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Hybrid dynamical systems are common throughout the physical and computer world, and 

they consist of dynamical systems that contain both continuous time and discrete time 

dynamics.  Examples of this type of system include thermostat controlled systems, multi-

geared transmission based systems, and embedded computer systems.  Sometimes, 

complicated non-linear continuous time systems can be simplified by breaking them up 

into a set of less complicated continuous systems connected through discrete interactions 

(referred to as system hybridization).  One example is modeling of vehicle dynamics with 

complicated tire-to-ground interaction by using a tire slipping or no slip model.  When 

the hybrid system is to be a controlled dynamical system, a limited number of tools exist 

in the literature to synthesize feedback control solutions in an optimal way.  The purpose 

of this dissertation is to develop necessary and sufficient conditions for finding optimal 

feedback control solutions for a class of hybrid problems that applies to a variety of 

engineering problems.  The necessary and sufficient conditions are developed by 

decomposing the hybrid problem into a series of non-hybrid optimal feedback control 

problems that are coupled together with the appropriate boundary conditions.  The 



  

conditions are developed by using a method similar to Bellman’s Dynamic Programming 

Principle.  The solution for the non-hybrid optimal control problem that contains the final 

state is found and then propagated backwards in time until the solution is generated for 

every node of the hybrid problem.  In order to demonstrate the application of the 

necessary and sufficient conditions, two hybrid optimal control problems are analyzed.  

The first problem is a theoretical problem that demonstrates the complexity associated 

with hybrid systems and the application of the hybrid analysis tools.  Through the control 

problem, a solution is found for the feedback control that minimizes the time to the origin 

problem for a hybrid system that is a combination of two standard optimal control 

problems found in the literature; the double integrator system and a harmonic oscillator.  

Through the second problem, optimal feedback control is found for the drag racing and 

hot-rodding control problems for any initial reachable state of the system and a hybrid 

model of a vehicle system with tire-to-ground interaction.  
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Chapter 1: Introduction 

The purpose of this dissertation is to extend necessary and sufficient conditions found in 

the literature to find feedback controls for hybrid optimal control problems.  Loosely 

speaking, hybrid control problems are mixed dynamical systems that contain both 

continuous time and discrete time dynamics.  Necessary and sufficient conditions exist 

for both smooth and non-smooth continuous time systems and necessary conditions exist 

for hybrid dynamical systems.  The aim of this dissertation is to augment the hybrid 

necessary conditions with a sufficient condition so that optimal feedback controls can be 

calculated for a class of hybrid systems.  The class of hybrid systems considered in this 

dissertation is general enough so that it embodies a large number of engineering 

problems, but is specific enough that the necessary and sufficient conditions are not 

theoretically overwhelming. 

 

The development of necessary conditions for hybrid optimal control problems is not a 

new idea as many hybrid maximum principles can be found in the literature.  In fact, the 

necessary conditions developed using non-smooth analysis can be classified as hybrid 

maximum principles because they have the ability to analyze optimal control problems 

with discontinuous dynamics.  The problem with the non-smooth analysis results and the 

hybrid maximum principles is that the theoretical development of the material is 

performed by mathematicians, so the results are as general as possible.  Generality is 

good, but in this case the theoretical development is very complex making the material 
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difficult to understand and hard to apply.  More restrictive assumptions can make it easier 

to understand and apply the theory. 

  

Furthermore, necessary conditions only provide an open-loop solution to the hybrid 

optimal control problem, whereas in practical application of control system design, a 

feedback solution is desired. 

 

The problem presented above is important because many physical systems exhibit hybrid 

behavior.  Simple examples are the household thermostat and multi-gear power 

transmission systems.  Analytical tools are required to study the behavior of these 

systems and to design controllers for implementation.  If not treated properly, the non-

linearity associated with the coupling of the discrete and continuous dynamics can cause 

undesirable system behavior.  

1.1 Dissertation Contribution 

This dissertation makes two contributions to the state-of-art.  The first contribution 

develops a hybrid model that is applicable to many engineering problems and presents a 

method for finding optimal feedback controls for this class of problems.  The method 

solves the hybrid optimal control problem in the spirit of Bellman’s Principle of Dynamic 

Programming, by decomposing the control problem into a series of non-hybrid optimal 

control problems and applying the non-smooth necessary and sufficient conditions found 

in Chapter 4.  The hybrid non-smooth necessary and sufficient condition only requires the 
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decomposed non-hybrid control problem’s dynamic constraints to be Lipschitz 

continuous and can be applied to a large class of engineering problems.  However, the 

assumptions for the hybrid problem simplify the analysis enough so that the theoretical 

implementation is not overwhelmingly complex and can be performed by control 

engineers.  An important feature of this method is that a feedback control solution for the 

hybrid optimal control problem is produced, which can provide proof that an optimal 

control strategy is applicable to the entire state-space of the system.  Because a feedback 

solution is required, the solution is harder to compute, but a feedback solution will be a 

global solution and can be implemented on physical systems. 

 

The second contribution is that two example problems are solved using the method.  The 

first example problem is purely theoretical and demonstrates the complexity of a 

“simple” hybrid control problem.  The second example is practical and provides a precise 

proof of the well known solution to the traction control problem.    

1.2 Dissertation Organization 

The dissertation is organized in the following way.  In Chapter 2 an introduction to 

hybrid systems and includes a brief literature survey is provided.  In Chapter 3, the hybrid 

optimal control problem is presented.  In this chapter, the general hybrid control problem 

is defined, and the hybrid optimal control problem is constrained appropriately so that the 

analysis tools can be derived.  Furthermore, the basic mathematical tools that are required 

in the derivation of the various necessary and sufficient conditions are given.  In Chapter 



 

 4  

4, a brief review of optimal control principles is given.  The Pontryagin Maximum 

Principle is introduced as an optimization tool to compute the open-loop solution to a 

non-hybrid non-linear optimal control problem, and a sufficient condition is given for 

non-hybrid problems that are sufficiently smooth.  Further the maximum principles of 

Bardi and Clarke-Vinter and the sufficient condition of Bardi are introduced to extend the 

results for problems that are non-smooth.  In Chapter 5, the hybrid maximum principles 

of Sussmann, Riedinger, and Caines are introduced.  In Chapter 6, the non-smooth 

necessary and sufficient condition of Chapter 5 is collected into a theorem for hybrid 

systems that satisfy the assumptions included in the hybrid optimal control problem of 

Chapter 3.  In Chapter 7, the theory of Chapter 6 is used to solve two example problems.  

For Chapter 8, a summary is given and recommendations for future research work in this 

field are given. 

 

The first contribution of this dissertation can be found in Chapters 3 and 6.  In Chapter 3 

the hybrid optimal control problem, which defines the class of problems that the theory 

applies to is provided.  In Chapter 6 the theoretical material required for computing the 

feedback optimal control solution is provided.  The second contribution of this 

dissertation can be found in Chapter 7.  Both hybrid optimal control problems are 

formulated and the solutions are computed by using the theory given in Chapter 6. 

 

In the introductory portion of this dissertation, the term non-smooth will be used without 

precise definition and will mean a system that has some discontinuity and/or lack of 

differentiability (for example discontinuous dynamic equations of motion or state 
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trajectory).  When the theoretical portion of the dissertation is presented, this term will be 

precisely defined and the ambiguity is removed.  Also, the references in this dissertation 

are organized alphabetically by author, not in order of appearance.  As such, the reference 

numbers do not start at one and they increase as the reader proceeds through the 

dissertation. 
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Chapter 2: Introduction to Hybrid Systems 

2.1 Overview of Hybrid System 

The purpose of this dissertation is to develop extensions of current optimization 

techniques for a subclass of generalized hybrid systems in order to design state feedback 

controllers that can be applied to mechanical systems.  Current optimization techniques 

can deal with finding open-loop controls for a variety of hybrid systems, but cannot be 

used to find optimal feedback controls.  Before optimization of hybrid systems can be 

discussed, hybrid systems must be defined and a brief discussion of the state-of-the-art of 

the theory of hybrid systems presented. 

 

A general definition of a hybrid system is: a hybrid system is a dynamical system whose 

evolution depends on a coupling between variables that take values in a continuum and 

variables that take values in a finite or countable set [71].  Two well known examples of 

hybrid systems are computer-controlled systems and a typical household thermostat.   

 

A common way to represent hybrid systems is with a hybrid automaton [3].  A hybrid 

automaton is similar to a finite state machine, but allows each node to contain continuous 

dynamics with switching constraints associated with the system variables.  The specific 

structure of the hybrid automaton varies with different modeling formalisms, which will 

be presented later, but the general idea of a hybrid automaton is described in Figure 2.1 
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and is based on the work in [1][2][3][4][5].  Figure 2.1 contains two nodes/locations 

named i  and j .  Each node has a set of local dynamics that define the continuous 

behavior of the system.  Also, each node has a discrete part that defines the switching 

from one node to the next node. 

 

 

 

Figure 2.1: General hybrid automaton with two nodes. 

 

A hybrid automaton consists of a series of locations or nodes that define the discrete 

states of the system.  For each location, the local dynamics are the continuous processes 

that define the evolution of the state variables within that location.  Switching functions 

are used to define the discrete behavior of the system and are functions of both the 

location (discrete) variables and the state variables used to describe the local dynamics.  

This representation is general in that the continuous processes can be non-linear and there 

Switching
Function

Location i

Local
Dynamics 

Location j 

Local
Dynamics

Switching
Function( )1 ,x f x u=�  ( )2 ,x f x u=�  
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are no restrictions on the switching functions.  A precise definition of a hybrid system 

will not be presented here, but will be given later. 

 

A typical household thermostat is a good example of a simple hybrid automaton.  The 

thermostat is a good example [1][2][3][4][71] because most people have them in their 

homes and are familiar with their operation.  Figure 2.2 depicts a hybrid automaton 

model of the thermostat [3]. 

 

 

0l  

( ) ( )x t K x t= − ⋅�  

( )x t m≥  

1l  

( ) ( )x t K x t b h= − ⋅ + ⋅�  

( )x t M≤  

( )x t M=  

( )x t m=  

 

Figure 2.2: Hybrid Automaton for the thermostat example problem. 

 

The thermostat has two nodes (or discrete states) and one continuous state.  The 

continuous state is the temperature, ( )x t , and the discrete states are the operational 

nodes, heater on and heater off, 1l  and 0l  respectively.  At node 0l , the heater is off and 

the room temperature decreases exponentially with coefficient K .  When the temperature 

equals the minimum value m , a discrete event occurs and the system switches from node 

0l  to node 1l .  In node 1l , the heater is on and heats the room with respect to the heater 

input b h⋅ .  The heater stays on until the maximum desired room temperature, M , is 
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reached.  Another discrete event occurs and the system switches back to node, 0l .  This 

cycle continues for the life of the thermostat. 

2.2 Importance of Hybrid Systems 

The study of hybrid systems is important for two reasons.  First, many examples of 

hybrid systems exist so it is important to understand how they work.  Second, as will be 

demonstrated, if not treated properly, the non-linearities of the hybrid system can 

destabilize the system under automatic control. 

 

Two techniques are used to analyze and develop controllers for hybrid systems by un-

hybridizing the problem.  The first technique is often applied to embedded systems and 

involves discretizing the physics of the mechanical system (i.e. discretizing the whole 

problem) and applying discrete analysis and control design tools.  The second technique 

involves ignoring the discrete part and analyzing the specific dynamics at each location.  

The control design involves developing controllers for each set of continuous dynamics 

and assigning them to their respective nodes. 

 

Both of these techniques work in some instances, but the coupling of the discrete and the 

continuous dynamics can introduce non-linearities in the problem that result in 

unpredictable and/or strange behavior.  Assume, for example, that the hybrid system 

contains two nodes with stable continuous dynamics and a switch that determines which 

set of continuous dynamics is currently driving the state variables.  For certain systems 
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with this type of structure, it can be shown that switching sequences exist that will 

destabilize the resulting hybrid system, which demonstrates the importance of including 

the interaction of the discrete dynamics with the continuous dynamics in the analysis of 

the system [46]. 

2.3 Examples of Hybrid Systems 

Any mechanical or physical system that has an embedded computer used for control is a 

hybrid system.  With the miniaturization of computers, their integration into mechanical 

systems is becoming more common.  Applications ranging from robotics to vehicles to 

home appliances use computers to control their behavior.   

 

Familiar examples of hybrid systems exist in everyday life.  These examples include the 

automotive transmission, the household thermostat, and automotive anti-lock braking 

systems (ABS).  Also, complicated non-linear continuous systems can take advantage of 

hybrid system tools, which may provide an easier way to analyze complicated behaviors 

or motions, such as human locomotion.  Further examples include gain-scheduled 

control, pulse-width modulated control, and supervisory control. 

 

To clarify the definition of hybrid systems and set the stage for explanation of hybrid 

modeling and analysis techniques, the manual transmission, jumping baton, and vehicle 

traction control problems will be described in detail.  The typical household thermostat 

will also be used, but was presented earlier in the introductory section. 
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2.3.1 Manual Transmission 

The second example of a hybrid system that will be discussed is an automotive 

powertrain with a manual transmission [42].   

Engine Trans-
mission Propeller Shaft Final

Drive

Wheel

Wheel

Clutch

Main Shaft

D
riv

e 
S

ha
ft

D
riv

e 
S

ha
ft

 

Figure 2.3: Depiction of an automotive powertrain. 

Figure 2.3 depicts the major components in the automotive powertrain.  The powertrain 

can be classified as a hybrid system because of the clutch and transmission.  The 

automotive clutch is a non-linear component that transmits torque from the engine to the 

main shaft of the powertrain.  The clutch can be considered a hybrid component because 

its friction disks have two discrete states.  In the first node, the friction disks slide with 

respect to one another, and in the second node, the friction disks are locked together.  The 

transmission transmits torque from the main shaft to the propeller shaft.  The 

transmission typically has three to six forward gears and one reverse gear.  Each gear 

location provides a different gear ratio which changes the relation between propeller 

torque and shaft speed.  So each gear behaves like a node in a hybrid system.  This 



 

 12  

system has four inputs, two continuous and two discrete, and two outputs.  The inputs are 

the torque supplied by the internal combustion engine, the deceleration torque supplied 

by the brakes, the gear, and the normal load pressing the friction disks together in the 

clutch.  The outputs of the system are the vehicle velocity and the engine speed.  

Typically, the driver will use the accelerator to control the engine torque output and 

maintain a desired vehicle velocity with respect to small perturbations.  For large 

perturbations, the driver will use a combination of the accelerator and brake, and clutch 

load and gear position to control the vehicle velocity.  Note that the continuous dynamics 

of the system are non-linear.  The torque generation process by the engine is a non-linear 

function of multiple variables, non-linear effects exist in the gear trains, and tire-to-

ground interaction is a non-linear phenomenon. 

 

In a more detailed model, several other hybrid features could be included.  The firing of 

the cylinder in the engine as well as the transition from normal tire contact with the road 

to skidding can be described by hybrid systems [19][24].   

 

2.3.2 Automotive Traction Control 

Electronics are being embedded into automotive systems to improve safety and 

performance.  One example deals with the automotive traction control system.  The 

traction control system consists of an ABS system [24][42] and a system to control 

engine torque.  The ABS system is used to minimize the stopping distance for the 

automobile while maintaining vehicle stability and the engine torque controller manages 

the torque delivered to the tires to maximize stability and acceleration performance.  
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Traction control maximizes acceleration and minimizes vehicle stopping distance by 

controlling the torque to the wheels in such a way that the vehicle’s tires operate close to 

their coefficient of maximum adhesion.  Under acceleration or braking torque the tire 

deforms (due to static friction) at the tire-to-road interaction point and produces a 

reaction force that acts to accelerate or brake the vehicle.  Under hard braking or 

acceleration, or on slippery roadway surfaces, the tire may transition to a state of pure 

sliding between the tire and ground.  As such the coefficient of maximum adhesion 

occurs right at the transition point between the tire not sliding and sliding. 

 

High level modeling of traction control systems can be accomplished with a hybrid 

model with two nodes.  The first node contains the continuous dynamics of the rolling 

tire under acceleration or braking torque up to the coefficient of maximum adhesion.  

Once the coefficient of maximum adhesion is passed (i.e. the tires lock up), a discrete 

event occurs and the system switches to the second node, which contains the continuous 

dynamics describing the pure sliding motion of the locked tire.  The control objective is 

then to operate the system at the switching point between the two nodes, maximizing the 

coefficient of adhesion for the tires. 

 

This problem will be analyzed in much greater detail later in this dissertation. 

 

2.3.4 Jumping Baton 

The jumping baton [45] is a useful model to help study the mechanics of human jumping.  

The jumping baton model consists of a rod with one end free and the other end fixed to 
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the ground in such a way that the fixed end cannot translate until the vertical reaction 

force exceeds some threshold value.  As soon as the vertical reaction force exceeds the 

threshold value, the baton leaves the ground and is free to rotate until it strikes the 

ground.  Figure 2.4 depicts the jumping baton problem [45]. 

 

Figure 2.4: Diagram describing the jumping baton problem. 

 

When fixed to the ground, one set of continuous dynamics governs the motion of the 

baton while another set of dynamics govern the rod’s motion after it leaves the ground, 

yielding two discrete states.  An interesting thing to note about this model is that the 

dimension of the state space changes when the continuous dynamics switch from node 0l  

to 1l .  Because of the problem constraints, when the rod is fixed to the ground the 

dimension of the state space is two and the state dimension jumps to twelve after the rod 

leaves the ground (although the eight states associated to the out of plane motion of the 

rod can be ignored, resulting in a four state model) . 

( )vF t  

( )u t  

( ) ( ),  t tθ θ�  
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Figure 2.5: Hybrid automaton for the jumping baton 

 

Figure 2.5 depicts the model of the jumping baton.  Notice that when the baton is still 

pinned to the ground it can transition from node 0l  to 0l .  This behavior models the 

elastic impact of the baton with the ground, which causes a jump in the state (the velocity 

of the rod instantaneously switches sign under a perfect elastic collision assumption). 
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2.4 Brief Survey of Mathematical Modeling of Hybrid Systems 

In the literature, a variety of modeling approaches have been developed to describe 

hybrid systems.  The modeling approaches differ in the amount of structure associated 

with the hybrid system.  The three most common modeling approaches will be presented; 

the first being a control engineering approach, the second a computer science approach, 

and a third approach that generalizes the previous models.  The Brockett modeling 

approach [17][18] will be presented first and uses non-linear differential equations to 

model hybrid systems.  Second, the Alur approach [1][2][3][4] is introduced.  The Alur 

modeling approach extends the classic idea of a finite state machine to include 

continuous dynamics and extensively uses this model to study reachability and 

verification.  And finally, the Branicky approach [15] is described.  The Branicky model 

extends an Alur hybrid model with a general structure that encompasses both the Alur 

and Brockett modeling techniques. 

 

The three modeling approaches described are fundamental to hybrid systems and will be 

developed in further detail.  Other models exist in the literature but are derivatives of the 

three presented in this section and will not be summarized here.  The model used for 

feedback control synthesis in this dissertation is a version of the Branicky model and will 

be developed in detail in the next chapter.   
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2.4.1 Brockett Model 

The purpose of Brockett’s modeling approach [17][18] was to develop a simple motion 

description language that can be used to guide a robot along a specific trajectory while 

allowing for compliance in the robot’s actions.  Specifically, he tried to design controllers 

to not only control the position of the various parts of the robot, but also control the 

compliance associated with that position, where the compliance is specified by an 

incremental force-displacement relationship along the nominal path. 

 

Brockett assumes that systems of this type have two kinds of inputs and outputs, 

symbolic (discrete event) inputs and continuous time inputs.  Brockett extends standard 

sampling theory techniques to incorporate reading symbols or changing controller gains 

based on the evolution of the state vector.  He does this by incorporating a real-valued 

monotonically increasing trigger signal that could be used to switch controller gains or 

read symbols every time the value of the signal passed an integer value.  Furthermore, 

Brockett couples this triggering signal with a rate equation which allows the triggering 

signal to be a function of time and state.   

 

Brockett introduces four different modeling techniques to describe hybrid dynamical 

systems in varying detail; Type A, Type B, Type C, and Type D.  The Type A and Type 

B models and Type C and Type D models are identical in structure except the state 

variables for the Type A/C models lie in a discrete state space and the state variables for 

the Type B/D system lie in a continuous state space.  The Type C and Type D models 
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extend the Type A and Type B models by associating a rate equation to the discrete event 

state variables.  Only the most general model, Type D, will be described here.   

 

The Type D model contains continuous state variables that are a function of time and 

discrete event variables that are driven by a triggering function.  The structure of the 

Type D model is: 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

, ,

, ,

,

,

, , ,

p

p

x t a u t x t z p t

p t r u t y t z p t

y t c x t z p t

w p t h y t z p t

z p t f u t v p t y t z p t

⎡ ⎤= ⎢ ⎥

⎡ ⎤= ⎢ ⎥

⎡ ⎤= ⎢ ⎥

⎢ ⎥ ⎡ ⎤=⎣ ⎦ ⎢ ⎥

⎡ ⎤ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎣ ⎦ ⎣ ⎦

�

�

 (2.1.1) 

 

Here, the variables have the following meaning: 

1. x  is the continuous time state vector 
2. a  is a function that describes how the state vector changes with the continuous 

time input u , and the current value of the state variable x , and the discrete event 
state variable z . 

3. p  is the triggering signal variable 
4. r  is a real-valued function that describes the rate of change of the triggering 

signal as a function of the continuous time input u , the continuous time output y , 
and the discrete event state variable z .  Note that 0r > , , ,u y z∀ , to ensure that 
p  is monotonic increasing. 

5. y  is the continuous time output 
6. c  is a function that describes the continuous time output as a function of  the state 

vector x , and the discrete event state variable z  
7. w  is the symbolic output for the system 
8. h  is a function that describes the symbolic output as a function of the continuous 

output y  at the last triggering signal event and the discrete event state variable z  
9. f  is a function that defines the evolution of the discrete event state variable z  

and is a function of the continuous time input u , the symbolic input v , the 
continuous time output y  at the last triggering time, and the discrete event state 
variable z  
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Note that ⎢ ⎥⎣ ⎦i  represents the floor operator and indicates the integer value of i  computed 

by rounding down the current value of i  while the ⎡ ⎤⎢ ⎥i  operator is the ceiling operator 

and is the next larger integer found by rounding up the value of i .  Thus the discrete 

event state variable z  changes each time p  passes through an integer value. 

 

When using this model to analyze a hybrid system, constraints needed to be placed on the 

function r   to avoid skipping symbolic input values.  For Type A and Type C systems 

where the state variable x  is a discrete time variable, the function r  needed to be 

bounded with the following constraint: 0 1r< < .  This constraint doesn’t allow p  to skip 

any integer values as it increases monotonically.  For Types B and D systems where the 

state vector is continuous time, only a lower bound for the function r is required and is: 

0r > . 

 

Given initial conditions for x  and p , a unique solution over a given time interval will 

exist for Brockett’s model, as long as, on any finite interval of time, p , passes through 

only a finite number of integers.  Because p  is constrained to pass through a finite 

number of integers, the symbolic input v  will only produce a finite number of 

discontinuities to the derivatives of x  and p .  From theory based on the study of 

uniqueness and existence of solutions of ordinary differential equations with weak 

continuity hypotheses, there exists a unique x  and p , with x  and p  continuous and 

differentiable almost everywhere, satisfying the equations. 
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Furthermore, due to the structure of Brockett’s model, a series of these models (Types A 

and C and Types B and D) can be interconnected, allowing for the abstraction of a 

complex model as a series of interconnected simpler hybrid systems.  The connection of 

two continuous time ports is trivial because time is universal, but since the symbolic ports 

are event driven their connection requires special attention.  If two symbolic ports are 

interconnected, the alphabets of the two ports must agree.  Multiple triggering signals 

may be required to force the alphabets of the two symbolic ports to agree.  Buffering can 

be introduced to handle this lack of synchronization and buffering can be easily modeled 

with a Type D model. 

 

A simple two-speed transmission can be modeled using Brockett’s Type D form.  This 

example is not found in the Brockett literature; it was created to clarify the Type D 

model.   Assume that it is desired to model the longitudinal motion of a vehicle with a 

simple two-speed transmission with high and low gears.  For simplicity, it will also be 

assumed that the system cannot provide braking torque, only acceleration torque.  This 

assumption does restrict the applicability of the model, but it can be easily relaxed to 

incorporate braking torque.  The continuous input to the model is the desired engine 

torque and the continuous outputs are the engine speed and velocity of the vehicle at 

every time t  during the run.  The discrete input to the model is the desired gear position 

and the discrete output is the actual gear position.  The continuous state variable is the 

longitudinal vehicle velocity and the discrete state variable is a real number that 

represents the desired gear.  Next, the following definitions are made: 

1. u  is the accelerator position or desired engine torque 
2. x  is the longitudinal velocity of the vehicle 
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3. y  is the engine speed and longitudinal velocity of the vehicle 
4. v  is the desired gear position 
5. z  is 0 or 1 depending on the actual gear position 

 

Now that the model variables have been defined, the functions that define the behavior of 

the system can be defined.  Assume that  

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 , , ,

                                                           , , ,

Low

High

x t z p t g x t u t y t z p t

z p t g x t u t y t z p t

= − ⋅⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

+ ⋅⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

�
 (2.1.2) 

 

where Lowg  and Highg  define the continuous dynamics of the vehicle for the low and high 

gears respectively.  When ( ) 0z p t =⎡ ⎤⎢ ⎥  equation (2.1.2) defines the dynamics associated 

with low gear and when ( ) 1z p t =⎡ ⎤⎢ ⎥ , the equation defines the dynamics associated with 

high gear.  The function r  will be assumed constant and represents the amount of time 

required to execute a gear change.  Since the discrete output is equal to the discrete state, 

h  will evaluate to ( )z p t⎡ ⎤⎢ ⎥ .  Finally, the function f  will have the following form  

 
( )
( )

1,  for 

0,  for 
High

Low

v p t Gear
f

v p t Gear

⎧ =⎢ ⎥⎪ ⎣ ⎦= ⎨
=⎢ ⎥⎪ ⎣ ⎦⎩

 (2.1.3) 

 

A run of the model will begin with the vehicle in the initial gear (assume low gear) 

moving with its initial velocity and initial value of the trigger function.  By model 

definition, the value of the triggering signal p  will pass through an integer value at 

constant intervals of time defined by the switching delay required to change gears.  When 

the driver (or controller) wants a gear change at time ,g requestedt , they will request the gear 
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change through the symbolic input v  and wait until p  passes through the next integer 

value at time ,g initiatedt . So the system has the following properties  

 
( ) ( )

( ) ( ) ( ) ( ) ( )( )
, , 0

, , ,

g initiated g requested

Low

z p t v p t

x t g x t u t y t z p t

⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎣ ⎦

= ⎡ ⎤⎢ ⎥�
 (2.1.4) 

 

When p  passes through the next integer value at time ,g finishedt , the system will have the 

properties  

 
( ) ( )

( ) ( ) ( ) ( ) ( )( )
, , 1

, , ,

g finished g initiated

High

z p t v p t

x t g x t u t y t z p t

⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎣ ⎦

= ⎡ ⎤⎢ ⎥�
 (2.1.5) 

 

and the continuous dynamic equations are “switched” to the dynamics representing the 

desired gear.  This model of the transmission is not perfect because it must wait for p  to 

pass through an integer value before the gear change can be initiated, but it does 

adequately allow for the “hybrid” nature of the control problem.  Note that a simple 

function for r  was used for this example.  In fact the function r  only needs to be a real-

valued function greater than zero, so it could be redefined to reduce the delay for gear 

change initiation, improving the behavior of the model.      

 

2.4.2 Alur Model 

The next modeling technique that will be discussed was developed by Alur, et al. 

[1][2][3][4].  The structure of this model was developed specifically to analyze 

reachability and verification problems for hybrid systems.  Alur first developed the timed 
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automaton, where the dynamics were simply clocks, and then extended the timed 

automaton model with enough structure to model hybrid systems that have simple 

continuous dynamics. 

 

Alur used formal language theory and finite state machine definitions to develop timed 

automata theory.  Timed automata hybrid systems are finite state machines that use 

clocks to track time.  These clocks can be reset on a transition, allowing the model to 

track not only time, but delays produced by not switching from node to node.  The 

advantage of this model is that it used a dense set of the real line, to represent time, not a 

discretized set or a fictitious clock to track time.  A dense set in \  is a set of real 

numbers P , such that every interval ( ),a b , with a b< , contains a member of P  (i.e. 

time has a continuous representation). 

 

 

Figure 2.6: Timed automaton described by Alur. 

 

Figure 2.6 depicts a timed automaton model that can be found in [4] and is defined by the 

tuple: 

 , , , , , ,initG S s E Cμ π τ=  (2.1.6) 

0 S 1S 

,  : 0a x =  

( ),  2b x <  
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Where: 

1. S  is a finite set of nodes. 
2. : 2APSμ →  is a function that assigns to each node the set of atomic 

propositions true in that node, where an atomic proposition is of the form 
 or >α β α β= , with and α β being algebraic terms. 

3. inits S∈  is the initial node. 
4. E S S⊆ ×  is a set of edges between nodes. 
5. C  is a finite set of clocks.  A clock is a variable that strictly increases 

uniformly with respect to the system time variable that drives the system.  
Each clock can be reset, but all clocks increase at the same rate. 

6. : 2CEπ →  is a function that indicates which clocks should be reset with each 
edge (C  is the set of clocks). 

7. τ  is a function that labels each edge with an enabling condition, constructed   
of Boolean connectives of the form x c≤  and x C∈  and 

Natural Numbersc∈  (all positive integers), that indicates when a transition 
can, but doesn’t have to occur. 

 

In the example of Figure 2.6, { }0 1,S S S=  contains two nodes, inits  is not defined, μ  

assigns the symbolic input to a  when the transition along edge 1E  occurs and to b  when 

the transition along edge 2E  occurs, E  contains two edges { }1 0 1,E S S=  and 

{ }2 1 0,E S S= , one clock { }C x= , one reset function ( )1 1Eπ  which resets the clock x  to 

zero when the transition along edge 1E  occurs, and two enabling conditions such that 

( )1Eτ  evaluates to true whenever the system is in node 0S  and ( )2Eτ  evaluates to true 

when 2x <  and the system is in node 1S . 

 

In Figure 2.6 if 0inits S=  and the system is started, the transition to node 1S  is always 

enabled.  When the transition finally occurs, the symbolic input a  is read by the system 

and the clock x  is reset to zero.  Next, the transition back to node 0S  is enabled as long 

as 2x < .  When the transition occurs the symbolic input b  is read by the system and the 
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cycle can repeat.  Note that the enabling condition allows for modeling time delays in a 

system and in this case limits the time in location 1S  to less than 2 seconds if a switch 

back to 0S  is required. 

 

In general when the model is initialized, all of the clocks are set to zero and the starting 

node is inits .  The model is started and the clocks increase uniformly with time.  If the 

system clocks meet an edge’s enabling condition, the system can transition along that 

edge to the connecting node.  When the edge is enabled, the transition is not forced and 

does not have to occur.  If a transition e  occurs all of the clocks in ( )eπ  are reset to zero 

and start counting again.  The current node and the clock values define the state of the 

system at that instant in time.  Further, the clock values can be described by a function 

( )GΓ   that maps all of the clocks to the positive real numbers.  Note that ( )GΓ  can map 

the clock values into different parts of the positive real numbers, so each clock may have 

different magnitudes but all clocks will increase at the same rate.  A state of the system is 

described by, 

 ( ), ,  ,  s s S Gν ν∈ ∈Γ  (2.1.7) 

 

Note that the ,i i  notation indicates a run of the timed transition system and not the 

typical inner product.  This notation will continue throughout this section.   

 

Alur defined a run of the model as a series of states of G  along with the times at which 

the transitions occur.  A run is defined as, 
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 ( ) ( )0 0 0 1 1 1 2 2 2, , , , , , , , , ,  ,  ,  i i is t s t s t s S G tν ν ν ν∈ ∈Γ ∈… \  (2.1.8) 

 

The states in the run satisfy the following constraints: 

1. Initialization:  The run starts in a state 0 0,s ν  at time 0t  equal to zero. 
2. Consecution: For every 0i ≥ : 

a. The time of the (i + 1)th transition is strictly greater than that of the ith 
transition. 

b. 1,i i ie s s +=  is an edge contained in E . 
c. The clock assignment 1iν + at time 1it +  equals 

( ) ( )10i i i ie t tπ ν +⎡ ⎤→ + −⎣ ⎦ .  The ( ) 0ieπ⎡ ⎤→⎣ ⎦  term refers to all of the 

clocks that are reset due to the edge transition and the ( )1i i it tν ++ −  
term refers to the value of the 1iν +  assignment if it is not reset to a 
specific value given by the first term. 

d. The clock assignment ( ) ( )10i i i ie t tπ ν +⎡ ⎤→ + −⎣ ⎦  satisfies the enabling 

condition ( )ieτ . 
3. Progress of time: Every time value is eventually reached, that is, for any 

t∈\ , there exists some j  such that jt t≥ . 
 

The constraints allow for progression of the system without anomalies, such as Zeno 

behavior, which occurs when an infinite number of transitions occur during a bounded 

interval of time. 

 

Now that the timed automaton has been defined, the Alur hybrid automaton can be 

introduced.  Alur started with the timed automaton and instead of a clock at each node 

(i.e., ( ) 1x t =� ), he associated a set of continuous dynamics to each node.  Alur 

completely redefines the timed transition model to form the hybrid automaton.   

Alur, [3], defined a hybrid system as a system consisting of six components: 

 ( ), , , , ,H Loc Var Lab Edg Act Inv=  (2.1.9) 
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Here, 

1. Loc  is a finite set of vertices called locations. 
2. Var  is a finite set of real-valued variables.  A valuation v  for the variables is a 

function that assigns a real-value ( )v x ∈\  to each variable x Var∈ .  Denote the 
set of valuations as V .  A state for an Alur hybrid system is defined as a 2-tuple, 
( ),l v , consisting of a location l Loc∈  and a valuation v V∈ . 

3. Lab  is a finite set of synchronization labels.  These labels allow for state resetting 
or jumping. 

4. Edg  is a finite set of edges, called transitions.  Each transition e Edg∈ , 
( ), , ,e l a lμ ′= , consists of a source node l Loc∈ , a target node l Loc′∈ , a 

synchronization label a Lab∈ , and a transition relation 2Vμ ⊆ .  A transition is 
enabled if for some valuation, v V∈ , in the source node and some valuation, 
v V′∈ , in the target node, ( ),v v μ′ ∈ . 

5. Act  is a labeling function that assigns to each location a set of activities.  The 
activities are time-invariant functions from the nonnegative reals to the set of 
valuations, where a valuation is a function that assigns a real number to each 
variable.  The activities are the continuous dynamics of the system. 

6. Inv  is a labeling function that assigns to each node an invariant such that 
( )Inv l V⊆ .  If at some time the invariant is not met, the system must transition to 

another node. 
 

Note that the hybrid automaton appears to resemble the time transition automaton, but 

has a different structure.  The Loc  variable is similar to the S  variable in equation 

(2.1.6) in that they both define a set of finite nodes that represent the discrete states of the 

system.  The Lab  function is similar to the π  function of equation (2.1.6), in that they 

both label the locations and define the resetting of the state (i.e. synchronization of the 

states) after the jump.  The Edg  set incorporates the E  and τ  sets and represent the 

finite set of edges representing the possible discrete location changes and enabling 

conditions.  Act  incorporates the set of clocks C  from equation (2.1.6) while also 

including dynamics that are not constant.  The Inv  and μ  functions are similar as they 

both give conditions that must be true while the system is in the particular node.  
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Figure 2.7 depicts the Alur hybrid automaton with its corresponding structure [3].  The 

state of a hybrid system can change in only two ways.  First, a discrete transition 

instantaneously changes both the location and the value of the state according to the 

control forcing the transition.  The second type of transition is a time delay that changes 

only the values of the variable according to the activities of the current location (i.e. time 

evolution of the continuous dynamics).  The only way the system can stay at one location 

is if the invariant for that location is true.  The system transitions to another location the 

instant the invariant becomes false. 
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Figure 2.7: Hybrid Automaton as defined by Alur 

The best way to clarify the description of an Alur hybrid automaton is through a simple 

example.  The thermostat example given in Figure 2.2 is in the Alur hybrid automaton 

form.   The thermostat has two locations and the dynamics at each location are different.  

At node 0l , the room is cooled at an exponential rate.  When the system temperature 

drops to m , the system transitions to node 1l .  At node 1l  the heater is turned on, and the 
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room is heated accordingly.  When the temperature exceeds M , the system transitions 

back to node 0l  and the cycle repeats.   

 

The Alur model for the simple thermostat is given by ( ), , , , ,H Loc Var Lab Edg Act Inv=  

where  

1. { }0 1,Loc l l=  are the two nodes of the system representing it’s discrete states. 

2. { }Var x=  is the continuous state variable for the system, room temperature. 

3. { }Lab =  is empty because the state is not “reset” during the transition. 

4. ( )( ) ( )( ){ }0 1 1 0,[], , , ,[], ,Edg l x t m l l x t M l= = =  defines all of the possible system 

transitions.  So when the thermostat is in node 0l  the system can only transition to 
node 1l  and when the system is in node 0l  it can only transition to node 0l .  
Furthermore when the system is in location 0l  the transition is enabled when ( )x t m=  

and when the system is in location 1l , the transition is enabled when ( )x t M= . 

5. ( ) ( ){ },Act K x t K x t b h= − ⋅ − ⋅ + ⋅  are the continuous dynamics associated with the 
thermostat in nodes 0l  and 1l  respectively. 

6. ( ) ( ){ },Inv x t m x t M= ≥ ≤  are the invariants that must be true while the system is in 

each node.  Note that when the system is in location 0l  and the state is ( )x t m= , the 
transition is enabled and the invariant is still true.  At an infinitely small time later, st , 
the state will be ( )sx t m<  and the invariant fails to be true, forcing a transition to 1l  
according to the edge condition. 

2.4.3 Branicky Model 

The Branicky model [15] unified the modeling approaches presented above and yielded a 

model structure that allowed for the analysis of general hybrid systems.  The Branicky 

model incorporates the structure of both the Brockett model and Alur model allowing it 

to be less conservative and more general than each of the simpler models. 
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Branicky requires that four types of hybrid phenomena be captured in order for the model 

to be general.  They are  

1. Autonomous Switching – The continuous dynamics (vector field) abruptly 
changes (e.g. switches) when the state trajectory intersects a certain boundary.   

2. Autonomous Impulse – The state changes impulsively when it hits a prescribed 
region of the state space (i.e. the dynamics don’t change but the state jumps 
instantaneously to another value).  An example of this type of system is object 
collisions. 

3. Controlled Switching – The vector field changes in response to a control 
command with an associated cost.  

4. Controlled Impulses – The state changes impulsively in response to a control 
input with an associated cost. 

 

Note that the Brockett model only includes autonomous switching, since the triggering 

signal p  is a bounded continuous function of the discrete and continuous state variables.  

Furthermore, the Alur model allows for autonomous switching and autonomous impulse, 

but does not include the ability to provide controlled switching or impulse.  In fact the 

Alur model is only designed for hybrid systems where the continuous dynamics are 

independent of a control input.  

 

The mathematical model that Branicky presents is an indexed collection of dynamical 

systems along with a map that defines the jumping and resetting of the states and vector 

fields and a map that defines the jump conditions.  Formally, Branicky [15] defines a 

generalized model of a hybrid system as a seven-tuple cH  where 

 [ ], , , , , ,cH Q A G V C F= ∑  (2.1.10) 

 

and 

1. Q  is a countable set of indexed states representing the discrete nodes. 
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2. { }q q Q∈
Σ = Σ  is the collection of controlled dynamical systems.  

, , ,q q q q qX Uφ⎡ ⎤Σ = Γ⎣ ⎦ , where qn
qX ∈\  is the continuous state space, qΓ ∈\  is a 

transition semi-group with identity (which is time for continuous systems and 
represents transitions for discrete systems), :q q q q qX U Xφ ×Γ × →  are the 
continuous dynamics, and qU  is the set containing all possible controls.  Note that 

the state space is an element of qn\  which indicates that the number of states can 
change during a discrete event. 

3. { } qqQqq XAAA ⊂=
∈

,  for each q Q∈ .  A  is the set of all autonomous jump sets 

indexed by q . 
4. { } SVAGGG qqqQqq →×=

∈
:,  is the autonomous jump transition map which 

describes to which node the system will transition after an autonomous jump.  qV  
represents the transition control set that defines which nodes the system can 
transition to once the autonomous jump set qA  is encountered.  qG  defines the 

discrete dynamics of the system.  Furthermore, { }q Q qS X q∈= ∪ ×  is the hybrid 
state space of the system. 

5. { }q q Q
V V

∈
=  is the set of all possible transition controls. 

6. { } qqQqq XCCC ⊂=
∈

,  is the collection of controlled jump sets.  The controlled 

jump sets are subsets of the continuous state space where if the state is a member 
of the subset, a jump can occur.  The jump doesn’t have to occur, which is why it 
is defined as being a controlled jump.   

7. { } S
qqQqq CFFF 2:, →=

∈
 is the collection of controlled jump destination maps. 

 

A run of the model consists of the following steps.  First, the system will start in some 

initial state that is not located in A  or C .  The system will evolve according to ,0qφ .  If 

the state enters ,0qA , it must transition using ,0qG  to a different location in the state space.  

Alternately, if the state enters ,0qC  it may transition through ,0qF  to another location in 

the state space.  Note that when the system transitions, the state trajectory can jump 

according to maps ,0qG  or ,0qF .  The structure of this model allows for both autonomous 

and controlled transitions, which gives rise to two types of system control.  First, the 

model allows for control of the continuous dynamics in each node.  Second, the model 
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allows for control of the discrete events.  Control of the continuous dynamics can cause 

an autonomous jump if the control forces the state to enter qA .  Furthermore, if the 

control moves the state into the set defined by qC , a discrete event control can be applied 

to the system forcing a transition to another node. 

 

The model can be augmented to make it more multi-purpose: 

1. Outputs can be added to the model.  { } { },  q qq Q q Q
O O η η

∈ ∈
= =  where 

qqq OA →:η  produces an output at each jump time. 
2. : qA +Δ →\ , is a jump delay map that can be used to accommodate transitions 

that are not instantaneous and take a specified amount of time. 
3. : Xτ ×Γ→ \  is a transition time map which provides a mechanism for 

reconciling different time scales incorporated in the continuous dynamics. 
 

Note that both the Alur and Brockett models can be described by a Branicky type model, 

so it unifies the modeling approach for hybrid system analysis. 

 

The simple two-speed manual transmission model presented earlier can be used to 

demonstrate the Branicky model structure.  First, two nodes exist for this problem, so 

{ }1 2,Q q q=  where the nodes represent 1q  for low gear and 2q  for high gear.  Next, the 

controlled dynamic systems, ∑  can be defined as  

 
[ ]1

2

, , ,

, , ,
Low

High

x t g U

x t g U

∑ = ∈ ∈

⎡ ⎤∑ = ∈ ∈⎣ ⎦

\ \

\ \
 (2.1.11) 

 

where Lowg  and Highg  are the continuous dynamics associated with the low and high 

gears, respectively and U ⊂ \  is a closed set that contains the set of desired torques that 
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can be produced by the engine.  A  will be empty for this problem because no 

autonomous jumps will occur.  If it were desired to force a gear change as a function of 

vehicle velocity (i.e. engine speed for this problem) it would be defined in A .  Since A  

is empty and no autonomous jumps are defined, then G  and V will be empty as well.  

{ },C = \ \  are the regions of the state space where the controlled transition is enabled.  It 

will be assumed for this problem that the transition can occur for any value of the state 

space at any time.  Note that for a more accurate model there would be a subset of the 

state space in each location that enables the transition.  If the longitudinal velocity (i.e. 

engine speed) is too high then a restriction would be placed on shifting from high gear to 

low gear because the engine would be over revved.  Finally,  { }2,1F =  are the controlled 

jump destination maps.  If the system is in node 1q  and a controlled jump is requested 

(i.e. a gear change is desired), then F  requires the system to jump to node 2q .  

Conversely if the system is in node 2q  then F  requires the system to jump to node 1q .     

 

Branicky also created a restricted version of his hybrid dynamical system model [15].  He 

did this so that control synthesis can be performed for the system.  For simplicity, 

Branicky added a set D , to represent the set of destinations for every possible transition.  

In turn, he removed the set F  of set-valued maps that describe the transitions.  Branicky 

also added time delay sets aΔ  and cΔ to account for autonomous and controlled non-

instantaneous jump times.  Branicky also restricted the general model with the following 

assumptions: 

1. Restricted Model Assumptions - For every +∈ Zi , Xi is the closure of a 
connected open subset of Euclidean space id\  and +∈ Zdi , with Lipschitz 
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boundary iX∂ . iiii XDCA ⊂,,  are closed.  Further, iA∂  is Lipschitz and 
contains iX∂ . 

2. Jump Set Separation - ( ) 0, >ii CAd  and ( )inf , 0i Z i id A D
+∈ >  where ( ),d i i is 

the appropriate Euclidean distance. 
3. Transversality of A  - For each i, iA∂  is an oriented C1-manifold without 

boundary and at each point x  on iA∂ , ( )uzxfi ,,  is transversal to iA∂  for all 
choices of z  and u . 

4. Transversality of C  - For each i, iC∂  is an oriented C1-manifold without 
boundary and at each point x  on iC∂ , ( )uzxfi ,,  is transversal to iC∂  for all 
choices of z  and u . 

 

These assumptions provide a well-defined dynamical system in that they assure the 

existence and uniqueness of the state in each constituent system, where switching times 

are well defined, and that autonomous switching times do not accumulate (i.e., no Zeno 

problems). 

2.5 Brief Survey of Analysis Results for Hybrid Systems 

The study of hybrid systems is a relatively new field of research; so many perspectives on 

how to analyze these systems exist.  The two main approaches were born out of computer 

science and non-linear system theory.  The first approach, computer science, abstracts the 

continuous dynamics away from the problem and uses timed automaton theory to analyze 

the behavior of the system, [1][2][3][4][5][13][39].  Bounds on the continuous dynamics 

are used as clock constraints, which control the discrete behavior of the problem.  Once 

the problem is in this form, finite automaton analysis techniques can be applied to study 

reachability from the initial state and safety verification problems.  The study of these 

two problems gives insight into the required control, but doesn’t provide theory for 
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finding a controller that satisfies a set of system specifications.  Algorithms have been 

developed that partition the state space into regions according to the discrete events and 

the set of states that can be reached by the continuous dynamics.  Further, some of these 

algorithms incorporate a labeling scheme to their partitioning algorithm that labels each 

region of the state space as either satisfying or not satisfying a set of constraints, solving 

the verification problem.  To improve the computational efficiency of the partitioning 

algorithms, variants of these algorithms exist in the literature that try to reduce 

computational time, minimize the number of regions required in the partitioning of the 

state space, while still solving reachability and verification problems. 

