� = L� 1);

(III) hL � T + h (� < L� 1).

For the most part, the analysis is similar to that for the right-hand derivative, except that X�+1 is the focus

instead of X�. Again, in both constructions, we have L
PP = L in Region I (hL < T ). Similarly in Region II,

both constructions yield LPP = L+ARL1 �1fX
PP
�+1 2 [LCL;UCL]g, di�ering only in how XPP

�+1 is generated.

In Region III (hL � T + h), we have a slight di�erence for Coupling 2. In Coupling 1, as before, the

perturbed path stops earlier at LPP = � + 1 < L if XPP
�+1 62 [LCL;UCL]; otherwise, LPP = L. For Coupling

2, in Region III, the perturbed path has the extra ~X inserted for XPP
�+1. If it signals out of control, then the

process stops there to give LPP = � + 1; otherwise, the perturbed path is simply the nominal path shifted

forward by one, so LPP = L+ 1. Combining all this, we have our two estimators for dE[L]=dh:

�
(� + 1) � f((� + 1)h)

F ((� + 1)h)� F (�h)

h
((� + 1)� L)1f� + 1 < L;F�10 (F1(X�)) 62 [LCL;UCL]g

+ ARL1 � 1f(� + 1)h = L; F�10 (F1(X�)) 2 [LCL;UCL]g
i
;

�
(� + 1) � f((� + 1)h)

F ((� + 1)h)� F (�h)

h
((� + 1)� L)1f(� + 1) < L; ~X 62 [LCL;UCL]g

+1f� + 1 < L; ~X 2 [LCL;UCL]g+ARL1 � 1f� + 1 = L; ~X 2 [LCL;UCL]g
i
:
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5 Summary and Avenues for Further Research

We have derived sensitivity estimates for control charts that can be e�ciently implemented when Monte

Carlo simulation is used for performance evaluation. Such estimators are useful for sensitivity analysis and

optimization in the design of the control chart. We considered the average run length performance measure

and two types of control charts. Although ARL performance measures are the most commonly used, and thus

are addressed explicitly in this paper, in cases where the sample size and/or sampling interval are variable,

other appropriate performance measures such as average time to signal and average number of observations

to signal can also be handled. If ni and hi denote the ith sample size and sampling interval, respectively,

then the time to signal is given by
1X
i=1

hi1fi � Lg;

and the number of observations to signal is given by

1X
i=1

ni1fi � Lg:

In the remainder of this section, we brie
y describe the formulation of the economic design problem and

outline how the estimators would be used in optimizing the design.

5.1 Economic Design Problem

For the problem of designing control charts for statistical process control applications, there are basically

three general approaches (Saniga 1989):

� heuristics, such as Shewhart himself originally suggested;

� statistical design, for which determination is made purely on the basis of statistical factors such as

Type I error and the power;

� economic design, for which costs and pro�ts are attached to various actions such as sampling and

testing, investigation and correction, good production and nonconformance.

Saniga (1989) actually combines the latter two approaches. The optimal economic design problem was �rst

formulated by Duncan (1956); see also Goel and Wu (1973) for CUSUM charts. Montgomery (1996) devotes

a chapter to the problem of economic design. The focus has been on deriving analytical expressions for the

time-average cost, and then using numerical analysis techniques to search for the optimum, as in general the

resulting expressions cannot be analytically solved for the optimum.

The design parameters for the control chart are usually the sample size, the sampling frequency, and the

control limits.

In order to formulate an economic design problem, cost parameters must be speci�ed. The usual costs

include costs on sampling and testing; a cost on investigating an out-of-control signal; a cost on correcting

an out-of-control state; and a \penalty" for the production of nonconforming units (\failure" costs). Then
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the objective is to select the values of the design parameters so as to minimize long-run average costs. Let

� denote the vector of design parameters, and J(�) the expected cost. We then wish to �nd

�� = argmin
�2�

J(�);

where � represents the feasible region. By using the appropriate gradient estimates, the proposed solution

technique is to apply stochastic approximation to perform the optimization via simulation. We will not give

all the details here, but merely outline the setting in which the gradient estimates would be employed.

In terms of simulation, we can view the evolution over time as an interaction between two fundamental

underlying processes: a process failure mechanism, and a process sampling mechanism. In the former, the

state of the system is either in-control or out-of-control. In the latter, sampling takes place at regular

intervals until an out-of-control signal occurs. Then an investigation is undertaken to see if the signal is true

or specious. If the signal is a false alarm, then sampling resumes; if the signal is real, then corrective action

is taken that returns the system back to the in-control state. Thus, the system state goes from in-control

to out-of-control through some random mechanism, but can only return to in-control through the sampling

mechanism. A production cycle will be de�ned as an (in-control, out-of-control) sequence partitioned into

three periods: the time to go out of control, the time to detect that the system is out of control, and the time

to �nd the assignable cause and return the system to the in-control state. For simplicity, we will consider a

single out-of-control state, and de�ne the following parameters:

a = �xed cost of taking a sample;

b = per-unit cost of sample;

w = cost of �nding (and correcting) an assignable cause;

y = cost of investigating a false alarm;

c0 = quality cost (per unit time) when in control;

c1 = quality cost (per unit time) when out of control;

C = total cost in a production cycle;

T � = length of a production cycle;

T = time to go out of control;

T1 = time to detect out of control after it has occurred;

T2 = time to interpret sample, investigate, assign and correct

(assignable) cause;


j = index of sample giving jth out-of-control sample;

= inffi > 
j�1 : Xi 62 [l; u]g; j � 1 (
0 = 0);

L(j) = time between jth out-of-control sample and last investigation

= h(
j � 
j�1);

L(�) = time from the last false alarm investigation to the time when

the process goes out of control;

T
(j)
0 = time to investigate out-of-control signal false alarm;

N = number of samplings taken in a production cycle;

N� = number of out-of-control signals in a production cycle:

Assuming that no samplings are taken during T
(j)
0 and T2, we have

N =
1

h

N��1X
j=1

L(j) + L(�) + T1:
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The total production cycle length is given by

T � =

N��1X
j=1

�
L(j) + T

(j)
0

�
+ L(�) + T1 + T2;

and the expected cost in the production cycle is given by

C = (a+ bn)N + c0T + c1(T
� � T ) + y(N� � 1) + w;

with the long-run average cost is given by

J(�) =
E[C(�)]

E[T �(�)]
:

We note that
@E[T

(j)
0 ]

@�
=
@E[T2]

@�
= 0;

so that the only derivatives that are necessary are those for L(j), L(�), T1, and N
�. We have already shown

how such estimators are derived for L(j); similar analysis can be used to derive estimators for the others.

This simulation-based framework for optimal economic design problems in statistical quality control is

very general and can be used in cases where analytical models cannot be easily applied. The approach uses

gradient estimators of the objective function with respect to the design parameters to search for the optimum

in a recursive stochastic approximation algorithm.
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