 

The second approach abstracts the discrete behavior away from the hybrid problem and 

treats it as a non-smooth system,  [15][17][18][43].  Different types of analysis using this 

approach have been reported in the literature.  Differential inclusion theory can be 

applied to a sub-class of hybrid systems that meet the differential inclusion assumptions.  

Calculus that can be used to study the dynamic behavior has been defined for differential 

inclusion problems.  Lyapunov stability theory has been applied to hybrid systems to 

determine their stability properties [9][14][24][40][46][54][73].  Specifically, the 

Lyapunov stability technique has been applied to switched systems to help determine if 

any/all switching sequences will produce stable dynamic behavior.  Finally, non-smooth 

optimization techniques have been applied to hybrid systems to find open-loop controls 

that satisfy necessary conditions of optimality [56][61][63][64][65][67]. 

The results reported in this dissertation will be based on the non-smooth non-linear 

system method and extend the results of non-smooth optimization to a subclass of hybrid 
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systems, and provide enough structure to solve some practical engineering control 

problems.  The theory developed will be applied to two problems.  The first problem is a 

simple hybrid problem consisting of a harmonic oscillator and double integrator with a 

defined switching rule.  The second problem analyzes the traction control problem and 

analytically proves that the theory developed does indeed provide at least a suboptimal 

solution. 

 

Three areas of hybrid systems provide a set of hybrid system analysis tools.  Alur et al. 

[1][2][3][4][5] provided theory to analyze the reachability and verification problem for 

hybrid systems that have the structure dictated by his modeling formalism.  Alur’s work 

in this area of hybrid systems has spawned a large set of tools that analyze the 

reachability and verification problem for a wide range of hybrid systems [39][66].  

Second, an array of tools has been developed for a sub-class of hybrid systems called 

switched systems.  Finally, a suite of tools has been developed to find optimal controllers 

for various subclasses of hybrid systems. 

 

Switched systems are a sub-class of hybrid systems where the control algorithm causes 

the system to switch between a set of autonomous continuous time systems.  Analysis 

tools exist for switched systems that examine system stability and controller synthesis 

[14][24][41][46][54][73]. 

 

A good part of the literature on switched systems  [14][24][41][46][54][73] examined 

stability of the switched system state trajectory because certain switching sequences for 
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the switched system can cause strange behavior.  Theoretical examples of strange 

behavior can be easily generated.  A switched system with two nodes each of which 

contains stable dynamics, can have a switching sequence that produces an unstable 

response.  On the other hand, a switched system with two nodes each of which contains 

unstable dynamics, can have a switching sequence that produces a stable response.  

Lyapunov stability ideas from non-linear control system theory provided the theory to 

analyze the stability of switched systems.  The general idea was to show that the 

switching sequence monotonically decreases the overall “energy” of the switched system.  

When the switched system contained only continuous linear dynamics, the Lyapunov 

theory provided a general analytical method to determine if and what switching 

sequences produce an unstable or stable response. 

 

The ideas introduced to study the stability of the switched system can be applied to 

controller synthesis for switched systems.  Controller synthesis tools are used to design 

controllers that stabilize switched systems [9][46][53][73].  If the continuous systems use 

state feedback control, then the control synthesis tools will design the individual 

controller gains as well as the required switching sequence to stabilize the system while 

meeting design constraints.  As before when the continuous dynamics are linear, exact 

computational methods are presented in the literature to perform the design and produce 

locally and globally stable responses. 

 

The focus of this research will not be switched systems or stability of switched systems, 

so the author refers the reader to the references for more information. 
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Chapter 3: Optimal Control Problem Definition 

The purpose of this chapter is to introduce the general hybrid optimal control problem 

that will be analyzed in this dissertation.  The problem will be given in its most general 

form.  The standard analysis tools found in the literature will be developed using a 

version of the general optimal control problem that is constrained by assumptions.  These 

analysis tools form the basis of the hybrid Maximum Principle and hybrid sufficient 

condition found in this dissertation. 

 

This chapter is organized in the following way.  First, a brief overview of optimal control 

will be provided.  And then the general hybrid control problem will be given and the 

optimal control problem defined. 

3.1 Overview of Optimal Control 

Optimal control of non-linear systems has been a popular area of research for many years 

and many papers and textbooks have been written on the subject.  [6][7][55][72] are four 

examples of texts that introduce the concepts of optimal control of non-linear systems.  

The purpose of optimal control research is to develop a set of necessary and sufficient 

conditions the optimal control must satisfy, given a specific class of control problems.  

Necessary conditions are a set of conditions every optimal control candidate must satisfy 

and sufficient conditions are a set of conditions that only the optimal control will satisfy.  
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Necessary conditions have been the main focus of the research because they are relatively 

easy to apply and narrow down the set of all controls to a set of candidate optimal 

controls.  The usual necessary conditions, however, only provide an open-loop solution to 

the problem because they are associated with the optimal trajectory from a known initial 

state to the final state.  The sufficient conditions are more powerful than the necessary 

conditions because only the optimal control solutions (there may be more than one) will 

satisfy the sufficient conditions, and the known methods for determining sufficient 

conditions produce a feedback control solution.  Application of the sufficient conditions 

without the necessary conditions is generally difficult because it usually requires solving 

a partial differential equation along every trajectory that can reach the final state of the 

system.  Typically in a control synthesis process, the necessary conditions are used to 

generate a set of candidate optimal controls and then the sufficient conditions are used to 

determine which candidate controls are optimal (if an optimal control exists).  In special 

cases (as in the case of linear systems), the necessary conditions can be shown to be 

sufficient, so every candidate control solution identified by the necessary condition is 

optimal. 

 

A general definition of optimization is given in [8] and is, “Optimization is the process of 

maximizing or minimizing a desired objective function while satisfying the prevailing 

constraints.”  As such, all optimization problems contain a cost function (or an objective 

function) and a set of constraints, where the objective function and the constraints are 

related through a common set of variables.  The optimal control problem has a form that 

is identical to the optimization problem given in the previous definition.  Optimal control 
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problems consist of a cost (or objective) function and a set of constraints that are related 

to the variables in the cost function.  The constraints consist of the dynamics of the 

system to be controlled and any other constraints the problem may have (for instance the 

state may be constrained to a subspace of the state space).  The necessary conditions are 

typically derived by assuming that an optimal trajectory exists (i.e. an initial condition 

and control are defined) with an associated cost, computing the effect on the cost function 

of temporal, spatial, and control variations of the reference trajectory, and finally 

applying the definition of optimality.  The sufficient conditions are usually derived by 

computing the optimal cost-to-go function (or value function) to the final state from 

every initial state in the state space (assuming that a control exists such that the initial 

state can reach the final state), computing the variation in the value function by temporal 

and spatial variations, and finally applying the definition of optimality. 

 

Two main methods are used to derive necessary conditions for optimal control.  The first 

method uses the Calculus of Variations to compute the variation in cost associated with 

smooth variations in the temporal, spatial, and control variables [6].  The second method, 

the Maximum Principle [6][55][72], derives the necessary conditions in a more general 

form by computing the variation in cost associated with non-smooth (i.e. jumps) 

variations in the spatial and control variables along the reference trajectory.  The 

sufficient conditions [6][7][72] are derived by using an infinitesimal version of the 

Principle of Dynamic programming to compute the variation in the optimal cost-to-go 

function to the final state of the system. 
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The optimal control of hybrid systems is a field of research that is starting to grow.  The 

main focus in analytical computation of optimal controls has been in the development of 

hybrid maximum principles.  [56][57][58][59][61][63][64][65][67][68][69] extend non-

smooth optimization principles to classes of hybrid systems and present necessary 

conditions for a maximum principle that extends the classic maximum principle 

developed by Pontryagin.  Development of sufficient conditions has had little attention, 

compared to the hybrid maximum principles, in the analytical computation of hybrid 

optimal controls.  However, [47][62] develop sufficient conditions for optimal controls 

for restricted classes of hybrid systems.  The restricted class of hybrid systems is smaller 

than the class studied in this dissertation.  

 

A variety of tools have been developed to solve optimal control problems for different 

subclasses of hybrid systems.  For example, optimal control tools have been developed 

for hybrid systems where the continuous part is sampled into discrete form and the 

discrete event part is described by inequality constraints [10].  In this form, [10] 

demonstrated that these problems can be recast as mixed integer optimization problems, 

where commercial solvers can be used to solve the problem.  Furthermore, [74] applied 

dynamic programming principles in conjunction with a quadratic optimal control 

principle to find the optimal controller gains when the continuous dynamics are linear 

and the switching sequence between discrete modes is given.  In [16] the authors 

presented three different optimization techniques that involved discretizing the state and 

control spaces and solved the resulting discrete boundary-value problem.  The first 

technique extended an algorithm that was developed to solve optimal control problems 
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with impulsive controls.   The second technique involved value and policy iteration for 

systems that are piecewise continuous and encompassed a generalized Bellman function.  

The third technique was a linear programming technique that encapsulated the impulsive 

control technique previously developed.  [9] developed a technique to synthesize state 

feedback optimal controllers for switched systems where the continuous dynamics are 

linear and autonomous.  This technique constructs switching tables that identify regions 

of the state space where an optimal switch should occur when the state enters that region.  

Further, [21] studied a type of hybrid optimal control problem that resembled a first in 

first out buffer, which is common in manufacturing engineering.  This model assumed 

that there exists a queue that sends jobs to a central processor in the order that they were 

received.  The idea is that each job represents a discrete event and while it is processing, 

the continuous state evolves according to a set of continuous dynamics defined by the 

job.  The optimization problem utilized a model of this type and minimized the total 

processing time, while ensuring that the individual jobs met specific quality 

requirements.  Cassandras developed first order optimality conditions to solve this 

optimization problem.  Finally, [75] used a genetic algorithm approach to find test inputs 

that can be applied to the physical system to assess its functionality.  The purpose of this 

research was to automatically develop test inputs that will ensure functionality of the 

system and/or find potential operational faults.  This problem can be cast as an optimal 

control problem by defining a cost function that is dependent on whether the design 

criteria are met.  The genetic algorithm approach is a derivative free numerical 

optimization technique that evolves through the state space by a process of competition 

and controlled variation.  Since the solver utilized a derivative free approach, the system 
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did not need to be represented analytically so this technique could be applied directly to 

system simulations. 

 

Numerical algorithms have also been developed to solve the optimal control problem for 

hybrid systems.  Studies [37] and [38] used dynamic programming to numerically solve 

the optimal control problem for hybrid systems where the cost function is convex.  The 

authors used a linear programming technique to find the control law that provides an 

automatic discrete event to select the optimal mode for the system.  The authors 

demonstrated their technique on a simple gear shifting model for a truck with a flexible 

transmission.  Study [19] also presented a dynamic programming process to solve the 

hybrid optimal control problem, but their method applied to hybrid systems that can be 

represented by a bisimulation.  The authors used the equivalence relations of the 

bisimulation to find the cost-to-go value of any region of the bisimulation based on all of 

the strictly smaller cost-to-go regions leading to that region.  Essentially, since the 

bisimulation partitions the state space according to regions that transition to other 

regions, the algorithm is able to compute the minimum cost-to-go function based on the 

path of the smallest cost-to-go regions that eventually reach the region being computed.  

This process continues until the optimal region path is computed for every region in the 

partition.   

 

Since the focus of this dissertation is on the analytical analysis of hybrid systems, the 

hybrid maximum principles of Sussmann [67][68][69], Riedinger [57][58][59], and 

Caines [61][63][64][65] will be discussed in more detail in Chapter 5. 
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3.2 Hybrid Control System 

The hybrid control system will utilize the hybrid model form developed by Sussmann, 

given in [67], that is similar to the Branicky model formulation [15] given in the 

introduction of this dissertation, but does not allow for controlled switching.   

 
Let the hybrid control system, ∑ , be given by the seven-tuple  

 ( ), , , , , ,Q M U f u I SΣ =  (3.1.1)   

 

Where: 

1. Q  is a finite set that is used to define the locations of the hybrid model. 

2. { }qn

q Q
M

∈
= \  is a family of real spaces of order qn  indexed by q Q∈  which 

represent the family of state spaces where the respective continuous dynamics are 
defined.  

3. { }q q Q
U U

∈
=  is a family of control spaces for Σ  indexed by q Q∈ . 

4. { }q q Q
f f

∈
=  is a family of functions such that : q qn n

q qf U× × →\ \ \ , where qf  

define the continuous dynamics for each location q Q∈ . 
5. { }q q Q

u u
∈

=  is the set of all admissible controls for each location q .  For every 

interval of time over which the dynamics are defined, q qu U⊆ . 

6. { }q q Q
I I

∈
=  is a family of subintervals of \ , that are allowed to be empty and 

represent the ability to bound the switching event to a specific interval of time.   
7. S  is a subset of ( )2M̂ Σ  and defines all of the switching criteria between the 

locations of the hybrid system.  ( )2M̂ Σ  is defined as: 

( ) ( ){ }2ˆ , , , : , , ,q qn nM q x q x q q Q x x ′′ ′ ′ ′Σ ≡ ∈ ∈ ∈\ \  

( )2M̂ Σ  is the set of all of the potential pre- and post-switch values of x , for all 

possible pre- and post-switch values for the discrete state q .  The actual switching 
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sets for the hybrid system that define the switching dynamics from location q  to 

location q′  are given by: 

( ) ( ){ }, , : , , ,q qn n
q qS x x q x q x S′

′ ′ ′ ′≡ ∈ × ∈\ \  

This equation says that the switching set that defines the switching dynamics from 

location q  to location q′  is the pre and post switch values of x  that are 

associated with the location q  and location q′  defined in S , respectively.  The 

switching set is used to define surfaces in the state space where an autonomous 

jump will occur.  

 

Note that this model can be represented in Branicky form.  Recall that the Branicky 

model is given by equation (2.1.10) and is 

 [ ], , , , , ,H Q A G V C F= Σ  (3.1.2) 

 

where the elements of the model are defined in the introduction section of this 

dissertation.  Q  in the Branicky model is identical to Q  in equation (3.1.1).  Both 

represent the number of finite states in the model.  The Σ  term in the Branicky model 

represents the controlled dynamical system and encapsulates the ( ), , ,M U f u  terms of 

the Sussmann model.  The I  and S  terms of the Sussmann model incorporate the ability 

to bound the switching time and to define state based switching constraints.  If another 

state variable is introduced to the Sussmann system to represent the system clock, then 

the I  and S  terms can be represented by the autonomous jump set and jump transition 

map given in the Branicky model as the A  ,G  and V  terms.  The final two tuples in 



 

 46  

(3.1.2) are not captured in the Sussmann model so in the Branicky formulation are empty.  

As such the Sussmann model does not capture control ordered jumps.  The Sussmann 

model given in equation (3.1.1) is less general than the Branicky model given in equation  

(3.1.2), but is a useful model for representing physical systems and development of 

analysis tools.    

The fact that the Sussmann model doesn’t include the controlled switching phenomenon 

limits the applicability of this work.  For example in the drag racing problem, the tire is 

modeled as either being in a sliding mode or non-sliding mode.  When the system is non-

sliding, a “large enough” braking or accelerating torque can cause the system to 

instantaneously transition to the sliding case.  However, by assuming that once the 

system is in the non-sliding state, it stays in the non-sliding state (which will be verified 

as valid), this model will apply.  Since sufficient conditions are developed along with 

necessary conditions, the inclusion of controlled dynamic switching to this work is 

straightforward because the optimal solution to the final set of states is always known. 

 

The Sussmann model provides a formalism for representing physical hybrid control 

problems, but must include more structure before the optimal control analysis tools can 

be developed.  In order to satisfy the assumptions required for the non-smooth necessary 

and sufficient conditions in Chapter 4 [7], it will be assumed that the hybrid optimal 

control problem will satisfy the following set of assumptions: 

1. For every control space, qU , qm
qU = \ , where q qm n≤  is the dimension of the 

control space for all discrete locations indexed by q . 
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2. For all [ ]1, ,q n= … , qf  is Lipschitz continuous in the state variable, x , uniformly 
in the control variable, qUα ∈ , and the time qt J∈ . Equivalently, for all 

, qnx y∈\ , qu U∈ , qt I∈ , there exists a constant 0l >  such that  

 ( ) ( ), , , ,q qf x t f y t l x yα α− ≤ ⋅ −  (3.1.3) 

3. For all [ ]1, ,q n= … , qf  is bounded on a ball centered at ( ), nx t ∈ ×\ \  with 
radius 0R >  for all admissible controls qUα ∈ . 

4. qf  is differentiable with respect to x  and qf
x

∂
∂

 is continuous for all nx∈\  and 

qu U∈ , where qU  is the closure of the control set qU .  
5. For every q Q∈ , qI = \ .  This assumption insures that the switching times for 

the discrete dynamics are always free and not bounded.  
6. For all ,q qx S ′∈  and q Q∈ , there exists a scalar function : qn

qw →\ \  such that 

( ) 0qw x =  (i.e. qw  is a hypersurface in qn\ ).  Furthermore, assume that there 

exists a function 1: q qn n
qh +→\ \  such that ( ) ( )qx h x′ =  and x′  does not satisfy 

( ) 0qw x′ ′ = .   This assumption restricts the discrete dynamics to only occur when 
the state of the system is an element of a pre-defined surface in the state space.  
Furthermore, this assumption requires that the “jump” in the system trajectory is 
only dependent on the pre-jump state, and when the jump occurs the trajectory 
does not jump to a point where it can instantaneously jump again.  Note that the 
post-jump state is only indirectly dependent on the control.  The pre-jump 
controls determine the pre-jump state, which determines the post-jump state. 

 

Note that these assumptions are actually more restrictive that what is required for 

necessary conditions of Sussmann [67], but allow for the addition of the sufficient 

condition to the theory.  Furthermore, the assumptions on the dynamical constraints are 

similar to the assumptions required by the Branicky model [15].  The rest of the 

assumptions are technically required for the validity of the hybrid necessary and 

sufficient conditions developed later and are not included in the Branicky model. 

 

A trajectory of a hybrid system can be defined for the time interval 0t tτ≤ ≤  once the 

initial condition for the system is given and a control function for the system are defined 
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over the interval 0t tτ≤ ≤ .  Assume that the initial condition for the trajectory is the 3-

tuple, ( )1 0 0, ,q x t , where 1q Q∈ , 0
0

qnx ∈\ , 0t ∈\  0 0t ≥ , and ( )
1 0 0qw x ≠ .  Furthermore, 

let the set { }1, , kν ν ν= …  be a set of controls where each element of v , iv  1i k= … , is a 

control function, ( )i i qv uτ ∈ , defined over an interval of time i i iτ τ τ+ −< ≤ , the times iτ
−  

satisfy 0 1 2 1kt tτ τ τ− − −
−< < < < <… , 1 0tτ + = , 1i iτ τ+ −

+ =  1, , 1i k= −… , k tτ − = , and for all 

1 1i k= −… , ( )( ) 0i iw x τ − = .  Then a  trajectory of the system, Ξ ,  is the set of 3-tuples, 

( ), ,jq x t , 2j k= … , defined for every τ , 0t tτ≤ ≤ , where jq Q∈ , t∈\  and 0t t> , 

inx∈\ , and x  is the solution of the differential equation ( ) ( ), ,ix t f x tα=� , ( ) it uα ∈ , 

with initial condition ( )ix τ +  and iτ
+  over the interval of time i i iτ τ τ+ −≤ ≤ , for all 

1i k= … .   

 

Note the inherent relationship between the control and the discrete events.  The control 

for the hybrid system model steers the trajectory to the hyperspace defined by iw  and 

thereby forces the system to perform a discrete event.  Further, the definition of the 

control set forces the number of discrete locations (or events), k , to the set [ )1, ,k∈ ∞… . 

 

A simple example of the relationship between the control and the discrete events is the 

thermostat problem given in Chapter 2.  When the temperature drops below a specified 

level, the thermostat turns the heater on.  As the heater heats the air the control (the 

heater) causes the state (the room temperature) to rise until the switching surface (the 

threshold temperature) is reached.  The heater then is switched off and the state begins to 
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fall and the cycle repeats.  Since the control drives the state to the switching surface, the 

discrete event is dependent on the control. 

 

An example where the discrete events and the control are not related is the manual 

transmission problem in which the driver input is exogenous and the control u  is the 

engine torque.  Since the driver can select any gear at any time they desire, the choice of 

gear ratio and time at which the gear ratio is changed is not a function of the state or time.  

Hence, the driver forces the discrete event to occur at some time that can be independent 

of the state of the system and the environment under which the system is operating.  As 

such, the discrete event (the gear change) is independent of the system control. 

3.3 Hybrid Optimal Control Problem 

Now that the hybrid control system has been defined, the optimal control problem that is 

going to be studied throughout this dissertation can be defined. 

 

First, pick [ )1,k∈ ∞  discrete locations and order them in the sequence { }1 2, , . kq q q… .  

Next, pick an initial condition ( )1 0 0, ,q x t , time 0t t> , and control set { }1, , kv v v= … , 

where 1
0

qnx ∈\ , ( )
0 0 0qw x ≠ , 0 0t ≥ , such that at time iτ

− , ( ) 1qn
ix τ − ∈\  and 

( )( ) 0
iq iw x τ − =  for all 1i k= … .  And let the resulting control/trajectory pair for the 

hybrid system be denoted Ξ .  
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Furthermore, let the function, :J Ξ→ \ , be a real valued function of the 

control/trajectory pair that defines the performance of the control/trajectory pair, called 

the cost (or objective) function, which satisfies the equation 

 
( ) ( ) ( )( )

( )( ) ( )( )

1

1 1

0 0 0

, , ,

                                                      , ,

i

i

k k

i i i i
i i

k k k

J L x t dt x

x t t x

τ

τ
α τ τ

τ τ

−

+

−
− −

= =

− −

Ξ = ⋅ + Φ

+Φ +Φ

∑ ∑∫
 (3.2.1) 

 

where for all i , : q qi in m
iL × × →\ \ \ \  is a real valued function called the Lagrangian, 

: qin
iΦ × →\ \ \  is a cost associated with the discrete event characterized by 

( )( ),i ix τ τ− − , ( ) qin
ix τ − ∈\ , 1

0 : qnΦ × →\ \ \  is a cost associated with the initial 

condition of the system, and : qkn
kΦ × →\ \ \  is a cost associated with the final 

condition of the system at time k ftτ − = . 

 

Assume the cost function in equation (3.2.1) satisfies the following assumptions  

1. For all 1, ,i k= … , iL  is Lipschitz continuous in the state variable, x , uniformly in 

the control variable, 
iquα ∈ , and the time ( ,i it τ τ+ − ⎤∈ ⎦ .  Equivalently, for all 

,
iqx y M∈ , 

iquα ∈ , ( ,i it τ τ+ − ⎤∈ ⎦  there exists a constant 0L >  such that  

 ( ) ( ), , , ,i iL x t L y t L x yα α− ≤ ⋅ −  (3.2.2) 

2. For all 1, ,i k= … , iL  is bounded on a ball centered at ( ), nx t ∈ ×\ \  with radius 
0R >  for all admissible controls 

iquα ∈ . 
3. For all 1, , 1i k= −… , iΦ  is Lipschitz continuous in the state variable, x , 

uniformly in the time t .  Equivalently, for all ,
iqx y M∈ , there exists a constant 

0G >  such that  
 ( ) ( ), ,i i i ix y G x yτ τ− −Φ −Φ ≤ ⋅ −  (3.2.3) 

4. 0Φ  is Lipschitz continuous in the state variable, x , uniformly in the time 0t , i.e. 
for all ,

kqx y M∈ , there exists a constant 0 0G >  such that  
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 ( ) ( )0 1 0 1 0, ,x y G x yτ τ+ +Φ −Φ ≤ ⋅ −  (3.2.4) 

5. kΦ  is Lipschitz continuous in the state variable, x , uniformly in the time kt , i.e. 
for all 

1
, qx y M∈ , there exists a constant 0kG >  such that  

 ( ) ( ), ,k k k k kx y G x yτ τΦ −Φ ≤ ⋅ −  (3.2.5) 

As before these assumptions are required to apply the theory of Chapter 4 [7] to the 

hybrid optimal control problem.  

 

Then the optimal control problem is to find the set of controls { }* * * *
1 2, , kv v v v= …  that 

minimizes the cost given in equation (3.2.1) for all possible initial conditions, while 

satisfying the constraints imposed by the hybrid control system defined by equation 

(3.1.2) and its associated assumptions. 

 

Note that the Lipschitz continuity assumptions given above allow for the non-

autonomous hybrid control problem to be written as an autonomous hybrid control 

problem by adding an extra state variable, ( )1nx t+ , that represents time.  Let  

 ( )1 1nx t+ =�  (3.2.6) 

 

with initial condition ( )1 0 0nx t t+ = , then the state variable ( )1nx t+  represents the time of 

the system and can replace all explicit references to time in the non-autonomous system, 

transforming it to an autonomous system.   
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Chapter 4: Optimal Control 

The purpose of this chapter is to present the necessary and sufficient conditions for the 

optimal control of non-hybrid systems.  The theory presented in this chapter provides the 

fundamental tools for understanding the hybrid maximum principles in Chapter 5 and the 

development of the necessary and sufficient condition in Chapter 6. 

 

The Maximum Principles of Pontryagin (PMP) [6][55], Bardi [7], and Clarke/Vinter 

(CMP) [23][24][25][26][72] will be discussed.  Each Maximum Principle will be 

presented without proof, but the proof will be discussed to facilitate understanding of the 

material.  Furthermore, a “smooth” sufficient condition [6] and the non-smooth necessary 

and sufficient conditions of Bardi [7] will also be presented.   

 

The maximum principles assume that a reference trajectory exists for a controlled system 

and analyzes the system’s properties when that control function is optimal.  

Unfortunately, since the conditions are only necessary, some or all of the control 

functions that satisfy the necessary conditions may not be optimal, and more analysis 

tools are required to identify the optimal control function(s) if they exist.  Sufficient 

conditions provide the analysis tools that prove the control function(s) identified by the 

necessary conditions are optimal.  Loosely speaking, the known sufficient conditions are 

difficult to use without the necessary conditions, because the sufficient conditions find all 

optimal control functions that produce trajectories to the final point from every point in 
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the state space.  Since the sufficient conditions compute all optimal solutions, they will 

produce a feedback optimal control.  Feedback controls that satisfy the sufficient 

conditions are more useful than the open-loop control given by the necessary conditions.  

The main problem with using the sufficient conditions is that since a feedback control is 

calculated, much more computational power may be required.  Combining the sufficient 

conditions with the necessary conditions allows for using the necessary conditions to 

narrow down all possible optimal controls and verification of the optimal control is given 

by the sufficient conditions. 

 

The optimal control material will be presented in the following order.  First the PMP will 

be given, then the “smooth” sufficient condition will be developed, next the non-smooth 

necessary and sufficient conditions of Bardi will be presented, and finally the non-smooth 

CMP will be discussed and compared to the work of Bardi. 

4.1 Pontryagin’s Maximum Principle (PMP) 

Pontryagin’s Maximum Principle (PMP) provides necessary conditions for a control to be 

the solution to a class of optimal control problems.  Assuming an optimal control exists 

and is unique, the PMP necessary conditions narrow down the set of admissible controls 

to a set of controls that contains the optimal control.   

 

The complete presentation and derivation of the PMP as given by Pontryagin can be 

found in [55].  The main result found in [55] is given to provide insight into the 
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theoretical contribution of this dissertation.  Most optimal control textbooks also provide 

a version of the PMP necessary conditions, for example see [6].  The PMP will be 

presented in the following order.  First, the optimal control problem will be stated.  Then 

the necessary conditions given by the PMP will be given for the proposed optimal control 

problem.  Finally, the proof will be outlined for completeness. 

 

4.1.1 Problem Formulation 

The purpose of this section is to define the optimal control problem [55].  A simplified 

version of the optimal control problem given in Chapter 3 will be used as the basis for the 

derivation of the PMP.  Assume that for the hybrid control problem, 1q = , so that the 

initial discrete location is the only discrete location that contains the system trajectory.  

Furthermore assume that:  

1. Q  has only one element. 
2. nM = \ , is the state space 
3. mU ⊂ \ , is the control space and is a subset of m\ . 
4. : n m nf × × →\ \ \ \ , is a function that represents the dynamics of the system. 
5. u U∈  is the set of admissible controls for the problem. 
6. I = \ , is the bound on the switching time. 
7. S =∅ , is empty. 
8. The control problem satisfies the assumptions given in Chapter 3, pg. 46-47. 
 
Given an admissible control function, ( )u t U∈ , defined for every 0 ft t t≤ < , the control 

problem produces a trajectory ( )x t M∈ , defined for every 0 ft t t≤ ≤ , that is the solution 

to the differential equation  

 ( ) ( ) ( )( ), ,x t f x t u t t=�  (4.1.1) 
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with initial condition ( )0 0x t x M= ∈ . 

 

Assume that the cost function has the form  

 ( ) ( )( ) ( )
0

0 0, , , ,ft

f t
J x t u t t t L x u t dt− = ⋅∫  (4.1.2) 

 

where J  satisfies the assumptions in Chapter 3, pg. 50.  Note that in Chapter 3, the cost 

function was a function of the complete hybrid trajectory.  For this control problem, the 

trajectory is completely defined by the initial condition ( )0x t , the control function ( )u t  

defined for every 0 ft t t≤ < , and the initial and final times 0t  and ft , respectively. 

 

Then the optimal control problem is to find the control function ( )u t , defined over 

0 ft t t≤ < , that minimizes the cost function in equation (4.1.2) while satisfying the 

constraints of the control problem, i.e. equation (4.1.1) and ( )0 0x t x= . 

 

4.1.2 Necessary Conditions 

The PMP provides a set of necessary conditions that the control must satisfy in order to 

be optimal.  Since the PMP only gives necessary conditions, a control that is not optimal 

may satisfy the necessary conditions, but every optimal control must satisfy the necessary 

condition.  So the PMP necessary conditions provide a set of candidate optimal control 

functions which must contain the optimal control (assuming that it exists).  The necessary 

conditions can be summarized in the following theorem. 
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Theorem 4.1.1 [55] 

Let ( )û t U∈ , for 0 ft t t≤ ≤ , be an admissible control and ( )x̂ t , for 0 ft t t≤ ≤ , be the 

solution to the control problem with initial condition ( )0x t .  Furthermore, let equation 

(4.1.2) be the cost associated with the trajectory ( )x̂ t , 0 ft t t≤ ≤ . 

 

If ( )û t  and ( )x̂ t , 0 ft t t≤ ≤ , are the optimal control function and corresponding (state) 

trajectory, then there exists a nonzero absolutely continuous vector function ( )tλ  which 

is the solution of the differential equation, 

 ( ) ( ) ( ) ( )( )ˆ ˆ, , ,H x t u t t td t
dt x

λλ ∂
= −

∂
 (4.1.3) 

 

with final condition ( )ftλ , where ( ) ( ) ( )( )ˆ ˆ, , ,H x t u t t tλ  is a real function, 

   : n m nH × × × →\ \ \ \ \ , defined as  

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )0ˆ ˆ ˆ ˆ, , , , , , ,H x t u t t t t f x t u t t L x u tλ λ λ= − ⋅  (4.1.4)  
 

where ,i i  denotes the standard inner product, viz. 
1

,
n

i i
i

x y x y
=

= ⋅∑  for any n -vectors 

x  and y , such that the following conditions are true: 

1. ( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ ˆ, , , sup , , ,
v U

H x t u t t t H x t v t tλ λ
∈

= . 

2. At the terminal time ft , ( )0 0ftλ ≤ , ( ) ( ) ( )( )ˆ ˆ, , , 0f f f fH x t u t t tλ = , and if 

condition 1 is satisfied, then ( )0 tλ  and ( ) ( ) ( )( )ˆ ˆ, , ,f f f fH x t u t t tλ  are constant at 

almost every time 0 ft t t≤ ≤ . 
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Further, the concepts of Theorem 3.1.1 can be extended to allow for variations in the 

endpoints (both temporal and spatial) as well as allowing the final and initial points to lie 

in a defined subset of the state space. 

 

These extensions require more necessary conditions that come in the form of 

transversality conditions.  The transversality conditions allow the MP to be applied to 

problems with variable endpoints.  Let 0S  be an 0r  dimensional smooth manifold with 

0r n<  and 1S  be an 1r  dimensional smooth manifold with 1r n<  and impose the 

constraints that ( )0 0x t S∈  and ( ) 1fx t S∈ .  Then the transversality conditions provide the 

additional necessary conditions given in Theorem 4.1.2.  

 

Theorem 4.1.2 [55] 

Assume the optimal control problem given above with the additional 

constraints ( )0 0x t S∈  and ( )f fx t S∈ . 

 

If ( )û t  and ( )x̂ t , 0 ft t t≤ ≤ , are the optimal control function and corresponding (state) 

trajectory, then there exists a nonzero absolutely continuous vector function ( )tλ  which 

satisfies equation (4.1.3), the necessary conditions given in Theorem 4.1.1 and the 

transversality conditions at both endpoints of the trajectory ( )x t , where the transversality 

conditions  require  

 
( )

( )
0 0

1

, 0

, 0f

t p

t p

λ

λ

=

=
 (4.1.5) 
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where  0
np ∈\  is any vector that belongs to or is parallel to the tangent hypersurface, 0T , 

of the set 0S  at the point ( )0x t , and 1
np ∈\  is any vector that belongs to or is parallel to 

the tangent hypersurface, 1T , of the set 1S  at the point ( )fx t . 

 

4.1.3 PMP Proof Outline 

The proof of the PMP can be found in [55] and will not be given here.  The purpose of 

this section is to provide insight into the proof, to help understand its derivation. 

 

The PMP is proved in four steps.  The first step is to assume that a reference control 

function exists that produces a resultant trajectory that satisfies the problem assumptions.  

The next step is to perform variations in the temporal, spatial and control variables to this 

reference trajectory, in order to calculate the variation in the cost functional.  Third, all 

possible variations in the cost functional are calculated and collected in the cone of 

attainability.  Finally, since the reference trajectory is assumed to be optimal the cone of 

attainability will not contain the vector of improved cost, and the necessary conditions are 

developed.  See [55] for the complete development of the proof and [6], Chapter 5, for a 

less rigorous heuristic proof of the PMP.   

 
Variations in Trajectory 
 

The purpose of this section is to develop the variation in reference trajectory associated 

with variations in temporal, spatial and control variables.  The information is presented to 

give the reader an idea about the proof of the PMP and not provide a proof of the PMP. 
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The first step in developing the variation is calculating the variation in trajectory 

associated with a variation in initial condition.  Given the control problem in the previous 

section, let ( )u t , 0 ft t t≤ ≤ , be some arbitrary admissible control function and let ( )x t , 

0 ft t t≤ ≤ , represent the corresponding solution to equation (4.1.1) with the initial 

condition ( )0x t . 

 

Further let ( )y t , 0 ft t t≤ ≤ , represent another solution to equation (4.1.1) using the same 

control function ( )u t , 0 ft t t≤ ≤ , only starting at the initial condition defined by 

 ( ) ( ) ( ) ( )0 0 0y t x t t oε ξ ε= + ⋅ +  (4.1.6) 
 

Define ( )x tδ  to be a vector not dependent on ε  that is the solution of the differential 

equation 

 
( )( ) ( ) ( )( ) ( )

, ,d x t f x t u t t
x t

dt x
δ

δ
∂

= ⋅
∂

 (4.1.7) 

 
with the initial condition: 

 ( ) ( )0 0x t tδ ξ=  (4.1.8) 
 

Now, let ( )
0

x tξδ  be the solution of equation (4.1.7) with initial condition 0ξ , and let 

( )
0

x tξδ  be bounded for all ( )
0

x tξδ , 0 ft t t≤ ≤ .  Next let ( )0,t tΦ  be the state transition 

matrix for the differential equation (4.1.7).  Thus,  

 ( ) ( ) ( )
0 00 0,x t t t x tξ ξδ δ= Φ ⋅  (4.1.9) 
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Using the work in Appendix A, the variation in trajectory associated with a variation in 

initial condition can be calculated as  

 ( ) ( ) ( ) ( ) ( )( ) ( )0 0 0,y t x t t t y t x t o ε− = Φ ⋅ − +  (4.1.10) 
 

Now that the variation in initial condition has been developed, a needle variation in 

control will be calculated and the equation describing the variation in trajectory will be 

given. 

 

A needle variation in control is a control function that is defined with respect to a 

reference control, where over a finite number of small time intervals, the value of the 

control jumps from the reference value to some other value in the control space.  Since 

the control instantaneously changes value, a discontinuity in the control is produced.  

This variation in control makes the PMP’s necessary conditions more general than the 

conditions derived from the classical Calculus of Variations arguments, since the 

Calculus of Variations necessary conditions only analyze smooth variations in control 

[6]. 

 

Let ( )u t  be an admissible control function defined on the interval 0 ft t t≤ ≤ .  Now pick 

specific instants of time ( )1 2 s 0, , , ,  , ft t t t tτ ∈… , where s  is finite, which are regular 

points for ( )u t , and satisfy the inequality: 

 0 1 2 s ft t t t tτ< ≤ ≤ ≤ ≤ <…  (4.1.11) 
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the time τ  is associated with a special variation, so is spelled out specifically in equation 

(4.1.11) for future use.  

 

Now, pick an arbitrary tδ ∈\ , an arbitrary set of non-negative real numbers 

[ ]1 2, , , st t tδ δ δ ∈… \ , and an arbitrary set of admissible control values iv U∈ , 1i s= …  

and define for i , 1i s= … , lengths, il , as 

 
( )

( )
( ) ( )1 1

,  
,  

,  

i s i

i i s i s

i j i i j j

t t t t
l t t t t

t t t t t t j s

δ δ δ τ
δ δ τ

δ δ + +

⎧ − + + =
⎪⎪= − + + = <⎨
⎪− + + = = = < <⎪⎩

…
…

… …

 (4.1.12) 

 

Next, define the s  open half intervals, 1 2,  , sI I I…  as 

 ( ){ }:i i i i i iI t t l t t l tε ε δ= + < ≤ + +  (4.1.13) 
 

Equation (4.1.13) is going to be used to define a finite set of time intervals over which a 

variation in control is applied.   

 

In order to understand the definition of the length il  and interval iI , three examples will 

be given.  For all three assume that 3s = .  First pick the following distinct times  

 0 1 2 3 ft t t t tτ< < < < <  (4.1.14) 
 

Since 3s =  and the times 1t , 2t , and 3t  are distinct, the lengths il  and time intervals are 

as follows: 

1. For 1i = , the third equation in equation (4.1.12) is used, 1i j= =  and  
 { }1 1 1 1 1 1,  :l t I t t t t tδ ε δ= − = − ⋅ < ≤  (4.1.15) 
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2. For 2i = , the third equation in equation (4.1.12) is used, 2i j= =  and  
 { }2 2 2 2 2 2,  :l t I t t t t tδ ε δ= − = − ⋅ < ≤  (4.1.16) 

3. For 3i = , the second equation in equation (4.1.12) is used, and  
 { }3 3 3 3 3 3,  :l t I t t t t tδ ε δ= − = − ⋅ < ≤  (4.1.17) 
 
Now pick the following non-distinct times to define the intervals iI ,  

 0 1 2 3 ft t t t tτ< = < < <  (4.1.18) 
 

Since 3s = , the times 1t  and 2t  are non-distinct and 3t  and τ  are distinct, the lengths il  

and time intervals are as follows: 

1. For 1i = , the third equation in equation (4.1.12) is used, 1i = , 2j =  and  
 ( ){ }1 1 2 1 1 1 2 1 2,  :l t t I t t t t t t tδ δ ε δ δ ε δ= − − = − ⋅ + < ≤ − ⋅  (4.1.19) 

2. For 2i = , the third equation in equation (4.1.12) is used, 2i j= =  and  
 { } { }2 2 2 2 2 2 1 2 1,  : :l t I t t t t t t t t t tδ ε δ ε δ= − = − ⋅ < ≤ = − ⋅ < ≤  (4.1.20) 

3. For 3i = , the second equation in equation (4.1.12) is used, and  
 { }3 3 3 3 3 3,  :l t I t t t t tδ ε δ= − = − ⋅ < ≤  (4.1.21) 
 

Finally, pick the following non-distinct times to define the intervals iI ,  

 0 1 2 3 ft t t t tτ< = < = <  (4.1.22) 
 

Since 3s = , the times 1t  and 2t  are non-distinct and the times 3t  and τ  are non-distinct, 

the lengths il  and time intervals are as follows: 

1. For 1i = , the third equation in equation (4.1.12) is used, 1i = , 2j =  and  
 ( ){ }1 1 2 1 1 1 2 1 2,  :l t t I t t t t t t tδ δ ε δ δ ε δ= − − = − ⋅ + < ≤ − ⋅  (4.1.23) 

2. For 2i = , the third equation in equation (4.1.12) is used, 2i j= =  and  
 { } { }2 2 2 2 2 2 1 2 1,  : :l t I t t t t t t t t t tδ ε δ ε δ= − = − ⋅ < ≤ = − ⋅ < ≤  (4.1.24) 

3. For 3i = , the first equation in equation (4.1.12) is used, and  

 ( ){ }
( ){ }

3 3

3 3 3 3

3

,  

:

                                               :

l t t

I t t t t t t t

t t t t t

δ δ

ε δ δ ε δ

τ ε δ δ τ ε δ

= −

= + ⋅ − < ≤ + ⋅

= + ⋅ − < ≤ + ⋅

 (4.1.25) 
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Note that if all of the it  are distinct, then each it  represents the right hand endpoint of the 

interval iI and if ε  is small enough, then all of the intervals iI  are mutually disjoint.  If 

1 1i i j jt t t t+ += = = <… , then the intervals 1,  ,  ,  i i jI I I+ …  all border one another and the 

right endpoint of 
j

k
k i

I
=
∪  is it .  

 

Now the needle variation in control can be defined.   

 

Definition 4.1.3 Needle Variation of Control [55] 

Pick a set of s  times that satisfy equation (4.1.11) and let { }1 2, , , sv v v v= …  be a set of 

values iv  such that iv U∈ , for all 1, 2, ,i s= …  and define a control function, ( )u t  for 

0 ft t t≤ < , as a reference control.  Then a needle variation in control is a control function, 

( )*u t , defined over the time interval 0t t tτ εδ≤ ≤ +  which has the following form 

 ( ) ( )* ,  
,  

i

i i

u t t I
u t

v t I
⎧ ∉

= ⎨
∈⎩

 (4.1.26) 

 

for all 1i s= … . 

 

Note for small enough ε , the control defined by equation (4.1.26) is admissible, and 

hence is a permissible control for the system.  
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Now using Definition 4.1.3 and the definitions in Appendix A, the variation in trajectory 

can be calculated.  Let ( )0x t  be the initial condition of the reference trajectory, ( )x t , 

defined by the admissible control, ( )u t , and dynamic equation  

 ( ) ( ), ,x t f x u t=�  (4.1.27) 
 

defined over the time interval 0 ft t t≤ ≤ . 

 

Furthermore, let ( )*
0x t  be the initial condition, parameterized by 0ξ , for the perturbed 

trajectory ( )*x t  associated with the new control, ( )*u t ,  which is a needle variation of 

the reference control, and the dynamics given in equation (4.1.27), defined over the time 

interval 0t t tτ ε δ≤ ≤ + ⋅ .   

 

The trajectories ( )x t  and ( )*x t  are solutions to equation (4.1.27) under their respective 

initial conditions and controls and can be written as  

 
( ) ( ) ( )

( ) ( ) ( )
0

0

0

* * * *
0

, ,

, ,

t

t

t

t

x t x t f x u t dt

x t x t f x u t dt

= + ⋅

= + ⋅

∫

∫
 (4.1.28) 

 

The work in Appendix A can be used to calculate the value of the trajectory under the 

various types of variation and will be summarized here.  Three possible situations exist 

and are 

1. When ( ) ( )*u t u t=  for the interval of time 1 2t t t≤ ≤ , which is not an interval of 

size tε δ⋅ , ( )*x t  can be represented as ( ) ( ) ( ) ( ) ( )*
1 1,x t x t t t t oε ξ ε= + ⋅Φ ⋅ + , 
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where ( )1tξ  is a vector representing a variation in initial condition and ( )1,t tΦ  is 

the state transition matrix describing ( )x tδ . 

2. When ( ) ( )*u t u t=  for the interval of time t tτ τ εδ≤ ≤ + , then: 

 
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

* * , ,

, ,

x t x f x u t o

x t x f x u t o

τ εδ τ ε τ τ τ δ ε

τ εδ τ ε τ τ τ δ ε

+ = + ⋅ ⋅ +

+ = + ⋅ ⋅ +
 (4.1.29) 

3. When ( )*
iu t v=  for the interval of time ( )i i i i it l t t l tε ε δ+ ⋅ ≤ ≤ + ⋅ + , then: 

 ( )( ) ( ) ( )( )( ) ( )* * , ,i i i i i i i i ix t l t x t l t f x t v t oε δ ε ε δ ε+ ⋅ + = + ⋅ + ⋅ ⋅ +  (4.1.30) 

 
Note that the three cases given above can be pieced together to derive a general equation 

for ( )*x tτ εδ+ , associated with temporal variations of the trajectory, spatial variations in 

the initial condition of the trajectory, and needle variations of the reference control.  Let 

( )0 0tξ ξ=  and assume that ( )*u t  is a needle variation of the reference control, then 

  ( ) ( ) ( ) ( ) ( ) ( )*
0 0,x t x t t x oτ εδ τ ε τ ξ ε τ ε+ = + ⋅Φ ⋅ + ⋅ ++  (4.1.31) 

 
where: 

 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1

, ,

                            , , , , ,
s

i i i i i i i i
i

x f x u t

t f x t v t f x t u t t t

τ τ τ τ δ

τ δ
=

= ⋅

⎡ ⎤+ Φ ⋅ − ⋅⎣ ⎦∑

+
 (4.1.32) 

 
Equation (4.1.31) is a very important equation and provides the backbone for the proof of 

the maximum principle because as long as every needle variation, spatial variation and 

temporal variation provides an increase in the cost function, then ( )x t  must be the 

optimal (state) trajectory and ( )u t  the optimal control.   

 

[55] (pg. 89) uses an induction argument to prove that equations (4.1.31) and (4.1.32) 

provide the first order approximation to ( )*x tτ εδ+  for any finite number of needle 

variations of control, and the interested reader is referred there for the complete proof. 
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Cone of Attainability and Necessary Conditions  
 

Now that a formula has been derived for the variation in the reference trajectory 

associated with variations in control, space, and time, it can be used to show that the 

resultant state trajectory and cost lie in a convex cone whose apex lies on the reference 

trajectory, called the cone of attainability. 

 

Now, the x+  term in equation (4.1.32) can be thought of as a bounded vector that 

originates from the point ( )x τ  on the reference trajectory.  For a fixed τ , all possible 

variation vectors x+  will fill out a set Kτ  in Xτ , where Xτ  is a subspace of  n\  and Kτ  

is a convex cone with origin at ( )x τ , called the cone of attainability.   

 

It is the assumption that the reference trajectory is optimal and the properties of the cone 

of attainability that provide the necessary conditions of the PMP.  [55] proves that for any 

regular point, ( )x t , along the reference trajectory, with a curve that starts at ( )x t  and a 

tangent vector that is completely contained in the cone of attainability, there exists an 

admissible needle variation in the reference control whose trajectory, with initial 

condition ( )0x t , intersects that curve.  Figure 4.1 depicts a curve Λ  emanating from the 

regular point ( )x τ  that has a tangent vector L  completely contained in the cone of 

attainability Kτ .   
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L Λ  
Kτ  

( )x τ  

( )*x τ  

 

Figure 4.1: Geometric depiction of the Cone of Attainability. 

 

Finally, [55] uses the geometric concepts in Appendix B to prove that since the vector of 

improved cost is not contained in the cone of attainability, a plane exists that passes 

through ( )x τ  and separates the vector of improved cost from the cone of attainability.  It 

is the properties of this plane and the system adjoint to the variation in trajectory which 

form the basis for the necessary conditions. 

4.2 Smooth Sufficient Condition for Optimality  

The PMP only provides necessary conditions for finding the optimal solution of a control 

problem.  A complete theory of optimal control needs methods to distinguish those 

controls that are truly optimal from those that satisfy the necessary conditions but are not 

optimal.  Sufficient conditions are one way to do this. 

 

The problem of finding sufficient conditions satisfied by an optimal solution is classical.  

Well known sufficient conditions are associated with the names Hamilton, Jacobi, 

Caratheodory, and Bellman.  Bellman called the technique he developed Dynamic 

Programming. 
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In this section, the sufficient conditions for a control to be optimal for a very restrictive 

class of problems will be developed. 

 

The sufficient conditions are based on the Hamilton-Jacobi-Caratheodory-Bellman 

(HJCB) partial differential equation (PDE).  The HJCB PDE is an equation that provides 

conditions on the optimal control that are dependent upon the differentiability with 

respect to the state of the optimal cost-to-go from the current state to the final state.  What 

makes this theory restrictive is that the optimal cost-to-go function must be differentiable 

along the reference trajectory, which is often not the case.   

 

4.2.1 Sufficient Conditions for Differentiable Value Functions 

The purpose of this section is to develop the HJCB PDE and a sufficient condition for a 

candidate control to be optimal.  This development comes from [6] (Section 5-18 to 

Section 5-20) and provides a fundamental formulation of the material. 

 

First the control problem will be given and the cost-to-go function will be defined.  Then 

the HJCB PDE will be developed and finally the sufficient condition given. 

 

4.2.2 Control Problem 

Let the control problem be the one presented in the PMP section on pages 54-55 with the 

dynamic constraints given in equation (4.1.1), cost function given in equation (4.1.2), and 

the following additional assumptions 
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1. f  is continuous in x  and measurable, in the sense of Lebesgue, in u  and t  

2. Let the final state ( )( ),f fx t t S∈ , where S  is a smooth manifold in n ×\ \  

3. L  and L
x
∂
∂

 are given and continuous on the direct product n U×\ , where U  is 

the closure of U . 

 

In order to develop the sufficient condition, this control problem will be embedded into a 

larger control problem.  Find the feedback control ( )( ),u x t t , 0 ft t t≤ ≤ , for all ( )x t  such 

that ( )( ),f fx t t S∈  the cost function  

 ( ) ( )( ) ( ), , , ,ft

f t
J x t u t t L x u dτ τ τ− = ⋅∫  (4.2.1) 

 

is minimized for all 0 ft t t≤ ≤ , where ( )x t  is the initial state, ( )u τ , ft tτ≤ ≤ , is the 

control  that transfers the state from ( )x t  to ( )( ),f fx t t S∈ , and ft t−  is the time to go.  

Note that the larger problem defined for derivation of the sufficient conditions is an 

embedding of all possible optimal control problems that satisfy the problem constraints, 

so the general solution will result in an optimal closed-loop feedback control function for 

the system. 

 

4.2.3 Sufficient Condition 

The purpose of this section is to derive the sufficient condition using the Hamilton-

Jacobi-Caratheodory-Bellman partial differential equation.  Define ( )( ),u x t t , for all t  
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such that 0 ft t t≤ ≤ ,  as the feedback control that transfers the state from initial condition 

( )( ),x t t X∈  to ( )( ),f fx t t S∈ .  For every time 1t  such that 1 ft t t≤ ≤ , denote the value 

of the control at time 1t  by ( )1u t  and the trajectory by ( )1x t .  

 

Definition 4.2.1 [6] 

Let ( )u τ , 0 ft tτ≤ ≤ , be an admissible control that transfers the state from ( )0x t  to the 

final set S  along the trajectory ( )x τ , 0 ft tτ≤ ≤ .  Then the cost-to-go function will be 

defined as the function  

 ( )( ) ( ) ( )( ), , ,ft

c f t
J x t t t L x u dτ τ τ τ− = ⋅∫  (4.2.2) 

where  ( )( ),c fJ x t t t−  is a differentiable function defined on a region n∑⊂ ×\ \ such 

that ( )( ),x t t ∈∑ . 

 

Note that the cost-to-go function can be written in the shorthand notation (the 

dependency of cJ  on u  has been dropped) because the control has now been defined in 

terms of the state variable.   

 

Because of the differentiability assumption, equation (4.2.2) can be differentiated 

resulting in  

 
( )( ) ( )( ), ,

, , ,1, 0c f c fJ x t t t J x t t t
H x u t

x t

⎛ ⎞∂ − ∂ −
− − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (4.2.3) 
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where H  is the Hamiltonian given by  

 

( )( )

( )( ) ( ) ( )

,
, , ,1,

,
                                , , , , ,

c f

c f

J x t t t
H x u t

x

J x t t t
f x u t L x u t

x

⎛ ⎞∂ −
⎜ ⎟−
⎜ ⎟∂⎝ ⎠

∂ −
= − −

∂

 (4.2.4) 

 

and 0 1λ =  without loss of generality. 

 

Now the following Caratheodory lemma gives properties of the control that produces the 

minimum cost-to-go to the target set, S , for all trajectories that lie in the subset X . 

 

Lemma 4.2.2, Caratheodory [6] 

Suppose that for each point ( ),x t  in nX ⊆ ×\ \ , a function ( ), ,G x tω  has, as a function 

of ω , zero as its unique absolute minimum with respect to all ω  in U  at ( ),ou x tω = , 

hence that  

 ( )( ) ( )0 , , , , ,oG x u x t t G x tω= <  (4.2.5) 
 

for all Uω∈ , such that ( )0 ,u x tω ≠ .  Furthermore, let û  be an admissible control such 

that: 

1. ( )( )0 0ˆ ,u x t t  transfers ( )0 0,x t  to ( )( ),f fx t t S∈  

2. if ( )x̂ t  is the trajectory corresponding to ( )û τ , then for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , 

( )( )ˆ ,x t t X∈ . 

3. for all )0 , ft tτ ⎡∈ ⎣ , ( )û τ  satisfies the relation ( ) ( )ˆ ˆ,ou u xτ τ= . 
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Then ( )û τ  is an optimal control relative to the set of controls u  that generate trajectories 

lying entirely in X , and the cost ( ) ( )( )ˆ ˆ, , fJ x t u t tτ −  is zero for [ )0 1,t t t∈ . 

 

The Caratheodory Lemma says that for all admissible controls that transfer the state from 

( )0 0,x t  to S  over the interval 0 ft t t≤ ≤ , such that ( )( ),x t t X∈ , the control ( )û τ  is 

optimal.  Note that ( )û τ  may not be the absolute minimum control, because a control 

may exist that produces a trajectory that leaves X , returns to X , hits the target set S , 

and still produces a cost that is lower than ( ) ( )( )ˆ ˆ, , fJ x t u t tτ − .  As such the theorem 

only produces a local result. 

 

Now the Hamiltonian will be used to define the H-Maximal control. 

 

Definition 4.2.3 H-Maximal Control [6] 

Let the Hamiltonian be defined in its usual sense  

 ( ) ( ) ( )0, , , , , , , ,H x u t f x u t L x u tλ λ λ= − ⋅  (4.2.6) 
 

If for each point ( ),x t X∈  the function ( ), , ,H x tλ ω  has, as a function of ω , a unique 

absolute maximum with respect to all Uω∈  at ( ), ,u x tω λ= � , then H  is normal relative 

to X  and ( ), ,u x tλ�  is the H-maximal control.   

 

Note that this definition differs slightly from that given in [6].  [6] defines the 

Hamiltonian as  
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 ( ) ( ) ( )0, , , , , , , ,H x u t f x u t L x u tλ λ λ= + ⋅  (4.2.7) 
 

and as such minimizes the Hamiltonian instead of maximizing it.  Since it is desirable to 

use similar notation as that in the development of the Maximum Principle, equation 

(4.2.6) will be used to define the Hamiltonian and the sufficient condition. 

 

Now that the H-maximal control has been defined, the HJCB PDE can be given. 

 

Definition 4.2.4 HJCB [6] 

If H  is normal relative to X  and ( ) ( )ˆ , ,u t u x tλ= �  is the H-maximal control relative to 

X , then the HJCB is  

 
( )( ) ( )( )ˆ ˆˆ ˆ, ,

ˆ ˆ, , ,1, 0c f c fJ x t t t J x t t t
H x u t

x t

⎛ ⎞∂ − ∂ −
− − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (4.2.8) 

 

where  

 ( )( )ˆ ˆ , 0c fJ x t t t− =  (4.2.9) 

for all ( )ˆ,x t S∈ . 

 

Now a theorem similar to the previous Lemma can be given which provides the smooth 

sufficient condition. 

 

Theorem 4.2.5, Local Sufficient [6] 
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Let H be normal relative to X  and ( ), ,u x tλ�  be the corresponding H-maximal control 

relative to X , see Definition 4.2.3.  Further let û  be an admissible control such that: 

1. û  transfers ( )0 0,x t  to ( )( ),f fx t t S∈  

2. if ( )x̂ t  is the trajectory corresponding to ( )û τ , then for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , 

( )( )ˆ ,x t t X∈ . 

3. there is a solution ( )( )ˆ ,c fJ x t t t−  of the HJCB such that ( )( )ˆ , 0c fJ x t t t− =  for 

all ( )ˆ,x t S∈  and for all )0 , ft t t⎡∈ ⎣ , ( ) ( )
( )( )ˆ ˆ ,

ˆ ˆ , ,c fJ x t t t
u t u x t t

x

⎛ ⎞∂ −
= −⎜ ⎟⎜ ⎟∂⎝ ⎠
� . 

 

Then ( )û τ  is an optimal control relative to the set of controls u U∈  that generate 

trajectories lying entirely in X , and for all )0 , ft t t⎡∈ ⎣  

 ( ) ( )( ) ( )( )ˆˆ ˆ ˆ, , ,f c fJ x t u t t J x t t tτ − = −  (4.2.10) 
 

The proof of the theorem follows from definition of the Hamiltonian and Lemma 4.2.2 by 

letting  

 ( )
( )( ) ( )( ), ,

, , , , ,1,c f c fJ x t t t J x t t t
G x t H x t

x t
ω ω

⎛ ⎞∂ − ∂ −
= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (4.2.11) 

 

and when ( ) ( )ˆ,ou x t u t=   

 ( )( ) ( )( ) ( )( )ˆ ˆˆ ˆ, ,
ˆ ˆ, , , , , ,1,c f c fo J x t t t J x t t t

G x u x t t H x u t
x t

⎛ ⎞∂ − ∂ −
= − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (4.2.12) 

 

The result of this theorem is that if a candidate control exists that satisfies conditions 1-3 

of the Theorem 4.2.5, then the control is optimal with respect to controls that produce 
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trajectories contained in X  and the cost-to-go function associated with the candidate 

control equals the cost-to-go function associated with the optimal control.  Since this 

method only compares trajectories that lie within a specific region of the state-space, it 

only provides a local optimal control solution.  If the region X  can be expanded to the 

entire state-space, then it will provide a global optimal control solution.  Note that if 

1X X⊂  and the trajectory 1x̂ X∈  is the optimal trajectory defined by the optimal control 

û  relative to X , then û  is the optimal control relative to 1X  as well.  Obviously, the 

converse statement violates the conditions of the Caratheodory Lemma, so the optimal 

control may not be optimal with respect to a larger set X . 

4.3 Bardi Non-Smooth Necessary and Sufficient Conditions 

The purpose of this section is to generalize the concepts found in the previous section to a 

much larger and more useful class of optimal control problems.  It removes many of the 

restrictive assumptions and uses abstract mathematical methods to develop sufficient 

conditions for optimality of the candidate control.  Furthermore, the theory is general 

enough that necessary conditions are given as well, providing a complete set of necessary 

and sufficient conditions for optimality of control for a large class of optimal control 

problems. 

 

As in the previous section, the sufficient conditions are developed from the HJCB PDE.  

The main difference between the previous work and the work in this section is that the 

assumption on the differentiability of the optimal cost-to-go function is relaxed.  The 
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previous work assumed the optimal cost-to-go function was differentiable in a 

neighborhood around and along the reference trajectory while the work in this section 

allows the optimal cost-to-go function to have a finite number of points where it is not 

differentiable.   

 

4.3.1 Non-Smooth HJCB 

The sufficient conditions in the last section can be extended to problems where the first 

and second partial derivatives of the optimal cost-to-go function sometimes fail to exist.  

Under assumptions of continuity (which also can be relaxed), problems with non-smooth 

optimal cost-to-go functions do satisfy the HJCB equation and have the same equivalence 

to the adjoint.  The theory required to prove these results is based on the theory of 

viscosity solutions to partial differential equations [7] which will be briefly introduced in 

this section.   

 

This section is outlined as follows:  first a simple example will be given that 

demonstrates the non-smoothness of the optimal cost-go-function, then the viscosity 

solution theory will be presented and then the HJCB and the necessary and sufficient 

conditions will be developed for systems with dynamics and cost functions that do not 

explicitly depend on time.  The assumption that the system doesn’t depend explicitly on 

time is not that restrictive because it will be shown that systems that satisfy the 

assumptions in Chapter 3 and depend explicitly on time can be transformed into a system 

that is independent of time. 
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4.3.2 Example 

A very simple example which demonstrates the non-smoothness of the cost-to-go 

function is the minimum time to the origin problem for the double integrator, presented in 

[6].  The optimal control problem is a free time, fixed endpoint problem that minimizes 

the time, ft , to the origin from any initial state ( ) 2
0x t ∈\ , with the dynamic constraints 

 ( ) ( ) ( )
0 1 0
0 0 1

x t x t u t⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�  (4.3.1) 

  

and the admissible control set ( ) [ ]1,1u t ∈ − . 

The cost function for this problem is  

 
( )

( ) ( )
0

0

1ft

t

f

J u dt

J u t t

= ⋅

= −

∫  (4.3.2) 

 

This problem is a standard optimal control problem that is used to demonstrate the 

usefulness of the PMP. 

 

The optimal control solution is bang-bang; the optimal control satisfies the following 

feedback control law  

 ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
1 2 2 1 2 2

2
1 2 2 1 2 2

1 11,  , 0 
2 2

1 11,  , 0 
2 2

x t x t x t x t x t x t
u t

x t x t x t x t x t x t

⎧ ⎡ ⎤< − ∧ = ≤⎪ ⎢ ⎥⎪ ⎣ ⎦= ⎨
⎡ ⎤⎪− > ∧ = − ≥⎢ ⎥⎪ ⎣ ⎦⎩

 (4.3.3) 

 

where ∧  is the “and” operator, see [6] for derivation. 
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The cost-to-go to the origin can be computed for this problem given the feedback control 

law, equation (4.3.3), and the initial condition ( )0x t .  Let ( ) 2
0x t ∈\  be the initial state 

for the problem and the control given by equation (4.3.3), the time to go to the origin 

from the initial state is  

 ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 0 1 0 2 0 1 0 2 0 2 0

2
0 2 0 1 0 2 0 1 0 2 0 2 0

2 0 1 0 2 0 2 0

14 2 ,  
2

14 2 ,  
2

1,  
2

f

x t x t x t x t x t x t

t x t x t x t x t x t x t x t

x t x t x t x t

⎧ + + > −⎪
⎪
⎪= − + − + < −⎨
⎪
⎪ = −⎪⎩

 (4.3.4) 

 

Note that equation (4.3.4) is the value of optimal cost-to-go function, ( )( )0 0
ˆ ˆ ,cJ x t t , in the 

field of extremal trajectories defined by the control law given in equation (4.3.3). 

 

Now from equation (4.3.4), the cost function ( )( )0 0
ˆ ˆ ,cJ x t t  is continuous, but is not 

differentiable for 1x  and 2x  lying on the trajectory ( ) ( ) ( )1 2 2
1
2

x t x t x t= −  and hence the 

HJCB results given in the previous section do not apply because 
( )( )0 0

ˆ ˆ ,cJ x t t
x

∂

∂
 doesn’t 

exist along the entire optimal trajectory. 

 

4.3.3 Viscosity Solutions 

The purpose of this section is to introduce continuous viscosity solutions of partial 

differential equations, specifically Hamilton-Jacobi equations, and their associated 

properties.  The definitions and properties of viscosity solutions of partial differential 



 

 79  

equations will be presented here without proof.  These results with proof can be found in 

[7][32][49].  

 

Let F  be a Hamilton-Jacobi equation that is a real-valued continuous Hamiltonian 

function on nΩ× ×\ \  of the form  

 ( ) ( )( ) ( ) ( )( ), , ,
u x

F x u x Du x H x Du x
t

∂
= +

∂
 (4.3.5) 

 

satisfying  

 ( ) ( )( ), , 0F x u x Du x =  (4.3.6) 
 

where x∈Ω , D  is the gradient function, Ω  is an open domain of \  and H  is a 

Hamiltonian function. 

 

The Hamiltonian function used in optimal control theory is a more general version of the 

function developed by Hamilton in classical mechanics.  The Hamiltonian function 

provides a convenient form to embody the optimal control problem while allowing for 

the necessary conditions to be written in a more compact form.  The interested reader is 

referred to [69] for a historical perspective of optimal control and the relationship 

between the control Hamiltonian and the Hamiltonian used in classical mechanics. 

 

Now a viscosity solution will be defined. 
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Definition 4.3.1 [7] 

1. A function ( )u C∈ Ω  is a viscosity sub-solution of equation (4.3.6), if for any 

( )1Cϕ ∈ Ω , ( ) ( )( )0 0 0, , 0F x u x D xϕ ≤ , at any local maximum point 0x ∈Ω  of 
u ϕ− . 

2. A function ( )u C∈ Ω  is a viscosity super-solution of equation (4.3.6), if for any 

( )1Cϕ ∈ Ω , ( ) ( )( )1 1 1, , 0F x u x D xϕ ≥ , at any local minimum point 1x ∈Ω  of 
u ϕ− . 

3. u  is a viscosity solution of equation (4.3.6) if it is a viscosity sub-solution and 
super-solution. 

 

For example, see [7], the function ( )u x x=  is a viscosity solution to the equation  

 ( ) 1 0
du x

dx
− + =  (4.3.7) 

 

for ] [1,1x∈ − .   
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Figure 4.2: Plot of the function u(x) for the viscosity solution example. 

 

Figure 4.2 is graphical representation of the function ( )u x .  Note that for any 0x ≠ , 

where ] [1,1x∈ − , ( )u x  is differentiable with respect to x , so ( ) ( )d x du x
dx dx
ϕ

=  is true 

and it is easy to see that the definition of viscosity super-solution and sub-solution are 

satisfied, so ( )u x  is a viscosity solution of equation (4.3.7).  When 0x = , ( )u x  is not 

differentiable, and the definitions of the super-solution and sub-solution are required.   

 

In order for ( )u x x=  to be a viscosity super-solution of (4.3.7) it must be true that  
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 ( )0
1 0

d
dx
ϕ

− + ≥  (4.3.8) 

 

or equivalently  

 ( )0
1 1

d
dx
ϕ

− ≤ ≤  (4.3.9) 

 

for any ( )xϕ  such that ( ) ( )u x xϕ−  has a local minimum at 0x = .  There are many 

( )xϕ  satisfying equation (4.3.9), for example  

 ( )
2

2
xxϕ =  (4.3.10) 

 

Furthermore, in order for ( )u x x=  to be a viscosity sub-solution of (4.3.7) it must be 

true that  

 ( )0
1 0

d
dx
ϕ

− + ≤  (4.3.11) 

 

or equivalently  

 ( )0
1 1

d
dx
ϕ

− ≥ ≥  (4.3.12) 

 

for any ( )xϕ  such that ( ) ( )u x xϕ−  has a local maximum at 0x = .  Obviously, a ( )xϕ  

does not exist that satisfies equation (4.3.11) and condition (1) of Definition 4.2.1 is 

satisfied and ( )u x  is a viscosity sub-solution and viscosity solution of equation (4.3.7). 
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Viscosity solutions can also be defined in terms of a sub-differential and super-

differential.  Let the following sets be associated with a function ( )u C∈ Ω  and x∈Ω  

1. The set ( ) ( ) ( )
,

,
: : lim  sup 0n

y x y

u y u x p y x
D u x p

x y
+

→ ∈Ω

⎧ ⎫− − −⎪ ⎪= ∈ ≤⎨ ⎬−⎪ ⎪⎩ ⎭
\  is the super-

differential of u  at x  

2. The set ( ) ( ) ( )
,

,
: : lim  inf 0n

y x y

u y u x p y x
D u x p

x y
−

→ ∈Ω

⎧ ⎫− − −⎪ ⎪= ∈ ≥⎨ ⎬−⎪ ⎪⎩ ⎭
\  is the sub-

differential of u  at x  
 

The relationship between the super-differential/sub-differential and the viscosity super-

solution/sub-solution can now be presented. 

 

Lemma 4.3.2 [7]   

Let ( )u C∈ Ω , then 

1. ( )p D u x+∈  if and only if there exists a function ( )1Cϕ ∈ Ω  such that 

( )D x pϕ =  and u ϕ−  has a local maximum at x  

2. ( )p D u x−∈  if and only if there exists a function ( )1Cϕ ∈ Ω  such that 

( )D x pϕ =  and u ϕ−  has a local minimum at x  
 

The following example is given to provide a geometric interpretation of Lemma 4.3.2.  

Figure 4.3 depicts a piecewise linear continuous function ( )u x , that is not differentiable 

at the point 0x .  Let ( )xϕ  be any function that is differentiable at 0x  and is a local 

minimum of ( ) ( )0 0u x xϕ− .  Then Lemma 4.3.2 says that all vectors ( )0D x pϕ =  are 

elements of the sub-differential of the function ( )0u x .  Figure 4.3 depicts four functions 



 

 84  

( )xϕ  that satisfy the conditions of the Lemma.  Using these four functions it is easy to 

see that the vector p  is constrained to the following set  

 ( ) ( )
0 0x x

u x u x
p

x x

− +
∂ ∂

≤ ≤
∂ ∂

 (4.3.13) 

 

where the +  and −  notation refer to the right side and left side derivates respectively.  

Further from Figure 4.3 one can see that a function ( )xϕ  does not exist such 

( ) ( )0 0u x xϕ−  has a local maximum at 0x , so the super-differential is empty at 0x . 

 

 

( )u x  

x  

( )0u x  

0x  

 

Figure 4.3: Graphical representation of the sub-differential in Lemma 4.3.2 

 

Note that if the function ( )u x  is concave instead of convex, the sub-differential will be 

empty and the vector p  is an element of the super-differential and is constrained by  
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 ( ) ( )
0 0x x

u x u x
p

x x

+ −
∂ ∂

≤ ≤
∂ ∂

 (4.3.14) 

 

Lemma 4.3.2 can now be used to develop a new definition of viscosity solution that is 

equivalent to Definition 4.3.1. 

 

Definition 4.3.3 [7] 

1. A function ( )u C∈ Ω  is a viscosity sub-solution of equation (4.3.6), if for all 

x∈Ω  and ( )p D u x+∈ , ( )( )0 0, , 0F x u x p ≤ . 

2. A function ( )u C∈ Ω  is a viscosity super-solution of equation (4.3.6), if for all 

x∈Ω  and ( )p D u x−∈ , ( )( )0 0, , 0F x u x p ≥ . 
3. u  is a viscosity solution of equation (4.3.6) if it is a viscosity sub-solution and 

super-solution. 
 

The next lemma gives properties of the sub- and super-differentials. 

 

Lemma 4.3.4 [7] 

Let ( )u C∈ Ω  and x∈Ω , then 

1. ( )D u x+  and ( )D u x−  are closed convex (possible empty) subsets of n\  

2. if u  is differentiable at x , then ( ) ( ) ( )Du x D u x D u x+ −= =  

3. if for some x  both ( )D u x+  and ( )D u x−  are nonempty, then 

( ) ( ) ( )D u x D u x Du x+ −= =  

4. the sets ( ){ }:A x D u x+ += ∈Ω ≠ ∅  and ( ){ }:A x D u x− −= ∈Ω ≠ ∅  are dense 
 

Finally, the previous lemmas and properties can be used to develop a result concerning 

the differentiability of viscosity solutions. 
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Proposition 4.3.5 [7]  

1. If ( )u C∈ Ω  is a viscosity solution of equation (4.3.6), then 

( ) ( )( ), , 0F x u x Dx u =  at any point x∈Ω  where u is differentiable 
2. if u  is locally Lipschitz continuous and is a viscosity solution of equation (4.3.6), 

then ( ) ( )( ), , 0F x u x Dx u =  almost everywhere in Ω . 
 

4.3.4 Control Problem and Associated Assumptions 

The purpose of this section is to present the optimal control problem and it’s associated 

assumptions. 

 

As before, let : n nf U× × →\ \ \ , mU ⊆ \ , be a function that describes the dynamics for 

the control system and satisfies the assumptions given in Chapter 3, pg. 46-47  

 ( ) ( ) ( )( ), ,x t f x t u t t=�  (4.3.15) 
 

which is defined over the interval of time, 0 ft t t≤ ≤ , where ( ) nx t ∈\  is the state 

trajectory and ( )u t U∈  is an admissible control.  

 

For the interval of time ft tτ≤ ≤ , let there exist a real-valued function J  that describes 

the cost associated with transferring the state from the initial value ( )x t  to the final value 

( )fx t , using the admissible control ( )u τ , defined as   

 ( )( ) ( ) ( )( ) ( )( ), , , , ,ft

f f ft
J x t u t t L x u d g x t tτ τ τ τ− = +∫  (4.3.16) 
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where ( )x t  is the initial state, u  describes an admissible control function ( )u Uτ ∈ , 

ft tτ≤ ≤ , ( )x τ , ft tτ≤ ≤ , is the trajectory that represents the solution of equation 

(4.3.15), and ft t−  is the interval of time over which the trajectory transitions from its 

initial state to final state, and L  satisfies the assumptions given in Chapter 3, pg. 50.  

Furthermore, let the terminal cost g also satisfy the assumptions given in Chapter 3, pg. 

50. 

 

Note that the cost function and dynamic constraints are written in non-autonomous form 

[7].  The continuity assumptions of Chapter 3, pg 46-47, allow the non-autonomous 

equations to be written in autonomous form by augmenting the system of dynamic 

constraints with  

 
( )
( )

1

1 0 0

1n

n

x t

x t t
+

+

=

=

�
 (4.3.17) 

 

so without loss of generality the autonomous case will be studied here and the explicit 

dependence on time will be dropped from the resultant equations.   

 

Now, a shorthand notation will be introduced that will simplify writing the equations in 

the following theorems and proofs.  Let  

 ( ) ( ) ( )( ), ,x u x t u t• = •  (4.3.18) 
 

where •  is a placeholder for , ,f L J  and any other function that has the same type of 

dependency on the state, control and time. 
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Before the sufficient conditions can be derived, some definitions and equivalence 

relationships are required for the proofs and theorems given in the following sections. 

 

First, fix the control function ( )u τ , ft tτ≤ ≤ , then from the initial state ( )x t  and control 

function ( )u τ , the cost-to-go function cJ  can be defined [7] as  

 ( )( ) ( ) ( )( ) ( )( ), , ,ft

c f ft
J x t u t t L x u d g x tτ τ τ− = +∫  (4.3.19) 

 

where ( )x t  is the initial state at time t  and ft t−  is the interval of time over which the 

trajectory transitions from its initial state to final state.  Note that given the problem 

assumptions the cost-to-go function is defined for any initial state, time, and control as 

long as the function g  is defined at ( )fx t . 

 

Next, let ( )û t , ft tτ≤ ≤ , be the control function that minimizes the cost-to-go to the 

final condition, for the initial condition ( )x t  and define [7] the optimal cost-to-go 

function as  

 ( )( )
( )

( )( )ˆ , inf , ,c f c fu t U
J x t t t J x t u t t

∈
− = −  (4.3.20) 

 

Note that the left hand side of equations (4.3.20) and (4.3.19) are identical except for the 

inclusion of the variable u  in equation (4.3.19).  u  is dropped from equation (4.3.20) to 

indicate that the cost-to-go function is defined in terms of the optimal control. 

 

Now recall that the Hamiltonian for PMP is defined as 
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 ( ) ( ) ( ) ( )0 0, , , , , ,H x u t f x u L x uλ λ λ λ= − ⋅  (4.3.21) 
 

where ( )tλ  is the adjoint, f  defines the dynamics of the system, L  is the Lagrangian, 

and 0λ  is a constant greater than zero.  When the control is optimal for the reference 

trajectory, the PMP requires that the Hamiltonian is maximized, and satisfies  

 ( )
( )

( ) ( ) ( ){ }0 0, , , sup , , ,
u t U

H x u t f x u L x uλ λ λ λ
∈

= − ⋅  (4.3.22) 

 

By using equation (4.3.22), and letting 0 1λ = , the Hamiltonian for the HJCB PDE along 

the optimal trajectory was previously derived as   

 

( )( )

( )

( )( ) ( ) ( )

ˆ ,
, , ,1,

ˆ ,
                           sup , , ,

c f

c f

u t U

J x t t t
H x u t

x

J x t t t
f x u L x u

x∈

⎛ ⎞∂ −
⎜ ⎟−
⎜ ⎟∂⎝ ⎠

⎧ ⎫∂ −⎪ ⎪= − −⎨ ⎬∂⎪ ⎪⎩ ⎭

 (4.3.23) 

 

The following propositions and theorems show that for the problem statement, the cost-

to-go function associated with the optimal control, ( )( )ˆ ,c fJ x t t t−  is the unique viscosity 

solution to the HJCB equation and which in turn can be used to derive the PMP.  All of 

the results can be found in [7][49]. 

 

Note that the value function (the optimal cost-to-go function) is not in the same form as 

the viscosity solution definitions given in the previous section.  The sub-differential and 

super-differential have the following form using the definition of the viscosity solution 

that has a x∈Ω  and t∈\  component.   
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From [7], let the following sets be associated with a function ( )u C∈ Ω×\  with x∈Ω  

and t∈\  

1. The set 

( ) ( ) ( ) ( )0, , ,
, : : lim  sup 0n

s t yy x

u y s u x t p y x p s t
D u x t p

x y s t
+

→ ∈Ω
→

⎧ ⎫− − − − ⋅ −⎪ ⎪= ∈ ≤⎨ ⎬− + −⎪ ⎪⎩ ⎭
\  is the 

super-differential of u  at ( ),x t  
2. The set 

( ) ( ) ( ) ( )0, , ,
, : : lim  sup 0n

s t yy x

u y s u x t p y x p s t
D u x t p

x y s t
−

→ ∈Ω
→

⎧ ⎫− − − − ⋅ −⎪ ⎪= ∈ ≥⎨ ⎬− + −⎪ ⎪⎩ ⎭
\  is the 

sub-differential of u  at ( ),x t  
 

In terms of the value function ( )( )ˆ ,c fJ x t t t−  the definition of the sub-differential and 

super-differential become  

1. The set 

( )
( )

( ) ( ) ( )
0,

0

:

, : , , ,
lim  sup 0

n

f f f

s t yy x

p p

D u x t t u y t s u x t t p y x p s t
x y s t

+

→ ∈Ω
→

⎧ ⎫∈ ×
⎪ ⎪⎪ ⎪− = − − − − − + ⋅ −⎨ ⎬

≤⎪ ⎪− + −⎪ ⎪⎩ ⎭

\ \

 

is the super-differential of u  at ( ), fx t t−  
2. The set 

( )
( )

( ) ( ) ( )
0,

0

:

, : , , ,
lim  sup 0

n

f f f

s t yy x

p p

D u x t t u y t s u x t t p y x p s t
x y s t

−

→ ∈Ω
→

⎧ ⎫∈ ×
⎪ ⎪⎪ ⎪− = − − − − − + ⋅ −⎨ ⎬

≥⎪ ⎪− + −⎪ ⎪⎩ ⎭

\ \

 

is the sub-differential of u  at ( ), fx t t−  
 
The first proposition that will be presented is the Principle of Dynamic Programming.  It 

will be used throughout the rest of this section in the presentation of the various 

theorems. 
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Proposition 4.3.6, Dynamic Programming Principle (DPP) ([7], pg. 149) 

Assume that control problem and cost-to-go function presented in the previous section is 

given, with initial condition ( )0
nx t ∈\  and an admissible control function ( )u τ  defined 

over the interval 0 ft tτ≤ < .  Also for a fixed initial condition ( )1x t , define the value 

function, as   

 ( )( ) ( ) ( )( ){ }
1

1 1
ˆ , inf ,ft

c f ftu U
J x t t t L x u dt g x t

∈
− = +∫  (4.3.24) 

 

for 0 1 ft t t≤ <  and for 1 ft t=   

 ( )( ) ( )( )ˆ ,c f f f fJ x t t t g x t− =  (4.3.25) 

 

Then for all nx∈\  and 1 ft tτ≤ <   

 ( )( ) ( ) ( )( ) ( )( ){ }
1

1 1
ˆ ˆ, inf , ,c f c ftu U
J x t t t L x s u s ds J x t

τ
τ τ

∈
− = + −∫  (4.3.26) 

 
The proof of the dynamic programming principle first shows that equation (4.3.26) is true 

for the case where the ‘=’ is replaced by ‘≤ ’ and then is shown true for the case where 

the ‘=’ is replaced by ‘≥ ’.  The detailed proof can be found in [7]. 

 
The next proposition shows that the value function is a viscosity solution of the HJCB 

PDE. 

 

Proposition 4.3.7 ([7], pg. 150):   

Given the previous problem statement and assumptions, then the value function 

( )( )0 0
ˆ ,c fJ x t t t−  is a viscosity solution of the HJCB PDE   
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( )( ) ( )( )0 0 0 0

ˆ ˆ, ,
sup , , ,1 0c f c f

u U

J x t t t J x t t t
H x u

t x∈

⎛ ⎞∂ − ∂ −
⎜ ⎟− + − =
⎜ ⎟∂ ∂⎝ ⎠

 (4.3.27) 

 

in ] [0,n × +∞\ .   

 

The proof of the proposition requires showing that ( )( )0 0
ˆ ,c fJ x t t t−  is both a viscosity 

sub-solution at any local maximal point of ( )( ) ( )( )ˆ , ,c f fJ x t t t x t t tφ− − − and viscosity 

super-solution at any local minimum point of ( )( ) ( )( )ˆ , ,c f fJ x t t t x t t tφ− − − , for 

0 ft t t≤ ≤ .  Again, the proof can be found in [7]. 

 

The next theorem to be presented is a comparison principle which is used to show 

uniqueness of the viscosity solution to the HJCB PDE for the given optimal control 

problem. 

 

Theorem 4.3.8 Comparison Principle ([7], pg. 152):   

Assume 2: nH →\ \  is continuous and satisfies the specific regularity conditions, 

] [0,T ∈ +∞ .  If [ ]( ),1 ,2
ˆ ˆ, 0,n

c cJ J BC T∈ ×\  are  viscosity sub- and super-solutions, 

respectively, of  

 
( )( ) ( )( ), ,

ˆ ˆ, ,
, , ,1 0c i f c i fJ x t t t J x t t t

H x u
t x

⎛ ⎞∂ − ∂ −
⎜ ⎟− + − =
⎜ ⎟∂ ∂⎝ ⎠

 (4.3.28) 

 

in ] [0,n × +∞\ , then  
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[ ]

( )
{ }
( ),1 ,2 ,1 ,2

0, 0

ˆ ˆ ˆ ˆsup sup
n n

c c c c
T

J J J J
× ×

− ≤ −
\ \

 (4.3.29) 

 

and if ( ) ( ) ( ){ }, , ,1 sup , , ,
u U

H x u f x u L x uλ λ
∈

− = − − , then the value function 

( )( )0 0
ˆ ,c fJ x t t t−  is the unique solution of  

 

( )( ) ( )( )

( )( ) ( )( )

0 0 0 0
ˆ ˆ, ,

, , ,1 0

ˆ ,

c f c f

c f f f f

J x t t t J x t t t
H x u

t x

J x t t t g x t

⎛ ⎞∂ − ∂ −
⎜ ⎟− + − =
⎜ ⎟∂ ∂⎝ ⎠

− =

 (4.3.30) 

 

The proof of the comparison principle [7] consists of finding two viscosity solutions to 

the problem and then showing that they have to be equal. 

 

The next lemma and two theorems are the main result and provide necessary and 

sufficient conditions for the optimal control problem with the given assumptions.  The 

necessary conditions are the same as the PMP and the sufficient condition is given by the 

HJCB and the non-smooth value function. 

 

First, a lemma will be given that relates the adjoint variable to the value function.  

Second, the necessary and sufficient conditions will be given and the proof of the 

conditions will be sketched out.  

Note that the Lagrangian form of the cost-to-go function is given in equation (4.3.24), but 

without loss of generality can transformed into Mayer form [7] which only tracks an end 

cost that is a function of the trajectory.  To ease the proofs, the following theorems will 
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use the Mayer form of the cost function.  As long as ( ),L x u  is Lipschitz continuous with 

respect to the state variables uniformly in the control variables, then the cost function  

 ( )( ) ( ) ( )( )
0

*
0 , , ,ft

f ft
J x t u t t L x u dt g x t− = +∫  (4.3.31) 

 

can be converted into  

 ( )( ) ( )( )0 , , f fJ x t u t t g x t− =  (4.3.32) 

 

by augmenting the dynamic system with the new state variable  

 
( )1

1

,
0

n

n

x L x u
x

+

+

=

=

�
 (4.3.33) 

 

The new cost function can be written as  

 ( )( ) ( ) ( )( )*
1,f f n f fx t t x t g x tψ += +  (4.3.34) 

 

Equation (4.3.34) can be an unbounded function, so by assuming that g  is a bounded 

function equation (4.3.34) can be written as  

 ( )( )( )fg x tψ  (4.3.35) 

 

or ( )( )fg x t . 

 

The first lemma that will be presented is Lemma 3.43 from ([7], pg. 175).  Lemma 3.43 

provides the equivalence between the adjoint and the variation of the value function with 

respect to x .  Note that for a given optimal control, the problem assumptions require that 

the cost function (not the optimal cost-to-go function) is differentiable with respect to x . 
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Lemma 4.3.9 ([7],  pg. 175) 

Under the assumptions and notations of the control problem, the cost functional  

 ( )( ) ( )( )*, ,J x t u t g xτ τ− =  (4.3.36) 
 

where ( )*x τ , 0t t τ≤ ≤ , is the solution to  

 ( ) ( ) ( ) ( )( )* ,
t

x x t f x s u s ds
τ

τ = + ∫  (4.3.37) 

 

with any admissible control function ( )u s U∈ , is differentiable with respect to x  and for 

all 0t t τ≤ ≤  and when the control function ( )u s U∈  is optimal,  

 ( ) ( )( ), ,J x t u t
t

x
τ

λ
∂ −

=
∂

 (4.3.38) 

 

The proof of Lemma 4.3.9 first develops the relationship between the adjoint and the 

variation in initial condition and then the cost function is differentiated with respect to 

x and the equivalence to the solution to the differential equation describing the evolution 

of adjoint system with final condition   

 ( )( ) ( )* ,Dg x tτ τ⋅Φ  (4.3.39) 

 

is provided.  See [7] for the complete proof of the lemma. 

 

Now that Lemma 4.3.9 has been given, the theorem describing the necessary and 

sufficient conditions can be given.  Theorem 3.42 ([7], pg. 175) provides a version of the 

Maximum Principle that is necessary and sufficient. 
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Theorem 4.3.9, Maximum Principle ([7], pg. 175) 

Assume that the control problem is the one previously presented with the following 

additional assumptions; mU ⊆ \  is compact, ( )1 ng C∈ \ , f  differentiable with respect 

to x  and f
x
∂
∂

 is continuous for all nx∈\ .  Let ( )û τ , ft tτ≤ ≤ , be a control that moves 

the state from a given point ( ) nx t ∈\  to the final state ( )fx t  along the optimal 

trajectory ( )x̂ τ , ft tτ≤ ≤ .  Further, define the adjoint, ( )tλ , to be the solution to the 

following system of equations  

 
( ) ( ) ( ) ( )( )

( ) ( )( )

ˆ ˆ,
,

ˆ f
f

f x t u t
t t

x

g x t
t

x

λ λ

λ

∂
= −

∂

∂
=

∂

�

 (4.3.40) 

 

Then ( )û τ  is optimal for the initial state ( )x t  and final state ( )fx t  if and only if for 

almost all , ft tτ ⎤ ⎡∈⎦ ⎣  

1. ( ) ( ) ( )( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ ˆ, , max , , , , ,1
v U

f x u f x v H x uλ τ τ τ λ τ τ λ
∈

⎡ ⎤− = − = −⎣ ⎦  

2. The 1n + -tuple ( ) ( )( ) ( )( )ˆˆ ˆ ˆ, , , ,1 ,c fH x u D J x tλ τ λ τ τ+− − ∈ −  
 

Where ( )( )ˆ ˆ ,c fD J x tτ τ+ −  is the viscosity super-solution of the HJCB PDE. 

 

The proof of necessity found in [7] uses the definitions of the value function, viscosity 

super-differential (the value function is the maximal sub-solution), and properties of 

dynamic equations to prove that if the control function ( )u τ  is optimal then condition 2 
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is true.  Condition 1 is a direct consequence of the fact that the optimal control satisfies 

the non-smooth form of the HJCB PDE.   See [7] for the details of the proof. 

 

The sufficient portion of the Maximum Principle will now be given in Theorem.  The 

sufficient condition is given in Theorem 3.38 ([7], pg. 173). 

 

Theorem 4.3.10 Sufficient Condition of Optimality ([7], pg. 173) 

Assume the optimal control problem is the one presented in Theorem 4.3.9.  Suppose that 

there exists a verification function u , where u  is a viscosity solution of the HJCB, which 

is locally Lipschitz in a neighborhood of ( )x t , for all 0 , ft t t⎡ ⎤∈⎣ ⎦ and an admissible 

control Uα ∈  defined over the interval ft tτ≤ ≤  such that at the final point,  

( )( ) ( )( ),f f f fu x t t t g x t− = .  Then ( )α τ  is optimal over the interval ft tτ≤ ≤ , if for all 

most every 0 , ft t t⎡ ⎤∈⎣ ⎦  the following condition holds:  

 ( ) ( )( ) ( ) ( )0 0, , : , , 0fp p D u x t t t p p t f x α±∃ ∈ − − ≥  (4.3.41) 
 

The proof of the sufficient condition given in [7] uses the definition of Dini derivatives to 

prove that ( )( ), fu x t t t−  is a non-increasing function as ft t→ .  As shown in the proof, 

if this is the case, then the verification function has to equal the value function.  The 

proof will not be given in it entirety, but will be outlined below for clarity.  Instead of 

using Dini derivates, the definitions of viscosity sub- and super-solutions can be used to 

prove that ( )( ), fu x t t t−  is a non-increasing function as ft t→ . 
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If it can be shown that ( )( ), fu x t t t−  is a non-increasing function as ft t→ , then  

 ( )( ) ( )( ) ( )( )0 0, ,f f f f fg x t u x t t t u x t t t= − ≤ −  (4.3.42) 

 

Since ( )( )0 0, fu x t t t−  and ( )( )0 0
ˆ ,c fJ x t t t−  are viscosity solutions to the HJCB PDE, 

the comparison principle (Theorem 4.3.8) for viscosity solutions and theorem 

assumptions imply  

 
( )( ) ( )( )

( )( ) ( )( )
0 0 0 0

ˆ, ,

ˆ                                   , , 0

f c f

f f f c f f f

u x t t t J x t t t

u x t t t J x t t t

− − −

≤ − − − =
 (4.3.43) 

 

or  

 ( )( ) ( )( )0 0 0 0
ˆ, ,f c fu x t t t J x t t t− ≤ −  (4.3.44) 

 

but since ( )( ) ( )( )0 0
ˆ ,c f fJ x t t t g x t− = , equations (4.3.44) and (4.3.42) imply  

 ( )( ) ( )( )0 0 0 0
ˆ , ,c f fJ x t t t u x t t t− = −  (4.3.45) 

 

and finishes the proof of sufficient. 

 

In order to prove that ( )( ), fu x t t t−  is a non-increasing function as ft t→ , the fact that 

( )( ), fu x t t t−  is a viscosity solution and the definition of the super-differential is 

applied. 
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Next the differentiability of g  in Theorem 4.3.9 can be relaxed to form an extended 

maximum principle. 

  

Theorem 4.3.11 Extended Maximum Principle ([7], pg. 179)  

Assume that the control problem is the one given before with the following assumptions; 

U  is a compact set, f
x
∂
∂

 exists and is continuous, ( )( ) ( )n
fg x t C∈ \ , and that 

( )( )fD g x t+ ≠ ∅ .  Furthermore, let the adjoint vector satisfy the following equations  

 
( ) ( ) ( )

( )

, ,

f

f x u t
t t

x
t

λ λ

λ λ

∂
= − ⋅

∂
=

�
 (4.3.46) 

 

where ( )( )fD g x tλ +∈ .  α  is an optimal control defined over the interval 0 ft t t≤ ≤ , if 

and only if for almost all 0 , ft t t⎤ ⎡∈⎦ ⎣  the Hamiltonian is maximized and  

 ( ) ( )( ) ( )( )ˆ, , , ,1 ,c ft H x D J x t t tλ λ α +− − ∈ −  (4.3.47) 
 

where  

 ( )( ) ( )( ){ }ˆ , inf , ,c f fv U
J x t t t J x t v t t

∈
− = −  (4.3.48) 

 

The proof of Theorem 4.3.11 can be found in [7] and will not be provided here.   

 

Finally, two corollaries will be given that describes the behavior of the Hamiltonian and 

adjoint at the endpoints of the problem. 
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Corollary 4.3.12 ([7] pg. 180):  

Assume that the control problem is the one given before with the following assumptions; 

U  is a compact set, ( )( ) ( )n
fg x t C∈ \ , ( )( )fD g x t+ ≠ ∅ , and that f

x
∂
∂

 exists and is 

continuous.  Let the adjoint vector satisfy the following equations  

 
( ) ( ) ( )

( ) ( )( )

,

f f

f x u
t t

x
t D g x t

λ λ

λ +

∂
= − ⋅

∂

∈

�
 (4.3.49) 

 

If û  is optimal for the initial state ( )( )0 0,x t t  and final time ft , then for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦   

 ( )( ) ( ) ( ){ } ( )( )ˆ ˆˆ ˆ, , , , ,1 ,c f c fD J x t t t t H x u D J x t t tλ λ− +− ⊆ − ⊆ −  (4.3.50) 
 

And if either of the inclusions is an equality, then ˆ
cJ  is differentiable at ( )( ),x t t  and 

both inclusions are equality. 

 

The proof of Corollary 4.3.12 comes directly from the definitions and properties of the 

sub-differential, super-differential, viscosity solutions, and PMP. 

 

In order to prove that equation (4.3.50) holds at the endpoints, all that need to be shown is 

that for 0t  the one-sided differential exists for any 0tτ >  as 0tτ →  and for ft  the one-

sided differential exists for any ftτ <  as ftτ → .  The definition of viscosity solution 

implies that at any points of non-differentiability, the one sided differentials still exists, 

which finishes the proof of the corollary. 
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Corollary 4.3.13 ([7] pg. 180):  

Assume the hypotheses of Theorem 4.3.11.  If û  is optimal for the initial state ( )( )0 0,x t t  

and final time ft , then for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦  ( )ˆ ˆ, , ,1H x uλ−  is constant. 

 

Corollary 4.3.13 is proved by showing that the differential of H  is zero at every 

0, ft t t⎡ ⎤∈ ⎣ ⎦  that the differential exists (which is almost everywhere because H  is locally 

Lipschitz).  The proof can be found in [7] (pg. 180) and will be excluded here. 

 

 
Endpoint Constraints for Non-smooth Value Functions 
 

The previous work was based on the assumption that the final time was fixed.  The 

purpose of this section is to expand this theory to include other endpoint constraints.  The 

first endpoint constraint that will be studied is when the endpoints of the state variable are 

constrained to a surface in the state space and the final time is free.  The second endpoint 

constraint that will be analyzed is the case where the endpoint of the state variable is 

constrained to a surface in the state space and the end time is fixed. 

 

The extension of the theory is not straightforward for these endpoint constraints because 

discontinuities in the value function can occur.  For example if the final state is 

constrained to a surface in the state space and the final time is fixed, then any spatial 

variation that does not intersect the surface at the final time produces an infinite value 

function, and hence a discontinuity in the value function with respect to state.  For the 

free end time problem, when the set of states that can reach the surface of final states is 



 

 102  

not the entire state space, the value function is infinite for the set of non-reachable states 

and hence is discontinuous along the boundary of the reachable set.   

 

Viscosity Solutions on Boundaries 
 

Before the results of the endpoint constraints can be given, further properties of viscosity 

solutions need to be given.  The behavior of viscosity solutions along smooth boundaries 

needs to be defined.  This behavior will be used to develop the “transversality” conditions 

for the necessary and sufficient conditions given in Chapter 6.   

 

Proposition 4.3.14 ([7], pg. 40) 

Assume that there exists a subset, Ω , of n\  such that  

 1 2Ω = Ω ∪Ω ∪Γ  (4.3.51) 

 

where iΩ  is an open subset of Ω  and Γ  is a smooth surface in n\  that is a boundary 

(possibly incomplete) between 1Ω  and 2Ω .  Define ( )n x  as the unit vector normal to Γ  

at x , pointing into 1Ω  and ( )T x  the tangent space to Γ  at x .  Also denote NP  as the 

orthogonal projection of n\  onto the space spanned by ( )n x  and TP  as the orthogonal 

projection of n\  onto ( )T x . 

 

Let ( )u C∈ Ω  and assume that its restrictions iu  to iΩ ∪Γ  belong to ( )1 iC Ω ∪Γ , 

1, 2i = .  Then u  is a viscosity solution of the HJCB in Ω  if and only if the following 

conditions hold 
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a. iu  is a classical solution of the HJCB in iΩ , 1, 2i =  
b. ( ) ( ) ( )( ), , 0i

TF x u x P Du x n xξ ++ ⋅ ≤ , for all ( ) ( ) ( ) ( )1 2,Du x n x Du x n xξ + ⎡ ⎤∈ ⋅ ⋅⎣ ⎦  
and all x∈Γ  

c. ( ) ( ) ( )( ), , 0i
TF x u x P Du x n xξ −+ ⋅ ≥ , for all ( ) ( ) ( ) ( )2 1,Du x n x Du x n xξ − ⎡ ⎤∈ ⋅ ⋅⎣ ⎦  

and all x∈Γ  
 

The proof of this proposition comes directly from the definitions of the viscosity solution 

and the sub- and super-solutions.  Proposition 4.3.14 provides conditions upon which u  

is a viscosity solution when a boundary in the state-space is reached.   

 

Now that the behavior of viscosity solutions on smooth boundaries has been defined, the 

conditions under which the viscosity solution exists on boundaries need to be derived.  

The first case that will be analyzed is the case where the final time is free and the 

endpoint is constrained to lie in a smooth surface embedded in the state space of the 

system.   

 

 
Free End Time/Fixed Surface of Final Conditions 
 

When the optimal control problem requires that the final state is an element of a surface 

in the state space, the resulting value function can be discontinuous.  Clearly if the 

surface of final states is not reachable from some initial condition, the value function is 

infinite at that initial state and a solution to the problem does not exist.  So when the set 

of states that can reach the surface of final conditions is not the entire state space, a 

discontinuity occurs along the boundary of the reachable set.   
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Before the development of the free end time/fixed surface of final conditions necessary 

and sufficient conditions can be developed, the reachable set needs to be defined and the 

definition given in [7] will be used.  Define nS ⊂ \  as a target set that is closed with a 

compact boundary S∂ .  Let ( )tℜ  be the set of points reachable from the target set, S , in 

time less than t  by the backwards system ( ) ( ),
dx t

f x
dt

α= − , Uα ∈ , then  

 ( ) ( ){ }:nt x T x tℜ = ∈ <\  (4.3.52) 

 

where 0t > , and ( )T x  is the minimum time to the target set from initial condition x , 

over all admissible control functions.  The entire reachable set, ℜ , for the control 

problem can now be defined as  

 ( ) ( ){ }
0

:n

t

t x T x
>

ℜ = ℜ = ∈ < ∞\∪  (4.3.53) 

 

Now that the reachable set has been defined, small-time controllability on the surface S  

(STC S ) can be defined. 

 

Definition 4.3.16 ([7], pg. 228) 

The controlled system ( ),x f x a=� , a U∈ , is STC S  if ( )intS t⊆ ℜ , for all 0t > . 

 

The next proposition gives the conditions under which an optimal control problem is 

STC S . 
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Proposition 4.3.17 ([7], pg. 229) 

Under the assumptions of Chapter 3 of this dissertation, pg. 46-47, the system is STC S . 

  

The proof of Proposition 4.3.17 will not be presented here, but can be found in [7].  The 

next proposition lists the properties of a system being STC S . 

 

Proposition 4.3.18 ([7], pg. 230) 

Assume that a control system satisfies the assumptions of Proposition 4.3.17 and is 

STC S , then the following properties are true. 

1. ℜ  is an open set 
2. T  is continuous in ℜ  
3. ( )

0

lim
x x

T x
→

= ∞  for all 0x ∈∂ℜ  

where T  is the minimum time to the target set from initial condition x , and ∂ℜ  is the 

boundary of the reachable set ℜ . 

 

The reader is referred to [7] for the proof of Proposition 4.3.18.  Note that Proposition 

4.3.18 demonstrates the discontinuity of the value function for the minimum time 

problem along the boundary of the reachable set, but also proves the continuity of the 

value function while inside the reachable set.   

 

Now that the properties of the reachable set have been given, the next proposition will 

generalize these concepts to systems where a nonzero terminal cost exits. 
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Proposition 4.3.19 ([7], pg. 249) 

Assume the control problem satisfies the assumptions in Chapter 3, pg. 46-47, pg. 50.  

Assume that the purpose of the control problem is to find a control that minimizes the 

cost function  

 ( ) ( ) ( )( )0
, ,ft

fJ x L x ds g x tα α= ⋅ +∫  (4.3.54) 

 

where ft  is the first time ( )fx t S∈ .  Further assume ( )g C S∈  and ( ) 0g x ≥  for all 

x S∈ . 

 

If the value function, ( )( )ˆ ,c f f fJ x t t t− , is continuous for all ( )fx t S∈∂ , then   

 ( )( ){ }ˆ: ,c fx J x t t tℜ = − < ∞  (4.3.55) 

 

and  

 ( )( )
0

ˆlim ,c fx x
J x t t t

→
− = ∞  (4.3.56) 

 

for any 0x ∈∂ℜ  and ( )( )ˆ ,c fJ x t t t−  is an element of the union of the space of functions 

:u κ → \ , with u
∞
< ∞ , and the space of uniformly continuous functions :u κ →\ , 

for any closed set κ  where the minimum time function T  is bounded. 
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The proof of Proposition 4.3.19 can be found in [7].  Proposition 4.3.19 redefines the 

reachable set as the set of states that can reach the final surface and has a cost that is not 

infinite. 

 

A notion of compatibility of the terminal cost is required to prove that the value function 

( )( )ˆ ,c fJ x t t t−  is the unique viscosity solution of the HJCB PDE.  Definition 3.5 [7] 

defines the compatibility condition, Theorem 3.6 [7] equates the continuity of the value 

function with the compatibility of the terminal cost, and finally Proposition 3.13 [7] 

provides the conditions under which the value function is the unique viscosity solution of 

the HJCB PDE.  The definition, theorem, and proposition will be given here for 

completeness. 

 

Definition 4.3.20 ([7], pg. 251) 

The terminal cost g  is compatible with the continuity of ˆ
cJ , if g  has an extension to a 

neighborhood ( ),B S δ  of S , which is lower semicontinuous at points of S∂  and such 

that ( ) ( ),g x J x α≤  for all Uα ∈  and ( ),x B S δ∈ . 

 

Definition 4.3.20 can now be used with the definition of STC S  to relate the 

compatibility condition with the continuity of the value function. 

 

Theorem 4.3.21 ([7], pg. 251) 
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Assume the control problem satisfies the assumptions of Proposition 4.3.19 and is 

STC S .  Then the compatibility of g  is equivalent to ( )( ) ( )ˆ ,c fJ x t t t C− ∈ ℜ . 

 

Theorem 4.3.21 says that the terminal cost g will be compatible with the value function 

ˆ
cJ  if the value function is continuous in the set of reachable states. This point becomes 

important in next proposition which proves that ˆ
cJ  is a viscosity solution of the HJCB 

PDE. 

 

For this problem, the Hamiltonian in the HJCB PDE is defined as  

 ( ) ( ) ( ){ }0 0, , , sup , , ,
u U

H x u f x u L x uλ λ λ λ
∈

− = − − ⋅  (4.3.57) 

 

and all , nx λ∈\ . 

 

Proposition 4.3.22 ([7], pg. 256) 

Assume the control problem satisfies the assumptions in Theorem 4.3.21 and g  satisfies 

the compatibility condition.  Then ˆ
cJ  is the unique solution to the HJCB PDE, 

( )0
ˆ, , , 0cH x u DJ λ =  continuous in \ int Sℜ , bounded below, and satisfying the boundary 

condition ( )( ) ( )( )ˆ ,c f f f fJ x t t t g x t− =  on S∂  and ( )( )ˆ ,c fJ x t t t− →∞  as 

( ) 0x t x→ ∈∂ℜ . 
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The proof to Proposition 4.3.22 can be found in [7].  This proposition is very important 

because it proves that as long as ( )x t ∈ℜ , ( )( )ˆ ,c fJ x t t t−  is the viscosity solution to the 

HJCB PDE for the optimal control problem.  The necessary and sufficient conditions for 

optimality of the control developed earlier in this chapter can now be applied to the 

optimal control problem. 

 

Fixed End Time/Fixed Surface of Final Conditions 
 

Assume that the control problem is the standard problem given at the beginning of this 

Chapter, except that the final time ft  is fixed and the final value of the state ( )fx t  is 

required to be an element of the surface S  that is contained in n\ ,  defined by the 

equation ( )( ) 0fh x t = .  The result of imposing the two extra constraints on the optimal 

control problem is that the value function maybe discontinuous along the surface of final 

states because for all ( )fx t S∈ , the value function is defined as  

 ( )( ) ( ) ( )( ){ }ˆ , inf ,ft

c f ftu U
J x t t t L x u ds g x t

∈
− = ⋅ +∫  (4.3.58) 

 

but when ( )fx t S∉   

 ( )( )ˆ ,c fJ x t t t− = ∞  (4.3.59) 

 

A theoretical development of the behavior of the viscosity solution for this case can be 

found in ([7], Chapter 5) and will be excluded here.  When the optimal control problem 
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can be represented in Mayer form with only a terminal cost, g , the optimal control 

problem can be transformed into an equivalent form where the new terminal cost 

function, g� , is continuous in x .  Penalization methods for approximate control problems 

are used to perform this transformation.  Once the control problem is converted into this 

form, the necessary and sufficient conditions for the optimal control developed earlier 

apply.  The important point here is that the necessary and sufficient conditions developed 

earlier still apply to this optimal control problem and the interested reader is referred to 

([7], Chapter 5) for the technical development. 

 

An approximate terminal cost function that eliminates the discontinuity can be found in 

([7], Section 5.2), and is  

 ( )( ) ( )( ) ( )( )
( ) ( )

2

,

inf
min

sup 2 sup , 1

f fy S
n f

x S x U

g x t n x t y
g x t

g x T L x
α

α
∈

∈ ∈Ω ∈

⎧
+ ⋅ −⎪

= ⎨
+ ⋅ ⋅ +⎪

⎩

�  (4.3.60) 

 

where ( )( )fg x t  is the terminal cost for the original control problem, L  is the 

Lagrangian for the original cost function, and T , ft T≤ < ∞ ,  is the upper bound for all 

finite horizons of interest. 

 

The first term in equation (4.3.60) is a continuous function of x  that may be unbounded.  

The second term in equation (4.3.60) is constant and provides an upper bound to the 

terminal cost.    
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Since the terminal cost for the approximate problem is continuous and as n →∞ , 

ng g→ , the theorems developed earlier apply, and as n →∞ , the solution of the 

approximate problem goes to the solution of the original problem, so the theorems 

developed previously apply to the original problem.  

 

The details in this section are provided without proof and only serve to raise the point that 

the necessary and sufficient conditions developed in Theorems 4.3.10 and 4.3.11 still 

apply to optimal control problems where the final time is fixed and the state is required to 

lie on a surface of final conditions.   

4.4 Clarke-Vinter Non-Smooth Necessary Conditions 

For completeness, the Clarke-Vinter non-smooth maximum principle will be discussed.  

Clarke [23][24][25][26][72] provides a complete development of a non-smooth 

maximum principle similar the Bardi necessary conditions, which uses a generalized 

gradient instead of the viscosity solution sub- and super- solutions.  Clarke’s non-smooth 

maximum principle (CMP) provides the ability to apply the maximum principle to 

problems where either the cost functional or dynamic constraints have points that are not 

differentiable.  However, the CMP will not be presented here because under the 

assumptions of the control problem in Chapter 3, the generalized gradient will be equal to 

the sub- and super- differentials presented in the previous section [7][72], hence the CMP 

and the Bardi necessary conditions will be identical.  The interested reader is referred to 
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the references given in the beginning of this section for the complete development of the 

CMP. 
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Chapter 5: Hybrid Maximum Principle 

Generalizations of Pontryagin’s Maximum Principle that handle hybrid optimal control 

problems can be found in the literature.  These generalizations will be called Hybrid 

Maximum Principles (HMP). Three of those generalizations will be presented here.  The 

first set of necessary conditions presented is the conditions developed by Sussmann [67].  

Next the work of Riedenger [58][59] will be given and finally the work of Caines 

[61][63][64][65] will be presented.  

 

The Sussmann Hybrid Maximum Principle (SHMP) is a hybrid maximum principle that 

provides necessary conditions for optimal control in the most general setting [67][68].  

Because of its applicability to a wide range of hybrid optimal control problems its theory 

will be presented in the most detail.  The two other HMP are presented here in less detail 

to provide justification for using a less general HMP to solve engineering problems, as is 

done later in this dissertation.  The work given by Riedinger [57][58][59] is a less general 

version of the SHMP, but can be applied to basic engineering problems.  This HMP also 

allows for systems that have asynchronous discrete switching.  In [61][63][64][65] 

Caines and his collaborators use the Riedinger HMP to develop the Caines’ HMP and 

associated algorithms for numerical implementation.  The Caines’ HMP is much less 

general than the SHMP, but the simplification provides a framework for development of 

numerical algorithms that can be used to analyze hybrid control problems.  The Riedinger 

and Caines’ work is less general than is required for this dissertation, but provides 
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justification for deriving a HMP that may not be as general as the SHMP, but can be 

implemented by engineers to solve practical engineering problems. 

5.1 Sussmann’s HMP 

Sussmann’s hybrid maximum principle (SHMP) [67][68] is an extension of the non-

smooth maximum principle allowing for the analysis of optimal control solutions for 

hybrid systems.  It provides necessary conditions for the optimal trajectories for the 

hybrid system, given a function that represents the cost associated with moving the state 

from the initial condition to the final condition with the optimal control.  As with the 

PMP, the SHMP does not provide a rigorous means to study the uniqueness and existence 

of the optimal solution.  The following section will summarize Sussmann’s results. 

 

This section is organized into the following sections.  First, the definitions required to 

state the SHMP will be presented along with the general necessary conditions.  Then the 

assumptions given in Chapter 3 will be applied to the problem and the proof will be 

outlined. 

 

5.1.1 Definitions 

Before the SHMP can be introduced, some definitions and nomenclature need to be 

introduced that will be used in the presentation of the SHMP.  First the general hybrid 

model will be presented and then some associated assumptions and definitions will be 

provided. 
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Let 

 ( ), , , , , ,Q M U f u I SΣ =  (5.1.1)   
 

be a general Sussmann hybrid system (see pg. 44-45). 

 

A control for the hybrid system Σ  is defined as a triple ( ), ,q tζ η=  consisting of the 

following variables.   

1. q  is a finite sequence of locations that describe the progression of the discrete 
part of the hybrid system.   

2. t  is a finite sequence of real numbers that describe the switching times for the 
evolution of the discrete part.   

3. η  is a finite sequence of maps such that jη  belongs to 
iqU  and 

j jP Pη =  for 

1j v= … .   By definition the map jη  ensures that the control string ju  is 
admissible while in location jq . 

 

The definition of a control can be used to define the trajectory for a hybrid system.  Let 

ζ  be a control for Σ  and let ( )ν ν ζ=  be used to index the final location visited by the 

hybrid system.  Let the control ζ  have the following properties; ( ) ( )1, ,q q qνζ = " , 

( ) ( )1, ,t t tνζ = " , and ( ) ( )1, , νη ζ η η= " .  A trajectory for ζ  is a ν -tuple ( )1, , νξ ξ ξ= "  

such that for each { }1, ,j ν∈ " : 

1. jξ  is an absolutely continuous map from 1,j jt t−⎡ ⎤⎣ ⎦  to 
jqM , such that 

( ) ( )( ),
jj q j jf t tξ ξ η=�  for almost all 1,j jt t t−⎡ ⎤∈ ⎣ ⎦ . 

2. And the switching condition ( ) ( )( ) 11 1 ,,
j jj j j j q qt t Sξ ξ

++ + ∈  holds if j ν< . 
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A trajectory control pair for the hybrid system Σ  is a pair ( ),ξ ζ  such that ξ  is a 

trajectory for Σ  and ζ  is a control for Σ .  All of the trajectory control pairs for the 

hybrid system Σ  are denoted as ( )TCP Σ . 

 

Let Σ  be a hybrid system as defined above and let ( ) ( ), TCPξ ζΞ = ∈ Σ , then the 

endpoint condition ∂Ξ  of Ξ is the 4-tuple ( ) ( )( )1 1, , ,q a q bζ ν ν ζξ ξ  where: 

1. ( )1, , νξ ξ ξ= "  

2. ( )1, ,q q qζ ν= "  
3. aζ  is the initial time 
4. bζ  is the final time 

 

Now the endpoint constraints for the system can be defined.  As long as ( )TCPΞ∈ Σ  and 

( )2M̂∂Ξ∈ Σ  the endpoint constraint for Σ , E , will be the subset of ( )2M̂ Σ  that 

corresponds to all of the ∂Ξ  associated with every Ξ .  Given any initial and final 

location ( ,q q′ ), the endpoint constraint can be written as ( ) ( ){ }, , : , , ,q qE x x q x q x E′ ′ ′ ′= ∈ . 

 

The Lagrangian for Σ  can be defined as a family of functions { }qL L=  such that 

1. each qL  is a real-valued function on q qM U×  

2. whenever q Q∈ , quη∈  has domain [ ],α β , and [ ]: , qMξ α β →  is an absolutely 

continuous solution of ( ) ( ) ( )( ),qt f t tξ ξ η=�  a.e. then the function 

[ ] ( ) ( )( ), ,t L t tα β ξ η∋ →  is integrable 
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The corresponding Lagrangian cost function ( ) { }:LC TCP Σ → ∪ +∞\ , is 

( ) ( ) ( )( )
11

, ,j

j
j

t

L q j jt
j

C L t t dt
ν

ξ ζ ξ η
−=

=∑∫ , where all of the variables have been defined 

above. 

 

Similar cost functions can be defined for the switching terms and the endpoints for Σ .  

Let Φ  be a switching cost function and let ϕ  be an endpoint cost function, then the cost 

functional, ( ) ( ) ( ) ( )( )
1

, 1 1
1

ˆ , , , ,j j j j j j
j

C q t q t
ν

ϕ ξ ζ ϕ ξ ξ
−

Φ + +
=

= ∂Ξ + Φ∑  incorporates both of 

these costs. 

 

Now, the hybrid Bolza cost functional for Σ  is defined as the sum of the Lagrangian cost 

function and the switching and endpoint function and can be written as, ,
ˆ

LJ C C ϕΦ= + , 

and given the previous definition ( ) { }:J TCP Σ → ∪ +∞\ .  

 

Next define the free time and fixed time problem.  Given a hybrid control system ∑ , a 

Bolza cost function J , and an endpoint constraint ( )2ˆE M⊆ ∑ , the free time problem 

control problem ( ), ,P J E∑  will minimize J  for ( ),TCP E∑  and the fixed time problem 

( ), , , ,P J E a b∑  will minimize J  for ( ), , ,TCP E a b∑  for each compact subinterval 

[ ],a b ∈\ . 
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Now that the problem definition has been given, the assumptions on the control problem 

can be given.  Assume: 

1. ( ), , , , , ,Q M U f u I SΣ =  is a hybrid control system 

2. ,
ˆ

LJ C C ϕΦ= +  is a hybrid Bolza cost function 

3. ( )2ˆE M⊆ Σ  is an endpoint constraint 

4. ( ) ( )# # #, TCPξ ζΞ = ∈ Σ  is an optimal trajectory for the system 
 

The SHMP will give a necessary condition for the control #Ξ  to be optimal.  The 

necessary condition only compares trajectories that have a control with the same 

switching sequence that are “close” to #Ξ .  As such the result is only a local solution, not 

a global solution.   

 

Finally, define the local solution of P  as a trajectory-control pair ( )#
# # # #

1 , , ,
v

ξ ξ ζΞ = …  

such that there exists neighborhoods #1, ,
v

N N…  of the graphs of #
# #

1 , ,
v

ξ ξ…  with the 

property that #Ξ  minimizes the cost J  in the class of all the trajectory-control pairs 

( )1 , , ,
v

ξ ξ ζΞ = …  such that E∂Ξ∈ , ( ) ( )#q qζ ζ= , and the graph of jξ  is contain in 

jN  for #1, ,j v= … . 

 

5.1.2 Hybrid Maximum Principle  

Now that the general problem definition has been given, the SHMP can be given. 
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Theorem 5.1.1 [67][68] 

Assume that the hybrid optimal control problem is the one given earlier in this section 

with its associated assumptions.  Then there exists an adjoint pair ( )0,λ λ  along #Ξ  that 

satisfies: 

1. the Hamiltonian maximization condition,  
2. nontriviality condition,  
3. transversality condition,  
4. and Hamiltonian value conditions. 

 

Sussmann is purposely vague when he presents the SHMP this way because he wants the 

reader to understand the generality of his solution.  The four necessary conditions 

presented in the SHMP apply regardless of the problem structure and assumptions.  

Specifically, Sussmann proves the SHMP for systems that contain classical dynamics and 

for systems that use generalized differential (such as the generalized gradient given by 

Clarke [25].  In order to simplify the necessary conditions the SHMP will be defined here 

for systems that use classic differentials.   

 

Assume the control problem satisfies the assumptions in Chapter 3, pg. 46-47, pg. 50  

 

Further, assume: 

1. each set qu  is invariant under time translations, restrictions and concatenations – 

that is, if a control [ ]: , qa b Uη →  belongs to qu , a c d b≤ ≤ ≤ , and τ ∈\ , then 

the maps [ ] ( ), qc d t t Uη∋ → ∈  and [ ] ( ), qa b t t Uτ τ η τ− − ∋ → + ∈  also belong 

to qu  and, we define ( ) ( )t tη η′′ =  for a t b< ≤ , ( ) ( )t tη η′′ ′=  for b t b′< ≤ , then 

quη′′∈  - and contains all the constant qU -valued maps defined on compact 
intervals. 
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and define the j th jump of the discrete part of the hybrid system as ( )#
jγ Ξ , where 

( ) ( ) ( )( )#
1ˆ ˆ,j j j j jx t x tγ +Ξ = .  Using similar notation ( )#

eγ Ξ  defines the pair 

( ) ( ) ( )( )#
#

1ˆ ˆ,e v
x a x bγ Ξ = . 

 

Also, let the real valued function qH  be defined as  

 ( ) ( ) ( )0 0, , , , , , , , ,q q qH x u t f x u t L x u tλ λ λ λ= − ⋅  (5.1.2) 
 

where qx M∈ , *
qMλ ∈ , qu U∈ , 0λ ∈\ , and t∈\  and *

qM  is the dual space to qM . 

 

Before the statements of the SHMP are presented, the adjoint pair and the transversality 

conditions require a special notion of a tangent cone, so the tangent cone will be 

introduced first. 

 

A Boltyanskii approximating cone is used to define the required notion of a tangent cone. 

 

Definition 5.1.2 Boltyanskii Approximating Cone [67][68] 

Let S  be a subset of a smooth manifold X  and let x S∈ .  A Boltyanskii approximating 

cone to S  at x  is a closed convex cone K  in the tangent space xT X  to X  at x  such 

that there exists a neighborhood V  of 0 in xT X  and a continuous map :V K Xμ ∩ →  

with the property that ( )V K Sμ ∩ ⊆ , ( )0 xμ = , and ( ) ( )v x v o vμ = + +  as 0v →  via 

values in V K∩ . 
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Figure 5.1 and Figure 5.2 depict the Boltyanskii approximating cone at points in two 

different subsets of 2\ .  Figure 5.1 depicts an intersection of two curves that meet at a 

point.  The Boltyanskii approximating cone at this point will be a pie shaped slice 

because a small enough V  around the zero point in the tangent space can be selected 

such that the intersection of the approximating cone, K , and V  maps back into the set 

S . 

 

 

 

Figure 5.1: Example demonstrating a Boltyanskii approximating cone. 

 

Figure 5.2 depicts the Boltyanskii approximating cone to a set S  at a cusp in the set.  The 

Boltyanskii approximating cone at this point is a line.  The intersection of V  and K  for 

this example has to be a line because a line is the only convex cone that will map back 

into S  according to μ , as zero is approached in the tangent space. 

 

V
x

S 

2X = \  

( )V Kμ ∩  

2
XT X ⊂ \  

K  
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Figure 5.2: Example demonstrating a Boltyanskii approximating cone for a cusp. 

 

The idea of the Boltyanskii approximating cone is to use a closed convex cone in the 

tangent space to approximate the subset S  for some neighborhood of x .  The function 

μ  is the map between the tangent space and the real space that describes this 

approximating cone.  The cone is such that at the point of interest x , the function 

evaluates to zero and if V  is a neighborhood around zero in the tangent space, the 

intersection of the cone and V  maps back into the original subset S  as V  approaches 

zero. 

 

Three additional examples will be presented to clarify this notion of the approximating 

cone; for all three examples assume 2X ≡ \ .  For the first example, let ( ){ }2,S x y= ∈\  

and let ( ),f fx x y= , find the Boltyanskii approximating cone, K , to set S  at x .  The 

tangent space to all of 2\  is also 2\ , so for any neighborhood of 0 in the tangent space, 

the function μ  will map the whole neighborhood back into the set S and 2K = \ . 

V

K

xS 

2X = \  

( )V Kμ ∩  

2
XT X ⊂ \  



 

 123  

For the second example, let ( ) ( ) ( ){ }2
1 1, : , ,S x y x y x y= ∈ =\  where 1x  and 1y  are 

constant.  Again the tangent space to X  is 2\ , but if ( )1 1,x x y=  then any neighborhood 

of x  contained in S  consists of x  itself, so the Boltyanskii tangent cone will consist of 

one point and is ( ) ( ){ }, 0,0K u v= = .  If x  is any other point in 2\ , then a tangent cone 

will not exist because x  is not in the subset S . 

 

Lastly, let ( ){ }2, :S x y x y= ∈ ≤\ .  If ( ){ }, :x x y x y= > , then a tangent cone will not 

exist, since μ  will not map any point back into the set S .  If  ( ){ }, :x x y x y= < , then a 

neighborhood of size δ  will be mapped back from the tangent space into S , where δ  is 

a function of x , resulting in 2K = \ .  Finally let ( ){ }, :x x y x y= = , then for a 

neighborhood V  of 0 in the tangent space, μ  will map V K∩  into S  if 

( ){ }2, :K v w v w= ∈ ≤\ . 

 

The necessary conditions require the notion of a polar of the Boltyanskii approximating 

cone.  Let K  be a cone that is a subset of a finite dimensional linear space, V.  The polar 

of the cone K  is { }: 0,K w V w v v K⊥ ∗= ∈ ⋅ ≤ ∀ ∈ , where V ∗  is the dual space of V .  For 

example, if  

 ( ){ }2, :K x y y x= ∈ ≥\  (5.1.3) 
 
then 

 
( ){ }

( ) ( ){ }
2

2

, : 0,

                                          , : 0,  

K d f dx fy y x

d f d f x x K

⊥ = ∈ + ≤ ∀ ≥

= ∈ + ≤ ∀ ∈

\

\
 (5.1.4) 
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where 2\  represents the row vector space.  Consequently, the values of d  and f  that 

satisfy equation (5.1.4) are all values such that f d≤ − . 

 

Consider the Boltyanskii approximating cone 

 ( ){ }2, :K x y x y= ∈ =\  (5.1.5) 

 

then  

 
( ){ }

( ) ( ){ }
2

2

, : 0,

                                      , : 0,

K d f dx fy x y

d f d f x x K

⊥ = ∈ + ≤ ∀ =

= ∈ + ⋅ ≤ ∀ ∈

\

\
 (5.1.6) 

 

Since x∈\ , equation (5.1.6) reduces to  

 ( ){ }2, : 0K d f d f⊥ = ∈ + =\  (5.1.7) 

 

or that  

 ( ) ( ){ }, : , ,K x y w x yα α⊥ = ∈ ⋅∇ ∀ ∈\ \  (5.1.8) 

 

where  

 ( ), 0w x y x y= − =  (5.1.9) 

 

and ∇  is the standard gradient operator.   

 

The precise definitions of the necessary conditions for the SHMP can now be presented. 
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Proposition 5.1.3 Adjoint Equation [67][68] 

The adjoint equation, or adjoint pair, is a pair, ( )0,λ λ  along #Ξ  with the following 

properties: 

1. λ  is a #v -tuple ( )#1, ,
v

λ λ…  such that each jλ  is a field of covectors along #
jξ , 

where covector is defined by; if V  is a vector space contained in n\ , then a 
covector is a linear map : nVα →\ .  The set of all covectors is a vector space *V  
that is the dual of V .  Note that for this case the local trajectory #

jξ  is composed 
of the state ˆ jx  and control ˆ ju . 

2. each iλ  is absolutely continuous function of t  for the entire interval contained in 

iqI . 
3. 0λ ∈\  and 0 0λ ≥  

4. each jλ  satisfies the adjoint equation ( ) ( ) ( )( )
#

0ˆ ˆ, , ,jq
j j j j

H
x t t u t

x
λ λ λ

∂
= −

∂
�  

5. and for each { }#1, , 1j v∈ −… , the switching condition 

( )
( ) ( )( )# #

1

#

#
#1

0 ,j j

j j

j j
j jq q

j

j

t

t K
h
h

λ

λ λ γ
+

⊥+

+

−

⎡ ⎤−
⎢ ⎥
⎢ ⎥

− ⋅∇Φ Ξ ∈⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is true, where ∇  is the conventional 

gradient of a function, jK ⊥  is the polar of the Boltyanskii approximating cone to 

the set # #
1,j jq q

S
+

 at ( )#
jγ Ξ , and 

 

( ) ( ) ( )( )

( ) ( ) ( )( )

00

00

1lim , , , , ,  if the limit exists

0,  if the limit does not exist

1lim , , , , ,  if the limit exists

0,  if the limit does not exist

j

i
j

j

i
j

q j j jss
j

s

q j j js
j

H x t t u t t dt
h s

H x t t u t t dt
h s

τ

τ

τ

τ

λ λ

λ λ

+ −↓

+

− ↓

⎧ ⋅ ⋅⎪= ⎨
⎪⎩
⎧ ⋅ ⋅⎪= ⎨
⎪⎩

∫

∫
 (5.1.10) 

Further, jK ⊥  is a subset of 2n\  ( n  is the dimension of adjoint vector), so the left 

hand side of the equation is formed by concatenating the adjoint vectors and 

gradient of the switch cost function forming a vector of length 2n . 
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Proposition 5.1.4 Hamiltonian Maximization Condition [67][68] 

If ( )0,λ λ  is an adjoint pair along #Ξ , then the adjoint pair will satisfy the Hamiltonian 

maximization condition if there exist real numbers #1 v
h h…  such that for each 

{ }#1, ,j v∈ … , ( ) ( ) ( )( ) ( ) ( )( )# #0 0ˆ ˆ ˆ, , , , max , , , ,
j j

j j j j j jq qu U
h H x t t u t t H x t t u tλ λ λ λ

∈
= =  for 

almost every 
jqt I∈  and 

jqu U∈ . 

 

Proposition 5.1.5 Transversality Conditions [67][68] 

If ( )0,λ λ  is an adjoint pair along #Ξ , then the adjoint pair will satisfy the transversality 

condition for Ε  and ϕ  if 

( )
( ) ( )( )#

# #
1

1 0

#
0 ,

1

v

fv
e eq q

v

t

t
K

h
h

λ

λ
λ ϕ γ ⊥

+

−

⎡ ⎤
⎢ ⎥
−⎢ ⎥ − ⋅∇ Ξ ∈⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, where eK ⊥  is the polar 

of the Boltyanskii approximating cone to the set # #
1 ,q q

E
ν

 at ( )#
eγ Ξ , where the quantities in 

the relationship are elements of 2n\ .  Note the similarity between the transversality 

condition and the switching condition used in the definition of the adjoint pair.  The main 

difference is the sign of the two values of the adjoint.  Both of the conditions use the 

discrete behavior of the hybrid system to constrain the evolution of the adjoint equation. 

 

Proposition 5.1.6 Non-triviality Condition [67][68] 

If ( )0,λ λ  is an adjoint pair along #Ξ , then the adjoint pair will satisfy the non-triviality 

condition if either 0 0λ ≠  or at least one of the functions jλ  is not identically zero. 
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Proposition 5.1.7 Hamiltonian Value Condition [67][68] 

If ( )0,λ λ  is an adjoint pair along #Ξ  and #1 v
h h… are constants that satisfy the 

Hamiltonian maximization condition, then the adjoint pair will satisfy the Hamiltonian 

value condition for the fixed time interval problem for every { }#1, , 1j v∈ −… : 

1. if ( )#
# #

1
j

j j q
t t Interior I−− ∈ , then #j v

h h=  

2. if # #
1j jt t −−  is the left endpoint of #

jq
I  and #

jq
I  is non-trivial, then #j v

h h≤  

3. if # #
1j jt t −−  is the right endpoint of #

jq
I  and #

jq
I  is non-trivial, then #j v

h h≥  

 

If it is desired to solve a variable time problem instead of the fixed time interval problem, 

then if ( )0,λ λ  satisfies the Hamiltonian value condition for the fixed time interval 

problem and # 0
v

h = , then it satisfies the Hamiltonian value condition for the variable 

time problem.  Note #v
h  is the Hamiltonian value for the last optimal location in the run 

of the hybrid system, where the value of the Hamiltonian at the other locations is 

determined by the Hamiltonian value condition. 

 

Proof of SHMP 
 

The precise proof of the SHMP for the case with classic differentials can be found in 

[67].  Just as in the proof of the PMP, Sussmann proves the necessary conditions using 

needle variations of a reference control, spatial variations in trajectory, and temporal 

variations in trajectory to form an endpoint set.  He then assumes the reference trajectory 

is optimal, analyzes the endpoint set, and shows that the vector of improved cost is not 
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contained in this endpoint set.  Using these results he generates a set of necessary 

conditions for the control to be optimal. 

 

Since the problem is hybrid the variation in the trajectory is much more complicated, 

because the variations need to be propagated along the hybrid trajectory to the endpoint 

set.  Sussmann expands the definition of needle variation that is used in the PMP to the 

hybrid case, while maintaining the same switch sequence and time intervals as the 

reference trajectory.  A needle variation in control will be denoted ( ),vε  and is defined 

in [67]. 

 

A two location hybrid problem will be used to illustrate the steps required for proof of the 

SHMP.  This is done to help simplify the notation for the equations required.   

 

Let ξ�  be the perturbed trajectory associated with the needle variation ( ),vε .  Then the 

endpoint cost map for the perturbed reference trajectory is  

 ( ) ( )( ){ }, , LEC v Cε ξ ξ= ∂ � �  (5.1.11) 

 

where ξ∂ �  is the set of end conditions defined by  

 { }1,ξ ξ ξ∂ = ∂ ∂� � �  (5.1.12) 

with ( ) ( )( )2 1, , ,x b x a a bξ ξ ξ ξξ∂ = � � � �
�  being the initial and final conditions and 

( ) ( )( )1 1 1 2 2 1 2, , ,x x t tξ τ τ∂ =�  being the values of the trajectory at the pre and post switch 
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points.  Furthermore, ( )LC ξ�  is the Lagrangian cost function associated with the 

perturbed reference trajectory.  

 

Based on the assumptions for this problem, equation (5.1.11) is differentiable at 0 and the 

variation in endpoint map with respect to the reference trajectory, ( )( )0 ,DE vε ,  can be 

defined as  

 ( )( ) ( ) ( ) ( )( )1 2 2 10 , , , , , ,DE v w v w v vε α ε=  (5.1.13) 
 

where qw  and qv  are the variation in the final and initial conditions respectively, and α  

is the variation in the Lagrangian cost associated with the perturbed trajectory, see [67] 

for derivation of α .  Note that variation in the hybrid system’s initial condition 1v  and 

the variation in the hybrid system’s final condition 2w  are lumped together in the vector 

( )2 1,w v .  These terms are lumped together to derive the general transversality condition 

for the hybrid system, whereas the vector ( )1 2,w v  is associated with the switching 

condition for the hybrid system.  Further, note that ( ),vα ε  does not define the total cost 

associated with the trajectory.  It only represents the Lagrangian cost associated with 

moving the perturbed trajectory from its initial condition to its final condition.  In the 

problem assumptions, other costs are associated with the initial and final conditions, as 

well as, switching from the first location to the second location (i.e. the switching costs 

are excluded from the equation).   
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Now define the endpoint and switch constraints on the trajectory for some trajectory ξ .  

If the set { }2,1E = Ε  is an endpoint constraint for the system, then Ξ  satisfies the 

endpoint constraint E , if ξ∂  belongs to the set 2,1Ε .  Further, x  satisfies the switching 

conditions for the system Σ  if 1ξ∂  belongs to the set 1,2S .   

 

Next the cost associated with a trajectory, ξ , that satisfies the switch and endpoint 

constraints for the system can be defined.  Let { }1 2,L L L=  be the Lagrangian for the 

hybrid system Σ , then the Lagrangian cost functional, LC  is  

 ( ) ( ) ( )( ) ( ) ( )( )1 2

1 2
1 2, , , ,L t t

C L x t u t t dt L x t u t t dt
τ τ

ξ = +∫ ∫  (5.1.14) 

 

Furthermore, let ,i jΦ  be cost associate with switching from one location to the next and 

Ψ  be the cost associated with the endpoints of the trajectory.  Then the total cost 

associated with the trajectory ξ  is  

 
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

1

1

2

2

2,1 1,2 1 1

2

, , , ,

                                                                    , ,

t

t

J x u t L x t u t t dt

L x t u t t dt

τ

τ

ξ ξ= Ψ ∂ +Φ ∂ +

+

∫

∫
 (5.1.15) 

 

and for the optimal trajectory #Ξ , ( ) ( )# ˆ ˆ, ,J J x u tΞ =   

 ( ) ( )ˆ ˆ, , , ,J x u t J x u t≤  (5.1.16) 
 

Now that the cost associated with an admissible trajectory has been developed, the set of 

costs associated with all admissible trajectories can be collected in a Boltyanskii 

approximating cone. 
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Fix the two real functions, 1 2, : n nσ σ × →\ \ \ , ( ) ( )( )1 1 1,x x tσ τ  and ( ) ( )( )2 0 2,x t xσ τ  

such that  

 
( ) ( )( )
( ) ( )( )

1 1 1

2 0 2

, 0

, 0

x x t

x t x

σ τ

σ τ

>

>
 (5.1.17) 

 

when ( ) ( )( )1 1 1,x x tτ ξ≠ ∂  and ( ) ( )( )0 2,x t x τ ξ≠ ∂  and  

 
( ) ( )( )
( ) ( )( )

1 1 1

2 0 2

, 0

, 0

x x t

x t x

σ τ

σ τ

=

=
 (5.1.18) 

 

when ( ) ( )( )1 1 1,x x tτ ξ= ∂  and ( ) ( )( )0 2,x t x τ ξ= ∂ . 

 

Let G  be the set of points ( ) ( )( ) ( ) ( )( )( ) ( ) ( )1 1 0 2, , , , n n n nx x t x t x rτ τ ∈ × × × ×\ \ \ \ \  

where ( ) ( )( )1 1 1,2,x x t Sτ ∈  and ( ) ( )( )0 2 2,1,x t x Sτ ∈  with the property  

 
( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

#
1,2 1 1 2,1 0 2

1 1 1 2 0 2

, ,

                                                  , ,

r J x x t x t x

x x t x t x

τ τ

σ τ σ τ

≤ Ξ −Φ −Ψ

− −
 (5.1.19) 

 

Equation (5.1.19) is the set of system endpoint costs associated with all admissible pre- 

and post-switch states along the optimal trajectory.  Note that the terms 1,2Φ , 2,1Ψ , 1σ , 

and 2σ  are all greater than or equal to zero by definition, so  

 ( )#r J≤ Ξ  (5.1.20) 
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which implies that r  represents a lower cost than the optimal and the set G  contains an 

infinite number of vectors with lower costs than the optimal. 

 

Now let the set *G  be defined as the set  

 ( ){ }* #
1 , , LG Cξ ξ= ∂ ∂ Ξ  (5.1.21) 

 

and note that if P  is the set of all possible needle variations, then *G  satisfies  

 ( )*G EC P G= ∩  (5.1.22) 

 

Equation (5.1.22) says that the intersection of the set of all variations in end condition 

and the set of all admissible end conditions with cost less than the cost of the reference 

trajectory is the set of end conditions given by the assumed optimal control.  As such, a 

Boltyanskii approximating cone, K , to the set G  along the set *G  can be found that 

contains the vector of improved cost, with  

 { }1 2, ,K K K r=  (5.1.23) 
 

where 1K  is the Boltyanskii approximating cone to the set 12S  at the point 1ξ∂ , 2K  is the 

Boltyanskii approximating cone to the set 21S  at the point ξ∂ , and r  is a cost that is less 

than or equal to ( )#J Ξ . 

 

Using the problem assumptions and definition of the Boltyanskii approximating cone, 1K  

and 2K  are going to have the following form  
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{ } { } { }
{ } { } { }

0
1 1

0
2 2

0 0

0 0

K K

K K

= × ×

= × ×
 (5.1.24) 

 

where 0
1K  is the Boltyanskii approximating cone for the set of possible final and initial 

conditions at the switch point ( ) ( )( )1 2,x x tτ  and 0
2K  is the Boltyanskii approximating 

cone for the set of possible final and initial conditions at the system final and initial 

conditions ( ) ( )( )2 1,x x tτ . 

 

Then set K  then is the set of all ( ) ( )( ) ( ) ( )( )( )1 1 2 2 2 2 1 1, , , ,z z t z z t rτ τ , such that 

( ) ( )( ) 0
1 1 2 2 1,z z t Kτ ∈ , ( ) ( )( ) 0

2 2 1 1 2,z z t Kτ ∈ , and  

 ( ) ( ) ( )( )( ) ( ) ( ) ( )( )12 1 1 1 2 2 12 2 2 1 1, ,r z z t z z tξ τ ξ τ≤ −∇Φ ∂ ⋅ −∇Ψ ∂ ⋅  (5.1.25) 
 

Note that the first term on the right hand side of equation (5.1.25) represents the cost 

associated with the variation in the pre- and post-switch points and the right hand term 

represents the cost associated with variation in the system’s final and initial conditions. 

 

Now that the set K  has been defined, the set containing all of the end costs associated 

with the perturbed trajectory can be defined, K̂ , and a separation theorem can be applied 

resulting in the necessary conditions. 

 

The interested reader can find the proof of the SHMP in [68], for this case and in [67] for 

the case where the dynamics and Lagrangian are non-smooth.   
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5.2 Riedinger’s HMP 

In [57][58][59] Riedinger utilizes a non-smooth maximum principle, like the one in [72], 

to synthesize optimal control solutions for hybrid systems.  Riedinger develops a hybrid 

model and then presents the necessary conditions for the maximum principle for that 

model.  The following section will summarize Riedinger’s results. 

 

5.2.1 Model 

For a given finite set of discrete states { }1, ,K k= … , there is an associated collection of 

continuous dynamics defined by the differential equations 

 ( ) ( ) ( )( ), ,k kx t f x t u t t=�  (5.2.1) 

 

where  

1. k K∈  
2. the continuous state, x , takes its values in kn\  
3. the continuous control, u , takes its values in the control set kU  included in km\  
4. the vector fields kf  are defined on [ ],k kn m a b× ×\ \  for all k K∈  

 

Further the discrete state, k K∈ , is defined using the following transition function  

 ( ) ( ) ( ) ( )( ), , ,k t x t k t d t tφ+ − −=  (5.2.2) 

 

and the discrete control ( )d t  defined by [ ]: ,d a b D→  and D  is a finite set.  The 

function φ  is a map that satisfies  
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 [ ]: ,X K D a b Kφ × × × →  (5.2.3) 

 

Where 1 kn nX + +⊆ …\ . 

 

Now assume that there exist boundary conditions on the trajectory ( ),x t  of the form 

( ) ( )( ), , 0k kC x t t′ =  that defines a discrete event for the system and jump functions ( ),k k ′Φ  

that reset the value of the state during a discrete event, where  

 ( ) ( ) ( )( ), ,k kx t x t t+ − −
′= Φ  (5.2.4) 

 

Note that this problem formulation allows for both controlled and autonomous switching.  

Controlled switching occurs when the controller generates a discrete event causing a 

transition.  Autonomous switching occurs when the continuous state trajectory intersects 

a boundary or switching surface in the state space. 

 

5.2.2 Hybrid Maximum Principle 

Assume that the hybrid problem is the one presented in the previous section and let 

1[ , , , ]a t b…  and [ ]0 1, , , mk k k…  be the sequence of switching times and the associated 

mode sequence associated to the control ( ),u d  over the time interval [ ],a b .  Then the 

cost associated with the control ( ),u d  can be defined as  

 ( ) ( ) ( )( )1

0

, , ,i

i
i

m t

kt
i

J u d L x t u t t dt+

=

= ⋅∑∫  (5.2.5) 
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Note that the cost is an indirect function of the discrete variable d  through the 

Langrangian function, but is not a explicit function of the discrete variable. 

  

Further, make the following assumptions: 

1. the control domain kU  is a bounded subset of km\  
2. the vector fields ( ), ,kf x u t  and ( ), ,kL x u t  are continuous on [ ],kn

kU a b× ×\  and 
are continuously differentiable with respect to the state variable and time variable 

3. the boundaries kS∂  are defined by a set of continuously differentiable equality 

constraints ( ) ( ) ( )( ){ },: , : , 0k k kS x t C x t t′∂ = =  

4. for all ( ) 2,k k K′ ∈ , the functions ( ),k kC ′  and ( ),k k ′Φ  are continuous and 
continuously differentiable 

 

The optimal control problem is to find the control, ( )ˆˆ,u d , that minimizes equation (5.2.5) 

subject to the constraints in the hybrid problem. 

 

Before the necessary conditions are given, the Hamiltonian system needs to be defined.  

Let the Hamiltonian be defined for every k K∈  as  

 ( ) ( ) ( ) ( )0 0, , , , , , , ,k k kH x u t t f x u t L x u tλ λ λ λ= ⋅ − ⋅  (5.2.6) 

 

where 0 0λ ≥  and 

 ( )0, , , ,kH x u t
x

λ λ
λ

∂
=

∂
�  (5.2.7) 

 ( )0, , , ,kH x u t
x

λ λ
λ

∂
− =

∂
�  (5.2.8) 

 

Now the RHMP can be presented. 
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Riedinger’s Hybrid Maximum Principle (RHMP) [57] 

If ( )ˆˆ,u d  is an admissible optimal control and ( )ˆˆ,x k  is the resulting state trajectory for 

equations (5.2.1), (5.2.2), (5.2.4), and (5.2.5), then there exists a piecewise absolutely 

continuous curve λ  and constant 0 0λ ≥ , ( ) ( )0 , 0,0λ λ ≠  on [ ],a b  such that: 

1. the sextuplet ( )0
ˆ ˆˆ ˆ, , , , ,x k u dλ λ  satisfies equations (5.2.7) and (5.2.8) almost 

everywhere 
2. at time t  for a given ( )0

ˆˆ, , ,x kλ λ , the following maximum condition holds  

 ( ) ( )0 0ˆ ˆ ˆ, , , , sup , , , ,
k

k k
u U

H x u t H x u tλ λ λ λ
∈

=  (5.2.9) 

3. at switching time it , 0, ,i m= … , a vector iπ  exists such that the following 
transversality conditions are satisfied 

a. ( ) ( ) ( )( ) ( ) ( ) ( )( )
1 1, ,, ,

i i i i

T T

i i i ik k k kT
i i i

x t t C x t t
t t

x x
λ λ π− −

− −

− +
⎛ ⎞ ⎛ ⎞∂Φ ∂
⎜ ⎟ ⎜ ⎟= ⋅ + ⋅

∂ ∂⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

b. ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
1 1, ,, ,

i i i i

T T

i i i ik k k kT
i i i i

x t t C x t t
H t t H t

t t
λ π− −

− −

− + +
⎛ ⎞ ⎛ ⎞∂Φ ∂
⎜ ⎟ ⎜ ⎟= − ⋅ + + ⋅
⎜ ⎟ ⎜ ⎟∂ ∂
⎝ ⎠ ⎝ ⎠

 

 

c. when no boundary conditions exist for the switching time (i.e. a discrete 
event occurs), 0iπ = . 

 

Riedinger actually proves his necessary conditions using the principle of dynamic 

programming.  He starts from the final state, formulates the optimal control problem in 

terms of a terminal cost function, assumes the control is optimal, and derives the 

necessary conditions. 

 

The inputs and resulting state trajectory that satisfy Riedinger’s hybrid maximum 

principle are extremal controls.  In order to compute the optimal control switching 
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sequence for the controlled switch case, the necessary conditions and equation (5.2.9) can 

be used to compute the Hamiltonian for all of the feasible discrete states.  From condition 

(a) of the RHMP the value of the adjoint doesn’t change when the system switches 

locations under a controlled switch.  Since the value of the adjoint is known for the 

feasible controlled switching locations, the Hamiltonian for these locations can be 

computed.  The location that has the maximum value of the Hamiltonian over the 

admissible control set is the location that the controller switches the system too. 

 

Because Riedinger allows for controlled discrete switching, he must pick a final location 

(along with the initial location) and build a map of all possible mode switches that can 

end in the final location at the desired final state.  He then has to use a dynamic 

programming argument along with the HMP to calculate the optimal discrete switching 

path along the trajectory.  However, the resulting optimal control is open-loop because he 

is solving for the control solution along a single reference trajectory.   

5.3 Caines’ HMP 

In [61][63][64][65] Caines et al, utilize Riedinger’s version [57][58][59] of the Hybrid 

Maximum Principle to develop a series of numerical algorithms to find local optimal 

switching schedules for hybrid systems.  As will be shown here, Caines work is another 

specialized non-smooth maximum principle and will be summarized here for 

completeness.   
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First the model that Caines requires will be presented.  The trajectory of the non-smooth 

system will be presented next with all of its associated assumptions.  Finally, Caines‘ 

HMP will be presented and discussed.  

 

5.3.1 Model 

First the basic definitions describing the hybrid model and the motion of the hybrid 

trajectory will be introduced.  Define a hybrid system to be the 5-tuple  

 ( ), , , ,nS Q I E U F MΣ = × × Γ� \ �  (5.3.1) 
 

Where: 

1. S  is the hybrid state space and is the product of the finite set of discrete states, 
Q , and the state space for the continuous dynamics, n\ . 

2. I  is the hybrid admissible control set and is the product of the finite set of 
controlled and autonomous transition labels, E , and the set of all bounded 
measurable functions on some interval [ )*0,T , *T ≤ ∞  taking values in U . 

3. n nF Q U= × × →\ \  is the indexed set of continuous dynamics, { }i
i

q q Q
f

∈
, 

describing the evolution of the continuous trajectory in between each discrete 
event. 

4. T E TΓ = × →  is a time independent transition map defining the evolution of the 
discrete events. 

5.  { }:M M Pα α= ∈ , P Q Q⊂ × , : n mMα × →\ \ \ , 1m n= −  is a collection of 

guards such that for ( ),i jq qα = , ( ) ( ){ }, : , 0M t x M t xα α= =�  is a smooth n -

dimensional sub-manifold of 1n+\  and for all t , ( ) { }: ( , ) 0M t x M t xα α= =�  is a 

1n −  dimensional switching sub-manifold of n\ .  It is further assumed that 
( ) ( )M t M tα β∩ =∅� �  for all t∈\ , , ,  Pα β α β∈ ≠ . 

 

Note that the model definition is straight forward except for the definition of the 

switching surfaces defining the autonomous discrete switching from the discrete state iq  
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to jq .  The autonomous switching surfaces are defined to be surfaces in n\  of dimension 

1n − , that are parameterized by time.  He further assumes that any two switching surfaces 

do not intersect at any specified time t . 

 

Now define a hybrid event sequence as the finite or infinite sequence  

 ( ) ( ) ( ) ( )0 0 1 1 2 2, , , , , , ,t t tτ σ σ σ σ= ⎡ ⎤⎣ ⎦…  (5.3.2) 
  

where τ  are the event times and σ  are the discrete input events. 

 

A switching sequence for the hybrid system is defined as a finite or infinite sequence  

 ( ) ( ) ( ) ( )0 0 1 1 2 2, , , , , , ,S q t q t q t qτ∑ = = ⎡ ⎤⎣ ⎦…  (5.3.3) 
 

where τ  are the event times and iq  are the discrete locations. 

 

A hybrid switching schedule can also be defined as  

 ( )0 1 2, , ,QS q q q= …  (5.3.4) 
 

Finally, the execution of a hybrid system e∑  is the input trajectory ( ), ,q uτ , defined over 

the interval [ )0 ,t T , together with a hybrid state trajectory ( ), ,q xτ , defined over the 

interval [ ) [ )0 0, ,t T t T′ ⊂  which satisfy the following conditions: 

1. Continuous Dynamics (CS) –  

 ( ) ( ) ( )( ) )1, ,  . . ,
j jq q j j

d x t f x t u t a e t t t
dt +⎡= ∈ ⎣  (5.3.5) 

2. Discrete Dynamics Controlled Switching (DSC) – In the hybrid execution 
consider the hybrid switching time it , 1i ≥ , at which the left limit 
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( ) ( )
1

*lim
ii q it t x t x t
−↑ =  exists.  A controlled discrete transition occurs at the 

controlled switching time it t=  if there exists a discrete control input i cEσ ∈ , 

1i iq q− ≠ , and ( ) ( )*
iq i ix t x t= , for which  

 ( )( ) ( ) ( ) ( )1 1, , ,  , ,c i i i c i i i i iq t q q tσ σ σ τ σ− −Γ ≡ Γ = ∈  (5.3.6) 
3. Discrete Dynamics Autonomous switching (DSU) – In the hybrid execution at the 

switching time it , 1i ≥ , the limit from the left at it  exists and satisfies 

( ) ( )
1

*lim
ii q it t x t x t
−↑ = .  Let ( )

1 , , 0
i iq qM t x
−

=  define a switching manifold.  A 

discrete transition, denoted uΓ  and is an element i uσ ∈∑ , occurs at autonomous 
switching time it  if  

 ( )( )1

*
, , 0,  

i iq q i i iM t x t t τ
−

= ∈  (5.3.7) 
 
Note that the Caines model has a set of fundamental assumptions associated with it.  

They are 

1. There exists fK < ∞  and fL < ∞ , such that ( ),
iq ff x u K≤ , nx∈\ , u U∈ , 

iq Q∈  and ( ) ( )1 2 1 2, ,
i iq q ff x u f x u L x x− ≤ ⋅ − , for 1 2, nx x ∈\ , u U∈ , iq Q∈ . 

(Lipschitz condition – The differential equations and hence the trajectories are 
well behaved.) 

2. The matrix 
( ), ,

i jq qM t x

x

∂

∂
 has full rank for all nx∈\  and ,i jq q Q∈ .  

3. ( )1,
iqf x u  and ( )2,

jqf x u  are transversal to ,i jq qM�  for all nx∈\ , 1 2,u u U∈ , and 

,i jq q Q∈ . 

4. ,
1

i jq qM
K

x

∂
≤ < ∞

∂
 for all ( ), nt x ∈ ×\ \  and for all ,i jq q Q∈ .  

,
2

i jq qM
K

t
∂

≤ < ∞
∂

 for all ( ), nt x ∈ ×\ \  and for all ,i jq q Q∈ .  

5. For every ,i jq q Q∈  there exists ij cEσ ∈  such that ( ),c i ij jq qσΓ = .  

6. Non-Zeno condition – There exists 0rT >  such that if st  is a switching time then 

0 s rt t T< − , f s rt t T> +  and there is no other switching time in the interval 

[ ],s r s rt T t T− + . 
7. A switching time is controlled or autonomous, but not both. 
8. The initial state ( )( )( )0 0 0,x x t q ∈∑�  is such that at initial time 0t ∈\ , 

( )
0 , 0 0, 0

jq qM t x ≠ , jq Q∈ .   
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9. Let :
i

n
qL U× →\ \  be a function defined for every iq Q∈ .  There exists 

LK < ∞  and LL < ∞ , such that ( ),
iq LL x u K≤ , nx∈\ , u U∈ , iq Q∈  and 

( ) ( )1 2 1 2, ,
i iq q LL x u L x u L x x− ≤ ⋅ − , for 1 2, nx x ∈\ , u U∈ , iq Q∈ .  

10. Let : ng →\ \  be a function that exists for the hybrid control problem, then 
there exists gK < ∞  and gL < ∞ , such that ( ) gg x K≤ , nx∈\ , and gL < ∞ .  

Also, ( ):k ng C +∈ \ \ , 1k ≥ .  
 

The Caines assumptions are more general than the Riedinger assumptions because Caines 

only requires the dynamic constraints and the cost functional to be Lipschitz continuous 

in the state, where the Reidinger assumptions require them to be continuously 

differentiable in state and time.  However, the Caines assumptions require a switch to 

either be autonomous or controlled and for Reidinger it doesn’t matter.  The Sussmann 

work allows for more general continuity assumptions on the dynamic constraints and the 

cost functional than Caines, but doesn’t allow for controlled switching.  The utility of the 

Caines’ HMP is that the restrictions on the problem constraints are offset with the ability 

to study a larger class of hybrid problem by including controlled dynamic constraints.   

Note that two direct consequences of the assumptions are required for the Caines’ HMP. 

First, the non-Zeno assumption (Assumption 6) coupled with fixing the end time ft , 

requires that the number of discrete events has to be finite.  This is true because the non-

Zeno condition requires that an interval of time must exist between each discrete event, 

so when the final time is fixed, the number of intervals has to be finite. 

 

An additional assumption is required for Caines work.  They require local controllability 

of the continuous dynamics (See [63] Definition 5).  Hence all admissible needle 

variations in control produce a set of trajectories that can be bounded by a tube. 
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5.3.2 Hybrid Maximum Principle 

The Caines hybrid optimal control problem starts with a hybrid system defined by 

equation (5.3.1).  Next let the functions ( ),
iqL x u , iq Q∈ , be a cost function that satisfies 

Assumption 10.   Let ( ),I S u∑ ∑=  be a hybrid input trajectory.  Then for given initial and 

final times, 0t  and ft  respectfully, and hybrid state ( )0 0,q x , the hybrid system ∑ ’s 

execution is well defined.  Now define the hybrid cost function as  

 ( ) ( ) ( )( ) ( )( )1

0 0 0
0

, , ,i

i
i

v t

I q ft
i

J t q x L x s u s ds g x t+

∑
=

= +∑∫  (5.3.8) 

 

where ( ) ( ) ( )( ),
i iq qx t f x t u t=�  for 1i v= … , ( ) ( )

1
lim

i
i

i qt t
x t x t

−

+

↑
=  for 1 1i v= +… , and 

1v ft t+ = . 

For the hybrid control problem defined above, let ( )( ) 0fg x t =  and let I∑  be the 

switching schedule and optimal control input that minimizes equation (5.3.8), then 

1. there exists a continuous to the right, piecewise absolutely continuous adjoint λ , 

satisfying 
( ), ,

iqH x u
x
λ

λ
∂

= −
∂

� , ( )1
. . ,

i is sa e t t t
+

∈ , 1i v= … , where the following 

boundary conditions hold with ( )0 ntλ ∈\  and ( )f ntλ ∈\  

a. if 
ist  is a controlled switching time then ( ) ( ) ( )i i is s st t tλ λ λ− +≡ ≡  

b. if 
ist  is an autonomous switching time satisfying ( )( ), , 0

i j i iq q s sM t x t =  then  

( ) ( ) ( ) ( )( ), ,
i j i i

i i i

q q s s

s s s

M t x t
t t t p

x
λ λ λ− +

∂
≡ ≡ + ⋅

∂
 for some mp∈\  where 

( )
( )
( )

1

1

,  ,

,  ,
i i

i i

i s s

j s s

q t t t
q t

q t t t
−

+

⎧ ∈⎪= ⎨
∈⎪⎩

. 

2. the Hamiltonian minimization conditions are satisfied 
a. ( ) ( ) ( )( ) ( ) ( )( )*, , , ,

i iq qH x t t u t H x t t uλ λ≤  for *u U∈  and )1
,

i is st t t
+

⎡∈ ⎣  
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b. ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , ,
i kq qH x t t u t H x t t u tλ λ≤  for 1k v∈ …  and 

)1
,

i is st t t
+

⎡∈ ⎣  

3. the Hamiltonian value condition is satisfied.  Let ( ) ( )
iqH t H t� , )1

,
i is st t t

+
⎡∈ ⎣ . 

a. If 
ist  is a controlled switching time then 

( ) ( ) ( ) ( ) ( ) ( )1 1i i i i i i i i i is q s q s q s q s sH t H t H t H t H t H t
− −

− − + +≡ ≡ = = ≡  

b. If 
ist  is an autonomous switching time satisfying ( )( ), , 0

i j i iq q s sM t x t =  

then 

( ) ( ) ( ) ( ) ( ) ( )( )
1

, ,
i j i i

i i i i i i i i

q q s s

s q s q s s q s

M t x t
H t H t H t H t H t p

x−

+ + −
∂

≡ = ≡ = + ⋅
∂

 

which equals ( ) ( )( ), ,
i j i i

i

q q s s

s

M t x t
H t p

x
−

∂
+ ⋅

∂
. 

 

Now that the necessary conditions for Caines version of the Hybrid Maximum Principle 

have been presented, his algorithms for solving hybrid optimal control problems are 

briefly summarized. 

5.3.3 Algorithms 

Caines and Shaikh developed algorithms that utilize the necessary conditions and find the 

switching sequences that minimize the cost function in equation (5.3.8).  The algorithms 

are limited to quadratic cost functions and linear dynamics. 

 

In references [61][63][64][65] Caines developed three search algorithms.  The first search 

algorithm is applied to problems where there are only autonomous switching surfaces.  

The inputs to the algorithm are the initial and final states and the initial and final times 

and the algorithm numerically computes the switching trajectory that minimizes the cost 

function.  The second algorithm is applied to problems where the optimization problem 

deals with controlled switching only.  For this problem the initial and final times and 
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conditions are required as well as a fixed switching sequence.  Given these inputs the 

algorithm computes the switch times that minimize the cost functional.  The third 

algorithm is an extension of the second algorithm and uses a combinatorial approach to 

find an optimal switching sequence and switch times for the controlled switching optimal 

problem. 

 

In [65] Caines applied discrete search methods to make the combinatorial algorithm more 

computationally efficient.  Caines further used the hybrid optimal control problem 

definition to define zones of optimality, which can be used to reduce some optimal 

controlled switch problems to an autonomous switch surface problem, which is much 

more computationally efficient.
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Chapter 6: Optimal Feedback Control of Hybrid Systems 

The purpose of this section is to expand the results of the non-smooth necessary and 

sufficient conditions to provide a sufficient condition for the class of hybrid optimal 

control problems presented in Chapter 3.  The necessary condition will be less general 

than the one given by Sussmann but is general enough to be applied to a wide variety of 

engineering problems and still have associated sufficient conditions.   

 

In the derivation of the PMP and the non-smooth sufficient conditions, the dynamics of 

the system were required to satisfy a continuity assumption, which excluded direct 

application to hybrid optimal control problems.  Further, the SHMP gave necessary 

conditions for hybrid optimal control problems with fixed switching sequences, but did 

not provide any sufficient conditions. 

 

The purpose of this section is to utilize the non-smooth necessary and sufficient 

conditions presented in Chapter 4 to solve optimal feedback control problems for a subset 

of hybrid problems where the system constraints are autonomous and the hybrid problem 

has a fixed switching sequence.  The resulting necessary conditions are not as general as 

the necessary conditions given by the SHMP because continuity of the dynamics is 

required for the derivation, but include sufficient conditions and can be applied to a large 

class of engineering problems. 
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The section can be outlined as follows; first the hybrid optimal control problem will be 

restated, the necessary and sufficient conditions will be presented in theorems, and finally 

the methodology for deriving the necessary and sufficient conditions will be presented 

and applied to the hybrid problem. 

6.1 Problem Statement 

Let the hybrid system, ∑ , be defined as the 7-tuple   

 ( ), , , , , ,Q M U f u I SΣ =  (6.1.1)   
 

that is given in Chapter 3, pg. 58. 

 

Also, let there exist a control function ( )u t , 0 vt t t≤ ≤ , that moves the trajectory from 

( )( )1 0,q x t  to ( )( ),v vq x t  where 1q  is the initial location, ( )0x t  is the initial condition for 

the state trajectory, vq  is the final location, and ( )vx t  is the final value of the state 

trajectory.  Furthermore, let the cost associated with the control u  be defined as  

( )( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

0
1

0 0 0
1

1

1

, , , ,

                                                                   ,

j

j
j

v j

t

f q qt
j

q v q j j
j

J x t u t t L x t u t t dt x t

x t x t x t

ν

ν

−=

−
− +

=

− = +Φ

+Φ + Φ

∑∫

∑
 (6.1.2) 

 

where 
jqL  is the Lagrangian for each location, 

jqΦ  is the cost associated with switching 

from one location to the next, 
0qΦ  and 

vqΦ  are the costs associated with the initial and 

final conditions respectfully, and satisfies the assumptions in Chapter 3, pg. 50. 
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If u  is an admissible control function for the hybrid system ∑  with the associated cost 

( )( )0 0, , vJ x t u t t− , then the optimal control problem is to find the control that minimizes 

the cost and satisfies whichever of the following boundary conditions are part of the 

problem formulation 

1. ( ) n
vx t ∈\ , i.e. the final value for the continuous trajectory is free. 

2. ( )v vx t x= , i.e. the final value for the continuous trajectory is fixed. 

3. ( ) ( )( ) 0v v vx t g x t∈ = , i.e. the final value for the continuous trajectory is 
constrained to a surface of values in the state space where the final time is either 
fixed or free. 

 

Note that in the development of the necessary and sufficient conditions, the parameter I  

of the hybrid control problem will satisfy  

 { }, , ,I = \ \ … \  (6.1.3) 
 

so that the switching times are free.  The case where the switching times are fixed or 

bounded can also be developed using the theory in [7] and the methodology given in this 

chapter, but is excluded here.  For problems where the dynamic constraints are not 

autonomous, but vary with time in a regular way (as is the case under the control problem 

assumptions), the fixed time problem can be transformed into a free time problem by 

adding one more (clock) state to the dynamic constraint  

 
( )
( )0 0

1x t

x t t

=

=

�
 (6.1.4) 

 

to the control problem and to the switching surface, 

 ( )s sx t t− =  (6.1.5) 
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where st
−  is the new problem’s free switch time and st  is the original problem’s fixed 

switching time. 

 

First Proposition 6.1.1 will be presented which describes the behavior of the viscosity 

solutions on a boundary which is required for the proof of the main theorem.  Then the 

main theorem, Theorem 6.2.1 will be presented.  Theorem 6.2.1 will be broken up into 

two parts.  The first part gives the necessary and sufficient conditions for the initial and 

final locations and then the second part will give the necessary and sufficient conditions 

for the locations in between.  The necessary and sufficient conditions are similar, but are 

broken up this way for notational convenience. 

 

Proposition 6.1.1 
 

Assume that there exists a subset, Ω , of n\  such that  

 1Ω = Ω ∪Γ  (6.1.6) 

 

where 1Ω  is an open subset of Ω  and Γ  is a smooth surface in n\ that is the (possibly 

incomplete) boundary of 1Ω .  Define ( )n x  to be the unit vector normal to Γ  at x , that 

lies in 1Ω  and ( )T x  the tangent space to Γ  at x .  Also denote NP  as the orthogonal 

projection of n\  onto the space spanned by ( )n x  and TP  as the orthogonal projection of 

n\  onto ( )T x . 
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Let ( )u C∈ Ω  and assume that its restriction 1u  to 1Ω  is a viscosity solution to the 

HJCB.  Furthermore, assume that there exists a 0t+ >  and vector q  such that 

( ) 1u x t q++ ⋅ ∈Ω  and  

 ( ) ( ) ( )
0

lim
t

u x t q u xu x
x t+

+ +

+→

+ ⋅ −∂
=

∂
 (6.1.7) 

 

exists.  Then for all x∈Γ  and continuous real valued Hamilton-Jacobi function F , 

a. ( ) ( ) ( ) ( ) ( ), , 0T N

u x
F x u x P Du x P n x n x

x

+⎛ ⎞⎛ ⎞∂⎜ ⎟⎜ ⎟+ ⋅ ⋅ ≤
⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

 

b. ( ) ( ) ( ) ( ) ( ), , 0T N

u x
F x u x P Du x P n x n x

x

+⎛ ⎞⎛ ⎞∂⎜ ⎟⎜ ⎟+ ⋅ ⋅ ≥
⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

 

c. ( ) ( ) ( ) ( ) ( ), , 0T N

u x
F x u x P Du x P n x n x

x

+⎛ ⎞⎛ ⎞∂⎜ ⎟⎜ ⎟+ ⋅ ⋅ =
⎜ ⎟∂⎜ ⎟⎝ ⎠⎝ ⎠

 

 

Proof of Proposition 6.1.1 
 

When the hybrid problem is a free end time/fixed surface problem, Proposition 4.3.22 in 

Chapter 4 can be used to prove that u  is a viscosity solution to the HJCB for every ( )x t  

that is an element of the reachable set ℜ . 

 

Pick a 1y∈Ω , x∈Γ , nq∈\  and 0t+ > such that ( ) 1u x q t++ ⋅ ∈Ω .  Also assume that 

the normal and tangential directions for ( )x t q++ ⋅  parallel the tangential and normal 

directions of Γ  at x .  Since for all 1y∈Ω  we have assumed u  is differentiable, then  
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( ) ( ) ( )

( )
( )
( ) ( )( )

( )( )                                                                                       

T N

u x t q u x t q
u y u x t q P P y x t q

x t q x t q

o y x t q

+ +
+ +

+ +

+

⎛ ⎞∂ + ⋅ ∂ + ⋅
⎜ ⎟− + ⋅ = + ⋅ − + ⋅
⎜ ⎟∂ + ⋅ ∂ + ⋅⎝ ⎠

+ − + ⋅

 (6.1.8) 

 

Taking the limit of (6.1.8) as 0t+ →  results in  

 ( ) ( ) ( ) ( ) ( ) ( )T N

u x u x
u y u x P P y x o y x

x x

+ +⎛ ⎞∂ ∂
⎜ ⎟− = + ⋅ − + −
⎜ ⎟∂ ∂⎝ ⎠

 (6.1.9) 

 

Now, for all ( )u y , ( ) 1u x t q++ ⋅ ∈Ω , ( )u x t q++ ⋅  will satisfy the definitions of viscosity 

sub- and super-solutions.  Specifically the definition of viscosity sub-solution gives  

 ( ) ( ) ( ) ( ) ( )T Nu y u x t q P p P p y x t q o y x t q+ + +− + ⋅ ≤ + ⋅ − + ⋅ + − + ⋅  (6.1.10) 

 

Substituting equation (6.1.8) into (6.1.10) results in  

 

( )
( )

( )
( ) ( )( )

( ) ( ) ( )                                       

T N

T N

u x t q u x t q
P P y x t q

x t q x t q

P p P p y x t q o y x t q

+ +
+

+ +

+ +

⎛ ⎞∂ + ⋅ ∂ + ⋅
⎜ ⎟+ ⋅ − + ⋅ ≤
⎜ ⎟∂ + ⋅ ∂ + ⋅⎝ ⎠

+ ⋅ − + ⋅ + − + ⋅

 (6.1.11) 

 

Since ( )u x t q++ ⋅  will satisfy the definition of viscosity sub-solution for all 0t+ >  as 

0t+ → , we can take the limit of equation (6.1.11) as 0t+ →  which results in  

 ( ) ( ) ( ) ( ) ( ) ( )T N T N

u x u x
P P y x P p P p y x o y x

x x

+ +⎛ ⎞∂ ∂
⎜ ⎟+ ⋅ − ≤ + ⋅ − + −
⎜ ⎟∂ ∂⎝ ⎠

 (6.1.12) 
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A similar result can be derived using the definition of the viscosity super-solution which 

is  

 ( ) ( ) ( ) ( ) ( ) ( )T N T N

u x u x
P P y x P p P p y x o y x

x x

+ +⎛ ⎞∂ ∂
⎜ ⎟+ ⋅ − ≥ + ⋅ − + −
⎜ ⎟∂ ∂⎝ ⎠

 (6.1.13) 

 

In equations (6.1.12) and (6.1.13) the viscosity sub- and super-solutions have been 

projected onto the surface x∈Γ  through the limit argument.  The proof of Proposition 

4.3.15 can now proceed in an identical manner to Proposition 4.3.14. 

 

Since the trajectory ends (or begins) at the surface, the surface serves as a boundary for 

the trajectory and y x t τ= + ⋅  is not necessarily an element of 1Ω ∪Γ , so the method 

used to prove Proposition 4.3.14 does not directly apply.  However, by problem 

assumption, all y  such that ( )y x t n x= + ⋅ , 0t > , will be an element of 1Ω  so the proof 

can proceed. 

 

Let ( )y x t n x= + ⋅  for 0t > , then equation (6.1.12) implies  

 ( ) ( ) ( ) ( )N N

u x
P t n x P p t n x o y x

x

+
∂

⋅ ⋅ ≤ ⋅ ⋅ + −
∂

 (6.1.14) 

  

and equation (6.1.13) implies  

 ( ) ( ) ( ) ( )N N

u x
P t n x P p t n x o y x

x

+
∂

⋅ ⋅ ≥ ⋅ ⋅ + −
∂

 (6.1.15) 
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Dividing both sides of equation (6.1.14) by t  and taking the limit as 0t →  results in  

 ( ) ( ) ( )N N

u x
P n x P p n x

x

+
∂

⋅ ≤ ⋅
∂

 (6.1.16) 

 

Similarly equation (6.1.15) results in  

 ( ) ( ) ( )N N

u x
P n x P p n x

x

+
∂

⋅ ≥ ⋅
∂

 (6.1.17) 

 

Since by problem assumption equations (6.1.16) and (6.1.17) must be true and  

 ( )
N N

u x
P p P

x

+
∂

=
∂

 (6.1.18) 

 

Now pick ( )1 2y x t t n xτ= + ⋅ + ⋅ , 1 0t ∈ ≠\ , 2 0t > , such that y∈Ω , then equations 

(6.1.12) and (6.1.13) imply  

 

( ) ( ) ( )( )

( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 2

1 2 1 2

1 2 1 2 1 2

                                                                

T N

T N

T N T N

u x u x
P P t t n x

x x

P p P p t t n x o t t n x

u x u x
P t P t n x P p t P p t n x o t t n x

x x

τ

τ τ

τ τ τ

+ +

+ +

⎛ ⎞∂ ∂
⎜ ⎟+ ⋅ ⋅ + ⋅ ≤
⎜ ⎟∂ ∂⎝ ⎠

+ ⋅ ⋅ + ⋅ + ⋅ + ⋅

∂ ∂
⋅ ⋅ + ⋅ ⋅ ≤ ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅

∂ ∂
 (6.1.19) 

 

and  
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( ) ( ) ( ) ( )

( )( )

1 2 1 2

1 2                                                                           

T N T N

u x u x
P t P t n x P p t P p t n x

x x

o t t n x

τ τ

τ

+ +
∂ ∂

⋅ ⋅ + ⋅ ⋅ ≥ ⋅ ⋅ + ⋅ ⋅
∂ ∂

+ ⋅ + ⋅

 (6.1.20) 

 

Substituting equation (6.1.18) into equations (6.1.19) and (6.1.20) results in  

 ( ) ( )( )1 1 1 2T T

u x
P t P p t o t t n x

x
τ τ τ

+
∂

⋅ ⋅ ≤ ⋅ ⋅ + ⋅ + ⋅
∂

 (6.1.21) 

 

and  

 ( ) ( )( )1 1 1 2T T

u x
P t P p t o t t n x

x
τ τ τ

+
∂

⋅ ⋅ ≥ ⋅ ⋅ + ⋅ + ⋅
∂

 (6.1.22) 

 

Finally since a positive and negative value of 1t  always exists such that y∈Ω , equations 

(6.1.21) and (6.1.22) both imply  

 ( )
T T

u x
P p P

x

+
∂

=
∂

 (6.1.23) 

 

which finishes the proof of the proposition.  Q.E.D. 

 

Note that this proposition doesn’t provide an upper and lower bound for the sub- and 

super-differentials.  Since the surface Γ  provides a boundary, the state space on the 

“other” side of the surface doesn’t provide any additional constraints on the problem. 
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6.2 Theorem 6.2.1 

Let ∑  be a hybrid control system that satisfies the assumptions in Chapter 3, pg. 46-47, 

pg. 50.   

 

First the necessary and sufficient conditions will be developed for the final location of the 

hybrid control system.  Define ( )tλ , 1v vt t t+
− < <  as the solution   

 
( ) ( ) ( )

( ) ( )( )

,
v

v

q

v q v

f x ud t
t

dt x
t D x t

λ
λ

λ +

∂
= − ⋅

∂
∈ Φ

 (6.1.24) 

 

then the control function ( )u t , 1v vt t t+
− ≤ ≤ , is optimal if and only if: 

1. The Hamiltonian, ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0, , , max , , ,
v vq qu U

H x t t u t H x t t u tλ λ λ λ
∈

= , is 

maximized 
2. and ( ) ( ) ( ) ( )( )( ) ( )( )*

0 ,, , , , ,
v vq c q vt H x t t u t D J x t t tλ λ λ +− ∈ −  for all 1v vt t t+

− < <  

3. if 
( )( ) ( )( )* *

, ,

0

, ,
lim v vc q v v v c q v v v

t

J x t t q t t J x t t t
t q+

+

+→

+ ⋅ − − −

⋅
 and 

( )( )
( )

( )( ) ( )( )* * *
, 1 1 , 1 1 , 1 1

0
1

, , ,
limv v vc q v v v c q v v v c q v v v

t
v

J x t t t J x t t q t t J x t t t

t qx t +

+
+ + + + + + +
− − − − − −

++ →
−

∂ − + ⋅ − − −
=

⋅∂
 

exist then ( ) ( )( ) ( )( )
( ) ( ) ( )

*
, ,

v

v

c q v v v
v T q v N

v

J x t t t
t P D x t P n x n x

x t
λ

+⎛ ⎞∂ −⎜ ⎟− = Φ + ⋅ ⋅
∂⎜ ⎟

⎝ ⎠
 and 

( ) ( )( ) ( ) ( )( )
( )( )
( ) ( ) ( )

1

*
1 , 1 1 1

*
, 1 1

1

, ,

,
                            

v v

v

v T c q v v v T q v v

c q v v v
N

v

t P DJ x t t t P D x t x t

J x t t t
P n x n x

x t

λ
−

+ + + +
− − − −

+
+ +
− −

+
−

− = − + Φ

⎛ ⎞∂ −⎜ ⎟+ ⋅ ⋅⎜ ⎟∂⎜ ⎟
⎝ ⎠

 where ( )n x  are 

the unit normal vectors to 
1vqS
−

 and 
vqS  at ( )1vx t+−  and ( )vx t  pointing into the 

location. 
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where  

 ( ) ( ) ( )( ) ( ) ( ) ( )0 0, , , , , ,
v v vq q qH x t t u t f x u t L x uλ λ λ λ= − ⋅  (6.1.25) 

 

and  

 
( )( ) ( )( )
( )( ) ( )( )

*
,

*
,

, inf , ,

,
v

v v

c q v vu U

c q v v q v

J x t t t J x t u t t

J x t t t x t
∈

− = −

− = Φ
 (6.1.26) 

 

Next, the necessary and sufficient conditions will now be developed for the initial 

location of the hybrid control system.  Define ( )tλ , 0 1t t t −< <  as the solution   

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )( )( )

1

1 2

*
1 1 1 , 1 2 1

,

, ,

q

q c q

f x ud t
t

dt x
t D x t x t J x t t t

λ
λ

λ − + − + + − +

∂
= − ⋅

∂

∈ Φ + −
 (6.1.27) 

 

then the control function ( )u t , 0 1t t t−≤ ≤ , is optimal if and only if: 

4. The Hamiltonian, ( ) ( ) ( )( ) ( ) ( ) ( )( )
1 10 0, , , max , , ,q qu U

H x t t u t H x t t u tλ λ λ λ
∈

= , is 

maximized 
5. and ( ) ( ) ( ) ( )( )( ) ( )( )( )1 1

*
0 , 1, , , , ,q c qt H x t t u t D J x t t tλ λ λ + −− ∈ −  

6. if 
( )( ) ( )( )1 1

* *
, 1 1 1 , 1 1 1

0

, ,
lim c q c q

t

J x t t q t t J x t t t

t q+

− + − − − − −

+→

+ ⋅ − − −

⋅
 and 

( )( )
( )

( )( ) ( )( )
1 1 1

* * *
, 0 1 0 , 0 1 0 , 0 1 0

0
0

, , ,
limc q c q c q

t

J x t t t J x t t q t t J x t t t
x t t q+

+− + − −

+→

∂ − + ⋅ − − −
=

∂ ⋅
 exist 

then ( ) ( )( ) ( )( )
( ) ( ) ( )1

1

*
, 1 1 1*

1 , 1 1 1
1

,
, c q

T c q N

J x t t t
t P DJ x t t t P n x n x

x t
λ

+
− − −

− − − −
−

⎛ ⎞∂ −⎜ ⎟− = − + ⋅ ⋅⎜ ⎟∂⎜ ⎟
⎝ ⎠

 

and  

( ) ( )( ) ( )( )
( )( )
( ) ( ) ( )

1 0

1

*
0 , 0 1 0 0

*
, 0 1 0

0

,

,
                                                       

T c q T q

c q
N

t P DJ x t t t P D x t

J x t t t
P n x n x

x t

λ −

+
−

− = − + Φ

⎛ ⎞∂ −⎜ ⎟+ ⋅ ⋅
⎜ ⎟∂
⎝ ⎠
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where ( )n x  are the unit normal vectors to 
1qS  and 

0qS  at ( )1x t−  and ( )0x t  
pointing into the location. 

 

where  

 ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 10 0, , , , , ,q q qH x t t u t f x u t L x uλ λ λ λ= − ⋅  (6.1.28) 

 

and  

 
( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

1

1 1 2

*
, 1 1

* *
, 1 1 1 1 1 , 1 2 1

, inf , ,

, , ,

c q u U

c q q c q

J x t t t J x t u t t

J x t t t x t x t J x t t t

− −

∈

− − − − + + − +

− = −

− = Φ + −
 (6.1.29) 

 

Finally, the necessary and sufficient conditions for the rest of the locations of the hybrid 

system can be given.  Define ( )tλ , 1i it t t+ −
− < < , for 2, , 1i v= −… , as the solution to the 

dynamic system   

 ( ) ( ) ( ),
iqf x ud t

t
dt x
λ

λ
∂

= − ⋅
∂

 (6.1.30) 

 
with final condition  
 ( ) ( ) ( )( ) ( )( )( )1

*
, 1, ,

i ii q i i c q i i it D x t x t J x t t tλ
+

− + − + + − +
+∈ Φ + −  (6.1.31) 

 
If for all 2 1i v= −… , ( ) ( )( ) ( )( )( )1

*
, 1, ,

i iq i i c q i i iD x t x t J x t t t
+

+ − + + − +
+Φ + − ≠ ∅ , then the 

control function ( )u t , 1i it t t+ −
− ≤ ≤  is optimal for all 2 1i v= −…  if and only if: 

7. The Hamiltonian, ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0, , , max , , ,
i iq qu U

H x t t u t H x t t u tλ λ λ λ
∈

= , is 

maximized 
8. and ( ) ( ) ( ) ( )( )( ) ( )( )*

0 ,, , , , ,
i iq c q it H x t t u t D J x t t tλ λ λ + −− ∈ −  
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9. if 
( )( ) ( )( )* *

, ,

0

, ,
lim i ic q i i i c q i i i

t

J x t t q t t J x t t t

t q+

− + − − − − −

+→

+ ⋅ − − −

⋅
 and 

( )( )
( )

( )( ) ( )( )* * *
, 1 1 , 1 1 , 1 1

0
1

, , ,
limi i ic q i i i c q i i i c q i i i

t
i

J x t t t J x t t q t t J x t t t

t qx t +

+
+ − + + + − + + − +
− − − − − −

++ →
−

∂ − + ⋅ − − −
=

⋅∂
 

exist then 

( ) ( )( ) ( )( )
( ) ( ) ( )1

*
,*

,

,
,

i

c q i i i
i T c q i i i N

i

J x t t t
t P DJ x t t t P n x n x

x t
λ

+
− − −

− − − −
−

⎛ ⎞∂ −⎜ ⎟− = − + ⋅ ⋅⎜ ⎟∂⎜ ⎟
⎝ ⎠

 and  

( ) ( )( ) ( ) ( )( )
( )( )
( ) ( ) ( )

*
1 , 1 1 1

*
, 1 1

1

, ,

,
                           

i i

i

i T c q i i i T q i i

c q i i i
N

i

t P DJ x t t t P D x t x t

J x t t t
P n x n x

x t

λ + + − + + −
− − − −

+
+ − +
− −

+
−

− = − + Φ

⎛ ⎞∂ −⎜ ⎟+ ⋅ ⋅⎜ ⎟∂⎜ ⎟
⎝ ⎠

 where ( )n x  are the 

unit normal vectors to 
iqS  and 

1iqS
−

 at ( )ix t−  and ( )1ix t+−  pointing into the 
location. 

 

where  

 ( ) ( ) ( )( ) ( ) ( ) ( )0 0, , , , , ,
i i iq q qH x t t u t f x u t L x uλ λ λ λ= − ⋅  (6.1.32) 

 

and  

 
( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )1

*
,

* *
, , 1

, inf , ,

, , ,

i

i i i

c q i iu U

c q i i q i i c q i i i

J x t t t J x t u t t

J x t t t x t x t J x t t t
+

− −

∈

− − − + + − +
+

− = −

− = Φ + −
 (6.1.33) 

 

Finally under the problem assumptions given in Chapter 3 pg. 46-47, pg. 50, the 

following condition is true for every location.   

10. ( ) ( ) ( )( )0, , ,
iqH x t t u tλ λ−  is constant for all 1i it t t+ −

− ≤ ≤ . 
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In Theorem 6.1.2, the relationship between the super-differential and the cost-to-go 

function has a different sign than the work in Chapter 4.  This is because the Hamiltonian 

used here has opposite sign of the one used in Chapter 4. 

 

Proof of Theorem 6.2.1 
 

The necessary and sufficient conditions for the hybrid control problem are going to be 

derived by recasting the hybrid problem into a series of local non-hybrid control 

problems and applying the theory given in Chapter 4.  A method that is in the spirit of 

Bellman’s Principle of Dynamic Programming will be used to decompose the hybrid 

problem into a series of local non-hybrid optimal control problems.  The optimal control 

will be computed for location vq  first and the corresponding optimal cost-to-go to the 

final state will be calculated along the surface of initial conditions for the last location.  

Since the mapping of the state from location 1vq −  to vq  is given through the problem 

definition, the equivalent optimal cost-to-go to the final state, 
1

*
, vc qJ

−
, can be calculated 

along the surface of final conditions for the next location 1vq −  in reverse time.  Now a 

new local non-hybrid optimal control problem can be developed for location 1vq −  where 

1

*
, vc qJ

−
 is added as a terminal cost to the cost function.  The optimal control is computed 

for this new problem and the process is repeated until the solution is computed for all 

locations.  For each local non-hybrid control problem, a set of necessary and sufficient 

conditions are developed that get grouped together to form the necessary and sufficient 

conditions for the entire hybrid optimal control problem. 
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The first step in deriving the necessary and sufficient conditions is to develop a non-

hybrid control problem that captures the behavior of the last location of the hybrid 

optimal control problem. 

Let the location be equal to vq  and assume that there exists a control function ( )u t , 

1v vt t t+
− ≤ <  that transfers the state from ( )

11 ,v vv q qx t S
−

+
− ∈  to ( )vx t  with cost  

 ( )( ) ( ) ( )( ) ( )( )
1

1 1, , ,v

v v
v

t

v v v q q vt
J x t u t t L x t u t dt x t

+
−

+ +
− −− = ⋅ +Φ∫  (6.1.34) 

  

and satisfies the constraints  

 ( ) ( ),vx t f x u=�  (6.1.35) 
 

Now under the assumptions for the control problem, Theorem 3.44 in [7] applies. 

Assume ( )( )
vq vD x t+Φ ≠ ∅ , and define ( )tλ , 1v vt t t+

− < <  as the solution   

 
( ) ( ) ( )

( ) ( )( )

,
v

v

q

v q v

f x ud t
t

dt x
t D x t

λ
λ

λ +

∂
= − ⋅

∂
∈ Φ

 (6.1.36) 

 

then the control function ( )u t  is optimal if and only if: 

1. The Hamiltonian, ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0, , , max , , ,
v vq qu U

H x t t u t H x t t u tλ λ λ λ
∈

= , is 

maximized 
2. and ( ) ( ) ( ) ( )( )( ) ( )( )*

0 ,, , , , ,
v vq c q vt H x t t u t D J x t t tλ λ λ +− ∈ −  

 

where  

 ( ) ( ) ( )( ) ( ) ( ) ( )0 0, , , , , ,
v v vq q qH x t t u t f x u t L x uλ λ λ λ= − ⋅  (6.1.37) 

 

and  
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( )( ) ( )( )
( )( ) ( )( )

*
,

*
,

, inf , ,

,
v

v v

c q v vu U

c q v v q v

J x t t t J x t u t t

J x t t t x t
∈

− = −

− = Φ
 (6.1.38) 

 

Furthermore, if the final state is an element of the set 
vqS  and the value function is 

differentiable with respect to x , then it must satisfy the boundary condition  

 ( ) ( )( ) ( )( ) ( ) ( )
*
,*

,

,
, v

v

c q v v
v T c q v v N

J x t t t
t P DJ x t t t P n x n x

x
λ

+⎛ ⎞∂ −⎜ ⎟− = − + ⋅ ⋅
∂⎜ ⎟

⎝ ⎠
 (6.1.39) 

 

for all 
vqx S∈ , where ( )u x

x

+
∂
∂

 is the direction derivative of u  at x , and ( )n x  is the unit 

normal vector to 
vqS  pointing into the set and 

 

( ) ( )( )
( )( ) ( ) ( )

*
1 , 1

*
, 1

,

,
                                        

v

v

v T c q v v

c q v v
N

t P DJ x t t t

J x t t t
P n x n x

x

λ + +
− −

−
+
−

− = −

⎛ ⎞∂ −⎜ ⎟+ ⋅ ⋅
⎜ ⎟∂
⎝ ⎠

 (6.1.40) 

 

for all 
1vqx S
−

∈ , where ( )u x
x

−
∂
∂

 is the direction derivative of u  at x , and ( )n x  is the unit 

normal vector to 
1vqS
−

 pointing into the set.  For the two boundary conditions, pointing 

into the set means that when the state is an element of the surface of initial conditions, the 

following must be true 

 ( ) ( )( ) ( )( )( )1 1 1, , 0v v vsign f x t u t n x t+ + +
− − − ≥  (6.1.41) 

 

and when the state is an element of the surface of final conditions the following equation 

must be true  
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 ( ) ( )( ) ( )( )( )1 1 1, , 0v v vsign f x t u t n x t− − −
− − − ≤  (6.1.42) 

 

Note that conditions (1) and (2) provide necessary and sufficient conditions for the 

optimal control in location vq .  Since the optimal control is given by conditions (1) and 

(2), the optimal cost-to-go from any ( )1vx t+−  to ( )vx t  can be computed, so with some 

work the feedback control solution for location vq   is also computed.  As such, the 

optimal cost-to-go from any initial state ( )1vx t+−  to final state ( )vx t , 

( )( )*
, 1 1,

vc q v v vJ x t t t+ +
− −− , can be computed. 

 

Now that the feedback control solution is computed for location vq , the next step is to 

develop and solve a local non-hybrid optimal control problem for location 1vq − .  Assume 

that there exists a control function ( )u t , 2 1v vt t t+ −
− −≤ <  that transfers the state from 

( )
22 vv qx t S

−

+
− ∈  to ( )1vx t−−  with cost  

 
( )( ) ( ) ( )( ) ( ) ( )( )

( )( )

1

1 1
2

2 1 2 1 1

*
, 1 1

, , , ,

                                                                            ,

v

v v
v

v

t

v v v q q v vt

c q v v v

J x t u t t L x t u t dt x t x t

J x t t t

−
−

+ − −
−

+ − + − +
− − − − −

+ +
− −

− = ⋅ +Φ

+ −

∫  (6.1.43) 

  

and satisfies the constraint  

 ( ) ( )1 ,vx t f x u−=�  (6.1.44) 
 

Note that the inclusion of the optimal cost-to-go to the final state ( )vx t  in equation 

(6.1.43) completely captures the effect of a variation in optimal trajectory in location 1vq −  
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to the final location and state ( )vx t .  As such, this local non-hybrid control problem is 

equivalent to solving the part of the hybrid problem that contains locations 1vq −  and vq . 

 

The new non-hybrid optimal control problem satisfies the assumptions of required for 

Theorem 4.3.11 and it can be applied to this optimal control problem. 

 

Assume ( ) ( )( ) ( )( )( )1

*
1 1 , 1 1, ,

v vq v v c q v v vD x t x t J x t t t
−

+ − + + +
− − − −Φ + − ≠ ∅ , and define ( )tλ , 

2 1v vt t t+ −
− −< <  as the solution   

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )( )( )

1

1

*
1 1 1 , 1 1

,

, ,

v

v v

q

v q v v c q v v v

f x ud t
t

dt x

t D x t x t J x t t t

λ
λ

λ

−

−

− + − + + +
− − − − −

∂
= − ⋅

∂

∈ Φ + −
 (6.1.45) 

 

then the control function ( )u t  is optimal if and only if: 

1. The Hamiltonian, ( ) ( ) ( )( ) ( ) ( ) ( )( )
1 10 0, , , max , , ,

v vq qu U
H x t t u t H x t t u tλ λ λ λ

− −∈
= , is 

maximized 
2. and ( ) ( ) ( ) ( )( )( ) ( )( )

1 1

*
0 , 1, , , , ,

v vq c q vt H x t t u t D J x t t tλ λ λ
− −

+ −
−− ∈ −  

 

where  

 ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 10 0, , , , , ,

v v vq q qH x t t u t f x u t L x uλ λ λ λ
− − −

= − ⋅  (6.1.46) 
 

and  

 
( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

1

1 1

*
, 1 1

* *
, 1 1 1 1 , 1 1

, inf , ,

, , ,

v

v v v

c q v vu U

c q v v q v v c q v v v

J x t t t J x t u t t

J x t t t x t x t J x t t t

−

− −

− −
− −∈

− − − + + +
− − − − − −

− = −

− = Φ + −
 (6.1.47) 
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Furthermore, if 
( )( ) ( )( )1 1

* *
, 1 1 1 , 1 1 1

0

, ,
lim v vc q v v v c q v v v

t

J x t t q t t J x t t t

t q
− −

+

− + − − − − −
− − − − − −

+→

+ ⋅ − − −

⋅
 and 

( )( )
( )

( )( ) ( )( )1 1 1

* * *
, 2 1 2 , 2 1 2 , 2 1 2

0
2

, , ,
limv v vc q v v v c q v v v c q v v v

t
v

J x t t t J x t t q t t J x t t t

t qx t
− − −

+

+
+ − + + + − + + − +
− − − − − − − − −

++ →
−

∂ − + ⋅ − − −
=

⋅∂
 exist 

then  

 

( ) ( )( )
( )( )
( ) ( ) ( )

1

1

*
1 , 1 1 1

*
, 1 1 1

1

,

,
                                       

v

v

v T c q v v v

c q v v v
N

v

t P DJ x t t t

J x t t t
P n x n x

x t

λ
−

−

− − − −
− − − −

+
− − −
− − −

−
−

− = −

⎛ ⎞∂ −⎜ ⎟+ ⋅ ⋅⎜ ⎟∂⎜ ⎟
⎝ ⎠

 (6.1.48) 

 

and   

 

( ) ( )( ) ( ) ( )( )
( )( )
( ) ( ) ( )

1 1

1

*
2 , 2 1 2 2 1

*
, 2 1 2

2

, ,

,
                                  

v v

v

v T c q v v v T q v v

c q v v v
N

v

t P DJ x t t t P D x t x t
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−
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 (6.1.49) 

 

where ( )n x  are the unit normal vectors to 
1vqS
−

 and 
2vqS

−
 at ( )1vx t−−  and ( )2vx t+−  pointing 

into the location. 

 

As before, conditions (1) and (2) provide necessary and sufficient conditions for the 

optimal control in location 1vq −  and the optimal cost-to-go from any ( )2vx t+−  to ( )1vx t−− , 

( )( )1

*
, 2 1 2,

vc q v v vJ x t t t
−

+ − +
− − −− , can be computed. 

 

Applying this decomposition of the hybrid optimal control problem in a series of local 

non-hybrid optimal control problems and applying Theorem 4.3.11 from Chapter 4 
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provides the general necessary and sufficient conditions for the hybrid optimal control 

problem.  

 

Since the constraints on the problem are assumed autonomous, another condition can be 

added to the problem.  Corollary 4.3.13 provides the following: 

3. If ( )u t , 1i it t t+ −
− ≤ ≤ , is the optimal control function, then for all t  

( ) ( ) ( )( )0, , ,
iqH x t t u tλ λ  is constant. 

 

In summary, conditions (1) and (2) provide the framework for the necessary and 

sufficient conditions for the general hybrid optimal control problem, equations (6.1.48) 

and (6.1.49) provide the framework for the boundary conditions for the adjoint when the 

differentiability assumption is met, and condition (3) provides the framework for the 

constraint on the Hamiltonian and finishes the proof of Theorem 6.1.2.  Q.E.D. 
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Chapter 7: Examples 

Two examples will be presented in this chapter to demonstrate the application of the 

optimal control analysis tools developed in Chapter 6.  The first example is a hybrid 

problem that combines the standard double integrator and harmonic oscillator optimal 

control problems commonly found in the optimal control literature.  This is a simple 

problem that demonstrates the complexities of hybrid problems.  The second example 

utilizes a simple tire and ground interface model to study the traction control problem.  

This example demonstrates how non-linear practical engineering problems can be 

analyzed using hybrid tools 

7.1 Introduction to First Problem 

The purpose of this section is to apply the methods developed in Chapter 6 to analyze a 

simple hybrid feedback control problem.  The hybrid control problem is a two-node 

hybrid automaton that utilizes the dynamics from the well-known double integrator and 

harmonic oscillator optimal control problems.  The solution to the control problem will 

be the control that minimizes the time to the origin.  The double integrator and harmonic 

oscillator problems are used because the optimal control for the minimum time to the 

origin for each problem is well known and is studied extensively in optimal control texts 

[6]. 
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The solution to both the individual minimum time to the origin optimal control problems 

for the double integrator and harmonic oscillator will be given.  Providing the solution to 

each individual optimal control problem serves two purposes.  First, parts of each 

solution will be directly applied to the hybrid control problem.  Second, the result of the 

hybrid problem will be compared to the optimal solution of each individual problem in its 

respective region of the state space to demonstrate how the hybridization of the problem 

changes the feedback control.  As such the feedback optimal control solution is required 

for each individual control problem. 

 

The hybrid optimal control problem will be presented first.  The solution to the minimum 

time to the origin problem for the individual double integrator and harmonic oscillator 

problems will be given next.  Finally, the hybrid control problem will be examined and 

the solution presented.   

 

7.1.1 Hybrid Control Problem Definition 

The hybrid control problem will now be given.  The problem statement is as follows: 

 

Problem Statement: Given the hybrid system in Figure 7.1 determine the feedback 

control strategy to drive the state, from any initial condition, to the origin in the 

minimal amount of time subject to the following conditions: 

1. ( ) 10
0

20

x
x t

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, where ( )0x t  can take any value in the state space 

2. The initial location q  is determined by the initial state and satisfies the following 
rule 
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a. If 10 20x xα< ⋅ , 1q q=  
b. If 10 20x xα> ⋅ , 2q q=  
c. If 10 20 20 0x x xα α= ⋅ ∧ ⋅ ≤ , 1q q=  
d. If 10 20 20 0x x xα α= ⋅ ∧ ⋅ > , 2q q=  

3. ( ) 1u t ≤ , for all t  
 

 

Figure 7.1: Hybrid automaton of example problem. 

 

The system depicted in Figure 7.1 is a hybrid automaton.  Per the figure, this hybrid 

system has two locations 1 2 and q q , with associated continuous time dynamics.  In 

location 1q , the continuous time dynamics is the double integrator and while in location 

2q , the dynamics driving the system is the harmonic oscillator.  Two switching surfaces 

exist for this problem that are superimposed on each other.  Each switching surface is the 

line 1 2x xα= ⋅ , for an α ∈\  such that 0 α≤ < ∞ .  If the system is in location 1q  and the 

trajectory intersects the switching surface, the system switches to location 2q .  

Conversely, if the system is in location 2q  and the trajectory intersects the switching 

surface, the system switches to location 1q .   

 

1q  

( ) ( ) ( )
0 1 0
0 0 1

x t x t u t⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�  

( ) ( )1 2x t x tα< ⋅  

2q  

( ) ( ) ( )
0 1 0
1 0 1

x t x t u t⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

�  

( ) ( )1 2x t x tα> ⋅  

( ) ( )1 2x t x tα= ⋅  

( ) ( )1 2x t x tα= ⋅  
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Note that the solution to this problem is required to be global and to be a feedback 

solution. 

 

To solve this global optimization problem, the work from Chapter 6 will be used.  The 

solution will start at the origin and work backwards in time to reconstruct the optimal 

sequence of trajectories that is required to force the initial condition to the origin.  To 

ensure that the trajectories are optimal, the necessary and sufficient conditions given in 

Chapter 6 will be verified. 

 

Now that the hybrid control problem is given, it will be recast in the Sussmann form.  

Sussmann defines a hybrid control system as: 

 ( ), , , , , ,Q M U f u I SΣ =  (7.1.1) 
 
where each component will be defined below. 

 

Q  is a finite set and is the number of locations where the continuous time dynamics 

change.  In this problem { }1 2,Q q q=  since there are two locations.  M  is a family of 

smooth manifolds indexed by iq  that define the state space for each location.  For this 

problem the state is constrained for each location so 

( ) ( ){ }2 2
1 2 1 2 1 2 1 2, : , , :M x x x x x x x xα α= ∈ ≤ ⋅ ∈ ≥ ⋅\ \ { }1 2

,q qM M M=  where  

 
( )
( )

1

2

2
1 2 1 2

2
1 2 1 2

, :

, :
q

q

M x x x x

M x x x x

α

α

= ∈ ≤ ⋅

= ∈ ≥ ⋅

\

\
 (7.1.2) 
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The third component of the hybrid model is U  which is the control space for each 

location.  For this problem, there is one control input, so { },U = \ \ .  f  is a family 

indexed by iq  that maps the product q qM U×  into the tangent bundle of qM  such that 

( ),q x qf x u T M∈  for every ( ), q qx u M U∈ × .  f  defines the dynamic constraints for the 

state variables in each location, so for this problem { }1 2
,q qf x x= � � , where 

iqx�  is defined in 

Figure 7.1.  u  is a family indexed by iq  consisting of the set of admissible controls for 

each location.  From the problem definition the set of admissible controls is the same for 

both locations and is { }1, 1u u u= ≤ ≤ .  I  is a family of sub-intervals of \ , that give 

freedom to include bounds on the switching time in the hybrid model.  Given the nature 

of the dynamics for the hybrid problem, each location’s intersection of the switching set 

will be bounded in time, so [ ] [ ]{ }
1 2min max min max, , ,q qI t t t t= .  Finally, S  is a subset of the 

location space and state space, indexed by iq that defines the switching set for the hybrid 

system.  Using Figure 7.1, { }1 2 2 1, ,,q q q qS S S=  where ( ){ }
1 2, 1 2 1 2 2 1, , , :q qS x x x x x xα= ⋅ ≤  and 

( ){ }
2 1, 1 2 1 2 2 1, , , :q qS x x x x x xα= ⋅ ≥ . 

 

In order to use the work of Chapter 6, the hybrid problem ∑  needs to be separated into 

two separate control problems.  The reason is that no matter what final location, 1q  or 2q , 

is chosen, a set of states exist such that the origin is not reachable with any admissible 

control and the optimal cost-to-go function is discontinuous.  However, if ∑  is separated 

into two separate control problems with appropriate assumptions, the solution to the 

entire problem can be computed by means of the results in Chapter 6.  
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7.1.2 Double Integrator 

Now that the hybrid control system has been defined, the minimum time to the origin 

control for each set of local dynamics will be reviewed, as these properties will be helpful 

in the analysis of hybrid control system.   

 

The double integrator dynamics govern the continuous dynamics of location 1q .  [6] 

performs extensive analysis on the solution of the minimum time to origin control 

problem for the double integrator.  A short synopsis of the results will be provided here.   

 

The differential equations of motion are: 

 ( ) ( ) ( )
1

0 1 0
0 0 1qx t x t u t⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�  (7.1.3) 

 
The optimal control problem will find the control that minimizes the time to the origin 

from the state ( ) 2
1 2,x x x= ∈\  subject to the dynamic constraints given in (7.1.3) with 

the control ( ) 1u t ≤ . 

 

The necessary and sufficient conditions from Chapter 6 can be applied to this problem 

almost everywhere.  Along the surface 

 ( ) ( ) ( )1 2 2
1
2

x t x t x t= − ⋅ ⋅  (7.1.4) 

 
the sufficient conditions don’t apply because the value function is continuous but not 

differentiable.  The sufficient condition in Chapter 6 assumes that when the value 

function is continuous but not differentiable, it is at a single point and not along a 
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trajectory.  However, the Maximum Principle still applies and can be used along with the 

problem assumptions to prove the control is optimal. 

 

First, the properties of the Hamiltonian will be studied.  Recall from Chapter 6 that the 

Hamiltonian is defined as 

 ( ) ( ) ( ) ( )0 0, , , , , ,i i i i iH x u t f x u L x uλ λ λ λ= − ⋅  (7.1.5) 
 

Where: 

1. ( )tλ  is the value of the adjoint at time t  
2. if  is the function describing the state equation constraint in location i  
3. 0λ  is a constant used to define normality of the system 
4. iL  is the Lagrangian for the system 

 

The Hamiltonian for this control problem is  

 ( ) ( ) ( ) ( ) ( )1 0 1 2 2, , , 1H x u t x t t u tλ λ λ λ= ⋅ + ⋅ −  (7.1.6) 
 

Where ( ) ( )
( )

1
1

2

t
t

t
λ

λ
λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 0λ  is chosen to equal 1 without loss of generality 

 

and the adjoint equation satisfies  

 ( ) Ht
x

λ ∂
= −

∂
�  (7.1.7) 

 

everywhere the differential exists. 

 

Substituting equation (7.1.6) into equation (7.1.7) and simplifying results in  
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 ( ) ( )1

0
t

t
λ

λ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
�  (7.1.8) 

 

Assuming that the initial condition for the adjoint equation is  

 ( ) 10
0

20

t
λ

λ
λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (7.1.9) 

 

and solving equation (7.1.8) with initial condition (7.1.9) gives 

 ( ) ( )
( ) ( )

1 0
0

2 0 1 0

, 
t

t t t t
t t t
λ

λ
λ λ
⎡ ⎤

= ≤ <⎢ ⎥− ⋅⎣ ⎦
 (7.1.10) 

 
The necessary conditions given in Chapter 6 require that the Hamiltonian is maximized, 

which means that the optimal control will satisfy   

 ( ) ( ) ( )( )*
2 0 1 0sgnu t t t tλ λ= − ⋅  (7.1.11) 

 

Since the optimal control must satisfy ( ) 1u t ≤ , then equation (7.1.11) implies  

 ( )* 1
1

u t ⎧
= ⎨−⎩

 (7.1.12) 

 

almost everywhere and the optimal control will be constant almost everywhere and 

switch sign at most one time.  As such, equation (7.1.3) can be integrated when ( )* 1u t =  

 
( ) ( ) ( )

( ) ( )

2
1 10 20 0 0

2 20 0

1
2

x t x x t t t t

x t x t t

= + ⋅ − + ⋅ −

= + −
 (7.1.13) 

 

and 
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( ) ( ) ( )

( ) ( )

2
1 10 20 0 0

2 20 0

1
2

x t x x t t t t

x t x t t

= + ⋅ − − ⋅ −

= − −
 (7.1.14) 

 

for ( )* 1u t = − . 

 

Equations (7.1.13) and (7.1.14) imply that the optimal control requires that the optimal 

trajectory will only intersect the origin if it is traveling along one of two surfaces.  If the 

initial condition satisfies  

 10 20 20 20
1 ,  0
2

x x x x= − ⋅ ⋅ >  (7.1.15) 

 

then the control ( )* 1u t = − , 0 ft t t≤ < , will move the initial condition ( )10 20,x x  to ( )0,0  

in time  

 20ft x=  (7.1.16) 
 

Conversely, if the initial condition satisfies  

 10 20 20 20
1 ,  0
2

x x x x= − ⋅ ⋅ <  (7.1.17) 

 

then the control ( )* 1u t = , 0 ft t t≤ < , will move the initial condition ( )10 20,x x  to ( )0,0  

in time  

 20ft x= −  (7.1.18) 
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When the initial condition does not satisfy equation (7.1.15) or (7.1.17), then the 

necessary condition implies that the control will switch once.  If the initial condition 

satisfies  

 10 20 20
1
2

x x x< − ⋅ ⋅  (7.1.19) 

 

then the control ( )* 1u t = , 0 st t t≤ <  and control ( )* 1u t = − , s ft t t≤ <  where st  is the 

time the state trajectory intersects the surface given in (7.1.15), will move the initial 

condition ( )10 20,x x  to ( )0,0  in time  

 2
20 10 204 2ft x x x= − + − ⋅ + ⋅  (7.1.20) 

 

Conversely, if the initial condition satisfies  

 10 20 20
1
2

x x x> − ⋅ ⋅  (7.1.21) 

 

then the control ( )* 1u t = − , 0 st t t≤ <  and control ( )* 1u t = , s ft t t≤ <  where st  is the 

time the state trajectory intersects the surface given in (7.1.17), will move the initial 

condition ( )10 20,x x  to ( )0,0  in time  

 2
20 10 204 2ft x x x= + ⋅ + ⋅  (7.1.22) 

 

When the initial condition satisfies  

 10 20 20
1
2

x x x= − ⋅ ⋅  (7.1.23) 
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either ( ) 1u t =  or ( ) 1u t = − , for 0 ft t t≤ < , are the only admissible controls identified by 

the necessary conditions that produce a path along the trajectory to the origin. 

 

There is a trick that enables one to apply the HJCB sufficient conditions to prove the 

candidate control is optimal.  It is to divide the original problem into two parts.  Part one 

is to prove that the optimal control for initial conditions satisfying  

 10 20 20
1
2

x x x= − ⋅ ⋅  (7.1.24) 

 

with 20 0x >  is ( )* 1u t = −  for all t , and for initial conditions satisfying equation (7.1.24) 

with 20 0x <  is ( )* 1u t =  for all t .  The proof is easy.  Any change in control causes the 

trajectory to miss the origin and cross the 1x -axis, which will take more time to reach the 

origin.  Part two is to solve the original minimum time problem but not with the origin as 

the target set, but the new target set 

 ( )1 2 1 2 2
1, :
2

S x x x x x⎧ ⎫= = − ⋅ ⋅⎨ ⎬
⎩ ⎭

 (7.1.25) 

 

The solution to this problem is obvious from the preceding analysis and has a smooth 

cost-to-go function.  Thus, the necessary and sufficient conditions apply.  The result is a 

globally optimal feedback control. 

 



 

   177

A phase plane plot of the optimal trajectories can be found in Figure 7.2.  Note that the 

trajectories that are thin are the trajectories associated with the control ( )* 1u t = −  and the 

trajectories that are thick are the trajectories associated with the control ( )* 1u t = . 

 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Phase Plot of the Optimal Trajectories for Double Integrator

x1

x2

u(t) = 1

u(t) = -1

 

Figure 7.2: Phase Plot of the Optimal Trajectories for the Double Integrator Problem 

 

The general feedback solution that minimizes the time to the origin from any initial 

condition is: 

• ( )* 1u t =  for 

 2 2
1 2 1 2

1 1
2 2

x x x x≤ ⋅ ∧ < − ⋅  (7.1.26) 
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• ( )* 1u t = −  for 

 2 2
1 2 1 2

1 1
2 2

x x x x> ⋅ ∧ ≥ − ⋅  (7.1.27) 

 

so the optimal trajectory will follow one of two paths based on the initial condition: 

1. The trajectory starts with ( )* 1u t =  until it intersects the 2
1 2

1
2

x x= − ⋅  surface and 

then the control input switches to *( ) 1u t = −  until it hits the origin 

2. The trajectory starts with *( ) 1u t = −  until it intersects the 2
1 2

1
2

x x= ⋅  surface and 

then the control input switches to ( )* 1u t =  until it hits the origin. 
 

7.1.3 Harmonic Oscillator 

The harmonic oscillator dynamics govern the motion of the trajectories in location 2q .  

As with the double integrator, [6] performs extensive analysis on the solution of the 

minimum time to origin control problem and a short synopsis of the results is provided 

for reference. 

 

The equations of motion for this system are: 

 ( ) ( ) ( )
2

0 1 0
1 0 1qx t x t u t⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
�  (7.1.28) 

 

The optimal control problem will find the control that minimizes the time to the origin 

from the state ( ) 2
1 2,x x x= ∈\  subject to the dynamic constraints given in (7.1.28) with 

the control ( ) 1u t ≤ . 
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The necessary and sufficient conditions from Chapter 6 can be applied to this problem 

almost everywhere.  Along the surface 

 ( )( ) ( )2 2
1 2 1x t u x t− + =  (7.1.29) 

 

where  

 
( ) ( ) ( )
( ) ( ) ( )

2 1 2

2 1 2

1,  0
1,  0

x t x t x t
u

x t x t x t
< ∧ ≤⎧

= ⎨− > ∧ ≥⎩
 (7.1.30) 

 

the sufficient conditions don’t apply because the value function is continuous but not 

differentiable along the entire trajectory.  However, the Maximum Principle still applies 

and can be used along with the problem assumptions to prove the control is optimal. 

 

As before, the properties of the Hamiltonian will be studied.  The Hamiltonian for this 

problem will satisfy   

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 2 1 2, , , 1H x u t x t t x t t u tλ λ λ λ λ= ⋅ − ⋅ + ⋅ −  (7.1.31) 
 

and the differential equations describing the evolution of the adjoint equations can be 

calculated.  As before, the adjoint equation will satisfy  

 ( ) Ht
x

λ ∂
= −

∂
�  (7.1.32) 

 

everywhere the differential exists. 

 

Evaluating equation (7.1.32) results in  
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 ( ) ( )
( )

2

1

t
t

t
λ

λ
λ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�  (7.1.33) 

 

Assuming that the initial conditions for the adjoint equations are  

 ( ) 10
0

20

t
λ

λ
λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (7.1.34) 

 

and solving the differential equation (7.1.33) with initial condition (7.1.34) gives 

 ( ) ( ) ( )
( ) ( )

( )
( )

1 0

2 0

cos sin
, 

sin cos f

t t t
t t t t

t t t
λ

λ
λ

⎡ ⎤ ⎡ ⎤
= ≤ <⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (7.1.35) 

 
The necessary conditions given in Chapter 6 require that the Hamiltonian is maximized, 

which means that the optimal control will satisfy  

 ( ) ( ) ( ) ( ) ( )( )*
1 0 2 0sgn sin cosu t t t t tλ λ= − ⋅ + ⋅  (7.1.36) 

 

Equation (7.1.36) implies that the set of admissible controls will switch periodically as t  

increases.  As such, equation (7.1.28) can be integrated resulting in  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 10 0 20 0

2 10 0 20 0

cos sin

sin cos

x t x u t t x t t u

x t x u t t x t t

= − ⋅ − + ⋅ − +

= − − ⋅ − + ⋅ −
 (7.1.37) 

 

where either ( )* 1u t = −  or ( )* 1u t = .  The resulting trajectories can now be plotted for 

various initial conditions under constant input as depicted in Figure 7.3.  Notice that the 

results are circles centered at the point ( )sgn
0

u⎡ ⎤
⎢ ⎥
⎣ ⎦

 where the circle radii depend on the 

initial conditions, and the movements of the trajectories are clockwise about the center of 

the circle (the solid circles are the ones that have an edge that passes through the origin).  
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Since the trajectories are clockwise about the center of the circles, the trajectories that 

satisfy equations (7.1.29) and (7.1.30) define the set of initial conditions that reach the 

origin under constant control, ( )* 1u t =  or ( )* 1u t = − . 

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

x1

x2

Harmonic Oscillator Constant Control Trajectories

u(t) = 1
u(t) = -1

  

Figure 7.3: Phase plot of the harmonic oscillator system under constant control. 

The feedback control law that minimizes the time to the origin is very complicated to 

state in equation form, but can easily be visualized.  Figure 7.4 depicts the optimal 

solution to the harmonic oscillator problem.  In the region depicted by the thin line the 

control ( )* 1u t =  is optimal and in the region depicted by the thick line the control 

( )* 1u t = −  is optimal. 
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The same trick that was applied to the double integrator problem can be used to prove the 

proposed control is a global feedback solution to the optimal control problem.  Again the 

original problem will be divided into two parts.  Part one is to prove that the optimal 

control for initial conditions satisfying  

 ( )2
20 101 1x x= − − −  (7.1.38) 

 

with 100 2x≤ ≤  is ( )* 1u t = −  for all t , and for initial conditions satisfying equation  

 ( )2
20 101 1x x= − +  (7.1.39) 

 

with 102 0x− ≤ ≤  is ( )* 1u t =  for all t .  The proof is easy.  Any change in control causes 

the trajectory to miss the origin and cross the 1x -axis, which will take more time to reach 

the origin.  Part two is to solve the original minimum time problem but not with the 

origin as the target set, but the new target set 

 
( ) ( )

( ) ( )

2
1 2 1 2 1

2
1 2 1 2 1

, : 0 2, 1 1

, : 2 0, 1 1

x x x x x
S

x x x x x

⎧ ≤ ≤ = − − −⎪= ⎨
⎪ − ≤ ≤ = − +⎩

 (7.1.40) 

 

The solution to this problem is obvious from the preceding analysis and has a smooth 

cost-to-go function.  Thus, the necessary and sufficient conditions apply.  The result is a 

globally optimal feedback control. 
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Figure 7.4: Feedback optimal control solution for the harmonic oscillator. 

 

7.1.4 Problem Solution 

Before the hybrid problem will be analyzed, the work of the previous section can be used 

to provide a logical “guess” for the optimal feedback control for the hybrid problem.  

Using the phase portraits in Figure 7.2 and Figure 7.4 and taking the optimal trajectory 

from the appropriate region of the state space, it is reasonable to conjecture that the phase 

portrait of the optimal feedback control may look like the one in Figure 7.5 when 1α = .  

But as will be shown later the discrete part of the hybrid problem increases the 

complexity of the solution and hence changes the regions of constant control.  
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Hybrid Dynamic Switching Surface 

 

Figure 7.5: Guess of feedback control for the hybrid system. 

In Figure 7.5, the thick lines represent the region of the state space where the optimal 

control is ( ) 1u t =   and the thin lines indicate the optimal control is ( ) 1u t = − .  Further, 

the solid lines represent the two trajectories that intersect the origin and the direction of 

the trajectories is the same as those depicted in Figure 7.2 and Figure 7.4.  However, it 

will be shown that the control is not optimal. 

 

Optimal trajectory analysis 
 

The purpose of this problem is to solve the minimum time to the origin for the hybrid 

automaton given in Figure 7.1 for any initial condition.  In order to solve this problem, 
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the necessary conditions given in Chapter 6 will be used to narrow down the possible 

control inputs for the optimal trajectory and then the sufficient conditions will be used to 

verify that the generated feedback control is indeed optimal.   

 

First the hybrid problem will be decomposed into a series of optimal control problems 

with the appropriate boundary conditions.  Once these optimal control problems and 

associated boundary conditions are given, the necessary and sufficient conditions of 

Chapter 6 are applied to each local optimal control problem providing the solution to the 

problem. 

 

To solve the hybrid control problem depicted in Figure 7.1 using the work in Chapter 6, 

two separate control problems need to be solved because the origin is reachable from 

either side of the switch surface.  Also, there are regions of the state space on both sides 

of the switch surface that cannot reach the origin.  As such, the problem will be further 

broken up into its appropriate regions so that proper optimal control problems can be 

formed and the work of Chapter 6 will apply. 

 

The solution to the problem is going to proceed as follows: 

1. Generate a local optimal control problem that contains the desired target set (and 
associated cost-to-go function) with the appropriate initial boundary condition and 
apply the work in Chapter 6. 

2. Generate a new optimal cost-to-go function along the initial boundary condition 
defined in step 1 that embodies the solution to step 1 and call it the desired target 
set for the next local optimal control problem. 

3. This procedure will be repeated until the solution for the entire state-space is 
found.  The correct hybrid optimal control problem will be formed that will 
satisfy the assumptions of the work in Chapter 6. 

  



 

   186

Both optimal control problems will be solved concurrently because as the problem is 

solved, the solutions will be used to form the next local optimal control problem.  The 

first local optimal control problem will find the control that minimizes the time to the 

origin from any state in location 1q  that can reach the origin while remaining in location 

1q .  The second optimal control problem will find the control that minimizes the time to 

the origin from any state in location 2q  that can reach the origin while remaining in 

location 2q .  The third optimal control problem will find the control that minimizes the 

time to the switch surface from the rest of the states in location 2q  that do not reach the 

origin and still remain in location 2q .  Finally a fourth optimal control problem will find 

the control that minimizes the time to the switch surface for the set of states in location 

1q  that cannot reach the origin while the trajectory remains in location 1q .  The solutions 

for the four optimal control problems will be pieced together to form the solution to the 

complete hybrid problem.   

 

Two additional assumptions will be made on the hybrid problem.  The first assumption is 

that 1α = .  This simplification of the control problem allows for demonstration of the 

work in this dissertation without over complicating solution.  Considering non-unity α  

causes the resulting equations to become very long and the extra complexity doesn’t add 

any novelty to the results.  The second assumption applies to the behavior of the “zero” 

trajectories.  As will be shown, there is a unique surface in each location that provides a 

set of states that can reach the origin under constant control.  It is going to be assumed 

initially that when a trajectory hits one of these two surfaces, the optimal control will 
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switch and the optimal trajectory will follow that surface to the origin.  This assumption 

is temporary and will be removed at the end of the analysis. 

 

Region 1q q= , zero reachable states 
 

The first step in solving the hybrid problem is to find the control that minimizes the time 

to the origin for the set of states that can reach the origin while remaining in location 1q .  

Note that the state space for location 1q  will be split into the region that can reach the 

origin and the region that cannot.  These regions are a byproduct of the optimal control 

problem and will be discussed later.  The local optimal control problem can now be 

formulated.   

 

Assume that the initial state satisfies 0 1x ∈ℜ , where 1ℜ  is the set of states that can reach 

( ) 0
0fx t ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ft < ∞  defined by the dynamical system  

 ( ) ( ) ( )
1

0 1 0
0 0 1qx t x t u t⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�  (7.1.41) 

 

where the trajectory ( )x t , 0 ft t t≤ ≤ , remains in 1q  and the control satisfies 

( ) [ ]1,1u t ∈ − .  The optimal control problem will find the control ( )*u t  that minimizes 

the time to the origin and satisfies the dynamic constraints given in (7.1.41), subject to 

the following conditions: 

1. ( )
1

10
0

20
q

x
x t M

x
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

 such that 10 20x x≤  
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2. ( ) 1u t ≤ , for all 0 ft t t≤ ≤  

3. ( ), , 1L x u t =  

4. ( ) 0xΦ =  
 

In this region the solution to the optimal control problem is similar to the double 

integrator, so the result will be given directly and the proof omitted.  The resulting 

optimal control and region of the state space where it applies is plotted in Figure 7.6.  The 

thick lines indicate the control ( )* 1u t =  is optimal and the thin line indicates the control 

( )* 1u t = −  is optimal. 
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Figure 7.6: Region for optimal control solution for 1q q= . 
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Region 2q q= , zero reachable states 
 

The second step in solving the hybrid optimal control problem is solving the local 

optimal control problem that finds the optimal control that minimizes the time to the 

origin while remaining in location 2q .   Just as in the last section, there is a set of initial 

states in location 2q  that reach the origin and a set of states that do not reach the origin.  

These regions will be clearly defined as the analysis progresses. 

 

The local optimal control problem will now be defined.  Assume that the initial state 

satisfies 0 2x ∈ℜ , where 2ℜ  is the set of states that can reach ( ) 0
0fx t ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ft < ∞  

defined by the dynamical system  

 ( ) ( ) ( )
2

0 1 0
1 0 1qx t x t u t⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
�  (7.1.42) 

 

where the trajectory ( )x t , 0 ft t t≤ ≤ , remains in 2q  and the control satisfies 

( ) [ ]1,1u t ∈ − .  The optimal control problem will find the control ( )*u t  that minimizes 

the time to the origin and satisfies the dynamic constraints given in (7.1.42), subject to 

the following conditions: 

1. ( )
2

10
0

20
q

x
x t M

x
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

 such that 10 20x x≥  

2. ( ) 1u t ≤ , for all 0 ft t t≤ ≤  

3. ( ), , 1L x u t =  

4. ( ) 0xΦ =  
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As in the previous section the solution in this region is similar to the harmonic oscillator 

problem so the result will be given directly and the proof omitted.  

 

The optimal control region is plotted for location 2q q=  in Figure 7.7.  The thick lines 

represent the control ( )* 1u t =  and the thin lines represent the control ( )* 1u t = − . 
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Figure 7.7: Control region for location 2q q= . 

Region 3q q= , ( ) ( )1 2x t x t≤  
 

The third step in solving the hybrid optimal control problem is solving the optimal 

control problem that finds the optimal control that minimizes the time to the surface  
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 ( ){ }3 1 2 1 2 2, : ,  0S x x x x x= = <  (7.1.43) 
 

while remaining in location 
2qM . 

 

The optimal control problem can now be defined.  Assume that the initial state satisfies 

0 3x ∈ℜ , where 3ℜ  is the set of states that can reach ( ) 3fx t S∈ , ( ) ( )1 1f f qfx t x t x= = , 

ft < ∞ , for all 0qfx <   defined by the dynamical system  

 ( ) ( ) ( )
2

0 1 0
1 0 1qx t x t u t⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
�  (7.1.44) 

 

where the trajectory ( )x t , 0 ft t t≤ ≤ , remains in 2q  and the control satisfies 

( ) [ ]1,1u t ∈ − .  The optimal control problem is to find the control ( )*u t  that minimizes  

 ( )( ) ( )
0

, ,ft

fJ x t L x u t dt= Φ + ⋅∫  (7.1.45) 

 

subject to the dynamic constraints of equation (7.1.44) and the following conditions:  

1. ( )
2

10
0

20
q

x
x t M

x
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

 such that 10 20x x≥  

2. ( ) 1u t ≤ , for all 0 ft t t≤ ≤  

3. ( ), , 1L x u t =  

4. ( )( ) 24 2f qf qf qfx t x x xΦ = − + − ⋅ + ⋅  

5. ( ) 3fx t S∈  
   

Notice that in this local optimal control problem, the final cost is the cost-to-go to the 

origin in location 1q  from the surface 3S .  Applying the necessary conditions of Chapter 
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6 to this new control problem gives that the optimal control will maximize the 

Hamiltonian and the optimal control will satisfy  

 ( ) ( ) ( ) ( ) ( )( )*
1 0 2 0sgn sin cosu t t t t tλ λ= − ⋅ + ⋅  (7.1.46) 

 
or the optimal control will take a value from the set  

 ( )* 1
1

u t ⎧
= ⎨−⎩

 (7.1.47) 

 

and that the set of admissible controls will be constant but will switch periodically as t  

increases.   

 

The necessary conditions require that the optimal control switch periodically.  The first 

step in solving this problem is assuming that the optimal control is ( )* 1u t =  “close” to 

the switching surface, calculating the cost-to-go, and proving that the HJCB PDE is 

satisfied.  Next the adjoint will be calculated along the switching surface.  Finally, the 

adjoint will be computed in reverse time to calculate the time the control switches (when 

( )2 0stλ − = ).  Once the switch time is calculated, the cost-to-go will be calculated, and the 

sufficient condition will be checked along the resulting trajectories, proving the control is 

optimal. 

 

Note that the nomenclature t−  will indicate the time variable in reverse time, so 

0 ft t t− − −≤ ≤  where 0 ft t− =  and 0ft− = .  The proposed optimal control will be ( )* 1u t− =  

for 0 st t− −≥ >  and ( )* 1u t− = −  for s ft t t− − −< ≤ . 
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The first step is to calculate cost-to-go function near the surface of final conditions.  

Since the control is assumed positive, the trajectory to the surface of final conditions 

satisfies   

 
( ) ( ) ( )
( ) ( ) ( )
10 20

10 20

1 cos sin 1

1 sin cos
qf

qf

x x t x t

x x t x t

= − ⋅ + ⋅ +

= − − ⋅ + ⋅
 (7.1.48) 

 

Where 10x  and 20x  are elements of 3ℜ .  When ft t→ , equation (7.1.48) can be 

linearized giving  

 
( )
( )
10 20

10 20

1 1

1
qf

qf

x x x t

x x t x

= − + ⋅ +

= − − ⋅ +
 (7.1.49) 

 

Solving equation (7.1.49) for t  results in  

 20 10

20 10 1
x xt

x x
−

=
+ −

 (7.1.50) 

 

Equation (7.1.50) provides the cost-to-go to the surface of final conditions for an initial 

condition “close” to the surface of final conditions using control ( )ˆ 1u t =  and the optimal 

cost-to-go is calculated as  

 ( )( ) ( ) ( ) ( )10 20 10
0 0 20

20 10

1ˆ ,
1c f qf

x x x
J x t t t x x

x x
− + ⋅ −

− = − − +Φ
+ −

 (7.1.51) 

 

or  
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( )( ) ( ) ( )

( ) ( ) ( )

10 20 10
0 0 20

20 10

1
2 2

10 20 10 20 20 10
20 10

20 10 20 10

1ˆ ,
1

1
                                            2 4 4

1 1

c f

x x x
J x t t t x

x x

x x x x x x
x x

x x x x

− + ⋅ −
− = − − +

+ −

⎛ ⎞− + ⋅ − ⋅ −⎛ ⎞
⎜ ⎟⋅ + − ⋅ − ⋅⎜ ⎟⎜ ⎟+ − + −⎝ ⎠⎝ ⎠

 (7.1.52) 
 

Note that equation (7.1.52) is differentiable with respect to 10x  and 20x , so as the 

trajectory gets “close” to the switching surface,  0 ft t→ , ( )10 1 fx x t→ , ( )20 2 fx x t→ , 

and    

 
( )( )
( )

( )

( )

2

0 0

2
0

2 4 2
ˆ 1 2,

2 2
1 2

qf qf qf

qfc f

qf qf qf

qf

x x x
xJ x t t t

x t x x x
x

β
β

β β
β

⎡ ⎤− ⋅ + ⋅ + ⋅ −
−⎢ ⎥⋅ − + ⋅∂ − ⎢ ⎥= ⎢ ⎥− ⋅ + ⋅ + ⋅ −⎢ ⎥−
⎢ ⎥⋅ − + ⋅⎣ ⎦

 (7.1.53) 

 

where  

 22 4qf qfx xβ = ⋅ − ⋅  (7.1.54) 
 

Now the HJCB PDE requires that  

 

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

0 0 1 0 0
20

0 1 0

2 0 0 2 0 0
10

2 0 2 0

ˆ ˆ, ,
sup , ,1,1

ˆ ˆ, ,
                                                                1

c f c f

u U

c f c f

J x t t t J x t t t
H x x

x t x t

J x t t t J x t t t
x

x t x t

∈

⎛ ⎞∂ − ∂ −
⎜ ⎟− = ⋅
⎜ ⎟∂ ∂⎝ ⎠

∂ − ∂ −
− ⋅ + −

∂ ∂
 (7.1.55) 
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Substituting equation (7.1.53) into equation (7.1.55), letting ( ) ( )10 20 1 2, ,f fx x x t x t→ , and 

simplifying results in  

 
( )( )
( ) ( )

( ) ( )
( )

0 0

0

ˆ , 1 2
sup , , ,1 1 0

1 2
c f qf qf

u U qf

J x t t t x x
H x u u

x t x

β

β∈

⎛ ⎞∂ − − ⋅ − ⋅ +
⎜ ⎟− = − + ⋅ =
⎜ ⎟∂ ⋅ − + ⋅⎝ ⎠

 (7.1.56) 

 

which proves that the control ( )ˆ 1u t =  is optimal “close” to the switching surface.  Note 

that the purpose in applying the necessary and sufficient conditions “close” to the 

switching surface is so that the transversality condition can be calculated and equated to 

the final value of the adjoint (not to prove the control optimal along the entire trajectory 

which will be done later).   

 

Now evaluation of the transversality condition of Chapter 6 along the switching surface 

results in  

 ( )
( )

( )

2

2

2 4 2
1 2

2 2
1 2

qf qf qf

qf

f
qf qf qf

qf

x x x
x

t
x x x

x

β
β

λ
β β

β

⎡ ⎤− ⋅ + ⋅ + ⋅ −
⎢ ⎥⋅ − + ⋅⎢ ⎥= ⎢ ⎥− ⋅ + ⋅ + ⋅ −⎢ ⎥
⎢ ⎥⋅ − + ⋅⎣ ⎦

 (7.1.57) 

 

Furthermore, in a previous section for this optimal control problem it was shown that the 

adjoint equation satisfies  

 ( ) ( ) ( )
( ) ( )

( )
( )

1 0

2 0

cos sin
sin cos

t t t
t

t t t
λ

λ
λ

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (7.1.58) 

 

which can be solved in reverse time giving  
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( )
( )

( ) ( )
( ) ( )

( )
( )

1 1

22

cos sin

sin cos

f

f

t t t t

tt t t

λ λ

λλ

− − −

− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (7.1.59) 

 

The HJCB PDE can be written and can be evaluated using a Symbolic solver as 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 2sup , ,1,1 1 0
u U

H x t x t t x t tλ λ λ λ− − − − −

∈
= ⋅ − ⋅ + − =  (7.1.60) 

 

which proves the control ( )* 1u t− =  for f st t t− −≤ <  as desired. 

 

Next, equation (7.1.59) can be solved for t−  when ( )2 0tλ − =  resulting in  

 
( )
( )

2

1

arctan f

f

t
t

t
λ
λ

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (7.1.61) 

 

where equation (7.1.61) is evaluated using the four quadrant arctangent function.  

Substituting equation (7.1.53) into equation (7.1.61) and correcting for the quadrant 

results in  

 
2

2

2 2
arctan

2 4 2
qf qf qf

qf qf qf

x x x
t

x x x
β β

π
β

− ⎛ ⎞− ⋅ + ⋅ + ⋅ −
= − ⎜ ⎟⎜ ⎟− ⋅ + ⋅ + ⋅ −⎝ ⎠

 (7.1.62) 

 

for all 0qfx < .  To check the result, equation (7.1.59) can be evaluated for 1qfx = −  and 

0 2t π−≤ ≤ ⋅  and is graphed in Figure 7.8. 
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Figure 7.8: Value of ( )2 tλ −  for 0 2t π−≤ ≤ ⋅  and 1qfx = − . 

Furthermore, equation (7.1.62) can be graphed for a range of qfx  and is shown in Figure 

7.9.  Note that when 1qfx = −  both plots give the same switch time verifying that 

equation (7.1.62) is true.   
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Figure 7.9: Switch time st
−  versus final state qfx . 

When st t− −> , the control switches to ( )* 1u t− = − .  Evaluating the HJCB PDE is more 

difficult, because the value of the state at the switching time is required as a function of 

the final condition.  However the symbolic solver can solve this problem and prove the 

control is optimal. 

 

The HJCB PDE for this time segment is  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 2sup , , ,1 1
u U

H x u t x t t x t t u tλ λ λ λ− − − − − −

∈
= ⋅ − ⋅ + ⋅ −  (7.1.63) 

 

When ( )* 1u t− = − , the value of ( )x t−  and ( )tλ −  satisfy  
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( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 1 2 2 2

2 2 1 2 2 2

1 2 1 2 2 2

2 2 1 2 2 2

cos sin

sin cos

cos sin

sin cos

s s

s s

s s

s s

x t x t u t x t t u

x t x t u t x t t

t t t t t

t t t t t

λ λ λ

λ λ λ

− − − − −

− − − − −

− − − − −

− − − − −

= − ⋅ − ⋅ +

= − ⋅ + ⋅

= ⋅ − ⋅

= ⋅ + ⋅

 (7.1.64) 

 

where ( )sx t−  and ( )stλ −  are the values at the switching surface defined by time st
−  

(equation (7.1.62)) and 2s ft t t− − −≤ < .  Again using the symbolic solver and the previous 

work, equation (7.1.64) can be rewritten as  

 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 2 2

2 2 1 2 2 2

1 2 2

2 2 2

1 cos sin

1 sin cos

cos

sin

qf qf

qf qf

qf

qf

x t x u t x t u

x t x u t x t

t x t

t x t

α α

α α

λ γ

λ γ

− − −

− − −

− −

− −

= + − ⋅ − ⋅ +

= + − ⋅ + ⋅

= ⋅

= ⋅

 (7.1.65) 

 

Where ( )1 qfxα , ( )2 qfxα , and ( )qfxγ  are complicated functions of qfx .  Substitution of 

equation (7.1.65) into equation (7.1.63) and simplifying results in  

 ( ) ( ) ( )0 2, , , 1 0qf qfH x u x xλ λ α γ= ⋅ − =  (7.1.66) 
 

where the terms ( )2 qfxα  and ( )qfxγ  are  

 ( ) ( )

4 3 3 2 2 2 2

2 2

8 24 8 28 16 16 2

                       8 2 4

1 2

qf qf qf qf qf qf qf

qf qf
qf

qf

x x x x x x x

x x
x

x

β β β

β β β
γ

β

⋅ − ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅ − ⋅ + ⋅ ⋅

− ⋅ ⋅ − ⋅ ⋅ + +
=

⋅ − + ⋅
 (7.1.67) 

 

and  
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 ( ) ( )1 2
2 2 2

1 2

1qf qf
qf

T x x T
x

T T
α

⋅ − − ⋅
=

+
 (7.1.68) 

 

where  

 
2

1

2
2

2 4 2

2 2
qf qf qf

qf qf qf

T x x x

T x x x

β

β β

= − ⋅ + ⋅ + ⋅ −

= − ⋅ + ⋅ + ⋅ −
 (7.1.69) 

 

And proves the control is optimal. 

 

Finally as before, the region of the state space that this optimal control solution applies is 

given in Figure 7.10.  The thick lines indicate the control ( )* 1u t =  is optimal and the thin 

lines indicate the control ( )* 1u t = − . 
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Figure 7.10: Control region for location 3q q= . 

Region 4q q= , ( ) ( )1 2x t x t≥  
 

The final step in solving the hybrid optimal control problem is solving the local optimal 

control problem that finds the control that minimizes the time to the surface  

 ( ){ }4 1 2 1 2 2, : ,  0S x x x x x= = >  (7.1.70) 
 

while remaining in location 
1qM . 
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Assume that the initial state 0 4x ∈ℜ , where 4ℜ  is the set of states that satisfy ( ) 4fx t S∈ , 

( ) ( )1 1f f qfx t x t x= = , ft < ∞  defined by the dynamical system  

 ( ) ( ) ( )
1

0 1 0
0 0 1qx t x t u t⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�  (7.1.71) 

 

where the trajectory ( )x t , 0 ft t t≤ ≤ , remains in 
1qM , and the control satisfies 

( ) [ ]1,1u t ∈ − .  The optimal control problem will find the control ( )*u t  that minimizes 

the time to the surface given by equation (7.1.70) and satisfies the dynamic constraints 

given in (7.1.71), subject to the following conditions: 

1. ( )
1

10
0

20
q

x
x t M

x
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

 such that 10 20x x≤  

2. ( ) 1u t ≤ , for all 0 ft t t≤ ≤  

3. ( )1 , , 1L x u t =  

4. ( ) ( )1 qf origin qfx CTG xΦ =  where ( )origin qfCTG x  is given in Figure 7.11. 

5. ( ) 4fx t S∈  
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Figure 7.11: Cost-to-go to the origin from the surface ( ) ( )1 2 0f f qfx t x t x= = > . 

Figure 7.11 is the cost-to-go to the origin from the surface ( ) ( )1 2 0f f qfx t x t x= = >  that 

is based on the analysis of regions 2q  and 3q .  Note that the function is a continuously 

increasing function of ( )fx t , but is not differentiable at the point 

( ) ( )1 2
1 17
2 4f fx t x t= = − + .  Because of the complexity of the cost-to-go function for 

( ) ( )1 2
1 17
2 4f fx t x t= > − +  a closed form solution was not computed, but is not 

necessary for the proof of the optimal control.  Just the properties of the ( )origin qfCTG x  

given by the figure are required.   
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The first step in solving this local optimal control problem is to evaluate the necessary 

conditions to find the candidate optimal controls.  Just as in location 1q q=  evaluating the 

necessary condition requires that the optimal control satisfy   

 ( ) ( ) ( )( )*
2 0 1 0sgnu t t t tλ λ= − ⋅  (7.1.72) 

 

or the optimal control will take a value from the set  

 ( )* 1
1

u t ⎧
= ⎨−⎩

 (7.1.73) 

 

and can switch at most one time. 

 

An argument similar to the one presented in the proof of the double integrator and 

harmonic oscillator problems can be used to the prove that the optimal control “close” to 

the surface ( ) ( )1 2f f qfx t x t x= =  is ( )* 1u t = − , and will be omitted here.   

 

So as ft t→ , the optimal cost-to-go is  

 ( )( ) ( )( ) ( )0 0 0
ˆ ,c f xqf origin qfJ x t t t CTG x t CTG x− = +  (7.1.74) 

   

where ( )( )0xqfCTG x t  is the cost-to-go to the surface ( ) ( )1 2f f qfx t x t x= =  using the 

control ( )* 1u t = −  and ( )origin qfCTG x  is given in Figure 7.11.  Since “close” to the 

surface ( ) ( )1 2f f qfx t x t x= =  the optimal control is ( )* 1u t = − , the cost-to-go to the 

surface qfx  can be calculated by solving the following equation for ft   
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( )
( )

2
1 10 20

2 20

1
2f qf f f

f qf f

x t x x x t t

x t x x t

= = + ⋅ − ⋅

= = −
 (7.1.75) 

 

which results in  

 ( )( ) ( ) 2
0 20 10 201 1 2f xqft CTG x t x x x= = + − + ⋅ +  (7.1.76) 

 

Notice that equation (7.1.76) is only a function of the initial condition and not time.  

Since equation (7.1.74) is continuous and differentiable almost everywhere, the necessary 

and sufficient conditions developed in Chapter 6 will apply to this local optimal control 

problem. 

 

Because of the complexity of the function ( )origin qfCTG x , calculating the variation of  

( )origin qfCTG x  is very difficult and will not be done to prove the candidate control is 

optimal.  Properties of Figure 7.11 will be used in conjunction with the necessary 

conditions to prove the claim. 

 

To prove the control ( )* 1u t = −  is optimal for the entire region, the closed form solution 

for the trajectory and adjoint equations will be used in conjunction with the fact that the 

Hamiltonian is zero.  The Hamiltonian will be zero because equation (7.1.74) is not an 

explicit function of the initial time so the work in Chapter 6 requires it to be zero..   

 

Now working in reverse time from the surface of final conditions the state trajectory and 

adjoint can be computed in reverse time with the following equations  
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( ) ( )
( )

2

1

2

1
2qf qf

qf

x t x x t t

x t x t

− − −

− −

= − ⋅ − ⋅

= +
 (7.1.77) 

 

and  

 
( ) ( )
( ) ( ) ( )

1 1

2 2 1

f

f f

t t

t t t t

λ λ

λ λ λ

−

− −

=

= + ⋅
 (7.1.78) 

 

Furthermore, the Hamiltonian for this problem with ( )* 1u t = −  is  

 ( ) ( ) ( ) ( )1 0 1 2 2, , , 1 0H x u t x t tλ λ λ λ− − −= ⋅ − − =  (7.1.79) 
 

Substituting equation (7.1.78) into (7.1.79) and rearranging results in  

 ( ) ( )2 1 1f f qft t xλ λ= ⋅ −  (7.1.80) 
 

and substituting back into equation (7.1.78) gives  

 ( ) ( ) ( )2 1 1f qft t x tλ λ− −= ⋅ + −  (7.1.81) 
 

or  

 ( ) ( ) ( )2 1 2 1ft t x tλ λ− −= ⋅ −  (7.1.82) 
 

Equation (7.1.81) implies that if ( )1 0ftλ ≤ , then the control ( )* 1u t− = −  is optimal for 

all 0t− ≥  which is the desired result.  Since the work in Chapter 6 applies to this local 

optimal control problem, the necessary and sufficient conditions require that the HJCB 

PDE evaluates to zero and that  
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 ( )
( )( )
( )

0 0

0

ˆ ,c fJ x t t t
t

x t
λ

∂ −
= −

∂
 (7.1.83) 

 

where  

 
( )( ) ( ) ( )

( )

( ) ( )( )

2
0 0 20 10 20

2
1 10 20

2 2
2 20 20 10 20 10 20

ˆ                , 1 1 2

1
2

1 1 2 1 1 2

c f origin qf

f qf f f

f qf

J x t t t x x x CTG x

x t x x x t t

x t x x x x x x x

− = + − + ⋅ + +

= = + ⋅ − ⋅

= = − + − + ⋅ + = − + + ⋅ +

 (7.1.84) 
 

and ( )origin qfCTG x  is given in Figure 7.11.  Everywhere the differential exists, equation 

(7.1.84) can be differentiated with respect to the initial condition resulting in  

 

( )( )
( )

( )( )
( )

( )
( )

2
20 10 200 0

0 0 0

ˆ 1 1 2,
                      c f origin qf qf

qf

x x xJ x t t t CTG x x
x t x t x x t

∂ + − + ⋅ +∂ − ∂ ∂
= + ⋅

∂ ∂ ∂ ∂
 (7.1.85) 
 

The first term in equation (7.1.85) can be computed as  

 
( )( )

( )

2 2
20 10 20 10 20

200
2

10 20

1
1 1 2 1 2

1
1 2

x x x x x
xx t
x x

⎡ ⎤−⎢ ⎥∂ + − + ⋅ + + ⋅ +⎢ ⎥= ⎢ ⎥∂
−⎢ ⎥

+ ⋅ +⎢ ⎥⎣ ⎦

 (7.1.86) 

 

and the second term is given by  

 
( )

( )
( ) 2

10 20

200
2

10 20

1
1 2

1 2

origin qf origin qfqf

qf qf

x xCTG x CTG xx
xx x t x
x x

⎡ ⎤
⎢ ⎥+ ⋅ +∂ ∂∂ ⎢ ⎥⋅ = ⋅ ⎢ ⎥∂ ∂ ∂
⎢ ⎥

+ ⋅ +⎢ ⎥⎣ ⎦

 (7.1.87) 
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Substituting equations (7.1.87) and (7.1.86) into equation (7.1.85) results in  

 
( )( )
( )

( )

( )

2
10 200 0

0
20

2
10 20

1 1
ˆ 1 2,

1 1
1 2

origin qf

qfc f

origin qf

qf

CTG x
xx xJ x t t t

x t CTG xx
xx x

⎡ ⎤⎛ ⎞∂
⎢ ⎥⋅ −⎜ ⎟⎜ ⎟∂⎢ + ⋅ + ⎥∂ − ⎝ ⎠= ⎢ ⎥

∂ ⎛ ⎞∂⎢ ⎥
+ ⋅ −⎜ ⎟⎢ ⎥⎜ ⎟∂+ ⋅ +⎢ ⎥⎝ ⎠⎣ ⎦

 (7.1.88) 

 

which implies that  

 

( ) ( )
( )

( ) ( )
( )

1

20
2

1 1
1

1 1
1

origin qf
f

qfqf

origin qf
f

qfqf

CTG x
t

xx

CTG xxt
xx

λ

λ

⎛ ⎞∂
= − ⋅ −⎜ ⎟

⎜ ⎟∂+ ⎝ ⎠
⎛ ⎞∂

= − − ⋅ −⎜ ⎟⎜ ⎟∂+ ⎝ ⎠

 (7.1.89) 

 

Further, substituting equation (7.1.89) into equation (7.1.81) results in  

 ( ) ( )
( ) ( )2 2

1 1 1
1

origin qf

qfqf

CTG x
t x t

xx
λ − −

⎛ ⎞∂
= − ⋅ − ⋅ −⎜ ⎟⎜ ⎟∂+ ⎝ ⎠

 (7.1.90) 

 

As 0t− → , ( )2x t−  is positive and decreasing, where ( )2 qfx t x− → , and ( )* 1u t = −  (by 

problem assumption),  so equation (7.1.90) implies that  

 
( )

1 0origin qf

qf

CTG x
x

⎛ ⎞∂
− >⎜ ⎟⎜ ⎟∂⎝ ⎠

 (7.1.91) 

 

As t− → ∞ the value of equation (7.1.91) will not change because it is the variation of the 

final cost along the surface of final conditions, ( )2x t−  will remain positive, and the 

optimal control must be ( )* 1u t = − .  Repeating this analysis for all 0qfx > , requires that 

the proposed control in this region must be ( )* 1u t− = − .  The HJCB PDE can now be 
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evaluated to prove that the proposed control is optimal.  The HJCB PDE for this problem 

is  

 
( )( )
( ) ( ) ( ) ( )0 0

0 1 2 2
0

ˆ ,
, , , 1c fJ x t t t

H x u t x t t
x t

λ λ λ− − −
⎛ ⎞∂ −

− = ⋅ − −⎜ ⎟⎜ ⎟∂⎝ ⎠
 (7.1.92) 

 

Substituting equations (7.1.77) and (7.1.78) into equation (7.1.92) and simplifying results 

in  

( )
( )( )
( )

( )

( )

0 0 20
0 0 2

0 10 20

20
2

10 20

ˆ ,
, , , 1 1

1 2

                                                                    1 1 0
1 2

c f origin qf

qf

origin qf

qf

J x t t t CTG xxH x t u
x t xx x

CTG xx
xx x

λ
⎛ ⎞ ⎛ ⎞∂ − ∂
⎜ ⎟ ⎜ ⎟− = − ⋅ − +

⎜ ⎟⎜ ⎟∂ ∂+ ⋅ + ⎝ ⎠⎝ ⎠
⎛ ⎞∂
⎜ ⎟+ ⋅ − − =
⎜ ⎟∂+ ⋅ + ⎝ ⎠

 (7.1.93) 
 

which finishes the proof of optimality. 

 

Note that Figure 7.11 can be used to remove the assumption of the optimal control for the 

initial condition 1 17
2 4qx = − + , in the analysis of location 2q q= .  Figure 7.11 shows 

that ( )origin qfCTG x  is a continuous function of qfx  that is differentiable everywhere 

except at the point 1 17
2 4qfx = − + .  In locations 2q  and 3q  Figure 7.11 is the cost-to-go 

to the origin from the initial condition qx .  Since it is continuous and differentiable 

almost everywhere the work in Chapter 6 applies and can be used prove the control 

( )* 1u t = −  is optimal as desired. 
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Figure 7.12 depicts the control region for location 4q q= . 
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Figure 7.12: Control region for location 4q q= . 

Feedback Control of the Hybrid Problem 
 

Now the state space has been completely divided into regions where the optimal control 

has been computed, a global feedback control solution has been developed that solves the 

minimum time to the origin for the hybrid problem given any initial condition.  The 

resulting solution is plotted in Figure 7.13.  
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Figure 7.13: Regions of constant input that solve the hybrid time to origin optimal control problem. 

Notice in Figure 7.13 that the state space is split into two regions according to a complex 

switching surface.  Anything above the switching surface has a constant control of 

( )* 1u t = −  and anything below has a constant control of ( )* 1u t = .  The feedback control 

law can be stated explicitly as the following: 

 

• ( )* 1u t = −  if the following conditions hold: 

 

( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ( ) ( )

2 1 1

2
2 1 1

2 1 1 1

2 ,  x 0

1 1 ,  0 x 2

,  s s

x t x t t

x t x t t

x t x t x t x t

> − ∀ ≤

> − − − ∀ ≤ ≤

> ∀ =

 (7.1.94) 

• ( )* 1u t =  if the following conditions hold: 



 

   212

 

( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ( ) ( )

2 1 1

2
2 1 1

2 1 1 1

2 ,  x 0

1 1 ,  0 x 2

,  s s

x t x t t

x t x t t

x t x t x t x t

≤ − ∀ ≤

≤ − − − ∀ ≤ ≤

< ∀ =

 (7.1.95) 

 

The hybrid version of the necessary and sufficient conditions was not used in solving the 

optimal control problem because the problem was decomposed into a series of smooth 

optimal control problems.  Obviously, the specific local optimal control problems were 

formulated carefully so the state space was divided correctly.  It was more appropriate to 

solve the problem as a series of smooth local optimal control problems instead of trying 

to properly formulate the two hybrid control problems.    

7.2 Traction Control Problem 

The purpose of this problem is to demonstrate the application of the necessary and 

sufficient conditions given in Chapter 6 to the drag racing and hot-rodder optimal control 

problems.  The drag racing problem finds the control strategy that minimizes the time to 

traverse a specified distance from a stopped starting condition and the hot-rodder problem 

minimizes the time to traverse a specified distance from a stopped starting and ending 

condition.  First the problem will be given and the optimal control will be derived using 

non-hybrid methods.  Second the problem will be decomposed into a hybrid optimal 

control problem and the work in Chapter 6 will be applied to verify the solution. 

 

The purpose of the drag racer problem is to drive a straight ¼ mile strip in minimum time 

from a standing start.  Drag racing is a popular sport in the United States with many 
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variants and vehicle classes with serious money at stake [30].  The best racer in 2005, 

who won the “World Championship,” traversed the quarter mile drag strip in 4.496 

seconds with a speed of 324.36 mph at the finish.  The leading money winner received 

$1,141,500 for his efforts during the year. 

 

The purpose of the hot-rodder problem is to drive a pre-specified distance in minimum 

time where the initial and final velocity of the vehicle is zero.  An example of the hot-

rodder problem would be two cars racing from traffic light to traffic light along a city 

street. 

 

It is intuitively clear that the optimal control for the drag racing and hot-rodder problems 

is not bang-bang.  If it were, there would be no need for traction control systems and 

ABS brakes.  This also supplies the intuition for the drag racer.  The limit on acceleration 

is often not the engine; it is the friction interaction between the tires and the road.  A drag 

racer that spins his tires during the race will lose to one that does not. 

 

The purpose of this section is to introduce the vehicle model used for the analysis, 

introduce the standard friction models encountered in the literature, and provide a review 

of the literature related to this problem. 

 

7.2.1 Vehicle Model 

For longitudinal vehicle motion analysis, the automobile is typically represented by a 

simple two wheel bicycle model [35], where a torque is applied to one or both tires 
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producing longitudinal force that accelerates or decelerates the vehicle.  The model used 

in this paper will assume that only the rear tire produces the longitudinal force acting on 

the vehicle and that the weight transfer associated with the acceleration process can be 

neglected.  Making these assumptions allows the problem to be reduced from the 

longitudinal bicycle model to a quarter vehicle model with a single tire interacting with 

the ground and a lumped mass representing the quarter vehicle mass acting at the center-

of-gravity of the wheel.  This type of longitudinal vehicle model is common in the 

literature and can be found in [22][40][52][70].  Including the extra information in the 

problem can be done, but doesn’t add any novelty to the analysis, only complexity. 

 

Figure 7.14 is a schematic representing the single wheel longitudinal acceleration model. 
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Figure 7.14: Single Wheel Acceleration Model 
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Using Figure 7.14, the dynamics describing the acceleration of the wheel can be written 

as 

 
( ) ( )( )
( ) ( )( ) ( )

n

n

m x t S t F

I t r S t F T t

μ

α μ

⋅ = ⋅

⋅ = − ⋅ ⋅ +

��

��
 (7.2.1) 

 

where x�  is the longitudinal velocity of the center of the wheel, α�  is the angular velocity 

of the wheel, T  is the torque applied to the wheel, r  is the effective radius of the tire at 

the tire-to-ground interface point, nF  is the normal force acting on the tire, m  is the 

quarter vehicle mass, I  is the rotating moment of inertia of the tire, and ( )( )S tμ  is the 

coefficient of friction with respect to the slip where the slip  S  is defined as  

 ( )

( ) ( )
( )

( ) ( )
( )

,  Braking and Slipping, 0

,  Acceleratingand Slipping, 0

r t x t
S

x t
S t

r t x t
S

r t

α

α
α

⋅ −⎧
<⎪

⎪= ⎨
⋅ −⎪ >⎪ ⋅⎩

� �
�

� �
�

 (7.2.2) 

 

Note that the term slip does not mean that the tire tread is slipping relative to the ground.  

When a torque is applied to the tire, the tread elements around the tire contact patch 

deform, but do not immediately move horizontally relative to the ground.  Because of the 

deformation, the effective circumference of the tire changes and the angular velocity of 

the wheel must change to maintain the no horizontal movement condition at the tire-to-

ground interface.  As the torque applied to the wheel is increased the slip increases until 

the tire-to-ground interface can no longer counteract the torque.  Since the ground cannot 

counteract the control torque, the tire contact patch has a different longitudinal velocity 

than the ground, and the wheel angular velocity either increases or decreases rapidly 
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depending on the direction that the torque is applied.  Soon thereafter the wheel spins if 

accelerating and locks if braking. 

 

7.2.2 Friction Models 

The most common tire-to-ground friction model found in the literature is a steady-state 

model based on the work in [53].  The steady-state friction model assumes that the 

coefficient of friction between the tire and ground is a function of the slip. 

   

 

Figure 7.15: Sample Friction versus Slip Curve 

 

Figure 7.15 is a sample coefficient of friction versus slip curve similar to the ones found 

in [53], and has some distinct features:  friction is a continuous function of the slip for 

1 1S− < < , attains its maximum at some slip, maxS , where max0 1S< < , attains its 

( )Sμ

maxμ  

maxS  1  S  
minS  1−  

minμ  
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minimum at some slip, minS , where min0 1S< < , and enters the pure sliding mode when 

( ) 1S t = .  Further when braking, the slip and the coefficient of friction is negative and 

when accelerating the slip and the coefficient of friction is positive. 

 

The steady-state friction model presented is a good model to perform analysis with 

because it is relatively simple.  Unfortunately, the force generation process is a dynamic 

not a static event, so the steady-state friction model does not account for dynamic events. 

   

In [20] a dynamic friction model was introduced that is based on the point LuGre friction 

model.  This model uses a first order non-linear filter with the relative velocity between 

the tire and ground as its input and the friction force is its output.  Let rv r xα= ⋅ −� � , then 

the friction force is  

 ( )0 1 3r r nF z z v Fσ σ σ= ⋅ + ⋅ + ⋅ ⋅�  (7.2.3) 
 

where z  is the solution of the non-linear differential equation  

 

( )
1/ 20

r

s

r
r v

v
c s c

v
z v

e

σ

μ μ μ
−

= − ⋅

+ − ⋅

�  (7.2.4) 

 

and 0σ , 1σ , 2σ , cμ , and sμ  are constants relating to the fundamental properties of the 

tire and sv  is the Striebeck constant.  With properly tuned parameters, this model 

reproduces the friction versus slip curve in steady-state, and provides good correlation 

with experimental data.  For a detailed derivation of this model see [20]. 
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The main disadvantages of this model are that accurate results require proper tuning of 

the constant parameters and it is much more complicated than the steady-state friction 

versus slip curve.  Since the slip curve is not known a priori, is not really measurable, and 

not really correct, it is reasonable to use a simpler model for the problem analysis.  In this 

analysis, a friction model that is simpler than both the steady-state friction model and the 

dynamic friction model is going to be used.  Since the magnitude of I  is much less than 

the magnitude of m  in Figure 7.14,  the torque applied to the wheel will act to accelerate 

and decelerate the wheel much faster than it will change the longitudinal velocity of the 

vehicle.  As such, the transition from no slipping to slipping will happen very quickly, 

which can be seen in the example worked in [70].  Because of this behavior, a hybrid 

model can be used that embodies the standard stick/slip friction model, where the friction 

coefficient is maxμ  when the wheel is not sliding relative to the ground and maxsμ μ<  

when the wheel is sliding with respect to the ground. 

 
( )Sμ

 

S   

Braking  

Accelerating   

,A sμ  
,maxAμ

,maxBμ

,B sμ  

 

Figure 7.16: Friction versus slip curve for the optimal control problems 
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Figure 7.16 uses a standard elementary definition of friction where the coefficient of 

friction is constant when no slip occurs and switches instantaneously to another constant 

value when slipping begins.  A conceptually simple hybrid system model for the vehicle 

with three discrete modes can be used to model the tire-to-ground interaction.  The three 

nodes of the hybrid system are: no slipping, wheel accelerating and slipping, and wheel 

decelerating and slipping.  This model is technically more difficult to optimize because of 

the non-differentiable dynamics on the transition curves between nodes.  One justification 

for using this model is that a hybrid system model can be formulated in such a way that 

non-smooth necessary and sufficient conditions can be utilized to find the optimal 

feedback control for the drag racing and hot-rodder problems.  Another is that the more 

detailed smoother model is neither an accurate description of the dynamics nor 

measurable in real time, which is highlighted by the actual ABS algorithms implemented 

on vehicles that only use wheel angular acceleration as the feedback variable [42]. 

 

7.2.3 Optimal Traction Control 

Many papers exist in the literature that provide algorithms for optimal traction control for 

the model developed in the previous section.  The Anti-lock Braking System (ABS) 

problem was the first problem addressed in the literature.  Since acceleration control is a 

similar problem, the literature began addressing traction control in general, where traction 

control consists of braking and acceleration control.  [12][22][31][40][51][52] present 

various control algorithms based on the steady-state friction versus slip curve that try to 

maximize the coefficient of friction between the tire and the ground.  [31] uses sliding 

mode control techniques to solve the ABS problem.  Using sliding mode techniques is 



 

 220  

common, but the novelty of the algorithm in [31] is that they assume the friction versus 

slip curve is unknown.  [51] introduces an optimal fuzzy logic control algorithm to solve 

the ABS problem.  The fuzzy algorithm is based on the steady-state friction versus slip 

curve where the fuzzy parameters are optimized using a genetic algorithm technique to 

maximize the coefficient of friction.  [52] introduces a hybrid ABS control technique 

based on an estimation of the friction versus slip curve.  This technique is unique because 

it exploits the fact that the friction versus slip curve is continuous and has a single 

maximum.  [22] also utilizes the steady-state friction versus slip curve to develop a 

hybrid traction controller.  They decompose the continuous problem into a four node 

hybrid automaton, where the dynamics of each node are defined based on the value of the 

time derivative of the slip and the switching rule is defined by the value of the slip.  

Controllers are then developed for each node of the automaton.  The resulting control 

algorithm uses the slip to determine the appropriate controller to maximize the coefficient 

of friction between the tire and ground. 

 

Note that these problems and techniques are not specific to vehicles with rubber-to-

ground interfaces.  [33] applies fuzzy logic methods to optimize traction control for a 

train system based on the steady-state friction model and a metal-to-metal interface. 

 

The basic underlying assumption for these algorithms is that the optimal solution of the 

traction control problem is to maximize this coefficient of friction.  In [70] the authors 

apply PMP [6][7][55] to the steady-state ABS problem to prove optimality of the control.  

There are two concerns with using the PMP.  First, the PMP only provides necessary 
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conditions for optimality.  This can be problematic because a control can satisfy the 

necessary conditions and not be optimal.  Second, the PMP only provides the open-loop 

control.  For applications, the feedback solution is actually required.  Because of these 

two limitations of the PMP, it is more desirable to solve the problem using a sufficient 

condition that generates an optimal feedback control instead of a necessary condition. 

 

7.2.4 Solution Outline 

The purpose of this section is to provide a precise formulation of the drag racing and hot-

rodder problems, to provide feedback solution to both of them, and to prove these 

solutions are optimal.  These optimal control problems are slightly different from the one 

given in [70] but the results of this work can be directly applied to solve the problem 

given in [70].  The rest of the section is organized in the following way.  First the two 

optimal control problems will be defined.  Then a candidate for the optimal feedback 

control will be proposed for each problem.  The hybrid optimal control problem will then 

be developed.  Finally, the work in Chapter 6 will be used to prove the candidate 

feedback control is optimal.  In order to apply the work in Chapter 6, an assumption will 

be made initially for the hybrid problem and then a proof that the assumption is valid will 

be given. 

 

7.2.5 Problem Formulation 

The purpose of this section is to formulate the optimal control problems.  The drag racing 

problem and the hot-rodder problem are similar and both optimal control problems will 
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be given here.  The drag racing problem will be developed first, then the hot-rodder 

problem will be given, and finally some comments about both control problems will be 

presented. 

 
Simplified Dynamics 
 

Figure 7.16 depicts the friction model that will be used in solving the drag racing and hot-

rodder optimal control problems.  Since a simplified friction model is being used, the 

dynamics governing the longitudinal motion of the vehicle are slightly different from the 

dynamics given in (7.2.1).  Assume that the condition ( ) ,i sT t T≤  implying the wheel 

doesn’t lose traction.  Then the dynamics describing the motion of the vehicle are  

 
( ) ( )

( ) ( )
2

x t r t

T t
t

I m r

α

α

= ⋅

=
+ ⋅

����

��
 (7.2.5) 

 

where  

 
( )2

,max
,

n i
i s

F m r I
T

m r
μ⋅ ⋅ ⋅ +

=
⋅

 (7.2.6) 

 

and ,maxiμ is given in Figure 7.16 for i A=  for acceleration and i B=  for braking. 

 

When the wheels lose traction, the dynamics are given by  

 
( )

( ) ( )
,

,

n
i s

n
i s

Fx t
m

T tr Ft
I I

μ

α μ

= ⋅

⋅
= − ⋅ +

��

��
 (7.2.7) 
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where  

 ,
,

,

,  
,  

A s
i s

B s

x r
x r

μ α
μ

μ α
< ⋅⎧

= ⎨ > ⋅⎩

��
��  (7.2.8) 

 

and ( )T t  is the torque applied to the wheel.  Now that the simplified system dynamics 

have been given, the drag racer and hot-rodder problems can be given. 

 
Drag Racing Problem 
 

Drag racing is a popular motor sport where the goal of the race is to traverse a one quarter 

or one eighth mile straight section of track in the shortest time.  Two cars race at a time 

and the car that passes the finish line first wins the race.  The drag racing problem can be 

simplified and studied using optimal control theory.  Assume that the race car has only 

one gear and the dynamics given in (7.2.5) and (7.2.7) represent the motion of the vehicle 

over the time interval, 0 ft t≤ ≤ .  Further assume that the race car engine and brakes can 

instantaneously produce any torque in the set ,max ,max,B AT T⎡ ⎤⎣ ⎦ , where ,maxAT  is a real 

positive number representing the maximum engine acceleration torque and ,maxBT  is a real 

negative number representing the maximum braking torque.  Further, assume that at 

initial time 0 0t = , the initial conditions for the race car are ( )0 0x = , ( )0 0x =� , 

( )0 0α = , and ( )0 0α =� .  The problem ends when ( ) 0.25x t =  miles, which is the 

terminal condition.  Letting ft  represent the time at which ( ) 0.25x t =  miles, the 

performance criteria is  

 ( )( )
0

1ft
J T t dt= ⋅∫  (7.2.9) 
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The problem is to find a ( )T t , 0 ft t≤ ≤ , that minimizes equation (7.2.9) subject to the 

constraints (7.2.5), (7.2.7), and the boundary conditions.  In fact a more general problem 

is solved:  Given any initial state, find the feedback control that minimizes equation 

(7.2.9) subject to the given dynamics and constraints. 

 

The solution to the drag racing problem is the feedback control defined over the interval 

of time, 0 ft t≤ ≤ , that satisfies the following equation  

 ( )
,max

,

,max

,  
, , ,  

,  

A

A s

B

T x r
T x x T x r

T x r

α
α α

α

⎧ > ⋅
⎪= = ⋅⎨
⎪ < ⋅⎩

��
� �� �

��
 (7.2.10) 

 

where ,A sT  is given in (7.2.6).  Note that the torques in (7.2.10) are constant and have the 

following properties  

 ,max ,

,max ,

A A s

B B s

T T
T T

≥

≤
 (7.2.11) 

 

and equation (7.2.10) depends only on x , x� , and α� . 

 

The hybrid maximum principle [67] can be used to show that equation (7.2.10) is a 

candidate open-loop control for the drag racing problem with fixed initial condition.  

Note that there is a region of the state space where the optimal control is not unique.  

When the wheel is spinning and the drag racer is “close enough” to the target distance, 

d , any control will be optimal.  In this region, there is not enough time to move to the 

non-sliding state before the target distance is reached.  Further, since the torque applied to 
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the wheel does not affect the velocity of the drag racer, it does not affect the performance.  

So, while in this region any torque applied to the wheel is optimal, so the candidate 

solution still applies. 

 

Hot-rodder Problem 
 

The hot-rodder problem is very similar to the drag racing problem.  Hot-rodding is an 

artificial problem that is more complicated than the drag racing problem.  The hot-

rodding problem will be defined as the problem of traveling a fixed distance from a 

standing start to a dead stop in minimum time.  Again assume that the car has one gear 

and the dynamics given in (7.2.5) and (7.2.7) define the vehicle’s motion over the interval 

of time 0 ft t≤ ≤ .  Further, assume that the engine and brake can instantaneously produce 

the torque, ( ) ,max ,max,B AT t T T⎡ ⎤∈ ⎣ ⎦  and assume the initial conditions for the state variables 

are ( )0 0x = , ( )0 0x =� , ( )0 0α = , and ( )0 0α =� . 

 

Let d  represent the fixed distance to be traveled and assume that at time ft , the state 

variables have the end conditions ( )fx t d= , ( ) 0fx t =� , ( ) 0ftα =� , and ( )ftα  is free.  

Further, let the cost (or performance criterion) associated with going from the initial 

condition to the final state be  

 ( )
0

1ft

t
J T dt= ⋅∫  (7.2.12) 
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Then the control problem is to find the ( )T t , 0 , ft t t⎡ ⎤∈ ⎣ ⎦  that minimizes equation (7.2.12) 

subject to the constraints given by equations (7.2.5) and (7.2.7)  and the boundary 

conditions.  Again, the solution developed here is more general than the one required to 

solve the problem, because the feedback control will be calculated from any initial 

condition.  Note that the only difference between the drag-racer and hot-rodder problem 

is the boundary conditions.  In particular, the hot-rodder has to stop at the end of the 

course while the drag racer can continue past the endpoint. 

 

The solution to the hot-rodder problem is more complicated than the solution to the drag 

racing problem.  Because this problem is a stop-go-stop problem, there is an acceleration 

phase followed by a braking phase.   

 

Let time bt , 0 b ft t< < , be the time at which the acceleration phase ends and the braking 

phase begins.  Then for the interval of time 0 bt t≤ <  the solution is a constant control 

defined by  

 ( )
,max

,

,max

,  
, , ,  

,  

A

A s

B

T x r
T x x T x r

T x r

α
α α

α

⎧ > ⋅
⎪= = ⋅⎨
⎪ < ⋅⎩

��
� �� �

��
 (7.2.13) 

 

and for the interval of time b ft t t≤ ≤ , the solution is a constant control that satisfies  

 ( )
,max

,

,max

,  
, , ,  

,  

A

B s

B

T x r
T x x T x r

T x r

α
α α

α

⎧ > ⋅
⎪= = ⋅⎨
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 (7.2.14) 
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where ,A sT  and ,B sT satisfy (7.2.6) and the torques given in (7.2.13) and (7.2.14) satisfy 

(7.2.11). 

 

Since equations (7.2.13) and (7.2.14) give an optimal feedback control, given initial 

conditions for the hot-rodder problem, it is straightforward to compute the time, bt , that 

the vehicle begins the braking phase of the trajectory by integrating equations (7.2.5) and 

applying the boundary conditions and solving for bt .  Specifically  

 

( )
, ,

2
,

1
2

b
A s A s

B s

dt
r T T

TI m r

=
⎛ ⎞⋅
⋅ +⎜ ⎟⎜ ⎟⋅ + ⋅ ⎝ ⎠

 (7.2.15) 

 

when ( )0 0x = , ( )0 0x =� , and ( )0 0α =� . 

 

As with the drag racing problem, a set of states in the state space exist where the solution 

is not well behaved.  For this problem, a set of states exist where the optimal control does 

not exist because a trajectory does not exist that satisfies the boundary condition 

requiring the vehicle to stop at ( )fx t d= .  Because ( )x t d≤  for 0 ft t t≤ ≤ , the vehicle 

cannot drive past the light and back up to the final condition, so there is a region of the 

state space where no optimal solution exists. 

 
Comments 
 

The two problems given above are fundamentally different from the pure ABS problem 

given in [70], because the time is being minimized instead of the distance.  The PMP can 
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be used to solve the optimal control problem in [70], but it only provides and open-loop 

control.  Further, since the problem has been formulated as a hybrid control problem, the 

standard PMP does not apply.  Non-smooth versions of the maximum principle have been 

derived, for example see [67], but still only provide an open-loop solution to the control 

problem and necessary conditions for optimality.   

 

The second thing to note is that the standard sufficient conditions derived from the HJCB 

PDE also do not apply to these problems because they require that the cost-to-go function 

be differentiable everywhere in the state space [6][7].  Of course, the integral equation of 

dynamic programming does still apply.  Because of the discontinuity associated with the 

model, the cost-to-go function is continuous, but not differentiable everywhere.  It is 

straightforward to prove that the cost-to-go function for the ABS problem in [70] is also 

continuous but not differentiable everywhere. 

 

7.2.6 Optimal Solution 

The purpose of this section is to prove that (7.2.10), (7.2.13), and (7.2.14) are the optimal 

controls for the drag racer and hot-rodder problems.  Since the PMP is not applicable and 

the standard sufficient conditions do not apply, more general necessary and sufficient 

conditions are required for the proof of optimality.  The hybrid control problem will be 

reformulated in such a way that the work in Chapter 6 applies.  As in the previous 

example, the hybrid optimal control problem will be broken up into a series of local 

optimal control problems and the work of Chapter 6 will be applied.  
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Hybrid Model 
 

The first step in proving the control is optimal is to model the system in hybrid form.  

The simplified friction model given earlier will be used as the basis of the hybrid model.  

In order to make the hybrid system easier to analyze, a coordinate transformation will be 

performed on the dynamic constraints given in equations (7.2.5) and (7.2.7). 

 

Define a set of new state variables for the problem to be  

 
1

2

3

y x
y x
y r xα

=
=
= ⋅ −

�
� �

 (7.2.16) 

 

When the tire is not sliding (i.e. ( ) ( )x t r tα= ⋅ �� , ( )3 0y t = ) the dynamics describing the 

system can be written as  

 

( ) ( )

( ) ( )

( )

1 2

2 2

3 0

y t y t

T t
y t r

I m r
y t

=
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+ ⋅

=

�

�

�

 (7.2.17) 

 

where ( ), ,B s A sT T t T≤ ≤ , and when the tire has lost traction (i.e. ( ) ( )x t r tα≠ ⋅ �� , 

( )3 0y t ≠ ), the dynamics describing the system can be written as  

 

( ) ( )

( )

( ) ( )

1 2

2 ,

2

3 ,

n
i s

n i s

y t y t
Fy t
m
r T t I m ry t F
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 (7.2.18) 
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Where  

 ,
,

,

,  
,  

A s
i s

B s

x r
x r

μ α
μ

μ α
< ⋅⎧

= ⎨ > ⋅⎩

��
��  (7.2.19) 

 

The input to the problem is the torque acting on the wheel which is bounded by the 

engine torque in the positive torque direction and is bounded by the maximum frictional 

torque produced by the brakes in the negative torque direction. 

  

This new model can be cast into a problem in hybrid automaton form.  The hybrid 

problem consists of three locations where the first location describes the behavior of the 

system when the wheel is not slipping, the second location describes the behavior of the 

system where the wheel is slipping and ( ) ( )r t x tα⋅ >� � , and the third location describes 

the behavior of the system where the wheel is slipping and ( ) ( )r t x tα⋅ <� � .  The hybrid 

automaton is given in Figure 7.17.  
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( ) ( )
( )

1

3

1
, ,

0

q
y t f y u t

y t

=

=

=

�  

( ) ( )
( )

3

3

3
, ,

0

q
y t f y u t

y t

=

=

<

�  
( )3 0sy t =  

( )3 0sy t >  

( ) ( )
( )

2

3

2
, ,

0

q
y t f y u t

y t

=

=

>

�  
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( )3 0sy t <  

 

Figure 7.17: Hybrid model for the friction phenomenon between the tire and ground. 

The dynamic constraints given in Figure 7.17 are not identical to equations (7.2.17) and 

(7.2.18).  When the system is in node 2q =  or 3q = , then 2f  and 3f  are equal to 

equation (7.2.18) with i A=  and i B=  respectfully.  However when the system is in 

node 1q = , 1f  is not equal to equation (7.2.17) because the equations are not valid when 

( ),max ,A A sT T t T≥ >  or ( ),max ,B B sT T t T≤ < .  If the constraint on the torque 

( ), ,B s A sT T t T≤ ≤  is not met (which is possible), the condition on 3y�  allows for the 

system to transition out of node 1q = .  It is this behavior of the system that makes the 

control singular when the system is in node 1q =  and not bang-bang.   

 

Note that the hybrid model is not a well behaved model because it can exhibit Zeno 

behavior.  Assume that the system is in location 2q =  and the control torque is such that 

( )3 0y t → .  When ( )3 0y t = , the system will transition to location 1q = , but if the 

applied torque does not satisfy ( ), ,B s A sT T t T≤ ≤ , the system will instantaneously 
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transition into either location 2q =  or 3q = .  For example assume that control torque is 

determined by the following feedback control strategy  

 ( ) ( )
( )

,max 3

,max 3

,   0
,  0

B

A

T y t
T t

T y t
≥⎧

= ⎨ <⎩
 (7.2.20) 

 

then the system will transition between locations 1q = , 2q = , and 3q =  an infinite 

number of times in finite time. 

 

Another characteristic of the hybrid model is that when the system is in location 1q =  the 

input torque directly affects the longitudinal position of the vehicle, but when the system 

is in location 2q =  or 3q = , the input torque doesn’t affect the longitudinal position or 

velocity of the vehicle.  In these locations, the input torque only controls the wheel speed 

which controls when the system switches to location 1q = , if ever.  So when in location 

1q = , the input torque controls the longitudinal states of the system and when in location 

2q =  or 3q =  the input torque controls when the system will switch back to location 

1q = . 

 

Finally, in this form, the work of Chapter 6 doesn’t apply.  Because the theory has not 

been developed for controlled jumps, it cannot be applied to this hybrid model.  When the 

system is in location 1q =  and the control torque satisfies ( ), ,B s A sT T t T≤ ≤ , the system 

will jump to either 2q =  or 3q = .  Hence the control torque will produce a controlled 

jump of the system.   
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Note that an assumption will be added to the hybrid model and verified, so that the work 

of Chapter 6 can be applied.  It is going to be assumed that once the system enters 

location 1q = , it will stay there until the final state is reached.  This assumption will 

restrict the model so that the controlled jump is not allowed, as well as, remove the Zeno 

behavior. 

 

7.2.7 Proof of the Drag Racing Problem 

The proof of the feedback control solution to the drag racing problem will be given first 

because it is the easier of the two control problems. 

 

Location q=1 Analysis 
 

The first step in solving the hybrid optimal control problem is to compute the feedback 

control for the system in node 1q = .  For this analysis it will be assumed that once the 

system enters node 1q = , it will stay there until the final state is reached.  This 

assumption will be verified later.  In the previous section, it was noted that ( )1 , ,f y u t  

does not equal equation (7.2.17).  However the node assumption requires that ( )3 0y t =  

for all 0 ft t t≤ ≤ , which requires the control torque to satisfy ( ), ,B s A sT T t T≤ ≤ .  As such 

1f  reduces to  

 ( )
( )
( )

2

1

2

, ,
y t

f y u t T t
r

I m r

⎡ ⎤
⎢ ⎥= ⎢ ⎥⋅⎢ ⎥+ ⋅⎣ ⎦

 (7.2.21) 
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where ( )3y t�  can be eliminated from equation (7.2.17) and the dimension of the state 

space reduced from dimension 3 to dimension 2. 

 

Now that the dynamic constraint for this problem has been defined, the optimal control 

problem can be given.  Let the system start with the initial condition   

 
( )

( )
1 0

2 0

0

0

y t d

y t

≤ <

≥
 (7.2.22) 

 

and move to the final condition  

 
( )
( )

1

2

f

f

y t d

y t

=
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 (7.2.23) 

 

with the cost  

 ( )
0

, 1ft

t
J x u dt= ⋅∫  (7.2.24) 

 

The optimal control problem finds the control function ( )u τ , 0 ft tτ≤ < , that will 

minimize equation (7.2.24) while satisfying the dynamic constraints in equation (7.2.21) 

and boundary conditions given in equations (7.2.22) and (7.2.23). 

 

The first step in solving the optimal control problem is to compute the Hamiltonian for 

node 1q = .  The Hamiltonian for this problem is  

 ( ) ( ) ( ) ( )
1 1,1 2 2,1 2 1

T t
H t y t t r

I m r
λ λ= ⋅ + ⋅ ⋅ −

+ ⋅
 (7.2.25) 
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The necessary conditions requires that the Hamiltonian is maximized by the optimal 

control, so equation (7.2.25) implies that  

 ( )
( )( )
( )( )
( )( )

, 2,1

, 2,1

2,1

,  0

,  0
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A s

B s

T sign t

T sign tT t
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λ

λ

⎧ >
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⎪
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 (7.2.26) 

 

where , ,A s B sT u T≤ ≤  is some unknown admissible control. 

 

Furthermore, the necessary conditions require that the adjoint vector ( )tλ  is the solution 

to the vector differential equations   

 
( )

1,1

2,1 1,1

0

t

λ

λ λ

=

= −

�

�  (7.2.27) 

 

with initial conditions ( )1,1 0tλ  and ( )2,1 0tλ . 

 

Let ( )1,1 0 10,1tλ λ=  and ( )2,1 0 20,1tλ λ= , then equation (7.2.27) can be integrated resulting in  

 
( )
( ) ( )

1,1 10,1

2,1 20,1 10,1 0

t

t t t

λ λ

λ λ λ

=

= − ⋅ −
 (7.2.28) 

 

Equations (7.2.28) and (7.2.26) imply that the optimal control is either constant or 

piecewise constant with only one switch. 

 

The transversality conditions associated with the necessary conditions imply  
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( )
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f

f

t
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λ

λ

∈
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\
 (7.2.29) 

 

since ( )1 0fy t d= >  is fixed and ( )2 fy t  is free.  Note that equation (7.2.28) can be 

substituted into equation (7.2.29) resulting in  

 
( )
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f

f f f
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λ λ
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 (7.2.30) 

 

which proves that it is necessary that the optimal control is constant. 

 

Let the control, ( )T t T= . The constraint equations given in  (7.2.21) can then be 

integrated resulting in  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1 0 2 0 0 02

2 2 0 02
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 (7.2.31) 

 

Since the candidate optimal control is constant and equal to either ,A sT  or ,B sT , and 

( )1 0fy t d= > , then the constant control that satisfies the constraint and equation (7.2.31) 

must be positive and, an optimal control (if it exists) must satisfy ( ) ,A sT t T= . 

  

The sufficient conditions will now be used to verify that the control function ( ) ,s AT t T=  

is the optimal control for all 0 ft t t< < .  The non-smooth sufficient conditions require that 

the optimal control satisfy the HJCB PDE whenever the optimal cost-to-go function 
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( ( )* ,cJ t x ) is differentiable in a region that includes both the initial and final states and the 

neighborhood of all those in between.  Thus,   

 ( ) ( )* *
0 0

0

, , 0c cJ t J t
H x T

t x
⎛ ⎞∂ ∂

− − =⎜ ⎟∂ ∂⎝ ⎠
 (7.2.32) 

 

 

where *
,1cJ  is the cost (i.e. time) associated with moving the trajectory from ( )0y t  to 

( )fy t  using the optimal control.  When T  is constant, equation (7.2.31) can be solved 

for ( )0ft t−  using the boundary conditions yielding  
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where 0d > ,   
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1 2

A sr T
I m r

γ
⋅
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 (7.2.34) 

 

and ,A sT  is the constant torque. 

 

Now, equation (7.2.33) is differentiable and not an explicit function of 0t  so  
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and the HJCB equation evaluates to  
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 (7.2.36) 
 

which proves that the control ,( ) A sT t T=  is optimal in the region that contains any initial 

state that satisfies equation (7.2.22) and is the feedback control for location 1q = . 

 

Location q=2/ 3q =  Analysis 
 

The next step in solving the hybrid optimal control problem is to analyze the behavior of 

the system while in node 2q =  or 3q = .  These two nodes have similar behavior so the 

optimal control for node 2q =  will be computed and the optimal control for location 

3q =  will be given directly. 

 

When the system is in node 2q = , the tire is slipping relative to the ground, ( )3 0 0y t > , 

and the dynamics of the system are given by  
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Where ( ),max ,maxB AT T t T≤ ≤ , and ,A sμ  is positive and is the coefficient of sliding friction 

between the tire and the ground.   

 

The local optimal control problem can now be given for this location.  Assume the state 

trajectory starts at the initial condition  

 
( )

( )
( )

1 0

2 0

3 0

0

0

0

y t d

y t

y t

≤ <

≥

>

 (7.2.38) 

 

and moves to the final condition  

 
( )
( )
( )

1

2

3 0

s

s

s

y t d

y t

y t

<

∈

=

\  (7.2.39) 

 

with cost  

 ( ) ( ) ( )( )
0

1 2, 1 ,st

s st
J x u dt g y t y t= ⋅ +∫  (7.2.40) 

 

where  

 ( ) ( )( ) ( )( ) ( ) ( ) ( )( )2
2 2 1 1*

1 2 ,1
1

2
, s s s

s s c s

y t y t d y t
g y t y t J y t

γ

γ

− + + ⋅ ⋅ −
= =  (7.2.41) 
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Then the optimal control problem will be to find the control function ( )u τ , 0 st tτ≤ < , 

that minimizes the cost given in equation (7.2.40) satisfying the dynamic constraints 

given in equation (7.2.37) and boundary conditions  in (7.2.38) and (7.2.39). 

 

Note that the final condition on 1y  has been restricted to any value less than d .  Also it is 

required that ( )3 0y τ =  for some ftτ < .  This is required because in this node, the 

longitudinal position and velocity are independent of the control as is obvious from 

equation (7.2.37).  As such, if the system cannot switch to node 1q =  before ( )1 sy t d= , 

the optimal control is not unique and any admissible control is optimal. 

 

The necessary conditions for optimality are as follows.  First the Hamiltonian for this 

problem is   

 ( ) ( ) ( ) ( ) ( ) 2

2 1,2 2 2,2 , 3,2 , 1n
A s n A s

T tF I m rH t y t t t F
m I m I

λ λ μ λ μ
⎡ ⎤⎛ ⎞+ ⋅

= ⋅ + ⋅ ⋅ + ⋅ − ⋅ ⋅ −⎢ ⎥⎜ ⎟⋅⎝ ⎠⎣ ⎦
 (7.2.42) 

 

Defining ( )2 Tγ  as  

 ( ) ( ) 2

2 ,n A s

T t I m rT F
I m I

γ μ
⎡ ⎤⎛ ⎞+ ⋅

= − ⋅ ⋅⎢ ⎥⎜ ⎟⋅⎝ ⎠⎣ ⎦
 (7.2.43) 

 

and substituting into equation (7.2.42) results in  

 ( ) ( ) ( ) ( ) ( )2 1,2 2 2,2 , 3,2 2 1n
A s

FH t y t t t T
m

λ λ μ λ γ= ⋅ + ⋅ ⋅ + ⋅ −  (7.2.44) 

 

Using the definition of the adjoint variable, equation (7.2.44) can be used to compute  
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 ( )
1,2

2,2 1,2

3,2

0

0

t

λ

λ λ

λ

=

= −

=

�

�

�
 (7.2.45) 

 

which implies  

 
( )
( ) ( )
( )

1,2 10,2

2,2 20,2 10,2 0

3,2 30,2

t

t t t

t

λ λ

λ λ λ

λ λ

=

= − ⋅ −

=

 (7.2.46) 

 

The necessary conditions require that the Hamiltonian is maximized for almost every 

time 0 st t t≤ ≤ , so the control that maximizes the Hamiltonian is   

 ( )
( )
( )
( )

,max 3,2

,max 3,2

,max ,max 3,2

,                    0
,                     0

,  0

A

B

B A

T t
T tT t
T u T t

λ
λ

λ

>⎧
⎪ <= ⎨
⎪ ≤ ≤ =⎩

 (7.2.47) 

 

where u  is some unknown admissible control.  Note that as long as 30,2 0λ ≠ , the optimal 

control is constant and is either ( ) ,maxAT t T T= =  or ( ) ,maxBT t T T= = .   

 

Since ( )3 0y t > , the logical choice for the constant optimal control is ( ) ,maxBT t T=  

because it will drive ( )3 0y t → . 

 

Assume that the optimal control is equal to the constant ( ) ,maxBT t T= , then equation 

(7.2.37) can be integrated to find  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
1 1 0 2 0 0 , 0

2 2 0 , 0

2
,max

3 3 0 , 0

1
2

n
A s

n
A s

B
n A s

Fy t y t y t t t t t
m

Fy t y t t t
m
r T I m ry t y t F t t

I m I

μ

μ

μ

= + ⋅ − + ⋅ ⋅ ⋅ −

= + ⋅ ⋅ −

⎛ ⎞⋅ ⎛ ⎞+ ⋅
= + − ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 (7.2.48) 

 

and the third equation in (7.2.48) can be rearranged and evaluated at st  resulting in   

 ( ) ( ) ( )3 3 0
0 2

,max
,

s
s

B
n i s

y t y t
t t

r T I m rF
I m I

μ

−
− =

⎛ ⎞⋅ ⎛ ⎞+ ⋅
− ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 (7.2.49) 

 

Since the constraint associated with switching time st t=  requires that ( )3 0sy t = , then 

equation (7.2.49) can be written as  

 ( ) ( )3 0
0 2

,max
,

s
B

n A s

y t
t t

r T I m rF
I m I

μ
− = −

⎛ ⎞⋅ ⎛ ⎞+ ⋅
− ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 (7.2.50) 

 

and the optimal cost-to-go function from ( )0y t  to ( )sy t  using the candidate optimal 

control  is  

 ( )( ) ( ) ( ) ( ) ( )( )2
2 2 1 13 0*

,2 0
2 1

2s s s
c

y t y t d y ty t
J y t

γ

γ γ

− + + ⋅ ⋅ −
= − +  (7.2.51) 

 

where  

 

,
1 2

2
,max

2 ,

A s

B
n A s

r T
I m r

r T I m rF
I m I

γ

γ μ

⋅
=

+ ⋅
⎛ ⎞⋅ ⎛ ⎞+ ⋅

= − ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 (7.2.52) 
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The value of ( )1 sy t  and ( )2 sy t  can be computed from equation (7.2.48) resulting in  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

23 0
1 1 0 2 0 4 3 0

2

2 2 0 3 3 0

s

s

y t
y t y t y t y t

y t y t y t

γ
γ

γ

= − ⋅ + ⋅

= + ⋅

 (7.2.53) 

 

where  

 

,
3
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1 1
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F
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F
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μ
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γ

γ μ
γ

= − ⋅

⎛ ⎞
= ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

 (7.2.54) 

 

Finally equation (7.2.53) can be substituted into equation (7.2.51) to calculate the optimal 

cost-to-go as  

 

( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

2 0 3 3 03 0*
,2 0

2 1

2 23 0
2 0 3 3 0 1 1 0 2 0 4 3 0
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2

                    

c

y t y ty t
J y t

y t
y t y t d y t y t y t

γ
γ γ

γ γ γ
γ

γ

+ ⋅
= − −

⎛ ⎞⎛ ⎞
+ ⋅ + ⋅ ⋅ − − ⋅ + ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠+

 (7.2.55) 

 

Note that equation (7.2.51) is differentiable when the initial state satisfies the boundary 

condition given in equation (7.2.38) and produces a trajectory such that the end condition 

in equation (7.2.39) is satisfied. So for any ( )0 0st t− > , ( )3 0y t  will be   

 ( ) ( )
2

,max
3 0 0 ,

B
s n A s

r T I m ry t t t F
I m I

μ
⎛ ⎞⋅ ⎛ ⎞+ ⋅

= − − ⋅ − ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠
 (7.2.56) 
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and ( )1 0y t  and ( )2 0y t  are required to satisfy 

 
( ) ( ) ( ) ( )

( )

23 0
1 0 2 0 4 3 0

2

2 0

0

0

y t
y t d y t y t

y t

γ
γ

≤ < + ⋅ − ⋅

≥

 (7.2.57) 

 

which define a region of the state space where all possible initial conditions must lie. 

 

Differentiating equation (7.2.51) results in   
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∂
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2

2

2
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γ γ γ γ
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⎛ ⎞
+ ⋅ ⋅ + − ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ⋅ + ⋅ ⋅ − + ⋅ − ⋅⎜ ⎟
⎝ ⎠

 (7.2.58) 
 

The non-smooth sufficient condition requires that the optimal control satisfy the HJCB 

equation everywhere it exists.  In order to compute the HJCB equation, the Hamiltonian 

function needs to be computed.  Substituting equations (7.2.58) into (7.2.46) and then 

into (7.2.44) and simplifying gives  
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( ) ( )
( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

*
,2 3 0 3 2 4

2 0
0 2 23 0

2 0 3 3 0 1 1 0 2 0 4 3 0
2

2
, ,

2

cJ y t
H y t T

y t y t
y t y t d y t y t y t

γ γ γ

γ γ γ
γ

⎛ ⎞∂ ⋅ + ⋅ ⋅
− =⎜ ⎟⎜ ⎟∂ ⎛ ⎞⎝ ⎠

+ ⋅ + ⋅ ⋅ − + ⋅ − ⋅⎜ ⎟
⎝ ⎠

 (7.2.59) 
 

Finally, using the definition of 2γ , 3γ , and 4γ , equation (7.2.59) results in  

 ( ) ( )

*
,2

2 0
0

, , 0cJ
H y t T

y t
⎛ ⎞∂

− =⎜ ⎟∂⎝ ⎠
 (7.2.60) 

 

which is the desired result.  Note that equation (7.2.60) is true for any 00 s ft t t≤ < <  and 

finishes the proof.   

 

So for node 2q = , ( ) ,maxBT t T=  is the optimal solution for any state for which the state 

( )3 0fy t =  is reachable.  When in node 3q = , an identical method is used to prove that 

the control ( ) ,maxAT t T=  is optimal and finishes the proof of optimality. 

 

Assumption Justification 
 

The proof the optimal control required the assumption that once the system reached node 

1q =  the trajectory would stay in node 1q = .  This assumption will now be justified. 

 

First assume that the system starts in location 1q =  at time 0t , with ( )1 0 1y t dα= <  and 

( )2 0 2 0y t α= ≥ , and stays in node 1q =  until ( )1 3y t dα= ≤ .  The optimal control 

analysis for a trajectory in node 1q =  showed that the optimal control is ( ) ,A sT t T=  for 
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0 ft t t≤ ≤ .  The position and velocity of the vehicle for any time, t , 0 ft t t≤ ≤ , is given 

by equation (7.2.31) resulting in  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2,
1 1 0 2 0 0 02

,
2 2 0 02

1
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A s

A s

T r
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y t y t t t
I m r

⋅
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+ ⋅
⋅

= + ⋅ −
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 (7.2.61) 

 
but since  
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,max
,

n A
A s

F I m rT
r m I
μ⋅ ⎛ ⎞+ ⋅

= ⋅⎜ ⎟⋅⎝ ⎠
 (7.2.62) 

 

equation (7.2.61) can be rewritten as  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1 0 2 0 0 ,max 0

2 2 0 ,max 0

1
2

n
A

n
A

Fy t y t y t t t t t
m

Fy t y t t t
m

μ

μ

= + ⋅ − + ⋅ ⋅ ⋅ −

= + ⋅ ⋅ −
 (7.2.63) 

 

Now assume that the system is in node 2q =  or node 3q =  with the same initial 

condition.  The position and velocity for this node is independent of the optimal control 

and can be calculated from equation (7.2.48) resulting in    

 
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2
1 1 0 2 0 0 3 , 0

2 2 0 3 , 0

1 sgn
2

sgn

n
i s

n
i s

Fy t y t y t t t y t t t
m

Fy t y t y t t t
m

μ

μ

= + ⋅ − + ⋅ ⋅ ⋅ ⋅ −

= + ⋅ ⋅ ⋅ −
 (7.2.64) 

  

Since  

 , ,maxi s Aμ μ<  (7.2.65) 
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by definition, ( ) ( )1,1 1,2y t y t>  for all 0t t> .  As such if the system is in any node other 

than 1q =  for some interval of time, the distance traveled will always be less than if the 

system stayed in node 1q =  for that interval of time, so the final node will always be 

1q =  justifying the assumption. 

 

7.2.8 Proof of Hot-rodder Problem 

The hot-rodder problem is a similar problem to the drag racing problem except that the 

end condition is different.  The purpose of the hot-rodder problem is to minimize the 

amount of time required to travel a prescribed distance.  Thus the initial and final 

velocities must be zero.  In the development of the solution to the drag racing problem, it 

was shown that a region of the state space existed where the optimal control was not 

unique.  The hot-rodder problem has a similar region, except that in this region the final 

state is not reachable, so an optimal control will not exist.  An example is when a person 

wants to stop at a stop light and they wait too long to apply the brakes, they will not be 

able to stop and will pass through the stop light.  

 

The solution to the hot-rodder problem will proceed in a manner identical to the drag 

racing problem.  First, the feedback control will be calculated for the final node and then 

the optimal cost-to-go will be evaluated along the switching surface between locations 

and the new local optimal control problem will be analyzed.  As with the drag racing 

problem, it will be assumed that the final location is 1q = .  The justification of the 
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assumption for the drag racing problem applies to this problem here, so will be omitted 

from this section.   

 

Node q=1 Analysis 
 

The first step in solving the hybrid optimal control problem is to compute the feedback 

control for the system in node 1q = .  For this analysis it will be assumed that once the 

system enters node 1q = , it will stay there until the final state is reached.  Just as in the 

drag racer problem, the node assumption requires that ( )3 0y t =  for all 0 ft t t≤ ≤ , and 

the control torque satisfy ( ), ,B s A sT T t T≤ ≤ .  The dynamic constraint for the problem will 

then reduce to   

 ( )
( )
( )

2

1

2

, ,
y t

f y u t T t
r

I m r

⎡ ⎤
⎢ ⎥= ⎢ ⎥⋅⎢ ⎥+ ⋅⎣ ⎦

 (7.2.66) 

 

Now that the dynamic constraint for this problem has been defined, the optimal control 

problem can be given.  Let the system start with the initial condition   

 
( )

( )
1 0

2 0

0

0

y t d

y t

≤ <

≥
 (7.2.67) 

 

and move to the final condition  

 
( )
( )

1

2 0

f

f

y t d

y t

=

=
 (7.2.68) 

 

with the cost  
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 ( )
0

, 1ft

t
J x u dt= ⋅∫  (7.2.69) 

 

The optimal control problem will find the control function ( )u τ , 0 ft tτ≤ < , that will 

minimize equation (7.2.69) while satisfying the dynamic constraints in equation (7.2.66) 

and boundary conditions given in equations (7.2.67) and (7.2.68).  Note that this problem 

is identical to the minimum time to the origin problem for the double integrator.  As such 

the optimal feedback solution is well known and was given in the previous example 

problem.  The optimal solution will consist of a surface in the state space that will reach 

the final condition given in equation (7.2.68) with the control ( ) ,B su t T= , b ft t t≤ ≤ , 

which satisfies 

 ( ) ( )2
1 2

1
2b by t y t d= − ⋅ +  (7.2.70) 

 

Further, when the initial condition satisfies the constraint 

 ( ) ( )2
1 0 2 0

1
2

y t y t d< − ⋅ +  (7.2.71) 

 

the optimal control will be ( ) ,A su t T= , 0 bt t t≤ < .  However, if the initial condition 

satisfies  

 ( ) ( )2
1 0 2 0

1
2

y t y t d> − ⋅ +  (7.2.72) 
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Then the final condition is not reachable, and the optimal cost-to-go is infinite.  

Theoretically, a way to make the final condition reachable by the entire state space is for 

the model to allow the vehicle to overshoot the final vehicle position ( )1 by t d= , put the 

vehicle in reverse, and back up to the final condition.  However, this violates the 

underlying problem definition and will be excluded here. 

 

Figure 7.18 depicts the region of the state-space that can reach the final condition. 
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The Reachable Set of States for Node q=1 for the Hot-Rodder Problem

 

Figure 7.18: Set of states that can reach the final state for node 1q = . 

The optimal control given above will be at most piecewise continuous, so the state 

trajectory will satisfy  

( ) ,A su t T=  

( ) ,B su t T=  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2,
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,
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i s

i s

T r
y t y t y t t t t t

I m r
T r

y t y t t t
I m r

⋅
= + ⋅ − + ⋅ ⋅ −

+ ⋅
⋅

= + ⋅ −
+ ⋅

 (7.2.73) 

 

for constant control ( ) ,i su t T= , ,i A B= , so the cost-to-go to the final condition can be 

calculated.  First assume the state trajectory satisfies equation (7.2.70), then the cost-to-

go to the final condition from any value along the braking surface is  

 ( ) ( ) ( ) ( )2
2 2 1 1

1

2b b b
f b

y t y t y t
t t

γ
β

+ − ⋅ ⋅
− = −  (7.2.74) 

 

where  

 ,
1 2 0B sT r

I m r
β

⋅
= <

+ ⋅
 (7.2.75) 

 

Further, if the state trajectory satisfies equation (7.2.71), then system is in the 

acceleration phase and cost-to-go to the braking surface is  

 ( ) ( ) ( ) ( ) ( )( )
( )

2
2 2 1 0 2 2 02 0

0
2 2 2

1 2 2

1b

y t d y ty t
t t

β β β

β β β

+ ⋅ − ⋅ ⋅ + ⋅ ⋅ +
− = − +

⋅ +
 (7.2.76) 

 

where  

 ,
2 2 0A sT r

I m r
β

⋅
= >

+ ⋅
 (7.2.77) 
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Finally, the cost-to-go to the final condition from any initial condition in the reachable 

portion of the state space will be  

 ( ) ( )( )
( )( ) ( )3 1 3* 32 0

1 0 2 0
1 2 2

1
,c

y t
J y t y t

β β β β
β β β

+ − ⋅
= − − +  (7.2.78) 

 

where  

 ( ) ( )2
2 1 0 2 2 0

3
2

2 2
1

y t d y tβ β
β

β
− ⋅ ⋅ + ⋅ ⋅ +

=
+

 (7.2.79) 

 

The HJCB equation will not be evaluated here because the previous work proved that the 

proposed control is optimal.  However equation (7.2.78) was derived because it is 

required for the analysis of nodes 2q =  and 3q = . 

 

Node q=2/q=3 Analysis 
 

Just as in the drag racer problem, the analysis of nodes 2q =  and 3q =  is very similar, 

so the analysis will be performed for node 2q =  and the results will be presented for 

node 3q = .  The optimal control problem is very similar to the drag racing problem but 

will be given here for completeness. 

 

When the system is in node 2q = , the tire is slipping relative to the ground, ( )3 0 0y t > , 

and the dynamics of the system are given by  
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 (7.2.80) 

 

with ( ),max ,maxB AT T t T≤ ≤ , and ,A sμ  is positive and is the coefficient of sliding friction 

between the tire and the ground.   

 

Assume the state trajectory starts at the initial condition  
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 (7.2.81) 

 

and moves to the final condition  
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with cost  

 ( ) ( ) ( )( )
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where  
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and  

 ( ) ( )2
2 1 2 2

3
2

2 2
1

s sy t d y tβ β
β

β
− ⋅ ⋅ + ⋅ ⋅ +

=
+

 (7.2.85) 

 

Then the optimal control problem will be to find the control function ( )u τ , 0 st tτ≤ < , 

that minimizes the cost given in equation (7.2.84) satisfying the dynamic constraints 

given in equation (7.2.80) and boundary conditions  in (7.2.81) and (7.2.82). 

 

Also it will be assumed that s ft t< .  Note that the restrictions on final conditions are 

made so that the state trajectory can reach the final conditions for the hybrid optimal 

control problem and the optimal control is unique. 

 

The analysis for this problem is identical to that for the drag racer and the necessary 

conditions show that the candidate optimal control is ( ) ,maxBu t T= , and the associated 

cost-to-go function to the surface of final conditions is  

 ( )( ) ( ) ( )( ) ( )3 1 3* 33 0 2
,2 0

2 1 2 2

1
s

c

y t y t
J y t

β β β β
γ β β β

+ − ⋅
= − − − +  (7.2.86) 

 

where  

 
2

,max
2 ,

B
n A s

r T I m rF
I m I

γ μ
⎛ ⎞⋅ ⎛ ⎞+ ⋅

= − ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠
 (7.2.87) 
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It is obvious from equations (7.2.85) and (7.2.86) that the optimal cost-to-go is 

differentiable everywhere with respect to ( )0y t .  Following the same method as the one 

used in the solution of the drag racer, ( )( )*
,2 0cJ y t  can be differentiated with respect to 

( )0y t  and can be used to show the HJCB is equal to zero for all initial states.  The 

mathematics for the hot-rodder problem are much more complicated than the drag racer, 

so the actual equations will not be given here.  A symbolic solver can be used along with 

the equations (7.2.86) and those in the drag racer proof to prove the control is optimal.  

The proof of node 3q =  follows an identical process.  

 

7.2.9 Conclusions 

The solutions to the drag racer and hot-rodder problems were presented here through the 

application of hybrid modeling and analysis tools.  The work in Chapter 6 was indirectly 

applied to the hybrid optimal control problem to prove the feedback controls presented 

were optimal.  Any switching sequence of nodes that end with node 1q =  can be cast into 

a hybrid optimal control problem where the necessary and sufficient conditions given in 

Chapter 6 will prove that the control is optimal.  Furthermore, the local values of the 

Hamiltonian, adjoint, and optimal cost-to-go functions will also be the same.  The method 

given here used the same technique used to derive the hybrid necessary and sufficient 

conditions to solve the easier local optimal control problems and project the feedback 

solution backwards in time.  
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The real drag racer and hot-rodder problems are more complicated than the problems 

solved here.  The wheel-to-ground interaction is unknown and changing, so the controller 

must estimate the torque at which the wheels start to spin.  This may be simpler with 

these problems than in the ABS case because of the way drag racing is actually done.  

Two cars race together and the first car to cross the finish line advances to the next race.  

The competition is organized as a conventional tournament, thus a competitor can use the 

early races to estimate the maximum torque while running at a torque he or she knows is 

below the maximum, which is an example of an iterative learning control problem.  The 

hot-rodder problem is similar except requiring the vehicle to be stopped at the final 

condition adds complexity to the system.  Not only does the driver need to perform 

multiple runs to estimate the maximum accelerating and braking torque, the driver needs 

to estimate the reachable set of states so that the vehicle stops at the required point.    
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Chapter 8: Summary and Recommendations for Future Work 

Hybrid systems are combinations of continuous and discrete time systems that are 

becoming more commonplace in the world today.  With the miniaturization of computer 

systems it is becoming easier to embed them into controlled physical systems.  A subset 

of control synthesis tools are provided by optimal control theory.  In particular, the 

necessary conditions for optimality of control are given by various Maximum Principles 

and the sufficient conditions are given by using Bellman’s Principle of Dynamic 

Programming and through evaluation of the non-smooth HJCB equation.  

 

In this dissertation, analysis tools were developed for optimal feedback control synthesis 

of hybrid systems.  The necessary and sufficient conditions for the hybrid problem were 

developed using a non-smooth form of the HJCB equation and viscosity solution theory.  

Viscosity solution theory provides enough generality so that the necessary and sufficient 

conditions can be applied to a large class of engineering problems.  The non-smooth 

necessary and sufficient conditions were generalized to hybrid systems through a method 

that is similar to Bellman’s Principle of Dynamic Programming.  The switching sequence 

was defined for the entire run of the model and the final node was identified.  A local 

optimal control problem was generated for the final node and the feedback solution was 

computed using the non-smooth necessary and sufficient conditions.  Next a local 

optimal control problem was generated for the next to last node.  The non-smooth 

necessary and sufficient conditions are used to compute the feedback control where the 
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end-cost constraint for the local control problem is the cost-to-go to the final condition in 

the final node.  This process is repeated until the feedback solution for the entire hybrid 

optimal problem is computed.  Using this method, general necessary and sufficient 

conditions can be developed that will compute the feedback optimal control strategy for 

the hybrid problem.  Two example problems were analyzed using this technique and the 

optimal feedback controls were computed.  These two example problems provide a 

reference for applying the methods developed here and demonstrated the complexity 

associated with solving hybrid optimal control problems. 

 

In order to continue the research presented in this dissertation several paths of research 

could be followed.  First, the necessary and sufficient conditions could be generalized 

further by adding tools that allow for discontinuous value functions.  The Viscosity 

solution work in [7], Chapter 5 provides one method for this generalization.  Second, 

numerical algorithms that embody the hybrid optimal control tools presented in this 

dissertation could be developed.  The advantage of the numerical algorithms is that they 

could provide a convenient means for calculating optimal feedback controls for complex 

hybrid problems.  Solving these problems by hand can sometimes be done, but as 

demonstrated with the example problems in this dissertation, the analysis for simple 

problems can get very complicated.  Third, the analysis tools in this dissertation could be 

expanded to allow for controlled discrete switching.  The tools developed here only apply 

to problems where the switching occurs autonomously through surfaces in the state-

space, but with some work, the tools could be expanded to allow for non-autonomous 

discrete switching.  Non-autonomous discrete switching between nodes could be 
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evaluated since the cost-to-go to the final condition is always known through the 

computation of the feedback optimal control. 
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Appendix A 

Mathematical Preliminaries 

Throughout the development of the analytical tools used to study the hybrid optimal 

control problem, several mathematical tools are going to be used to prove properties of 

the optimal control problems.  This appendix will introduce the concepts of an admissible 

control and perturbation equations. 

 

Admissible Controls 

In order to develop the necessary conditions for optimal controls, the set of admissible 

controls is required.  Loosely, the set of admissible controls is the set of all possible 

controls for which the optimal control problem is valid.  All candidate control functions, 

( )u t U∈  for 0 ft t t≤ ≤ , must be admissible in order to be compared with a candidate for 

the optimal control.  

 

[55], let D  be some class of controls, then a control is admissible if it belongs to D , 

where D  satisfies the following three conditions and t  can take any value from the set 

0 ft t t≤ ≤ : 

1. All controls ( )u t , for all t  such that 0 ft t t≤ ≤ , which belong to D  are 

measurable in t .  Further the set of points ( )u t , for every t  such that 0 ft t t≤ ≤ , 
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which belong to D  are bounded, which means the set of points has a compact 
closure in  m\ . 

2. If ( )u t  is admissible, v  is an arbitrary point in the control region U , and 1t  and 

2t  are numbers such that 0 1 2 ft t t t≤ ≤ ≤ , then the following control is also 
admissible (NOTE the ∧  is the set “and” operator): 

 ( ) ( )
1 2*

0 1 2

,          
,    f

v t t t
u t

u t t t t t t t
≤ ≤⎧⎪= ⎨ ≤ ≤ ∧ ≤ ≤⎪⎩

 (9.1.1) 

3. If the interval 0 ft t t≤ ≤  is broken up into a finite number of subdivisions, where 

for each subdivision ( )u t  is admissible, then the control ( )u t  over the whole 
time interval is admissible. 

 

Given the definitions above, the most general class of controls D  which are admissible is 

the class of controls that are measurable and bounded.  This class contains every other 

possible class of admissible controls as a subclass.  The most specific class of admissible 

controls is the set of all piecewise constant controls and is contained in every other class 

of admissible controls. 

 

Perturbation Equations 

The purpose of this section is to develop a set of equations that describe a trajectory that 

is perturbed from a reference trajectory through variations in initial condition and 

variations in time.  Because this section is fundamental to the development of the optimal 

control analytical tools, the perturbation theory will be developed in detail through a 

series of mathematical concepts. 
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The first mathematical concept that will be given is ( )o ε .  A function ( )f ε , where 

:f →\ \ ,  will be described as order ( )o ε , or ( ) ( )f oε ε= , if the following relation is 

true  

 ( )
0

lim 0
f

ε

ε
ε→

=  (9.1.2) 

 

The definition of ( )o ε  is a special case of the following definition given in [48] (pg. 

113). 

 

Definition 9.1.1: 

A function ( ) ( )( )f x o g x=  as 0x x→ , if for every positive constant M  

 ( ) ( )f x M g x≤ ⋅  (9.1.3) 

 

whenever x  is sufficiently close to 0x .   

 

The concept of ( )o ε  is important in the first order approximation of a function because if 

the vector y  is sufficiently close to the vector x ,  

 ( )0y x oε ξ ε= + ⋅ +  (9.1.4) 

 

where ε  is a positive scalar sufficiently close to 0 , 0ξ  is any vector, and the function f  

at x  is once continuously differentiable, then the first order approximation to the function 

f  at y  can be computed using the Taylor Series Expansion of equation (9.1.4) about x   
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 ( ) ( ) ( ) ( ) ( )0

f x
f y f x o

x
ε ξ ε

∂
= + ⋅ ⋅ +

∂
 (9.1.5) 

 

Equation (9.1.5) will be very useful in studying spatial and temporal perturbations of 

trajectories that are defined by some initial condition and dynamic equation.  

 

A series of mathematical properties of continuous time systems will now be given.  These 

properties form the basis of the perturbation equations that are used to derive the 

necessary conditions that the optimal control problems must satisfy.  Proofs of these 

properties are included because books and papers on optimal control generally claim 

these properties are true but do not provide proofs, and the correct proofs are difficult to 

find in the literature.  The first property is a precise definition of Lipschitz continuity. 

 
Definition 9.1.2, [11]: 

A vector valued function : n nf × →\ \ \  is Lipschitz continuous in nx∈\  uniformly in 

t∈\ , if and only if for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦  there exists a constant 0h >  such that  

 ( ) ( ) ( ) ( ), ,f x t f y t h x t y t− ≤ ⋅ −  (9.1.6) 

 

for all , nx y∈\  and 0 , ft t t⎡ ⎤∈ ⎣ ⎦ . 

 

The next set of mathematical concepts, provide properties of solutions of differentiable 

functions. 
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Lemma 9.1.3, [11]: 

Let :σ →\ \  be a differentiable function satisfying the inequality  

 ( ) ( )t K tσ σ≤ ⋅�  (9.1.7) 

 

for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , where K  is a constant.  Then  

 ( ) ( ) ( )0
0

K t tt t eσ σ ⋅ −≤ ⋅  (9.1.8) 

 

for all 0 , ft t t⎡ ⎤∈ ⎣ ⎦ . 

 

Lemma 9.1.3 implies the next Corollary. 

 

Corollary 9.1.4, [11]: 

If ( )0 0tσ =  in Lemma 9.1.3 and ( ) 0tσ ≥ , then ( ) 0tσ = . 

 

The proof of Corollary 9.1.4 comes directly from Lemma 9.1.3. 

 

Now that Lemma 9.1.3 and Corollary 9.1.4 have been given, they can be used to provide 

a uniqueness result on solutions to non-linear differential equations. 

 

Theorem 9.1.5, Uniqueness of Solutions, [11]: 

Assume that  
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( )( ) ( )( ),

d x t
f x t t

dt
=  (9.1.9) 

 

where : n nf × →\ \ \ .  If f  is Lipschitz continuous in x  uniformly in t  for all 

0 , ft t t⎡ ⎤∈ ⎣ ⎦ , then there is at most one solution ( )x t  to the differential equation given in 

(9.1.9), with initial condition ( )0x t c= . 

 

Now that uniqueness of solutions to equation (9.1.9) has been given, an existence 

theorem can be presented that guarantees the existence of solutions to a differential 

equation. 

 

Theorem 9.1.6, Existence of Solutions, [11]: 

Suppose that the function ( )( ),f x t t , given in Theorem 9.1.5, is defined and continuous 

in the closed domain x c K− ≤ , 0t t T− ≤ , and satisfies a Lipschitz condition in the 

closed domain.  Let ( )( )sup ,M f x t t=  in this closed domain, then equation (9.1.9) has 

a unique solution satisfying ( )0x t c=  that is defined on the smaller interval 

0 min , Kt t T
M

⎛ ⎞− ≤ ⎜ ⎟
⎝ ⎠

. 

 

Now that existence and uniqueness of solutions of equation (9.1.9) have been given, 

continuity of the solutions can now be given. 
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Theorem 9.1.7, Continuity, [11]: 

Let ( )x t  and ( )y t  be any two solutions to equation (9.1.9), where ( )( ),f x t t  is 

continuous and satisfies a Lipschitz condition with constant L .  Then for all ( )0 , ft t t∈  

 ( ) ( ) ( ) ( )0
0 0

L t tx t y t e x t y t⋅ −− ≤ ⋅ −  (9.1.10) 

 

Theorem 9.1.7 now implies a very important Corollary that proves the continuous nature 

of solutions on their initial conditions. 

 

Corollary 9.1.8, Continuous Dependence of Solutions on Initial Conditions, [11]: 

Let ( )0,x t x  be the solution to  

 
( )( ) ( )( )0

0

,
, ,

d x t x
f x t x t

dt
=  (9.1.11) 

 

with initial condition ( )0 0,x t x .  Assume that Theorem 9.1.7 is satisfied and let the 

functions ( )0,x t x  be defined for all 0x  and 0t , such that 0
0 0x x K− ≤  and 0t t T− ≤ .  

Then 

1. ( )0,x t x  is a continuous function of both variables. 

2. if 0
0 0x x→ , then ( ) ( )0

0 0, ,x t x x t x→  uniformly for 0t t T− ≤  
 

Theorem 9.1.7 and Corollary 9.1.8, can be used to derive an equation that approximates 

the perturbation in a trajectory associated with a perturbation in initial condition.   
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Theorem 9.1.9, [11] (pg. 123): 

Let the vector function f be of class 1C , where 1C  is the class of differentiable functions 

and the differential f  is continuous, and let ( )0,x t x  be the solution to equation (9.1.11) 

with the initial condition ( )0 0,x t x .  Then ( )0,x t x  is a differentiable function of the 

components of 0x . 

 

Theorem 9.1.9 implies the following corollary. 

 

Corollary 9.1.10 [11]: 

If ( )0,x t x  is a solution to equation (9.1.11) with initial condition ( )0 0 0,x t x x= , and if 

each component of f  is of class 1C , then ( )0

0

,x t x
x

∂
∂

 is a solution to the perturbation 

equation  

 ( ) ( )( ) ( )00 0

0 0

, ,, ,f x t x tx t x x t xd
dt x x x

∂∂ ∂⎛ ⎞
= ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠

 (9.1.12) 

 

Corollary 9.1.10 provides the framework for the derivation of the equation that describes 

the perturbation in a reference trajectory with respect to a variation in initial condition. 

 

Theorem 9.1.11 [55] 

Let ( )x t , 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , be the solution to the differential equation  

 ( ) ( ), ,x t f x u t=�  (9.1.13) 
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 with initial condition ( )0x t  and control ( )u τ , 0t tτ≤ ≤  .  Furthermore, let f  be 

Lipschitz continuous in x  uniformly in u  and t  for all ( )u τ , 0t tτ≤ ≤ , and 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , 

and assume f  is differentiable with respect to x  along the trajectory ( )x t .   

 

If  

 ( ) ( ) ( ) ( )0 0 0y t x t t oε ξ ε= + ⋅ +  (9.1.14) 

 

where 0ε >  and ( )0
ntξ ∈\  is a constant vector, then for ε  sufficiently small, the 

solution ( )y t  to equation (9.1.13) with initial condition ( )0y t  and control function 

( )u τ , 0t tτ≤ ≤ , is  

 ( ) ( ) ( ) ( )y t x t x t oε δ ε= + ⋅ +  (9.1.15) 

 

where ( )x tδ  is the solution to the differential equation  

 
( )( ) ( ) ( ), ,d x t f x u t

x t
dt x
δ

δ
∂

= ⋅
∂

 (9.1.16) 

 

with initial condition ( )0tξ . 

 

The next concept is to study the effect of a temporal variation of a reference trajectory 

that is defined by some initial condition and dynamic equation.  Let ( )u t , a t b< < , be 

an arbitrary measurable function on the open interval ( ),a b .  A point, ( ),rt a b∈  is a 
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regular point of the function ( )u t , a t b< < , if the following relationship is satisfied for 

every neighborhood O U⊂  of ( )ru t [55]: 

 
( )

( )( )
( )

1

0
lim 1

mes I

mes u O I

mes I

−

→

∩
=  (9.1.17) 

 

where I  is an arbitrary interval that contains rt , mes  is the Lebesgue measure, and 

( )1u O−  is the set of points ( ),t a b∈  for which ( )u t O∈ .  Note that points, t , where 

( )u t  is either continuous or has isolated jumps are regular points. A simple example of a 

point t  that would not be a regular point of ( )u t  would be if there is an interval of time 

[ ]1,Q t t=  where ( )u t  doesn’t exist.  Since an arbitrary interval I  exists where the set 

( )1u O I− ∩  is bigger than the set I , the limit in equation (9.1.17) is not satisfied. 

 

The definition of a regular point provides the following proposition: 

 

Proposition 9.1.12 

Let ( )u t  be an arbitrary measurable function on the interval a t b< < , then almost every 

point of the interval a t b< <  is a regular point for the function ( )u t . 

 

The reader is referred to the references note on page 77 of [67] for the proof of the 

proposition.     
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Now the first order expansion approximation of an integral equation with respect to a 

temporal variation can be given.  Let ( )( ),g u t t  be a real continuous function of 

( ),t a b∈  and u U∈ , and ( )u t , a t b< <  is a bounded measurable function where 

( )u t U∈ .  Then if rt  is a regular point of ( )u t , the first order Taylor Series Expansion 

can be written as 

 ( )( ) ( ) ( )( ) ( ), ,r

r

t q

r rt p
g u t t dt q p g u t t o

ε

ε
ε ε

+

+
⋅ = ⋅ − ⋅ +∫  (9.1.18) 

 

where p  and q  are arbitrary real numbers [55]. 

 

Theorem 9.1.11 and Proposition 9.1.12 are the two tools that are essential in deriving the 

Maximum Principle.  These two tools provide a means of describing the first order 

variation in the reference trajectory associated with temporal and spatial variations.  

Because the variation in the reference trajectory associated with a variation in control, is 

specific to the type of variation in the control, it will not be given here, but presented in 

Maximum Principle section.
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Appendix B 

Geometric Concepts 

The second concept that is required for the development of the work in this dissertation is 

geometric properties of smooth functions and some geometric properties of a system of 

equations will be defined.  The definitions can all be found in [55].   

 

Define a hypersurface in nX ⊆ \  to be the set, S , of all points that satisfy the relation: 

 ( ) 0f x =  (10.1.1) 

 

where  : nf →\ \ .  All x S∈  such that  

 ( ) ( )
1

0, , 0
n

f x f x
x x

∂ ∂
= =

∂ ∂
…  (10.1.2) 

  

are singular points of x  and all x S∈  such that  

 ( ) ( )
1

0, , 0
n

f x f x
x x

∂ ∂
≠ ≠

∂ ∂
…  (10.1.3) 

 

are non-singular points.  Next define a smooth hypersurface as any hypersuface such that 

( )f x  is continuously differentiable with respect to x  for all x S∈  and contains no 
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singular points.  Furthermore, if equation (10.1.1) is linear, then the hypersurface is called 

a hyperplane. 

 

Now, if 0x  is an arbitrary point of a smooth hypersurface, S , defined by equation 

(10.1.1), then the gradient of f  at 0x  is a normal vector of S  at point 0x .  If S  is a 

smooth hypersurface with 0x  as one of its points and has a normal vector at 0x , then the 

hyperplane formed by adding the vector 0x  to any vector perpendicular to the normal 

vector is the tangent hyperplane to S  at 0x .  Any vector that lies in the tangent 

hyperplane and emanates from 0x  is a tangent vector. 

 

Next, let 1, , kS S…  be smooth hypersurfaces defined by the following k  equations: 

 
( )

( )

1 0

0k

f x

f x

=

=

#  (10.1.4) 

 

The intersection M  of all of the hypersurfaces is called an ( )n k− -smooth manifold in 

X  if all x M∈  satisfy every equation in equation (10.1.4) and the vectors 

( ) ( )1 , , kf x f x∇ ∇…  are linearly independent for all x M∈ (∇  is the gradient operator) 

which is equivalent to the matrix  
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 ( )

( ) ( )

( ) ( )

1 1

1

1

n

k k

n

f x f x
x x

f x
f x f x

x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∇ =
⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

"

# % #

"

 (10.1.5) 

 

having full rank (i.e. rank of k ). 

 

If equations (10.1.4) are linear, then M  is called an ( )n k− -dimensional hyperplane of 

the space X .  Let iL  be the tangent hyperplanes of their corresponding hypersurfaces iS  

at point x .  The intersection of the iL , 1i k= … , is an ( )n k− -dimensional hyperplane 

defined as the tangent hyperplane of M  at x .  Similarly, a tangent vector to M  is any 

vector emanating from x  that lies in the tangent plane with the added constraint that it 

must be orthogonal to all of the gradient vectors ( ) ( )1 , , kf x f x∇ ∇… . 

 

Finally, let 0x M∈  be some arbitrary point on manifold M .  A vector emanating from 

0x  is a tangent vector of M  if and only if it is tangent to any smooth curve which lies in 

M  and passes through 0x . 
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